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Reversible systems exhibit both forward computations and backward computations, where the aim
of the latter is to undo the effects of the former. Such systems can be compared via forward-reverse
bisimilarity as well as its two components, i.e., forward bisimilarity and reverse bisimilarity. The
congruence, equational, and logical properties of these equivalences have already been studied in
the setting of sequential processes. In this paper we address concurrent processes and investigate
compositionality and axiomatizations of forward bisimilarity, which is interleaving, and reverse and
forward-reverse bisimilarities, which are truly concurrent. To uniformly derive expansion laws for the
three equivalences, we develop encodings based on the proved trees approach of Degano & Priami.
In the case of reverse and forward-reverse bisimilarities, we show that in the encoding every action
prefix needs to be extended with the backward ready set of the reached process.

1 Introduction

A reversible system features two directions of computation. The forward one coincides with the normal
way of computing. The backward one undoes the effects of the forward one so as to return to a consistent
state, i.e., a state that can be encountered while moving in the forward direction. Reversible computing
has attracted an increasing interest due to its applications in many areas, including low-power com-
puting [34, 6], program debugging [30, 38], robotics [40], wireless communications [53], fault-tolerant
systems [23, 55, 35, 54], biochemical modeling [49, 50], and parallel discrete-event simulation [44, 52].

Returning to a consistent state is not an easy task to accomplish in a concurrent system, because the
undo procedure necessarily starts from the last performed action and this may not be uniquely identifiable
due to concurrency. The usually adopted strategy is that an action can be undone provided that all the
actions it subsequently caused, if any, have been undone beforehand [22]. In this paper we focus on
reversible process calculi, for which there are two approaches – later shown to be equivalent in [36] –
to keep track of executed actions and revert computations in a causality-consistent way.

The dynamic approach of [22, 33] yielded RCCS (R for reversible) and its mobile variants [37, 21].
RCCS is an extension of CCS [41] that uses stack-based memories attached to processes so as to record
executed actions and subprocesses discarded upon choices. A single transition relation is defined, while
actions are divided into forward and backward thereby resulting in forward and backward transitions.
This approach is adequate in the case of very expressive calculi as well as programming languages.

The static approach of [45] proposed a general method to reverse calculi, of which CCSK (K for keys)
and its quantitative variants [10, 14, 11, 12] are a result. The idea is to retain within the process syntax all
executed actions, which are suitably decorated, and all dynamic operators, which are thus made static.
A forward transition relation and a backward transition relation are defined separately. Their labels are
actions extended with communication keys so as to know, upon generating backward transitions, which
actions synchronized with each other. This approach is very handy to deal with basic process calculi.

A systematic study of compositionality and axiomatization of strong bisimilarity in reversible pro-
cess calculi has started in [13], both for nondeterministic processes and for Markovian processes. Then
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Figure 1: Forward, reverse, and forward-reverse bisimilarities at work: interleaving vs. true concurrency

compositionality and axiomatization of weak bisimilarity as well as modal logic characterizations for
strong and weak bisimilarities have been investigated in [8, 9] for the nondeterministic case. That study
compares the properties of forward-reverse bisimilarity∼FRB [45] with those of its two components, i.e.,
forward bisimilarity ∼FB [43, 41] and reverse bisimilarity ∼RB. The reversible process calculus used
in that study is minimal. Similar to [26], its semantics relies on a single transition relation, where the
distinction between going forward or backward in the bisimulation game is made by matching outgoing
or incoming transitions respectively. As a consequence, similar to [17] executed actions can be deco-
rated uniformly, without having to resort to external stack-based memories [22] or communication keys
associated with those actions [45].

A substantial limitation of [13, 8, 9] is the absence of the parallel composition operator in the calcu-
lus, motivated by the need of remaining neutral with respect to interleaving view vs. true concurrency.
Unlike forward bisimilarity, as noted in [45] forward-reverse bisimilarity – and also reverse bisimilarity –
does not satisfy the expansion law of parallel composition into a nondeterministic choice among all pos-
sible action sequencings. In Figure 1 we depict two labeled transition systems respectively representing
a process that can perform action a in parallel with action b (a .0‖ /0 b .0 using a CSP-like parallel com-
position [19]) and a process that can perform either a followed by b or b followed by a (a .b .0+b .a .0
with + denoting a CCS-like choice [41]), where a 6= b and † decorates executed actions.

The forward bisimulation game yields the usual interleaving setting in which the two top states are
related, the two pairs of corresponding intermediate states are related, and the three bottom states are
related. However, the three bottom states are no longer related if we play the reverse bisimulation game,
as the state on the left has two differently labeled incoming transitions while either state on the right has
only one. The remaining pairs of states are related by reverse bisimilarity as they have identically labeled
incoming transitions, whereas they are told apart by forward-reverse bisimilarity due to the failure of the
interplay between outgoing and incoming transitions matching. More precisely, any two corresponding
intermediate states are not forward-reverse bisimilar because their identically labeled outgoing transitions
reach the aforementioned inequivalent bottom states. In turn, the two initial states are not forward-reverse
bisimilar because their identically labeled outgoing transitions reach the aforementioned inequivalent
intermediate states. A new level of complexity thus arises from the introduction of parallel composition.

For the sake of completeness, we recall that an interleaving view can be restored by considering
computation paths (instead of states) like in the back-and-forth bisimilarity of [26]. Besides causality,
this choice additionally preserves history, in the sense that backward moves are constrained to take place
along the path followed in the forward direction even in the presence of concurrency. For instance, in the
labeled transition system on the left, after performing a and then b it is not possible to undo a before b
although there are no causality constraints between those two actions.
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In this paper we add parallel composition and then extend the axiomatizations of the three strong
bisimilarities examined in [13] via expansion laws. The usual technique consists of introducing normal
forms, in which only action prefix and alternative composition occur, along with expansion laws, through
which occurrences of parallel composition are progressively eliminated. Although this originated in the
interleaving setting for forward-only calculi [32] to identify processes such as a .0‖ /0 b .0 and a .b .0+
b .a .0, it was later exploited also in the truly concurrent spectrum [31, 28] to distinguish processes
like the aforementioned two. This requires an extension of the syntax that adds suitable discriminating
information within action prefixes. For example:

• Causal bisimilarity [24, 25] (corresponding to history-preserving bisimilarity [51]): every action
is enriched with the set of its causing actions, each of which is expressed as a numeric back-
ward pointer, so that the former process is expanded to <a, /0>.<b, /0>.0+<b, /0>.<a, /0>.0
while the latter process becomes <a, /0>.<b,{1}>.0+<b, /0>.<a,{1}>.0.

• Location bisimilarity [18] (corresponding to local history-preserving bisimilarity [20]): every ac-
tion is enriched with the name of the location in which it is executed, so that the former pro-
cess is expanded to <a, la>.<b, lb>.0 +<b, lb>.<a, la>.0 while the latter process becomes
<a, la>.<b, lalb>.0+<b, lb>.<a, lbla>.0.

• Pomset bisimilarity [15]: instead of a single action, a prefix may contain the combination of several
independent actions that are executed simultaneously, so that the former process is expanded to
a .b .0+b .a .0+(a‖ b) .0 while the latter process is unchanged.

A unifying framework for addressing both interleaving and truly concurrent semantics along with
their expansion laws was developed in [27]. The idea is to label every transition with a proof term [16,
17], which is an action preceded by the operators in the scope of which the action occurs. The semantics
of interest then drives an observation function that maps proof terms to the required observations. In the
interleaving case proof terms are reduced to the actions they contain, while in the truly concurrent case
they are transformed into actions extended with discriminating information as exemplified above.

In this paper we apply the proved trees approach of [27] to develop expansion laws for forward,
reverse, and forward-reverse bisimilarities. This requires understanding which additional discriminating
information is needed inside prefixes for the last two equivalences. While this is rather straightforward
for the truly concurrent semantics recalled above – the considered information is already present in the
original transition labels – it is not obvious in our case because original transitions are labeled just with
actions. However, by looking at the three bottom states in Figure 1, one can realize that they have
different backward ready sets, i.e., sets of actions labeling incoming transitions: {b,a},{b},{a}.

We show that backward ready sets indeed constitute the information that is necessary to add within
action prefixes for reverse and forward-reverse bisimilarities, by means of a suitable process encoding.
Moreover, we provide an adequate treatment of concurrent processes in which independent actions have
been executed on both sides of the parallel composition because, e.g., a†.0‖ /0 b†.0 cannot be expanded to
something like a†.b†.0+b†.a†.0 in that only one branch of an alternative composition can be executed.

This paper is organized as follows. In Section 2 we extend the syntax of the reversible process
calculus of [13] by adding a parallel composition operator, we reformulate its operational semantics
by following the proved trees approach of [27], and we rephrase the definitions of forward, reverse,
and forward-reverse bisimilarities of [13]. In Section 3 we illustrate the next steps of the proved trees
approach, i.e., the definition of observation functions and process encodings. In Sections 4 and 5
we respectively develop axioms for forward bisimilarity, including an interleaving-style expansion law,
and for reverse and forward-reverse bisimilarities, including expansion laws based on extending action
prefixes with backward ready sets. In Section 6 we provide some concluding remarks.
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2 From Sequential Reversible Processes to Concurrent Ones

Starting from the sequential reversible calculus considered in [13], in this section we extend its syntax
with a parallel composition operator in the CSP style [19] (Section 2.1) and its semantics according to
the proved trees approach [27] (Section 2.2). Then we rephrase forward, reverse, and forward-reverse
bisimilarities and show that they are congruences with respect to the additional operator (Section 2.3).

2.1 Syntax of Concurrent Reversible Processes

Given a countable set A of actions including an unobservable action denoted by τ , the syntax of concur-
rent reversible processes extends the one in [13] as follows:

P ::= 0 | a .P | a†.P | P+P | P‖L P
where a ∈ A, † decorates executed actions, L⊆ A\{τ}, and:

• 0 is the terminated process.

• a .P is a process that can execute action a and whose forward continuation is P.

• a†.P is a process that executed action a and whose forward continuation is inside P, which can
undo action a after all executed actions within P have been undone.

• P1 +P2 expresses a nondeterministic choice between P1 and P2 as far as neither has executed any
action yet, otherwise only the one that was selected in the past can move.

• P1 ‖L P2 expresses the parallel composition of P1 and P2, which proceed independently of each
other on actions in L̄ = A\L while they have to synchronize on every action in L.

As in [13] we can characterize some important classes of processes via as many predicates. Firstly,
we define initial processes, in which all actions are unexecuted and hence no †-decoration appears:

initial(0)
initial(a .P) if initial(P)

initial(P1 +P2) if initial(P1)∧ initial(P2)
initial(P1 ‖L P2) if initial(P1)∧ initial(P2)

Secondly, we define well-formed processes, whose set we denote by P , in which both unexecuted
and executed actions can occur in certain circumstances:

wf(0)
wf(a .P) if initial(P)

wf(a†.P) if wf(P)
wf(P1 +P2) if (wf(P1)∧ initial(P2))∨ (initial(P1)∧wf(P2))
wf(P1 ‖L P2) if wf(P1)∧wf(P2)

Well formedness not only imposes that every unexecuted action is followed by an initial process, but also
that in every alternative composition at least one subprocess is initial. Multiple paths arise in the presence
of both alternative (+) and parallel (‖L) compositions. However, at each occurrence of the former, only
the subprocess chosen for execution can move. Although not selected, the other subprocess is kept as
an initial subprocess within the overall process in the same way as executed actions are kept inside the
syntax [17, 45], so as to support reversibility. For example, in a†.b .0+ c .d .0 the subprocess c .d .0
cannot move as a was selected in the choice between a and c.

It is worth noting that:

• 0 is both initial and well-formed.
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(ACTf)
initial(P)

a .P a−→ a†.P
(ACTp)

P θ−→P′

a†.P .θ−→ a†.P′

(CHOl)
P1

θ−→P′1 initial(P2)

P1 +P2
.+θ−→P′1 +P2

(CHOr)
P2

θ−→P′2 initial(P1)

P1 +P2
+.θ−→P1 +P′2

(PARl)
P1

θ−→P′1 act(θ) /∈ L

P1 ‖L P2
Uθ−→P′1 ‖L P2

(PARr)
P2

θ−→P′2 act(θ) /∈ L

P1 ‖L P2
Tθ−→P1 ‖L P′2

(SYN)
P1

θ1−→P′1 P2
θ2−→P′2 act(θ1) = act(θ2) ∈ L

P1 ‖L P2
〈θ1,θ2〉−−−→P′1 ‖L P′2

Table 1: Proved operational semantic rules for concurrent reversible processes

• Any initial process is well-formed too.

• P also contains processes that are not initial like, e.g., a†.b .0, which can either do b or undo a.

• In P the relative positions of already executed actions and actions to be executed matter. Precisely,
an action of the former kind can never occur after one of the latter kind. For instance, a†.b .0 ∈P
whereas b .a†.0 /∈P .

• In P the subprocesses of an alternative composition can be both initial, but cannot be both non-
initial. As an example, a .0+b .0 ∈P whilst a†.0+b†.0 /∈P .

2.2 Proved Operational Semantics

According to [45], in the semantic rules dynamic operators such as action prefix and alternative com-
position have to be made static, so as to retain within the syntax all the information needed to enable
reversibility. Unlike [45], we do not generate a forward transition relation and a backward one, but a
single transition relation that, like in [26], we deem to be symmetric in order to enforce the loop prop-
erty [22]: every executed action can be undone and every undone action can be redone. In our setting,
a backward transition from P′ to P is subsumed by the corresponding forward transition t from P to P′.
As we will see in the definition of behavioral equivalences, like in [26] we view t as an outgoing transition
of P when going forward, while we view t as an incoming transition of P′ when going backward.

Unlike [13], as a first step based on [27] towards the derivation of expansion laws for parallel compo-
sition we provide a very concrete semantics in which every transition is labeled with a proof term [16, 17].
This is an action preceded by the sequence of operator symbols in the scope of which the action occurs.
In the case of a binary operator, the corresponding symbol also specifies whether the action occurs to the
left or to the right. The syntax that we adopt for the set Θ of proof terms is the following:

θ ::= a | .θ | .+θ |+.θ | Uθ | Tθ | 〈θ ,θ〉
The proved semantic rules in Table 1 extend the ones in [13] and generate the proved labeled transi-

tion system (P,Θ,−→) where−→⊆P×Θ×P is the proved transition relation. We denote by P(P
the set of processes that are reachable from an initial one via −→. Not all well-formed processes are
reachable; for example, a†.0‖{a} 0 is not reachable from a .0‖{a} 0 as action a on the left cannot syn-
chronize with any action on the right. We indicate with Pinit the set of initial processes in P.
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The first rule for action prefix (ACTf where f stands for forward) applies only if P is initial and
retains the executed action in the target process of the generated forward transition by decorating the
action itself with †. The second rule (ACTp where p stands for propagation) propagates actions of inner
initial subprocesses by putting a dot before them in the label for each outer executed action prefix.

In both rules for alternative composition (CHOl and CHOr where l stands for left and r stands for
right), the subprocess that has not been selected for execution is retained as an initial subprocess in the
target process of the generated transition. When both subprocesses are initial, both rules for alternative
composition are applicable, otherwise only one of them can be applied and in that case it is the non-initial
subprocess that can move, because the other one has been discarded at the moment of the selection.

The rules for parallel composition make use of partial function act : Θ ⇀ A to extract the action from
a proof term θ . The function is defined by induction on the syntactical structure of θ as follows:

act(a) = a
act(.θ ′) = act(.+θ ′) = act(+.θ ′) = act(Uθ ′) = act(Tθ ′) = act(θ ′)

act(〈θ1,θ2〉) = act(θ1) if act(θ1) = act(θ2)
In the first two rules (PARl and PARr), a single subprocess proceeds by performing an action not belong-
ing to L. In the third rule (SYN), both subprocesses synchronize on an action in L.

Every process may have several outgoing transitions and, if it is not initial, has at least one incoming
transition. Due to the decoration of executed actions inside the process syntax, over the set Pseq of
sequential processes – in which there are no occurrences of parallel composition – every non-initial
process has exactly one incoming transition, the underlying labeled transition systems turn out to be
trees, and well formedness coincides with reachability [13].

Example 2.1 The proved labeled transition systems generated by the rules in Table 1 for the two initial
sequential processes a .0+a .0 and a .0 are depicted below:

0_a . 0_a . 0_a . +

+a.+a.

0_a . 0_a . + 0_a . 0_a . + 0_a . 

a

.

In the case of a forward-only process calculus, a single a-transition would be generated from a .0+a .0
to 0 due to the absence of action decorations within processes.

2.3 Forward, Reverse, and Forward-Reverse Bisimilarities

We rephrase the definitions given in [13] of forward bisimilarity [43, 41] (only outgoing transitions),
reverse bisimilarity (only incoming transitions), and forward-reverse bisimilarity [45] (both kinds of
transitions) because transition labels now are proof terms. Since we focus on the actions contained in
those terms, the distinguishing power of the three equivalences does not change with respect to [13].

Definition 2.2 We say that P1,P2 ∈ P are forward bisimilar, written P1 ∼FB P2, iff (P1,P2) ∈ B for
some forward bisimulation B. A symmetric relation B over P is a forward bisimulation iff, whenever
(P1,P2) ∈B, then:

• For each P1
θ1−→P′1 there exists P2

θ2−→P′2 such that act(θ1) = act(θ2) and (P′1,P
′
2) ∈B.

Definition 2.3 We say that P1,P2 ∈ P are reverse bisimilar, written P1 ∼RB P2, iff (P1,P2) ∈ B for
some reverse bisimulation B. A symmetric relation B over P is a reverse bisimulation iff, whenever
(P1,P2) ∈B, then:

• For each P′1
θ1−→P1 there exists P′2

θ2−→P2 such that act(θ1) = act(θ2) and (P′1,P
′
2) ∈B.
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Definition 2.4 We say that P1,P2 ∈ P are forward-reverse bisimilar, written P1 ∼FRB P2, iff (P1,P2) ∈B
for some forward-reverse bisimulation B. A symmetric relation B over P is a forward-reverse bisimu-
lation iff, whenever (P1,P2) ∈B, then:

• For each P1
θ1−→P′1 there exists P2

θ2−→P′2 such that act(θ1) = act(θ2) and (P′1,P
′
2) ∈B.

• For each P′1
θ1−→P1 there exists P′2

θ2−→P2 such that act(θ1) = act(θ2) and (P′1,P
′
2) ∈B.

Example 2.5 The two initial processes considered in Example 2.1 are identified by all the three equiva-
lences. This is witnessed by any bisimulation that contains the pairs (a .0+a .0,a .0), (a†.0+a .0,a†.0),
and (a .0+a†.0,a†.0).

As observed in [13], ∼FB is not a congruence with respect to alternative composition, e.g.:
a†.b .0 ∼FB b .0 but a†.b .0+ c .0 6∼FB b .0+ c .0

because in a†.b .0+ c .0 action c is disabled by virtue of the already executed action a†, while in b .0+
c .0 action c is enabled as there are no past actions preventing it from occurring. This problem, which
does not show up for ∼RB and ∼FRB because they cannot identify an initial process with a non-initial
one, led in [13] to the following variant of ∼FB that is sensitive to the presence of the past.

Definition 2.6 We say that P1,P2 ∈ P are past-sensitive forward bisimilar, written P1 ∼FB:ps P2, iff
(P1,P2)∈B for some past-sensitive forward bisimulation B. A relation B over P is a past-sensitive for-
ward bisimulation iff it is a forward bisimulation where initial(P1)⇐⇒ initial(P2) for all (P1,P2) ∈B.

Since ∼FB:ps is sensitive to the presence of the past, we have that a†.b .0 6∼FB:ps b .0, but it is still
possible to identify non-initial processes having a different past like, e.g., a†

1 .P and a†
2 .P. It holds

that ∼FRB ( ∼FB:ps ∩ ∼RB, with ∼FRB=∼FB:ps over initial processes as well as ∼FB:ps and ∼RB being
incomparable because, e.g., for a1 6= a2:

a†
1 .P ∼FB:ps a†

2 .P but a†
1 .P 6∼RB a†

2 .P
a1 .P ∼RB a2 .P but a1 .P 6∼FB:ps a2 .P

It is easy to establish two necessary conditions for the considered bisimilarities. Following the ter-
minology of [42, 7], the two conditions respectively make use of the forward ready set in the forward
direction and the backward ready set in the backward direction; the latter condition will be exploited
when developing the expansion laws for ∼RB and ∼FRB. We proceed by induction on the syntactical
structure of P ∈ P to define its forward ready set frs(P) ⊆ A, i.e., the set of actions that P can immedi-
ately execute (labels of its outgoing transitions), as well as its backward ready set brs(P) ⊆ A, i.e., the
set of actions whose execution led to P (labels of its incoming transitions):

frs(0) = /0 brs(0) = /0
frs(a .P′) = {a} brs(a .P′) = /0

frs(a†.P′) = frs(P′) brs(a†.P′) =

ß
{a} if initial(P′)
brs(P′) if ¬initial(P′)

frs(P1 +P2) =


frs(P1)∪ frs(P2) if initial(P1)∧ initial(P2)
frs(P1) if ¬initial(P1)∧ initial(P2)
frs(P2) if initial(P1)∧¬initial(P2)

brs(P1 +P2) =


/0 if initial(P1)∧ initial(P2)
brs(P1) if ¬initial(P1)∧ initial(P2)
brs(P2) if initial(P1)∧¬initial(P2)

frs(P1 ‖L P2) = (frs(P1)∩ L̄)∪ (frs(P2)∩ L̄)∪ (frs(P1)∩ frs(P2)∩L)
brs(P1 ‖L P2) = (brs(P1)∩ L̄)∪ (brs(P2)∩ L̄)∪ (brs(P1)∩brs(P2)∩L)
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Proposition 2.7 Let P1,P2 ∈ P. Then:

1. If P1 ∼ P2 for ∼∈ {∼FB,∼FB:ps,∼FRB}, then frs(P1) = frs(P2).

2. If P1 ∼ P2 for ∼∈ {∼RB,∼FRB}, then brs(P1) = brs(P2).

In [13] it has been shown that all these four bisimilarities are congruences with respect to action pre-
fix, while only ∼FB:ps, ∼RB, and ∼FRB are congruences with respect to alternative composition too, with
∼FB:ps being the coarsest congruence with respect to + contained in ∼FB. Sound and ground-complete
equational characterizations have also been provided for the three congruences. Here we show that all
these bisimilarities are congruences with respect to the newly added operator, i.e., parallel composition.

Theorem 2.8 Let ∼∈ {∼FB,∼FB:ps,∼RB,∼FRB} and P1,P2 ∈ P. If P1 ∼ P2 then P1 ‖L P ∼ P2 ‖L P and
P‖L P1 ∼ P‖L P2 for all P ∈ P and L⊆ A\{τ} such that P1 ‖L P,P2 ‖L P,P‖L P1,P‖L P2 ∈ P.

3 Observation Functions and Process Encodings for Expansion Laws

Among the most important axioms there are expansion laws, which are useful to relate sequential spec-
ifications of systems with their concurrent implementations [41]. In the interleaving setting they can be
obtained quite naturally, whereas this is not the case under true concurrency. Thanks to the proved op-
erational semantics in Table 1, we can uniformly derive expansion laws for the interleaving bisimulation
congruence ∼FB:ps and the two truly concurrent bisimulation congruences ∼RB and ∼FRB by following
the proved trees approach of [27].

All we have to do is the introduction of three observation functions `F, `R, and `FR that respectively
transform the proof terms labeling all proved transitions into suitable observations according to ∼FB:ps,
∼RB, and ∼FRB. In addition to a specific proof term θ , as shown in [27] each such function, say `, may
depend on other possible parameters in the proved labeled transition system generated by the semantic
rules in Table 1. Moreover, it must preserve actions, i.e., if `(θ1) = `(θ2) then act(θ1) = act(θ2).

Based on the corresponding `, from each of the three aforementioned congruences we can thus derive
a bisimilarity in which, whenever (P1,P2) ∈B, the forward clause requires that:

for each P1
`(θ1)−−−→P′1 there exists P2

`(θ2)−−−→P′2 such that `(θ1) = `(θ2) and (P′1,P
′
2) ∈B

while the backward clause requires that:

for each P′1
`(θ1)−−−→P1 there exists P′2

`(θ2)−−−→P2 such that `(θ1) = `(θ2) and (P′1,P
′
2) ∈B

We indicate with ∼FB:ps:`F , ∼RB:`R , and ∼FRB:`FR the three resulting bisimilarities.
To derive the corresponding expansion laws, the final step – left implicit in [27], see, e.g., the forth-

coming Definitions 5.1 and 5.3 – consists of lifting ` to processes so as to encode observations within
action prefixes. For a process P∈Pseq, the idea is to proceed by induction on the syntactical structure of P
as follows, where σ ∈Θ∗seq for Θseq = {., .+,+.}:

`σ (0) = 0
`σ (a .P′) = `(σa) . `σ .(P′)
`σ (a†.P′) = `(σa)†. `σ .(P′)

`σ (P1 +P2) = `.+σ (P1)+ `+.σ (P2)
Every sequential process P will thus be encoded as `ε(P), so for example a .b .0+b .a .0 will become:
`.+(a .b .0)+ `+.(b .a .0) = `(.+a) . `.+.(b .0)+ `(+.b) . `+..(a .0) = `(.+a) . `(.+.b) .0+ `(+.b) . `(+..a) .0

Then, given two initial sequential processes expressed as follows due to the commutativity and asso-
ciativity of alternative composition (where any summation over an empty index set is 0):
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P1 = ∑
i∈I1

`(θ1,i) .P1,i and P2 = ∑
i∈I2

`(θ2,i) .P2,i

the idea is to encode their parallel composition via the following expansion law (where 0‖L 0 yields 0):
P1 ‖L P2 = ∑

i∈I1,act(θ1,i)/∈L
`(Uθ1,i) .(P1,i ‖L P2)+ ∑

i∈I2,act(θ2,i)/∈L
`(Tθ2,i) .(P1 ‖L P2,i) +

∑
i∈I1,act(θ1,i)∈L

∑
j∈I2,act(θ2, j)=act(θ1,i)

`(〈θ1,i,θ2, j〉) .(P1,i ‖L P2, j)

For instance, a .0‖ /0 b .0, represented as `(a) .0‖ /0 `(b) .0, will be expanded as follows:
`(U /0a) .(0‖ /0 `(b) .0)+ `(T /0b) .(`(a) .0‖ /0 0) = `(U /0a) . `(T /0b) .0+ `(T /0b) . `(U /0a) .0

where, compared to the encoding of a .b .0+b .a .0, in general `(.+a) 6= `(U /0a) 6= `(+..a) and `(.+.b) 6=
`(T /0b) 6= `(+.b). The expansion laws for the cases in which the two sequential processes are not both
initial – which are specific to reversible processes and hence not addressed in [27] – are derived similarly.
We will see that care must be taken when both processes are non-initial because for example a†.0‖ /0 b†.0
cannot be expanded to `(Ua)†. `(Tb)†.0+ `(Tb)†. `(Ua)†.0 as the latter is not even well-formed due to
the presence of executed actions on both sides of the alternative composition.

In the next two sections we will investigate how to define the three observation functions `F, `R, and
`FR in such a way that the three equivalences ∼FB:ps:`F , ∼RB:`R , and ∼FRB:`FR respectively coincide with
the three congruences∼FB:ps, ∼RB, and∼FRB. As far as true concurrency is concerned, we point out that
the observation functions developed in [27] for causal semantics and location semantics were inspired
by additional information already present in the labels of the original semantics, i.e., backward pointers
sets [24] and localities [18] respectively. In our case, instead, the original semantics in Table 1 features
labels that are essentially actions, hence for reverse and forward-reverse bisimilarities we have to find out
the additional information necessary to discriminate, e.g., the processes associated with the three bottom
states in Figure 1.

4 Axioms and Expansion Law for ∼FB:ps

In this section we provide a sound and ground-complete axiomatization of forward bisimilarity over
concurrent reversible processes. As already mentioned, this behavioral equivalence complies with the
interleaving view of concurrency. Therefore, we can exploit the same observation function for interleav-
ing semantics used in [27], which we express as `F(θ) = act(θ) and immediately implies that ∼FB:ps:`F

coincides with ∼FB:ps. Moreover, no additional information has to be inserted into action prefixes, i.e.,
the lifting to processes of the observation function is accomplished via the identity function.

The set AF of axioms for ∼FB:ps is shown in Table 2 (where-clauses are related to P-membership).
All the axioms apart from the last one come from [13], where an axiomatization was developed over
sequential reversible processes. Axioms AF,1 to AF,4 – associativity, commutativity, neutral element,
and idempotency of alternative composition – coincide with those for forward-only processes [32]. Ax-
ioms AF,5 and AF,6 together establish that the presence of the past cannot be ignored, but the specific
past can be neglected when moving only forward. Likewise, axiom AF,7 states that a previously non-
selected alternative process can be discarded when moving only forward; note that it does not subsume
axioms AF,3 and AF,4 because P has to be non-initial.

Since due to axioms AF,5 and AF,6 we only need to remember whether some action has been executed
in the past, axiom AF,8 is the only expansion law needed for∼FB:ps. Notation [a†.] stands for the possible
presence of an executed action prefix, with a† being present at the beginning of the expansion iff at least
one of a†

1 and a†
2 is present at the beginning of P1 and P2 respectively. In P1 and P2, as well as on the

righthand side of the expansion, summations are allowed by axioms AF,1 and AF,2 and represent 0 when
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(AF,1) (P+Q)+R = P+(Q+R) where at least two among P, Q, R are initial
(AF,2) P+Q = Q+P where at least one between P and Q is initial
(AF,3) P+0 = P
(AF,4) P+P = P where initial(P)
(AF,5) a† .P = b† .P if initial(P)
(AF,6) a†.P = P if ¬initial(P)
(AF,7) P+Q = P if ¬initial(P), where initial(Q)

(AF,8) P1 ‖L P2 = [a†.]

Ç
∑

i∈I1,a1,i /∈L
a1,i .(P1,i ‖L P′2) +

∑
i∈I2,a2,i /∈L

a2,i .(P′1 ‖L P2,i) +

∑
i∈I1,a1,i∈L

∑
j∈I2,a2, j=a1,i

a1,i .(P1,i ‖L P2, j)

å
with Pk = [a†

k .]P
′
k, P′k = ∑

i∈Ik

ak,i .Pk,i in F-nf for k ∈ {1,2} and a† present iff so is a†
1 or a†

2

Table 2: Axioms characterizing ∼FB:ps over concurrent reversible processes

their index sets are empty (so that AF ` 0‖L 0 = 0+ 0+ 0 = 0 due to axiom AF,3, substitutivity with
respect to alternative composition, and transitivity).

The deduction system based on AF, whose deducibility relation we denote by `, includes axioms
and inference rules expressing reflexivity, symmetry, and transitivity (because ∼FB:ps is an equivalence
relation) as well as substitutivity with respect to the operators of the considered calculus (because ∼FB:ps
is a congruence with respect to all of those operators). Following [32], to show the soundness and
ground-completeness of AF for ∼FB:ps we introduce a suitable normal form to which every process can
be reduced. The only operators that can occur in such a normal form are action prefix and alternative
composition, hence all processes in normal form are sequential.

Definition 4.1 We say that P ∈ P is in forward normal form, written F-nf, iff it is equal to [b†.]∑i∈I ai .Pi

where the executed action prefix b†. is optional, I is a finite index set (with the summation being 0
when I = /0), and each Pi is initial and in F-nf.

Lemma 4.2 For all (initial) P ∈ P there exists (an initial) Q ∈ P in F-nf such that AF ` P = Q.

Theorem 4.3 Let P1,P2 ∈ P. Then P1 ∼FB:ps P2 iff AF ` P1 = P2.

5 Axioms and Expansion Laws for ∼RB and ∼FRB

In this section we address the axiomatization of reverse and forward-reverse bisimilarities over concur-
rent reversible processes. Since these behavioral equivalences are truly concurrent, we have to provide
process encodings that insert suitable additional discriminating information into action prefixes. We show
that this information is the same for both semantics and is constituted by backward ready sets. Precisely,
for every proved transition P θ−→P′, we let `R(θ)P′ = `FR(θ)P′ =<act(θ),brs(P′)>, `brs(θ)P′ , where
in the observation function we have indicated its primary argument θ in parentheses and its secondary
argument P′ as a subscript (see Section 3 for the possibility of additional parameters like P′).
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(ACTbrs,f)
initial(U)

<a,i>.U
a,i−−→brs<a†,i>.U

(ACTbrs,p)
U

θ ,k−−→brsU ′

<a†,i>.U
.θ ,k−−→brs<a†,i>.U ′

(CHObrs,l)
U1

θ ,i−−→brsU ′1 initial(U2)

U1 +U2
.+θ ,i−−−→brsU ′1 +U2

(CHObrs,r)
U2

θ ,i−−→brsU ′2 initial(U1)

U1 +U2
+.θ ,i−−−→brsU1 +U ′2

Table 3: Proved operational semantic rules for Pbrs (i,k ∈ 2A)

By virtue of Proposition 2.7(2), the distinguishing power of∼RB and∼FRB does not change if, in the
related definitions of bisimulation, we additionally require that brs(P1) = brs(P2) for all (P1,P2) ∈B.
As a consequence, it is straightforward to realize that ∼RB:`brs and ∼FRB:`brs (see page 8) respectively
coincide with ∼RB and ∼FRB over P. Moreover, ∼RB:`brs and ∼FRB:`brs also apply to the encoding target
Pbrs, i.e., the set of processes obtained from Pseq by extending every action prefix with a subset of A.

The syntax of Pbrs processes is defined as follows where i ∈ 2A:
U ::= 0 |<a,i>.U |<a†,i>.U |U +U

The proved operational semantic rules for Pbrs shown in Table 3 generate the proved labeled transition
system (Pbrs,Θ× 2A,−→brs). With respect to those in Table 1, the rules in Table 3 additionally label
the produced transitions with the action sets occurring in the action prefixes inside the source processes.
Given a symmetric relation B over Pbrs, whenever (U1,U2) ∈B the forward clause of ∼FRB:`brs can be
rephrased as:

for each U1
θ1,i−−→brsU ′1 there exists U2

θ2,i−−→brsU ′2 such that act(θ1) = act(θ2) and (U ′1,U
′
2) ∈B

while the backward clauses of ∼RB:`brs and ∼FRB:`brs can be rephrased as:

for each U ′1
θ1,i−−→brsU1 there exists U ′2

θ2,i−−→brsU2 such that act(θ1) = act(θ2) and (U ′1,U
′
2) ∈B

Following the proved trees approach as described in Section 3, we now lift `brs so as to encode P into
Pbrs. The objective is to extend each action prefix with the backward ready set of the reached process.
While in the case of processes in Pseq it is just a matter of extending any action prefix with a singleton
containing the action itself, backward ready sets may contain several actions when handling processes
not in Pseq. To account for this, the lifting of `brs has to make use of a secondary argument, which we
call environment process and will be written as a subscript by analogy with the secondary argument of
the observation function.

The environment process is progressively updated as prefixes are turned into pairs so as to represent
the process reached so far, i.e., the process yielding the backward ready set. The environment process
E for P embodies P, in the sense that it is initially P and then its forward behavior is updated upon
each action prefix extension by decorating the action as executed, where the action is located within E
by a proof term. To correctly handle the extension of already executed prefixes, (part of) E has to be
brought back by replacing P inside E with the process to initial(P) obtained from P by removing all
†-decorations. Function to initial : P→ Pinit is defined by induction on the syntactical structure of P ∈ P
as follows:

to initial(P) = P if initial(P)
to initial(a†.P′) = a . to initial(P′)

to initial(P1 +P2) = to initial(P1)+ to initial(P2) if ¬initial(P1)∨¬initial(P2)
to initial(P1 ‖L P2) = to initial(P1)‖L to initial(P2) if ¬initial(P1)∨¬initial(P2)

In Definitions 5.1 and 5.3 we develop the lifting of `brs and denote by P̃ the result of its application.
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We recall that `brs(θ)P′ = <act(θ),brs(P′)> and we let `brs(θ)
†
P′ = <act(θ)†,brs(P′)>. We further

recall that Θseq = {., .+,+.}.

Definition 5.1 Let P ∈ P, E ∈ P be such that P is a subprocess of E, and Ë be obtained from E
by replacing P with to initial(P). The `brs-encoding of P is P̃ = `ε

brs(P)P, where `σ
brs : P×P→ Pbrs

for σ ∈ Θ∗seq is defined by induction on the syntactical structure of its primary argument P ∈ P
(its secondary argument is E ∈ P) as follows:

`σ
brs(0)E = 0

`σ
brs(a .P

′)E = `brs(σa)upd(E,σa) . `
σ .
brs(P

′)upd(E,σa)

`σ
brs(a

†.P′)E = `brs(σa)†
upd(Ë,σa). `

σ .
brs(P

′)E

`σ
brs(P1 +P2)E = `σ .+

brs (P1)E + `σ+.
brs (P2)E

`σ
brs(P1 ‖L P2)E = e`σ

brs(P̃1, P̃2,L)E
where function e`σ

brs will be defined later on while function upd : P×Θ→ P is defined by induction on
the syntactical structural of its first argument E ∈ P as follows:

upd(0,θ) = 0

upd(a .E ′,θ) =

ß
a†.E ′ if θ = a
a .E ′ otherwise

upd(a†.E ′,θ) =

ß
a†.upd(E ′,θ ′) if θ = .θ ′

a†.E ′ otherwise

upd(E1 +E2,θ) =


upd(E1,θ

′)+E2 if θ = .+θ ′

E1 +upd(E2,θ
′) if θ =+.θ ′

E1 +E2 otherwise

upd(E1 ‖L E2,θ) =


upd(E1,θ

′)‖L E2 if θ =Uθ ′

E1 ‖L upd(E2,θ
′) if θ = Tθ ′

upd(E1,θ1)‖L upd(E2,θ2) if θ = 〈θ1,θ2〉
E1 ‖L E2 otherwise

Example 5.2 Encoding sequential processes (for them function e`σ
brs does not come into play):

• Let P be the initial sequential process a .b .0+b .a .0. Then:
P̃ = `ε

brs(P)P = `.+brs(a .b .0)a .b .0+b .a .0 + `+.brs(b .a .0)a .b .0+b .a .0
= `brs(.+a)a†.b .0+b .a .0 . `

.+.
brs(b .0)a†.b .0+b .a .0 +

`brs(+.b)a .b .0+b†.a .0 . `
+..
brs(a .0)a .b .0+b†.a .0

= <a,{a}>.`brs(.+.b)a†.b†.0+b .a .0 . `
.+..
brs (0)a†.b†.0+b .a .0 +

<b,{b}>.`brs(+..a)a .b .0+b†.a†.0 . `
+...
brs (0)a .b .0+b†.a†.0

= <a,{a}>.<b,{b}>.0+<b,{b}>.<a,{a}>.0
• Let P be the non-initial sequential process a†.b†.0. Then:

P̃ = `ε
brs(P)P = `brs(a)

†
a†.b .0 . `

.
brs(b

†.0)a†.b†.0 =

= <a†,{a}>.`brs(.b)
†
a†.b†.0 . `

..
brs(0)a†.b†.0 = <a†,{a}>.<b†,{b}>.0

Definition 5.1 yields a .b .0 as P̈ after the second = (before it, P is a subprocess of the environment
P) and a†.b .0 as P̈ after the third = (before it, b†.0 is a subprocess of the environment P).

While for sequential processes the backward ready set added to every action prefix is a singleton
containing the action itself, this is no longer the case when dealing with processes of the form P1 ‖L P2.
We thus complete the encoding by providing the definition of e`σ

brs. When P1 and P2 are not both initial,
in the expansion we have to reconstruct all possible alternative action sequencings that have not been
undertaken – which yield as many initial subprocesses – because under the forward-reverse semantics
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each of them could be selected after a rollback. In the subcase in which both P1 and P2 are non-initial
and their executed actions are not in L – e.g., a†.0‖ /0 b†.0 – care must be taken because executed actions
cannot appear on both sides of an alternative composition – e.g., the expansion cannot be a†.b†.0+
b†.a†.0 in that not well-formed. To overcome this, based on a total order≤† over Θ induced by the trace
of actions executed so far, the expansion builds the corresponding sequencing of already executed actions
plus all the aforementioned unexecuted action sequencings – e.g., a†.b†.0+ b .a .0 or b†.a†.0+ a .b .0
depending on whether Ua≤† Tb or Tb≤† Ua respectively.

Definition 5.3 Let P1,P2 ∈ P, L ⊆ A \ {τ}, E1,E2,E ∈ P be such that P1 ‖L P2,E1 ‖L E2 ∈ P, P1 is a
subprocess of E1, P2 is a subprocess of E2, and E1 ‖L E2 is a subprocess of E. Then e`σ

brs : Pbrs×Pbrs×
2A\{τ}×P→ Pbrs for σ ∈Θ∗seq is inductively defined as follows, where square brackets enclose optional
subprocesses as already done in Section 4 and every summation over an empty index set is taken to be 0
(and for simplicity is omitted within a choice unless all alternative subprocesses inside that choice are 0,
in which case the whole choice boils down to 0):

• If P̃1 and P̃2 are both initial, say P̃k = ∑i∈Ik
`brs(θk,i)upd(Pk,θk,i) . P̃k,i for k ∈ {1,2}, let e`σ

brs(P̃1, P̃2,L)E

= ∑
i∈I1,act(θ1,i)/∈L

`brs(σUθ1,i)upd(E,σUθ1,i) .e`
σ
brs(P̃1,i, P̃2,L)upd(E,σUθ1,i) +

∑
i∈I2,act(θ2,i)/∈L

`brs(σTθ2,i)upd(E,σTθ2,i) .e`
σ
brs(P̃1, P̃2,i,L)upd(E,σTθ2,i) +

∑
i∈I1,act(θ1,i)∈L

∑
j∈I2,act(θ2, j)=act(θ1,i)

`brs(σ〈θ1,i,θ2, j〉)upd(E,σ〈θ1,i,θ2, j〉) .e`
σ
brs(P̃1,i, P̃2, j,L))upd(E,σ〈θ1,i,θ2, j〉)

where each of the three summation-shaped subprocesses on the right is an initial process.

• If P̃1 is not initial while P̃2 is initial, say P̃1 = `brs(θ1)
†
upd(to initial(P1),θ1)

. P̃′1 [+ P̃′′1 ] where act(θ1) /∈ L

and P̃′′1 is initial, say P̃′′1 = ∑i∈I1 `brs(θ1,i)upd(P′′1 ,θ1,i) . P̃
′′
1,i, and P̃2 = ∑i∈I2 `brs(θ2,i)upd(P2,θ2,i) . P̃2,i,

for Ë obtained from E by replacing P1 with to initial(P1) let e`σ
brs(P̃1, P̃2,L)E

= `brs(σUθ1)
†

upd(Ë,σUθ1)
.e`σ

brs(P̃
′
1, P̃2,L)E +

[∑i∈I1,act(θ1,i)/∈L `brs(σUθ1,i)upd(Ë,σUθ1,i)
.e`σ

brs(P̃
′′
1,i, P̃2,L)upd(Ë,σUθ1,i)

+]

∑i∈I2,act(θ2,i)/∈L `brs(σTθ2,i)upd(Ë,σTθ2,i)
.e`σ

brs(to initial(P̃1), P̃2,i,L)upd(Ë,σTθ2,i)
+

[ ∑
i∈I1,act(θ1,i)∈L

∑
j∈I2,act(θ2, j)=act(θ1,i)

`brs(σ〈θ1,i,θ2, j〉)upd(Ë,σ〈θ1,i,θ2, j〉) .e`
σ
brs(P̃

′′
1,i, P̃2, j,L))upd(Ë,σ〈θ1,i,θ2, j〉)]

where each of the last three summation-shaped subprocesses on the right is an initial process
needed by the forward-reverse semantics, with the presence of the first one and the third one
depending on the presence of P̃′′1 .

• The case in which P̃1 is initial while P̃2 is not initial is like the previous one.

• If P̃1 and P̃2 are both non-initial, say P̃k = `brs(θk)
†
upd(to initial(Pk),θk)

. P̃′k [+ P̃′′k ] where P̃′′k is initial, say

P̃′′k = ∑i∈Ik
`brs(θk,i)upd(P′′k ,θk,i) . P̃

′′
k,i, for k ∈ {1,2}, for Ë obtained from E by replacing each Pk with

to initial(Pk) there are three subcases:

– If act(θ1) /∈ L∧ (act(θ2) ∈ L∨σUθ1 ≤† σTθ2), let e`σ
brs(P̃1, P̃2,L)E

= `brs(σUθ1)
†

upd(Ë,σUθ1)
.e`σ

brs(P̃
′
1, P̃2,L)E +

[`brs(σTθ2)upd(Ë,σTθ2)
.e`σ

brs(to initial(P̃1), to initial(P̃′2),L)upd(Ë,σTθ2)
+]

[ ∑
i∈I1,act(θ1,i)/∈L

`brs(σUθ1,i)upd(Ë,σUθ1,i)
.e`σ

brs(P̃
′′
1,i, to initial(P̃2),L)upd(Ë,σUθ1,i)

+]

[ ∑
i∈I2,act(θ2,i)/∈L

`brs(σTθ2,i)upd(Ë,σTθ2,i)
.e`σ

brs(to initial(P̃1), P̃′′2,i,L)upd(Ë,σTθ2,i)
+]

[ ∑
i∈I1,act(θ1,i)∈L

∑
j∈I2,act(θ2, j)=act(θ1,i)

`brs(σ〈θ1,i,θ2, j〉)upd(Ë,σ〈θ1,i,θ2, j〉) .e`
σ
brs(P̃

′′
1,i, P̃

′′
2, j,L))upd(Ë,σ〈θ1,i,θ2, j〉)]
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where each of the last four subprocesses on the right is an initial process needed by the
forward-reverse semantics, with the first one being present only if act(θ2) /∈ L and the pres-
ence of the subsequent three respectively depending on the presence of P̃′′1 , P̃′′2 , or both.

– The subcase act(θ2) /∈ L∧ (act(θ1) ∈ L∨σTθ2 ≤† σUθ1) is like the previous one.
– If act(θ1) = act(θ2) ∈ L, let e`σ

brs(P̃1, P̃2,L)E

= `brs(σ〈θ1,θ2〉)†
upd(Ë,σ〈θ1,θ2〉) .e`

σ
brs(P̃

′
1, P̃
′
2,L))E +

[ ∑
i∈I1,act(θ1,i)/∈L

`brs(σUθ1,i)upd(Ë,σUθ1,i)
.e`σ

brs(P̃
′′
1,i, to initial(P̃2),L)upd(Ë,σUθ1,i)

+]

[ ∑
i∈I2,act(θ2,i)/∈L

`brs(σTθ2,i)upd(Ë,σTθ2,i)
.e`σ

brs(to initial(P̃1), P̃′′2,i,L)upd(Ë,σTθ2,i)
+]

[ ∑
i∈I1,act(θ1,i)∈L

∑
j∈I2,act(θ2, j)=act(θ1,i)

`brs(σ〈θ1,i,θ2, j〉)upd(Ë,σ〈θ1,i,θ2, j〉) .e`
σ
brs(P̃

′′
1,i, P̃

′′
2, j,L))upd(Ë,σ〈θ1,i,θ2, j〉)]

where each of the last three summation-shaped subprocesses on the right is an initial process
needed by the forward-reverse semantics, with their presence respectively depending on the
presence of P̃′′1 , P̃′′2 , or both.

Example 5.4 Let P be P1 ‖ /0 P2, where P1 and P2 are the initial sequential processes a .0 and b .0 so that
P̃1 = `brs(a)a†.0 . 0̃ and P̃2 = `brs(b)b†.0 . 0̃. Then:

P̃ = `ε
brs(P)P = e`ε

brs(P̃1, P̃2, /0)P

= `brs(Ua)a†.0‖ /0 b .0 .e`
ε
brs(0̃, P̃2, /0)a†.0‖ /0 b .0 +

`brs(Tb)a .0‖ /0 b†.0 .e`
ε
brs(P̃1, 0̃, /0)a .0‖ /0 b†.0

= <a,{a}>.`brs(Tb)a†.0‖ /0 b†.0 .e`
ε
brs(0̃, 0̃, /0)a†.0‖ /0 b†.0 +

<b,{b}>.`brs(Ua)a†.0‖ /0 b†.0 .e`
ε
brs(0̃, 0̃, /0)a†.0‖ /0 b†.0

= <a,{a}>.<b,{a,b}>.0+<b,{b}>.<a,{a,b}>.0
which is different from the encoding of a .b .0+ b .a .0 shown in Example 5.2, unless a = b as in that
case the backward ready set {a,b} collapses to {a}.
If instead P1 is the non-initial sequential process a†.0 and P2 is the initial sequential process b .0, so that
P̃1 = `brs(a)

†
a†.0 . 0̃ and P̃2 = `brs(b)b†.0 . 0̃, then:

P̃ = `ε
brs(P)P = e`ε

brs(P̃1, P̃2, /0)P

= `brs(Ua)†
a†.0‖ /0 b .0 .e`

ε
brs(0̃, P̃2, /0)P +

`brs(Tb)a .0‖ /0 b†.0 .e`
ε
brs(`brs(a)a†.0 . 0̃, 0̃, /0)a .0‖ /0 b†.0

= <a†,{a}>.`brs(Tb)a†.0‖ /0 b†.0 .e`
ε
brs(0̃, 0̃, /0)a†.0‖ /0 b†.0 +

<b,{b}>.`brs(Ua)a†.0‖ /0 b†.0 .e`
ε
brs(0̃, 0̃, /0)a†.0‖ /0 b†.0

= <a†,{a}>.<b,{a,b}>.0+<b,{b}>.<a,{b,a}>.0
If finally P1 is the non-initial sequential process a†.0 and P2 is the non-initial sequential process b†.0,
so that P̃1 = `brs(a)

†
a†.0 . 0̃ and P̃2 = `brs(b)

†
b†.0 . 0̃, then for Ua≤† Tb:

P̃ = `ε
brs(P)P = e`ε

brs(P̃1, P̃2, /0)P

= `brs(Ua)†
a†.0‖ /0 b .0 .e`

ε
brs(0̃, P̃2, /0)P +

`brs(Tb)a .0‖ /0 b†.0 .e`
ε
brs(`brs(a)a†.0 . 0̃, 0̃, /0)a .0‖ /0 b†.0

= <a†,{a}>.`brs(Tb)†
a†.0‖ /0 b†.0 .e`

ε
brs(0̃, 0̃, /0)a†.0‖ /0 b†.0 +

<b,{b}>.`brs(Ua)a†.0‖ /0 b†.0 .e`
ε
brs(0̃, 0̃, /0)a†.0‖ /0 b†.0

= <a†,{a}>.<b†,{a,b}>.0+<b,{b}>.<a,{b,a}>.0

We now investigate the correctness of the `brs-encoding. After some compositionality properties,
we show that the encoding preserves initiality and – to a large extent – backward ready sets.
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(AR,1) Â�(P+Q)+R = Â�P+(Q+R) where at least two among P, Q, R are initial
(AR,2) flP+Q = flQ+P where at least one between P and Q is initial
(AR,3) ã .P = P̃ where initial(P)
(AR,4) flP+Q = P̃ if initial(Q)

(AR,5) ‡P1 ‖L P2 = e`ε
brs(P̃1, P̃2,L)P1 ‖L P2 with Pk in R-nf for k ∈ {1,2}

(AFR,1) Â�(P+Q)+R = Â�P+(Q+R) where at least two among P, Q, R are initial
(AFR,2) flP+Q = flQ+P where at least one between P and Q is initial
(AFR,3) flP+0 = P̃
(AFR,4) flP+Q = P̃ if initial(Q)∧ to initial(P) = Q

(AFR,5) ‡P1 ‖L P2 = e`ε
brs(P̃1, P̃2,L)P1 ‖L P2 with Pk in FR-nf for k ∈ {1,2}

Table 4: Axioms characterizing ∼RB and ∼FRB via the `brs-encoding into Pbrs processes

Lemma 5.5 Let a ∈ A and P,P1,P2 ∈ P be such that a .P,P1 +P2 ∈ P. Then:

1. ã .P =<a,{a}>. P̃.

2. fia†.P =<a†,brs(a†.P)>. P̃, with brs(a†.P) = {a} if P is initial.

3. ‡P1 +P2 = P̃1 + P̃2.

Proposition 5.6 Let P ∈ P. Then:

1. initial(P̃) iff initial(P).

2. brs(P̃) = brs(P) if P has no subprocesses of the form P1 ‖L P2 such that P1 and P2 are non-initial and
the last executed action b†

1 in P̃1 is different from the last executed action b†
2 in P̃2 with b1,b2 /∈ L.

As an example, for P given by a†.0‖ /0 b†.0 we have that P̃ = <a†,{a}>.<b†,{a,b}>.0 +
<b,{b}>.<a,{a,b}>.0 when the last executed actions satisfy Ua ≤† Tb (see end of Example 5.4),
hence brs(P) = {a,b} but brs(P̃) = {b} for a 6= b. However, in P̃ the backward ready set {a,b} occurs
next to the last executed action b†, hence it will label the related transition in−→brs (see Table 3). Indeed,
the `brs-encoding is correct in the following sense.

Theorem 5.7 Let P,P′ ∈ P and θ ∈Θ. Then P θ−→P′ iff P̃
`brs(θ)P′−−−−→brs P̃′.

Corollary 5.8 Let P1,P2 ∈ P and B ∈ {RB,FRB}. Then P1 ∼B P2 iff P̃1 ∼B:`brs P̃2.

The set AR of axioms for∼RB is shown in the upper part of Table 4. All the axioms apart from the last
one come from the axiomatization developed in [13] over sequential processes. Axiom AR,3 establishes
that the future can be completely canceled when moving only backward. Likewise, axiom AR,4 states
that a previously non-selected alternative can be discarded when moving only backward; note that this
axiom subsumes both flP+0 = P̃ and flP+P = P̃. The new axiom AR,5 concisely expresses via e`brs the
expansion laws for reverse bisimilarity, where Pk is 0 or the +-free sequential process a†

k .P
′
k featuring

only executed actions for k ∈ {1,2}.
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Definition 5.9 We say that P ∈ P is in reverse normal form, written R-nf, iff it is equal to 0 or a†.P′

where P′ is in R-nf. This extends to P̃ ∈ Pbrs in the expected way.

Lemma 5.10 For all (initial) P ∈ P there exists (an initial) Q̃ ∈ Pbrs in R-nf (which is 0̃) such that
AR ` P̃ = Q̃.

Theorem 5.11 Let P1,P2 ∈ P. Then P̃1 ∼RB:`brs P̃2 iff AR ` P̃1 = P̃2.

The set AFR of axioms for ∼FRB is shown in the lower part of Table 4. All the axioms apart from
the last one come from the axiomatization developed in [13] over sequential processes. Axiom AFR,4 is
a variant of idempotency appeared for the first time in [39], with P and Q coinciding like in axiom AF,4
when they are both initial. The new axiom AFR,5 concisely expresses via e`brs the expansion laws for
forward-reverse bisimilarity, where Pk is the sequential process [a†

k .P
′
k+]∑i∈Ik

ak,i .Pk,i for k ∈ {1,2}.

Definition 5.12 We say that P ∈ P is in forward-reverse normal form, written FR-nf, iff it is equal to
[b†.P′+]∑i∈I ai .Pi where b†.P′ is optional, P′ is in FR-nf, I is a finite index set (with the summation
being 0 – or disappearing in the presence of b†.P′ – when I = /0), and each Pi is initial and in FR-nf.
This extends to P̃ ∈ Pbrs in the expected way.

Lemma 5.13 For all (initial) P ∈ P there exists (an initial) Q̃ ∈ Pbrs in FR-nf such that AFR ` P̃ = Q̃.

Theorem 5.14 Let P1,P2 ∈ P. Then P̃1 ∼FRB:`brs P̃2 iff AFR ` P̃1 = P̃2.

6 Conclusions

In this paper we have exhibited expansion laws for forward bisimilarity, which is interleaving, and re-
verse and forward-reverse bisimilarities, which are truly concurrent. To uniformly develop them, we
have resorted to the proved trees approach of [27], which has turned out to be effective also in our set-
ting. With respect to other truly concurrent semantics to which the approach was applied, such as causal
and location bisimilarities, the operational semantics of our reversible calculus does not carry the addi-
tional discriminating information within transition labels. However, we have been able to derive it from
those labels and shown to consist of backward ready sets for both reverse and forward-reverse bisimilar-
ities. Another technical difficulty that we have faced is the encoding of concurrent processes in which
both subprocesses have executed non-synchronizing actions, because their expansions cannot contain
executed actions on both sides of an alternative composition. For completeness we mention that in [1]
proved semantics has already been employed in a reversible setting, for a different purpose though.

As for future work, an obvious direction is to exploit the same approach to find out expansion laws
for the weak versions of forward, reverse, and forward-reverse bisimilarities, i.e., their versions capable
of abstracting from τ-actions [8].

A more interesting direction is to show that forward-reverse bisimilarity augmented with a clause
for backward ready multisets equality corresponds to hereditary history-preserving bisimilarity [5], thus
yielding for the latter an operational characterization, an axiomatization alternative to [29], and logical
characterizations alternative to [48, 4]. These two bisimilarities were shown to coincide in [5, 46, 47, 2]
in the absence of autoconcurrency. In fact, if a = b in Figure 1, the two processes turn out to be forward-
reverse bisimilar, with the backward ready sets of the three bottom states collapsing to {a}, but not
hereditary history-preserving bisimilar, because identifying executed actions is important [3] (as done
also in CCSK via communication keys [45]). However, if backward ready multisets are used instead,
then the bottom state on the left can be distinguished from the two bottom states on the right. Thus,
counting executed actions that label incoming transitions may be enough.
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A Proofs of Results

Proof of Proposition 2.7. A straightforward consequence of the definitions of the considered bisimilar-
ities.

Proof of Theorem 2.8. Let B be a ∼-bisimulation containing the pair (P1,P2). Then:
B′ = {(Q1 ‖L Q,Q2 ‖L Q) ∈ P×P | (Q1,Q2) ∈B∧Q ∈ P}

is a ∼-bisimulation too because whenever (Q1 ‖L Q,Q2 ‖L Q) ∈B′:

• If ∼ considers outgoing transitions, then Q1 ‖L Q θ1−→Q′1 ‖L Q or Q1 ‖L Q θ1−→Q1 ‖L Q′ for

act(θ1) /∈ L or Q1 ‖L Q θ1−→Q′1 ‖L Q′ for act(θ1) ∈ L is resp. matched by Q2 ‖L Q θ2−→Q′2 ‖L Q or

Q2 ‖L Q θ2−→Q2 ‖L Q′ for act(θ2) /∈ L or Q2 ‖L Q θ2−→Q′2 ‖L Q′ for act(θ2) ∈ L. In the first case and

the third case the reason is that, since (Q1,Q2) ∈B, for all Q1
θ ′1−→Q′1 there exists Q2

θ ′2−→Q′2 such
that act(θ ′1) = act(θ ′2) and (Q′1,Q

′
2) ∈B.

• If ∼ considers incoming transitions, then Q′1 ‖L Q θ1−→Q1 ‖L Q or Q1 ‖L Q′ θ1−→Q1 ‖L Q for

act(θ1) /∈ L or Q′1 ‖L Q′ θ1−→Q1 ‖L Q for act(θ1) ∈ L is resp. matched by Q′2 ‖L Q θ2−→Q2 ‖L Q or

Q2 ‖L Q′ θ2−→Q2 ‖L Q for act(θ2) /∈ L or Q′2 ‖L Q′ θ2−→Q2 ‖L Q for act(θ2) ∈ L. In the first case and

the third case the reason is that, since (Q1,Q2) ∈B, for all Q′1
θ ′1−→Q1 there exists Q′2

θ ′2−→Q2 such
that act(θ ′1) = act(θ ′2) and (Q′1,Q

′
2) ∈B.

• If ∼ considers initiality, initial(Q1)⇐⇒ initial(Q2) implies initial(Q1 ‖L Q)⇐⇒ initial(Q2 ‖L Q).

Likewise B′′ = {(Q‖L Q1,Q‖L Q2) ∈ P×P | (Q1,Q2) ∈B∧Q ∈ P} is a ∼-bisimulation too.

Proof of Lemma 4.2. We proceed by induction on the syntactical structure of P ∈ P:

• If P is 0, then the result follows by taking Q equal to 0 due to reflexivity.

• If P is a .P′ where P′ is initial, then by the induction hypothesis there exists Q′ initial and in F-nf
such that AF ` P′ = Q′. The result follows by taking Q equal to a .Q′ – which is in F-nf because
Q′ is initial and in F-nf – due to substitutivity with respect to action prefix.

• If P is a†.P′, then by the induction hypothesis there exists Q′ in F-nf such that AF ` P′ = Q′. There
are two cases:

– If P′ and Q′ are both initial, then the result follows by taking Q equal to a†.Q′ – which is in
F-nf because Q′ is initial and in F-nf – due to substitutivity with respect to executed action
prefix.

– Let P′ and Q′ be both non-initial. Since Q′ is in F-nf and hence features a single executed
action prefix at the beginning, i.e., Q′ is b†.Q′′ with Q′′ initial and in F-nf, the result follows
by taking Q equal to Q′ by virtue of AF ` P = a†.Q′ due to substitutivity with respect to
executed action prefix, AF ` a†.Q′ = Q′ due to axiom AF,6, and transitivity.

• If P is P1 +P2, then by the induction hypothesis there exist Q1 and Q2 in F-nf such that AF ` P1 =
Q1 and AF ` P2 = Q2, hence AF ` P = Q1 +Q2 due to substitutivity with respect to alternative
composition. There are three cases:

– If P1 and P2 are both initial, then Q1 and Q2 are both initial too and hence the result follows
by taking Q equal to Q1 +Q2, up to an application of axiom AF,3 in the case that Q1 +Q2 is
not in F-nf because Q1 and Q2 are not different from 0 (possibly preceded by an application
of axiom AF,2 to move the 0 subprocess to the right of +) and transitivity.
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– If only P2 is initial, then only Q2 is initial too and hence the result follows by taking Q equal
to Q1 by virtue of AF ` Q1 +Q2 = Q1 due to axiom AF,7 and transitivity.

– If only P1 is initial, then only Q1 is initial too and hence the result follows by taking Q equal
to Q2 by virtue of AF ` Q1 +Q2 = Q2 +Q1 due to axiom AF,2, AF ` Q2 +Q1 = Q2 due to
axiom AF,7, and transitivity.

• If P is P1 ‖L P2, then by the induction hypothesis there exist Q1 and Q2 in F-nf – say Q1 =
[a†

1.]Q
′
1 with Q′1 = ∑i∈I1 a1,i .Q1,i and Q2 = [a†

2.]Q
′
2 with Q′2 = ∑i∈I2 a2,i .Q2,i – such that AF `

P1 = Q1 and AF ` P2 = Q2, hence AF ` P = Q1 ‖L Q2 due to substitutivity with respect to par-
allel composition. As a consequence we have that AF ` P = [a†.](∑i∈I1,a1,i /∈L a1,i .(Q1,i ‖L Q′2)+
∑i∈I2,a2,i /∈L a2,i .(Q′1 ‖L Q2,i) + ∑i∈I1,a1,i∈L ∑ j∈I2,a2, j=a1,i a1,i .(Q1,i ‖L Q2, j)) due to axiom AF,8 and
transitivity. We recall that Q′1, Q′2, and every Q1,i and Q2,i are all initial and in F-nf. More-
over, thanks to axiom AF,5 we can assume that either a1,a2 /∈ L or a1 = a2 ∈ L so as to ensure that
Q1 ‖L Q2 ∈ P.
We now prove that, if O1,O2 ∈ P are (initial and) in F-nf and such that O1 ‖L O2 ∈ P, then there ex-
ists O ∈ P (initial and) in F-nf such that AF ` O1 ‖L O2 = O, from which the result will follow due
to substitutivity with respect to action prefix, alternative composition, and executed action prefix if
any. Let us define the size of P ∈ P – an upper bound to the depth of the transition system whose
initial state is P – by induction on the syntactical structure of P as follows:

size(0) = 0
size(a .P′) = 1+ size(P′)

size(a†.P′) = 1+ size(P′)
size(P1 +P2) = max(size(P1),size(P2))
size(P1 ‖L P2) = size(P1)+ size(P2)

Since the parallel processes that we will encounter are not subprocesses of O1 ‖L O2, we proceed
by induction on size(O1 ‖L O2):

– If size(O1 ‖L O2) = 0, then O1 ‖L O2 is 0‖L 0 where AF ` 0‖L 0= 0+0+0 due to axiom AF,8.
The result follows by taking O equal to 0 due to axiom AF,3 applied twice, substitutivity with
respect to alternative composition, and transitivity.

– If size(O1 ‖L O2)> 0, then O1 = [b†
1.]O

′
1 with O′1 =∑i∈J1 b1,i .O1,i and O2 = [b†

2.]O
′
2 with O′2 =

∑i∈J2 b2,i .O2,i, where at least one of the following holds: b†
1 present, J1 6= /0, b†

2 present, J2 6= /0.
Thus AF ` O1 ‖L O2 = [b†.]∑i∈J1,b1,i /∈L b1,i .(O1,i ‖L O′2) + ∑i∈J2,b2,i /∈L b2,i .(O′1 ‖L O2,i) +

∑i∈J1,b1,i∈L ∑ j∈J2,b2, j=b1,i b1,i .(O1,i ‖L O2, j) due to axiom AF,8. The result follows by apply-
ing the induction hypothesis to every O1,i ‖L O′2, O′1 ‖L O2,i, O1,i ‖L O2, j due to substitutivity
with respect to action prefix, alternative composition, and executed action prefix if any, with
possible applications of axiom AF,3 (each possibly preceded by an application of axiom AF,2
to move the 0 subprocess to the right of +).

Proof of Theorem 4.3. Soundness, i.e., AF ` P1 = P2 =⇒ P1 ∼FB:ps P2, is a straightforward consequence
of the axioms and inference rules behind ` (reflexivity, symmetry, transitivity, substitutivity) together
with ∼FB:ps being an equivalence relation and a congruence, plus the fact that the lefthand side process
of each additional axiom in AF is ∼FB:ps-equivalent to the righthand side process of the same axiom.
Let us address ground completeness, i.e., P1 ∼FB:ps P2 =⇒ AF ` P1 = P2. We suppose that P1 and P2 are
both in F-nf and proceed by induction on the syntactical structure of P1:

• If P1 is 0, then from P1 ∼FB:ps P2 and P2 in F-nf we derive that P2 can only be 0, from which the
result follows by reflexivity.
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• If P1 is [a†
1.]∑i∈I1 a1,i .P1,i with a†

1 present or I1 6= /0, then from P1 ∼FB:ps P2 and P2 in F-nf we derive
that P2 can only be [a†

2.]∑i∈I2 a2,i .P2,i with a†
2 present iff a†

1 present and I2 6= /0 iff I1 6= /0. We recall
that every P1,i and every P2,i is initial and in F-nf.
Since P1 ∼FB:ps P2, for each i1 ∈ I1 there exists i2 ∈ I2 such that a1,i1 = a2,i2 and P1,i1 ∼FB:ps P2,i2 ,
and vice versa. From the induction hypothesis we obtain that AF ` P1,i1 = P2,i2 . It then follows
that:

– AF ` a1,i1 .P1,i1 = a2,i2 .P2,i2 due to substitutivity with respect to action prefix.
– AF ` ∑i∈I1 a1,i .P1,i = ∑i∈I2 a2,i .P2,i due to substitutivity with respect to alternative compo-

sition as well as axiom AF,4 and transitivity in the presence of identical summands on the
same side that are absent on the other side (possibly preceded by applications of axioms AF,1
and AF,2 to move identical summands next to each other).

– AF ` [a†.]∑i∈I1 a1,i .P1,i = [a†.]∑i∈I2 a2,i .P2,i due to substitutivity with respect to executed
action prefix.

– AF ` [a†
1.]∑i∈I1 a1,i .P1,i = [a†

2.]∑i∈I2 a2,i .P2,i due to axiom AF,5 and transitivity.

If P1 and P2 are not both in F-nf, thanks to Lemma 4.2 we can find Q1 and Q2 in F-nf, each of which
is initial iff so is its corresponding original process, such that AF ` P1 = Q1 and AF ` P2 = Q2, hence
AF ` Q2 = P2 by symmetry. Due to soundness, we get P1 ∼FB:ps Q1, hence Q1 ∼FB:ps P1 as ∼FB:ps
is symmetric, and P2 ∼FB:ps Q2. Since P1 ∼FB:ps P2, we also get Q1 ∼FB:ps Q2 as ∼FB:ps is transitive.
By virtue of what has been shown above, from Q1 ∼FB:ps Q2 with Q1 and Q2 in F-nf it follows that
AF ` Q1 = Q2 and hence AF ` P1 = P2 by transitivity.

Proof of Lemma 5.5. From Definition 5.1 it follows that:

• ã .P = `brs(a)a†.P . `
.
brs(P)a†.P = <a,{a}>.`ε

brs(P)P = <a,{a}>. P̃ because P is the immediate
subprocess of a .P and, once the environment a†.P reduces to P, the symbol . is no longer necessary
in the superscript. The fact that brs(a†.P) = {a} stems from the definition of brs as well as
the initiality of P otherwise a .P /∈ P.

• fia†.P= `brs(a)
†
a†.P . `

.
brs(P)a†.P =<a†,brs(a†.P)>.`ε

brs(P)P =<a†,brs(a†.P)>. P̃ because P is the
immediate subprocess of a† .P and, once the environment a†.P reduces to P, the symbol . is
no longer necessary in the superscript. The fact that brs(a†.P) = {a} if P is initial stems from
the definition of brs.

• ‡P1 +P2 = `.+brs(P1)P1+P2 + `+.brs(P2)P1+P2 = `ε
brs(P1)P1 + `ε

brs(P2)P2 = ‹P1 + ‹P2 because P1 and P2 are
the immediate subprocesses of P1 +P2 and, once the environment P1 +P2 reduces to P1 (resp. P2),
the symbol .+ (resp. +.) is no longer necessary.

Proof of Proposition 5.6. After recalling that P̃1 and P̃2 are sequential, hence it makes sense to talk about
their last executed action, we proceed by induction on the syntactical structure of P ∈ P to prove both
properties simultaneously:

• If P is 0, then P̃ = 0 by Definition 5.1. They are both initial and brs(P̃) = brs(P) = /0.

• If P is a .P′, then P̃ =<a,{a}>. P̃′ by Lemma 5.5. They are both initial and brs(P̃) = brs(P) = /0.

• If P is a†.P′, then P̃ = <a†,brs(a†.P′)>. P̃′ by Lemma 5.5, where initial(P̃′) iff initial(P′) and
brs(P̃′) = brs(P′) by the induction hypothesis. P and P̃ are both non-initial and brs(P̃) = brs(P)
because the two sets are equal to {a} when P′ and P̃′ are both initial or brs(P′) when P′ and P̃′ are
both non-initial.
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• If P is P1 +P2, then P̃ = P̃1 + P̃2 by Lemma 5.5, where initial(P̃k) iff initial(Pk) and brs(P̃k) =
brs(Pk) for k ∈ {1,2} by the induction hypothesis. Then initial(P̃) iff initial(P) and brs(P̃) =
brs(P) because the two sets are equal to /0 when P1, P2, P̃1, P̃2 are all initial, brs(P1) when P1 and
P̃1 are non-initial while P2 and P̃2 are initial, or brs(P2) when P1 and P̃1 are initial while P2 and P̃2
are non-initial.

• If P is P1 ‖L P2, then P̃ = e`ε
brs(P̃1, P̃2,L)P by Definition 5.1, where initial(P̃k) iff initial(Pk) and

brs(P̃k) = brs(Pk) for k ∈ {1,2} by the induction hypothesis. There are two cases:

– If P1 and P2 are both initial – hence P is initial – then so are P̃1 and P̃2 – hence P̃ is initial by
Definition 5.3 – and vice versa. In this case brs(P̃) = brs(P) = /0.

– If P1 and P2 are not both initial – hence P is non-initial – then so are P̃1 and P̃2 – hence P̃ is
non-initial by Definition 5.3 – and vice versa. As far as backward ready set preservation is
concerned, there are three subcases:

* If only P1 and P̃1 are non-initial, say P̃1 =<a†
1,brs(a†

1.P
′
1)>. P̃′1 [+ P̃′′1 ] where a1 /∈ L and

the optional P′′1 is initial, then brs(P̃1) = brs(P1) = brs(a†
1.P
′
1) and brs(P̃2) = brs(P2) = /0.

Therefore brs(P̃) = brs(P̃1) = brs(P1) = brs(P) as P2 and P̃2 are initial.
* The subcase in which only P2 and P̃2 are non-initial is like the previous one.
* Let P1 and P2 be both non-initial, say P̃k = <a†

k ,brs(a†
k .P
′
k)>. P̃′k [+ P̃′′k ] where the op-

tional P′′k is initial for k ∈ {1,2}. Since by hypothesis it is not the case that the last
executed action b†

1 in P̃1 is different from the last executed action b†
2 in P̃2 with b1,b2 /∈ L

– and the same is true for all possible subprocesses of P1 and P2 of the form Q1 ‖L′ Q2
with Q1 and Q2 non-initial – it holds that brs(P1) = {b1} and brs(P2) = {b2}. Recalling
that brs(P1 ‖L P2) = (brs(P1)∩L)∪ (brs(P2)∩L)∪ (brs(P1)∩brs(P2)∩L), there are four
further subcases:

· If b1,b2 /∈ L, then from the aforementioned hypothesis it follows that b1 = b2 , b
and hence brs(P̃) = brs(P) = (brs(P1)∩L)∪ (brs(P2)∩L)∪ /0 = {b}.

· If b1,b2 ∈ L, then from P ∈ P it follows that b1 = b2 , b and hence brs(P̃) =
brs(P) = /0∪ /0∪ (brs(P1)∩brs(P2)∩L) = {b}.

· If b1 ∈ L and b2 /∈ L, then brs(P̃) = brs(P) = /0∪ (brs(P2)∩L)∪ /0 = {b2}.
· If b1 /∈ L and b2 ∈ L, then brs(P̃) = brs(P) = (brs(P1)∩L)∪ /0∪ /0 = {b1}.

Proof of Theorem 5.7. We proceed by induction on the number n ∈ N≥1 of applications of operational
semantic rules that are necessary to derive the considered transitions:

• If n = 1, then P is a .Q, with initial(Q), and P̃ = <a,{a}>. Q̃ by Lemma 5.5. According to
the rules ACTf in Table 1 and ACTbrs,f in Table 3, their only outgoing transitions are respectively

P a−→ a†.Q and P̃
a,{a}−−−→brs<a†,{a}>. Q̃, with `brs(a)a†.Q = <a,{a}> and fia†.Q = <a†,{a}>. Q̃

by Lemma 5.5 because initial(Q).

• If n > 1, there are three cases:

– Let P be a†.Q. Then P .θ ′−→ a†.Q′ implies Q θ ′−→Q′ by rule ACTp in Table 1. By the in-

duction hypothesis this is equivalent to Q̃
`brs(θ

′)Q′−−−−−→brs Q̃′ , which implies <a†,brs(a†.Q)>. Q̃
`brs(θ

′)Q′−−−−−→brs<a†,brs(a†.Q′)>. Q̃′ by rule ACTbrs,p in Table 3 – as brs(a†.Q′) = brs(Q′) due to

¬initial(Q′) – with <a†,brs(a†.Q)>. Q̃= P̃ and <a†,brs(a†.Q′)>. Q̃′=fla†.Q′ by Lemma 5.5.

The proof starting from P̃
`brs(.θ

′)a† .Q′−−−−−−−→brs
fla†.Q′ is similar.
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– Let P be P1 +P2. There are two subcases:

* If P1 moves, i.e., P .+θ ′−→P′1 +P2 with initial(P2), then P1
θ ′−→P′1 by rule CHOl in Table 1.

By the induction hypothesis this is equivalent to P̃1

`brs(θ
′)P′1−−−−−→brs P̃′1, which implies P̃1 +

P̃2

`brs(.+θ ′)P′1+P2−−−−−−−−→brs P̃′1 + P̃2 by rule CHObrs,l in Table 3 – as brs(P′1 +P2) = brs(P′1) due to

initial(P2) – with P̃1 + P̃2 = P̃ and P̃′1 + P̃2 = ‡P′1 +P2 by Lemma 5.5.

The proof starting from P̃
`brs(.+θ ′)P′1+P2−−−−−−−−→brs

‡P′1 +P2 is similar.
* The subcase in which P2 moves and P1 is initial is like the previous one.

– Let P be P1 ‖L P2. There are three subcases:

* If act(θ) /∈ L and P1 moves, i.e., P θ−→P′1 ‖L P2 with θ =Uθ ′, then P1
θ ′−→P′1 by rule PARl

in Table 1. By the induction hypothesis this is equivalent to P̃1

`brs(θ
′)P′1−−−−−→brs P̃′1. By Defini-

tion 5.3 this implies that P̃, after a possible sequence of executed actions, has a maximal
initial subprocess with a summand of the form <act(Uθ ′),brs(P′1 ‖L P2)>.‡P′1 ‖L P2, hence

P̃
act(Uθ ′),brs(P′1 ‖L P2)−−−−−−−−−−−→brs

‡P′1 ‖L P2 where <act(Uθ ′),brs(P′1 ‖L P2)>= `brs(Uθ ′)P′1 ‖L P2 .

The proof starting from P̃
`brs(θ)P′1 ‖L P2−−−−−−−→brs

‡P′1 ‖L P2 is similar.
* The subcase in which act(θ) /∈ L and P2 moves is like the previous one.

* If act(θ) ∈ L, i.e., P θ−→P′1 ‖L P′2 with θ = 〈θ1,θ2〉, then P1
θ1−→P′1 and P2

θ2−→P′2 by

rule SYN in Table 1. By the induction hypothesis this is equivalent to P̃1

`brs(θ1)P′1−−−−−→brs P̃′1

and P̃2

`brs(θ2)P′2−−−−−→brs P̃′2. By Definition 5.3 this implies that P̃, after a possible sequence
of executed actions, has a maximal initial subprocess with a summand of the form

<act(〈θ1,θ2〉),brs(P′1 ‖L P′2)>.‡P′1 ‖L P′2, hence P̃
act(〈θ1,θ2〉),brs(P′1 ‖L P′2)−−−−−−−−−−−−−→brs

‡P′1 ‖L P′2 where
<act(〈θ1,θ2〉),brs(P′1 ‖L P′2)>= `brs(〈θ1,θ2〉)P′1 ‖L P′2

.

The proof starting from P̃
`brs(θ)P′1 ‖L P′2−−−−−−−→brs

‡P′1 ‖L P′2 is similar.

Proof of Corollary 5.8. The proof is divided into two parts:

• Suppose P1 ∼B P2 and let B be a ∼B-bisimulation containing the pair (P1,P2). The results follows
by proving that B′ = {(Q̃1, Q̃2) | (Q1,Q2) ∈B} is a ∼B:`brs bisimulation. Let (Q̃1, Q̃2) ∈B′:

– If B = FRB and Q̃1

`brs(θ1)Q′1−−−−−→brs Q̃′1, then Q1
θ1−→Q′1 due to Theorem 5.7. From (Q1,Q2) ∈B

it follows that Q2
θ2−→Q′2 with act(θ1) = act(θ2) and (Q′1,Q

′
2) ∈ B; moreover brs(Q′1) =

brs(Q′2) due to Proposition 2.7. Thus Q̃2

`brs(θ2)Q′2−−−−−→brs Q̃′2 due to Theorem 5.7, with act(θ1) =

act(θ2), brs(Q′1) = brs(Q′2), and (Q̃′1, Q̃
′
2) ∈B′.

– If Q̃′1
`brs(θ1)Q1−−−−−→brs Q̃1 the proof is like the previous one where Proposition 2.7 yields brs(Q1) =

brs(Q2).

• Suppose P̃1 ∼B:`brs P̃2 and let B be a ∼B:`brs-bisimulation containing the pair (P̃1, P̃2). The results
follows by proving that B′ = {(Q1,Q2) | (Q̃1, Q̃2) ∈B} is a ∼B-bisimulation. Let (Q1,Q2) ∈B′:
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– If B= FRB and Q1
θ1−→Q′1, then Q̃1

`brs(θ1)Q′1−−−−−→brs Q̃′1 due to Theorem 5.7. From (Q̃1, Q̃2)∈B it

follows that Q̃2

`brs(θ2)Q′2−−−−−→brs Q̃′2 with act(θ1) = act(θ2), brs(Q′1) = brs(Q′2), and (Q̃′1, Q̃
′
2)∈B.

Therefore Q2
θ2−→Q′2 due to Theorem 5.7, with act(θ1) = act(θ2) and (Q′1,Q

′
2) ∈B′.

– If Q′1
θ1−→Q1 the proof is like the previous one.

Proof of Lemma 5.10. We proceed by induction on the syntactical structure of P ∈ P:

• If P is 0, then the result follows by taking Q̃ equal to 0̃ due to reflexivity.

• If P is a .P′ where P′ is initial, then by the induction hypothesis there exists Q̃′ initial and in R-nf
such that AR ` P̃′ = Q̃′. The result follows by taking Q̃ equal to Q̃′ by virtue of AR ` P̃ = fia .Q′ due
to substitutivity with respect to action prefix, AR `fia .Q′ = Q̃′ due to axiom AR,3, and transitivity.

• If P is a†.P′, then by the induction hypothesis there exists Q̃′ in R-nf such that AR ` P̃′ = Q̃′. The
result follows by taking Q̃ equal to fla†.Q′ – which is in R-nf because so is Q̃′ – due to substitutivity
with respect to executed action prefix.

• If P is P1 +P2, then by the induction hypothesis there exist Q̃1 and Q̃2 in R-nf such that AR `
P̃1 = Q̃1 and AR ` P̃2 = Q̃2. Thus AR ` P̃1 + P̃2 = Q̃1 + Q̃2 due to substitutivity with respect to
alternative composition, from which it follows that AR ` P̃ = ·�Q1 +Q2 due to Lemma 5.5 applied
to both sides and transitivity. There are three cases:

– If P1 and P2 are both initial, then Q̃1 and Q̃2 are both initial too and hence the result follows
by taking Q̃ equal to Q̃1 by virtue of AR `·�Q1 +Q2 = Q̃1 due to axiom AR,4 and transitivity.

– If only P2 is initial, then only Q̃2 is initial too and hence the result follows by taking Q̃ equal
to Q̃1 for the same reason as the previous case.

– If only P1 is initial, then only Q̃1 is initial too and hence the result follows by taking Q̃ equal
to Q̃2 by virtue of AR `·�Q1 +Q2 = ·�Q2 +Q1 due to axiom AR,2, AR `·�Q2 +Q1 = Q̃2 due to
axiom AR,4, and transitivity.

• If P is P1 ‖L P2, then by the induction hypothesis there exist Q̃1 and Q̃2 in R-nf such that AR `
P̃1 = Q̃1 and AR ` P̃2 = Q̃2. Thus AR ` e`ε

brs(P̃1, P̃2,L)P1 ‖L P2 = e`ε
brs(Q̃1, Q̃2,L)Q1 ‖L Q2 due to sub-

stitutivity with respect to action prefix and alternative composition, from which it follows that
AR ` P̃ = ·�Q1 ‖L Q2 due to axiom AR,5 applied to both sides and transitivity. There are four cases:

– If Q̃1 and Q̃2 are both 0̃, then the result follows by taking Q̃ equal to 0̃ by virtue of AR `·�Q1 ‖L Q2 = 0̃ due to axiom AR,5 along with Definition 5.3 and transitivity.

– If only Q̃2 is 0̃, then the result follows by taking Q̃ equal to Q̃1 – note that none of its executed
actions belongs to L otherwise it could not have been executed – by virtue of AR `·�Q1 ‖L Q2 =
Q̃1 due to axiom AR,5 along with Definition 5.3 and transitivity.

– The case in which only Q̃1 is 0̃ is like the previous one.

– If Q̃1 and Q̃2 are both different from 0̃, say Q̃k of the form fla†
k .Q

′
k with Q̃′k in R-nf for

k ∈ {1,2}, then the result follows by taking Q̃ equal to ·�Q1 ‖L Q2, up to the applications of
axiom AR,4 necessary to obtain the R-nf in the presence of rebuilt initial alternatives within·�Q1 ‖L Q2 (see Definition 5.3) and transitivity.
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Proof of Theorem 5.11. Soundness, i.e., AR ` P̃1 = P̃2 =⇒ P̃1 ∼RB:`brs P̃2, is a straightforward con-
sequence of the axioms and inference rules behind ` (reflexivity, symmetry, transitivity, substitutivity)
together with ∼RB:`brs being an equivalence relation and a congruence, plus the fact that the lefthand side
process of each additional axiom in AR is ∼RB:`brs-equivalent to the righthand side process of the same
axiom.
Let us address ground completeness, i.e., P̃1 ∼RB:`brs P̃2 =⇒ AR ` P̃1 = P̃2. We suppose that P̃1 and P̃2
are both in R-nf and proceed by induction on the syntactical structure of P̃1:

• If P̃1 is 0̃, then from P̃1 ∼RB:`brs P̃2 and P̃2 in R-nf we derive that P̃2 can only be 0̃, from which the
result follows by reflexivity.

• If P̃1 is fla†
1.P
′
1, then from P̃1 ∼RB:`brs P̃2 and P̃2 in R-nf we derive that P̃2 can only be fla†

2.P
′
2. We recall

that P̃′1 and P̃′2 are both in R-nf.
From P̃1 ∼RB:`brs P̃2 and P̃1 and P̃2 both in R-nf and different from 0̃ it follows that P̃1 and P̃2 consist
of the same sequence of executed actions, hence in particular a1 = a2 and P̃′1 ∼RB:`brs P̃′2. From the

induction hypothesis we obtain that AR ` P̃′1 = P̃′2, hence AR `fla†
1.P
′
1 =

fla†
2.P
′
2 due to substitutivity

with respect to executed action prefix.

If P̃1 and P̃2 are not both in R-nf, thanks to Lemma 5.10 we can find Q̃1 and Q̃2 in R-nf such that AR ` P̃1 =
Q̃1 and AR ` P̃2 = Q̃2, hence AR ` Q̃2 = P̃2 by symmetry. Due to soundness, we get P̃1 ∼RB:`brs Q̃1, hence
Q̃1 ∼RB:`brs P̃1 as∼RB:`brs is symmetric, and P̃2 ∼RB:`brs Q̃2. Since P̃1 ∼RB:`brs P̃2, we also get Q̃1 ∼RB:`brs Q̃2

as ∼RB:`brs is transitive. By virtue of what has been shown above, from Q̃1 ∼RB:`brs Q̃2 with Q̃1 and Q̃2 in
R-nf it follows that AR ` Q̃1 = Q̃2 and hence AR ` P̃1 = P̃2 by transitivity.

Proof of Lemma 5.13. We proceed by induction on the syntactical structure of P ∈ P:

• If P is 0, then the result follows by taking Q̃ equal to 0̃ due to reflexivity.

• If P is a .P′ where P′ is initial, then by the induction hypothesis there exists Q̃′ initial and in FR-nf
such that AFR ` P̃′ = Q̃′. The result follows by taking Q̃ equal to fia .Q′ – which is in FR-nf because
Q̃′ is initial and in FR-nf – due to substitutivity with respect to action prefix.

• If P is a†.P′, then by the induction hypothesis there exists Q̃′ in FR-nf such that AFR ` P̃′ = Q̃′.
The result follows by taking Q̃ equal to fla†.Q′ – which is in FR-nf because so is Q̃′ – due to
substitutivity with respect to executed action prefix.

• If P is P1 +P2, then by the induction hypothesis there exist Q̃1 and Q̃2 in FR-nf such that AFR `
P̃1 = Q̃1 and AFR ` P̃2 = Q̃2. Thus AFR ` P̃1 + P̃2 = Q̃1 + Q̃2 due to substitutivity with respect to
alternative composition, from which it follows that AFR ` P̃ = ·�Q1 +Q2 due to Lemma 5.5 applied
to both sides and transitivity. There are three cases:

– If P1 and P2 are both initial, then Q̃1 and Q̃2 are both initial too and hence the result follows
by taking Q̃ equal to ·�Q1 +Q2, up to an application of axiom AFR,3 in the case that ·�Q1 +Q2 is
not in FR-nf because Q̃1 and Q̃2 are not different from 0̃ (possibly preceded by an application
of axiom AFR,2 to move the 0̃ subprocess to the right of +) and transitivity.

– If only P2 is initial, then only Q̃2 is initial too and hence the result follows by taking Q̃ equal
to ·�Q1 +Q2, up to an application of axiom AFR,3 in the case that ·�Q1 +Q2 is not in FR-nf
because Q̃2 is not different from 0̃, and transitivity.
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– If only P1 is initial, then only Q̃1 is initial too and hence the result follows by taking Q̃ equal
to ·�Q2 +Q1 by virtue of AFR `·�Q1 +Q2 = ·�Q2 +Q1 due to axiom AFR,2 and transitivity, up
to an application of axiom AFR,3 in the case that ·�Q2 +Q1 is not in FR-nf because Q̃1 is not
different from 0̃, and transitivity.

• If P is P1 ‖L P2, then by the induction hypothesis there exist Q̃1 and Q̃2 in FR-nf such that AFR `
P̃1 = Q̃1 and AFR ` P̃2 = Q̃2. Thus AFR ` e`ε

brs(P̃1, P̃2,L)P1 ‖L P2 = e`ε
brs(Q̃1, Q̃2,L)Q1 ‖L Q2 due to

substitutivity with respect to action prefix and alternative composition, from which it follows that
AFR ` P̃ = ·�Q1 ‖L Q2 due to axiom AFR,5 applied to both sides and transitivity. There are four cases:

– If Q̃1 and Q̃2 are both 0̃, then the result follows by taking Q̃ equal to 0̃ by virtue of AFR `·�Q1 ‖L Q2 = 0̃ due to axiom AFR,5 along with Definition 5.3 and transitivity.

– If only Q̃2 is 0̃, then the result follows by taking Q̃ equal to Q̃1 – note that none of its
executed actions belongs to L otherwise it could not have been executed – by virtue of AFR `·�Q1 ‖L Q2 = Q̃1 due to axiom AFR,5 along with Definition 5.3 and transitivity.

– The case in which only Q̃1 is 0̃ is like the previous one.

– If Q̃1 and Q̃2 are both different from 0̃, say Q̃k of the form [
fla†
k .Q

′
k+]∑i∈Ik

·�ak,i .Qk,i with Q̃′k
and every Q̃k,i in FR-nf for k ∈ {1,2}, then the result follows by taking Q̃ equal to ·�Q1 ‖L Q2.

Proof of Theorem 5.14. Soundness, i.e., AFR ` P̃1 = P̃2 =⇒ P̃1 ∼FRB:`brs P̃2, is a straightforward con-
sequence of the axioms and inference rules behind ` (reflexivity, symmetry, transitivity, substitutivity)
together with ∼FRB:`brs being an equivalence relation and a congruence, plus the fact that the lefthand
side process of each additional axiom in AFR is ∼FRB:`brs-equivalent to the righthand side process of the
same axiom.
Let us address ground completeness, i.e., P̃1 ∼FRB:`brs P̃2 =⇒ AFR ` P̃1 = P̃2. We suppose that P̃1 and P̃2
are both in FR-nf and proceed by induction on the syntactical structure of P̃1:

• If P̃1 is 0̃, then from P̃1 ∼FRB:`brs P̃2 and P̃2 in FR-nf we derive that P̃2 can only be 0̃, from which
the result follows by reflexivity.

• If P̃1 is [
fla†

1 .P
′
1+]∑i∈I1

·�a1,i .P1,i with fla†
1 .P

′
1 present or I1 6= /0, then from P̃1 ∼FRB:`brs P̃2 and P̃2 in

FR-nf we derive that P̃2 can only be [
fla†

2 .P
′
2+]∑i∈I2

·�a2,i .P2,i with fla†
2 .P

′
2 present iff fla†

1 .P
′
1 present

and – if they are absent – I2 6= /0 6= I1. We recall that P̃′1, P̃′2, every P̃1,i, and every P̃2,i are all in
FR-nf.
In the presence of fla†

1 .P
′
1 and fla†

2 .P
′
2, it is not necessarily the case that I2 6= /0 iff I1 6= /0. How-

ever, if for example I1 = /0 and I2 6= /0, then in order for P̃1 ∼FRB:`brs P̃2 it must be the case that

to initial(fla†
2 .P

′
2) = ∑i∈I2

·�a2,i .P2,i, in which case AFR ` P̃2 =
fla†

2 .P
′
2 due to axiom AFR,4. Therefore

we can suppose that I2 6= /0 iff I1 6= /0 when examining the two main summands of P̃1 and P̃2.

If fla†
1 .P

′
1 and fla†

2 .P
′
2 are present, from the fact that they are the only summands in P̃1 and P̃2 that

can move it follows that a1 = a2 and P̃′1 ∼FRB:`brs P̃′2, otherwise P̃1 ∼FRB:`brs P̃2 cannot hold. From

the induction hypothesis we obtain that AFR ` P̃′1 = P̃′2 and hence AFR `fla†
1 .P

′
1 =

fla†
2 .P

′
2 due to

substitutivity with respect to executed action prefix.



M. Bernardo, A. Esposito & C.A. Mezzina 29

If I1 6= /0 6= I2, when going back to to initial(P̃1) and to initial(P̃2) also ∑i∈I1
·�a1,i .P1,i and ∑i∈I2

·�a2,i .P2,i

can move. Suppose that to initial(fla†
1 .P

′
1) 6= ∑i∈I1

·�a1,i .P1,i and to initial(fla†
2 .P

′
2) 6= ∑i∈I2

·�a2,i .P2,i so
as not to fall back into the previous case. Since P̃1 ∼FRB:`brs P̃2, for each i1 ∈ I1 there exists i2 ∈ I2
such that a1,i1 = a2,i2 and P̃1,i1 ∼FRB:`brs P̃2,i2 , and vice versa. From the induction hypothesis we ob-
tain that AFR ` P̃1,i1 = P̃2,i2 . It then follows that AFR `‚�a1,i1 .P1,i1 = ‚�a2,i2 .P2,i2 due to substitutivity
with respect to action prefix and hence AFR ` ∑i∈I1

·�a1,i .P1,i = ∑i∈I2
·�a2,i .P2,i due to substitutivity

with respect to alternative composition as well as axiom AFR,4 and transitivity in the presence of
identical summands on the same side that are absent on the other side (possibly preceded by appli-
cations of axioms AFR,1 and AFR,2 to move identical summands next to each other).

When fla†
1 .P

′
1 and fla†

2 .P
′
2 are present and I1 6= /0 6= I2, the result stems from substitutivity with respect

to alternative composition.

If P̃1 and P̃2 are not both in FR-nf, thanks to Lemma 5.13 we can find Q̃1 and Q̃2 in FR-nf, each of
which is initial iff so is its corresponding process, such that AFR ` P̃1 = Q̃1 and AFR ` P̃2 = Q̃2, hence
AFR ` Q̃2 = P̃2 by symmetry. Due to soundness, we get P̃1 ∼FRB:`brs Q̃1, hence Q̃1 ∼FRB:`brs P̃1 as∼FRB:`brs

is symmetric, and P̃2 ∼FRB:`brs Q̃2. Since P̃1 ∼FRB:`brs P̃2, we also get Q̃1 ∼FRB:`brs Q̃2 as ∼FRB:`brs is
transitive. By virtue of what has been shown above, from Q̃1 ∼FRB:`brs Q̃2 with Q̃1 and Q̃2 in FR-nf
it follows that AFR ` Q̃1 = Q̃2 and hence AFR ` P̃1 = P̃2 by transitivity.
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B Further Examples of Encoding of Non-Sequential Processes

Example B.1 Encoding initial processes P ∈ P containing subprocesses of the form P1 ‖L P2, where
as a consequence both P1 and P2 are initial too:

• Let P be P1 ‖ /0 P2 with P1 being the initial sequential process a .0 + c .0 and P2 being the
initial sequential process b .0+d .0 so that:

P̃1 = `brs(.+a)a†.0+c .0 . 0̃+ `brs(+.c)a .0+c†.0 . 0̃
P̃2 = `brs(.+b)b†.0+d .0 . 0̃+ `brs(+.d)b .0+d†.0 . 0̃

Then:
P̃ = e`ε

brs(P̃1, P̃2, /0)P

= `brs(U.+a)(a†.0+c .0)‖ /0(b .0+d .0) .e`
ε
brs(0̃, P̃2, /0)(a†.0+c .0)‖ /0(b .0+d .0) +

`brs(U+.c)(a .0+c†.0)‖ /0(b .0+d .0) .e`
ε
brs(0̃, P̃2, /0)(a .0+c†.0)‖ /0(b .0+d .0) +

`brs(T.+b)(a .0+c .0)‖ /0(b†.0+d .0) .e`
ε
brs(P̃1, 0̃, /0)(a .0+c .0)‖ /0(b†.0+d .0) +

`brs(T+.d)(a .0+c .0)‖ /0(b .0+d†.0) .e`
ε
brs(P̃1, 0̃, /0)(a .0+c .0)‖ /0(b .0+d†.0)

= <a,{a}>.(`brs(T.+b)(a†.0+c .0)‖ /0(b†.0+d .0) .e`
ε
brs(0̃, 0̃, /0)(a†.0+c .0)‖ /0(b†.0+d .0) +

`brs(T+.d)(a†.0+c .0)‖ /0(b .0+d†.0) .e`
ε
brs(0̃, 0̃, /0)(a†.0+c .0)‖ /0(b .0+d†.0)) +

<c,{c}>.(`brs(T.+b)(a .0+c†.0)‖ /0(b†.0+d .0) .e`
ε
brs(0̃, 0̃, /0)(a .0+c†.0)‖ /0(b†.0+d .0) +

`brs(T+.d)(a .0+c†.0)‖ /0(b .0+d†.0) .e`
ε
brs(0̃, 0̃, /0)(a .0+c†.0)‖ /0(b .0+d†.0)) +

<b,{b}>.(`brs(U.+a)(a†.0+c .0)‖ /0(b†.0+d .0) .e`
ε
brs(0̃, 0̃, /0)(a†.0+c .0)‖ /0(b†.0+d .0) +

`brs(U+.c)(a .0+c†.0)‖ /0(b†.0+d .0) .e`
ε
brs(0̃, 0̃, /0)(a .0+c†.0)‖ /0(b†.0+d .0)) +

<d,{d}>.(`brs(U.+a)(a†.0+c .0)‖ /0(b .0+d†.0) .e`
ε
brs(0̃, 0̃, /0)(a†.0+c .0)‖ /0(b .0+d†.0) +

`brs(U+.c)(a .0+c†.0)‖ /0(b .0+d†.0) .e`
ε
brs(0̃, 0̃, /0)(a .0+c†.0)‖ /0(b .0+d†.0))

= <a,{a}>.(<b,{a,b}>.0+<d,{a,d}>.0)+<c,{c}>.(<b,{c,b}>.0+<d,{c,d}>.0) +
<b,{b}>.(<a,{b,a}>.0+<c,{b,c}>.0)+<d,{d}>.(<a,{d,a}>.0+<c,{d,c}>.0)

• Let P be (Pa ‖ /0 Pc)+(Pb ‖ /0 Pd) with Pa being the initial sequential process a .0, Pc being the initial
sequential process c .0, Pb being the initial sequential process b .0, and Pd being the initial sequen-
tial process d .0. Then:

P̃ = e`.+brs(P̃a, P̃c, /0)P + e`+.brs(P̃b, P̃d , /0)P

= `brs(.+Ua)(a†.0‖ /0 c .0)+(b .0‖ /0 d .0) .e`
.+
brs(0̃, P̃c, /0)(a†.0‖ /0 c .0)+(b .0‖ /0 d .0) +

`brs(.+Tc)(a .0‖ /0 c†.0)+(b .0‖ /0 d .0) .e`
.+
brs(P̃a, 0̃, /0)(a .0‖ /0 c†.0)+(b .0‖ /0 d .0) +

`brs(+.Ub)(a .0‖ /0 c .0)+(b†.0‖ /0 d .0) .e`
+.
brs(0̃, P̃d , /0)(a .0‖ /0 c .0)+(b†.0‖ /0 d .0) +

`brs(+.Td)(a .0‖ /0 c .0)+(b .0‖ /0 d†.0) .e`
+.
brs(P̃b, 0̃, /0)(a .0‖ /0 c .0)+(b .0‖ /0 d†.0)

= <a,{a}>.`brs(.+Tc)(a†.0‖ /0 c†.0)+(b .0‖ /0 d .0) .e`
.+
brs(0̃, 0̃, /0)(a†.0‖ /0 c†.0)+(b .0‖ /0 d .0) +

<c,{c}>.`brs(.+Ua)(a†.0‖ /0 c†.0)+(b .0‖ /0 d .0) .e`
.+
brs(0̃, 0̃, /0)(a†.0‖ /0 c†.0)+(b .0‖ /0 d .0) +

<b,{b}>.`brs(+.Td)(a .0‖ /0 c .0)+(b†.0‖ /0 d†.0) .e`
+.
brs(0̃, 0̃, /0)(a .0‖ /0 c .0)+(b†.0‖ /0 d†.0) +

<d,{d}>.`brs(+.Ub)(a .0‖ /0 c .0)+(b†.0‖ /0 d†.0) .e`
+.
brs(0̃, 0̃, /0)(a .0‖ /0 c .0)+(b†.0‖ /0 d†.0)

= <a,{a}>.<c,{a,c}>.0+<c,{c}>.<a,{c,a}>.0 +
<b,{b}>.<d,{b,d}>.0+<d,{d}>.<b,{d,b}>.0

where, unlike the previous example, σ 6= ε in e`σ
brs at the beginning, precisely σ = .+ and σ =+..
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• Let P be Pa,b ‖ /0 Pc with Pa,b being the concurrent process Pa ‖ /0 Pb, Pa being the initial sequential
process a .0, Pb being the initial sequential process b .0, and Pc being the initial sequential process
c .0. Since as shown in Example 5.4:

P̃a,b = e`ε
brs(P̃a, P̃b, /0)Pa,b

= `brs(Ua)a†.0‖ /0 b .0 . `brs(Tb)a†.0‖ /0 b†.0 . 0̃ +

`brs(Tb)a .0‖ /0 b†.0 . `brs(Ua)a†.0‖ /0 b†.0 . 0̃
we have that:

P̃ = e`ε
brs(P̃a,b, P̃c, /0)P

= `brs(UUa)(a†.0‖ /0 b .0)‖ /0 c .0 .e`
ε
brs(`brs(Tb)a†.0‖ /0 b†.0 . 0̃, P̃c, /0)(a†.0‖ /0 b .0)‖ /0 c .0 +

`brs(UTb)(a .0‖ /0 b†.0)‖ /0 c .0 .e`
ε
brs(`brs(Ua)a†.0‖ /0 b†.0 . 0̃, P̃c, /0)(a .0‖ /0 b†.0)‖ /0 c .0 +

`brs(Tc)(a .0‖ /0 b .0)‖ /0 c†.0 .e`
ε
brs(P̃a,b, 0̃, /0)(a .0‖ /0 b .0)‖ /0 c†.0

= <a,{a}>.(`brs(UTb)(a†.0‖ /0 b†.0)‖ /0 c .0 .e`
ε
brs(0̃, P̃c, /0)(a†.0‖ /0 b†.0)‖ /0 c .0 +

`brs(Tc)(a†.0‖ /0 b .0)‖ /0 c†.0 .e`
ε
brs(`brs(Tb)a†.0‖ /0 b†.0 . 0̃, 0̃, /0)(a†.0‖ /0 b .0)‖ /0 c†.0) +

<b,{b}>.(`brs(UUa)(a†.0‖ /0 b†.0)‖ /0 c .0 .e`
ε
brs(0̃, P̃c, /0)(a†.0‖ /0 b†.0)‖ /0 c .0 +

`brs(Tc)(a .0‖ /0 b†.0)‖ /0 c†.0 .e`
ε
brs(`brs(Ua)a†.0‖ /0 b†.0 . 0̃, 0̃, /0)(a .0‖ /0 b†.0)‖ /0 c†.0) +

<c,{c}>.(`brs(UUa)(a†.0‖ /0 b .0)‖ /0 c†.0 .e`
ε
brs(`brs(Tb)a†.0‖ /0 b†.0 . 0̃, 0̃, /0)(a†.0‖ /0 b .0)‖ /0 c†.0 +

`brs(UTb)(a .0‖ /0 b†.0)‖ /0 c†.0 .e`
ε
brs(`brs(Ua)a†.0‖ /0 b†.0 . 0̃, 0̃, /0)(a .0‖ /0 b†.0)‖ /0 c†.0)

= <a,{a}>.(<b,{a,b}>.`brs(Tc)(a†.0‖ /0 b†.0)‖ /0 c†.0 .e`
ε
brs(0̃, 0̃, /0)(a†.0‖ /0 b†.0)‖ /0 c†.0 +

<c,{a,c}>.`brs(UTb)(a†.0‖ /0 b†.0)‖ /0 c†.0 .e`
ε
brs(0̃, 0̃, /0)(a†.0‖ /0 b†.0)‖ /0 c†.0) +

<b,{b}>.(<a,{b,a}>.`brs(Tc)(a†.0‖ /0 b†.0)‖ /0 c†.0 .e`
ε
brs(0̃, 0̃, /0)(a†.0‖ /0 b†.0)‖ /0 c†.0 +

<c,{b,c}>.`brs(UUa)(a†.0‖ /0 b†.0)‖ /0 c†.0 .e`
ε
brs(0̃, 0̃, /0)(a†.0‖ /0 b†.0)‖ /0 c†.0) +

<c,{c}>.(<a,{c,a}>.`brs(UTb)(a†.0‖ /0 b†.0)‖ /0 c†.0 .e`
ε
brs(0̃, 0̃, /0)(a†.0‖ /0 b†.0)‖ /0 c†.0 +

<b,{c,b}>.`brs(UUa)(a†.0‖ /0 b†.0)‖ /0 c†.0 .e`
ε
brs(0̃, 0̃, /0)(a†.0‖ /0 b†.0)‖ /0 c†.0)

= <a,{a}>.(<b,{a,b}>.<c,{a,b,c}>.0+<c,{a,c}>.<b,{a,c,b}>.0) +
<b,{b}>.(<a,{b,a}>.<c,{b,a,c}>.0+<c,{b,c}>.<a,{b,c,a}>.0) +
<c,{c}>.(<a,{c,a}>.<b,{c,a,b}>.0+<b,{c,b}>.<a,{c,b,a}>.0)

Example B.2 Encoding non-initial processes P ∈ P containing subprocesses of the form P1 ‖L P2 where
either P1 or P2 is initial:

• Let P be P1 ‖ /0 P2 with P1 being the initial sequential process a .0+c .0 and P2 being the non-initial
sequential process b†.0+d .0 so that:

P̃1 = `brs(.+a)a†.0+c .0 . 0̃+ `brs(+.c)a .0+c†.0 . 0̃
P̃2 = `brs(.+b)†

b†.0+d .0 . 0̃+ `brs(+.d)b .0+d†.0 . 0̃
Then:
P̃ = e`ε

brs(P̃1, P̃2, /0)P

= `brs(T.+b)†
(a .0+c .0)‖ /0(b†.0+d .0) .e`

ε
brs(P̃1, 0̃, /0)P +

`brs(T+.d)(a .0+c .0)‖ /0(b .0+d†.0) .e`
ε
brs(P̃1, 0̃, /0)(a .0+c .0)‖ /0(b .0+d†.0) +

`brs(U.+a)(a†.0+c .0)‖ /0(b .0+d .0) .e`
ε
brs(0̃, `brs(.+b)b†.0+d .0 . 0̃+ `brs(+.d)b .0+d†.0 . 0̃, /0)(a†.0+c .0)‖ /0(b .0+d .0) +

`brs(U+.c)(a .0+c†.0)‖ /0(b .0+d .0) .e`
ε
brs(0̃, `brs(.+b)b†.0+d .0 . 0̃+ `brs(+.d)b .0+d†.0 . 0̃, /0)(a .0+c†.0)‖ /0(b .0+d .0)
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= <b†,{b}>.(`brs(U.+a)(a†.0+c .0)‖ /0(b†.0+d .0) .e`
ε
brs(0̃, 0̃, /0)(a†.0+c .0)‖ /0(b†.0+d .0) +

`brs(U+.c)(a .0+c†.0)‖ /0(b†.0+d .0) .e`
ε
brs(0̃, 0̃, /0)(a .0+c†.0)‖ /0(b†.0+d .0)) +

<d,{d}>.(`brs(U.+a)(a†.0+c .0)‖ /0(b .0+d†.0) .e`
ε
brs(0̃, 0̃, /0)(a†.0+c .0)‖ /0(b .0+d†.0) +

`brs(U+.c)(a .0+c†.0)‖ /0(b .0+d†.0) .e`
ε
brs(0̃, 0̃, /0)(a .0+c†.0)‖ /0(b .0+d†.0)) +

<a,{a}>.(`brs(T.+b)(a†.0+c .0)‖ /0(b†.0+d .0) .e`
ε
brs(0̃, 0̃, /0)(a†.0+c .0)‖ /0(b†.0+d .0) +

`brs(T+.d)(a†.0+c .0)‖ /0(b .0+d†.0) .e`
ε
brs(0̃, 0̃, /0)(a†.0+c .0)‖ /0(b .0+d†.0)) +

<c,{c}>.(`brs(T.+b)(a .0+c†.0)‖ /0(b†.0+d .0) .e`
ε
brs(0̃, 0̃, /0)(a .0+c†.0)‖ /0(b†.0+d .0) +

`brs(T+.d)(a .0+c†.0)‖ /0(b .0+d†.0) .e`
ε
brs(0̃, 0̃, /0)(a .0+c†.0)‖ /0(b .0+d†.0))

= <b†,{b}>.(<a,{b,a}>.0+<c,{b,c}>.0) +
<d,{d}>.(<a,{d,a}>.0+<c,{d,c}>.0) +
<a,{a}>.(<b,{a,b}>.0+<d,{a,d}>.0) +
<c,{c}>.(<b,{c,b}>.0+<d,{c,d}>.0)

Note that T.+b≤† U.+a and T.+b≤† U+.c as only b has been executed.

Example B.3 Encoding non-initial processes P ∈ P containing subprocesses of the form P1 ‖L P2 where
both P1 and P2 are non-initial:

• Let P be P1 ‖{c}P2 with P1 being the non-initial sequential process a†.c†.0 and P2 being
the non-initial sequential process c†.b .0 so that:

P̃1 = `brs(a)
†
a†.c .0 . `brs(.c)

†
a†.c†.0 . 0̃

P̃2 = `brs(c)
†
c†.b .0 . `brs(.b)c†.b†.0 . 0̃

Then:
P̃ = e`ε

brs(P̃1, P̃2,{c})P

= `brs(Ua)†
a†.c .0‖{c} c .b .0 .e`

ε
brs(`brs(.c)

†
a†.c†.0 . 0̃, P̃2,{c})P

= <a†,{a}>.`brs(〈.c,c〉)†
a†.c†.0‖{c} c†.b .0 .e`

ε
brs(0̃, `brs(.b)c†.b†.0 . 0̃,{c})P

= <a†,{a}>.<c†,{c}>.`brs(T.b)a†.c†.0‖{c} c†.b†.0 .e`
ε
brs(0̃, 0̃,{c})a†.c†.0‖{c} c†.b†.0

= <a†,{a}>.<c†,{c}>.<b,{b}>.0

• Let P be P1 ‖{c}P2 with P1 being the non-initial sequential process a†.c†.a†.0 and P2 being
the non-initial sequential process b†.c†.b†.0 so that:

P̃1 = `brs(a)
†
a†.c .a .0 . `brs(.c)

†
a†.c†.a .0 . `brs(..a)

†
a†.c†.a†.0 . 0̃

P̃2 = `brs(b)
†
b†.c .b .0 . `brs(.c)

†
b†.c†.b .0 . `brs(..b)

†
b†.c†.b†.0 . 0̃

Then for Ua≤† Tb and T..b≤† U..a:
P̃ = e`ε

brs(P̃1, P̃2,{c})P = . . . =
= <a†,{a}>.<b†,{a,b}>.0 .<c†,{c}>.(<b†,{b}>.<a†,{b,a}>.0 +

<a,{a}>.<b,{a,b}>.0) +
<b,{b}>.<a,{a,b}>.0 .<c,{c}>.(<a,{a}>.<b,{a,b}>.0 +

<b,{b}>.<a,{b,a}>.0)
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