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Abstract. The theory of noninterference supports the analysis and the
execution of secure computations in multi-level security systems. Classi-
cal equivalence-based approaches to noninterference mainly rely on weak
bisimulation semantics. We show that this approach is not sufficient to
identify potential covert channels in the presence of reversible compu-
tations. As illustrated via a database management system example, the
activation of backward computations may trigger information flows that
are not observable when proceeding in the standard forward direction.
To capture the effects of back and forth computations, it is necessary to
move to a sufficiently expressive semantics that, in an interleaving frame-
work, has been proven to be branching bisimilarity in a previous work
by De Nicola, Montanari, and Vaandrager. In this paper we investigate
a taxonomy of noninterference properties based on branching bisimilar-
ity along with their preservation and compositionality features, then we
compare it with the classical hierarchy based on weak bisimilarity.

1 Introduction

Noninterference was introduced by Goguen and Meseguer [22] to reason about
the way in which illegitimate information flows can occur in multi-level security
systems from high-level agents to low-level ones due to covert channels. Since the
first definition conceived for deterministic state machines, in the last four decades
a lot of work has been done that led to a variety of extensions (dealing with non-
determinism or quantitative domains) in multiple frameworks (from language-
based security to concurrency theory); see, e.g., [15,2,32,24,25] and the references
therein. Analogously, the techniques proposed to verify information-flow security
properties based on noninterference have followed several different approaches,
ranging from the application of type theory [44] and abstract interpretation [19]
to control flow analysis and equivalence or model checking [16,33,3].

Noninterference guarantees that low-level agents can never infer from their
observations what high-level agents are doing. Regardless of its specific def-
inition, noninterference is closely tied to the notion of behavioral equivalence,
because the idea is to compare the system behavior with high-level actions being
prevented and the system behavior with those actions being hidden. Historically,
one of the most established formal definitions of noninterference properties relies
on weak bisimilarity in a process algebraic framework [34], as it naturally lends
itself to reason formally about covert channels and illegitimate information flows.
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While the literature concentrated on weak bisimilarity so far [15], in this
paper we claim that it is worth studying nondeterministic noninterference in a
different setting, relying on branching bisimulation semantics. Branching bisim-
ilarity was introduced in [21] as a refinement of weak bisimilarity to preserve the
branching structure of processes also when abstracting from invisible actions. It
features a complete axiomatization whose only τ -axiom is a.(τ.(y + z) + y) =
a.(y + z), where a is an action, τ is an invisible action, and y and z are pro-
cess terms. Moreover, while weak bisimilarity can be verified in O(n2 ·m · log n),
where m is the number of transitions and n is the number of states of the labeled
transition system underlying the process at hand, branching bisimilarity can be
verified more efficiently. An O(m · n) algorithm has been provided in [23] and,
more recently, an even faster O(m · log n) algorithm has been developed in [26].

A clear motivation for passing to branching bisimilarity is provided by the
setting of reversible computing – for which no information flow security approach
exists to the best of our knowledge – where weak bisimilarity does not represent
a proper tool for the comprehensive analysis of covert channels. In this setting,
the model of computation features both forward and backward computations,
i.e., computational processes are reversible [28,6]. This paradigm has turned
out to have interesting applications in computational biology [38,39], parallel
discrete-event simulation [36,41], robotics [31], control theory [42], fault tolerant
systems [10,12,29,43], and concurrent program debugging [18,30].

Behavioral equivalences for reversible processes must take into account the
fact that computations are allowed to proceed not only forward but also back-
ward. To this aim, back-and-forth bisimilarity, introduced in [11], requires that
two systems are able to mimic each other’s behavior stepwise not only in per-
forming actions that follow the arrows of the labeled transition systems, but
also in undoing those actions when going backwards. Formally, back-and-forth
bisimulations are defined on computation paths instead of states thus preserving
not only causality but also history, as backward moves are constrained to take
place along the same path followed in the forward direction even in the presence
of concurrency. In [11] it was shown that strong back-and-forth bisimilarity co-
incides with the usual notion of strong bisimilarity, while weak back-and-forth
bisimilarity is surprisingly finer than standard weak bisimilarity, and it coincides
with branching bisimilarity. In particular, this latter result will allow us to in-
vestigate the nature of covert channels in reversible systems by using a standard
process calculus, e.g., without having to decorate executed actions like in [37] or
store them into stack-based memories like in [9].

Once established that branching bisimilarity enables noninterference anal-
ysis of reversible systems, the novel contribution of this paper is the study of
noninterference security properties based on branching bisimilarity. In addition
to investigating preservation and compositionality features, we compare the re-
sulting properties with those based on weak bisimilarity [15] and we establish a
taxonomy of the former that can be naturally applied to those based on weak
back-and-forth bisimilarity for reversible systems. Moreover, we show that, in the
setting of reversible systems, weak bisimilarity does not provide a proper frame-
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work for the identification of subtle covert channels, while branching bisimilarity
does. This is carried out through a database management system example.

This paper is organized as follows. In Section 2, we recall background def-
initions and results for several bisimulation equivalences and information-flow
security properties based on weak bisimilarity, along with a process language
to formalize those properties. In Section 3, we introduce the database manage-
ment system example. In Section 4, we recast the same information-flow security
properties in terms of branching bisimilarity, then we present some results about
preservation of those properties under branching bisimilarity and compositional-
ity with respect to the operators of the considered language. Moreover, we show
results about inclusion among all the previously discussed properties, which are
summarized in a new taxonomy. In Section 5, we recall the notion of back-
and-forth bisimulation and its relationship with the aforementioned bisimula-
tions, emphasizing that weak back-and-forth bisimilarity coincides with branch-
ing bisimilarity, which allows us to apply our results to reversible systems. In
Section 6, we add reversibility to the database management system example to
illustrate the need of branching-bisimilarity-based noninterference. Finally, in
Section 7 we provide some concluding remarks and discuss future work.

2 Background Definitions and Results

In this section, we recall bisimulation equivalences (Section 2.1) and introduce
a basic process language (Section 2.2) through which we express bisimulation-
based information-flow security properties (Section 2.3).

2.1 Bisimulation Equivalences

To represent the behavior of a process we use a labeled transition system [27],
which is a state-transition graph whose transitions are labeled with actions.

Definition 1. A labeled transition system (LTS) is a triple (S,A,−→) where
S 6= ∅ is an at most countable set of states, A 6= ∅ is a countable set of actions,
and −→ ⊆ S ×A× S is a transition relation.

A transition (s, a, s′) is written s
a−→ s′, where s is the source state and

s′ is the target state. We say that s′ is reachable from s, written s′ ∈ reach(s),
iff s′ = s or there is a sequence of finitely many transitions such that the target
state of each of them coincides with the source state of the subsequent one, with
the source of the first one being s and the target of the last one being s′.

Strong bisimilarity [34,35] identifies processes that are able to mimic each
other’s behavior stepwise. This preserves the branching structure of processes.

Definition 2. Let (S,A,−→) be an LTS and s1, s2 ∈ S. We say that s1 and s2
are strongly bisimilar, written s1 ∼ s2, iff (s1, s2) ∈ B for some strong bisim-
ulation B. A symmetric binary relation B over S is a strong bisimulation iff,
whenever (s1, s2) ∈ B, then for all actions a ∈ A:

– whenever s1
a−→ s′1, then s2

a−→ s′2 with (s′1, s
′
2) ∈ B.
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Fig. 1. States s1 and s2 are weakly bisimilar but not branching bisimilar

Weak bisimilarity [34] abstracts from unobservable actions, which are denoted

by τ . Let s
τ∗

==⇒ s′ means that s′ ∈ reach(s) and, whenever s′ 6= s, there is a finite
sequence of transitions from s to s′ each of which is labeled with τ .

Definition 3. Let (S,A,−→) be an LTS and s1, s2 ∈ S. We say that s1 and s2
are weakly bisimilar, written s1 ≈ s2, iff (s1, s2) ∈ B for some weak bisim-
ulation B. A symmetric binary relation B over S is a weak bisimulation iff,
whenever (s1, s2) ∈ B, then:

– whenever s1
τ−→ s′1, then s2

τ∗

==⇒ s′2 with (s′1, s
′
2) ∈ B;

– whenever s1
a−→ s′1 for a ∈ A\{τ}, then s2

τ∗

==⇒ a−→ τ∗

==⇒ s′2 with (s′1, s
′
2) ∈ B.

Branching bisimilarity [21] is finer than weak bisimilarity as it preserves the
branching structure of the abstracted τ -actions.

Definition 4. Let (S,A,−→) be an LTS and s1, s2 ∈ S. We say that s1 and s2
are branching bisimilar, written s1 ≈b s2, iff (s1, s2) ∈ B for some branching
bisimulation B. A symmetric binary relation B over S is a branching bisimula-
tion iff, whenever (s1, s2) ∈ B, then for all actions a ∈ A:

– whenever s1
a−→ s′1, then:

• either a = τ and (s′1, s2) ∈ B;

• or s2
τ∗

==⇒ s̄2
a−→ s′2 with (s1, s̄2) ∈ B and (s′1, s

′
2) ∈ B.

An example that highlights the higher distinguishing power of branching
bisimilarity is given in Figure 1, where every LTS is depicted as a directed graph
in which vertices represent states and action-labeled edges represent transitions.
The initial states s1 and s2 of the LTSs are weakly bisimilar but not branching
bisimilar. The only transition that distinguishes s1 and s2 is the a-transition
of s2, which can be mimicked by s1 according to weak bisimilarity by performing
the τ -transition followed by the a-transition. However, s1 cannot respond in the
same way according to branching bisimilarity. If s1 performs the τ -transition
followed by the a-transition, then the state reached after the τ -transition should
be branching bisimilar to s2, which is not the case because of the b-transition
departing from s2.
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2.2 A Process Calculus with High and Low Actions

We now introduce a basic process calculus to formalize the security properties
of interest. To address two security levels, actions are divided into high and low.
We denote by A = AH ∪AL the set of visible actions, where AH ∩AL = ∅, with
AH being the set of high-level actions, ranged over by h, and AL being the set
of low-level actions, ranged over by l. Furthermore Aτ = A ∪ {τ}, where τ /∈ A
is the invisible or silent action.

The set P of process terms is obtained by considering typical operators
from [34,8]. In particular, in addition to the usual operators for sequential, al-
ternative, and parallel compositions, we include restriction and hiding as they
are necessary to formalize noninterference properties. The syntax is:

P ::= 0 | a . P | P + P | P ‖L P | P \ L | P /L
where:

– 0 is the terminated process.
– a . , for a ∈ Aτ , is the action prefix operator describing a process that

initially performs action a.
– + is the alternative composition operator expressing a nondeterministic

choice between two processes based on their executable actions.
– ‖L , for L ⊆ A, is the parallel composition operator that forces two pro-

cesses to synchronize on any action in L.
– \L, for L ⊆ A, is the restriction operator, which prevents the execution of

actions in L.
– /L, for L ⊆ A, is the hiding operator, which turns all the executed actions

in L into the invisible action τ .

The operational semantic rules for the process language are shown in Table 1
and produce the LTS (P,Aτ ,−→) where −→ ⊆ P × Aτ × P, to which the
bisimulation equivalences defined in the previous section are applicable.

2.3 Weak-Bisimilarity-Based Information-Flow Security Properties

The intuition behind noninterference in a two-level security system is that, when-
ever a group of agents at the high security level performs some actions, the effect
of those actions should not be seen by any agent at the low security level. Below is
a representative selection of weak-bisimilarity-based noninterference properties –
Nondeterministic Non-Interference (NNI) and Non-Deducibility on Composition
(NDC) – followed by their relationships [15], which we then comment.

Definition 5. Let P ∈ P:

– P ∈ BSNNI⇐⇒ P \ AH ≈ P /AH.
– P ∈ BNDC ⇐⇒ for all Q ∈ P such that every Q′ ∈ reach(Q) can execute

only actions in AH and for all L ⊆ AH, P \ AH ≈ ((P ‖LQ) /L) \ AH.
– P ∈ SBSNNI⇐⇒ P ∈ BSNNI and for all P ′ ∈ reach(P ), P ′ ∈ BSNNI.
– P ∈ SBNDC ⇐⇒ for all P ′ ∈ reach(P ) and for all P ′′ such that P ′

a−→ P ′′

for some a ∈ AH, P ′ \ AH ≈ P ′′ \ AH.

Theorem 1. SBNDC ⊂ SBSNNI ⊂ BNDC ⊂ BSNNI.
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Prefix a . P
a−→ P

Choice
P1

a−→ P ′
1

P1 + P2
a−→ P ′

1

P2
a−→ P ′

2

P1 + P2
a−→ P ′

2

Synchronization
P1

a−→ P ′
1 P2

a−→ P ′
2 a ∈ L

P1 ‖L P2
a−→ P ′

1 ‖L P ′
2

Interleaving
P1

a−→ P ′
1 a /∈ L

P1 ‖L P2
a−→ P ′

1 ‖L P2

P2
a−→ P ′

2 a /∈ L
P1 ‖L P2

a−→ P1 ‖L P ′
2

Restriction
P

a−→ P ′ a /∈ L
P \ L a−→ P ′ \ L

Hiding
P

a−→ P ′ a ∈ L
P/L

τ−→ P ′/L

P
a−→ P ′ a /∈ L

P/L
a−→ P ′/L

Table 1. Operational semantic rules

Historically, one of the first and most intuitive proposals is the Bisimulation-
based Strong Nondeterministic Non-Interference (BSNNI). Basically, it is sat-
isfied by any process P that behaves the same when its high-level actions are
prevented (as modeled by P \ AH) or when they are considered as hidden, un-
observable actions (as modeled by P /AH). The equivalence between these two
low-level views of P states that a low-level observer cannot distinguish the high-
level behavior of the system. For instance, in l . 0 + h . l . 0 a low-level agent
that observes the execution of l cannot infer anything about the execution of h.
Indeed, (l . 0 + h . l . 0) \ {h} ≈ (l . 0 + h . l . 0) / {h} because l . 0 ≈ l . 0 + τ . l . 0.

BSNNI is not powerful enough to capture covert channels that derive from
the behavior of the high-level agent interacting with the system. For instance,
l . 0 + h1 . h2 . l . 0 is BSNNI for the same reason discussed above. However, a
high-level agent could decide to enable h1 and then disable h2, thus turning the
low-level view of the system into l . 0+τ . 0, which is clearly distinguishable from
l . 0, as only in the former the low-level observer may not observe l. To over-
come such a limitation, the most obvious solution consists of checking explicitly
the interaction between the system and every possible high-level agent Q. The
resulting property is the Bisimulation-based Non-Deducibility on Composition
(BNDC), which is characterized by a universal quantification over Q.

To circumvent the verification problems related to such a quantifier, several
properties have been proposed that are stronger than BNDC. They all express
some persistency conditions, stating that the security checks shall be somehow
extended also to the derivatives of a secure process. Three of the most rep-
resentative ones are the variant of BSNNI that requires every reachable state
to satisfy BSNNI itself, called Strong BSNNI (SBSNNI), the variant of BNDC
that requires every reachable state to satisfy BNDC, called Persistent BNDC
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(P BNDC), and the Strong BNDC (SBNDC), which requires the low-level view
of every reachable state to be the same before and after the execution of any
high-level action. Notice that the SBNDC condition states that the execution of
high-level actions must be completely transparent to the low-level agents. The
properties P BNDC and SBSNNI have been proven to be equivalent in [17],
hence we will focus only on SBSNNI.

3 Use Case: DBMS Transactions – Part I

Consider a multi-threaded system supporting the execution of concurrent trans-
actions operating on a healthcare database. Authorized users can write data
on such a database, which is then accessed by a dedicated module to feed the
training set for a machine learning model built for data analysis purposes.

On the one hand, different authentication mechanisms can be employed to
identify users and ensure data authenticity for each transaction. We address a
simple password-based mechanism (pwd), a more sophisticated two-factor au-
thentication system (2fa), and finally a scheme based on single sign on (sso) [7].
On the other hand, to protect the privacy of health data in the trained model,
only data transmitted through a highly secure mechanism, i.e., 2fa or sso, can
be used to feed the training set. In any case, users must not be aware of which
data are actually chosen to train the machine learning model [5]. To this aim, the
database management system (DBMS) is enabled to internally and transparently
decide not to consider for the training set some transactions.

A simplified model describing how a write transaction is handled by the
considered DBMS is represented by the following process term, whose LTS is
depicted in Figure 2:

WT := lpwd . 0 + τ . (τ . lsso . 0 + τ . l2fa . 0) + (h . lsso . 0 + h . l2fa . 0)

The low-level actions of the form l? express that the transaction is conducted
under the authentication method represented by ?, while the high-level action
h expresses a private interaction with the machine learning module intended to
avoid the transfer of the transaction data to the training set.

The DBMS is ready to manage the transaction through the password-based
mechanism, as described by subterm lpwd . 0. Alternatively, it internally decides
that the transaction data will be passed to the training set and, therefore, one
of the two highly secure mechanisms must be chosen nondeterministically, as
described by subterm τ . (τ . lsso . 0 + τ . l2fa . 0). Otherwise, it can interact with
the machine learning module, while nondeterministically choosing one of the two
highly secure mechanisms, as described by subterm h . lsso . 0 + h . l2fa . 0. This
interaction is intended to confuse the user, who should not infer whether the
transaction data will be used for the training set or not by simply observing
which kind of authentication is required by the DBMS. This privacy condition
is ensured if the interaction with the machine learning module does not interfere
with the low-level view of the system perceived by the user, which can be verified
as a noninterference property.
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Fig. 2. LTS underlying WT
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lsso l2fa
τ τ

lsso l2fa
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Fig. 3. LTSs of the low-level views of WT : WT \ AH (left) and WT/AH (right)

As far as ≈-based noninterference is concerned, WT does not leak any in-
formation from high level to low level. Indeed, the system is SBSNNI and hence
also BNDC and BSNNI by virtue of Theorem 1. First, by observing Figure 3, it
is easy to see that WT \ AH ≈ WT /AH. The weak bisimulation relating the
two low-level views of WT is given by the following partition of the state space:

{{s1, r1}, {s2, r2}, {s3, r3, r′3}, {s4, r4, r′4}, {s5, r5, r′5, s6, r6, r′6, s7, r7}}

Then, by observing that the only high-level action is enabled at the initial state
of WT , it follows that WT is SBSNNI.

4 Security Properties Based on Branching Bisimilarity

While the literature on noninterference mainly concentrates on weak bisimula-
tion semantics, in this section we recast information-flow security definitions in
terms of branching bisimilarity and investigate their characteristics as well as
their relationships with the definitions based on weak bisimilarity.
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The noninterference properties that reformulate the ones in Definition 5 by
replacing the weak bisimilarity check with the branching bisimilarity check are
termed, respectively, BrSNNI, BrNDC, SBrSNNI, and SBrNDC.

4.1 Preservation and Compositionality

All the ≈b-based noninterference properties turn out to be preserved by ≈b.
This means that, whenever a process P1 is secure under any of such properties,
then every other branching bisimilar process P2 is secure too. This is very useful
for automated property verification, as it allows one to work with the process
with the smallest state space among the equivalent ones.

Theorem 2. Let P1,P2 ∈ P and P ∈ {BrSNNI,BrNDC,SBrSNNI,SBrNDC}.
If P1≈bP2, then P1 ∈ P ⇐⇒ P2 ∈ P.

As far as modular verification is concerned, like in the weak bisimilarity
case [15] only the local properties SBrSNNI and SBrNDC are compositional,
i.e., are preserved by the operators of the calculus.

Theorem 3. Let P, P1, P2 ∈ P and P ∈ {SBrSNNI,SBrNDC}. Then:

1. P ∈ P =⇒ a . P ∈ P for all a ∈ Aτ \ AH.
2. P1, P2 ∈ P =⇒ P1 ‖L P2 ∈ P for all L ⊆ A.
3. P ∈ P =⇒ P \L ∈ P for all L⊆AL if P=SBrSNNI, L⊆A if P=SBrNDC.
4. P ∈ P =⇒ P /L ∈ P for all L ⊆ AL.

Note that, like for weak bisimilarity, no property based on branching bisim-
ilarity is compositional with respect to alternative composition. As an exam-
ple, let us consider processes P1 := l . 0 and P2 := h . 0. Both are BrSNNI, as
l . 0 \ {h} ≈b l . 0 / {h} and h . 0 \ {h} ≈b h . 0 / {h}, but P1 + P2 /∈ BrSNNI
because (l . 0 + h . 0) \ {h} ≈b l . 0 6≈b l . 0 + τ . 0 ≈b (l . 0 + h . 0) / {h}. It can be
easily checked that P1 + P2 /∈ P for P = {BrNDC,SBrSNNI,SBrNDC}.

We point out that compositionality with respect to action prefix and hiding,
although limited to non-high actions and low actions respectively, is established
by Theorem 3 but was not investigated in [15] under weak bisimilarity.

4.2 Taxonomy of Security Properties

First of all, the relationships among the ≈b-based noninterference properties
follow the same pattern as Theorem 1.

Theorem 4. SBrNDC ⊂ SBrSNNI ⊂ BrNDC ⊂ BrSNNI.

All the inclusions above are strict as we now show:

– The process τ . l . 0 + l . l . 0 + h . l . 0 is SBrSNNI because (τ . l . 0 + l . l . 0 +
h . l . 0)\{h} ≈b (τ . l . 0+l . l . 0+h . l . 0)/{h} and action h is enabled only by
the initial process so every derivative is BrSNNI. It is not SBrNDC because
the low-level view of the process reached after action h, i.e., (l . 0) \ {h}, is
not branching bisimilar to (τ . l . 0 + l . l . 0 + h . l . 0) \ {h}.
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– The process l . 0+l . l . 0+l . h . l . 0 is BrNDC because, whether there are syn-
chronizations with high-level actions or not, the overall process can always
perform either an l-action or a sequence of two l-actions without incurring
any problematic branching. The process is not SBrSNNI because the reach-
able process h . l . 0 is not BrSNNI.

– The process l . 0+h . h . l . 0 is BrSNNI due to (l . 0+h . h . l . 0)\{h} ≈b (l . 0+
h . h . l . 0)/{h}, but is not BrNDC due to (((l . 0+h . h . l . 0) ‖{h}(h . 0))/{h})
\ {h} 6≈b (l . 0 + h . h . l . 0) \ {h} as (l . 0 + h . h . l . 0) \ {h} behaves as l . 0.

Secondly, we observe that all the ≈b-based noninterference properties listed in
Theorem 4 imply the corresponding properties listed in Definition 5 due to the
fact that ≈b is finer than ≈ [21].

Theorem 5. The following properties hold:

1. BrSNNI ⊂ BSNNI.
2. BrNDC ⊂ BNDC.
3. SBrSNNI ⊂ SBSNNI.
4. SBrNDC ⊂ SBNDC.

All the inclusions above are strict due to the following result.

Theorem 6. Let P1, P2 ∈ P be such that P1 ≈ P2 but P1 6≈b P2. If P1 and P2

do not include high-level actions, then Q ∈ {P1 +h . P2, P2 +h . P1} is such that:

1. Q ∈ BSNNI but Q /∈ BrSNNI.
2. Q ∈ BNDC but Q /∈ BrNDC.
3. Q ∈ SBSNNI but Q /∈ SBrSNNI.
4. Q ∈ SBNDC but Q /∈ SBrNDC.

An alternative strategy to explore the differences between ≈ and ≈b with
respect to B/BrSNNI and SB/BrSNNI is to consider the two τ -axioms τ . x+x =
τ . x and a . (τ . x+ y) + a . x = a . (τ . x+ y) for ≈ [34]. The strategy is inspired
by the initial remarks in [21], where it is noted that the two mentioned axioms
are not valid for ≈b and are responsible for the lack of distinguishing power of ≈
over τ -branching processes. For each axiom, the strategy consists of constructing
a pair of new processes from the ones equated in the axiom, such that they are
weakly bisimilar by construction but not branching bisimilar. Then from this
pair of processes we define a new process P such that P \ AH and P /AH are
isomorphic to the constructed processes.

Theorem 7. From τ . x + x = τ . x it is possible to construct P ∈ P such that
P ∈ BSNNI but P /∈ BrSNNI and P ∈ SBSNNI but P /∈ SBrSNNI.

Theorem 8. From a . (τ . x+ y) + a . x = a . (τ . x+ y) it is possible to construct
P ∈ P such that P ∈ BSNNI but P /∈ BrSNNI and P ∈ SBSNNI but P /∈
SBrSNNI.
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BSNNI

BNDC

SBSNNI

SBNDC

BrSNNI

BrNDC

SBrSNNI

SBrNDC

Fig. 4. Taxonomy of security properties based on weak and branching bisimilarities

Based on the results in Theorems 1, 4, and 5, the diagram in Figure 4 summa-
rizes the inclusions among the various noninterference properties, where P → Q
means that P is strictly included in Q. The missing arrows in the diagram,
witnessing incomparability, are justified by the following counterexamples:

– SBNDC vs. SBrSNNI. The process τ . l . 0 + l . l . 0 + h . l . 0 is BrSNNI as
τ . l . 0 + l . l . 0 ≈b τ . l . 0 + l . l . 0 + τ . l . 0. It is also SBrSNNI because every
reachable state does not enable any more high-level actions. However it is
not SBNDC, because after the process has performed the high-level action h
it can perform a single action l, while the original process with the restriction
on high-level actions can go down a path where it performs two l-actions.
On the other hand, the process Q mentioned in Theorem 6 is SBNDC but
neither BrSNNI nor SBrSNNI.

– SBSNNI vs. BrNDC. The process l . h . l . 0 + l . 0 + l . l . 0 is BrSNNI as
l . 0 + l . 0 + l . l . 0 ≈b l . τ . l . 0 + l . 0 + l . l . 0. In particular, the subpro-
cesses l . τ . l . 0 and l . l . 0 are equated by virtue of the other axiom of weak
bisimilarity, a . τ . x = a . x, which holds also for branching bisimilarity. The
same process is also BrNDC as it includes only one high-level action, hence
the only possible high-level strategy coincides with the check conducted by
BrSNNI. However, the process is not SBSNNI because of the reachable pro-
cess h . l . 0, which is not BSNNI. On the other hand, the process Q mentioned
in Theorem 6 is SBSNNI but not BrSNNI and, therefore, cannot be BrNDC.

– BNDC vs. BrSNNI. The process l . 0 + h1 . h2 . l . 0 is not BNDC (see Sec-
tion 2.3), but it is BrSNNI as l . 0 ≈b l . 0 + τ . τ . l . 0. In contrast, the pro-
cess Q mentioned in Theorem 6 is both BSNNI and BNDC, but not BrSNNI.

It is worth noting that the strongest property based on weak bisimilarity
(SBNDC) and the weakest property based on branching bisimilarity (BrSNNI)
are incomparable. The former is a very restrictive property because it requires a
local check every time a high-level action is performed, while the latter requires
a check only on the initial state. On the other hand, as shown in Theorem 6 it
is very easy to construct processes that are secure under properties based on ≈
but not on ≈b, due to the minimal number of high-level actions in Q.
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5 Noninterference in Reversible Processes

As anticipated, we use reversible computing to motivate the study of branching-
bisimilarity-based noninterference properties. To this aim, we now recall from [11]
back-and-forth bisimilarity and its relationship with standard bisimilarity.

An LTS represents a reversible process if each of its transitions is seen as
bidirectional. This means that any transition can be undone and that any undone
transition can be redone. When going backward, it is of paramount importance
to respect causality. While this is straightforward for sequential processes, it is
not obvious for concurrent ones, because the last performed action is the first
one to be undone but this action may not necessarily be identifiable uniquely in
the presence of concurrency.

Consider for example a process that can perform action a in parallel with
action b. This process can be represented as a diamond-like LTS where from
the initial state an a-transition and a b-transition depart, which are respectively
followed by a b-transition and an a-transition, both of which reach the final
state. Suppose that action a completes before action b, so that the a-transition
is executed before the b-transition. Once in the final state, either the b-transition
is undone before the a-transition, or the a-transition is undone before the b-
transition. Both options are causally consistent, as a and b are independent of
each other, but only the former is history preserving too.

The history-preserving option is the one that was addressed in [11] in order to
study reversible processes in an interleaving setting. To accomplish this, strong
and weak bisimulations were redefined as binary relations between histories,
formalized below as runs, instead of states. The resulting behavioral equivalences
are respectively called strong and weak back-and-forth bisimilarities in [11].

Definition 6. A sequence ξ = s0
a1−→ s1

a2−→ s2 . . . sn−1
an−→ sn is called a path

from state s0 of length n ∈ N. We let first(ξ) = s0 and last(ξ) = sn; the empty
path is indicated with ε. We denote by Path(s) the set of paths from state s.

Definition 7. A pair ρ = (s, ξ) is called a run from state s iff ξ ∈ Path(s),
in which case we let path(ρ) = ξ, first(ρ) = first(ξ), last(ρ) = last(ξ), with
first(ρ) = last(ρ) = s when ξ = ε. We denote by Run(s) the set of runs from
state s.

Definition 8. Let ρ = (s, ξ) ∈ Run(s) and ρ′ = (s′, ξ′) ∈ Run(s′):

– Their composition ρρ′ = (s, ξξ′) ∈ Run(s) is defined iff last(ρ) = first(ρ′).

– We write ρ
a−→ ρ′ iff there exists ρ′′ = (s, s

a−→ s′) with s = last(ρ) such that
ρ′ = ρρ′′.

In the behavioral equivalences of [11], for the LTS (S,A,−→) the set R of its
runs is considered in lieu of the set S of its states.

Definition 9. Let (S,A,−→) be an LTS and s1, s2 ∈ S. We say that s1 and s2
are strongly back-and-forth bisimilar, written s1 ∼bf s2, iff ((s1, ε), (s2, ε)) ∈ B
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for some strong back-and-forth bisimulation B. A symmetric binary relation B
over R is a strong back-and-forth bisimulation iff, whenever (ρ1, ρ2) ∈ B, then
for all actions a ∈ A:

– whenever ρ1
a−→ ρ′1, then ρ2

a−→ ρ′2 with (ρ′1, ρ
′
2) ∈ B;

– whenever ρ′1
a−→ ρ1, then ρ′2

a−→ ρ2 with (ρ′1, ρ
′
2) ∈ B.

Definition 10. Let (S,A,−→) be an LTS and s1, s2 ∈ S. We say that s1 and s2
are weakly back-and-forth bisimilar, written s1 ≈bf s2, iff ((s1, ε), (s2, ε)) ∈ B
for some weak back-and-forth bisimulation B. A symmetric binary relation B
over R is a weak back-and-forth bisimulation iff, whenever (ρ1, ρ2) ∈ B, then:

– whenever ρ1
τ−→ ρ′1, then ρ2

τ∗

==⇒ ρ′2 with (ρ′1, ρ
′
2) ∈ B;

– whenever ρ′1
τ−→ ρ1, then ρ′2

τ∗

==⇒ ρ2 with (ρ′1, ρ
′
2) ∈ B;

– whenever ρ1
a−→ ρ′1 for a ∈ A\{τ}, then ρ2

τ∗

==⇒ a−→ τ∗

==⇒ ρ′2 with (ρ′1, ρ
′
2) ∈ B;

– whenever ρ′1
a−→ ρ1 for a ∈ A\{τ}, then ρ′2

τ∗

==⇒ a−→ τ∗

==⇒ ρ2 with (ρ′1, ρ
′
2) ∈ B.

In [11] it was shown that strong back-and-forth bisimilarity coincides with
strong bisimilarity. Surprisingly, weak back-and-forth bisimilarity does not coin-
cide with weak bisimilarity. Instead, it coincides with branching bisimilarity.

Theorem 9. Let (S,A,−→) be an LTS and s1, s2 ∈ S. Then:

– s1 ∼bf s2 iff s1 ∼ s2.
– s1 ≈bf s2 iff s1 ≈b s2.

As a consequence, the properties BrSNNI, BrNDC, SBrSNNI, and SBrNDC
do not change if ≈b is replaced by ≈bf . This allows us to study noninterference
properties for reversible systems by using ≈b in a standard process calculus like
the one of Section 2.2, without having to decorate executed actions like in [37]
or store them into stack-based memories like in [9].

6 Use Case: DBMS Transactions – Part II

The example provided in Section 3 is useful to illustrate the limitations of weak
bisimilarity when investigating potential covert channels in reversible systems.

It turns out that WT \AH 6≈b WT /AH, i.e., WT is not BrSNNI, and hence
not even BrNDC, SBrSNNI, and SBrNDC by virtue of Theorem 4. As can be
seen in Figure 3, the reason is that, if WT/AH performs the leftmost τ -action
and hence moves to state r′3, from which the only executable action is lsso , then
according to the definition of branching bisimilarity WT \ AH can either:

1. stay idle, but from that state WT \AH can then perform actions other than
lsso that cannot be matched on the side of WT/AH;
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2. perform two τ -actions thereby reaching state s3, but the traversed state s2
is not branching bisimilar to the initial state of WT/AH.

In a standard model of execution, where the computation can proceed only
forward, the distinguishing power of branching bisimilarity may be considered
too severe, as no practical covert channel actually occurs and the system can
be considered noninterfering as shown in Section 3. Indeed, a low-level user has
no possibility of distinguishing the internal move performed by WT/AH and
leading to lsso . 0 from the sequence of internal moves performed by WT \ AH
and leading to lsso . 0 as well. This motivates the fact that, historically, weak
bisimilarity has been preferred in the setting of noninterference.

Now we know that, if we replace the branching bisimulation semantics with
the weak back-and-forth bisimulation semantics, nothing changes about the out-
come of noninterference verification. Assuming that the DBMS allows transac-
tions to be reversed, it is instructive to discuss why BrSNNI is not satisfied by
following the formalization of the weak back-and-forth bisimulation semantics
provided in Section 5.

After WT/AH performs the run (r1, (r1
τ−→ r′3

lsso−→ r′5)), process WT \AH can

respond by performing the run (s1, (s1
τ−→ s2

τ−→ s3
lsso−→ s5)). If either process

goes back by undoing lsso , then the other one can undo lsso as well and the
states r′3 and s3 are reached. However, if WT \AH goes further back by undoing

s2
τ−→ s3, then WT/AH can either:

– undo r1
τ−→ r′3, but in this case r1 enables action lpwd while s2 does not;

– stay idle, but in this case r′3 enables only lsso , while s2 can go down the path

s2
τ−→ s4

l2fa−→ s6 as well.

This line of reasoning immediately allows us to reveal a potential covert
channel under reversible computing. In fact, let us assume that the transaction
modeled by WT is not only executed forward, but also enables backward compu-
tations triggered, e.g., whenever debugging mode is activated. This may happen
in response to some user-level malfunctioning, which may be due, for instance, to
the authentication operation or to the transaction execution. As formally shown
above, if the action lsso performed just after the high-level interaction is undone,
then the system enables again the execution of the action lpwd . This is motivated
in our example by the fact that, in any case, the transaction data will not be
transferred to the training set, so that any kind of authentication is admissible.
On the other hand, this is not possible by undoing the action lsso departing
from state r3 in WT/AH, because in such a case the transaction data must be
protected through a highly secure mechanism. In other words, by reversing the
computation the low-level user can become aware of the fact that the transaction
data are feeding the training set or not.

In the literature, there are several reverse debuggers working in this way like,
e.g., UndoDB [13], a Linux-based interactive time-travel debugger that can han-
dle multiple threads and their backward execution. For instance, it is integrated
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within the DBMS SAP HANA [1] in order to reduce time-to-resolution of soft-
ware failures. In our example, by virtue of the observations conducted above, if
the system is executed backward just after performing lsso , a low-level user can
decide whether a high-level action had occurred before or not, thus revealing a
covert channel. Such a covert channel is completely concealed during the forward
execution of the system and is detected only when the system is executed back-
ward. More in general, this may happen when the reverse debugger is activated
by virtue of some unexpected event (e.g., segmentation faults, stack overflow
errors, memory corruption) caused intentionally or not, and by virtue of which
some undesired information flow emerges towards the low-level users.

7 Conclusions

Our study of branching-bisimilarity-based noninterference properties has estab-
lished a connection with reversible computing in the sense that those properties,
which we have investigated in a standard process calculus, are directly applica-
ble to reversible systems. To the best of our knowledge, this is the first attempt
of defining noninterference properties relying on branching bisimilarity and of
reasoning about covert channels in reversible systems.

Firstly, we have rephrased in the setting of branching bisimilarity the classical
taxonomy of nondeterministic noninterference properties based on weak bisimi-
larity. This generates an extended taxonomy that is conservative with respect to
the classical one and emphasizes the strictness of certain inclusions as well as the
incomparability of certain properties. In addition, we have studied preservation
and compositionality features of the new noninterference properties.

Secondly, we have shown that potential covert channels arising in reversible
systems cannot be revealed by employing weak bisimulation semantics. Indeed,
the higher discriminating power of branching bisimilarity is necessary to capture
information flows emerging whenever backward computations are admitted. The
correspondence discovered in [11] between branching bisimilarity and weak back-
and-forth bisimilarity confirms the adequacy of our approach.

As for future work, we are planning to further extend the noninterference
taxonomy to include more expressive properties taking into account quantita-
tive aspects of processes [4,25]. Moreover, unlike the corresponding results for
weak-bisimilarity-based noninterference properties, whose proofs rely on the use
of an up-to technique for weak bisimilarity [40], in Theorems 3 and 4 we have
proceeded by induction on the depth of the tree-like LTS underlying the consid-
ered process term, because the up-to techniques for branching bisimilarity [20,14]
seem to be too restrictive with respect to the conditions required by the non-
interference checks. Thus, we would like to study whether there exist suitable
relaxations of the latter techniques so as to be able to reformulate the proofs of
Theorems 3 and 4 accordingly, which would open the way to including recursion
in the language.
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A Proofs of Results

Proof of Theorem 2.
The result derives from the proof of compositionality of ≈b with respect to
the operators needed to define the various information-flow security properties.
Hence, in the following we have to show that ≈b is a congruence with respect to
\ L, /L, and ‖L .

Case 1: \ L. Consider, by hypothesis, a branching bisimulation B such that
(P1, P2) ∈ B. Then, the relation B′ defined as (P ′ \L,Q′ \L) ∈ B′ if and only if
(P ′, Q′) ∈ B is a branching bisimulation too. It is sufficient to consider two cases:

– P ′\L a−→ P ′′\L. In this case it is clear that a /∈ L. By hypothesis if P ′
a−→ P ′′

then there exist Q̄′ and Q′′ such that Q′
τ∗

==⇒ Q̄′
a−→Q′′, with (P ′, Q̄′) ∈ B

and (P ′′, Q′′) ∈ B. Since the restriction operator does not apply to {τ} and

a /∈ L it follows that Q′ \L τ∗

==⇒ Q̄′ \L a−→Q′′ \L, with (P ′ \L, Q̄′ \L) ∈ B′
and (P ′′ \ L,Q′′ \ L) ∈ B′.

– P ′\L τ−→ P ′′\L. By hypothesis, we have that P ′
τ−→ P ′′ and either (P ′′, Q′) ∈

B, or there exist Q̄′ and Q′′ such that Q′
τ∗

==⇒ Q̄′
τ−→Q′′ with (P ′, Q̄′) ∈ B

and (P ′′, Q′′) ∈ B. In the former case it is sufficient to note that, since the
restriction operator does not apply to {τ}, Q′ \L is allowed to stay idle and
(P ′′ \ L,Q′ \ L) ∈ B′. In the latter case we can reason similarly as in the
previous point.

In both cases B′ is a branching bisimulation. The same reasoning applies to
Q′ \ L a−→Q′′ \ L and Q′ \ L τ−→Q′′ \ L.
Case 2: /L. As in the previous case, consider, by hypothesis, a branching bisimu-
lation B such that (P1, P2) ∈ B. Then, the relation B′ defined as (P ′ /L,Q′ /L) ∈
B′ if and only if (P ′, Q′) ∈ B is a branching bisimulation too. There is only

one interesting case: P ′ /L
τ−→ P ′′ /L with P ′

a−→ P ′′ and a ∈ L. By hypoth-

esis there exist Q̄′ and Q′′ such that Q′
τ∗

==⇒ Q̄′
a−→Q′′ with (P ′, Q̄′) ∈ B and

(P ′′, Q′′) ∈ B. Since the hiding operator does not apply to {τ} it follows that

Q′ /L
τ∗

==⇒ Q̄′ /L, with (P ′ /L, Q̄′ /L) ∈ B′, and there exists a τ -transition such

that Q̄′ /L
τ−→Q′′ /L with (P ′′ /L,Q′′ /L) ∈ B′. Hence, the relation B′ is a

branching bisimulation. The same reasoning applies if Q′ /L
τ−→Q′′ /L with

Q′
a−→Q′′.

Case 3: ‖L . Consider, by hypothesis, a branching bisimulation B such that
(P1, P2) ∈ B. Then, the relation B′ defined as (P ′1 ‖LQ,P ′2 ‖LQ) ∈ B′ if and only
if (P ′1, P

′
2) ∈ B, for any process Q and synchronization set L, is a branching bisim-

ulation too. There is only one interesting case: P ′1 ‖LQ
a−→ P ′′1 ‖LQ′ with a ∈ L.

By hypothesis there exist P̄ ′2 and P ′′2 such that P ′2
τ∗

==⇒ P̄ ′2
a−→ P ′′2 with (P ′1, P̄

′
2) ∈

B and (P ′′1 , P
′′
2 ) ∈ B. From this fact we derive P ′2 ‖LQ

τ∗
==⇒ P̄ ′2 ‖LQ

a−→ P ′′2 ‖LQ′,
with (P ′1 ‖LQ, P̄ ′2 ‖LQ) ∈ B′ and (P ′′1 ‖LQ′, P ′′2 ‖LQ′) ∈ B′. Hence, B′ is a

branching bisimulation. The same reasoning applies if P ′2 ‖LQ
a−→ P ′′2 ‖LQ′.
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Proof of Theorem 3.
We divide the proof into two parts. We first prove the result for the SBrSNNI:

1. This point follows from the fact that ≈b is a congruence with respect to the
prefix operator [21] and that a /∈ AH. Because of these two facts, for a given
process P ∈ P we have that if P \ AH ≈b P /AH, then also a . (P \ AH) ≈b
a . (P /AH) and (a . P ) \ AH ≈b (a . P )/AH as the two operators \ and /
do not make any change on the action a. Moreover, all the derivatives of P
satisfy the BrSNNI property by hypothesis.

2. Consider the relation ((P ′1 ‖L P ′2) \ AH, (P ′1 ‖L P ′2) /AH) ∈ B for every P ′1
and P ′2 reachable from P1 and P2 respectively. We need to prove that B is a
branching bisimulation. The only interesting cases are:

– (P ′1 ‖L P ′2)/AH
τ−→ (P ′′1 ‖L P ′2)/AH with P ′1

h−→ P ′′1 , P ′1 /AH
τ−→ P ′′1 /AH

and h /∈ L. By hypothesis P ′1 /AH ≈b P
′
1 \ AH, this implies that:

• Either P ′1\AH ≈b P
′′
1 /AH, in which case it is clear that ((P ′1 ‖L P ′2)\

AH, (P ′′1 ‖L P ′2) /AH) ∈ B because τ /∈ L ∪ AH, so it cannot be a
synchronization action.

• Or P ′1 \ AH
τ

==⇒ P̄ ′1 \ AH
τ−→ P ′′′1 \ AH with P ′1/AH ≈b P̄ ′1 \ AH

and P ′′1 /AH ≈b P ′′′1 \ AH in which case we have that (P ′1 ‖L P ′2) \
AH

τ
==⇒ (P̄ ′1 ‖L P ′2) \ AH

τ−→ (P ′′′1 ‖L P ′2) \ AH, which implies that
((P̄ ′1 ‖L P ′2) \ AH, (P ′1 ‖L P ′2) /AH) ∈ B and also that
((P ′′′1 ‖L P ′2) \ AH, (P ′′1 ‖L P ′2) /AH) ∈ B.

In both cases it follows that B is a branching bisimulation. The same

reasoning applies if (P ′1 ‖L P ′2) /AH
τ−→ (P ′1 ‖L P ′′2 ) /AH with P ′2

h−→ P ′′2 .

– (P ′1 ‖L P ′2) /AH
τ−→ (P ′′1 ‖L P ′′2 ) /AH with P ′1

h−→ P ′′1 , P ′2
h−→ P ′′2 ,

P ′1 /AH
τ−→ P ′′1 /AH, P ′2 /AH

τ−→ P ′′2 /AH. By hypothesis we have that
P ′1 \ AH ≈b P

′
1 /AH and P ′2 \ AH ≈b P

′
2 /AH, this implies that:

• Either P ′i \ AH ≈b P
′′
i /AH with i ∈ {1, 2}, in which case we have

that (P ′1 ‖L P ′2)\AH can stay idle and ((P ′′1 ‖L P ′′2 ) /AH, (P ′1 ‖L P ′2)\
AH) ∈ B.

• Or P ′i \ AH
τ

==⇒ P̄ ′i \ AH
τ−→ P ′′′i \ AH with P ′i/AH ≈b P̄ ′i \ AH and

P ′′i /AH ≈b P
′′′
i \AH, where i ∈ {1, 2}, in which case there exist the

processes (P̄ ′1 ‖L P̄ ′2)\AH and (P ′′′1 ‖L P ′′′2 )\AH such that (P ′1 ‖L P ′2)\
AH

τ∗
==⇒ (P̄ ′1 ‖L P̄ ′2)\AH

τ−→ (P ′′′1 ‖L P ′′′2 )\AH, with ((P ′1 ‖L P ′2) /AH,
(P̄ ′1 ‖L P̄ ′2) \ AH) ∈ B and ((P ′′1 ‖L P ′′2 )/AH, (P ′′′1 ‖L P ′′′2 ) \ AH) ∈ B.

In both cases B satisfies the conditions for branching bisimulation.
3. Since the processes we are considering are not recursive we can treat them

as trees, and hence we can proceed by induction on their depth. In this case
we will proceed by induction on the depth of P . We will prove that if P ∈
SBrSNNI, then P \ L ∈ SBrSNNI:
– If the depth of P is 0 then it has no outgoing transitions and behaves

as 0. This obviously entails the result.
– If the depth of P is n + 1, where n ∈ N, then take any P ′ of depth
n such that P

a−→ P ′. By hypothesis P, P ′ ∈ SBrSNNI and by induc-
tion hypothesis P ′ \ L is SBrSNNI. Hence, we just need to prove that
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(P \ L) \ AH ≈b (P \ L) /AH.

There is only one interesting case: (P \L) /AH
τ−→ (P ′ \L) /AH with τ

obtained by hiding a ∈ AH. Clearly if (P \ L) /AH can perform such τ

then we also have that P /AH
τ−→ P ′ /AH. Since P ∈ SBrSNNI it fol-

lows that P \ AH ≈b P /AH, and by following Definition 4:

• Either P \AH ≈b P
′ /AH, and then from the hypothesis P ′ /AH ≈b

P ′\AH we derive P \AH ≈b P
′\AH and (P \L)\AH ≈b (P ′\L)\AH

and, by induction hypothesis, (P ′ \ L) \ AH ≈b (P ′ \ L) /AH. This

means that in response to (P \ L) /AH
τ−→ (P ′ \ L) /AH we have

that (P \ L) \ AH can stay idle, thus satisfying Definition 4.

• Or there exist P̄ and P ′′ such that P \AH
τ∗

==⇒ P̄ \AH
τ−→ P ′′ \AH

with P /AH ≈b P̄ \AH and P ′ /AH ≈b P
′′ \AH. Since τ cannot be

restricted by \ L we have (P \ L) \ AH
τ∗

==⇒ (P̄ \ L) \ AH
τ−→ (P ′′ \

L)\AH. Since P /AH ≈b P̄ \AH we have P /AH \L ≈b P̄ \AH \L
and, provided that L and AH are disjoint, P \L/AH ≈b P̄ \L\AH.
Moreover, since P ′ /AH ≈b P

′′ \ AH we have, by hypothesis, P ′ \
AH ≈b P

′′ \ AH, and then P ′ \ L \ AH ≈b P
′′ \ L \ AH. Since, by

induction hypothesis, we have P ′ \L \AH ≈b P
′ \L/AH, we derive

P ′ \ L/AH ≈b P
′′ \ L \ AH, thus satisfying Definition 4.

4. The proof follows the same steps as in the previous case related to the
restriction operator.

We now prove the theorem for the property SBrNDC:

1. For this point it is sufficient to observe that a 6∈ AH and that P is SBrNDC.

2. Given the relation B defined as ((P ′1 ‖L P ′2) \ AH, (P ′′1 ‖L P ′′2 ) \ AH) ∈ B
for every P ′1 and P ′2 reachable from P1 and P2, and for every P ′′1 and P ′′2

such that P ′1
h−→ P ′′1 and P ′2

h−→ P ′′2 , we have to prove that B is a branching

bisimulation. The only interesting case is (P ′1 ‖L P ′2) \ AH
l−→ (P ′′′1 ‖L P ′′′2 ) \

AH with l ∈ L, P ′1
l−→ P ′′′1 and P ′2

l−→ P ′′′2 . By hypothesis P ∈ SBrNDC, so
it follows that there exist the processes P̄ ′′1 , P ′′′′1 , P̄ ′′2 , and P ′′′′2 such that

P ′′1
τ∗

==⇒ P̄ ′′1
l−→ P ′′′′1 and P ′′2

τ∗
==⇒ P̄ ′′2

l−→ P ′′′′2 with P ′1 ≈b P̄ ′′1 , P ′2 ≈b P̄ ′′2 ,
P ′′′1 ≈b P

′′′′
1 and P ′′′1 ≈b P

′′′′
1 . Since τ cannot be in L, and hence it cannot be a

synchronization action, it follows that that (P ′′1 ‖L P ′′2 )\AH
τ∗

==⇒ (P̄1
′′ ‖L P̄ ′′2 )\

AH
l−→ (P ′′′′1 ‖L P ′′′′2 ) \ AH with ((P ′1 ‖L P ′2) \ AH, (P̄1

′′ ‖L P̄ ′′2 ) \ AH) ∈ B
and ((P ′′′1 ‖L P ′′′2 ) \ AH, (P ′′′′1 ‖L P ′′′′2 ) \ AH) ∈ B, so that B is a branching
bisimulation.

The reasoning is the same if (P ′′1 ‖L P ′′2 ) \ AH moves first.

3. By hypothesis P ∈ SBrNDC, so for every P ′ reachable from P and for every

P ′′ such that P ′
h−→ P ′′ we have that P ′\AH ≈b P

′′\AH. Furthermore since
≈b is a congruence with respect to the restriction operator (Theorem 2) it
follows that (P ′ \ AH) \ L ≈b (P ′′ \ AH) \ L. This fact holds if and only if
(P ′ \ L) \ AH ≈b (P ′′ \ L) \ AH, which is the desired thesis.
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4. By hypothesis P ∈ SBrNDC, so for every P ′ reachable from P and for ev-

ery P ′′ such that P ′
h−→ P ′′ we have that P ′ \ AH ≈b P

′′ \ AH. Moreover
because of Theorem 4 P is also SBrSNNI, hence P ′/AH ≈b P

′ \ AH and
P ′′/AH ≈b P

′′ \ AH. This fact in turn implies, by transitivity, P ′ /AH ≈b

P ′′ /AH. Since ≈b is a congruence with respect to the hiding operator (The-
orem 2), we have that (P ′ /AH) /L ≈b (P ′′ /AH) /L, which in turn implies
(P ′ /L) /AH ≈b (P ′′ /L) /AH. Finally, because of the compositionality
of SBrSNNI with respect to the hiding operator (Theorem 3) we obtain
(P ′ /L) \ AH ≈b (P ′′ /L) \ AH, which is the desired thesis.

Proof of Theorem 4.
We divide the proof into three parts:

– SBrNDC ⊂ SBrSNNI. We need to prove that for a given P ∈ P, if P ∈
SBrNDC, it follows that for every P ′ reachable from P , P ′ ∈ BrSNNI. Since
the processes we are considering are not recursive we can treat them as trees,
and hence we can proceed by induction on their depth. In this case we will
proceed by induction on the depth of P :
• If the depth of P is 0 then P has no outgoing transitions and it behaves

as 0. This obviously entails that P \ AH ≈b P /AH.
• If the depth of P is n+1 with n ∈ N, then take any P ′ of depth n such that
P

a−→ P ′. By hypothesis, P, P ′ ∈ SBrNDC and by induction hypothesis
P ′ ∈ SBrSNNI. Hence, we just need to prove that P \ AH ≈b P /AH.
There are two cases:

∗ If a /∈ AH then both P \ AH and P /AH can execute a and reach,
respectively, P ′ \AH and P ′ /AH, which are branching bisimilar by
induction hypothesis. Thus Definition 4 is respected.

∗ If a ∈ AH we have that P /AH
τ−→ P ′ /AH, with P

a−→ P ′. By in-
duction hypothesis we have that P ′ \ AH ≈b P ′ /AH, and since
a ∈ AH and P ∈ SBrNDC we have P \ AH ≈b P

′ \ AH. By tran-
sitivity it follows that P \ AH ≈b P ′ /AH which, combined with

P /AH
τ−→ P ′ /AH, determines the condition required by Defini-

tion 4.
The inclusion is strict because of the counterxample discussed in Section 4.

– SBrSNNI ⊂ BrNDC. As in the previous case, we proceed by induction on
the depth of P :
• If the depth of P is 0 then it has no outgoing transitions and it behaves

as 0. This obviously entails that P \ AH ≈b ((P ‖LQ) /L) \ AH.
• If the depth of P is n + 1, with n ∈ N, then take any P ′ of depth n

such that P
a−→ P ′. By hypothesis, P, P ′ ∈ SBrSNNI and by induction

hypothesis P ′ ∈ BrNDC. Hence, we need to prove that P ∈ BrNDC, i.e.,
the relation B defined as (P \ AH, ((P ‖LQ) /L) \ AH) ∈ B, for every
high-level process Q and synchronization set L ∈ AH, is a branching
bisimulation. We need to prove that regardless of what kind of action a
is, whenever it is performed by P \ AH or ((P ‖LQ) /L) \ AH the other
process can respond appropriately respecting the conditions of Defini-
tion 4. We distinguish two cases:
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∗ If a 6∈ AH then both processes can perform it and reach the processes
P ′ \ AH and ((P ′ ‖LQ) /L) \ AH, which are branching bisimilar by
induction hypothesis.

∗ If a ∈ S it means that a is a high level action on which P must
synchronize with Q. Since the actions in S are hidden it follows that
((P ‖LQ) /L) \ AH

τ−→ ((P ′ ‖LQ′) /L) \ AH. By hypothesis P ∈
SBrSNNI so it follows that P \ AH ≈b P /AH and P ′ \ AH ≈b

P ′ /AH. The process P /AH can perform a τ -action and reach P ′ /AH
by hiding a. By induction hypothesis P ′\AH ≈b ((P ′ ‖LQ) /L)\AH
and by transitivity it follows that P ′ /AH ≈b ((P ′ ‖LQ) /L) \ AH.
Therefore, it follows that P \AH can either stay idle, and be branch-
ing bisimilar to P ′ /AH, or there exists a process P̄ \ AH such

that P \ AH
τ∗

==⇒ P̄ \ AH
τ−→ P ′ \ AH with P̄ \ AH ≈b P /AH ≈b

((P ‖LQ) /L)\AH and P ′\AH ≈b P
′ /AH ≈b ((P ′ ‖LQ) /L)\AH.

In both cases the condition of branching bisimulation is respected.

Since in each case, whenever P \ AH or ((P ‖LQ) /L) \ AH perform an
action the other process can respond appropriately it follows that B is a
branching bisimulation.

The inclusion is strict because of the counterxample discussed in Section 4.
– BrNDC ⊂ BrSNNI. For the inclusion it is sufficient to notice that if a process
P ∈ P is BrNDC it means that P \AH ≈b (P ‖LQ) /L) \AH for every high
level process Q and synchronization set L ∈ /AH. In particular, it holds
also for the process Q mimicking, step by the step, the high level behavior
of P , thus being able to synchronize with all the high level actions of P .
Hence, the semantics of ((P ‖LQ) /L) \AH is isomorphic to that of P /AH
and hence the process P satisfies the conditions for BrSNNI. The inclusion
is strict because of the counterxample discussed in Section 4.

Proof of Theorem 6.
The general structure of the discussed processes can be found in Figure 5:

1. Q ∈ BSNNI, Q /∈ BrSNNI. Let B be the weak bisimulation between P1 and
P2 and Q = P1 + h . P2. To prove that Q ∈ BSNNI it is sufficient to notice
that by hypothesis, Q \ AH = P1 and Q/AH = P1 + τ . P2 then, clearly
the bisimulation B′ = B ∪ {(Q \ AH, Q /AH), (Q/AH, Q \ AH)} is again
a weak bisimulation. The only interesting case is the one in which Q/AH
performs a τ -action towards P2. According to the definition of weak bisim-
ulation (Definition 3), Q \ AH can stay idle. Then, it remains to verify that
P1 /AH ≈ P2\AH, which is true by hypothesis. On the other hand, to check
that Q /∈ BrSNNI it is sufficient to notice that if Q/AH performs a τ -action
towards P2 then Q \ AH cannot respond adequately because by hypothesis
even if it stays idle according to the definition of branching bisimulation
(Definition 4) then P1 ≈b P2 must be checked, which is false by hypothesis.

2. Q ∈ BNDC, Q /∈ BrNDC. Since Q ∈ SBSNNI and SBSNNI ⊂ BNDC (Theo-
rem 1) it follows that Q ∈ BNDC. Similarly since Q /∈ BrSNNI and BrNDC
⊂ BrSNNI (Theorem 4) it follows that Q /∈ BrNDC.
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Q

P1 P2

h Q/AH

P1 P2

τ

Q \ AH

P1

Fig. 5. General strategy to produce counterexamples for various security properties

3. Q ∈ SBSNNI, Q /∈ SBrSNNI. Since Q /∈ BrSNNI then it follows that Q /∈
SBrSNNI. To prove that Q ∈ SBSNNI it is sufficient to notice that the only
high level action in Q is performed from the initial state, which is BSNNI,
and hence for every reachable state Q′, Q′ \ AH is isomorphic to Q′ /AH.

4. Q ∈ SBNDC, Q /∈ SBrNDC. To prove both points it is sufficient to notice
that the only high level action in Q is performed from the initial state and
it reaches the process P2, and that Q \ AH corresponds to P1. Since by
hypothesis P1 and P2 do not contain any high level actions, to verify the two
properties it is sufficient to check that P1 ≈ P2 and P1 ≈b P2. By hypothesis,
the former is true and the latter is false, hence the desired result.

An example of processes that satisfy the above theorem is given by the pair in
Figure 6, P1 = τ . l1 . 0 + l2 . 0 and P2 = τ . l1 . 0 + l1 . 0 + l2 . 0, which are weakly
bisimilar but not branching bisimilar (see Figure 1). From these processes it
is possible to construct the process Q = τ . l1 . 0 + l2 . 0 + h . (τ . l1 . 0 + l1 . 0 +
l2 . 0) which is BSNNI, BNDC, SBSNNI, and SBNDC, but not BrSNNI, BrNDC,
SBrSNNI, or SBrNDC.

Proof of Theorem 7.

Consider τ . x+x = τ . x, with x = τ . l1 . 0+τ . l2 . 0 and then add the subprocess
+l3 . 0 to both processes in the equation, thus obtaining the equation l3 . 0 +
τ . (τ . l1 . 0 + τ . l2 . 0) + (τ . l1 . 0 + τ . l2 . 0) = l3 . 0 + τ . (τ . l1 . 0 + τ . l2 . 0), which
holds for weak bisimilarity but not for branching bisimilarity. Now let us define
the process P as l3 . 0 + τ . (τ . l1 . 0 + τ . l2 . 0) + (h . l1 . 0 + h . l2 . 0) (see also
Figure 2, up to renaming of the chosen low level names) for which it holds that
P/AH and P \AH are isomorphic to the two terms of the equation, respectively.
Hence, by construction it follows that P is BSNNI but not BrSNNI. Furthermore
to prove that P ∈ SBSNNI it is sufficient to notice that since the only high level
action is performed from the initial state, which is BSNNI, it follows that for
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P1

τ l2

l1

P2

τ l2l1

l1

Q

τ l2

l1

τ l2l1

l1

h

Fig. 6. Example of a pair of processes from which it is possible to construct a new pro-
cess not secure for branching bisimulation-based information-flow security properties

P

hτ

l2l3 τ

l2

l1

Fig. 7. Counterexample constructed from the τ -axiom a . (τ . x+y) = a . (τ . x+y)+a . x

every other reachable state P ′, we have that P ′ \ AH is isomorphic to P ′ /AH.

Proof of Theorem 8.
Consider a . (τ . x+ y) + a . x = a . (τ . x+ y), instantiate a as τ , let x = l2 . 0 and
y = l3 . 0, and then add the subprocess +l1 . 0 to both terms in the equation, thus
obtaining the equation l1 . 0+ τ . (τ . l2 . 0+ l3 . 0)+ τ . l2 . 0 = l1 . 0+ τ . (τ . l2 . 0+
l3 . 0), which holds for weak bisimilarity but does not hold for branching bisimi-
larity. Now let us define the process P as l1 . 0+ τ . (τ . l2 . 0+ l3 . 0)+h . l2 . 0 (see
Figure 7) for which it holds that P /AH and P \ AH are isomorphic to the two
terms of the equation, respectively. Hence, by construction it follows that P is
BSNNI but not BrSNNI. For SBSNNI the reasoning is the same as Theorem 7.
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