
Causal Reversibility for Timed Process Calculi
with Lazy/Eager Durationless Actions

and Time Additivity

Marco Bernardo and Claudio A. Mezzina

Dipartimento di Scienze Pure e Applicate, Università di Urbino, Urbino, Italy

Abstract. A reversible computing system features backward computa-
tions along which the effects of forward ones are undone when needed.
This is accomplished by reverting executed actions from the last one.
Since the last performed action may not be uniquely identifiable in a
concurrent system, causal reversibility is considered: an executed action
can be undone provided that all of its consequences have been undone
already. We investigate causal reversibility in a timed setting by defining
a reversible calculus in the style of Phillips and Ulidowski in which action
execution is separated from time passing, actions can be lazy or eager,
and time is described via numeric delays subject to time additivity. We
show that the calculus meets causal reversibility through an adaptation
of the technique of Lanese, Phillips, and Ulidowski that ensures a proper
treatment of action laziness/eagerness as well as time-additive delays.

1 Introduction

In the 60’s it was observed that irreversible computations cause heat dissipa-
tion into circuits because any logically irreversible manipulation of information,
such as bit erasure or computation path merging, must be accompanied by a
corresponding entropy increase [21,3]. Therefore, any logically reversible com-
putation, in which no information is canceled, may be potentially carried out
without releasing any heat, as verified in [7] and given a physical foundation
in [15]. This suggested that low energy consumption could be achieved by re-
sorting to reversible computing, in which there is no information loss because
computation can go not only forward, but also backward by undoing the ef-
fects of the forward direction when needed. Nowadays, reversible computing
has several applications such as biochemical reaction modeling [33,34], parallel
discrete-event simulation [31,37], robotics [26], control theory [38], fault-tolerant
systems [13,40,22,39], and concurrent program debugging [16,24].

Reversibility in a computing system has to do with the possibility of reverting
the last performed action. In a sequential computing system this is very simple
because at each step only one action is executed, hence the only challenge is
how to store the information needed to reverse that action. As far as concurrent
and distributed systems are concerned, a critical aspect of reversibility is that
there may not be a total order over executed actions, hence the last performed

2 M. Bernardo and C.A. Mezzina

action may not be uniquely indentifiable. This led to the introduction of the
notion of causal reversibility [12], according to which a previously executed action
can be undone provided that all of its consequences, if any, have been undone
beforehand. It is worth noting that the concept of causality is used in place of
the concept of time to decide whether an action can be undone or not.

In a pure nondeterministic process algebraic setting, two distinct approaches
have been developed to deal with causal reversibility. The dynamic approach
of [12,20], which is adequate for very expressive calculi and programming lan-
guages, attaches external stack-based memories to process terms so as to record
all the executed actions. In contrast, the static approach of [32], which is con-
venient for handling labeled transition systems and basic process calculi, makes
all process algebraic operators static – in particular action prefix and choice – so
that they are kept within the derivative process term of any transition. The two
approaches have been shown to be equivalent in terms of labeled transition sys-
tem isomorphism [23] and the common properties they exploit to ensure causal
reversibility have been systematically studied in [25].

When timed systems are considered, other notions of reversibility may come
into play. This is the case with time reversibility for stochastic processes like
continuous-time Markov chains [19]. It ensures that the stochastic behavior of a
shared-resource computing system remains the same when the direction of time
is reversed and is instrumental to develop performance evaluation methods that
cope with state space explosion and numerical stability problems. In [5] causal
reversibility and time reversibility have been jointly investigated in the setting
of a Markovian process calculus defined according to the static approach of [32],
where every action is extended with a positive real number quantifying the rate
of the corresponding exponentially distributed random duration.

In this paper we address the reversibility of real-time computing systems.
Unlike [5], time flows deterministically, instead of stochastically, and is described
orthogonally to actions, i.e., through a specific delay prefix operator, instead of
being integrated within actions. In the rich literature of deterministically timed
process calculi – timed CSP [36], temporal CCS [29], timed CCS [41], real-
time ACP [2], urgent LOTOS [9], CIPA [1], TPL [17], ATP [30], TIC [35], and
PAFAS [11] – the differences are due to the following time-related options:

– Durationless actions versus durational actions. In the first case, actions are
instantaneous events and time passes in between them; hence, functional
behavior and time are orthogonal. In the second case, every action takes a
certain amount of time to be performed and time passes only due to action
execution; hence, functional behavior and time are integrated.

– Relative time versus absolute time. Assume that timestamps are associated
with the events observed during system execution. In the first case, each
timestamp refers to the time instant of the previous observation. In the
second case, all timestamps refer to the starting time of the system execution.

– Global clock versus local clocks. In the first case, a single clock governs time
passing. In the second case, several clocks associated with the various system
parts elapse independently, although defining a unique notion of global time.

Causal Reversibility for Timed Process Calculi 3

In addition, there are several different interpretations of action execution in
terms of whether and when the execution can be delayed:

– Eagerness: actions must be performed as soon as they become enabled, i.e.,
without any delay, thereby implying that their execution is urgent.

– Laziness: after getting enabled, actions can be delayed arbitrarily long before
they are executed.

– Maximal progress: enabled actions can be delayed unless they are indepen-
dent of the external environment, in which case their execution is urgent.

The two major combinations of the aforementioned options yield the two-
phase functioning principle, according to which actions are durationless, time
is relative, and there is a single global clock, and the one-phase functioning
principle, according to which actions are durational, time is absolute, and several
local clocks are present. In [10] the two principles have been investigated under
the various action execution interpretations through a bisimilarity-preserving
encoding from the latter principle to the former, whilst the inverse encoding was
provided in [4] along with a pair of encodings for the case of stochastic delays.

In this paper we focus on the two-phase functioning principle, yielding ac-
tion transitions separated from delay transitions like in temporal CCS [29], and
develop a reversible timed process calculus with lazy/eager actions, whose syn-
tax and semantics adhere to the static approach of [32]. Then we show that the
calculus is causally reversible through notions of [12] and the technique of [25].
The following adaptations turn out to be necessary with respect to [32,12,25]:

– Similar to executed actions, which are decorated with communication keys
so as to remember who synchronized with whom when going backward [32],
elapsed delays have to be decorated with keys to ensure that all subprocesses
of an alternative or parallel composition go back in time in a well-paired way,
as time cannot solve choices or decide which parallel process advances [29].

– The necessary condition for reversibility known as loop property [12,32,25],
which establishes the presence of both a forward transition and a backward
transition with the same label between any pair of connected states, has to
deal with delay transitions too, in a way consistent with time additivity [29].

– Conflicting transitions, from which concurrent transitions [12] are then de-
rived, and causal equivalence [12], which is needed to identify computations
differing for the order of concurrent action transitions, have to be extended
with additional conditions specific to delay transitions.

– Backward transitions independence, one of the properties studied in [25] to
ensure causal reversibility, has to be paired with a novel property, which we
have called backward triangularity, due to time additivity [29]. Furthermore,
the semantic rules implementing laziness and maximal progress have to be
carefully designed to guarantee the parabolic lemma [12,25].

This paper is organized as follows. In Section 2 we present the syntax and
the semantics of our reversible timed process calculus. In Section 3 we prove
that the calculus satisfies causal reversibility and illustrate some examples. In
Section 4 we conclude with final remarks and directions for future work.

4 M. Bernardo and C.A. Mezzina

P,Q ::= 0 | a . P | (n) . P | P +Q | P ‖LQ
R,S ::= P | a[i] . R | (n)[i]. R | R+ S | R ‖L S

Table 1. Syntax of forward processes (top) and reversible processes (bottom)

2 Reversible Timed Process Calculus: Actions vs. Delays

In this section we present the syntax and the semantics of RTPC – Reversible
Timed Process Calculus, which are inspired by temporal CCS [29] and tailored
for a reversible setting according to the static approach of [32].

Given a countable set A of actions – ranged over by a, b – including an
invisible or silent action denoted by τ , the syntax of RTPC is shown in Table 1.
A standard forward process P is one of the following: the terminated process 0;
the action-prefixed process a . P , which is able to perform an action a and then
continues as process P ; the delay-prefixed process (n) . P , which lets n ∈ N>0

time units pass and then continues as process P ; the nondeterministic choice
P + Q; or the parallel composition P ‖LQ, indicating that processes P and Q
execute in parallel and must synchronize only on actions in L ⊆ A \ {τ}.

We assume time determinism [29], i.e., time passing cannot solve choices or
decide which parallel process advances, hence the same amount of time must
pass in all subprocesses of a nondeterministic choice or parallel composition.
Under eagerness, the execution of all actions is urgent and 0 cannot let time
pass. Under laziness, action execution can be delayed arbitrarily long and 0 lets
time pass. Under maximal progress, only the execution of τ is urgent, because
τ cannot be involved in synchronizations, and 0 lets time pass.

A reversible process R is built on top of forward processes. The syntax of re-
versible processes differs from the one of forward processes due to the fact that,
in the former, action and delay prefixes are decorated. As in [32], each action
prefix is decorated with a communication key i belonging to a countable set K.
A process of the form a[i] . R expresses that in the past the process synchronized
with the environment on a and this synchronization was identified by key i. Keys
are thus attached only to executed actions and are necessary to remember who
synchronized with whom when undoing actions; keys could be omitted in the ab-
sence of parallel composition. Similarly, (n)[i]. R means that n time units elapsed
in the past. Here communication keys are needed to ensure time determinism
in the backward direction, so that all subprocesses go back in time in the same
way; keys could be omitted in the absence of choice and parallel composition.

We denote by P the set of processes generated by the production for R in
Table 1, while we use predicate std() to identify the standard forward processes
that can be derived from the production for P in the same table. For example,
a . (5) . b . 0 is a standard forward process that can perform action a, let 5 time
units pass, and then execute b, while a[i] . (5)[j]. b . 0 is a non-standard reversible
process that can either go back by 5 time units and undo action a, or perform
action b. Note that a . (5)[j]. b . 0 and a . (5) . b[j] . 0 are not in P because a future
action or delay cannot precede a past one in the description of a process.

Causal Reversibility for Timed Process Calculi 5

(Act1)
std(R)

a .R
a[i]−−→a a[i] . R

(Act1•)
std(R)

a[i] . R
a[i]
999Ka a .R

(Act2)
R

b[j]−−→a R
′ j 6= i

a[i] . R
b[j]−−→a a[i] . R′

(Act2•)
R

b[j]
999Ka R

′ j 6= i

a[i] . R
b[j]
999Ka a[i] . R′

(Act3)
R

b[j]−−→a R
′

δ(n, i) . R
b[j]−−→a δ(n, i) . R

′
(Act3•)

R
b[j]
999Ka R

′

δ(n, i) . R
b[j]
999Ka δ(n, i) . R

′

(Cho)
R

a[i]−−→a R
′

npa(S)

R+ S
a[i]−−→a R

′ + S

(Cho•)
R

a[i]
999Ka R

′
npa(S)

R+ S
a[i]
999Ka R

′ + S

(Par)
R

a[i]−−→a R
′ a /∈ L i /∈ keysa(S)

R ‖L S
a[i]−−→a R

′ ‖L S
(Par•)

R
a[i]
999Ka R

′ a /∈ L i /∈ keysa(S)

R ‖L S
a[i]
999Ka R

′ ‖L S

(Coo)
R

a[i]−−→a R
′ S

a[i]−−→a S
′ a ∈ L

R ‖L S
a[i]−−→a R

′ ‖L S′
(Coo•)

R
a[i]
999Ka R

′ S
a[i]
999Ka S

′ a ∈ L

R ‖L S
a[i]
999Ka R

′ ‖L S′

Table 2. Structural operational semantic rules for RTPC action transitions

Let AK = A×K and NK = N>0 × K, with L = AK ∪ NK ranged over by `.
Let δ(n, i) denote (n)[i] or 〈ni〉, with the use of the latter being explained later
and terms of the form 〈ni〉 . R being added to the syntax thus yielding P ′. The

semantics for RTPC is the labeled transition system (P ′,L, 7−→). The transition

relation 7−→ ⊆ P ′×L×P ′ is given by 7−→ = −→ ∪ 99K where in turn the forward
transition relation is given by −→ = −→a ∪ −→d and the backward transition
relation is given by 99K = 99K a ∪ 99K d . In the definitions of the transition
relations, we make use of the set keysa(R) of action keys in a process R ∈ P ′:

keysa(P) = ∅
keysa(a[i] . R) = {i} ∪ keysa(R)

keysa(δ(n, i) . R) = keysa(R)
keysa(R+ S) = keysa(R) ∪ keysa(S)
keysa(R ‖L S) = keysa(R) ∪ keysa(S)

as well as of predicate npa() to establish whether the considered process R ∈ P ′
contains no past actions (note that std(R) ensures npa(R)):

npa(P) = true

npa(a[i] . R) = false

npa(δ(n, i) . R) = npa(R)
npa(R+ S) = npa(R) ∧ npa(S)
npa(R ‖L S) = npa(R) ∧ npa(S)

The action transition relations −→a ⊆ P ′×AK×P ′ and 99Ka ⊆ P ′×AK×P ′
are the least relations respectively induced by the forward rules in the left part
of Table 2 and by the backward rules in the right part of the same table.

6 M. Bernardo and C.A. Mezzina

Rule Act1 handles processes of the form a . P , where P is written as R
subject to std(R). In addition to transforming the action prefix into a transition
label, it generates a key i that is bound to the action a thus yielding the label a[i].
As can be noted, according to [32] the prefix is not discarded by the application
of the rule, instead it becomes a key-storing part of the target process that is
necessary to offer again that action after coming back. Rule Act1• reverts the
action a[i] of the process a[i] . R provided that R is a standard process, which
ensures that a[i] is the only past action that is left to undo.

The presence of rules Act2 and Act2• is motivated by the fact that rule
Act1 does not discard the executed prefix from the process it generates. In
particular, rule Act2 allows a process a[i] . R to execute if R itself can execute,
provided that the action performed by R picks a key j different from i so that all
the action prefixes in a sequence are decorated with distinct keys. Rule Act2•

simply propagates the execution of backward actions from inner subprocesses
that are not standard as long as key uniqueness is preserved, in such a way that
past actions are overall undone from the most recent one to the least recent one.
Rules Act3 and Act3• play an analogous propagating role in a delay context;
executed actions and elapsed delays are not required to feature different keys.

Unlike the classical rules for nondeterministic choice [28], according to [32]
rule Cho does not discard the part of the overall process that has not contributed
to the executed action. If process R does an action, say a[i], and becomes R′,
then the entire process R + S becomes R′ + S as the information about +S is
necessary for offering again the original choice after coming back. Once the choice
is made, only the non-standard process R′ can proceed further, with process S
– which is standard or contains past delays – constituting a dead context of R′.
Note that, in order to apply rule Cho, at least one of R and S must contain
no past actions, meaning that it is impossible for two processes containing past
actions to execute if they are composed by a choice operator. Rule Cho• has
precisely the same structure as rule Cho, but deals with the backward transition
relation; if R′ is standard, then the dead context S will come into play again.
The symmetric variants of Cho and Cho•, in which it is S to move, are omitted.

The semantics of parallel composition is inspired by [18]. Rule Par allows
process R within R ‖L S to individually perform an action a[i] provided a /∈ L.
It is also checked that the executing action is bound to a fresh key i /∈ keysa(S),
thus ensuring the uniqueness of communication keys across parallel composition
too. Rule Coo instead allows both R and S to move by synchronizing on any
action in the set L as long as the communication key is the same on both sides,
i.e., i ∈ keysa(R

′) ∩ keysa(S
′). The resulting cooperation action has the same

name and the same key. Rules Par• and Coo• respectively have the same struc-
ture as Par and Coo. The symmetric variants of Par and Par• are omitted.

To illustrate the need of communication keys, consider for instance the stan-
dard forward process (a . P1 ‖∅ a . P2) ‖{a}(a . P3 ‖∅ a . P4), which may evolve to
(a[i] . P1 ‖∅ a[j] . P2) ‖{a}(a[i] . P3 ‖∅ a[j] . P4) after doing a forward a[i]-transition
followed by a forward a[j]-transition. When going backward, in the absence of
communication keys i and j we could not know that the a preceding P1 (resp. P2)
synchronized with the a preceding P3 (resp. P4).

Causal Reversibility for Timed Process Calculi 7

(Idling1) 0
(n)[i]−−−−→d 〈ni〉 . 0 (Idling1•) 〈ni〉 . 0

(n)[i]

99999Kd 0

(Idling2)
std(R)

a .R
(n)[i]−−−−→d 〈ni〉 . a . R

(Idling2•)
std(R)

〈ni〉 . a . R
(n)[i]

99999Kd a .R

(Idling3)
std(R) a 6= τ

a .R
(n)[i]−−−−→d 〈ni〉 . a . R

(Idling3•)
std(R) a 6= τ

〈ni〉 . a . R
(n)[i]

99999Kd a .R

(Delay1)
std(R)

(n) . R
(n)[i]−−−−→d (n)[i]. R

(Delay1•)
std(R)

(n)[i]. R
(n)[i]

99999Kd (n) . R

(Delay2)
R

(n)[j]−−−−→d R
′

a[i] . R
(n)[j]−−−−→d a[i] . R′

(Delay2•)
R

(n)[j]

99999Kd R
′

a[i] . R
(n)[j]

99999Kd a[i] . R′

(Delay3)
R

(m)[j]−−−−→d R
′ j 6= i

δ(n, i) . R
(m)[j]−−−−→d δ(n, i) . R

′
(Delay3•)

R
(m)[j]

99999Kd R
′ j 6= i

δ(n, i) . R
(m)[j]

99999Kd δ(n, i) . R
′

(TAdd1)
R

(m)[j]−−−−→d R
′

std(R) j 6= i

(n) . R
(n+m)[i]−−−−−−→d (n)[i]. R′

(TAdd1•)
R

(m)[j]

99999Kd R
′

std(R′) j 6= i

(n)[i]. R
(n+m)[i]

9999999Kd (n) . R′

(TAdd2)
std(R) n = n1 + n2

(n) . R
(n1)

[i]

−−−−→d (n1)[i]. (n2) . R

(TAdd2•)
std(R) n = n1 + n2

(n1)[i]. (n2) . R
(n1)

[i]

999999Kd (n) . R

(TCho1)

R
(n)[i]−−−−→d R

′ S
(n)[i]−−−−→d S

′

npa(R+ S)

R+ S
(n)[i]−−−−→d R

′ + S′
(TCho1•)

R
(n)[i]

99999Kd R
′ S

(n)[i]

99999Kd S
′

npa(R+ S)

R+ S
(n)[i]

99999Kd R
′ + S′

(TCho2)

R
(n)[i]−−−−→d R

′

¬npa(R) npa(S)

R+ S
(n)[i]−−−−→d R

′ + S

(TCho2•)

R
(n)[i]

99999Kd R
′

¬npa(R) npa(S)

R+ S
(n)[i]

99999Kd R
′ + S

(TCoo)
R

(n)[i]−−−−→d R
′ S

(n)[i]−−−−→d S
′

R ‖L S
(n)[i]−−−−→d R

′ ‖L S′
(TCoo•)

R
(n)[i]

99999Kd R
′ S

(n)[i]

99999Kd S
′

R ‖L S
(n)[i]

99999Kd R
′ ‖L S′

Table 3. Structural operational semantic rules for RTPC delay transitions

8 M. Bernardo and C.A. Mezzina

The delay transition relations −→d ⊆ P ′×NK×P ′ and 99Kd ⊆ P ′×NK×P ′
are the least relations respectively induced by the forward rules in the left part
of Table 3 and by the backward rules in the right part of the same table.

Rules Idling1 and Idling2 encode laziness: 0 can let time pass and ev-
ery action can be delayed arbitrarily long. Rules Idling1 and Idling3 encode
maximal progress: 0 can let time pass and every action other than τ can be
delayed arbitrarily long. Rules Idling1•, Idling2•, and Idling3• play the cor-
responding roles in the backward direction; all the six rules are dropped under
eagerness. Note that the three forward rules introduce a dynamic delay prefix
〈ni〉 in the target process, which is then removed from the source process by the
three backward rules. The need for 〈ni〉 will be illustrated in Example 1.

The pairs of rules Delay1 and Delay1•, Delay2 and Delay2•, and
Delay3 and Delay3• are respectively the delay counterparts of the pairs of
rules Act1 and Act1•, Act2 and Act2•, and Act3 and Act3•. We remind
that executed actions and elapsed delays are allowed to share the same keys.

Rules TAdd1 and TAdd2 encode time additivity [29], i.e., several consecu-
tive delays can jointly elapse as a single delay and, on the other hand, a single
delay can be split into several shorter delays that elapse consecutively. Rules
TAdd1• and TAdd2• play the corresponding roles in the backward direction.

Rules TCho1 and TCoo encode time determinism. Time advances in the
same way in the two subprocesses of a choice or a parallel composition, without
making any decision. Rule TCho2 is necessary for dealing with the case in which
the nondeterministic choice has already been resolved due to the execution of an
action by R. Rules TCho1•, TCoo•, and TCho2• play the corresponding roles
in the backward direction. The symmetric variants of TCho2 and TCho2•, in
which it is S to move, are omitted.

To illustrate the need of communication keys also for delays, consider the
standard forward process (n) . 0 ‖∅(n) . 0, which may evolve to (n)[i]. 0 ‖∅(n)[i]. 0
after that delay n has elapsed. When going backward under laziness or maximal
progress, in the absence of key i it may happen that 0 in either subprocess lets
n time units pass backward – due to Idling1• – with this pairing with undoing
delay n in the other subprocess – due to Delay1• – which results in a process
where one delay n can elapse forward again whereas the other one cannot. The
presence of keys forces the idling of either 0 to synchronize with the idling of the
other 0. The same situation would take place with + in lieu of ‖∅. In contrast,
the problem does not show up under eagerness. In that case, elapsed delays can
be uniformly decorated, for example with † like in [5].

Process syntax prevents future actions or delays from preceding past ones.
However, this is not the only necessary limitation, because not all the processes
generated by the considered grammar are semantically meaningful. On the one
hand, in the case of a choice at least one of the two subprocesses has to contain
no past actions, hence for instance a[i] . 0+b[j] . 0 is not admissible as it indicates
that both branches have been selected. On the other hand, key uniqueness must
be enforced within processes containing past actions, so for example a[i] . b[i] . 0
and a[i] . 0 ‖∅ b[i] . 0 are not admissible either.

Causal Reversibility for Timed Process Calculi 9

In the following we thus consider only reachable processes, whose set we de-
note by P. They include processes from which a computation can start, i.e.,
standard forward processes, as well as processes that can be derived from the
previous ones via finitely many applications of the semantic rules. Given a reach-
able process R ∈ P, if npa(R) then keysa(R) = ∅ while keysa(R

′) 6= ∅ for any
other process R′ reachable from R in which at least one of the actions occurring
in R has been executed, as that action has been equipped with a key inside R′.

We conclude by showing the validity of time determinism and time additivity.
The former holds in the forward direction up to the keys associated with the
considered delay, which is formalized via syntactical substitutions of delay keys,
because Delay1 creates a fresh key (whereas Delay1• uses the existing one).
As for the latter, two distinct processes may be reached in the forward direction
because elapsed delays are kept within processes. This is illustrated in Figure 1
by the 2-delay forward transition on the right and the two consecutive 1-delay
forward transitions on the left. Dually, in the backward direction, the starting
processes may be different, as exemplified by the 2-delay backward transition on
the right and the two consecutive 1-delay backward transitions on the left.

Proposition 1 (time determinism). Let R,S1, S2 ∈ P, n ∈ N>0, i1, i2 ∈ K,
and j ∈ K be not occurring associated with past delays in S1 and S2. Then:

– If R
(n)[i1]

−−−−→d S1 and R
(n)[i2]

−−−−→d S2, then S1{j/i1} = S2{j/i2}.

– If R
(n)[i1]

99999Kd S1 and R
(n)[i2]

99999Kd S2, then S1 = S2.

Proposition 2 (time additivity). Let R,R′, S, S′ ∈ P, n, h ∈ N>0, i ∈ K,
and m1, . . . ,mh ∈ N>0 be such that

∑
1≤l≤hml = n. Then:

– R
(n)[i]−−−→d S iff R

(m1)
[i1]

−−−−−→d . . .
(mh)

[ih]

−−−−−−→d S
′.

– R
(n)[i]

9999Kd S iff R′
(m1)

[i1]

999999Kd . . .
(mh)

[ih]

9999999Kd S.

3 Causal Reversibility of RTPC

We now prove the causal reversibility of RTPC. This means that each reach-
able process of RTPC is able to backtrack correctly, i.e., without encountering
previously inaccessible states, and flexibly, i.e., along any path that is causally
equivalent to the one undertaken in the forward direction. This is accomplished
through the notion of concurrent transitions of [12] and the technique of [25].

A necessary condition for reversibility is the loop property [12,32,25]. It estab-
lishes that each executed action can be undone and that each undone action can
be redone, which in a timed setting needs to be extended to delays. Therefore,
when considering the states associated with two arbitrary reachable processes,
either there is no transition between them, or there is a pair of identically labeled
transitions such that one is a forward transition from the first to the second state
while the other is a backward transition from the second to the first state.

10 M. Bernardo and C.A. Mezzina

(2) . a . 0 + (2) . b . 0(1)[i]

{{

__

(2)[k]

77

(1)[i]

(1)[i]. (1) . a . 0 + (1)[i]. (1) . b . 0

(1)[j]

��

(2)[k]. a . 0 + (2)[k]. b . 0

(2)[k]

(1)[i]. (1)[j]. a . 0 + (1)[i]. (1)[j]. b . 0

(1)[j]

[[

(2)[i]

FF

Fig. 1. Time additivity and loop property (only delay transitions are depicted)

To be precise, due to time additivity, a delay transition in one direction may
be matched by a sequence of delay transitions in the opposite direction, such that
the label of the former is equal to the sum of the labels of the latter. This can be
seen in Figure 1. Each of the four 1-delay transitions on the left and of the two
2-delay transitions on the right is matched by a single identically labeled delay
transition in the opposite direction, whereas the 2-delay backward transition on
the left is matched only by a sequence of two 1-delay forward transitions.

Proposition 3 (loop property). Let R,S ∈ P, a[i], (n)[i] ∈ L, h ∈ N>0, and
m1, . . . ,mh ∈ N>0 be such that

∑
1≤l≤hml = n. Then:

– R
a[i]−−−→a S iff S

a[i]
9999Ka R.

– If R
(n)[i]−−−→d S then S

(n)[i]

9999Kd R.

– R
(n)[i]−−−→d S iff S

(m1)
[i1]

999999Kd . . .
(mh)

[ih]

9999999Kd R.

– R
(n)[i]

9999Kd S iff S
(m1)

[i1]

−−−−−→d . . .
(mh)

[ih]

−−−−−−→d R.

Given a transition θ : R
`7−→ S with R,S ∈ P, we call R the source of θ and S

its target. If θ is a forward transition, i.e., θ : R
`−→ S, we denote by θ : S

`
99KR

the corresponding backward transition. Two transitions are said to be coinitial
if they have the same source and cofinal if they have the same target. Two
transitions are composable when the target of the first transition coincides with
the source of the second transition. A finite sequence of pairwise composable
transitions is called a path. We use ε for the empty path and ω to range over paths,
with |ω| denoting the length of ω, i.e., the number of transitions constituting ω.
When ω is a forward path, we denote by ω the corresponding backward path,
where the order of the transitions is reversed, and by time(ω) the duration of ω,
i.e., the sum of the labels of its delay transitions. The notions of source, target,
coinitiality, cofinality, and composability naturally extend to paths. We indicate
with ω1ω2 the composition of the two paths ω1 and ω2 when they are composable.

Before specifying when two transitions are concurrent [12], we need to present
the notion of process context along with the set of causes – identified by action
keys – that lead to a given communication key for actions.

Causal Reversibility for Timed Process Calculi 11

A process context is a process with a hole • in it, generated by the grammar:
C ::= • | a[i] . C | (n)[i]. C | 〈ni〉 . C | R+ C | C +R | R ‖L C | C ‖LR

We write C[R] to denote the process obtained by replacing the hole in C with R.
The causal set caua(R, i) of R ∈ P until i ∈ K is inductively defined as:

caua(P, i) = ∅

caua(a[j] . R, i) =

{
∅ if j = i or i /∈ keysa(R)
{j} ∪ caua(R, i) otherwise

caua(δ(n, j) . R, i) = caua(R, i)
caua(R+ S, i) = caua(R, i) ∪ caua(S, i)
caua(R ‖L S, i) = caua(R, i) ∪ caua(S, i)

If i ∈ keysa(R), then caua(R, i) represents the set of keys in R that caused i,
with caua(R, i) ⊂ keysa(R) as on the one hand i /∈ caua(R, i) and on the other
hand keys that are not causally related to i are not considered. A key j causes i
if it appears syntactically before i in R; equivalently, i is inside the scope of j.

We are now in a position to define, for coinitial transitions, what we mean
by concurrent transitions on the basis of the notion of conflicting transitions. As
in previous works, the first condition below tells that a forward action transition
is in conflict with a coinitial backward one whenever the latter tries to undo a
cause of the key of the former, while the second one deems as conflictual two
action transitions respectively generated by the two subprocesses of a choice.

The further conditions are specific to this timed setting. The third one views
as conflictual two coinitial delay transitions, regardless of their directions. The
fourth one considers as conflictual a forward action transition and a forward
delay transition that are coinitial, whereas a similar situation cannot show up
in the backward direction because, if a delay can be undone in all subprocesses,
then no action can be undone (both cases will be illustrated in Example 1). The
fifth one regards as conflictual a forward delay transition and a backward action
transition that are coinitial and originated from the same subprocess. In the
sixth one the action transition is forward and the delay transition is backward.
Figure 2 illustrates the first and the fifth ones.

Definition 1 (conflicting and concurrent transitions). Two coinitial tran-
sitions θ1 and θ2 from a process R ∈ P are in conflict if one of the following
conditions holds, otherwise they are said to be concurrent:

1. θ1 : R
a[i]−−→a S1 and θ2 : R

b[j]
999Ka S2 with j ∈ caua(S1, i).

2. R = C[P1 + P2] with θk deriving from Pk
ak[ik]−−−−→a Sk for k = 1, 2.

3. θ1 : R
(n)i7−−→d S1 and θ2 : R

(m)j7−−−→d S2.

4. θ1 : R
a[i]−−→a S1 and θ2 : R

(m)j−−−→d S2.

5. R = C[a[i] . (n) . P] with θ1 deriving from (n) . P
(m)[j]−−−−→d S1 and θ2 deriving

from a[i] . (n) . P
a[i]
9999Ka S2.

6. R = C[δ(n, i) . a . P] with θ1 deriving from a . P
a[j]−−−−→a S1 and θ2 deriving

from δ(n, i) . a . P
(n)[i]

99999Kd S2.

12 M. Bernardo and C.A. Mezzina

b . a . 0 a . (n) . 0

b[j] . a . 0

b[j]

88

a[i] // b[j] . a[i] . 0 a[i] . (n) . 0

a[i]

77

(n)[j] // a[i] . (n)[j]. 0

Fig. 2. Examples of conflicting transitions: conditions 1 (left) and 5 (right)

We prove causal reversibility by exploiting the technique of [25], according to
which causal consistency stems from the square property – which amounts to con-
current transitions being confluent – backward transitions independence – which
generalizes the concept of backward determinism used for reversible sequential
languages [42] – and past well foundedness – which ensures that reachable pro-
cesses have a finite past.

We start with the square property, which states that concurrent transitions
can commute while conflicting ones cannot.

Lemma 1 (square property). Let θ1 : R
`17−→ S1 and θ2 : R

`27−→ S2 be two
coinitial transitions from a process R ∈ P. If θ1 and θ2 are concurrent, then there

exist two cofinal transitions θ′2 : S1
`27−→ S and θ′1 : S2

`17−→ S with S ∈ P.

Unlike [25], backward transitions independence holds as long as at least one
of the two coinitial backward transitions is not a delay transition.

Lemma 2 (backward transitions independence). Let R ∈ P. Then two

coinitial backward transitions θ1 : R
`1
99K S1 and θ2 : R

`2
99K S2 are concurrent

provided that at least one of them is not a delay transition.

For coinitial backward delay transitions, the novel backward triangularity
property comes into play, which is exemplified by the backward delay transitions
in the left part of Figure 1.

Lemma 3 (backward triangularity). Let R ∈ P. Whenever R
(n)[i]

9999Kd S1

and R
(m)[j]

99999Kd S2 with m > n, then S1

(m−n)[k]

9999999Kd S2.

As far as past well foundedness is concerned, under laziness and maximal
progress we observe that the adoption of the dynamic delay prefix 〈ni〉 in rules
Idling1, Idling2, Idling3, Idling1•, Idling2•, Idling3• avoids the genera-
tion of backward self-loops, from which infinite sequence of backward transitions
would be obtained.

Lemma 4 (past well foundedness). Let R0 ∈ P. Then there is no infinite

sequence of backward transitions such that Ri
`i
99KRi+1 for all i ∈ N.

Causal Reversibility for Timed Process Calculi 13

Following [12,27], we also define a notion of causal equivalence over paths,
which abstracts from the order of concurrent action transitions. In this way,
paths obtained by swapping the order of their concurrent action transitions are
identified with each other. Due to time determinism, the swap operation does
not apply to delay transitions. Moreover, the composition of a transition with
its inverse is identified with the empty path. Unlike other approaches, our causal
equivalence has to deal with time additivity. More precisely, a path made out of
forward (resp. backward) delay transitions followed by a path made out of back-
ward (resp. forward) delay transitions returning to the origin is identified with
the empty path provided that the two original paths have the same duration.
This can be seen in Figure 1 if we take for example the delay path on the left
(1)[i]−−−→d

(1)[j]−−−→d

(2)[i]

9999Kd.

Definition 2 (causal equivalence). Causal equivalence � is the smallest
equivalence relation over paths that is closed under composition and satisfies the
following:

1. θ1θ
′
2�θ2θ′1 for every two coinitial concurrent action transitions θ1 :R

a[i]7−−→ R1

and θ2 : R
b[j]7−−→ R2 and every two cofinal action transitions θ′2 : R1

b[j]7−−→ S

and θ′1 : R2
a[i]7−−→ S respectively composable with the previous ones.

2. θθ � ε and θθ � ε for every transition θ.
3. ω1ω2 � ε and ω2ω1 � ε for every two coinitial and cofinal forward paths ω1

and ω2 with delay transitions only such that time(ω1) = time(ω2).

The further property below, called parabolic lemma in [25], states that every
path can be seen as a backward path followed by a forward path. As observed
in [12], up to causal equivalence one can always reach for the maximum freedom
of choice among transitions by going backward and only then going forward (not
the other way around). Intuitively, one could depict computations as parabolas:
the system first draws potential energy from its memory, by undoing all the
executed actions, and then restarts.

In this timed setting the parabolic lemma has to be proven directly. Un-
like [25], it does not stem from the square property and backward transitions
independence as the latter does not hold for all coinitial backward transitions.

Lemma 5 (parabolic lemma). For each path ω, there exist two forward paths
ω1 and ω2 such that ω � ω1ω2 and |ω1|+ |ω2| ≤ |ω|.

Example 1. If rules Idling1, Idling2, Idling3, Idling1•, Idling2•, Idling3•

did not respectively introduce and retract dynamic delay prefixes of the form
〈ni〉, then the parabolic lemma would not hold.

Consider the process R = a . (n) . 0 ‖∅(n) . 0. Under eagerness it can initially

perform only R
a[i]−−→a a[i] . (n) . 0 ‖∅(n) . 0 = S1. Under laziness it can also per-

form R
(n)[j]−−−→d 〈nj〉 . a . (n) . 0 ‖∅(n)[j]. 0 = S2 because in R the execution of

14 M. Bernardo and C.A. Mezzina

action a on the left can be postponed via Idling2 by as many time units as
there are in delay (n) on the right where Delay1 applies, then TCoo is used.

If we keep going forward, we obtain S1
(n)[j]−−−→d a[i] . (n)[j]. 0 ‖∅(n)[j]. 0 = S′1

while on the lazy side S2
a[i]−−→a 〈nj〉 . a[i] . (n) . 0 ‖∅(n)[j]. 0 = S′2 followed by

S′2
(n)[k]

−−−→d 〈nj〉 . a[i] . (n)[k] . 0 ‖∅(n)[j]. 〈nk〉 . 0 = S′′2 because in S′2 the subprocess
0 on the right can let via Idling1 as many time units pass as there are in delay
(n) on the left. Note that the square property does not hold because S′1 and S′′2
are different. Indeed, the two initial transitions of R are in conflict according
to condition 4 of Definition 1; moreover, from S′1 delay (n)[j] can be undone,
whereas action a[i] cannot.

When going backward, by virtue of the presence of dynamic delays 〈nj〉 and
〈nk〉 all the transitions above are undone in the reverse order and the same
states are traversed thanks to Idling1• and Idling2•. However, if dynamic
delays were not adopted by the aforementioned idling rules, so that on the lazy
side we would end up in a[i] . (n)[k] . 0 ‖∅(n)[j]. 0, then, observing that (n)[k] and
(n)[j] have different keys and hence cannot be undone together via TCoo•,
either (n)[k] is undone via Idling1• applied to the subprocess 0 on the right,
or (n)[j] is undone via Idling1• applied to the subprocess 0 on the left. In the
latter case, the new state a[i] . (n)[k] . 0 ‖∅(n) . 0 is encountered, from which it is
only possible to redo (n)[j] via Idling1 applied to the subprocess 0 on the left;
note that (n)[k] cannot be undone because (n) . 0 cannot let time pass backward.

The presence of this new state would violate the parabolic lemma. In partic-
ular, the path traversing R, S2, S′2, S′′2 , and the new state could not be causally
equivalent to anyone composed of a backward path followed by a forward one.

We conclude by obtaining a property called causal consistency in [25], which
establishes that being coinitial and cofinal is necessary and sufficient in order for
two paths to be causally equivalent, i.e., to contain concurrent action transitions
in different orders (swap) or to be one the empty path and the other a transition
followed by its reverse or a delay path followed by an identically lasting delay
path in the reverse direction (cancelation).

Theorem 1 (causal consistency). Let ω1 and ω2 be two paths. Then ω1 � ω2

iff ω1 and ω2 are both coinitial and cofinal.

Theorem 1 shows that causal equivalence characterizes a space for admissible
rollbacks that are (i) correct as they do not lead to states not reachable by some
forward path and (ii) flexible enough to allow on the one hand undo operations
to be rearranged with respect to the order in which the undone concurrent action
transitions were originally performed and on the other hand time additivity to be
taken into account. This implies that the states reached by any backward path
could be reached by performing forward paths only. Therefore, we can conclude
that RTPC meets causal reversibility.

Example 2. Following [29] we can define the timeout operator Timeout(P,Q, t).
It allows the process P to communicate with the environment within t time units.

Causal Reversibility for Timed Process Calculi 15

After this time has passed, and P has not communicated yet, the process Q takes
control. The operator is rendered in RTPC as Timeout(P,Q, t) = P + (t) . τ . Q
under maximal progress.

Timeouts are usually employed in fault-tolerant systems to prevent some
operations from blocking forever. As a matter of fact, the Erlang programming
language provides a timeout facility on blocking receive. For example, let us
consider the following snippet of Erlang code in which two actors (e.g., processes)
execute in parallel:

1 process A () −>
2 r e c e i v e
3 X −> handleMsg ()
4 a f t e r 50 −>
5 handleTimeout ()
6 end end .

7 process B (Pid) −>
8 t imer : s l e e p (100) ,
9 Pid ! Msg end .

10

11 PidA=spawn (?MODULE, process A , []) ,
12 spawn (?MODULE, process B , [PidA]) .

Process A (lines 1–6) awaits a message from the environment (e.g., from
process B); if a message is received within 50 ms, then process A calls function
handleMsg(), otherwise it calls function handleTimeout(). Process B (lines 7–9)
sleeps for 100 ms and then sends a message to Pid, the identifier of process A.

The translation of the code for the two processes into RTPC is as follows:
A = Timeout(a . P,Q, 50)
B = (100) . a . 0

where P encodes handleMsg() and Q encodes handleTimeout().
If we run the two processes in parallel (mimicking lines 11–12), we have the

following forward execution under maximal progress:

A ‖{a}B
(50)[i]−−−−→d (a . P + (50)[i]. τ . Q) ‖{a}((50)[i]. (50) . a . 0)
τ [j]−−→a (a . P + (50)[i]. τ [j] . Q) ‖{a}((50)[i]. (50) . a . 0)

at which point Q takes over. If process B wants to revert its behavior (e.g.,
going back by 50 ms), it cannot do it alone as it has to wait for process A to first
undo τ [j] and then undo (50)[i] together. This is clearly a causally consistent
backward computation as no new process is encountered along the way.

4 Conclusions

In this paper we have studied the causal reversibility of timed process calculi.
With respect to the reversible nondeterministic setting of [12,32,25], we have ad-
dressed a number of issues that are listed at the end of Section 1. With respect
to the reversible timed setting of [8], which builds on TPL [17], we have consid-
ered not only laziness but also eagerness and, most importantly, like in temporal
CCS [29] we have described time via numeric delays – instead of unitary delays
– subject to time additivity, which results in a variation of the loop property
and a restriction of backward transitions independence.

As future work, we plan to investigate suitable notions of bisimilarity for
RTPC based on the approaches of [32,14,6]. Moreover, similar to [5], we would
like to allow backward delays to be different from the corresponding forward
delays. Finally, we are interested in moving from discrete time to dense time.

16 M. Bernardo and C.A. Mezzina

Acknowledgments. This work has been supported by the Italian MUR PRIN
2020 project NiRvAna, the French ANR project ANR-18-CE25-0007 DCore,
and the INdAM-GNCS project CUP E55F22000270001 Proprietà Qualitative e
Quantitative di Sistemi Reversibili.

References

1. Aceto, L., Murphy, D.: Timing and causality in process algebra. Acta Informatica
33, 317–350 (1996)

2. Baeten, J.C.M., Bergstra, J.A.: Real time process algebra. Formal Aspects of Com-
puting 3, 142–188 (1991)

3. Bennett, C.H.: Logical reversibility of computations. IBM Journal of Research and
Development 17, 525–532 (1973)

4. Bernardo, M., Corradini, F., Tesei, L.: Timed process calculi with deterministic or
stochastic delays: Commuting between durational and durationless actions. Theo-
retical Computer Science 629, 2–39 (2016)

5. Bernardo, M., Mezzina, C.A.: Bridging causal reversibility and time reversibility:
A stochastic process algebraic approach. Logical Methods in Computer Science
19(2:6), 1–27 (2023)

6. Bernardo, M., Rossi, S.: Reverse bisimilarity vs. forward bisimilarity. In: Proc. of
the 26th Int. Conf. on Foundations of Software Science and Computation Struc-
tures (FOSSACS 2023). LNCS, vol. 13992, pp. 265–284. Springer (2023)

7. Bérut, A., Arakelyan, A., Petrosyan, A., Ciliberto, S., Dillenschneider, R., Lutz,
E.: Experimental verification of Landauer’s principle linking information and ther-
modynamics. Nature 483, 187–189 (2012)

8. Bocchi, L., Lanese, I., Mezzina, C.A., Yuen, S.: The reversible temporal process
language. In: Proc. of the 42nd Int. Conf. on Formal Techniques for Distributed
Objects, Components, and Systems (FORTE 2022). LNCS, vol. 13273, pp. 31–49.
Springer (2022)

9. Bolognesi, T., Lucidi, F.: LOTOS-like process algebras with urgent or timed in-
teractions. In: Proc. of the 4th Int. Conf. on Formal Description Techniques for
Distributed Systems and Communication Protocols (FORTE 1991). IFIP Trans-
actions, vol. C-2, pp. 249–264 (1991)

10. Corradini, F.: Absolute versus relative time in process algebras. Information and
Computation 156, 122–172 (2000)

11. Corradini, F., Vogler, W., Jenner, L.: Comparing the worst-case efficiency of asyn-
chronous systems with PAFAS. Acta Informatica 38, 735–792 (2002)

12. Danos, V., Krivine, J.: Reversible communicating systems. In: Proc. of the 15th
Int. Conf. on Concurrency Theory (CONCUR 2004). LNCS, vol. 3170, pp. 292–307.
Springer (2004)

13. Danos, V., Krivine, J.: Transactions in RCCS. In: Proc. of the 16th Int. Conf. on
Concurrency Theory (CONCUR 2005). LNCS, vol. 3653, pp. 398–412. Springer
(2005)

14. De Nicola, R., Montanari, U., Vaandrager, F.: Back and forth bisimulations. In:
Proc. of the 1st Int. Conf. on Concurrency Theory (CONCUR 1990). LNCS,
vol. 458, pp. 152–165. Springer (1990)

15. Frank, M.P.: Physical foundations of Landauer’s principle. In: Proc. of the 10th
Int. Conf. on Reversible Computation (RC 2018). LNCS, vol. 11106, pp. 3–33.
Springer (2018)

Causal Reversibility for Timed Process Calculi 17

16. Giachino, E., Lanese, I., Mezzina, C.A.: Causal-consistent reversible debugging. In:
Proc. of the 17th Int. Conf. on Fundamental Approaches to Software Engineering
(FASE 2014). LNCS, vol. 8411, pp. 370–384. Springer (2014)

17. Hennessy, M., Regan, T.: A process algebra for timed systems. Information and
Computation 117, 221–239 (1995)

18. Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall (1985)
19. Kelly, F.P.: Reversibility and Stochastic Networks. John Wiley & Sons (1979)
20. Krivine, J.: A verification technique for reversible process algebra. In: Proc. of the

4th Int. Workshop on Reversible Computation (RC 2012). LNCS, vol. 7581, pp.
204–217. Springer (2012)

21. Landauer, R.: Irreversibility and heat generated in the computing process. IBM
Journal of Research and Development 5, 183–191 (1961)

22. Lanese, I., Lienhardt, M., Mezzina, C.A., Schmitt, A., Stefani, J.B.: Concur-
rent flexible reversibility. In: Proc. of the 22nd European Symp. on Programming
(ESOP 2013). LNCS, vol. 7792, pp. 370–390. Springer (2013)

23. Lanese, I., Medić, D., Mezzina, C.A.: Static versus dynamic reversibility in CCS.
Acta Informatica 58, 1–34 (2021)

24. Lanese, I., Nishida, N., Palacios, A., Vidal, G.: CauDEr: A causal-consistent re-
versible debugger for Erlang. In: Proc. of the 14th Int. Symp. on Functional
and Logic Programming (FLOPS 2018). LNCS, vol. 10818, pp. 247–263. Springer
(2018)

25. Lanese, I., Phillips, I., Ulidowski, I.: An axiomatic approach to reversible computa-
tion. In: Proc. of the 23rd Int. Conf. on Foundations of Software Science and Com-
putation Structures (FOSSACS 2020). LNCS, vol. 12077, pp. 442–461. Springer
(2020)

26. Laursen, J.S., Ellekilde, L.P., Schultz, U.P.: Modelling reversible execution of
robotic assembly. Robotica 36, 625–654 (2018)

27. Lévy, J.J.: An algebraic interpretation of the λβK-calculus; and an application of
a labelled λ-calculus. Theoretical Computer Science 2, 97–114 (1976)

28. Milner, R.: Communication and Concurrency. Prentice Hall (1989)
29. Moller, F., Tofts, C.: A temporal calculus of communicating systems. In: Proc. of

the 1st Int. Conf. on Concurrency Theory (CONCUR 1990). LNCS, vol. 458, pp.
401–415. Springer (1990)

30. Nicollin, X., Sifakis, J.: The algebra of timed processes ATP: Theory and applica-
tion. Information and Computation 114, 131–178 (1994)

31. Perumalla, K.S., Park, A.J.: Reverse computation for rollback-based fault toler-
ance in large parallel systems - Evaluating the potential gains and systems effects.
Cluster Computing 17, 303–313 (2014)

32. Phillips, I., Ulidowski, I.: Reversing algebraic process calculi. Journal of Logic and
Algebraic Programming 73, 70–96 (2007)

33. Phillips, I., Ulidowski, I., Yuen, S.: A reversible process calculus and the modelling
of the ERK signalling pathway. In: Proc. of the 4th Int. Workshop on Reversible
Computation (RC 2012). LNCS, vol. 7581, pp. 218–232. Springer (2012)

34. Pinna, G.M.: Reversing steps in membrane systems computations. In: Proc. of
the 18th Int. Conf. on Membrane Computing (CMC 2017). LNCS, vol. 10725, pp.
245–261. Springer (2017)

35. Quemada, J., de Frutos, D., Azcorra, A.: TIC: A timed calculus. Formal Aspects
of Computing 5, 224–252 (1993)

36. Reed, G.M., Roscoe, A.W.: A timed model for communicating sequential processes.
Theoretical Computer Science 58, 249–261 (1988)

18 M. Bernardo and C.A. Mezzina

37. Schordan, M., Oppelstrup, T., Jefferson, D.R., Barnes Jr., P.D.: Generation of
reversible C++ code for optimistic parallel discrete event simulation. New Gener-
ation Computing 36, 257–280 (2018)

38. Siljak, H., Psara, K., Philippou, A.: Distributed antenna selection for massive
MIMO using reversing Petri nets. IEEE Wireless Communication Letters 8, 1427–
1430 (2019)

39. Vassor, M., Stefani, J.B.: Checkpoint/rollback vs causally-consistent reversibility.
In: Proc. of the 10th Int. Conf. on Reversible Computation (RC 2018). LNCS, vol.
11106, pp. 286–303. Springer (2018)

40. de Vries, E., Koutavas, V., Hennessy, M.: Communicating transactions. In: Proc.
of the 21st Int. Conf. on Concurrency Theory (CONCUR 2010). LNCS, vol. 6269,
pp. 569–583. Springer (2010)

41. Yi, W.: CCS + time = an interleaving model for real time systems. In: Proc. of the
18th Int. Coll. on Automata, Languages and Programming (ICALP 1991). LNCS,
vol. 510, pp. 217–228. Springer (1991)

42. Yokoyama, T., Glück, R.: A reversible programming language and its invertible
self-interpreter. In: Proc. of the 13th ACM Workshop on Partial Evaluation and
Semantics-based Program Manipulation (PEPM 2007). pp. 144–153. ACM Press
(2007)

Causal Reversibility for Timed Process Calculi 19

A Proofs of Results

Proof of Proposition 1.
Straightforward.

Proof of Proposition 2.
Straightforward.

Proof of Proposition 3.
By induction on the depth of the derivation of the transition on the left by noting
that each forward (resp. backward) rule in Tables 2 and 3 has a corresponding
backward (resp. forward) rule in the same table.

Proof of Lemma 1.
The proof is by case analysis on the direction of θ1 and θ2. We distinguish three
cases according to whether the two transitions are both forward, both backward,
or one forward and the other backward:

– If θ1 and θ2 are both forward, there are three subcases:

• If their labels are actions, since θ1 and θ2 are concurrent, by virtue of
condition 2 of Definition 1 the two transitions cannot originate from a
choice operator. They must thus be generated by a parallel composition,
but not through rule Coo because θ1 and θ2 must have different keys
and hence cannot synchronize. Without loss of generality, we can assume

that R = R1 ‖L R2 with R1
a[i]−−→a S1, R2

b[j]−−→a S2, a, b /∈ L, and i 6= j.

By applying rule Par we have R1 ‖L R2
a[i]−−→a S1 ‖L R2

b[j]−−→a S1 ‖L S2

as well as R1 ‖L R2
b[j]−−→a R1 ‖ S2

a[i]−−→a S1 ‖L S2.
• If their labels are delays, by virtue of condition 3 of Definition 1 the two

transitions cannot be concurrent, hence this subcase does not apply.
• If one label is an action and the other is a delay, by virtue of condition 4 of

Definition 1 the two transitions cannot be concurrent, hence this subcase
does not apply.

– If θ1 and θ2 are both backward, there are again three subcases, with the first
two being similar to the corresponding ones of the previous case, while the
third one cannot show up because, if a delay can be undone in all subpro-
cesses, then no action can be undone.

– If θ1 is forward and θ2 is backward, there are three subcases:

• If their labels are actions, since θ1 and θ2 are concurrent, by virtue of
condition 1 of Definition 1 it holds that θ2 cannot remove any cause of θ1.
Since any subprocess of a choice or a parallel composition cannot perform
a forward transition and a backward transition without preventing the
backward one from removing a cause of the forward one, and in the case
of a choice only one of the two subprocesses can perform transitions
after the choice has been made (as would be in our case in which we
are considering a backward transition), without loss of generality we can

assume that R = R1 ‖L R2 with R1
a[i]−−→a S1, R2

b[j]
999Ka S2, a, b 6∈ L,

20 M. Bernardo and C.A. Mezzina

and i 6= j. By applying rule Par we have R1 ‖L R2
a[i]−−→a S1 ‖L R2

b[j]
999Ka S1 ‖L S2 as well as R1 ‖L R2

b[j]
999Ka R1 ‖L S2

a[i]−−→a R1 ‖L R2.
• If their labels are delays, by virtue of condition 3 of Definition 1 the two

transitions cannot be concurrent, hence this subcase does not apply.
• If one label is an action and the other is a delay, since θ1 and θ2 are

concurrent, by virtue of conditions 5 and 6 of Definition 1 the two tran-
sitions cannot be generated by the same subprocess. Hence, without loss
of generality we can assume that R = R1 ‖L R2 with a /∈ L. There are
two further subcases:

∗ R1
(m)[j]−−−−→d S1 and R2

a[i]
999Ka S2. Under eagerness the latter transition

would prevail at the level of R and hence the subcase would not
apply. Under laziness the former transition would be possible at the
level of R if R2 could perform an identically labeled forward delay
transition via idling. But then both the forward (m)[j]-transition and
the backward a[i]-transition at the level of R would be generated by
the same subprocess R2, hence again the subcase would not apply.

∗ R1

(m)[j]

99999Ka S1 and R2
a[i]−−→d S2. Similar to the previous subcase.

Proof of Lemma 2.
By Definition 1 it is not possible for two backward transitions to be in conflict
except when they are both delay transitions.

Proof of Lemma 3.
A straightforward consequence of time additivity.

Proof of Lemma 4.
By induction on |keysa(R0)| + past(R0), where past(R0) is the sum of the past
delays in R0. Indeed, every backward transition between two different processes
either decreases by one the total number of past actions or diminishes the sum
of the past delays, with both numbers being finite.

Proof of Lemma 5.
Let d(ω) be the number of discording pairs within path ω, where two forward
transitions θ1 and θ2 form a discording pair iff θ1 and θ2 occur next to each other
in that order inside ω.
If d(ω) = 0, then ω is already formed by a (possibly empty) backward path
followed by a forward one.
If d(ω) > 0, the result follows by showing that there exists ω′ � ω with |ω′| ≤ |ω|
and d(ω′) < d(ω). Since d(ω) > 0, ω contains at least one discording pair. Let
the one formed by θ1 and θ2 be the earliest one, where ω = ω1θ1θ2ω2 with ω1

being forward.
If θ1 = θ2, then trivially ω1θ1θ2ω2 � ω1ω2 with |ω1ω2| < |ω| and d(ω1ω2) < d(ω).
If θ1 6= θ2 with the two transitions being concurrent, by using the square property
(Lemma 1) we can swap them thereby obtaining ω1θ1θ2ω2 � ω1θ2θ1ω2 with
|ω1θ2θ1ω2| ≤ |ω|. If ω2 starts with a forward transition then d(ω1θ2θ1ω2) < d(ω),
otherwise we keep moving right with θ1 being part of the next earliest discording

Causal Reversibility for Timed Process Calculi 21

pair to consider.
If θ1 6= θ2 with the two transitions being in conflict, there are three cases based
on Definition 1:

– θ1 and θ2 are two action transitions with θ2 removing a cause of θ1 (condi-
tion 1). Since it is not possible to perform such a θ2 after θ1, this case does
not apply.

– θ1 and θ2 are two delay transitions (condition 3). Either the time elapsed with
θ1 is reverted due to time additivity by a sequence of backward delay transi-
tions starting with θ2, or it remains. In the former subcase ω = ω1θ1θ2ω′2ω

′′
2

with time(θ1) = time(θ2ω′2), hence ω1θ1θ2ω′2ω2 � ω1ω
′′
2 with |ω1ω

′′
2 | < |ω|

and d(ω1ω
′′
2) < d(ω). The latter subcase does not apply due to time deter-

minism, in the sense that if n time units elapse forward then it is not possible
to go back by less than n time units.

– One is an action transition and the other is a delay transition, with both
being generated by the same subprocess (conditions 5 and 6). Similar to the
first case.

Proof of Theorem 1.
It follows from past well foundedness and the parabolic lemma thanks to [25].

	Causal Reversibility for Timed Process Calculi with Lazy/Eager Durationless Actions and Time Additivity
	Introduction
	Reversible Timed Process Calculus: Actions vs. Delays
	Causal Reversibility of RTPC
	Conclusions
	Proofs of Results

