@ Springer

Book Announcement (January 2010)

A PROCESS ALGEBRAIC APPROACH
TO SOFTWARE ARCHITECTURE DESIGN

by
Alessandro Aldini Marco Bernardo Flavio Corradini
Univ. of Urbino — Italy Univ. of Urbino — Italy Univ. of Camerino — Italy

ABOUT THE BOOK

Concurrency theory, software architecture, system modeling and verification, and dependability and
performance evaluation may seem unrelated disciplines, but in reality they are deeply intertwined. Each
of them should be part of an integrated view in order to manage successfully the increasing complexity
of nowadays software systems.

The book introduces a process algebraic approach to software architecture design. Process algebra,
originally conceived for reasoning about the semantics of concurrent programs, provides a foundational
basis for the modeling and verification of functional and nonfunctional aspects of communicating concur-
rent systems. This can be exploited at the software architecture level of design in order to improve the
formality of design documents and to enable the analysis of system properties in the early design stages.

The book, which is intended for graduate students and software professionals, does not focus only on
theoretical aspects, but also addresses methodological issues and exhibits application examples.

The first part of the book reports on concepts and results of process algebra theory in a quick and
comparative way. It contains background material on the syntax and semantics for process calculi as
well as on the bisimulation, testing, and trace approaches to the definition of behavioral equivalences for
nondeterministic, deterministically timed, and stochastically timed processes.

The second part of the book provides a number of guidelines for a principled transformation of process
algebra into an architectural description language. Then, it addresses the detection of architecture-
level mismatches by means of a topological reduction process based on behavioral equivalences, as well
as the performance-driven selection among alternative designs by associating queueing network models
with process algebraic architectural descriptions. Finally, it shows how to trade dependability features
and performance indices in the architectural design phase, by resorting to equivalence-checking-based
noninterference analysis and standard numerical techniques.

KEY FEATURES OF THE BOOK

e Emphasizes the benefits of using process algebra in the architectural design phase in terms of
formality and analyzability of system descriptions.

e Illustrates a friendly component-oriented way of modeling systems that increases the degree of
usability of process algebra.

e Covers the component-oriented analysis of both functional and nonfunctional properties of system
models by means of process algebraic techniques.

e Explores methodologies dealing with functional verification, performance evaluation, and the
architecture-level integration of dependability and performance.

e Provides background material on process calculi for nondeterministic processes, deterministically
timed processes, and stochastically timed processes.

e Compares the bisimulation, testing, and trace approaches to the definition of behavioral equivalences
for the various kinds of process.

REFERENCES

ISBN: 978-1-84800-222-7 e-ISBN: 978-1-84800-223-4 DOI: 10.1007/978-1-84800-223-4



TABLE OF CONTENTS

Part I: Process Calculi and Behavioral Equivalences

1. PROCESS ALGEBRA

1.1 Concurrency, Communication, and Nondeterminism
1.2 Running Example: Producer—-Consumer System
1.3 PC: Process Calculus for Nondeterministic Processes

1.3.1 Syntax: Actions and Behavioral Operators
1.3.2 Semantics: Structural Operational Rules

1.4 Bisimulation Equivalence

1.4.1 Equivalence Relations and Preorders
1.4.2 Definition of the Behavioral Equivalence
1.4.3 Conditions and Characterizations

1.4.4 Congruence Property

1.4.5 Sound and Complete Axiomatization
1.4.6 Modal Logic Characterization

1.4.7 Verification Algorithm

1.4.8 Abstracting from Invisible Actions

1.5 Testing Equivalence

5.1 Definition of the Behavioral Equivalence
5.2 Conditions and Characterizations
5.3 Congruence Property
5.4 Sound and Complete Axiomatization
5.5 Modal Logic Characterization
5.6 Verification Algorithm
1.6 Trace Equivalence
1.6.1 Definition of the Behavioral Equivalence
1.6.2 Congruence Property
1.6.3 Sound and Complete Axiomatization
1.6.4 Modal Logic Characterization
1.6.5 Verification Algorithm
1.7 The Linear-Time/Branching-Time Spectrum

1.5
1.
1.
1.
1.
1.

2. DETERMINISTICALLY TIMED PROCESS ALGEBRA

2.1 Concurrency, Communication, and Deterministic Time

2.2 Deterministically Timed Process Calculi
2.2.1 TPC: Timed Process Calculus with Durationless Actions
2.2.2 DPC: Timed Process Calculus with Durational Actions

2.3 Deterministically Timed Behavioral Equivalences

3.1 Definition of Timed Bisimulation Equivalence

3.2 Congruence Property

.3.3 Sound and Complete Axiomatization

3.4 Modal Logic Characterization

3.5 Verification Algorithm

3.6

PN

.6 Durational Bisimulation Equivalence and its Properties
2.4 Semantics-Preserving Mapping for Eagerness

2.4.1 Differences Between TPC and DPC
2.4.2 From DPC to TPC Under Eagerness

2.5 Semantics-Preserving Mapping for Laziness

2.5.1 Lazy TPC
2.5.2 Lazy DPC
2.5.3 From DPC to TPC Under Laziness

2.6 Semantics-Preserving Mapping for Maximal Progress

2.6.1 Maximal Progress TPC

2.6.2 Maximal Progress DPC

2.6.3 From DPC to TPC Under Maximal Progress
2.7 Expressiveness of Eagerness, Laziness, Maximal Progress
Synchronization Issues
Choosing at Different Times
Performing Infinitely Many Actions at the Same Time
Performing Finitely Many Actions at the Same Time
Coincidence Result for Sequential Processes

ISISIS SIS
NNNNN
U o b0 =

3. STOCHASTICALLY TIMED PROCESS ALGEBRA

3.1 Concurrency, Communication, and Stochastic Time
3.2 MPC: Markovian Process Calculus with Durational Actions

3.2.1 Markov Chains
3.2.2 Syntax and Semantics

3.3 Markovian Bisimulation Equivalence

.1 Exit Rates and Exit Probabilities

.2 Definition of the Behavioral Equivalence

.3 Conditions and Characterizations

4 Congruence Property

.5 Sound and Complete Axiomatization

.6 Modal Logic Characterization

.7 Verification Algorithm

.8 Abstracting from Invisible Actions with Zero Duration

arkovian Testing Equivalence

Probability and Duration of Computations
Definition of the Behavioral Equivalence
Conditions and Characterizations
Congruence Property

Sound and Complete Axiomatization
Modal Logic Characterization

Verification Algorithm

arkovian Trace Equivalence

Definition of the Behavioral Equivalence
Conditions and Characterizations
Congruence Property

Sound and Complete Axiomatization
Modal Logic Characterization

Verification Algorithm

3.6 Exactnesa of Markovian Behavioral Equivalences
3.7 The Markovian Linear-Time/Branching-Time Spectrum

WWWWwwWwwww
OJOJOJC»«CADC»«CA)CAD

3.4

=y

il
N U WN -

3.5

=

0000 00 00w
Sonmon
DU W N =

Part 1l: Process Algebra for Software Architecture

4. COMPONENT-ORIENTED MODELING

4.1 Software Architecture Description Languages
4.2 Running Example: Client—Server System
4.3 Architectural Upgrade of Process Algebra: Guidelines

G1: Separating Behavior and Topology Descriptions
G2: Reusing Component and Connector Specification
G3: Eliciting Component and Connector Interface

: Classifying Communication Synchronicity

G5: Classifying Communication Multiplicity

G6: Textual and Graphical Notations (PADL Syntax)
G7: Dynamic and Static Operators

4.4 Tranbldtlon Semantics for PADL

4.4.1 Semantics of Individual Elements
4.4.2 Semantics of Interacting Elements

4.5 Summarizing Example: Pipe—Filter System
4.6 G8: Supporting Architectural Styles

Architectural Types
Hierarchical Modeling
Behavioral Conformity
Exogenous Variations
Endogenous Variations
Multiplicity Variations

4.7 Compdrlbonb

4.7.1 Comparison with Process Algebra
4.7.2 Comparison with Parallel Composition Operators
4.7.3 Comparison with Other Software Architecture Languages

B
0o 0oto Lo tow
N U W N
Q
o~

NN NN
200000 ¢
DU WN =

5. COMPONENT-ORIENTED FUNCTIONAL VERIFICATION

5.1 MisMDET: Architecture-Level Mismatch Detection
5.2 Class of Properties and Detection Strategy
5.3 Architectural Compatibility of Star-Shaped Topologies
5.3.1 Case Study: Compressing Proxy System
5.4 Architectural Interoperability of Cycle-Shaped Topologies
5.4.1 Case Study: Cruise Control System
5.5 Generalization to Arbitrary Topologies
5.5.1 Case Study: Simulator for the Cruise Control System
5.6 Generalization to Architectural Types
5.6.1 Generalization to Internal Behavioral Variations
5.6.2 Generalization to Exogenous Variations
5.6.3 Generalization to Endogenous Variations
5.6.4 Generalization to Multiplicity Variations
5.7 Comparisons

6. COMPONENT-ORIENTED PERFORMANCE EVALUATION

6.1 PERFSEL: Performance-Driven Architectural Selection
6.2 Class of Measures and Selection Strategy
6.3 /AEmiLIA: Extending PADL with Performance Aspects
6.4 Queueing Systems and Queueing Networks
6.5 From AEMILIA Descriptions to Queueing Networks
6.5.1 General Syntactical Restrictions
6.5.2 Queueing Network Basic Elements
6.5.3 Documental Functions
6.5.4 Characterizing Functions
6.6 Case Study: Selecting Compiler Architectures
6.6.1 Sequential Architecture
6.6.2 Pipeline Architecture
6.6.3 Concurrent Architecture
6.6.4 Scenario-Based Performance Selection
6.7 Comparisons

7. TRADING DEPENDABILITY AND PERFORMANCE

7.1 DEPPERF: Mixed View of Dependability and Performance
7.2 Running Example: Multilevel Security Routing System
7.3 First Phase of DEPPERF: Noninterference Analysis
7.3.1 Noninterference Theory
7.3.2 Noninterference Verification
7.3.3 Architectural Noninterference Check
7.3.4 Interpretation and Feedback
7.4 Second Phase of DEPPERF: Performance Evaluation
7.4.1 Model Validation
7.4.2 Analysis and Tuning
7.4.3 Measure Specification Language
7.5 Case Study I: The NRL Pump
7.5.1 Informal Specification
7.5.2 Architectural Description
7.5.3 Noninterference Analysis
7.5.4 Performance Evaluation
7.6 Case Study II: Power-Manageable System
7.6.1 Informal Specification
7.6.2 Architectural Description
7.6.3 Noninterference Analysis
7.6.4 Performance Evaluation
7.7 Comparisons



