
Two Exercises with EMPA: Computing the Utilization of the

CSMA/CD Protocol and Assessing the Performability of a

Queueing System

Marco Bernardo

Università di Bologna, Dipartimento di Scienze dell’Informazione
Mura Anteo Zamboni 7, 40127 Bologna, Italy

E-mail: bernardo@cs.unibo.it

Abstract

We present two applications of the stochastically timed process algebra EMPA. The first one is concerned
with the compositional modeling of the CSMA/CD protocol and the determination of its utilization. The
second one is concerned with the description of a queueing system representing a computing center where
failures and repairs can occur, and the compositional assessment of its performability. In both cases, the
technique of rewards is used to determine performance measures.

1 Compositional performance modeling

The need of integrating the performance modeling and analysis of a concurrent system into the design process
of the system itself has been widely recognized (see, e.g., [27, 7, 12, 4]) and stimulated a considerable research
effort. The main problem to be tackled is that it often happens that a concurrent system is first fully designed
and tested for functionality, and afterwards tested for efficiency. As a consequence, if the performance is
detected to be poor, the concurrent system has to be designed again, thereby negatively affecting both the
design costs and the delivery at a fixed deadline. Another relevant drawback is that tests for functionality
and performance are usually carried out on two different models of the system, so one has to make sure that
the functional model and the performance model are consistent, i.e. they really describe (different aspects
of) the same system.

An emerging field in the area of the integration of formal methods and performance evaluation is the
field of stochastically timed process algebras (see e.g. [8, 13, 2, 6, 5, 22]). The main reason for the adoption of
stochastically timed process algebras is compositionality. More accurately, they allow for (i) compositional
model construction thanks to their operators whereby it is possible to build complex system descriptions
from smaller ones, (ii) compositional model simplification by means of appropriate congruences defined over
their sets of terms [9, 13, 3, 6, 10, 23], and (iii) compositional model solution whenever special product form
conditions are met [11, 24]. Another strength of stochastically timed process algebras (in particular with
respect to formalisms such as stochastic Petri nets) is that they provide system descriptions that can be
analyzed as a whole without building the underlying (consistent) functional and performance models, by
virtue of the definition of notions of equivalence which relate algebraic descriptions of systems having the
same functional and performance properties.

In this paper we shall focus our attention on the stochastically timed process algebra EMPA (Extended
Markovian Process Algebra) [2, 3]. EMPA was originally developed in order to implement the integrated
approach for modeling and analyzing functional and performance properties of concurrent systems proposed
in [2]. However, as it has been recognized in [3], the expressive power of EMPA is considerable because it
allows nondeterminism, priorities, probabilities and time to be modeled. The purpose of this paper is to
exhibit such an expressive power by means of two examples. In Section 2 we present a brief overview of

1

EMPA that is necessary in order to understand the algebraic description of the CSMA/CD protocol given
in Section 3 as well as the performability model of a queueing system given in Section 4. In both examples,
some performance measures are specified and computed by resorting to the technique of rewards.

2 EMPA: syntax, semantics, equivalence

2.1 Syntax of EMPA terms

The building blocks of EMPA are actions. Each action is a pair <a, λ̃> consisting of the type of the action
and the rate of the action. Actions are divided into external and internal (τ) according to types, while they
are classified as exponentially timed, immediate or passive according to rates:

• Exponentially timed actions are actions whose rate λ is a positive real number that uniquely identifies
the exponential probability distribution function FX(t) = 1− e−λ·t specifying the random variable X
(with mean 1/λ) expressing the duration of the action.

• Immediate actions are actions whose rate ∞l,w is infinite. Such actions have duration zero, and each
of them is given a priority level l ∈ NI + and a weight w ∈ RI +.

• Passive actions are actions whose rate denoted by ∗ is undefined. The duration of a passive action is
fixed only by synchronizing it with an active action of the same type.

The classification of actions based on their rates implies that: (i) exponentially timed actions model activities
that are relevant from the performance point of view, (ii) immediate actions model logical events as well
as activities that are either irrelevant from the performance point of view or unboundedly faster than the
others, and are useful to express prioritized and probabilistic choices, (iii) passive actions model activities
waiting for the synchronization with timed activities, and are useful to express nondeterministic choices.

We denote the set of actions by Act = AType × ARate where AType is the set of types and ARate =
RI +∪ Inf ∪{∗}, with Inf = {∞l,w | l ∈ NI +∧w ∈ RI +}, is the set of rates. We use a, b, c, . . . as metavariables
for AType, λ̃, µ̃, γ̃, . . . for ARate, and λ, µ, γ, . . . for RI +. Finally, we denote by APLev = {−1} ∪ NI the set
of action priority levels, and we assume ∗ < λ < ∞l,w.

Let Const be a set of constants, ranged over by A,B, C, . . ., and let ARFun = {ϕ : AType −→ AType |
ϕ(τ) = τ ∧ ϕ(AType − {τ}) ⊆ AType − {τ}} be a set of action relabeling functions.

Definition 2.1 The set L of process terms of EMPA is generated by the following syntax
E ::= 0 | <a, λ̃>.E | E/L | E[ϕ] | E + E | E ‖S E | A

where L, S ⊆ AType−{τ}. The set L will be ranged over by E,F, G, We denote by G the set of guarded
and closed terms of L.

The null term “0” represents a termination or deadlocked state.
The prefix operator “<a, λ̃>. ” represents the sequential composition of an action and a term; so, term

<a, λ̃>.E can execute action <a, λ̃> and then behaves as term E.
The functional abstraction operator “ /L” abstracts from the type of the actions (executed by the term

to which it is applied) whenever it is in L, i.e. the action type is turned into τ . The meaning of this operator
is the same as that of the hiding operator of CSP [14].

The functional relabeling operator “ [ϕ]” changes the type of the actions (executed by the term to which
it is applied) according to ϕ. The meaning of this operator is the same as that of the relabeling operator of
CCS [19].

The alternative composition operator “ + ” expresses a choice between two terms. The choice is solved
according to durations in the case of exponentially timed actions (race policy) and according to priorities
and weights in the case of immediate actions (preselection policy), while it is purely nondeterministic in the
case of passive actions.

2

The parallel composition operator “ ‖S ” is based on two synchronization disciplines. The synchroniza-
tion discipline on action types is the same as that of CSP [14], hence two actions can synchronize only if they
have the same type, and this coincides with the resulting type. The synchronization discipline on action rates
states that action <a, λ̃> can be synchronized with action <a, µ̃> only if min(λ̃, µ̃) = ∗, and the resulting
rate is given by max(λ̃, µ̃) up to normalization. In other words, in a synchronization at most one active
action can be involved and its rate determines the rate of the synchronization itself, up to normalization.

2.2 Semantics of EMPA terms

The main problem to tackle when defining the semantics for EMPA is that the actions executable by a
given term may have different priority levels, and only those having the highest priority level are actually
executable. Let us call potential move of a given term a pair composed of (i) an action executable by the
term, and (ii) a derivative term obtained by executing that action. To solve the problem above, we compute
inductively the multiset 1 of the potential moves of a given term regardless of priority levels, and then we
select those having the highest priority level.

The formal definition of the integrated interleaving semantics for EMPA is based on the transition
relation −−−→, which is the least subset of G×Act ×G satisfying the inference rule reported in the first part
of Table 1. This rule selects the potential moves having the highest priority level, and then merges together
those having the same action type, the same priority level and the same derivative term. The first operation
is carried out through functions Select : Mufin(Act × G) −→ Mufin(Act × G) and PL : Act −→ APLev ,
which are defined in the third part of Table 1. The second operation is carried out through function
Melt : Mufin(Act × G) −→ Pfin(Act × G) and partial function Min : (ARate × ARate) −→o ARate, which
are defined in the fourth part of Table 1. The name Min should recall the adoption of the race policy: the
minimum of a set of random variables has to be computed. We regard Min as an associative and commutative
operation, thus we take the liberty to apply it to multisets of rates.

Example 2.2 If we consider term
E ≡ <a, λ>.F + <a, λ>.F

then we have two identical potential moves (<a, λ>, F) which are merged into (<a, 2 · λ>,F) by means
of Melt and Min. Note that rates of exponentially timed moves are summed up because of the adoption
of the race policy: the minimum of several independent exponentially distributed random variables is an
exponentially distributed random variable whose rate is the sum of the original rates.

The multiset PM (E) ∈ Mufin(Act × G) of potential moves of E ∈ G is defined by structural induction
in the second part of Table 1. The normalization of the rates of potential moves resulting from the syn-
chronization of the same active action with several independent or alternative passive actions is carried out
through partial function Norm : (AType ×ARate ×ARate ×Mufin(Act ×G)×Mufin(Act ×G)) −→o ARate
and function Split : (ARate × RI]0,1]) −→ ARate, which are defined in the fifth part of Table 1. Note that
Norm(a, λ̃1, λ̃2,PM 1,PM 2) is defined if and only if min(λ̃, µ̃) = ∗, which is the condition on action rates we
have required in Section 2.1 in order for a synchronization to be permitted.

Example 2.3 Consider terms
E1 ≡ <a, λ>.0 ‖{a}(<a, ∗>.0 ‖∅<a, ∗>.0)
E2 ≡ <a, λ>.0 ‖{a}(<a, ∗>.0 + <a, ∗>.0)

In both cases, the left-hand operand of “‖{a}” has one potential move (<a, λ>, 0) and the right-hand operand
has two potential moves whose action is <a, ∗>, hence the whole term has two potential moves whose type
is a. Since both terms consist of a single active action which is exponentially timed with rate λ, the rate of
each of the two potential moves cannot be λ otherwise the mean sojourn time of the states corresponding to

1We use “{|” and “|}” as brackets for multisets, “ ⊕ ” to denote multiset union, Mufin (S) (Pfin (S)) to denote the collection
of finite multisets (sets) over set S, M(s) to denote the multiplicity of element s in multiset M , and πi(M) to denote the
multiset obtained by projecting the tuples in multiset M on their i-th component. Thus, e.g., (π1(PM 2))(<a, ∗>) in the fifth
part of Table 1 denotes the multiplicity of tuples of PM 2 whose first component is <a, ∗>.

3

(<a, λ̃>,E′) ∈ Melt(Select(PM (E)))

E
a,λ̃−−−→E′

PM (0) = ∅
PM (<a, λ̃>.E) = {| (<a, λ̃>,E) |}
PM (E/L) = {| (<a, λ̃>,E′/L) | (<a, λ̃>,E′) ∈ PM (E) ∧ a /∈ L |} ⊕

{| (<τ, λ̃>,E′/L) | (<a, λ̃>, E′) ∈ PM (E) ∧ a ∈ L |}
PM (E[ϕ]) = {| (<ϕ(a), λ̃>,E′[ϕ]) | (<a, λ̃>,E′) ∈ PM (E) |}
PM (E1 + E2) = PM (E1)⊕ PM (E2)

PM (E1 ‖S E2) = {| (<a, λ̃>,E′
1 ‖S E2) | a /∈ S ∧ (<a, λ̃>,E′

1) ∈ PM (E1) |} ⊕
{| (<a, λ̃>,E1 ‖S E′

2) | a /∈ S ∧ (<a, λ̃>,E′
2) ∈ PM (E2) |} ⊕

{| (<a, γ̃>,E′
1 ‖S E′

2) | a ∈ S ∧
(<a, λ̃1>,E′

1) ∈ PM (E1) ∧
(<a, λ̃2>,E′

2) ∈ PM (E2) ∧
γ̃ = Norm(a, λ̃1, λ̃2,PM (E1),PM (E2)) |}

PM (A) = PM (E) if A
∆= E

Select(PM) = {| (<a, λ̃>,E) ∈ PM | PL(<a, λ̃>) = −1 ∨
∀(<b, µ̃>, E′) ∈ PM .PL(<a, λ̃>) ≥ PL(<b, µ̃>) |}

PL(<a, ∗>) = −1 PL(<a, λ>) = 0 PL(<a,∞l,w>) = l

Melt(PM) = {(<a, λ̃>,E) | (<a, µ̃>, E) ∈ PM ∧
λ̃ = Min{| γ̃ | (<a, γ̃>, E) ∈ PM ∧ PL(<a, γ̃>) = PL(<a, µ̃>) |}}

∗Min ∗ = ∗ λ1 Min λ2 = λ1 + λ2 ∞l,w1 Min∞l,w2 = ∞l,w1+w2

Norm(a, λ̃1, λ̃2,PM 1,PM 2) =
{

Split(λ̃1, 1/(π1(PM 2))(<a, ∗>)) if λ̃2 = ∗
Split(λ̃2, 1/(π1(PM 1))(<a, ∗>)) if λ̃1 = ∗

Split(∗, α) = ∗ Split(λ, α) = λ · α Split(∞l,w, α) = ∞l,w·α

Table 1: Inductive rules for EMPA integrated interleaving semantics

4

E1 and E2 would be 1/(2 ·λ) instead of 1/λ: a normalization must take place so that the sum of the rates of
the two potential moves turns out to be λ. Assuming that independent or alternative passive actions have
the same execution probability when they are involved in a synchronization, Norm computes the rate of each
of the potential moves above by dividing λ by the number of independent or alternative passive actions with
which the synchronization can take place. As a consequence, the rate of each of the two potential moves is
λ/2.

Definition 2.4 The integrated interleaving semantics of E ∈ G is the labeled transition system (LTS)
I[[E]] = (↑E,Act , −−−→E , E) where ↑E is the set of states reachable from E, and −−−→E is −−−→ restricted
to ↑E ×Act × ↑E.

Definition 2.5 E ∈ G is performance closed if and only if I[[E]] does not contain passive transitions. We
denote by E the set of performance closed terms of G.

Given a term E ∈ G, its integrated interleaving semantics I[[E]] fully represents the behavior of E
because transitions are decorated by both the action type and the action rate. One can think of obtaining
the functional semantics F [[E]] and the performance semantics P[[E]] of E from I[[E]] by simply dropping
action rates and action types, respectively. As a matter of fact, this is the case for the functional semantics.

Definition 2.6 The functional semantics of E ∈ G is the LTS F [[E]] = (↑E,AType, −−−→E,F , E) where
−−−→E,F is −−−→E restricted to ↑E ×AType × ↑E.

The definition of the performance semantics requires instead a more careful treatment due to the possible
presence of immediate and passive transitions. In order to avoid the presence of passive transitions (which
cause the performance model to be underspecified), we restrict ourselves to performance closed terms. In
order to cope with the coexistence of exponentially timed transitions and weighted immediate transitions,
i.e. the coexistence of states whose sojourn time is exponentially distributed (tangible states) and states
whose sojourn time is zero (vanishing states), we have devised an algorithm that eliminates immediate
transitions together with the related vanishing states, and produces homogeneous continuous-time Markov
chains (HCTMCs) [16]. These are formalized as probabilistically rooted labeled transition systems (PLTSs),
which are LTSs where the initial state is replaced by a function that specifies for each state the probability
that it is the initial one.

Given E ∈ E , the algorithm comprises several steps. The first step consists of dropping action types,
removing selfloops composed of an immediate transition (hereafter called immediate selfloops for short),
changing the weight of each immediate transition into the corresponding execution probability, and deter-
mining the initial state probability function. Formally, from the LTS I[[E]] = (↑E,Act , −−−→E , E) we obtain
the PLTS P1[[E]] = (SE,1, RI + ∪ Inf , −−−→E,1, PE,1) where: 2

• SE,1 = ↑E.

• Let PM 1(s) = Melt({| (λ̃, s′) | s a,λ̃−−−→E s′ ∧ a ∈ AType |}) for any s ∈ SE,1. Then −−−→E,1 is the least
subset of SE,1 × (RI + ∪ Inf)× SE,1 such that:

– If s is tangible and (λ, s′) ∈ PM 1(s), then s
λ−−−→E,1 s′.

– If s is vanishing and in PM 1(s) there are exactly m ≥ 1 potential moves (∞l,wj , sj), 1 ≤ j ≤ m,

such that sj 6≡ s, then there are m transitions s
∞l,wj/w

−−−→ E,1 sj , 1 ≤ j ≤ m, where w =
∑m

j=1 wj .

• PE,1 : SE,1 −→ RI [0,1], PE,1(s) =
{

1 if s ≡ E
0 if s 6≡ E

.

5

s0

λ∼

2l,p1l,p nl,p

s2s1 sn

q0

2q1q

Split(
∼λ, p1) Split(

∼λ, p)2 Split(
∼λ, p)n

s1 s2 sn

q0 1p1q + . q0 q0

......
q + .p2 2 q + .pn n

......

nq

Figure 1: Graph reduction rule

The k-th step, k ≥ 2, handles a vanishing state by eliminating the state itself as well as its outgoing
immediate transitions, splitting the transitions entering the vanishing state, removing immediate selfloops
created by splitting immediate transitions entering the vanishing state and exiting from states reached
by the eliminated immediate transitions, and distributing the initial state probability associated with the
vanishing state among the states reached by the eliminated immediate transitions. Formally, if we assume
that the vanishing state considered at the k-th step is the one shown in Figure 1, we build PLTS Pk[[E]] =
(SE,k, RI + ∪ Inf , −−−→E,k, PE,k) where:

• SE,k = SE,k−1 − {s0}.

• Let PM k(s) = Melt({| (λ̃, s′) | s λ̃−−−→E,k−1 s′ ∧ s′ 6≡ s0 |}⊕{| (Split(λ̃, pi), si) | s
λ̃−−−→E,k−1 s0 ∧ 1 ≤ i ≤

n |}) for any s ∈ SE,k. Then −−−→E,k is the least subset of SE,k × (RI + ∪ Inf)× SE,k such that:

– If s is tangible, or vanishing but s /∈ {si | 1 ≤ i ≤ n}, and (λ̃, s′) ∈ PM k(s), then s
λ̃−−−→E,k s′.

– If s is vanishing, s ≡ si and in PM k(s) there are exactly m ≥ 1 potential moves (∞l,pj , sj),

1 ≤ j ≤ m, such that sj 6≡ s, then there are m transitions s
∞l,pj/p

−−−→ E,k sj , 1 ≤ j ≤ m, where
p =

∑m
j=1 pj .

• PE,k : SE,k −→ RI [0,1], PE,k(s) =
{

PE,k−1(s) if s /∈ {si | 1 ≤ i ≤ n}
PE,k−1(s) + PE,k−1(s0) · pi if s ≡ si

.

Definition 2.7 The Markovian semantics of E ∈ E is the PLTS M[[E]] = (SE,M, RI +, −−−→E,M, PE,M)
obtained by applying the algorithm above.

Theorem 2.8 Let E ∈ E . If I[[E]] has finitely many states, then the algorithm terminates and M[[E]] has
no immediate transitions, has finitely many states, and is unique.

For the proof of the theorem above, the reader is referred to [2].

2.3 Equivalence for EMPA terms

The notion of equivalence for EMPA terms [3] has been developed by adapting the idea of probabilistic
bisimulation proposed in [17] according to the various kinds of actions. In order to come up with a congru-
ence, we have introduced a priority operator “Θ()” such that priority levels are taken to be potential, and
they become effective only within the scope of such an operator. We have thus considered the language LΘ

generated by the following syntax
E ::= 0 | <a, λ̃>.E | E/L | E[ϕ] | Θ(E) | E + E | E ‖S E | A

whose semantic rules are those in Table 1 except that the rule in the first part is replaced by
2With abuse of notation, we apply function Melt to multisets of pairs whose first components are rates instead of actions.

6

(<a, λ̃>,E′) ∈ Melt(PM (E))

E
a,λ̃−−−→E′

and the following rule for the priority operator is introduced in the second part
PM (Θ(E)) = Select(PM (E))

It is easily seen that EMPA coincides with the set of terms {Θ(E) | E ∈ L}. The reason why the priority
operator is not included in the syntax of EMPA stems from modeling issues explained in [3].

Definition 2.9 We define partial function Rate : (GΘ ×AType ×APLev ×P(GΘ)) −→o ARate by

Rate(E, a, l, C) = Min{| λ̃ | E a,λ̃−−−→E′ ∧ PL(<a, λ̃>) = l ∧ E′ ∈ C |}

Definition 2.10 An equivalence relation B ⊆ GΘ ×GΘ is a strong extended Markovian bisimulation (strong
EMB) if and only if, whenever (E1, E2) ∈ B, then for all a ∈ AType, l ∈ APLev and C ∈ GΘ/B

Rate(E1, a, l, C) = Rate(E2, a, l, C)
In this case we say that E1 and E2 are strongly extended-Markovian bisimilar (strongly EMB).

Proposition 2.11 Let ∼EMB be the union of all the strong EMBs. Then ∼EMB is the largest strong EMB.

Definition 2.12 We call ∼EMB the strong extended Markovian bisimulation equivalence (strong EMBE),
and we say that E1, E2 ∈ GΘ are strongly extended-Markovian bisimulation equivalent (strongly EMBE) if
and only if E1 ∼EMB E2.

Theorem 2.13 Let E1, E2 ∈ GΘ. If E1 ∼EMB E2 then:

(i) For every <a, λ̃> ∈ Act , <a, λ̃>.E1 ∼EMB <a, λ̃>.E2.

(ii) For every L ⊆ AType − {τ}, E1/L ∼EMB E2/L.

(iii) For every ϕ ∈ ARFun, E1[ϕ] ∼EMB E2[ϕ].

(iv) Θ(E1) ∼EMB Θ(E2).

(v) For every F ∈ GΘ, E1 + F ∼EMB E2 + F and F + E1 ∼EMB F + E2.

(vi) For every F ∈ GΘ and S ⊆ AType − {τ}, E1 ‖S F ∼EMB E2 ‖S F and F ‖S E1 ∼EMB F ‖S E2.

Furthermore, ∼EMB is preserved by recursive definitions.

We conclude by showing in Table 2 a sound and complete axiomatization of nonrecursive EMPA terms
with respect to ∼EMB . All the proofs of the results above can be found in [3].

3 Modeling the CSMA/CD protocol

One of the most commonly used medium access control protocol for local area networks with bus/tree
topology is CSMA/CD: as an example, its original baseband version is seen in Ethernet. In this section
we describe informally such a protocol, then we formalize it by means of EMPA, and finally we derive its
utilization.

Given a set of n stations connected through a local area network, CSMA/CD [25] works as follows. When
a station wants to transmit a message, it first listens to the channel in order to determine whether another
transmission is in progress (“listen before talk”). If the channel is sensed to be idle then the station transmits
its message, otherwise the station backs off a random amount of time and then senses the channel again.

7

(A1) (E1 + E2) + E3 = E1 + (E2 + E3)
(A2) E1 + E2 = E2 + E1

(A3) E + 0 = E

(A4) <a, λ̃1>.E + <a, λ̃2>.E = <a, λ̃1 Min λ̃2>.E if PL(<a, λ̃1>) = PL(<a, λ̃2>)

(A5) 0/L = 0

(A6) (<a, λ̃>.E)/L =
{

<a, λ̃>.(E/L) if a /∈ L

<τ, λ̃>.(E/L) if a ∈ L
(A7) (E1 + E2)/L = E1/L + E2/L

(A8) 0[ϕ] = 0
(A9) (<a, λ̃>.E)[ϕ] = <ϕ(a), λ̃>.(E[ϕ])
(A10) (E1 + E2)[ϕ] = E1[ϕ] + E2[ϕ]

(A11) Θ(0) = 0
(A12) Θ(

∑
i∈I

<ai, λ̃i>.Ei) =
∑
j∈J

<aj , λ̃j>.Θ(Ej)

where J = {i ∈ I | λ̃i = ∗ ∨ ∀h ∈ I.PL(<ai, λ̃i>) ≥ PL(<ah, λ̃h>)}

(A13) (
∑

i∈I1

<ai, λ̃i>.Ei) ‖S(
∑

i∈I2

<ai, λ̃i>.Ei) =
∑

j∈J1

<aj , λ̃j>.(Ej ‖S

∑
i∈I2

<ai, λ̃i>.Ei) +
∑

j∈J2

<aj , λ̃j>.(
∑

i∈I1

<ai, λ̃i>.Ei ‖S Ej) +
∑

k∈K1

∑
h∈Hk

<ak,Split(λ̃k, 1/nk)>.(Ek ‖S Eh) +
∑

k∈K2

∑
h∈Hk

<ak,Split(λ̃k, 1/nk)>.(Eh ‖S Ek)

where J1 = {i ∈ I1 | ai /∈ S}
J2 = {i ∈ I2 | ai /∈ S}
K1 = {k ∈ I1 | ∃h ∈ I2. ah = ak ∈ S ∧ λ̃h = ∗}
K2 = {k ∈ I2 | ∃h ∈ I1. ah = ak ∈ S ∧ λ̃h = ∗}
Hk =

{ {h ∈ I2 | ah = ak ∧ λ̃h = ∗} if k ∈ K1

{h ∈ I1 | ah = ak ∧ λ̃h = ∗} if k ∈ K2

nk = |Hk|

Table 2: Axioms for ∼EMB

8

After starting transmission, the station continues to listen to the channel until it has finished (“listen while
talk”): if a collision is detected, the station ceases transmitting its message, transmits a short signal in order
to let all stations know there has been a collision, and backs off a random amount of time before attempting
to transmit again. In case of collision, messages are lost.

Now we compositionally model the protocol CSMA/CD by means of EMPA. First of all, we recognize
that we are dealing with n + 1 entities we denote by Stationi, 1 ≤ i ≤ n, and Channel , respectively. As a
consequence, the protocol can be described as follows:

CSMA/CD ∆= (Station1 ‖R . . . ‖R Stationn) ‖S Channel
S = {sense-idlei, sense-busy i, trans-msg i, prop-msg i | 1 ≤ i ≤ n} ∪R
R = {signal-coll}

where sense-idlei (sense-busy i) is the action type describing the fact that Channel is sensed idle (busy) by
Stationi, trans-msg i (prop-msg i) is the action type describing transmission (propagation) of a message sent
by Stationi, and signal-coll is the action type describing the propagation of a message indicating that there
has been a collision.

By exploiting compositionality, we can focus our attention on each of the involved entities separately. Let
us consider Stationi, 1 ≤ i ≤ n. We assume that upper levels generate messages (gen-msg i) that Stationi

has to send in such a way that they form a Poisson stream with rate λi. After receiving a message to be sent,
Stationi listens to the channel. If the channel is sensed idle (sense-idlei) then the message is transmitted
(trans-msg i), otherwise (sense-busy i) Stationi backs off a random amount of time (back-off i) and then listens
to the channel again. After transmitting the message, it propagates along the channel (prop-msg i) possibly
colliding with other messages (signal-coll). Stationi can be modeled as follows:

Stationi
∆= <gen-msg i, λi>.Stationi,sense + <signal-coll , ∗>.Stationi

Stationi,sense
∆= <sense-idlei,∞1,1>.<trans-msg i,∞1,1>.Stationi,prop +

<sense-busy i,∞1,1>.Stationi,backoff + <signal-coll , ∗>.Stationi,sense

Stationi,prop
∆= <prop-msg i, µi>.Stationi + <signal-coll , ∗>.Stationi,backoff

Stationi,backoff
∆= <back-off i, γi>.Stationi,sense + <signal-coll , ∗>.Stationi,backoff

Note that sense-idlei and sense-busy i have been modeled as immediate actions because they are irrelevant
from the performance point of view. Also trans-msg i has been modeled as an immediate action: actually, it
only describes the beginning of the transmission, as the duration of the whole operation has been attached to
prop-msg i (we assume that the length of messages sent by Stationi is exponentially distributed with rate µi).
Furthermore, the random amount of time during which Stationi backs off has been described by means of
an exponentially distributed random variable with rate γi. Finally, we observe that action <signal-coll , ∗>
is enabled also in any state other than Stationi,prop : this is due to the fact that collisions are signaled also
to stations that are not transmitting.

Let us consider now Channel . It can be viewed as being composed of a bidirectional error-free com-
munication line and n sensors, one for each station, reporting the status of the communication line. As a
consequence, Channel can be modeled as follows:

Channel ∆= (Sensor1 ‖∅ . . . ‖∅ Sensorn) ‖T Line
T = {set-busy i, set-idlei | 1 ≤ i ≤ n}

where set-busy i (set-idlei) is the action type describing the fact that Sensor i must be set in such a way that
Stationi senses Channel to be busy (idle). The rationale behind the introduction of Sensor i, 1 ≤ i ≤ n, is
that they should simulate the presence or the absence of a message propagating along the medium. Every
component Sensor i, 1 ≤ i ≤ n, can be described as follows:

Sensor i
∆= <sense-idlei, ∗>.Sensor i + <set-busy i, ∗>.Sensor i,busy

Sensor i,busy
∆= <sense-busy i, ∗>.Sensor i,busy + <set-idlei, ∗>.Sensor i

Concerning Line, it waits for the beginning of the transmission of a message (trans-msg i). If we denote
by 1/σ the propagation delay between the two farthest stations in the network, then a collision can occur
only within 1/σ time units from the beginning of the transmission (after 1/σ time units all the stations will
sense the channel busy). Thus, if no collisions occur within 1/σ time units (elapse-pd) then the message

9

is successfully propagated (prop-msg i), otherwise (trans-msgj for j 6= i) a collision is detected (signal-coll).
Line can then be represented as follows:

Line ∆=
n∑

i=1

<trans-msg i, ∗>.Linei,trans

Linei,trans
∆= <elapse-pd , σ>.Linei,success +

n∑
j=1,j 6=i

<trans-msgj , ∗>.Linei,collision

Linei,success
∆= <set-busy1,∞2,1>.<set-busyn,∞2,1>.<prop-msg i, ∗>.

<set-idle1,∞2,1>.<set-idlen,∞2,1>.Line
Linei,collision

∆= <set-busy1,∞2,1>.<set-busyn,∞2,1>.<elapse-pd i, σ>.<signal-coll , σ>.
<set-idle1,∞2,1>.<set-idlen,∞2,1>.Line

Observe that the maximum propagation delay 1/σ of a signal has been modeled by means of an exponentially
distributed random variable with rate σ though the value of such a delay is fixed: the point is that this
approximation can be made as accurate as we desire by means of a sequence of exponentially timed actions
with the appropriate rates (the price to pay, as we can expect, is a state space growth). In case of success,
the message is completely transmitted and propagates along the medium: due to the memoryless property
of exponential distributions, the distribution of the time to completion of the operation above (described by
<prop-msg i, ∗> in Linei,success) is not affected by the fact that the maximum propagation delay has already
elapsed. In case of collision, the worst case happens when one of the two farthest stations in the network is
transmitting and the other starts transmitting just before the maximum propagation delay 1/σ has elapsed:
this is the reason for action <elapse-pd i, σ> in Linei,collision (the remark about the memoryless property
of exponential distributions applies to this case as well). Finally it is worth noting the use of priorities for
actions set-busy i and set-idlei, 1 ≤ i ≤ n: since their priority level is two, they cannot be preempted by
any other action, thereby making Sensor i, 1 ≤ i ≤ n, work as expected. Actually, the introduction of n
components Sensor i might seem cumbersome. However, they constitute the means whereby to obtain a more
accurate description of the protocol. As it turns out, Sensor i should be set immediately after the passage
of the leading part of the message (1/σ is only an upper bound): to do this, we should know the topology
of the network as well as the maximum propagation delays between any pair of consecutive stations.

Other algebraic specifications of CSMA/CD have appeared in the literature. For example, in [21] an
untimed description based on CCS is given, while in [20] a real time description based on ATP is presented.
Our specification is similar to the one in [20] in the sense that they both take into account time. However,
in [20] time is described in a deterministic way and special operators such as timeouts and watchdogs are
used, the focus being on timing constraints. Instead, in our framework time is modeled in a stochastic way
by means of actions which integrate functional and performance aspects, and there is no need for auxiliary
operators due to the adoption of the race policy. From the analysis standpoint, we are more interested in
measuring performance indices rather than verifying timing constraints. For example, we can compute the
utilization of the medium, which is very sensitive to the duration of the backoff period and the maximum
propagation delay: the values of these two parameters are essential in order to reduce the amount of wasted
bandwidth due to idle periods and collisions. To compute the utilization of the medium, we can resort to the
technique of rewards [15] according to the algebraic method proposed in [1]: every action becomes a triple
where the third element is the reward gained by any state that can execute the action, every action is given
reward zero except action <prop-msg i, µi> which is given reward one, and finally the channel utilization
is computed as the weighted sum (rewards being weights) of the steady state probabilities of the states of
M[[CSMA/CD]].

4 Assessing the performability of a queueing system

The performance of computing and communicating systems is often degradable because internal or external
faults can reduce the quality of the delivered service even though that service remains proper according to
its specification. It is therefore important to manage to measure their ability to perform, or performability,
at different accomplishment levels specifying the extent to which a system is faulty, i.e. which resources are

10

faulty and, among them, which ones have failed, which ones are being recovered, and which ones contain
latent faults [18].

From the modeling point of view, we would like to be able to describe both performance and dependability
within a single model. On the other hand, this results in problems from the analysis standpoint such as
largeness, caused by the presence of several resources working in parallel possibly at different operational
levels, and stiffness, originated from the large difference of performance related event rates and rare failure
related event rates implying numerical instability. As recognized in [26], this leads to a natural hierarchy of
models: a higher level dependability model and a set of as many lower level performance models as there
are states in the higher level model. This stems from the fact that the rate of occurrence of failure and
repair events is smaller than the rate of occurrence of performance related events, hence the system achieves
a quasi steady state with respect to the performance related events between successive occurrences of failure
or repair events. This means that the system can be characterized by weighting these quasi steady state
performance measures by the probabilities of the corresponding states of the higher level model.

In this section we show that these two seemingly conflicting requirements can be met by means of EMPA
through suitable algebraic manipulations. The system we consider is a queueing system M/M/n/q [16] with
arrival rate λ, service rates µi (1 ≤ i ≤ n), failure rates φi (1 ≤ i ≤ n), and repair rates ρi (1 ≤ i ≤ n).
This system is composed of an arrival process, an initially empty queue with q − n seats, and a set of n
independent servers:

SystemM/M/n/q
∆= Arrivals ‖a(Queue0 ‖D Serversn)

D = {di | 1 ≤ i ≤ n}
where a stands for arrival of a customer whereas di stands for the delivery of a customer from the queue to
the i-th server. The arrival stream constitutes a Poisson process with rate λ:

Arrivals ∆= <a, λ>.Arrivals

The queue can be easily modeled as follows:
Queue0

∆= <a, ∗>.Queue1

Queueh
∆= <a, ∗>.Queueh+1 +

n∑
i=1

<di, ∗>.Queueh−1, 1 ≤ h ≤ q − n− 1

Queueq−n
∆=

n∑
i=1

<di, ∗>.Queueq−n−1

Finally we describe the set of servers as follows:
Serversn

∆= S1 ‖∅ S2 ‖∅ . . . ‖∅ Sn

Si
∆= <di,∞1,1>.S′i, 1 ≤ i ≤ n

S′i
∆= <si, µi>.Si + <fi, φi>.<ri, ρi>.S′i, 1 ≤ i ≤ n

where si stands for service, fi stands for failure and ri stands for repair.
Now, since the monolithic model above causes largeness and stiffness problems during its analysis, we

algebraically manipulate it so as to build the hierarchy of models which should facilitate the analysis. Firstly
we recognize that the higher level dependability model, i.e the failure-repair model, can be represented as
follows:

FR ∆= FR1 ‖∅ FR2 ‖∅ . . . ‖∅ FRn

FRi
∆= <fi, φi>.<ri, ρi>.FRi, 1 ≤ i ≤ n

and can be efficiently studied since it trivially admits a product form solution. Each state of FR determines
the set I of operational servers and the set J of failed servers (I ∪ J = {1, . . . , n}, I ∩ J = ∅), so that the
corresponding lower level performance model is given by

SystemM/M/n/q,I,J
∆= System ′

M/M/n/q ‖DJ∪FI
0

DJ = {di | i ∈ J}
FI = {fi | i ∈ I}

where System ′
M/M/n/q is obtained from SystemM/M/n/q by substituting ∗ for the rates of actions whose type

is fi or ri (1 ≤ i ≤ n). The effect of the synchronization with 0 is that only operational servers can receive
customers (DJ) and these servers cannot fail (FI). It is easily seen that SystemM/M/n/q,I,J is equivalent

11

via ∼EMB to a queueing system M/M/|I|/q with neither failures nor repairs, hence the manipulation above
preserves the properties of the system under study.

We conclude by oberving that again we can resort to the algebraic reward based method proposed in [1]
to specify and derive performance measures. For example, for every state of the higher level model we can
compute the throughput of the corresponding lower level performance model by assigning reward µi to every
action <si, µi>. The overall throughput is obtained as a weighted sum of the previously computed values
where the (product form) steady state probabilities of the states of the higher level model are used as weights.

Acknowledgements

We are grateful to Lorenzo Donatiello for the valuable discussions about the second example. This research has been

partially funded by MURST and CNR.

References

[1] M. Bernardo, “An Algebra-Based Method to Associate Rewards with EMPA Terms”, to appear in Proc. of
ICALP ’97, Bologna (Italy), 1997

[2] M. Bernardo, L. Donatiello, R. Gorrieri, “Integrating Performance and Functional Analysis of Concurrent
Systems with EMPA”, Technical Report UBLCS-95-14, University of Bologna (Italy), 1995

[3] M. Bernardo, R. Gorrieri, “A Tutorial on EMPA: A Theory of Concurrent Processes with Nondeterminism,
Priorities, Probabilities and Time”, to appear in Theoretical Computer Science, 1997

[4] G. V. Bochmann, J. Vaucher, “Adding Performance Aspects to Specification Languages”, in Proc. of PSTV
VIII, North Holland, pp. 19-31, Atlantic City (NJ), 1988

[5] E. Brinksma, J.-P. Katoen, R. Langerak, D. Latella, “A Stochastic Causality-Based Process Algebra”, in
Computer Journal 38:553-565, 1995

[6] P. Buchholz, “Markovian Process Algebra: Composition and Equivalence”, in Proc. of PAPM ’94, pp. 11-30,
Erlangen (Germany), 1994

[7] D. Ferrari, “Considerations on the Insularity of Performance Evaluation”, in IEEE Trans. on Software Engi-
neering 12:678-683, 1986

[8] N. Götz, U. Herzog, M. Rettelbach, “Multiprocessor and Distributed System Design: the Integration of Func-
tional Specification and Performance Analysis Using Stochastic Process Algebras”, in Proc. of PERFOR-
MANCE ’93, LNCS 729:121-146, Rome (Italy), 1993

[9] H. Hermanns, M. Rettelbach, “Syntax, Semantics, Equivalences, and Axioms for MTIPP”, in Proc. of PAPM
’94, pp. 71-87, Erlangen (Germany), 1994

[10] H. Hermanns, M. Rettelbach, T. Weiß, “Formal Characterisation of Immediate Actions in SPA with Nonde-
terministic Branching”, in Computer Journal 38:530-541, 1995

[11] P. Harrison, J. Hillston, “Exploiting Quasi-Reversible Structures in Markovian Process Algebra Models”, in
Computer Journal 38:510-520, 1995

[12] C. Harvey, “Performance Engineering as an Integral Part of System Design”, in BT Technology Journal 4:143-
147, 1986

[13] J. Hillston, “A Compositional Approach to Performance Modelling”, Cambridge University Press, 1996

[14] C.A.R. Hoare, “Communicating Sequential Processes”, Prentice Hall, 1985

[15] R.A. Howard, “Dynamic Probabilistic Systems”, John Wiley & Sons, 1971

[16] L. Kleinrock, “Queueing Systems”, John Wiley & Sons, 1975

[17] K.G. Larsen, A. Skou, “Bisimulation through Probabilistic Testing”, in Information and Computation 94:1-28,
1991

[18] J.F. Meyer, “Performability: A Retrospective and some Pointers to the Future”, in Performance Evalua-
tion 14:139-156, 1992

[19] R. Milner, “Communication and Concurrency”, Prentice Hall, 1989

12

[20] X. Nicollin, J. Sifakis, S. Yovine, “Compiling Real-Time Specifications into Extended Automata”, in IEEE
Trans. on Software Engineering 18:794-804, 1992

[21] J. Parrow, “Verifying a CSMA/CD Protocol with CCS”, in Proc. of PSTV VIII, North Holland, pp. 373-384,
Atlantic City (NJ), 1988

[22] C. Priami, “Stochastic π-Calculus”, in Computer Journal 38:578-589, 1995

[23] M. Rettelbach, “Probabilistic Branching in Markovian Process Algebras”, in Computer Journal 38:590-599,
1995

[24] M. Sereno, “Towards a Product Form Solution for Stochastic Process Algebras”, in Computer Journal 38:622-
632, 1995

[25] W. Stallings, “Local Networks: An Introduction”, Macmillan, 1984

[26] K.S. Trivedi, J.K. Muppala, S.P. Woolet, B.R. Haverkort, “Composite Performance and Dependability Analy-
sis”, in Performance Evaluation 14:197-215, 1992

[27] Y. Yemini, J. Kurose, “Towards the Unification of the Functional and Performance Analysis of Protocols, or
Is the Alternating-Bit Protocol Really Correct?”, in Proc. of PSTV II, 1982

13

