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Abstract. Noninterference theory supports the analysis of secure com-
putations in multi-level security systems. In the nondeterministic setting,
the approach to noninterefence based on weak bisimilarity has turned
out to be inadequate for reversible systems. This drawback can be over-
come by employing a more expressive semantics, which has been recently
proven to be branching bisimilarity. In this paper we extend the result to
reversible systems that feature both nondeterminism and probabilities.
We recast noninterference properties by adopting probabilistic variants
of weak and branching bisimilarities. Then we investigate a taxonomy
of those properties as well as their preservation and compositionality
aspects, along with a comparison with the nondeterministic taxonomy.
The adequacy of the resulting noninterference theory for reversible sys-
tems is illustrated via a probabilistic smart contract example.

1 Introduction

The notion of noninterference was introduced in [22] to reason about the way in
which illegitimate information flows can occur in multi-level security systems due
to covert channels from high-level agents to low-level ones. Since the first defini-
tion, conceived for deterministic systems, a lot of work has been done to extend
the approach to a variety of more expressive domains, such as nondeterministic
systems, systems in which quantitative aspects – like time and probability – play
a central role, and reversible systems; see, e.g., [16,1,31,24,47,39,5,2,25,15].

Noninterference guarantees that low-level agents cannot infer from their ob-
servations what high-level ones are doing. Regardless of its specific definition,
noninterference is closely tied to the notion of behavioral equivalence [19] be-
cause the idea is to compare the system behavior with high-level actions being
prevented and the system behavior with the same actions being hidden. A natu-
ral framework in which to study system behavior is given by process algebra [32].
In this setting, weak bisimilarity has been employed in [16] both to reason for-
mally about covert channels and illegitimate information flows and to study a
classification of noninterference properties for nondeterministic systems.

In [15] we have extended noninterference analysis to reversible systems. Re-
versibility has started to gain attention in computing since it has been shown that
reversible computations may achieve lower levels of energy consumption [27,6].
The applications of reversibility range from biochemical reaction modeling [37,38]
and parallel discrete-event simulation [34,41] to robotics [30], wireless communi-
cations [45], fault-tolerant systems [13,48,28,46], and program debugging [18,29].



2 A. Esposito, A. Aldini, M. Bernardo

As shown in [15], weak bisimilarity is not adequate to study noninterference
in a reversible context. A more appropriate semantics turns out to be branching
bisimilarity [21] because it coincides with weak back-and-forth bisimilarity [14].
The latter behavioral equivalence requires processes to be able to mimic each
other’s behavior stepwise not only when performing actions in the standard
forward direction, but also when undoing those actions in the backward direction.

In this paper we extend the approach of [15] to a probabilistic setting, so
as to address noninterference properties in a framework featuring nondetermin-
istic, probabilistic, and reversible behaviors. The starting point for our study
is given by the probabilistic noninterference properties developed in [2] over a
probabilistic process calculus based on the generative and reactive models of [20].
In addition to probabilistic choice, in [2] other operators such as parallel com-
position and hiding are decorated with a probabilistic parameter, so that the
selection among all the actions executable by a process is fully probabilistic.
Moreover, the considered behavioral equivalence is akin to the weak probabilis-
tic bisimilarity of [4], which is known to coincide with probabilistic branching
bisimilarity over fully probabilistic processes.

Here we move to a more expressive model, combining nondeterminism and
probabilities, called the strictly alternating model [23]. States are divided into
nondeterministic and probabilistic, while transitions are divided into action tran-
sitions – each labeled with an action and going from a nondeterministic state
to a probabilistic one – and probabilistic transitions – each labeled with a prob-
ability and going from a probabilistic state to a nondeterministic one. A more
flexible variant, called the non-strictly alternating model [35], allows for action
transitions also between two nondeterministic states.

Following [23] we build a process calculus that, unlike the one in [2], does not
need probabilistic parameters for operators other than probabilistic choice. As for
behavioral equivalences, we introduce a weak probabilistic bisimilarity inspired
by the one in [35] and adopt the probabilistic branching bisimilarity developed
in [3] for the non-strictly alternating model. By using these two equivalences,
we recast the noninterference properties of [16,17,15] to study their preserva-
tion and compositionality aspects, as well as to provide a taxonomy similar to
those in [16,15]. Unlike [2], the resulting noninterference properties do not need
additional universal quantifications over probabilistic parameters. Reversibility
then comes into play by extending some results of [14] to the strictly alternating
model. In particular, a probabilistic variant of weak back-and-forth bisimilarity
is shown to coincide with the probabilistic branching bisimilarity of [3].

This paper is organized as follows. In Section 2 we recall the strictly alter-
nating model, various notions of bisimilarity for it, and a process calculus based
on it. In Section 3 we recast in our probabilistic framework a selection of nonin-
terference properties. In Section 4 we study their characteristics as well as their
taxonomy and relate it to the nondeterministic one of [15]. In Section 5 we show
that weak probabilistic back-and-forth bisimilarity coincides with probabilistic
branching bisimilarity. In Section 6 we discuss the example of a lottery imple-
mented through a probabilistic smart contract. Section 7 concludes the paper.
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2 Background Definitions and Results

In this section, we recall the strict alternating model of [23] (Section 2.1) along
with weak probabilistic bisimilarity and probabilistic branching bisimilarity (Sec-
tion 2.2). Then we introduce a probabilistic process language inspired by [23]
through which we will express bisimulation-based information-flow security prop-
erties accounting for nondeterminism and probabilities (Section 2.3).

2.1 Probabilistic Labeled Transition Systems

To represent the behavior of a process featuring nondeterminism and probabili-
ties, we use a probabilistic labeled transition system. This is a variant of a labeled
transition system [26] whose transitions are labeled with actions or probabili-
ties. Since we adopt the strictly alternating model of [23], we distinguish between
nondeterministic and probabilistic states. The transitions of the former are la-
beled only with actions, while the transitions of the latter are labeled only with
probabilities. Every action transition leads from a nondeterministic state to a
probabilistic one, while every probabilistic transition leads from a probabilistic
state to a nondeterministic one. In the following, we denote by Sn (resp. Sp) the
set of nondeterministic (resp. probabilistic) states. The action set Aτ contains a
set A of visible actions and a single action τ representing unobservable actions.

Definition 1. A probabilistic labeled transition system (PLTS) is a triple
(S,Aτ ,−→) where S = Sn ∪ Sp with Sn ∩ Sp = ∅ is an at most countable set of
states, Aτ = A∪{τ} is a countable set of actions, and −→ = −→a ∪ −→p is the
transition relation, where −→a ⊆ Sn×Aτ ×Sp is the action transition relation
whilst −→p ⊆ Sp × R]0,1] × Sn is the probabilistic transition relation satisfying∑

(s,p,s′)∈−→p
p ∈ {0, 1} for all s ∈ Sp.

An action transition (s, a, s′) is written s
a−→a s

′ while a probabilistic transi-

tion (s, p, s′) is written s
p−→p s

′, where s is the source state and s′ is the target
state. We say that s′ is reachable from s, written s′ ∈ reach(s), iff s′ = s or there
exists a sequence of finitely many transitions such that the target state of each
of them coincides with the source state of the subsequent one, with the source
of the first transition being s and the target of the last one being s′.

2.2 Bisimulation Equivalences

Bisimilarity [33,32] identifies processes that are able to mimic each other’s be-
havior stepwise. In the strictly alternating model, this extends to probabilistic
behavior [23]. Let µ(s, C) =

∑
s

p−→p s′,s′∈C
p be the cumulative probability with

which state s reaches a state in C; note that µ(s, C) = 0 when s is not a proba-
bilistic state or C does not contain any nondeterministic state.

Definition 2. Let (S,Aτ ,−→) be a PLTS. We say that s1, s2 ∈ S are strongly
probabilistic bisimilar, written s1 ∼p s2, iff (s1, s2) ∈ B for some strong proba-
bilistic bisimulation B. An equivalence relation B ⊆ (Sn × Sn) ∪ (Sp × Sp) is a
strong probabilistic bisimulation iff, whenever (s1, s2) ∈ B, then:
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– For each s1
a−→a s

′
1 there exists s2

a−→a s
′
2 with (s′1, s

′
2) ∈ B.

– µ(s1, C) = µ(s2, C) for all equivalence classes C ∈ Sn/B.

In [35] a strong probabilistic bisimilarity more liberal than the one in [23]
allows a nondeterministic state and a probabilistic state to be identified when
the latter concentrates all of its probabilistic mass in reaching the former. Think,
e.g., of a probabilistic state whose outgoing transitions all reach the same non-
deterministic state. To this purpose the following function is introduced in [35]:

prob(s, s′) =


p if s ∈ Sp ∧

∑
s

p′−→p s′
p′ = p > 0

1 if s ∈ Sn ∧ s′ = s

0 otherwise

and is then lifted to a set C of states by letting prob(s, C) =
∑
s′∈C prob(s, s′).

Definition 3. Let (S,Aτ ,−→) be a PLTS. We say that s1, s2 ∈ S are strongly
mix-probabilistic bisimilar, written s1 ∼mp s2, iff (s1, s2) ∈ B for some strong
mix-probabilistic bisimulation B. An equivalence relation B over S is a strong
mix-probabilistic bisimulation iff, whenever (s1, s2) ∈ B, then:

– If s1, s2 ∈ Sn, for each s1
a−→a s

′
1 there exists s2

a−→a s
′
2 with (s′1, s

′
2) ∈ B.

– prob(s1, C) = prob(s2, C) for all equivalence classes C ∈ S/B.

Weak bisimilarity [32] is additionally capable of abstracting from unobserv-
able actions. In a probabilistic setting, it is also desirable to be able to abstract
from probabilistic transitions in certain circumstances. Let s==⇒ s′ mean that
s′ ∈ reach(s) and, when s′ 6= s, there exists a finite sequence of transitions from
s to s′ in which τ -transitions and probabilistic transitions alternate. Moreover
â

==⇒ stands for ==⇒ if a = τ or ==⇒ a−→a ==⇒ if a 6= τ . The weak probabilistic
bisimilarity below is inspired by the one in [35]. The constraint s1, s2 ∈ Sn is no
longer necessary in the first clause due to the use of ==⇒.

Definition 4. Let (S,Aτ ,−→) be a PLTS. We say that s1, s2 ∈ S are weakly
probabilistic bisimilar, written s1 ≈p s2, iff (s1, s2) ∈ B for some weak proba-
bilistic bisimulation B. An equivalence relation B over S is a weak probabilistic
bisimulation iff, whenever (s1, s2) ∈ B, then:

– For each s1
a−→a s

′
1 there exists s2

â
==⇒ s′2 with (s′1, s

′
2) ∈ B.

– prob(s1, C) = prob(s2, C) for all equivalence classes C ∈ S/B.

Branching bisimilarity [21] is finer than weak bisimilarity as it preserves the
branching structure of processes even when abstracting from τ -actions – see
the condition (s1, s̄2) ∈ B in the definition below. We adopt the probabilistic
branching bisimilarity developed in [3] for the non-strictly alternating model.

Definition 5. Let (S,Aτ ,−→) be a PLTS. We say that s1, s2 ∈ S are proba-
bilistic branching bisimilar, written s1 ≈pb s2, iff (s1, s2) ∈ B for some proba-
bilistic branching bisimulation B. An equivalence relation B over S is a proba-
bilistic branching bisimulation iff, whenever (s1, s2) ∈ B, then:
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s1

τ ba1

a

s2

τ b
1

a

Fig. 1. States s1 and s2 are related by ≈p but distinguished by ≈pb

– For each s1
a−→a s

′
1:

• either a = τ and (s′1, s2) ∈ B;

• or there exists s2 ==⇒ s̄2
a−→a s

′
2 with (s1, s̄2) ∈ B and (s′1, s

′
2) ∈ B.

– prob(s1, C) = prob(s2, C) for all equivalence classes C ∈ S/B.

An example that highlights the higher distinguishing power of probabilistic
branching bisimilarity is given in Figure 1, where every PLTS is depicted as
a directed graph in which vertices represent states and action- or probability-
labeled edges represent transitions. The initial states s1 and s2 of the two PLTSs
are weakly probabilistic bisimilar but not probabilistic branching bisimilar. The
only transition that distinguishes s1 and s2 is the a-transition of s1, which can
be mimicked by s2 according to weak probabilistic bisimilarity by performing
the τ -transition, the 1-transition, and lastly the a-transition. However, s2 can-
not respond in the same way according to probabilistic branching bisimilarity.
The reason is that the state reached after the τ -transition and the 1-transition
should be probabilistic branching bisimilar to s1, which is not the case because
of the b-transition departing from s1.

2.3 A Probabilistic Process Calculus with High and Low Actions

We now introduce a probabilistic process calculus to formalize the security prop-
erties of interest. To address two security levels, actions are divided into high and
low. We partition the set of visible actions as A = AH ∪AL, with AH ∩AL = ∅,
where AH is the set of high-level actions, ranged over by h, and AL is the set of
low-level actions, ranged over by l. We recall that Aτ = A ∪ {τ}.

The overall set of process terms is denoted by P = Pn∪Pp, ranged over by E.
The set Pn of nondeterministic process terms, ranged over by N , is obtained
by considering typical operators from [32,9]. The set Pp of probabilistic process
terms, ranged over by P , is obtained by taking a probabilistic choice operator
similar to the one in [23]. In addition to the usual operators for sequential, alter-
native, and parallel compositions – with the last one taken from [9] so as not to
hide the synchronization between high-level actions – we include restriction [32]
and hiding [9] as they are necessary to formalize noninterference properties.

The syntax for P is:
N ::= 0 | a . P | N +N | N ‖LN | N \ L | N /L
P ::=

⊕
i∈I [pi]Ni | P ‖L P | P \ L | P /L
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Prefix a . P
a−→a P

Choice
N1

a−→a P1

N1 +N2
a−→a P1

N2
a−→a P2

N1 +N2
a−→a P2

Parallel
N1

a−→a P1 a /∈ L
N1 ‖LN2

a−→a P1 ‖L[1]N2

N2
a−→a P2 a /∈ L

N1 ‖LN2
a−→a [1]N1 ‖L P2

Sync
N1

a−→a P1 N2
a−→a P2 a ∈ L

N1 ‖LN2
a−→a P1 ‖L P2

Restriction
N

a−→a P a /∈ L
N \ L a−→a P \ L

Hiding
N

a−→a P a ∈ L
N /L

τ−→a P /L

N
a−→a P a /∈ L

N /L
a−→a P /L

Table 1. Operational semantic rules for nondeterministic processes

where:

– 0 is the terminated process.

– a . , for a ∈ Aτ , is the action prefix operator describing a process that
initially performs action a.

– + is the alternative composition operator expressing a nondeterministic
choice between two processes based on their initially executable actions.

–
⊕

i∈I [pi] , for I finite and not empty, is the generalized probabilistic com-
position operator expressing a probabilistic choice among finitely many pro-
cesses each with probability pi ∈ R]0,1] and such that

∑
i∈I pi = 1. We will

use [p1]N1⊕ [p2]N2 as a shorthand for
⊕

i∈{1,2}[pi]Ni and we will often omit
the probability prefix when it is equal to 1.

– ‖L , for L ⊆ A, is the parallel composition operator allowing two pro-
cesses to proceed independently on any action not in L and forcing them to
synchronize on every action in L as well as on probabilistic transitions [23].

– \L, for L ⊆ A, is the restriction operator, which prevents the execution of
actions belonging to L.

– /L, for L ⊆ A, is the hiding operator, which turns all the executed actions
belonging to L into the unobservable action τ .

The operational semantic rules for the process language are shown in Tables 1
and 2 for nondeterministic and probabilistic processes respectively. Together they
produce the PLTS (P,Aτ ,−→) where −→ = −→a ∪ −→p, −→a ⊆ Pn×Aτ×Pp,
and −→p ⊆ Pp × R]0,1] × Pn, to which the bisimulation equivalences defined in
Section 2.2 are applicable. Note that in the rules Parallel the nondeterministic
subprocess that does not move has to be prefixed by [1] to make it probabilistic
within the overall target process [23].
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ProbChoice
j ∈ I⊕

i∈I [pi]Ni
pj−→pNj

ProbSync
P1

p1−→pN1 P2
p2−→pN2

P1 ‖L P2
p1·p2−→ pN1 ‖LN2

ProbRestriction
P

p−→pN

P \ L p−→pN \ L

ProbHiding
P

p−→pN

P /L
p−→pN /L

Table 2. Operational semantic rules for probabilistic processes

3 Probabilistic Information-Flow Security Properties

In this section we recast the definitions of noninteference properties of [16,17,15] –
Nondeterministic Non-Interference (NNI) and Non-Deducibility on Composition
(NDC) – by taking as behavioral equivalence each of the two weak bisimilarities
of Section 2.2. The intuition behind noninterference in a two-level security system
is that, if a group of agents at the high security level performs some actions, the
effect of those actions should not be seen by any agent at the low security level.
To formalize this, the restriction and hiding operators play a central role.

Definition 6. Let E ∈ P and ≈ ∈ {≈p,≈pb}:

– E ∈ BSNNI≈ ⇐⇒ E \ AH ≈ E /AH.
– E ∈ BNDC≈ ⇐⇒ for all F ∈ P such that every F ′ ∈ reach(F ) can execute

only actions in AH and for all L ⊆ AH, E \ AH ≈ ((E ‖L F ) /L) \ AH.
– E ∈ SBSNNI≈ ⇐⇒ for all E′ ∈ reach(E), E′ ∈ BSNNI≈ .
– E ∈ P BNDC≈ ⇐⇒ for all E′ ∈ reach(E), E′ ∈ BNDC≈ .

– E ∈ SBNDC≈ ⇐⇒ for all E′ ∈ reach(E) and for all E′′ such that E′
a−→aE

′′

for some a ∈ AH, E′ \ AH ≈ E′′ \ AH.

Historically, one of the first and most intuitive proposals has been the
Bisimulation-based Strong Nondeterministic Non-Interference (BSNNI). Basi-
cally, it is satisfied by any process E that behaves the same when its high-level
actions are prevented (as modeled by E \ AH) or when they are considered as
hidden, unobservable actions (as modeled by E /AH). The equivalence between
these two low-level views of E states that a low-level agent cannot distinguish
the high-level behavior of the system. For instance, in our probabilistic setting,
a low-level agent that observes the execution of l in E = l . 0 + l . ([0.5]h . l1 . 0⊕
[0.5]h . l2 . 0)+ l . ([0.5]l1 . 0⊕ [0.5]l2 . 0) cannot infer anything about the execution
of h. Indeed, after the execution of l, what the low-level agent observes is either
a deadlocked state or the execution of either l1 or l2, both with probability 0.5.
Formally, E \ {h} ≈ E / {h} because l . 0 + l . 0 + l . ([0.5]l1 . 0 ⊕ [0.5]l2 . 0) ≈
l . 0 + l . ([0.5]τ . l1 . 0⊕ [0.5]τ . l2 . 0) + l . ([0.5]l1 . 0⊕ [0.5]l2 . 0).
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BSNNI≈ is not powerful enough to capture covert channels that derive from
the behavior of the high-level agent interacting with the system. For instance,
l . 0+l . ([0.5]h1 . l1 . 0⊕[0.5]h2 . l2 . 0)+l . ([0.5]l1 . 0⊕[0.5]l2 . 0) is BSNNI≈ for the
same reason discussed above. However, a high-level agent could decide to enable
only h1, thus turning the low-level view of the system into l . 0+ l . ([0.5]τ . l1 . 0⊕
[0.5]0)+l . ([0.5]l1 . 0⊕[0.5]l2 . 0), which is clearly distinguishable from l . 0+l . 0+
l . ([0.5]l1 . 0 ⊕ [0.5]l2 . 0), as in the former after the execution of l the low-level
agent can never observe l2. To overcome such a limitation, the most obvious solu-
tion consists of checking explicitly the interaction between the system and every
possible high-level agent F . The resulting property is the Bisimulation-based
Non-Deducibility on Composition (BNDC), which features a universal quantifi-
cation over F executing only high-level actions.

To circumvent the verification problems related to such a quantifier, several
properties have been proposed that are stronger than BNDC. They all express
some persistency conditions, stating that the security checks have to be extended
to all the processes reachable from a secure one. Three of the most representative
among such properties are: the variant of BSNNI that requires every reachable
process to satisfy BSNNI itself, called Strong BSNNI (SBSNNI); the variant
of BNDC that requires every reachable process to satisfy BNDC itself, called
Persistent BNDC (P BNDC); and Strong BNDC (SBNDC), which requires the
low-level view of every reachable process to be the same before and after the ex-
ecution of any high-level action, meaning that the execution of high-level actions
must be completely transparent to low-level agents. In the nondeterministic case,
P BNDC and SBSNNI have been proven to be equivalent in [17], for the weak
bisimilarity variants, and in [15], for the branching bisimilarity variants. In the
next section we will see that this is the case also in our probabilistic setting.

4 Characteristics of Probabilistic Security Properties

In this section we investigate preservation and compositionality characteristics
of the noninterference properties introduced in the previous section (Section 4.1)
as well as the inclusion relationships between the ones based on ≈p and the ones
based on ≈pb (Section 4.2). Then we relate the resulting probabilistic taxonomy
with the nondeterministic one of [15] (Section 4.3).

4.1 Preservation and Compositionality

All the probabilistic noninterference properties turn out to be preserved by the
bisimilarity employed in their definition. This means that, whenever a process E1

is secure under any of such properties, then every other equivalent process E2 is
secure too, provided that the considered equivalence is the one in the definition
of the property. This is very useful for automated property verification, as it
allows one to work with the process with the smallest state space among the
equivalent ones. These results immediately follow from the next lemma, which
states that ≈p and ≈pb are congruences with respect to action prefix, parallel



Noninterference Analysis of Reversible Probabilistic Systems 9

composition, restriction, and hiding (similar results are present in [35,3] for the
non-strictly alternating model).

Lemma 1. Let E,E1, E2 ∈ P, ≈ ∈ {≈p,≈pb}, and L ⊆ A. If E1 ≈ E2, then:

– a .E1 ≈ a .E2 when E1, E2 ∈ Pp.
– E1 ‖LE ≈ E2 ‖LE when E1, E2, E ∈ Pn or E1, E2, E ∈ Pp.
– E1 \ L ≈ E2 \ L.
– E1 /L ≈ E2 /L.

Theorem 1. Let E1,E2 ∈ P, ≈ ∈ {≈p,≈pb}, and P ∈ {BSNNI≈ ,BNDC≈ ,
SBSNNI≈ ,P BNDC≈ ,SBNDC≈}. If E1≈E2, then E1 ∈ P ⇐⇒ E2 ∈ P.

As far as modular verification is concerned, like in the nondeterministic
case [16,15] only the local properties SBSNNI≈ , P BNDC≈ , and SBNDC≈ are
compositional, i.e., are preserved by some operators of the calculus in certain
circumstances. Compositionality with respect to parallel composition is limited,
for SBSNNI≈pb

and P BNDC≈pb
, to the case in which no synchronization can

take place among high-level actions. This is analogous to the nondeterministic
case [15], where the same limitation holds for the branching bisimulation-based
SBSNNI and P BNDC. A similar limitation applies to hiding.

Theorem 2. Let E,E1, E2 ∈ P, ≈ ∈ {≈p,≈pb}, P ∈ {SBSNNI≈ ,P BNDC≈ ,
SBNDC≈}. Then:

1. E ∈ P =⇒ a .E ∈ P for all a ∈ AL ∪ {τ} when E ∈ Pp.
2. E1,E2∈P =⇒ E1‖LE2∈P for all L⊆AL if P∈{SBSNNI≈pb

,P BNDC≈pb
}

or L ⊆ A if P ∈ {SBSNNI≈p
,P BNDC≈p

,SBNDC≈p
,SBNDC≈pb

}, when
E1, E2 ∈ Pn or E1, E2 ∈ Pp.

3. E ∈ P =⇒ E \ L ∈ P for all L ⊆ A.
4. E ∈ P =⇒ E /L ∈ P for all L ⊆ AL.

As far as parallel composition is concerned, the compositionality of
SBSNNI≈pb

holds only for all L ⊆ AL. For example, both E1 := h . [1]0+l1 . [1]0+
τ . [1]0 and E2 := h . [1]0 + l2 . [1]0 + τ . [1]0 are SBSNNI≈pb

, but E1 ‖{h}E2

is not because the transition (E1 ‖{h}E2) /AH
τ−→a ([1]0 ‖{h}[1]0) /AH arising

from the synchronization between the two h-actions cannot be matched by
(E1 ‖{h}E2) \ AH in the probabilistic branching bisimulation game. As a mat-
ter of fact, the only two possibilities are (E1 ‖{h}E2) \ AH==⇒ (E1 ‖{h}E2) \
AH

τ−→a ([1]0 ‖{h}[1]E2) \ AH
1−→p (0 ‖{h}E2) \ AH

τ−→a ([1]0 ‖{h}[1]0) \ AH
as well as (E1 ‖{h}E2) \ AH==⇒ (E1 ‖{h}E2) \ AH

τ−→a ([1]E1 ‖{h}[1]0) \ AH
1−→p (E1 ‖{h} 0) \ AH

τ−→a ([1]0 ‖{h}[1]0) \ AH but neither ([1]0 ‖{h}[1]E2) \ AH
nor ([1]E1 ‖{h}[1]0) \ AH is probabilistic branching bisimilar to (E1 ‖{h}E2) \
AH when l1 6= l2. Note that (E1 ‖{h}E2) /AH ≈ (E1 ‖{h}E2) \ AH because

(E1 ‖{h}E2) /AH
τ−→a ([1]0 ‖{h}[1]0) /AH is matched by (E1 ‖{h}E2) \ AH

==⇒ ([1]0 ‖{h}[1]0) \ AH. As noted in [15], it is not only a matter of the higher
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discriminating power of ≈pb with respect to ≈p. If we used the parallel com-
position operator of [32], which turns into τ the synchronization of two actions
thus combining communication with hiding, then the parallel composition of E1

and E2 with restriction onAH would be able to respond with a single τ -transition
reaching the parallel composition of 0 and 0 with restriction on AH.

Like for the nondeterministic case [16,15], none of the considered noninterfer-
ence properties is compositional with respect to alternative composition. As an
example, let us consider the processes E1 := l . 0 and E2 := h . 0, where we omit
[1] before 0. Assuming ≈ ∈ {≈p,≈pb}, both are BSNNI≈ , as l . 0\{h} ≈ l . 0 / {h}
and h . 0\{h} ≈ h . 0 / {h}, but E1 +E2 /∈ BSNNI≈ because (l . 0 +h . 0)\{h} ≈
l . 0 6≈ l . 0 + τ . 0 ≈ (l . 0 + h . 0) / {h}. It can be easily checked that E1 +E2 /∈ P
for P = {BNDC≈ ,SBSNNI≈ ,SBNDC≈}.

4.2 Taxonomy of Security Properties

First of all, as in the nondeterministic case the properties listed in Section 3
are increasingly finer. This result holds for both the ≈p-based and ≈pb-based
noninterference properties.

Theorem 3. Let ≈ ∈ {≈p,≈pb}. Then:
SBNDC≈ ⊂ SBSNNI≈ = P BNDC≈ ⊂ BNDC≈ ⊂ BSNNI≈

All the inclusions are strict as we now show (we omit every occurrence of [1]):

– The process τ . l . 0 + l . l . 0 + h . l . 0 is SBSNNI≈ (resp. P BDNC≈) because
(τ . l . 0 + l . l . 0 + h . l . 0) \ {h} ≈ (τ . l . 0 + l . l . 0 + h . l . 0)/{h} and ac-
tion h is enabled only by the initial process so every derivative is BSNNI≈
(resp. BNDC≈). It is not SBNDC≈ because the low-level view of the pro-
cess reached after action h, i.e., (l . 0) \ {h}, is neither weak probabilistic nor
probabilistic branching bisimilar to (τ . l . 0 + l . l . 0 + h . l . 0) \ {h}.

– The process l . 0 + l . l . 0 + l . h . l . 0 is BNDC≈ because, whether there are
synchronizations with high-level actions or not, the overall process can al-
ways perform either an l-action or a sequence of two l-actions. The process
is not SBSNNI≈ (resp. P BNDC≈) because the reachable process h . l . 0 is
not BSNNI≈ (resp. BNDC≈).

– The process l . 0+h . h . l . 0 is BSNNI≈ due to (l . 0+h . h . l . 0)\{h} ≈ (l . 0+
h . h . l . 0)/{h}, but is not BNDC≈ due to (((l . 0+h . h . l . 0) ‖{h}(h . 0))/{h})
\ {h} 6≈ (l . 0 + h . h . l . 0) \ {h} as (l . 0 + h . h . l . 0) \ {h} behaves as l . 0.

Secondly, we observe that all the ≈pb-based noninterference properties imply
the corresponding ≈p-based ones, due to the fact that ≈pb is finer than ≈p.

Theorem 4. The following inclusions hold:

1. BSNNI≈pb
⊂ BSNNI≈p

.
2. BNDC≈pb

⊂ BNDC≈p
.

3. SBSNNI≈pb
⊂ SBSNNI≈p.

4. P BNDC≈pb
⊂ P BNDC≈p

.
5. SBNDC≈pb

⊂ SBNDC≈p
.
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BSNNI≈p

BNDC≈p

SBSNNI≈p

P BNDC≈p

SBNDC≈p

BSNNI≈pb

BNDC≈pb

SBSNNI≈pb

P BNDC≈pb

SBNDC≈pb

Fig. 2. Taxonomy of security properties based on probabilistic bisimilarities

All the inclusions above are strict due to the following result; for an example
of E1 and E2 below, see Figure 1.

Theorem 5. Let E1, E2 ∈ Pn be such that E1 ≈p E2 but E1 6≈pb E2. If no
high-level actions occur in E1 and E2, then F ∈ {E1 + h . [1]E2, E2 + h . [1]E1}
is such that:

1. F ∈ BSNNI≈p
but F /∈ BSNNI≈pb

.
2. F ∈ BNDC≈p

but F /∈ BNDC≈pb
.

3. F ∈ SBSNNI≈p
but F /∈ SBSNNI≈pb

.
4. F ∈ P BNDC≈p

but F /∈ P BNDC≈pb
.

5. F ∈ SBNDC≈p
but F /∈ SBNDC≈pb

.

Based on the results in Theorems 3 and 4, the diagram in Figure 2 summa-
rizes the inclusions among the various noninterference properties, where P → Q
means that P is strictly included in Q. These inclusions follow the same pattern
as the nondeterministic case [15]. The missing arrows in the diagram, witnessing
incomparability, are justified by the following counterexamples:

– SBNDC≈p vs. SBSNNI≈pb
. The process τ . l . 0+l . l . 0+h . l . 0 is BSNNI≈pb

as
τ . l . 0+l . l . 0 ≈pb τ . l . 0+l . l . 0+τ . l . 0. It is also SBSNNI≈pb

because every
reachable process does not enable any more high-level actions. However, it is
not SBNDC≈p

, because after executing the high-level action h it can perform
a single action l, while the original process with the restriction on high-
level actions can go along a path where it performs two l-actions. On the
other hand, the process F mentioned in Theorem 5 is SBNDC≈p but neither
BSNNI≈pb

nor SBSNNI≈pb
.

– SBSNNI≈p vs. BNDC≈pb
. The process l . h . l . 0+ l . 0+ l . l . 0 is BSNNI≈pb

as
l . 0 + l . 0 + l . l . 0 ≈pb l . τ . l . 0 + l . 0 + l . l . 0. The same process is BNDC≈pb

too as it includes only one high-level action, hence the only possible high-
level strategy coincides with the check conducted by BSNNI≈pb

. However,



12 A. Esposito, A. Aldini, M. Bernardo

the process is not SBSNNI≈p
because of the reachable process h . l . 0, which

is not BSNNI≈p
. On the other hand, the process F mentioned in Theorem 5

is SBSNNI≈p but not BSNNI≈pb
and, therefore, cannot be BNDC≈pb

.
– BNDC≈p vs. BSNNI≈pb

. The process l . 0+ l . ([0.5]h1 . l1 . 0⊕ [0.5]h2 . l2 . 0)+
l . ([0.5]l1 . 0 ⊕ [0.5]l2 . 0) is BSNNI≈pb

as discussed in Section 3, but it is
not BNDC≈p

. In contrast, the process F mentioned in Theorem 5 is both
BSNNI≈p

and BNDC≈p
, but not BSNNI≈pb

.

As for the nondeterministic case [15], the strongest property based on weak
probabilistic bisimilarity (SBNDC≈p

) and the weakest property based on proba-
bilistic branching bisimilarity (BSNNI≈pb

) are incomparable too. The former is a
very restrictive property because it requires a local check every time a high-level
action is performed, while the latter requires a check only on the initial state.
On the other hand, as shown in Theorem 5, it is very easy to construct processes
that are secure under properties based on ≈p but not on ≈pb, due to the minimal
number of high-level actions in F .

4.3 Relating Nondeterministic and Probabilistic Taxonomies

We now compare our probabilistic taxonomy to the nondeterministic one of [15].
In the following, we assume that ≈ denotes the weak bisimilarity of [32] and ≈b

the branching bisimilarity of [21]. These can be obtained by restricting the def-
initions in Section 2.2 to nondeterministic states and by ignoring the clause
involving the prob function. Since we are considering probabilistic choices as in-
ternal, given a process E ∈ P we can obtain its nondeterministic variant, denoted
by nd(E), by replacing each probability prefix by τ and each probabilistic choice
operator by a nondeterministic choice operator. The next proposition states that
if two processes are equivalent according to any of the weak bisimilarities in Sec-
tion 2.2, then their nondeterministic variants are equivalent according to the
corresponding nondeterministic bisimilarity.

Proposition 1. Let E1, E2 ∈ P. Then:

– E1 ≈p E2 =⇒ nd(E1) ≈ nd(E2).
– E1 ≈pb E2 =⇒ nd(E1) ≈b nd(E2).

The inverse does not hold. Consider, e.g., the processes E1 and E2 defined
as [0.5]l1 . 0⊕ [0.5]l2 . 0 and [0.8]l1 . 0⊕ [0.2]l2 . 0 respectively. Clearly, E1 6≈p E2

(resp. E1 6≈pb E2) but their nondeterministic counterparts are identical: τ . l1 . 0+
τ . l2 . 0. An immediate consequence is that if a process is secure under any of the
probabilistic noninterference properties in Section 3, then its nondeterministic
variant is secure under the corresponding nondeterministic property. Therefore,
the taxonomy in Figure 2 extends to the left the one in [15], as each of the
property in Section 3 is finer than its nondeterministic counterpart.

Corollary 1. Let E ∈ P,≈pr ∈ {≈p,≈pb},≈nd ∈ {≈,≈b}, Ppr ∈ {BSNNI≈pr ,
BNDC≈pr

,SBSNNI≈pr
,P BNDC≈pr

,SBNDC≈pr
}, and Pnd ∈ {BSNNI≈nd

,
BNDC≈nd

,SBSNNI≈nd
,P BNDC≈nd

,SBNDC≈nd
}. Then:

E ∈ Ppr =⇒ nd(E) ∈ Pnd
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5 Weak Probabilistic Back-and-Forth Bisimilarity

In [14] it was shown that, for nodeterministic processes, weak back-and-forth
bisimilarity coincides with branching bisimilarity. In this section we extend that
result to probabilistic processes, so that probabilistic branching bisimilarity can
be employed in the noninterference analysis of reversible processes.

A PLTS (S,Aτ ,−→) represents a reversible process if each of its transitions
is seen as bidirectional. When going backward, it is of paramount importance to
respect causality, i.e., the last performed transition must be the first one to be
undone. Following [14] we set up an equivalence that enforces not only causality
but also history preservation. This means that, when going backward, a process
can only move along the path representing the history that brought the process
to the current state, even in the presence of concurrency. To accomplish this, the
equivalence has to be defined over computations, not over states, and the notion
of transition has to be suitably revised. We start by adapting the notation of the
nondeterministic setting of [14] to our strictly alternating probabilistic setting.
We use ` for a label in Aτ ∪ R]0,1[.

Definition 7. A sequence ξ = (s0, `1, s1)(s1, `2, s2) . . . (sn−1, `n, sn) ∈ −→ ∗ is
a path of length n from state s0. We let first(ξ) = s0 and last(ξ) = sn; the empty
path is indicated with ε. We denote by path(s) the set of paths from s.

Definition 8. A pair ρ = (s, ξ) is called a run from state s iff ξ ∈ path(s),
in which case we let path(ρ) = ξ, first(ρ) = first(ξ) = s, last(ρ) = last(ξ), with
first(ρ) = last(ρ) = s when ξ = ε. We denote by run(s) the set of runs from
state s. Given ρ = (s, ξ) ∈ run(s) and ρ′ = (s′, ξ′) ∈ run(s′), their composition

ρρ′ = (s, ξξ′) ∈ run(s) is defined iff last(ρ) = first(ρ′) = s′. We write ρ
`−→ ρ′

iff there exists ρ′′ = (s̄, (s̄, `, s′)) with s̄ = last(ρ) such that ρ′ = ρρ′′; note that
first(ρ) = first(ρ′). Moreover prob is lifted in the expected way.

In the considered PLTS we work with the set U of runs in lieu of S. Fol-
lowing [14], given a run ρ we distinguish between outgoing and incoming action
transitions of ρ during the weak bisimulation game. Like in [8], this does not
apply to probabilistic transitions, which are thus considered only in the for-
ward direction. If the labels of incoming probabilistic transitions were taken
into account, then the nondeterministic state a . 0 and the probabilistic state
[p]a . 0⊕ [1− p]a . 0 would be told apart because a . 0 in the former state has no
incoming probabilistic transitions while a . 0 in the latter state is reached with
cumulative probability 1. Even a simpler clause requiring for any two related
states that they both have incoming probabilistic transitions, or neither has,
would distinguish the two states exemplified before.

Definition 9. Let (S,Aτ ,−→) be a PLTS. We say that s1, s2 ∈ S are weakly
probabilistic back-and-forth bisimilar, written s1 ≈pbf s2, iff ((s1, ε), (s2, ε)) ∈ B
for some weak probabilistic back-and-forth bisimulation B. An equivalence rela-
tion B over U is a weak probabilistic back-and-forth bisimulation iff, whenever
(ρ1, ρ2) ∈ B, then:
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– For each ρ1
a−→a ρ

′
1 there exists ρ2

â
==⇒ ρ′2 with (ρ′1, ρ

′
2) ∈ B.

– For each ρ′1
a−→a ρ1 there exists ρ′2

â
==⇒ ρ2 with (ρ′1, ρ

′
2) ∈ B.

– prob(ρ1, C) = prob(ρ2, C) for all equivalence classes C ∈ U/B.

We show that weak probabilistic back-and-forth bisimilarity over runs coin-
cides with the forward-only probabilistic branching bisimilarity over states of [3]
recalled in Section 2.2. We proceed by adopting the proof strategy followed in [14]
to show that their weak back-and-forth bisimilarity over runs coincides with
the forward-only branching bisimilarity over states of [21]. Therefore we start
by proving that ≈pbf satisfies the cross property. This means that, whenever
two runs of two ≈pbf -equivalent states can perform a sequence of finitely many
τ -transitions alternating with probabilistic transitions, such that each of the two
target runs ends in a nondeterministic state and is ≈pbf -equivalent to the source
run of the other sequence, then the two target runs are ≈pbf -equivalent to each
other as well.

Lemma 2. Let s1, s2 ∈ S with s1 ≈pbf s2. For all ρ′1, ρ
′′
1 ∈ run(s1) such that

ρ′1 ==⇒ ρ′′1 with last(ρ′′1) ∈ Sn and for all ρ′2, ρ
′′
2 ∈ run(s2) such that ρ′2 ==⇒ ρ′′2

with last(ρ′′2) ∈ Sn, if ρ′1 ≈pbf ρ
′′
2 and ρ′′1 ≈pbf ρ

′
2 then ρ′′1 ≈pbf ρ

′′
2 .

Theorem 6. Let s1, s2 ∈ S. Then s1 ≈pbf s2 ⇐⇒ s1 ≈pb s2.

Therefore the properties BSNNI≈pb
, BNDC≈pb

, SBSNNI≈pb
, P BNDC≈pb

,
and SBNDC≈pb

do not change if ≈pb is replaced by ≈pbf . This allows us to
study noninterference properties for reversible probabilistic systems by using ≈pb

in a probabilistic process calculus like the one of Section 2.3, without having to
resort to external memories [12] of communication keys [36].

6 Use Case: Probabilistic Smart Contracts

Consider a lottery implemented through a probabilistic smart contract [11] based
on a public blockchain, like, e.g., Ethereum. Initially, anyone can buy a ticket
by invoking a dedicated smart contract function that allows the user to pay a
predefined amount for the ticket. When the lottery is closed, anyone can invoke
another smart contract function, call it draw(), in which a random number x,
between 1 and the number of sold tickets, is drawn and the entire amount of
money is paid to the owner of ticket x.

In this setting, we model and verify two known vulnerabilities discussed
in [11]. The former will allow us to emphasize the need for passing from the
nondeterministic noninterference analysis to the probabilistic one. Indeed, the
critical point is the randomization process of the function draw(), which is not
natively available to smart contract programmers. A widely adopted approach
consists of using the timestamp of the block including the transaction of the draw
invocation as the seed for random number generation. However, this approach
is vulnerable in the presence of an adversary that buys a ticket and succeeds in
mining the block above by using a timestamp that allows the adversary to win
the lottery.
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Since both honest users and the adversary employ the same functionalities of
the smart contract, we consider the invocations of the smart contract functions
as publicly observable low-level actions. To distinguish the interactions of the
adversary from those of honest users, such actions are guarded by a high-level
action h whenever they refer to the adversary. In this way, by looking at the
public behavior of the smart contract, a low-level observer can detect whether
or not the functioning of the lottery can be compromised by malicious behaviors
of the adversary.

For simplicity, we assume there are only two users buying one ticket each,
where the adversary buys ticket 0 while the honest user buys ticket 1. This sce-
nario can be modeled in our probabilistic framework as follows:

τ . draw . ([0.5]address0 .win0 . 0 ⊕ [0.5]address1 .win1 . 0) +
h . draw . ([1− ε]address0 .win0 . 0 ⊕ [ε]address1 .win1 . 0)

The extraction procedure is conducted either by the honest user (action τ) or
by the adversary (see the unique high-level action h). In both cases, the action
draw, modeling the invocation of function draw(), leads to the probabilistic ex-
traction of the ticket, the determination of the winner (actions addressi), and
the notification to the winner (actions wini).

By comparing the two branches, we note that in the former the probabilistic
extraction is fair, while in the latter the adversary is able to pilot the extrac-
tion at will (ε > 0 is considered to be negligible). However, it is easy to see
that this interfering behavior cannot be detected in a purely nondeterministic
setting, as the two branches are identical if we abstract away from probabilities
(after the initial choice, they are both mapped to the nondeterministic process
address0 .win0 . 0 +address1 .win1 . 0). As a consequence, all the nondeterminis-
tic security properties are satisfied for both bisimilarities. In the probabilistic set-
ting, the interference is captured by the BSNNI≈pr property, for≈pr ∈ {≈p,≈pb},
in analogy with the counterexample discussed after Proposition 1.

While this example confirms that the detection of probabilistic covert chan-
nels requires probabilistic security properties, the second vulnerability we present
emphasizes the difference between the two probabilistic bisimilarities. The crit-
ical point is the mining procedure. Even assuming that the seed governing the
probabilistic extraction cannot be manipulated, if the miner invoking the func-
tion draw() is malicious and is going to lose the lottery, that miner can ignore the
related block and force the mining failure. Hence, with respect to the previous
example, we use additional low-level actions denoting the mining process (action
mine) and the successful writing to the blockchain (action success) or its failure
(action failure). We model the described behavior through the following process:

draw . ([0.5]address0 .win0 .mine . (success . 0 + τ . failure . 0)⊕
[0.5]address1 .win1 .

(mine . (success . 0 + τ . failure . 0) +
h . (mine . (success . 0 + τ . failure . 0) +

mine . failure . 0)))
As mentioned before, the adversary cannot manipulate the seed to affect the
extraction. Hence, the probabilistic extraction is fair in any case. However, the
adversary can try to interfere if the result of the extraction makes him lose (i.e.,
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it is different from ticket 0). On the one hand, consider the behavior after action
win0, which models the block mining procedure. The action mine expresses that
the mining process is initiated by a honest miner, as no high-level interaction
occurred. The subsequent choice is between the successful mining (action suc-
cess) and an event not depending on the miner (action τ) that causes the failure
of the mining (action failure). Notice that there might be several causes for such
a failure (e.g., a wrong transaction in the block or a fork in the blockchain).

On the other hand, in the behavior after action win1, the adversary decides to
compete in the mining procedure (see the choice between the action mine, leading
to the same behavior surveyed above, and the high-level action h, modeling that
the mining procedure may be governed by the adversary). If h is chosen, the
race between a honest miner and the adversary is solved nondeterministically
through a choice between two actions mine. In fact, such a nondeterministic
choice models a real-world scenario in which all the potential miners try to solve
the cryptographic puzzle needed to add a block to the blockchain. The former
branch leads to the behavior of the honest miner, while the latter enables the
malicious behavior by leading immediately to the action failure.

Formally, the process is SBNDC≈p
. In particular, it is sufficient to observe

that we have only one occurrence of the high-level action h and that the subpro-
cess mine . (success . 0 + τ . failure . 0) – denoting the low-level view before exe-
cuting h – is weakly probabilistic bisimilar to the subprocess mine . (success . 0+
τ . failure . 0) + mine . failure . 0 – denoting the low-level view after executing h.

However, the process is not BSNNI≈pb
. The reason is that the subprocess

mine . (success . 0 + τ . failure . 0) is not probabilistic branching bisimilar to the
subprocess:

mine . (success . 0 + τ . failure . 0) +
τ . (mine . (success . 0 + τ . failure . 0) + mine . failure . 0)

This depends on the fact that mine . (success . 0+τ . failure . 0) is not probabilistic
branching bisimilar to mine . (success . 0 + τ . failure . 0) + mine . failure . 0, while
they are equated by ≈p. Indeed, the former process cannot respond whenever
the latter executes the right-hand action mine leading to a state where only the
action failure is possible.

We employ also the back-and-forth interpretation of the BSNNI≈pb
check

to show the result above in the setting of reversible systems. In the subprocess
including the hidden high-level action h, notice that undoing the action failure
of the branch mine . failure . 0 reveals that the failure has been forced by the ad-
versary. If, instead, we consider the subprocess mine . (success . 0+ τ . failure . 0),
we observe that undoing the action failure reveals that the failure has been
the consequence of a choice involving also the action success. Hence, it was not
deliberately caused by the miner. This is sufficient to expose the behavior of
the adversary. In other words, in a reversible system allowing for execution flow
debugging, it is possible to capture the malicious behavior of the adversary.

To conclude, the noninterference analysis based on the strongest ≈p-based
property of Figure 2 fails to reveal the covert channel caused by the adversary,
while the weakest ≈pb-based property of Figure 2 can detect it.
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7 Conclusions

In this paper we have investigated a taxonomy of noninterference properties
for processes featuring both nondeterminism and probabilities, along with the
preservation and compositionality aspects of such properties. The two behavioral
equivalences that we have considered for those noninterference properties are a
weak probabilistic bisimilarity inspired by the one in [35] and the probabilistic
branching bisimilarity of [3].

Since we have shown that the latter coincides with a probabilistic variant of
the weak back-and-forth bisimilarity of [14], the noninterference properties based
on the latter can be applied to reversible probabilistic systems, thereby extending
our previous results in [15] for reversible systems that are fully nondeterministic.
Our work also extends the one of [2], where generative-reactive probabilistic
systems are considered, in a way that avoids additional universal quantifications
over probabilistic parameters in the formalization of noninterference properties.

The nondeterministic and probabilistic model that we have employed is the
strictly alternating one of [23], where states are divided into nondeterministic
and probabilistic. Each of the former may have action-labeled transitions to
probabilistic states, while each of the latter may have probability-labeled tran-
sitions to nondeterministic states (in the non-strictly alternating variant of [35]
action transitions are admitted also between two nondeterministic states). An
alternative model is the non-alternating one given by Segala simple probabilistic
automata [42], where every transition is labeled with an action and goes from a
state to a probability distribution over states. Regardless of the adopted model,
it is worth observing that some characteristics seem to be independent from
probabilities, as witnessed by almost all the counterexamples in Section 4.

Both the alternating model and the non-alternating one – whose relation-
ships have been studied in [44] – encompass nondeterministic models, generative
models, and reactive models as special cases. Since branching bisimulation se-
mantics plays a fundamental role in reversible systems [14,7], in this paper we
have adopted the alternating model because of the probabilistic branching bisim-
ulation congruence developed for it in [3] along with equational and logical char-
acterizations and a polynomial-time decision procedure. In the non-alternating
model, for which branching bisimilarity has been just defined in [43], weak vari-
ants of bisimulation semantics require – to achieve transitivity – that a single
transition be matched by a convex combination of several transitions – corre-
sponding to the use of randomized schedulers – which causes such equivalences
not to be decidable in polynomial time [10].

As far as future extensions are concerned, we would like to include recursion in
the considered process language. This requires identifying a suitable probabilistic
variant of the up-to technique for weak bisimilarity [40], to be used in the proof
of certain results in place of proceeding by induction on the depth of the tree-like
PLTS underlying the considered process term.
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A Proofs of Results

Proof of Lemma 1. We first prove the result for the ≈p-based properties. Let
B be a weak probabilistic bisimulation witnessing E1 ≈p E2:

– The symmetric relation B′ = {(a . F1, a . F2) | (F1, F2) ∈ B} is a weak proba-
bilistic bisimulation too. The result immediately follows from the fact that if
a . F1

a−→a F1 then a . F2 ==⇒ a−→a ==⇒ F2 and (F1, F2) ∈ B. Since a . F1 and
a . F2 are nondeterministic processes and (F1, F2) ∈ B, it follows that for all
equivalence classes C ∈ P/B′, prob(a . F1, C) = prob(a . F2, C).

– The symmetric relation B′ = {(F1 ‖L F, F2 ‖L F ) | (F1, F2) ∈ B ∧ F ∈ P} is
a weak probabilistic bisimulation too. There are three cases:

• If F1 ‖L F
a−→a F

′
1 ‖L F ′ with a ∈ L, then F1

a−→a F
′
1 (and F

a−→a F
′)

and hence there exists a process F ′2 such that F2 ==⇒ a−→a ==⇒ F ′2 with

(F ′1, F
′
2) ∈ B. Therefore F2 ‖L F ==⇒ a−→a ==⇒ F ′2 ‖L F ′ with (F ′1 ‖L F ′,

F ′2 ‖L F ′) ∈ B′.
• If F1 ‖L F

a−→a F
′
1 ‖L[1]F with a /∈ L, then F1

a−→a F
′
1 and hence there

exists a process F ′2 such that F2 ==⇒ a−→a ==⇒ F ′2 (or F2 ==⇒ F ′2 when

a = τ) with (F ′1, F
′
2) ∈ B. Therefore F2 ‖L F ==⇒ a−→a ==⇒ F ′2 ‖L[1]F

with (F ′1 ‖L[1]F, F ′2 ‖L[1]F ) ∈ B′.
• The case F1 ‖L F

a−→a [1]F1 ‖L F ′ with a /∈ L is trivial.

As far as probabilities are concerned, we start by observing that that for all
R1, R2, R

′
1, R

′
2 ∈ P and for all L ⊆ A, prob(R1 ‖LR2, R

′
1 ‖LR′2) = prob(R1, R

′
1)·

prob(R2, R
′
2). IfR1 andR2 are nondeterministic processes, then prob(R1, R

′
1)·

prob(R2, R
′
2) = 1 if R1 = R′1 and R2 = R′2 and prob(R1, R

′
1) ·prob(R2, R

′
2) =

0 otherwise. From this fact it follows that prob(R1 ‖LR2,
R′1 ‖LR′2) = 1 if R1 ‖LR2 = R′1 ‖LR′2 , i.e., R1 = R′1 and R2 = R′2, and
prob(R1 ‖LR2, R

′
1 ‖LR′2) = 0 otherwise. If R1 and R2 are both probabilis-

tic processes, we have that prob(R1, R
′
1) =

∑
R1

p−→p R′1
p and prob(R2, R

′
2) =∑

R2
q−→p R′2

q and hence prob(R1, R
′
1) · prob(R2, R

′
2) =

∑
R1

p−→p R′1
p

·
∑
R2

q−→p R′2
q =

∑
R1

p−→p R′1

∑
R2

q−→p R′2
p · q, which, according to the rules

in Table 2, is equal to prob(R1 ‖LR2, R
′
1 ‖LR′2). With this result we ob-

serve that given an arbitrary equivalence class D = [S ‖L F ′]B, for S ∈ Pn,
prob(F1 ‖L F,D) =

∑
S̄ ‖L F̄ ′∈D prob(F1 ‖L F, S̄ ‖L F̄ ′) =∑

S̄ ‖L F̄ ′∈D prob(F1, S̄) · prob(F̄ , F̄ ′) (note that in this case F1, F2 and F are
probabilistic processes, we consider only this as the case in which they are
nondeterministic is straightforward). This in turn implies that∑
S̄ ‖L F̄ ′∈D prob(F1, S̄)·prob(F̄ , F̄ ′) =

∑
S̄≈pS,F̄ ′≈pF ′

prob(F1, S̄)·prob(F, F̄ ′)

= (
∑
S̄≈pS

prob(F1, S̄)) · (
∑
F̄ ′≈pF ′

prob(F, F̄ ′)). By the same reasoning

prob(F2 ‖L F,D) = (
∑
S̄≈pS

prob(F2, S̄))·(
∑
F̄ ′≈pF ′

prob(F, F̄ ′)). Lastly, from

F1 ≈p F2 and F ≈p F we obtain (
∑
S̄≈pS

prob(F1, S̄))·(
∑
F̄ ′≈pF ′

prob(F, F̄ ′))

= (
∑
S̄≈pS

prob(F2, S̄))·(
∑
F̄ ′≈pF ′

prob(F, F̄ ′)), and hence prob(F1 ‖L F,D) =

prob(F2 ‖L F,D).
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– The symmetric relation B′ = {(F1 \ L,F2 \ L) | (F1, F2) ∈ B} is a weak
probabilistic bisimulation too. There are two cases:

• If F1 \ L
τ−→a F

′
1 \ L, then F1

τ−→a F
′
1 and hence there exists a process

F ′2 such that F2 ==⇒ F ′2 with (F ′1, F
′
2) ∈ B. Since the restriction operator

does not apply to τ nor to probabilistic transitions, it follows that F2 \
L==⇒ F ′2 \ L, with (F ′1 \ L,F ′2 \ L) ∈ B′.

• If F1 \ L
a−→a F

′
1 \ L with a /∈ L ∪ {τ}, then F1

a−→a F
′
1 and hence there

exists a process F ′2 such that F2 ==⇒ a−→a ==⇒ F ′2 with (F ′1, F
′
2) ∈ B.

Since the restriction operator does not apply to τ nor to probabilistic
transitions and a /∈ L, it follows that F2 \ L==⇒ a−→a ==⇒ F ′2 \ L with
(F ′1 \ L,F ′2 \ L) ∈ B′.

As far as probabilities are concerned, from the fact that (F1, F2) ∈ B it
follows that for all equivalence classes C ∈ P/B, prob(F1, C) = prob(F2, C),
and from the fact that the restriction operator does not apply to probabilistic
transitions, it follows that for all equivalence classes C ∈ P/B′, prob(F1 \
L,C) = prob(F2 \ L,C).

– The symmetric relation B′ = {(F1 /L, F2 /L) | (F1, F2) ∈ B} is a weak
probabilistic bisimulation too. There are two cases:

• If F1 /L
a−→a F

′
1 /L with F1

b−→a F
′
1 and b ∈ L∧a = τ or b /∈ L∪{τ}∧a =

b, then there exists a process F ′2 such that F2 ==⇒ b−→a ==⇒ F ′2 with
(F ′1, F

′
2) ∈ B. Since the hiding operator does not apply to τ , it follows

that F2 /L==⇒ a−→a ==⇒ F ′2 /L with (F ′1 /L, F
′
2 /L) ∈ B′.

• If F1 /L
τ−→a F

′
1 /L with F1

τ−→a F
′
1, then there exists a process F ′2 such

that F2 ==⇒ F ′2 with (F ′1, F
′
2) ∈ B. Since the hiding operator does not ap-

ply to τ nor to probabilistic transitions, it follows that
F2 /L==⇒ F ′2 /L with (F ′1 /L, F

′
2 /L) ∈ B′.

As far as probabilities are concerned, from the fact that (F1, F2) ∈ B it
follows that for all equivalence classes C ∈ P/B, prob(F1, C) = prob(F2, C),
and from the fact that the hiding operator does not apply to probabilistic
transitions, it follows that for all equivalence classes C ∈ B, prob(F1 /L,C) =
prob(F2 /L,C).

We now prove the same result for ≈pb. Let B be a probabilistic branching
bisimulation witnessing E1 ≈pb E2:

– The symmetric relation B′ = {(a . F1, a . F2) | (F1, F2) ∈ B} is a proba-
bilistic branching bisimulation too. The result immediately follow from the
fact that if a . F1

a−→a F1 then a . F2 ==⇒ a . F2
a−→a F2, (a . F1, a . F2) ∈ B′

and (F1, F2) ∈ B. Since a . F1 and a . F2 are nondeterministic processes
and (F1, F2) ∈ B, it follows that for all equivalence classes C ∈ P/B′,
prob(a . F1, C) = prob(a . F2, C).

– The symmetric relation B′ = {(F1 ‖L F, F2 ‖L F ) | (F1, F2) ∈ B ∧ F ∈ P} is
a probabilistic branching bisimulation too. There are three cases:
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• If F1 ‖L F
a−→a F

′
1 ‖L F ′ with a ∈ L, then F1

a−→a F
′
1 (and F

a−→a F
′) and

hence there exist F̄2 and F ′2 such that F2 ==⇒ F̄2
a−→a F

′
2 with (F1, F̄2) ∈

B and (F ′1, F
′
2) ∈ B. Therefore F2 ‖L F ==⇒ F̄2 ‖L F

a−→a F
′
2 ‖L F ′ with

(F1 ‖L F, F̄2 ‖L F ) ∈ B′ and (F ′1 ‖L F ′, F ′2 ‖L F ′) ∈ B′.
• If F1 ‖L F

a−→a F
′
1 ‖L[1]F with a /∈ L, then F1

a−→a F
′
1 and hence ei-

ther (F ′1, F2) ∈ B when a = τ , or there exist F̄2 and F ′2 such that

F2 ==⇒ F̄2
a−→a F

′
2 with (F1, F̄2) ∈ B and (F ′1, F

′
2) ∈ B. In the former sub-

case F2 ‖L F is allowed to stay idle with (F ′1 ‖L[1]F, F2 ‖L F ) ∈ B′, while

in the latter subcase F2 ‖L F ==⇒ F̄2 ‖L F
a−→a F

′
2 ‖L[1]F with

(F1 ‖L F, F̄2 ‖L F ) ∈ B′ and (F ′1 ‖L[1]F, F ′2 ‖L[1]F ) ∈ B′.
• The case F1 ‖L F

a−→a F1 ‖L F ′ with a /∈ L is trivial.

As far as probabilites are concerned, the reasoning is the same as in the case
of the compositionality of ≈p with respect to the parallel operator (see the
fourth case in the first part of the proof).

– The symmetric relation B′ = {(F1\L,F2\L) | (F1, F2) ∈ B} is a probabilistic
branching bisimulation too. There are two cases:

• If F1 \ L
τ−→a F

′
1 \ L, then F1

τ−→a F
′
1 and hence either (F ′1, F2) ∈ B, or

there exist F̄2 and F ′2 such that F2 ==⇒ F̄2
τ−→a F

′
2 with (F1, F̄2) ∈ B and

(F ′1, F
′
2) ∈ B. Since the restriction operator does not apply to τ nor to

probabilistic transitions, in the former subcase F2 \ L is allowed to stay
idle with (F ′1 \L,F2 \L) ∈ B′, while in the latter subcase F2 \L==⇒ F̄2 \
L

τ−→a F
′
2 \ L, with (F1 \ L, F̄2 \ L) ∈ B′ and (F ′1 \ L,F ′2 \ L) ∈ B′.

• If F1\L
a−→a F

′
1\L with a /∈ L∪{τ}, then F1

a−→a F
′
1 and hence there exist

F̄2 and F ′2 such that F2 ==⇒ F̄2
a−→a F

′
2 with (F1, F̄2) ∈ B and (F ′1, F

′
2) ∈

B. Since the restriction operator does not apply to τ nor to probabilistic
transitions and a /∈ L, it follows that F2 \ L==⇒ F̄2 \ L

a−→a F
′
2 \ L with

(F1 \ L, F̄2 \ L) ∈ B′ and (F ′1 \ L,F ′2 \ L) ∈ B′.
As far as probabilities are concerned, from the fact that (F1, F2) ∈ B it
follows that for all equivalence classes C ∈ P/B, prob(F1, C) = prob(F2, C),
and from the fact that the restriction operator does not apply to probabilistic
transitions, it follows that for all equivalence classes C ∈ P/B′, prob(F1 \
L,C) = prob(F2 \ L,C). The same reasoning applies to the other pairs of
processes mentioned in the proof.

– The symmetric relation B′ = {(F1 /L, F2 /L) | (F1, F2) ∈ B} is a probabilis-
tic branching bisimulation too. There are two cases:

• If F1 /L
a−→a F

′
1 /L with F1

b−→a F
′
1 and b ∈ L∧a = τ or b /∈ L∪{τ}∧a =

b, then there exist F̄2 and F ′2 such that F2 ==⇒ F̄2
b−→a F

′
2 with (F1, F̄2) ∈

B and (F ′1, F
′
2) ∈ B. Since the hiding operator does not apply to τ nor

to probabilistic transitions, it follows that F2 /L==⇒ F̄2 /L
a−→a F

′
2 /L,

with (F1 /L, F̄2 /L) ∈ B′ and (F ′1 /L, F
′
2 /L) ∈ B′.

• If F1 /L
τ−→a F

′
1 /L with F1

τ−→a F
′
1, then either (F ′1, F2) ∈ B, or there

exist F̄2 and F ′2 such that F2 ==⇒ F̄2
τ−→a F

′
2 with (F1, F̄2) ∈ B and

(F ′1, F
′
2) ∈ B. Since the hiding operator does not apply to τ nor to prob-

abilistic transitions, in the former subcase F2 /L is allowed to stay idle
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with (F ′1 /L, F2 /L) ∈ B′, while in the latter subcase F2 /L

==⇒ F̄2 /L
τ−→a F

′
2 /L with (F1 /L, F̄2 /L) ∈ B′ and (F ′1 /L, F

′
2 /L)∈B′.

As far as probabilities are concerned, from the fact that (F1, F2) ∈ B it fol-
lows that for all equivalence classes C ∈ P/B, prob(F1, C) = prob(F2, C), and
from the fact that the hiding operator does not apply to probabilistic tran-
sitions, it follows that for all equivalence classes C ∈ P/B′, prob(F1 /L,C) =
prob(F2 /L,C). The same reasoning applies to the other pairs of processes
mentioned in the proof.

Proof of Theorem 1. The results immediately follow from the fact that ≈p

and ≈pb are congruences with respect to the parallel, restriction and hiding
operators (see the proof of the Lemma 1).

Proof of Theorem 2. We divide the proof into two parts. In the first part we
prove the theorem for the ≈p-based properties, and in the second part we do
the same for the ≈pb-based properties. We first prove the results for SBSNNI≈p ,
and hence for P BNDC≈p too by virtue of the forthcoming Theorem 3:

1. Given an arbitrary E ∈ SBSNNI≈p
and an arbitrary a ∈ AL ∪ {τ}, from

E \ AH ≈p E /AH we derive that a . (E \ AH) ≈p a . (E /AH) because ≈p

is a congruence with respect to action prefix (see proof of Lemma 1), from
which it follows that (a .E) \ AH ≈p (a .E) /AH, i.e., a .E ∈ BSNNI≈p ,
because a /∈ AH. To conclude the proof, it suffices to observe that all the
processes reachable from a .E after performing a are processes reachable
from E, which are known to be BSNNI≈p

.
2. Given two arbitrary E1, E2 ∈ SBSNNI≈p

and an arbitrary L ⊆ A, the
result follows by proving that the symmetric relation B = {((E1,1 ‖LE2,1) \
AH, (E1,2 ‖LE2,2) /AH), ((E1,2 ‖LE2,2) /AH, (E1,1 ‖LE2,1) \ AH) |
E1,1 ‖LE2,1, E1,2 ‖LE2,2 ∈ reach(E1 ‖LE2)∧E1,1 \AH ≈p E1,2 /AH∧E2,1 \
AH ≈p E2,2 /AH} is a weak probabilistic bisimulation, as can be seen by
taking E1,1 identical to E1,2 as well as E2,1 identical to E2,2. Assuming
that (E1,1 ‖LE2,1) \ AH and (E1,2 ‖LE2,2) /AH are related by B, there are
thirteen cases (in the first five it is the former process to move first, while in
the last eight it is the latter):

– If (E1,1 ‖LE2,1) \AH
l−→a (E′1,1 ‖L[1]E2,1) \AH with E1,1

l−→aE
′
1,1 and

l /∈ L, then E1,1 \ AH
l−→aE

′
1,1 \ AH as l /∈ AH. From E1,1 \ AH ≈p

E1,2 /AH it follows that there exists a process E′1,2 such that E1,2 /AH
==⇒ l−→a ==⇒E′1,2 /AH with E′1,1 \ AH ≈p E′1,2 /AH. Since synchro-
nization does not apply to τ nor to l, it follows that (E1,2 ‖LE2,2) /AH
==⇒ l−→a ==⇒ (E′1,2 ‖L[1]E2,2) /AH with ((E′1,1 ‖L[1]E2,1) \ AH,
(E′1,2 ‖L[1]E2,2) /AH) ∈ B.

– If (E1,1 ‖LE2,1) \AH
l−→a ([1]E1,1 ‖LE′2,1) \AH with E2,1

l−→aE
′
2,1 and

l /∈ L, then the proof is similar to the one of the previous case.

– If (E1,1 ‖LE2,1) \ AH
l−→a (E′1,1 ‖LE′2,1) \ AH with Ei,1

l−→aE
′
i,1 for

i ∈ {1, 2} and l ∈ L, then Ei,1 \ AH
l−→aE

′
i,1 \ AH as l /∈ AH. From
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Ei,1\AH ≈p Ei,2 /AH it follows that there exists a process E′i,2 such that

Ei,2 /AH==⇒ l−→a ==⇒E′i,2 /AH with E′i,1 \ AH ≈p E′i,2 /AH. Since
synchronization does not apply to τ , it follows that

(E1,2 ‖LE2,2) /AH==⇒ l−→a ==⇒ (E′1,2 ‖LE′2,2) /AHwith((E′1,1 ‖LE′2,1)
\ AH, (E′1,2 ‖LE′2,2) /AH) ∈ B.

– If (E1,1 ‖LE2,1)\AH
τ−→a (E′1,1 ‖L[1]E2,1)\AH with E1,1

τ−→aE
′
1,1, then

E1,1 \AH
τ−→aE

′
1,1 \AH as τ /∈ AH. From E1,1 \AH ≈p E1,2 /AH it fol-

lows that there exists a process E′1,2 such that E1,2 /AH==⇒E′1,2 /AH
with E′1,1 \ AH ≈p E′1,2 /AH. Since synchronization does not apply
to τ , it follows that (E1,2 ‖LE2,2) /AH==⇒ (E′1,2 ‖L[1]E2,2) /AH with
((E′1,1 ‖L[1]E2,1) \ AH, (E′1,2 ‖L[1]E2,2) /AH) ∈ B.

– If (E1,1 ‖LE2,1)\AH
τ−→a ([1]E1,1 ‖LE′2,1)\AH with E2,1

τ−→aE
′
2,1, then

the proof is similar to the one of the previous case.

– If (E1,2 ‖LE2,2) /AH
l−→a (E′1,2 ‖L[1]E2,2) /AH with E1,2

l−→aE
′
1,2 and

l /∈ L, then E1,2 /AH
l−→aE

′
1,2 /AH as l /∈ AH. From E1,2 /AH ≈p

E1,1 \ AH it follows that there exists a process E′1,1 such that E1,1 \
AH==⇒ l−→a ==⇒E′1,1 \AH with E1,2 /AH ≈p Ē1,1 \AH and E′1,2 /AH
≈p E′1,1 \ AH. Since synchronization does not apply to τ nor to l, it

follows that (E1,1 ‖LE2,1)\AH==⇒ l−→a ==⇒ (E′1,1 ‖L[1]E2,1)\AH with
((E′1,2 ‖L[1]E2,2)/AH, (E′1,1 ‖L[1]E2,1) \ AH) ∈ B.

– If (E1,2 ‖LE2,2) /AH
l−→a ([1]E1,2 ‖LE′2,2) /AH with E2,2

l−→aE
′
2,2 and

l /∈ L, then the proof is similar to the one of the previous case.

– If (E1,2 ‖LE2,2) /AH
l−→a (E′1,2 ‖LE′2,2) /AH with Ei,2

l−→aE
′
i,2 for i ∈

{1, 2} and l ∈ L, then Ei,2 /AH
l−→aE

′
i,2 /AH as l /∈ AH. From Ei,2 /AH

≈p Ei,1 \ AH it follows that there exists a process E′i,1 such that

Ei,1 \ AH==⇒ l−→a ==⇒E′i,1 \ AH with E′i,2 /AH ≈p E′1,1 \ AH. Since
synchronization does not apply to τ , it follows that (E1,1 ‖LE2,1) \ AH
==⇒ l−→a ==⇒ (E′1,1 ‖LE′2,1) \ AH with ((E′1,2 ‖LE′2,2)/AH,
(E′1,1 ‖LE′2,1) \ AH) ∈ B.

– If (E1,2 ‖LE2,2) /AH
τ−→a (E′1,2 ‖L[1]E2,2) /AH with E1,2

τ−→aE
′
1,2, then

E1,2 /AH
τ−→aE

′
1,2 /AH as τ /∈ AH. From E1,2 /AH ≈p E1,1\AH it fol-

lows that there exists a process E′1,1 such that E1,1 \ AH==⇒E′1,1 \ AH
with E′1,2 /AH ≈p E′1,1 \ AH. Since synchronization does not apply
to τ , it follows that (E1,1 ‖LE2,1) \ AH==⇒ (E′1,1 ‖L[1]E2,1) \ AH with
((E′1,2 ‖L[1]E2,2)/AH, (E′1,1 ‖L[1]E2,1) \ AH) ∈ B.

– If (E1,2 ‖LE2,2) /AH
τ−→a (E1,2 ‖LE′2,2) /AH with E2,2

τ−→aE
′
2,2, then

the proof is similar to the one of the previous case.

– If (E1,2 ‖LE2,2) /AH
τ−→a (E′1,2 ‖L[1]E2,2) /AH with E1,2

h−→aE
′
1,2 and

h /∈ L, then E1,2 /AH
τ−→aE

′
1,2 /AH as h ∈ AH. From E1,2 /AH ≈p

E1,1 \ AH it follows that there exists a process E′1,1 such that E1,1 \
AH==⇒E′1,1 \ AH with E′1,2 /AH ≈p E

′
1,1 \ AH. Since synchronization
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does not apply to τ , it follows that (E1,1 ‖LE2,1)\AH==⇒ (E′1,1 ‖L[1]E2,1)
\ AH with ((E′1,2 ‖L[1]E2,2)/AH, (E′1,1 ‖L[1]E2,1) \ AH) ∈ B.

– If (E1,2 ‖LE2,2) /AH
τ−→a ([1]E1,2 ‖LE′2,2) /AH with E2,2

h−→aE
′
2,2 and

h /∈ L, then the proof is similar to the one of the previous case.

– If (E1,2 ‖LE2,2) /AH
τ−→a (E′1,2 ‖LE′2,2) /AH with Ei,2

h−→aE
′
i,2 for i ∈

{1, 2} and h ∈ L, then Ei,2 /AH
τ−→aE

′
i,2 /AH. From Ei,2 /AH ≈p

Ei,1 \ AH it follows that there exist E′i,1 such that Ei,1 \ AH==⇒E′i,1 \
AH with E′i,2 /AH ≈p E

′
i,1 \ AH. Since synchronization does not apply

to τ , it follows that (E1,1 ‖LE2,1) \ AH==⇒ (E′1,1 ‖LE′2,1) \ AH with
((E′1,2 ‖LE′2,2) /AH, (E′1,1 ‖LE′2,1) \ AH) ∈ B.

As far as probability are concerned, given two arbitrary processes F1, F2 ∈ Pp

we observe that prob((E1,1 \ AH) ‖L(E2,1 \ AH), [F1 ‖L F2]B) = prob(E1,1 \
AH, [F1]B) · prob(E1,2 \ AH, [F2]B) and prob((E1,2 /AH) ‖L(E2,2 /AH),
[F1 ‖L F2]B) = prob(E1,2 /AH, [F1]B) · prob(E2,2 /AH, [F2]B) (see the proof
of Lemma 1). Now, from the fact that Ei,1 \AH ≈p Ei,2 /AH, for i ∈ {1, 2},
it follows that for all equivalence classes C ∈ P/B, prob(Ei,1 \ AH, C) =
prob(Ei,2 /AH, C), which in turn implies that prob((E1,1 \ AH) ‖L(E2,1 \
AH), [F1 ‖L F2]B) = prob((E1,2 /AH) ‖L(E2,2 /AH), [F1 ‖L F2]B). Finally
from the fact that the hiding and restriction operators do not apply to prob-
abilistic transitions we conclude that prob((E1,1 ‖LE2,1)\AH, [F1 ‖L F2]B) =
prob(E1,2 ‖LE2,2) /AH, [F1 ‖L F2]B).

3. Given an arbitrary E ∈ SBSNNI≈p
and an arbitrary L ⊆ A, the result

follows by proving that the symmetric relation B = {((E1 /AH) \ L, (E2 \
L) /AH), ((E2 \ L) /AH, (E1 /AH) \ L) | E1, E2 ∈ reach(E) ∧ E1 /AH ≈p

E2 \ AH} is a weak probabilistic bisimulation, as can be seen by taking E1

identical to E2 – which will be denoted by E′ – because:

– (E′ \L) \AH ≈p (E′ \AH) \L as the order in which restriction sets are
considered is unimportant.

– (E′ \ AH) \ L ≈p (E′ /AH) \ L due to E′ \ AH ≈p E′ /AH – as E ∈
SBSNNI≈p

and E′ ∈ reach(E) – and ≈p being a congruence with respect
to the restriction operator (see the proof of Lemma 1).

– (E′ /AH) \ L ≈p (E′ \ L) /AH as ((E′ /AH) \ L, (E′ \ L) /AH) ∈ B.
– From the transitivity of ≈p it follows that (E′\L)\AH ≈p (E′\L) /AH.

Assuming that (E1 /AH) \ L and (E2 \ L) /AH are related by B, there are
six cases:

– If (E1 /AH) \ L l−→a (E′1 /AH) \ L with E1
l−→aE

′
1 and l /∈ L, then

E1 /AH
l−→aE

′
1 /AH as l /∈ AH. From E1 /AH ≈p E2 \ AH it follows

that there exists a process E′2 such that E2 \AH==⇒ l−→a ==⇒E′2 \AH
with E′1 /AH ≈p E

′
2 \AH. Since neither the restriction operator nor the

hiding operator applies to τ , l, and probabilistic transitions, it follows

that (E2\L) /AH==⇒ l−→a ==⇒ (E′2\L) /AH with ((E′1 /AH)\L, (E′2\
L) /AH) ∈ B.

– If (E1 /AH) \ L τ−→a (E′1 /AH) \ L with E1
τ−→aE

′
1, then E1 /AH

τ−→aE
′
1 /AH as τ /∈ AH. From E1 /AH ≈p E2 \AH it follows that there
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exists a process E′2 such that E2 \ AH==⇒E′2 \ AH with E′1 /AH ≈p

E′2 \ AH. Since neither the restriction operator nor the hiding oper-
ator applies to τ and probabilistic transitions, it follows that (E2 \
L) /AH==⇒ (E′2 \ L) /AH with and ((E′1 /AH) \ L, (E′2 \ L) /AH) ∈ B.

– If (E1 /AH) \ L τ−→a (E′1 /AH) \ L with E1
h−→aE

′
1 and h ∈ AH, then

E1 /AH
τ−→aE

′
1 /AH as h ∈ AH and the rest the proof is similar to the

one of the previous case.

– If (E2 \ L) /AH
l−→a (E′2 \ L) /AH with E2

l−→aE
′
2 and l /∈ L, then

E2 \ AH
l−→aE

′
2 \ AH as l /∈ AH. From E2 \ AH ≈p E1 /AH it follows

that there exists a process E′1 such that E1 /AH==⇒ l−→a ==⇒E′1 /AH
with E′2 \ AH ≈p E′1 /AH. Since the restriction operator does not ap-
ply to τ , l, and probabilistic transitions it follows that (E1 /AH) \
L==⇒ l−→a ==⇒ (E′1 /AH) \ L with ((E′2 \ L) /AH, (E′1 /AH) \ L) ∈ B.

– If (E2\L) /AH
τ−→a (E′2\L) /AH with E2

τ−→aE
′
2, then E2\AH

τ−→aE
′
2\

AH as τ /∈ AH. From E2 \ AH ≈p E1 /AH it follows that there exists
a process E′1 such that E1 /AH==⇒E′1 /AH with E′2 \ AH ≈p E

′
1 /AH.

Since the restriction operator does not apply to τ nor to probabilis-
tic transitions, it follows that (E1 /AH) \ L==⇒ (E′1 /AH) \ L with and
((E′2 \ L) /AH, (E′1 /AH) \ L) ∈ B.

– If (E2 \ L) /AH
τ−→a (E′2 \ L) /AH with E2

h−→aE
′
2 and h /∈ L, then

E2 /AH
τ−→aE

′
2 /AH as h ∈ AH (note that E2 \AH cannot perform h).

From E2 /AH ≈p E2\AH – as E ∈ SBSNNI≈p
and E2 ∈ reach(E) – and

E2 \ AH ≈p E1 /AH it follows that there exists a process E′1 such that
E1 /AH==⇒E′1 /AH with E′2 /AH ≈b E

′
1 /AH and hence E′2 \ AH ≈p

E′1 /AH. Since the restriction operator does not apply to τ , it follows that
(E1 /AH) \L==⇒ (E′1 /AH) \L with ((E′2 \L) /AH, (E′1 /AH) \L) ∈ B.

As far as probabilities are concerned, from the fact that E1 /AH ≈p E2 \AH
it follows that for all equivalence classes C ∈ P/B, prob(E1 /AH, C) =
prob(E2 \ AH, C), and from the fact that the hiding operator and the re-
striction do not apply to probabilistic transitions, it follows that for all
equivalence classes C ∈ B, prob((E1 /AH) \L,C) = prob((E2 \L) /AH), C).

4. Given an arbitrary E ∈ SBSNNI≈p
and an arbitrary L ⊆ AL, for every

E′ ∈ reach(E) it holds that E′ \ AH ≈p E′ /AH, from which we derive
that (E′ \AH) /L ≈p (E′/AH) /L because ≈p is a congruence with respect
to the hiding operator (see the proof of Lemma 1). Since L ∩ AH = ∅, we
have that (E′ \ AH) /L is isomorphic to (E′ /L) \ AH and (E′ /AH) /L
is isomorphic to (E′ /L) /AH, hence (E′ /L) \ AH ≈p (E′ /L) /AH, i.e.,
E′ /L is BSNNI≈p

.

We now prove the results for SBNDC≈p
:

1. Given an arbitrary E ∈ SBNDC≈p
and an arbitrary a ∈ Aτ \AH, it trivially

holds that a .E ∈ SBNDC≈p
.

2. Given two arbitrary E1, E2 ∈ SBNDC≈p
and an arbitrary L ⊆ A, the

result follows by proving that the symmetric relation B = {((F1 ‖L F2) \
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AH, (R1 ‖LR2)\AH), ((R1 ‖LR2)\AH, (F1 ‖L F2)\AH) | F1 ‖L F2, R1 ‖LR2

∈ reach(E1 ‖LE2) ∧ F1 \ AH ≈p R1 \ AH ∧ F2 \ AH ≈p R2 \ AH} is a
weak probabilistic bisimulation, as can be seen by observing that whenever

E′1 ‖LE′2
h−→aE

′′
1 ‖LE′′2 for E′1 ‖LE′2 ∈ reach(E1 ‖LE2):

– If E′1
h−→aE

′′
1 , E′′2 = E′2, and h /∈ L, then from E1 ∈ SBNDC≈p it follows

that E′1\AH ≈p E
′′
1 \AH and hence ((E′1 ‖LE′2)\AH, ((E′′1 ‖LE′′2 )\AH) ∈

B as E′2 \ AH ≈p E
′′
2 \ AH.

– If E′2
h−→aE

′′
2 , E′′1 = E′1, and h /∈ L, then from E2 ∈ SBNDC≈p

it follows
that E′2\AH ≈p E

′′
2 \AH and hence ((E′1 ‖LE′2)\AH, ((E′′1 ‖LE′′2 )\AH) ∈

B as E′1 \ AH ≈p E
′′
1 \ AH.

– If E′1
h−→aE

′′
1 , E′2

h−→aE
′′
2 , and h ∈ L, then from E1, E2 ∈ SBNDC≈p

it
follows that E′1 \ AH ≈p E

′′
1 \ AH and E′2 \ AH ≈p E

′′
2 \ AH, which in

turn entail that ((E′1 ‖LE′2) \ AH, ((E′′1 ‖LE′′2 ) \ AH) ∈ B.

Assuming that ((F1 ‖L F2) \ AH, (R1 ‖LR2) \ AH) ∈ B, there are five cases:

– If (F1 ‖L F2)\AH
l−→a (F ′1 ‖L[1]F2)\AH with F1

l−→a F
′
1 and l /∈ L, then

F1 \ AH
l−→a F

′
1 \ AH as l /∈ AH. From F1 \ AH ≈p R1 \ AH it follows

that there exists a process R′1 such that R1 \AH==⇒ l−→a ==⇒R′1 \AH
with F ′1 \AH ≈p R

′
1 \AH. Since synchronization does not apply to τ , it

follows that (R1 ‖LR2) \ AH==⇒ l−→a ==⇒ (R′1 ‖L[1]R2) \ AH with and
((F ′1 ‖L[1]F2) \ AH, (R′1 ‖L[1]R2) \ AH) ∈ B.

– If (F1 ‖L F2) \ AH
l−→a ([1]F1 ‖L F ′2) \ AH with F2

l−→a F
′
2 and l /∈ L,

then the proof is similar to the one of the previous case.

– If (F1 ‖L F2)\AH
l−→a (F ′1 ‖L F ′2)\AH with Fi

l−→a F
′
i for i ∈ {1, 2} and

l ∈ L, then Fi \AH
l−→a F

′
i \AH as l /∈ AH. From Fi \AH ≈p Ri \AH it

follows that there exists a processR′i such thatRi\AH==⇒ l−→a ==⇒R′i\
AH with F ′i \ AH ≈p R

′
i \ AH. Since synchronization does not apply to

τ , it follows that (R1 ‖LR2) \ AH==⇒ l−→a ==⇒ (R′1 ‖LR′2) \ AH with
((F ′1 ‖L F ′2) \ AH, (R′1 ‖LR′2) \ AH) ∈ B.

– If (F1 ‖L F2) \ AH
τ−→a (F ′1 ‖L[1]F2) \ AH with F1

τ−→a F
′
1, then F1 \

AH
τ−→a F

′
1 \AH. From F1 \AH ≈p R1 \AH it follows that there exists

a process R′1 such that R1 \AH==⇒R′1 \AH with F ′1 \AH ≈p R
′
1 \AH.

Since synchronization does not apply to τ , it follows that (R1 ‖LR2) \
AH==⇒ (R′1 ‖LR2)\AH with ((F ′1 ‖L[1]F2)\AH, (R′1 ‖L[1]R2)\AH) ∈ B.

– If (F1 ‖L F2)\AH
τ−→a ([1]F1 ‖L F ′2)\AH with F2

τ−→a F
′
2, then the proof

is similar to the one of the previous case.

As far as probability are concerned, given two arbitrary probabilistic pro-
cesses S1, S2 ∈ P, we observe that prob((F1\AH) ‖L(F2\AH), [S1 ‖L S2]B) =
prob(F1 \ AH, [S1]B) · prob(F2 \ AH, [S2]B) and prob((R1 \ AH) ‖LR2 \ AH),
[S1 ‖L S2]B) = prob(R1 /AH, [S1]B) · prob(R2 /AH, [S2]B) (see the proof of
Lemma 1). Now, from the fact that Fi \ AH ≈p Ri \ AH, for i ∈ {1, 2}, it
follows that for all equivalence classes C ∈ P/B, prob(Fi\AH, C) = prob(Ri\
AH, C), which in turn implies that prob((F1\AH) ‖L(F2\AH), [S1 ‖L S2]B) =
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prob((R1 \ AH) ‖L(R2 \ AH), [S1 ‖L S2]B). Lastly, from the fact that the re-
striction operator does not apply to probabilistic transitions we conclude
that prob((F1 ‖L F2) \AH, [S1 ‖L S2]B) = prob((R1 ‖LR2) \AH, [S1 ‖L S2]B).

3. Given an arbitrary E ∈ SBNDC≈p
and an arbitrary L ⊆ A, for every E′ ∈

reach(E) and for every E′′ such that E′
h−→aE

′′ it holds that E′ \ AH ≈p

E′′ \AH, from which we derive that (E′ \AH) \L ≈p (E′′ \AH) \L because
≈p is a congruence with respect to the restriction operator (see the proof of
Lemma 1). Since (E′\AH)\L is isomorphic to (E′\L)\AH and (E′′\AH)\L
is isomorphic to (E′′ \L)\AH, we have that (E′ \L)\AH ≈p (E′′ \L)\AH.

4. Given an arbitrary E ∈ SBNDC≈p and an arbitrary L ⊆ AL, for every

E′ ∈ reach(E) and for every E′′ such that E′
h−→aE

′′ it holds that E′\AH ≈p

E′′ \AH, from which we derive that (E′ \AH) /L ≈p (E′′ \AH) /L because
≈p is a congruence with respect to the hiding operator (see the proof of
Lemma 1). Since L ∩ AH = ∅, we have that (E′ \ AH) /L is isomorphic
to (E′ /L) \ AH and (E′′ \ AH) /L is isomorphic to (E′′ /L) \ AH, hence
(E′ /L) \ AH ≈p (E′′ /L) \ AH.

We now prove the same result for the ≈pb-based properties. As for the
first part of the proof, we first prove the results for SBSNNI≈pb

, and hence
for P BNDC≈pb

too by virtue of the forthcoming Theorem 3:

1. Given an arbitrary E ∈ SBSNNI≈pb
and an arbitrary a ∈ AL ∪ {τ}, from

E \ AH ≈pb E /AH we derive that a . (E \ AH) ≈pb a . (E /AH) because
≈pb is a congruence with respect to action prefix (see Lemma 1), from which
it follows that (a .E) \AH ≈pb (a .E) /AH, i.e., a .E ∈ BSNNI≈pb

, because
a /∈ AH. To conclude the proof, it suffices to observe that all the processes
reachable from a .E after performing a are processes reachable from E, which
are known to be BSNNI≈pb

.
2. Given two arbitrary E1, E2 ∈ SBSNNI≈pb

and an arbitrary L ⊆ AL, the
result follows by proving that the symmetric relation B = {((E1,1 ‖LE2,1) \
AH, (E1,2 ‖LE2,2) /AH), ((E1,2 ‖LE2,2) /AH, (E1,1 ‖LE2,1) \ AH) |
E1,1 ‖LE2,1, E1,2 ‖LE2,2 ∈ reach(E1 ‖LE2) ∧ E1,1 \ AH ≈pb E1,2 /AH ∧
E2,1 \ AH ≈pb E2,2 /AH} is a probabilistic branching bisimulation, as can
be seen by taking E1,1 identical to E1,2 as well as E2,1 identical to E2,2.
Assuming that (E1,1 ‖LE2,1) \AH and (E1,2 ‖LE2,2) /AH are related by B,
there are twelve cases (in the first five it is the former process to move first,
while in the last seven it is the latter):

– If (E1,1 ‖LE2,1) \AH
l−→a (E′1,1 ‖L[1]E2,1) \AH with E1,1

l−→aE
′
1,1 and

l /∈ L, then E1,1 \ AH
l−→aE

′
1,1 \ AH as l /∈ AH. From E1,1 \ AH ≈pb

E1,2 /AH it follows that there exist Ē1,2 and E′1,2 such that E1,2 /AH
==⇒ Ē1,2 /AH

l−→aE
′
1,2 /AH with E1,1 \ AH ≈pb Ē1,2 /AH and E′1,1 \

AH ≈pb E
′
1,2 /AH. Since synchronization does not apply to τ and l, it

follows that (E1,2 ‖LE2,2) /AH==⇒ (Ē1,2 ‖LE2,2) /AH
l−→a

(E′1,2 ‖L[1]E2,2) /AH with ((E1,1 ‖LE2,1) \AH, (Ē1,2 ‖LE2,2) /AH) ∈ B
and ((E′1,1 ‖LE2,1) \ AH, (E′1,2 ‖LE2,2) /AH) ∈ B.
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– If (E1,1 ‖LE2,1) \AH
l−→a ([1]E1,1 ‖LE′2,1) \AH with E2,1

l−→aE
′
2,1 and

l /∈ L, then the proof is similar to the one of the previous case.

– If (E1,1 ‖LE2,1) \ AH
l−→a (E′1,1 ‖LE′2,1) \ AH with Ei,1

l−→aE
′
i,1 for

i ∈ {1, 2} and l ∈ L, then Ei,1 \ AH
l−→aE

′
i,1 \ AH as l /∈ AH. From

Ei,1\AH ≈pb Ei,2 /AH it follows that there exist Ēi,2 and E′i,2 such that

Ei,2 /AH==⇒ Ēi,2 /AH
l−→aE

′
i,2 /AH with Ei,1\AH ≈pb Ēi,2 /AH and

E′i,1\AH ≈pb E
′
i,2 /AH. Since synchronization does not apply to τ , it fol-

lows that (E1,2 ‖LE2,2) /AH==⇒ (Ē1,2 ‖L Ē2,2) /AH
l−→a (E′1,2 ‖LE′2,2)

/AH with ((E1,1 ‖LE2,1) \ AH, (Ē1,2 ‖L Ē2,2) /AH) ∈ B and
((E′1,1 ‖LE′2,1) \ AH, (E′1,2 ‖LE′2,2) /AH) ∈ B.

– If (E1,1 ‖LE2,1)\AH
τ−→a (E′1,1 ‖L[1]E2,1)\AH with E1,1

τ−→aE
′
1,1, then

E1,1 \ AH
τ−→aE

′
1,1 \ AH as τ /∈ AH. From E1,1 \ AH ≈pb E1,2 /AH it

follows that either E′1,1 \AH ≈pb E1,2 /AH, or there exist Ē1,2 and E′1,2
such that E1,2 /AH==⇒ Ē1,2 /AH

τ−→aE
′
1,2 /AH with E1,1 \ AH ≈pb

Ē1,2 /AH and E′1,1 \ AH ≈pb E′1,2 /AH. In the former subcase
(E1,2 ‖LE2,2) /AH is allowed to stay idle with ((E′1,1 ‖LE2,1) \ AH,
(E1,2 ‖LE2,2) /AH) ∈ B, while in the latter subcase, since synchro-
nization does not apply to τ , it follows that (E1,2 ‖LE2,2) /AH==⇒
(Ē1,2 ‖LE2,2) /AH

τ−→a (E′1,2 ‖LE2,2) /AH with ((E1,1 ‖LE2,1) \ AH,
(Ē1,2 ‖LE2,2) /AH) ∈ B and ((E′1,1 ‖LE2,1) \AH, (E′1,2 ‖LE2,2) /AH) ∈
B.

– If (E1,1 ‖LE2,1)\AH
τ−→a ([1]E1,1 ‖LE′2,1)\AH with E2,1

τ−→aE
′
2,1, then

the proof is similar to the one of the previous case.

– If (E1,2 ‖LE2,2) /AH
l−→a (E′1,2 ‖L[1]E2,2) /AH with E1,2

l−→aE
′
1,2 and

l /∈ L, then E1,2 /AH
l−→aE

′
1,2 /AH as l /∈ AH. From E1,2 /AH ≈pb

E1,1 \ AH it follows that there exist Ē1,1 and E′1,1 such that E1,1 \
AH==⇒ Ē1,1 \ AH

l−→aE
′
1,1 \ AH with E1,2 /AH ≈pb Ē1,1 \ AH and

E′1,2 /AH ≈pb E′1,1 \ AH. Since synchronization does not apply to τ

and l, it follows that (E1,1 ‖LE2,1) \ AH==⇒ (Ē1,1 ‖LE2,1) \ AH
l−→a

(E′1,1 ‖L[1]E2,1) \ AH with ((E1,2 ‖LE2,2)/AH, (Ē1,1 ‖LE2,1) \ AH) ∈ B
and((E′1,2 ‖L[1]E2,2)/AH, (E′1,1 ‖L[1]E2,1) \ AH) ∈ B.

– If (E1,2 ‖LE2,2) /AH
l−→a ([1]E1,2 ‖LE′2,2) /AH with E2,2

l−→aE
′
2,2 and

l /∈ L, then the proof is similar to the one of the previous case.

– If (E1,2 ‖LE2,2) /AH
l−→a (E′1,2 ‖LE′2,2) /AH with Ei,2

l−→aE
′
i,2 for i ∈

{1, 2} and l ∈ L, then Ei,2 /AH
l−→aE

′
i,2 /AH as l /∈ AH.

From Ei,2 /AH ≈pb Ei,1 \ AH it follows that there exist Ēi,1 and E′i,1

such that Ei,1 \ AH==⇒ Ēi,1 \ AH
l−→aE

′
i,1 \ AH with Ei,2 /AH ≈pb

Ēi,1 \ AH and E′i,2 /AH ≈pb E
′
i,1 \ AH. Since synchronization does not

apply to τ , it follows that (E1,1 ‖LE2,1)\AH==⇒ (Ē1,1 ‖L Ē2,1)\AH
l−→a
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(E′1,1 ‖LE′2,1)\AH with ((E1,2 ‖LE2,2)/AH, (Ē1,1 ‖L Ē2,1)\AH) ∈ B and
((E′1,2 ‖LE′2,2)/AH, (E′1,1 ‖LE′2,1) \ AH) ∈ B.

– If (E1,2 ‖LE2,2) /AH
τ−→a (E′1,2 ‖L[1]E2,2) /AH with E1,2

τ−→aE
′
1,2, then

E1,2 /AH
τ−→aE

′
1,2 /AH as τ /∈ AH. From E1,2 /AH ≈pb E1,1 \ AH it

follows that either E′1,2 /AH ≈pb E1,1 \AH, or there exist Ē1,1 and E′1,1
such that E1,1 \ AH==⇒ Ē1,1 \ AH

τ−→aE
′
1,1 \ AH with E1,2 /AH ≈pb

Ē1,1 \ AH and E′1,2 /AH ≈pb E
′
1,1 \ AH.

In the former subcase (E1,1 ‖LE2,1) \ AH is allowed to stay idle with
((E′1,2 ‖LE2,2)/AH, (E1,1 ‖LE2,1)\AH) ∈ B, while in the latter subcase,
since synchronization does not apply to τ , it follows that (E1,1 ‖LE2,1)\
AH==⇒ (Ē1,1 ‖LE2,1) \ AH

τ−→a (E′1,1 ‖L[1]E2,1) \ AH with

((E1,2 ‖LE2,2)/AH, (Ē1,1 ‖LE2,1) \ AH) ∈ B and ((E′1,2 ‖L[1]E2,2)/AH,
(E′1,1 ‖L[1]E2,1) \ AH) ∈ B.

– If (E1,2 ‖LE2,2) /AH
τ−→a ([1]E1,2 ‖LE′2,2) /AH with E2,2

τ−→aE
′
2,2, then

the proof is similar to the one of the previous case.

– If (E1,2 ‖LE2,2) /AH
τ−→a (E′1,2 ‖LE2,2) /AH with E1,2

h−→aE
′
1,2 and h

/∈ L, then E1,2 /AH
τ−→aE

′
1,2 /AH as h ∈ AH. From E1,2 /AH ≈pb

E1,1 \ AH it follows that either E′1,2 /AH ≈pb E1,1 \ AH, or there exist

Ē1,1 and E′1,1 such that E1,1 \ AH==⇒ Ē1,1 \ AH
τ−→aE

′
1,1 \ AH with

E1,2 /AH ≈pb Ē1,1 \ AH and E′1,2 /AH ≈pb E
′
1,1 \ AH.

In the former subcase (E1,1 ‖LE2,1) \ AH is allowed to stay idle with
((E′1,2 ‖LE2,2)/AH, (E1,1 ‖LE2,1)\AH) ∈ B, while in the latter subcase,
since synchronization does not apply to τ , it follows that (E1,1 ‖LE2,1)\
AH==⇒ (Ē1,1 ‖LE2,1) \ AH

τ−→a (E′1,1 ‖LE2,1) \ AH with

((E1,2 ‖LE2,2)/AH, (Ē1,1 ‖LE2,1) \ AH) ∈ B and
((E′1,2 ‖LE2,2)/AH, (E′1,1 ‖LE2,1) \ AH) ∈ B.

– If (E1,2 ‖LE2,2) /AH
τ−→a ([1]E1,2 ‖LE′2,2) /AH with E2,2

h−→aE
′
2,2 and

h /∈ L, then the proof is similar to the one of the previous case.

As far as probability are concerned, given two arbitrary processes processes
F1, F2 ∈ P, we observe that prob((E1,1 \ AH) ‖L(E2,1 \ AH), [F1 ‖L F2]B)
= prob(E1,1 \ AH, [F1]B) · prob(E1,2 \ AH, [F2]B) and
prob((E1,2 /AH) ‖L(E2,2 /AH), [F1 ‖L F2]B) = prob(E1,2 /AH, [F1]B) ·
prob(E2,2 /AH, [F2]B) (see the proof of Lemma 1). Now, from the fact that
Ei,1 \ AH ≈pb Ei,2 /AH, for i ∈ {1, 2}, it follows that for all equivalence
classes C ∈ P/B, prob(Ei,1 \ AH, C) = prob(Ei,2 /AH, C), which in turn
implies that prob((E1,1 \ AH) ‖L(E2,1 \ AH), [F1 ‖L F2]B) =
prob((E1,2 /AH) ‖L(E2,2 /AH), [F1 ‖L F2]B). Finally from the fact that the
hiding and restriction operators do not apply to probabilistic transitions we
conclude that prob((E1,1 ‖LE2,1) \ AH, [F1 ‖L F2]B) =
prob((E1,2 ‖LE2,2) /AH, [F1 ‖L F2]B).

3. Given an arbitrary E ∈ SBSNNI≈pb
and an arbitrary L ⊆ A, the result

follows by proving that the symmetric relation B = {((E1 /AH) \ L, (E2 \
L) /AH), ((E2 \ L) /AH, (E1 /AH) \ L) | E1, E2 ∈ reach(E) ∧ E1 /AH ≈pb



32 A. Esposito, A. Aldini, M. Bernardo

E2 \AH} is a probabilistic branching bisimulation, as can be seen by taking
E1 identical to E2 – which will be denoted by E′ – because:

– (E′ \L)\AH ≈pb (E′ \AH)\L as the order in which restriction sets are
considered is unimportant.

– (E′ \ AH) \ L ≈pb (E′ /AH) \ L due to E′ \ AH ≈pb E′ /AH – as
E ∈ SBSNNI≈pb

and E′ ∈ reach(E) – and ≈pb being a congruence with
respect to the restriction operator (see the proof of Lemma 1).

– (E′ /AH) \ L ≈pb (E′ \ L) /AH as ((E′ /AH) \ L, (E′ \ L) /AH) ∈ B.
– From the transitivity of≈pb it follows that (E′\L)\AH ≈pb (E′\L) /AH.

Assuming that (E1 /AH) \ L and (E2 \ L) /AH are related by B, there are
six cases:

– If (E1 /AH) \ L l−→a (E′1 /AH) \ L with E1
l−→aE

′
1 and l /∈ L, then

E1 /AH
l−→aE

′
1 /AH as l /∈ AH. From E1 /AH ≈pb E2 \ AH it follows

that there exist Ē2 and E′2 such that E2 \AH==⇒ Ē2 \AH
l−→aE

′
2 \AH

with E1 /AH ≈pb Ē2 \ AH and E′1 /AH ≈pb E′2 \ AH. Since nei-
ther the restriction operator nor the hiding operator applies to τ , l,
and to probabilistic transitions, it follows that (E2 \ L) /AH==⇒ (Ē2 \
L) /AH

l−→a (E′2 \ L) /AH with ((E1 /AH) \ L, (Ē2 \ L) /AH) ∈ B and
((E′1 /AH) \ L, (E′2 \ L) /AH) ∈ B.

– If (E1 /AH) \ L τ−→a (E′1 /AH) \ L with E1
τ−→aE

′
1, then E1 /AH

τ−→aE
′
1 /AH as τ /∈ AH. From E1 /AH ≈pb E2 \ AH it follows that

either E′1 /AH ≈pb E2 \ AH, or there exist Ē2 and E′2 such that E2 \
AH==⇒ Ē2\AH

τ−→aE
′
2\AH with E1 /AH ≈pb Ē2\AH and E′1 /AH ≈pb

E′2 \ AH. In the former subcase (E2 \ L) /AH is allowed to stay idle
with ((E′1 /AH) \ L, (E2 \ L) /AH) ∈ B, while in the latter subcase,
since neither the restriction operator nor the hiding operator applies to
τ and to probabilistic transitions, it follows that (E2 \L) /AH==⇒ (Ē2 \
L) /AH

τ−→a (E′2 \ L) /AH with ((E1 /AH) \ L, (Ē2 \ L) /AH) ∈ B and
((E′1 /AH) \ L, (E′2 \ L) /AH) ∈ B.

– If (E1 /AH) \L τ−→a (E′1 /AH) \L with E1
h−→aE

′
1, then E1 /AH

τ−→a

E′1 /AH as h ∈ AH and the rest of the proof is similar to the one of the
previous case.

– If (E2 \ L) /AH
l−→a (E′2 \ L) /AH with E2

l−→aE
′
2 and l /∈ L, then

E2 \ AH
l−→aE

′
2 \ AH as l /∈ AH. From E2 \ AH ≈pb E1 /AH it follows

that there exist Ē1 and E′1 such that E1 /AH==⇒ Ē1 /AH
l−→aE

′
1 /AH

with E2 \ AH ≈pb Ē1 /AH and E′2 \ AH ≈pb E′1 /AH. Since the re-
striction operator does not apply to τ , l, and probabilistic transitions,

it follows that (E1 /AH) \ L==⇒ (Ē1 /AH) \ L l−→a (E′1 /AH) \ L with
((E2\L) /AH, (Ē1 /AH)\L) ∈ B and ((E′2\L) /AH, (E′1 /AH)\L) ∈ B.

– If (E2\L) /AH
τ−→a (E′2\L) /AH with E2

τ−→aE
′
2, then E2\AH

τ−→aE
′
2\

AH as τ /∈ AH. From E2 \ AH ≈pb E1 /AH it follows that either
E′2 \ AH ≈pb E1 /AH, or there exist Ē1 and E′1 such that E1 /AH==⇒
Ē1 /AH

τ−→aE
′
1 /AH with E2 \ AH ≈pb Ē1 /AH and E′2 \ AH ≈pb
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E′1 /AH. In the former subcase (E1 /AH)\L is allowed to stay idle with
((E′2 \L) /AH, (E1 /AH) \L) ∈ B, while in the latter subcase, since the
restriction operator does not apply to τ nor to probabilistic transitions,
it follows that (E1 /AH) \ L==⇒ (Ē1 /AH) \ L τ−→a (E′1 /AH) \ L with
((E2\L) /AH, (Ē1 /AH)\L) ∈ B and ((E′2\L) /AH, (E′1 /AH)\L) ∈ B.

– If (E2 \ L) /AH
τ−→a (E′2 \ L) /AH with E2

h−→aE
′
2 and h /∈ L, then

E2 /AH
τ−→aE

′
2 /AH as h ∈ AH (note that E2 \AH cannot perform h).

From E2 /AH ≈pb E2 \ AH – as E ∈ SBSNNI≈pb
and E2 ∈ reach(E) –

and E2 \ AH ≈pb E1 /AH it follows that either E′2 /AH ≈pb E1 /AH
and hence E′2 \ AH ≈pb E1 /AH, or there exist Ē1 and E′1 such that

E1 /AH==⇒ Ē1 /AH
τ−→aE

′
1 /AH with E2 /AH ≈pb Ē1 /AH and

E′2 /AH ≈pb E
′
1 /AH and hence E2 \AH ≈pb Ē1 /AH and E′2 \AH ≈pb

E′1 /AH. In the former subcase (E1 /AH)\L is allowed to stay idle with
((E′2 \L) /AH, (E1 /AH) \L) ∈ B, while in the latter subcase, since the
restriction operator does not apply to τ and to probabilistic transitions,
it follows that (E1 /AH) \ L==⇒ (Ē1 /AH) \ L τ−→a (E′1 /AH) \ L with
((E2\L) /AH, (Ē1 /AH)\L) ∈ B and ((E′2\L) /AH, (E′1 /AH)\L) ∈ B.

As far as probabilities are concerned, from the fact that E1 /AH ≈p E2 \AH
it follows that for all equivalence classes C ∈ P/B, prob(E1 /AH, C) =
prob(E2 \ AH, C), and from the fact that the hiding operator and the re-
striction do not apply to probabilistic transitions, it follows that for all
equivalence classes C ∈ B, prob((E1 /AH) \L,C) = prob((E2 \L) /AH), C).
The same reasoning applies to the other pairs of processes mentioned in the
proof.

4. Given an arbitrary E ∈ SBSNNI≈pb
and an arbitrary L ⊆ AL, for every

E′ ∈ reach(E) it holds that E′ \AH ≈pb E
′ /AH, from which we derive that

(E′ \ AH) /L ≈pb (E′/AH) /L because ≈pb is a congruence with respect
to the hiding operator (see the proof of Lemma 1). Since L ∩ AH = ∅, we
have that (E′ \ AH) /L is isomorphic to (E′ /L) \ AH and (E′ /AH) /L
is isomorphic to (E′ /L) /AH, hence (E′ /L) \ AH ≈pb (E′ /L) /AH, i.e.,
E′ /L is BSNNI≈pb

.

We now prove the results for SBNDC≈pb
:

1. Given an arbitrary E ∈ SBNDC≈pb
and an arbitrary a ∈ Aτ \AH, it trivially

holds that a .E ∈ SBNDC≈pb
.

2. Given two arbitrary E1, E2 ∈ SBNDC≈pb
and an arbitrary L ⊆ A, the

result follows by proving that the symmetric relation B = {((F1 ‖L F2) \
AH, (R1 ‖LR2)\AH), ((R1 ‖LR2)\AH, (F1 ‖L F2)\AH) | F1 ‖L F2, R1 ‖LR2

∈ reach(E1 ‖LE2) ∧ F1 \ AH ≈pb R1 \ AH ∧ F2 \ AH ≈pb R2 \ AH} is
a probabilistic branching bisimulation, as can be seen by observing that

whenever E′1 ‖LE′2
h−→aE

′′
1 ‖LE′′2 for E′1 ‖LE′2 ∈ reach(E1 ‖LE2):

– If E′1
h−→aE

′′
1 , E′′2 = E′2, and h /∈ L, then from E1 ∈ SBNDC≈pb

it follows
that E′1 \ AH ≈pb E

′′
1 \ AH and hence ((E′1 ‖LE′2) \ AH, ((E′′1 ‖LE′′2 ) \

AH) ∈ B as E′2 \ AH ≈pb E
′′
2 \ AH.
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– If E′2
h−→aE

′′
2 , E′′1 = E′1, and h /∈ L, then from E2 ∈ SBNDC≈pb

it follows
that E′2 \ AH ≈pb E

′′
2 \ AH and hence ((E′1 ‖LE′2) \ AH, ((E′′1 ‖LE′′2 ) \

AH) ∈ B as E′1 \ AH ≈pb E
′′
1 \ AH.

– If E′1
h−→aE

′′
1 , E′2

h−→aE
′′
2 , and h ∈ L, then from E1, E2 ∈ SBNDC≈pb

it follows that E′1 \ AH ≈pb E
′′
1 \ AH and E′2 \ AH ≈pb E

′′
2 \ AH, which

in turn entail that ((E′1 ‖LE′2) \ AH, ((E′′1 ‖LE′′2 ) \ AH) ∈ B.

Assuming that ((F1 ‖L F2) \ AH, (R1 ‖LR2) \ AH) ∈ B, there are five cases:

– If (F1 ‖L F2)\AH
l−→a (F ′1 ‖L[1]F2)\AH with F1

l−→a F
′
1 and l /∈ L, then

F1\AH
l−→a F

′
1\AH as l /∈ AH. From F1\AH ≈pb R1\AH it follows that

there exist R̄1 and R′1 such that R1 \AH==⇒ R̄1 \AH
l−→aR

′
1 \AH with

F1 \ AH ≈pb R̄1 \ AH and F ′1 \ AH ≈pb R
′
1 \ AH. Since synchronization

does not apply to τ , it follows that (R1 ‖LR2) \ AH==⇒ (R̄1 ‖LR2) \
AH

l−→a (R′1 ‖L[1]R2) \AH with ((F1 ‖L F2) \AH, (R̄1 ‖LR2) \AH) ∈ B
and ((F ′1 ‖L[1]F2) \ AH, (R′1 ‖L[1]R2) \ AH) ∈ B.

– If (F1 ‖L F2) \ AH
l−→a ([1]F1 ‖L F ′2) \ AH with F2

l−→a F
′
2 and l /∈ L,

then the proof is similar to the one of the previous case.

– If (F1 ‖L F2) \ AH
l−→a (F ′1 ‖L F ′2) \ AH with Fi

l−→a F
′
i for i ∈ {1, 2}

and l ∈ L, then Fi \ AH
l−→a F

′
i \ AH as l /∈ AH. From Fi \ AH ≈b

Ri \AH it follows that there exist R̄i and R′i such that Ri \AH==⇒ R̄i \
AH

l−→aR
′
i \ AH with Fi \ AH ≈pb R̄i \ AH and F ′i \ AH ≈pb R

′
i \ AH.

Since synchronization does not apply to τ , it follows that (R1 ‖LR2) \
AH==⇒ (R̄1 ‖L R̄2) \ AH

l−→a (R′1 ‖LR′2) \ AH with ((F1 ‖L F2) \ AH,
(R̄1 ‖L R̄2) \ AH) ∈ B and ((F ′1 ‖L F ′2) \ AH, (R′1 ‖LR′2) \ AH) ∈ B.

– If (F1 ‖L F2) \ AH
τ−→a (F ′1 ‖L[1]F2) \ AH with F1

τ−→a F
′
1, then F1 \

AH
τ−→a F

′
1 \ AH. From F1 \ AH ≈pb R1 \ AH it follows that either

F ′1\AH ≈pb R1\AH, or there exist R̄1 and R′1 such that R1\AH==⇒ R̄1\
AH

τ−→aR
′
1 \AH with F1 \AH ≈pb R̄1 \AH and F ′1 \AH ≈pb R

′
1 \AH.

In the former subcase (R1 ‖LR2) \ AH is allowed to stay idle with
((F ′1 ‖L F2) \ AH, (R1 ‖LR2) \ AH) ∈ B, while in the latter subcase,
since synchronization does not apply to τ , it follows that (R1 ‖LR2) \
AH==⇒ (R̄1 ‖LR2) \ AH

τ−→a (R′1 ‖L[1]R2) \ AH with ((F1 ‖L F2) \ AH,
(R̄1 ‖LR2) \ AH) ∈ B and ((F ′1 ‖L[1]F2) \ AH, (R′1 ‖L[1]R2) \ AH) ∈ B.

– If (F1 ‖L F2)\AH
τ−→a ([1]F1 ‖L F ′2)\AH with F2

τ−→a F
′
2, then the proof

is similar to the one of the previous case.

As far as probability are concerned, given two arbitrary probabilistic pro-
cesses S1, S2 ∈ P, we observe that prob((F1\AH) ‖L(F2\AH), [S1 ‖L S2]B) =
prob(F1 \ AH, [S1]B) · prob(F2 \ AH, [S2]B) and prob((R1 \ AH) ‖LR2 \ AH),
[S1 ‖L S2]B) = prob(R1 /AH, [S1]B) · prob(R2 /AH, [S2]B) (see the proof of
Lemma 1). Now, from the fact that Fi \ AH ≈pb Ri \ AH, for i ∈ {1, 2}, it
follows that for all equivalence classes C ∈ P/B, prob(Fi\AH, C) = prob(Ri\
AH, C), which in turn implies that prob((F1\AH) ‖L(F2\AH), [S1 ‖L S2]B) =
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prob((R1 \ AH) ‖L(R2 \ AH), [S1 ‖L S2]B). Lastly, from the fact that the re-
striction operators does not apply to probabilistic transitions we conclude
that prob((F1 ‖L F2) \AH, [S1 ‖L S2]B) = prob((R1 ‖LR2) \AH, [S1 ‖L S2]B).

3. Given an arbitrary E ∈ SBNDC≈pb
and an arbitrary L ⊆ A, for every E′ ∈

reach(E) and for every E′′ such that E′
h−→aE

′′ it holds that E′ \ AH ≈pb

E′′ \AH, from which we derive that (E′ \AH)\L ≈pb (E′′ \AH)\L because
≈pb is a congruence with respect to the restriction operator (see the proof of
Lemma 1). Since (E′\AH)\L is isomorphic to (E′\L)\AH and (E′′\AH)\L
is isomorphic to (E′′ \L)\AH, we have that (E′ \L)\AH ≈pb (E′′ \L)\AH.

4. Given an arbitrary E ∈ SBNDC≈pb
and an arbitrary L ⊆ AL, for every E′ ∈

reach(E) and for every E′′ such that E′
h−→aE

′′ it holds that E′ \ AH ≈pb

E′′ \AH, from which we derive that (E′ \AH) /L ≈pb (E′′ \AH) /L because
≈pb is a congruence with respect to the hiding operator (see the proof of
Lemma 1). Since L ∩ AH = ∅, we have that (E′ \ AH) /L is isomorphic
to (E′ /L) \ AH and (E′′ \ AH) /L is isomorphic to (E′′ /L) \ AH, hence
(E′ /L) \ AH ≈pb (E′′ /L) \ AH.

Proof of Theorem 3. We first prove the results for the ≈p-based properties.
Let us examine each relationship separately:

– SBNDC≈p ⊂ SBSNNI≈p . We need to prove that for a given E ∈ P, if E ∈
SBNDC, it follows that for every E′ reachable from E, E′ ∈ BSNNI≈p

. Since
the processes we are considering are not recursive we can treat them as trees,
and hence we can proceed by induction on their depth. In this case we will
proceed by induction on the depth of E:
• If the depth of E is 0 then E has no outgoing transitions and it behaves

as 0. This obviously entails that E \ AH ≈p E /AH.
• If the depth of E is n + 1 with n ∈ N, then take any E′ of depth n

such that E
a−→aE

′. By hypothesis, E,E′ ∈ SBNDC≈p
and by induction

hypothesis E′ ∈ SBSNNI≈p . Hence, we just need to prove that E\AH ≈p

E /AH. There are three cases:
∗ If a /∈ AH then both E \ AH and E /AH can execute a and reach,

respectively, E′ \ AH and E′ /AH, which are weakly probabilistic
bisimilar by induction hypothesis. Thus Definition 4 is respected.

∗ If a ∈ AH we have that E /AH
τ−→aE

′ /AH, with E
a−→aE

′. By
induction hypothesis we have that E′ \ AH ≈p E′ /AH, and since
a ∈ AH and E ∈ SBNDC≈p

we have E \ AH ≈p E
′ \ AH. By tran-

sitivity it follows that E \ AH ≈p E′ /AH which, combined with

E /AH
τ−→aE

′ /AH, determines the condition required by Defini-
tion 4.

∗ If E /AH
p−→pE

′ /AH then E\AH can perform the same transition,

i.e., E\AH
p−→pE

′\AH, because the hiding and restriction operators
do not apply to probabilistic transitions. The processes E′ /AH and
E′ \ AH are weakly probabilistic bisimilar because of the induction
hypothesis.
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– SBSNNI≈p
= P BNDC≈p

. We first prove that P BNDC≈p
⊆ SBSNNI≈p

.
If E ∈ P BNDC≈p

, then E′ ∈ BNDC≈p
for every E′ ∈ reach(E). Since

BNDC≈p ⊂ BSNNI≈p as will be shown in the last case of the proof of
this part of the theorem, E′ ∈ BSNNI≈p for every E′ ∈ reach(E), i.e.,
E ∈ SBSNNI≈p

.
The fact that SBSNNI≈p

⊆ P BNDC≈p
will follow by proving that the

symmetric relation B = {(E′1 \ AH, ((E′2 ‖L F ) /L) \ AH), (((E′2 ‖L F ) /L) \
AH, E′1\AH) | E′1 ∈ reach(E1)∧E′2 ∈ reach(E2)∧ F executing only actions in
AH∧L ⊆ AH∧E′1\AH ≈p E

′
2 /AH∧E2 ∈ SBSNNI≈p} is a weak probabilistic

bisimulation, as can be seen by taking E′1 identical to E′2 and both reachable
from E ∈ SBSNNI≈p

. Assuming that E′1 \ AH and ((E′2 ‖L F ) /L) \ AH are
related by B – so that E′1 \ AH ≈p E

′
2 /AH – there are six cases:

• If E′1 \ AH
l−→aE

′′
1 \ AH, we observe that from E′2 ∈ reach(E2) and

E2 ∈ SBSNNI≈p
it follows that E′2\AH ≈p E

′
2 /AH, so that E′1\AH ≈p

E′2 /AH ≈p E
′
2 \AH, i.e., E′1 \AH ≈p E

′
2 \AH. As a consequence, since

l 6= τ there exists a process E′′2 such that E′2\AH==⇒ l−→a ==⇒E′′2 \AH
with E′′1 \AH ≈p E

′′
2 \AH. Therefore, ((E′2 ‖L F ) /L)\AH==⇒ l−→a ==⇒

((E′′2 ‖L F ) /L)\AH with (E′′1 \AH, ((E′′2 ‖L F ) /L)\AH) ∈ B – because
E′′1 ∈ reach(E1), E′′2 ∈ reach(E2), and E′′1 \ AH ≈p E′′2 /AH as E2 ∈
SBSNNI≈p

. Note that if E′′2 \AH is a probabilistic process F is prefixed
by [1] in the reached process.

• If E′1 \ AH
τ−→aE

′′
1 \ AH, we observe that from E′2 ∈ reach(E2) and

E2 ∈ SBSNNI≈p
it follows that E′2\AH ≈p E

′
2 /AH, so from E′1\AH ≈p

E′2 /AH ≈p E
′
2\AH, i.e., E′1\AH ≈p E

′
2\AH, it follows that there exists

a process E′′2 such that E′2 \AH==⇒E′′2 \AH with E′′1 \AH ≈p E
′′
2 \AH.

Therefore, ((E′2 ‖L F ) /L)\AH==⇒ ((E′′2 ‖L F ) /L)\AH with E′1\AH ≈p

Ē′2 /AH as E2 ∈ SBSNNI≈p
– and (E′′1 \ AH, ((E′′2 ‖L F ) /L) \ AH) ∈ B

– because E′′1 ∈ reach(E1), E′′2 ∈ reach(E2), and E′′1 \ AH ≈p E
′′
2 /AH

as E2 ∈ SBSNNI≈p . Note that if E′′2 \ AH is a probabilistic process F is
prefixed by [1] in the reached process.

• If ((E′2 ‖L F ) /L) \ AH
l−→a ((E′′2 ‖L[1]F ) /L) \ AH because E′2

l−→aE
′′
2

so that E′2 \AH
l−→aE

′′
2 \AH, we observe that from E′2 ∈ reach(E2) and

E2 ∈ SBSNNI≈p
it follows that E′2\AH ≈p E

′
2 /AH, so that E′2\AH ≈p

E′2 /AH ≈p E
′
1 \AH, i.e., E′2 \AH ≈p E

′
1 \AH. As a consequence, since

l 6= τ there exists a process E′′1 such that E′1\AH==⇒ l−→a ==⇒E′′1 \AH
with E′′2 \AH ≈p E

′′
1 \AH. Therefore, (((E′′2 ‖L[1]F ) /L)\AH, E′′1 \AH) ∈

B – because E′′1 ∈ reach(E1), E′′2 ∈ reach(E2), and E′′1 \AH ≈p E
′′
2 /AH

as E2 ∈ SBSNNI≈p
.

• If ((E′2 ‖L F ) /L) \ AH
τ−→a ((E′′2 ‖L[1]F ) /L) \ AH because E′2

τ−→aE
′′
2

so that E′2 \ AH
τ−→aE

′′
2 \ AH, we observe that from E′2 ∈ reach(E2)

and E2 ∈ SBSNNI≈p
it follows that E′2 \ AH ≈p E

′
2 /AH, so that E′2 \

AH ≈p E′2 /AH ≈p E′1 \ AH, i.e., E′2 \ AH ≈p E′1 \ AH. It follows
that there exists a process E′′1 such that E′1 \ AH==⇒E′′1 \ AH with
E′′2 \AH ≈p E

′′
1 \AH. Therefore, (((E′′2 ‖L[1]F ) /L) \AH, E′′1 \AH) ∈ B
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– because E′′1 ∈ reach(E1), E′′2 ∈ reach(E2), and E′′1 \ AH ≈p E
′′
2 /AH

as E2 ∈ SBSNNI≈p
.

• If ((E′2 ‖L F ) /L)\AH
τ−→a ((E′2 ‖L F ′) /L)\AH because F

τ−→a F
′, then

trivially (((E′2 ‖L F ′) /L) \ AH, E′1 \ AH) ∈ B.

• If ((E′2 ‖L F ) /L) \ AH
τ−→a ((E′′2 ‖L F ′) /L) \ AH) because E′2

h−→aE
′′
2

– so that E′2 /AH
τ−→aE

′′
2 /AH – and F

h−→a F
′, we observe that from

E′2, E
′′
2 ∈ reach(E2) and E2 ∈ SBSNNI≈p

it follows that E′2 \ AH ≈p

E′2 /AH and E′′2 \ AH ≈p E
′′
2 /AH, so that E′2 \ AH

τ−→aE
′′
2 \ AH and

E′2 \ AH ≈p E
′
2 /AH ≈p E

′
1 \ AH, i.e., E′2 \ AH ≈p E

′
1 \ AH. It follows

that there exists a process E′′1 such that E′1 \ AH==⇒E′′1 \ AH with
E′′2 \AH ≈p E

′′
1 \AH. Therefore, (((E′′2 ‖L F ′) /L) \AH, E′′1 \AH) ∈ B –

because E′′1 ∈ reach(E1), E′′2 ∈ reach(E2), and E′′1 \ AH ≈p E
′′
2 /AH as

E2 ∈ SBSNNI≈p .

As far as probabilities are concerned we observe that from the fact that
E′1 \ AH ≈p E′2 /AH it follows that for all equivalence classes C ∈ P/B,
prob(E′1 \ AH, C) = prob(E′2 /AH, C). If we consider ((E′2 ‖L F ) /L) \ AH
we observe that since F can only perform high level actions, which are later
hidden or restricted, the processes that F reaches by performing a proba-
bilistic transition do not change the equivalence class reached by E1\AH and
E2 /AH (see the first part of this case). This implies that prob(E1\AH, C) =
prob(((E2 ‖L F ) /L) \ AH, C).

– SBSNNI≈p ⊂ BNDC≈p . If E ∈ SBSNNI≈p = P BNDC≈p
, then it immedi-

ately follows that E ∈ BNDC≈p .
– BNDC≈p

⊂ BSNNI≈p
. If E ∈ BNDC≈p

, i.e., E \ AH ≈p (E ‖L F ) /L) \
AH for all F ∈ P such that every F ′ ∈ reach(F ) executes only actions
in AH and for all L ⊆ AH, then we can consider in particular F̂ capable
of stepwise mimicking the high-level behavior of E, in the sense that F̂
is able to synchronize with all the high-level actions executed by E and its
reachable processes, along with L̂ = AH. As a consequence (E ‖L̂ F̂ ) / L̂)\AH
is isomorphic to E /AH, hence E \ AH ≈p E /AH, i.e., E ∈ BSNNI≈p

.

We now prove the same results for the ≈pb-based properties. Let us examine
each relationship separately:

– SBNDC≈pb
⊂ SBSNNI≈pb

. We need to prove that for a given E ∈ P, if E ∈
SBNDC, it follows that for every E′ reachable from E, E′ ∈ BSNNI≈pb

.
Since the processes we are considering are not recursive we can treat them
as trees, and hence we can proceed by induction on their depth. In this case
we will proceed by induction on the depth of E:
• If the depth of E is 0 then E has no outgoing transitions and it behaves

as 0. This obviously entails that E \ AH ≈pb E /AH.
• If the depth of E is n+ 1 with n ∈ N, then take any E′ of depth n such

that E
a−→aE

′. By hypothesis, E,E′ ∈ SBNDC≈pb
and by induction

hypothesis E′ ∈ SBSNNI≈pb
. Hence, we just need to prove that E \

AH ≈pb E /AH. There are three cases:
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∗ If a /∈ AH then both E \ AH and E /AH can execute a and reach,
respectively, E′ \AH and E′ /AH, which are probabilistic branching
bisimilar by induction hypothesis. Thus Definition 5 is respected.

∗ If a ∈ AH we have that E /AH
τ−→aE

′ /AH, with E
a−→aE

′. By
induction hypothesis we have that E′ \ AH ≈pb E

′ /AH, and since
a ∈ AH and E ∈ SBNDC≈pb

we have E \AH ≈pb E
′ \AH. By tran-

sitivity it follows that E \ AH ≈pb E′ /AH which, combined with

E /AH
τ−→aE

′ /AH, determines the condition required by Defini-
tion 5.

∗ If E /AH
p−→pE

′ /AH then E\AH can perform the same transition,

i.e., E\AH
p−→pE

′\AH, because the hiding and restriction operators
do not apply to probabilistic transitions. The processes E′ /AH and
E′\AH are probabilistic branching bisimilar because of the induction
hypothesis.

– SBSNNI≈pb
= P BNDC≈pb

. We first prove that P BNDC≈pb
⊆ SBSNNI≈pb

.
If E ∈ P BNDC≈pb

, then E′ ∈ BNDC≈pb
for every E′ ∈ reach(E). Since

BNDC≈pb
⊂ BSNNI≈pb

as will be shown in the last case of the proof of this
theorem, E′ ∈ BSNNI≈pb

for every E′ ∈ reach(E), i.e., E ∈ SBSNNI≈pb
.

The fact that SBSNNI≈pb
⊆ P BNDC≈pb

will follow by proving that the
symmetric relation B = {(E′1 \ AH, ((E′2 ‖L F ) /L) \ AH), (((E′2 ‖L F ) /L) \
AH, E′1\AH) | E′1 ∈ reach(E1)∧E′2 ∈ reach(E2)∧F executing only actions in
AH ∧ L ⊆ AH ∧ E′1 \ AH ≈pb E

′
2 /AH ∧ E2 ∈ SBSNNI≈pb

} is a probabilis-
tic branching bisimulation, as can be seen by taking E′1 identical to E′2
and both reachable from E ∈ SBSNNI≈pb

. Assuming that E′1 \ AH and
((E′2 ‖L F ) /L)\AH are related by B – so that E′1 \AH ≈pb E

′
2 /AH – there

are six cases:
• If E′1 \AH

l−→pE
′′
1 \AH, we observe that from E′2 ∈ reach(E2) and E2 ∈

SBSNNI≈p
it follows that E′2 \ AH ≈pb E

′
2 /AH, so that E′1 \ AH ≈pb

E′2 /AH ≈pb E
′
2\AH, i.e., E′1\AH ≈pb E

′
2\AH. As a consequence, since

l 6= τ there exist Ē′2 and E′′2 such that E′2\AH==⇒ Ē′2\AH
l−→aE

′′
2 \AH

with E′1 \ AH ≈pb Ē′2 \ AH and E′′1 \ AH ≈pb E′′2 \ AH. Therefore,

((E′2 ‖L F ) /L) \ AH==⇒ ((Ē′2 ‖L F ) /L) \ AH
l−→a ((E′′2 ‖L F ) /L) \ AH

with (E′1 \ AH, ((Ē′2 ‖L F ) /L) \ AH) ∈ B – because E′1 ∈ reach(E1),
Ē′2 ∈ reach(E2), and E′1 \ AH ≈pb Ē′2 /AH as E2 ∈ SBSNNI≈pb

–
and (E′′1 \ AH, ((E′′2 ‖L F ) /L) \ AH) ∈ B – because E′′1 ∈ reach(E1),
E′′2 ∈ reach(E2), and E′′1 \ AH ≈pb E

′′
2 /AH as E2 ∈ SBSNNI≈pb

.

• If E′1 \ AH
τ−→aE

′′
1 \ AH, there are two subcases:

∗ If E′′1 \ AH ≈pb E
′
2 /AH, then (E′′1 \ AH, ((E′2 ‖L F ) /L) \ AH) ∈ B

as E′′1 ∈ reach(E1), E′2 ∈ reach(E2), and E2 ∈ SBSNNI≈pb
.

∗ If E′′1 \ AH 6≈pb E
′
2 /AH, we observe that from E′2 ∈ reach(E2) and

E2 ∈ SBSNNI≈pb
it follows that E′2 \ AH ≈pb E

′
2 /AH, so that on

the one hand E′1 \ AH ≈pb E
′
2 /AH ≈pb E

′
2 \ AH, i.e., E′1 \ AH ≈pb

E′2\AH, while on the other hand E′′1 \AH 6≈pb E
′
2 /AH ≈pb E

′
2\AH,

i.e., E′′1 \ AH 6≈pb E′2 \ AH. As a consequence, there exist Ē′2 and

E′′2 such that E′2 \AH==⇒ Ē′2 \AH
τ−→aE

′′
2 \AH with E′1 \AH ≈pb
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Ē′2 \ AH and E′′1 \ AH ≈pb E′′2 \ AH. Therefore, ((E′2 ‖L F ) /L) \
AH==⇒ ((Ē′2 ‖L F ) /L) \ AH

τ−→a ((E′′2 ‖L F ) /L) \ AH with (E′1 \
AH, ((Ē′2 ‖L F ) /L) \ AH) ∈ B – because E′1 ∈ reach(E1), Ē′2 ∈
reach(E2), and E′1 \ AH ≈pb Ē′2 /AH as E2 ∈ SBSNNI≈pb

– and
(E′′1 \ AH, ((E′′2 ‖L F ) /L) \ AH) ∈ B – because E′′1 ∈ reach(E1),
E′′2 ∈ reach(E2), and E′′1 \ AH ≈pb E

′′
2 /AH as E2 ∈ SBSNNI≈pb

.

• If ((E′2 ‖L F ) /L) \ AH
l−→a ((E′′2 ‖L F ) /L) \ AH because E′2

l−→aE
′′
2

so that E′2 \ AH
l−→aE

′′
2 \ AH, we observe that from E′2 ∈ reach(E2)

and E2 ∈ SBSNNI≈pb
it follows that E′2 \ AH ≈pb E′2 /AH, so that

E′2 \AH ≈pb E
′
2 /AH ≈pb E

′
1 \AH, i.e., E′2 \AH ≈pb E

′
1 \AH. As a con-

sequence, since l 6= τ there exist Ē′1 and E′′1 such that E′1 \AH==⇒ Ē′1 \
AH

l−→aE
′′
1 \AH with E′2 \AH ≈pb Ē

′
1 \AH and E′′2 \AH ≈pb E

′′
1 \AH.

Therefore, (((E′2 ‖L F ) /L)\AH, Ē′1\AH) ∈ B – because Ē′1 ∈ reach(E1),
E′2 ∈ reach(E2), and Ē′1 \ AH ≈pb E′2 /AH as E2 ∈ SBSNNI≈pb

–
and (((E′′2 ‖L F ) /L) \ AH, E′′1 \ AH) ∈ B – because E′′1 ∈ reach(E1),
E′′2 ∈ reach(E2), and E′′1 \ AH ≈pb E

′′
2 /AH as E2 ∈ SBSNNI≈pb

.

• If ((E′2 ‖L F ) /L) \AH
τ−→a ((E′′2 ‖L F ) /L) \AH because E′2

τ−→aE
′′
2 so

that E′2 \ AH
τ−→aE

′′
2 \ AH, we observe that from E′2 ∈ reach(E2) and

E2 ∈ SBSNNI≈pb
it follows that E′2 \ AH ≈pb E′2 /AH, so that E′2 \

AH ≈pb E
′
2 /AH ≈pb E

′
1 \ AH, i.e., E′2 \ AH ≈pb E

′
1 \ AH. There are

two subcases:
∗ If E′′2 \ AH ≈pb E

′
1 \ AH, then (((E′′2 ‖L F ) /L) \ AH, E′1 \ AH) ∈ B

because E′1 ∈ reach(E1), E′′2 ∈ reach(E2), and E′1 \AH ≈pb E
′′
2 /AH

as E2 ∈ SBSNNI≈pb
.

∗ If E′′2 \ AH 6≈pb E′1 \ AH, then there exist Ē′1 and E′′1 such that

E′1 \ AH==⇒ Ē′1 \ AH
τ−→aE

′′
1 \ AH with E′2 \ AH ≈pb Ē

′
1 \ AH and

E′′2 \AH ≈pb E
′′
1 \AH. Therefore, (((E′2 ‖L F ) /L)\AH, Ē′1\AH) ∈ B

– because Ē′1 ∈ reach(E1), E′2 ∈ reach(E2), and Ē′1\AH ≈pb E
′
2 /AH

as E2 ∈ SBSNNI≈pb
– and (((E′′2 ‖L F ) /L) \ AH, E′′1 \ AH) ∈ B –

because E′′1 ∈ reach(E1), E′′2 ∈ reach(E2), and E′′1 \AH ≈pb E
′′
2 /AH

as E2 ∈ SBSNNI≈pb
.

• If ((E′2 ‖L F ) /L)\AH
τ−→a ((E′2 ‖L F ′) /L)\AH because F

τ−→a F
′, then

trivially (((E′2 ‖L F ′) /L) \ AH, E′1 \ AH) ∈ B.

• If ((E′2 ‖L F ) /L) \ AH
τ−→a ((E′′2 ‖L F ′ /L) \ AH) because E′2

h−→aE
′′
2 –

so that E′2 /AH
τ−→aE

′′
2 /AH – and F

h−→a F
′, we observe that from

E′2, E
′′
2 ∈ reach(E2) and E2 ∈ SBSNNI≈pb

it follows that E′2 \ AH ≈pb

E′2 /AH and E′′2 \ AH ≈pb E
′′
2 /AH, so that E′2 \ AH

τ−→aE
′′
2 \ AH and

E′2 \ AH ≈pb E
′
2 /AH ≈pb E

′
1 \ AH, i.e., E′2 \ AH ≈pb E

′
1 \ AH. There

are two subcases:
∗ If E′′2 \ AH ≈pb E

′
1 \ AH, then (((E′′2 ‖L F ′) /L) \ AH, E′1 \ AH) ∈ B

because E′1 ∈ reach(E1), E′′2 ∈ reach(E2), and E′1 \AH ≈pb E
′′
2 /AH

as E2 ∈ SBSNNI≈pb
.

∗ If E′′2 \ AH 6≈pb E′1 \ AH, then there exist Ē′1 and E′′1 such that

E′1 \ AH==⇒ Ē′1 \ AH
τ−→aE

′′
1 \ AH with E′2 \ AH ≈pb Ē

′
1 \ AH and
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E′′2 \AH ≈pb E
′′
1 \AH. Therefore, (((E′2 ‖L F ) /L)\AH, Ē′1\AH) ∈ B

– because Ē′1 ∈ reach(E1), E′2 ∈ reach(E2), and Ē′1\AH ≈pb E
′
2 /AH

as E2 ∈ SBSNNI≈pb
– and (((E′′2 ‖L F ′) /L) \ AH, E′′1 \ AH) ∈ B –

because E′′1 ∈ reach(E1), E′′2 ∈ reach(E2), and E′′1 \AH ≈pb E
′′
2 /AH

as E2 ∈ SBSNNI≈pb
.

As far as probabilities are concerned we observe that from the fact that
E′1 \ AH ≈p E′2 /AH it follows that for all equivalence classes C ∈ P/B,
prob(E′1 \ AH, C) = prob(E′2 /AH, C). If we consider ((E2 ‖L F ′) /L) \ AH
we observe that since F ′ can only perform high level actions, which are
later hidden or restricted, the processes that F ′ reaches by performing a
probabilistic transition do not change the the equivalence class reached by
E1 \ AH and E2 /AH (see the first part of this case). This implies that
prob(E1 \ AH, C) = prob(((E2 ‖L F ) /L) \ AH, C).

– SBSNNI≈pb
⊂ BNDC≈pb

. If E ∈ SBSNNI≈pb
= P BNDC≈pb

, then it imme-
diately follows that E ∈ BNDC≈pb

.

– BNDC≈pb
⊂ BSNNI≈pb

. If E ∈ BNDC≈pb
, i.e., E \ AH ≈pb (E ‖L F ) /L) \

AH for all F ∈ P such that every F ′ ∈ reach(F ) executes only actions
in AH and for all L ⊆ AH, then we can consider in particular F̂ capable
of stepwise mimicking the high-level behavior of E, in the sense that F̂
is able to synchronize with all the high-level actions executed by E and its
reachable processes, along with L̂ = AH. As a consequence (E ‖L̂ F̂ ) / L̂)\AH
is isomorphic to E /AH, hence E \ AH ≈pb E /AH, i.e., E ∈ BSNNI≈pb

.

Proof of Theorem 5 Let F be E1 + h . [1]E2:

1. Let B be a weak probabilistic bisimulation witnessing E1 ≈p E2. Then
F ∈ BSNNI≈p because the symmetric relation B′ = B ∪ {(F \ AH, F /AH),
(F /AH, F \ AH)} turns out to be a weak probabilistic bisimulation too.
The only interesting case is the one where F /AH, which is isomorphic to
E1 + τ . [1]E2, performs a τ -action toward [1]E2 /AH, which is isomorphic
to [1]E2. In that case F \ AH, which is isomorphic to E1, can respond by
staying idle, because from (E2, E1) ∈ B it follows that ([1]E2, E1) ∈ B, and
hence ([1]E2, E1) ∈ B′.
On the other hand, F /∈ BSNNI≈pb

because E2 6≈pb E1 in the same situation
as before.

2. Since F ∈ BSNNI≈p and no high-level actions occur in every process reach-
able from F , it holds that F ∈ SBSNNI≈p and hence F ∈ BNDC≈p by virtue
of Theorem 3.
On the other hand, from F /∈ BSNNI≈pb

it follows that F /∈ BNDC≈pb
by

virtue of Theorem 3.

3. We already know from the previous case that F ∈ SBSNNI≈p .
On the other hand, from F /∈ BSNNI≈pb

it follows that F /∈ SBSNNI≈pb
by

virtue of Theorem 3.

4. A straightforward consequence of P BNDC≈p
= SBSNNI≈p

(Theorem 3)
and P BNDC≈pb

= SBSNNI≈pb
(Theorem 3).
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5. Since the only high-level action occurring in F is h, in the proof of F ∈
SBNDC≈p

the only interesting case is the transition F
h−→a [1]E2, for which

it holds that F \ AH ≈p E2 \ AH because the former is isomorphic to E1,
the latter is isomorphic to E2, and E1 ≈p E2.
On the other hand, F /∈ SBNDC≈pb

because E1 6≈pb E2 in the same situation
as before.

Proof of Lemma 2. Given s1, s2 ∈ S with s1 ≈pbf s2, consider the reflexive
and symmetric relation B = ≈pbf ∪ {(ρ′′1 , ρ′′2), (ρ′′2 , ρ

′′
1) ∈ (run(s1) × run(s2)) ∪

(run(s2)× run(s1)) | last(ρ′′1) ∈ Sn ∧ last(ρ′′2) ∈ Sn ∧ ∃ρ′1 ∈ run(s1), ρ′2 ∈ run(s2).
ρ′1 ==⇒ ρ′′1∧ρ′2 ==⇒ ρ′′2∧ρ′1 ≈pbf ρ

′′
2∧ρ′′1 ≈pbf ρ

′
2}. The result will follow by proving

that B is a weak probabilistic back-and-forth bisimulation, because this implies
that ρ′′1 ≈pbf ρ

′′
2 for every additional pair – i.e., B satisfies the cross property –

as well as B = ≈pbf – hence ≈pbf satisfies the cross property too.
Let (ρ′′1 , ρ

′′
2) ∈ B \≈pbf to avoid trivial cases. Then there exist ρ′1 ∈ run(s1) and

ρ′2 ∈ run(s2) such that ρ′1 ==⇒ ρ′′1 , ρ′2 ==⇒ ρ′′2 , ρ′1 ≈pbf ρ
′′
2 , and ρ′′1 ≈pbf ρ

′
2. For

action transitions we examine the forward and backward directions separately:

– In the forward case, assume that ρ′′1
a−→a ρ

′′′
1 , from which it follows that

ρ′1 ==⇒ ρ′′1
a−→a ρ

′′′
1 . Since ρ′1 ≈pbf ρ′′2 , we obtain ρ′′2 ==⇒ a−→a ==⇒ ρ′′′2 , or

ρ′′2 ==⇒ ρ′′′2 when a = τ , with ρ′′′1 ≈pbf ρ
′′′
2 and hence (ρ′′′1 , ρ

′′′
2 ) ∈ B. Starting

from ρ′′2
a−→a ρ

′′′
2 one exploits ρ′2 ==⇒ ρ′′2 and ρ′′1 ≈pbf ρ

′
2 instead.

– In the backward case, assume that ρ′′′1
a−→a ρ

′′
1 . Since ρ′′1 ≈pbf ρ

′
2, we obtain

ρ′′′2 ==⇒ a−→a ==⇒ ρ′2, so that ρ′′′2 ==⇒ a−→a ==⇒ ρ′′2 , or ρ′′′2 ==⇒ ρ′2 when a = τ ,
so that ρ′′′2 ==⇒ ρ′′2 , with ρ′′′1 ≈pbf ρ

′′′
2 and hence (ρ′′′1 , ρ

′′′
2 ) ∈ B. Starting from

ρ′′′2
a−→a ρ

′′
2 one exploits ρ′1 ≈pbf ρ

′′
2 and ρ′1 ==⇒ ρ′′1 instead.

As for probabilities, since last(ρ′′1) ∈ Sn and last(ρ′′2) ∈ Sn, we have that
prob(ρ′′1 , C̄) = 1 = prob(ρ′′2 , C̄) if C̄ is the equivalence class containing ρ′′1 and ρ′′2 ,
while prob(ρ′′1 , C) = 0 = prob(ρ′′2 , C) for any other C ∈ U/B.

Proof of Theorem 6. The proof is divided into two parts:

– Suppose that s1 ≈pbf s2 and let B be a weak probabilistic back-and-forth
bisimulation over U such that ((s1, ε), (s2, ε)) ∈ B. Assume that B only
contains all the pairs of ≈pbf -equivalent runs in run(s1) ∪ run(s2), so that
Lemma 2 is applicable to B. We show that B′ = {(last(ρ1), last(ρ2)) |
(ρ1, ρ2) ∈ B} is a probabilistic branching bisimulation over S, from which
s1 ≈pb s2 will follow.
Given (last(ρ1), last(ρ2)) ∈ B′, by definition of B′ we have that (ρ1, ρ2) ∈ B.

Let rk = last(ρk) for k ∈ {1, 2}, so that (r1, r2) ∈ B′. Suppose that r1
a−→a r

′
1,

i.e., ρ1
a−→a ρ

′
1 where last(ρ′1) = r′1. There are two cases:

• If a = τ , then ρ2 ==⇒ ρ′2 with (ρ′1, ρ
′
2) ∈ B. This means that there is

a sequence of n ≥ 0 transitions of the form ρ2,i
τ−→a ρ2,i+1 or

ρ2,i
pi−→p ρ2,i+1 for all 0 ≤ i ≤ n − 1 – with τ -transitions and proba-

bilistic transitions alternating – where ρ2,0 is ρ2 while ρ2,n is ρ′2 so that
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(ρ′1, ρ2,n) ∈ B.
If n = 0 then ρ′2 is ρ2 and we are done because (ρ′1, ρ2) ∈ B and hence

r2 ==⇒ r2
τ̂−→a r2 with (r1, r2) ∈ B′ and (r′1, r2) ∈ B′, otherwise within

ρ2,n we can go back to ρ2,n−1 via ρ2,n−1
τ−→aρ2,n or ρ2,n−1

pn−1−→pρ2,n.
If it is a τ -transition and ρ′1 can match it by doing nothing, so that
(ρ′1, ρ2,n−1) ∈ B, or it is a probabilistic transition with (ρ′1, ρ2,n−1) ∈ B,

and n=1 then we are done because (ρ′1,ρ2)∈B and hence r2==⇒r2
τ̂−→ar2

with (r1, r2) ∈ B′ and (r′1, r2) ∈ B′, otherwise we can go back to ρ2,n−2

via ρ2,n−2
τ−→a ρ2,n−1 or ρ2,n−2

pn−2−→p ρ2,n−1. By repeating this proce-
dure, either we get to (ρ′1, ρ2,0) ∈ B and we are done because (ρ′1, ρ2) ∈ B
and hence r2 ==⇒ r2

τ̂−→a r2 with (r1, r2) ∈ B′ and (r′1, r2) ∈ B′, or
for some 0 < m ≤ n such that (ρ′1, ρ2,m) ∈ B we have that the in-

coming transition ρ2,m−1
τ−→a ρ2,m is matched by ρ̄1 ==⇒ ρ1

τ−→a ρ
′
1 with

(ρ̄1, ρ2,m−1) ∈ B.
In the latter case, since last(ρ1) ∈ Sn, last(ρ2,m−1) ∈ Sn, ρ̄1 ==⇒ ρ1,
ρ2 ==⇒ ρ2,m−1, (ρ̄1, ρ2,m−1) ∈ B, and (ρ1, ρ2) ∈ B, from Lemma 2 it fol-

lows that (ρ1, ρ2,m−1) ∈ B. In conclusion ρ2 ==⇒ ρ2,m−1
τ−→a ρ2,m with

(ρ1, ρ2,m−1) ∈ B and (ρ′1, ρ2,m) ∈ B, so r2 ==⇒ last(ρ2,m−1)
τ−→a last(ρ2,m)

with (r1, last(ρ2,m−1)) ∈ B′ and (r′1, last(ρ2,m)) ∈ B′.
• If a 6= τ , then ρ2 ==⇒ ρ̄2

a−→a ρ̄
′
2 ==⇒ ρ′2 with (ρ′1, ρ

′
2) ∈ B.

From ρ̄′2 ==⇒ ρ′2 and (ρ′1,ρ
′
2)∈B it follows that ρ̄′1 ==⇒ ρ′1 with (ρ̄′1,ρ̄

′
2)∈B.

Since ρ1
a−→a ρ

′
1 and hence the last transition in ρ′1 is labeled with a,

we derive that ρ̄′1 is ρ′1 and hence (ρ′1, ρ̄
′
2) ∈ B.

From ρ̄2
a−→a ρ̄

′
2 and (ρ′1, ρ̄

′
2) ∈ B it follows that ρ̄1 ==⇒ ρ1

a−→a ρ
′
1 with

(ρ̄1, ρ̄2) ∈ B. Since last(ρ1) ∈ Sn, last(ρ̄2) ∈ Sn, ρ̄1 ==⇒ ρ1, ρ2 ==⇒ ρ̄2,
(ρ̄1, ρ̄2) ∈ B, and (ρ1, ρ2) ∈ B, from Lemma 2 it follows that (ρ1, ρ̄2) ∈ B.

In conclusion ρ2 ==⇒ ρ̄2
a−→a ρ̄

′
2 with (ρ1, ρ̄2) ∈ B and (ρ′1, ρ̄

′
2) ∈ B,

hence r2 ==⇒ last(ρ̄2)
a−→a last(ρ̄′2) with (r1, last(ρ̄2)) ∈ B′ and

(r′1, last(ρ̄′2)) ∈ B′.
As far as probabilities are concerned, each equivalence class C ′ ∈ S/B′ is of
the form [last(ρ)]B′ = {last(ρ′) | (last(ρ), last(ρ′)) ∈ B′} = last({ρ′ | (ρ, ρ′) ∈
B}) = last([ρ]B), i.e., C ′ = last(C) for some equivalence class C ∈ U/B,
provided that function last is lifted from runs to sets of runs. Therefore, for
all C ′ ∈ S/B′ such that C ′ = last(C) for some C ∈ U/B, prob(r1, C

′) =
prob(ρ1, C) = prob(ρ2, C) = prob(r2, C

′).
– Suppose that s1 ≈pb s2 and let B be a probabilistic branching bisimula-

tion over S such that (s1, s2) ∈ B. Assume that B only contains all the
pairs of ≈pb-equivalent states reachable from s1 and s2. We show that B′ =
{(ρ1,ρ2),(ρ2,ρ1) ∈ (run(s1)×run(s2))∪(run(s2)×run(s1)) | (last(ρ1), last(ρ2))
∈ B} is a weak probabilistic back-and-forth bisimulation over U , from which
(s1, ε) ≈pbf (s2, ε), i.e., s1 ≈pbf s2, will follow.
Given (ρ1,ρ2) ∈ B′, by definition of B′ we have that (last(ρ1),last(ρ2)) ∈ B.
Let rk = last(ρk) for k ∈ {1, 2}, so that (r1, r2) ∈ B. For action transitions
we examine the forward and backward directions separately:
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• If ρ1
a−→a ρ

′
1, i.e., r1

a−→a r
′
1 where r′1 = last(ρ′1), then r2 ==⇒ r̄2

â−→a r
′
2

with (r1, r̄2) ∈ B and (r′1, r
′
2) ∈ B, hence ρ2

â
==⇒ ρ′2 where last(ρ′2) = r′2

so that (ρ′1, ρ
′
2) ∈ B′.

• If ρ′1
a−→a ρ1, i.e., r′1

a−→a r1 where r′1 = last(ρ′1), there are two cases:

∗ If ρ′1 is (s1, ε) then r′1
a−→a r1 is s1

a−→a r1 and last(ρ′1) = s1. There-

fore s2 ==⇒ r̄2
â−→a r2 with (s1, r̄2) ∈ B and (r1, r2) ∈ B, hence

ρ′2
â

==⇒ ρ2 where last(ρ′2) = s2 so that (ρ′1, ρ
′
2) ∈ B′.

∗ If ρ′1 is not (s1, ε) then s1 reaches last(ρ′1) with a sequence of moves
that are B-compatible with those with which s2 reaches some r′2 =
last(ρ′2) such that (r′1, r

′
2) ∈ B as B only contains all the states reach-

able from s1 and s2. Therefore r′2 ==⇒ r̄2
â−→a r2 with (r′1,r̄2) ∈ B

and (r1, r2) ∈ B, hence ρ′2
â

==⇒ ρ2 with (ρ′1, ρ
′
2) ∈ B′.

As far as probabilities are concerned, each equivalence class C ′ ∈ U/B′ is of
the form [ρ]B′ = {ρ′ | (last(ρ), last(ρ′)) ∈ B} = {ρ′ | last(ρ′) ∈ [last(ρ)]B},
i.e., C ′ corresponds to a precise equivalence class CC′ ∈ S/B. Therefore,
for all C ′ ∈ U/B′, prob(ρ1, C

′) = prob(last(ρ1), CC′) = prob(last(ρ2), CC′) =
prob(ρ2, C

′).
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