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Abstract. Noninterference theory aims at ensuring the absence of covert
channels among different security levels. As far as the verification of
information-flow properties via equivalence checking is concerned, in non-
deterministic and probabilistic settings weak bisimilarity has turned out
to be adequate only for standard systems, while branching bisimilarity
has proven to be appropriate for reversible systems too. In this paper we
investigate noninterference for stochastically timed systems represented
in the interactive Markov chain model of Hermanns. After recasting a
selection of noninterference properties via Markovian variants of weak
and branching bisimilarities, we study their preservation and composi-
tionality aspects, build their taxonomy, and compare it with the nonde-
terministic and probabilistic taxonomies. We show the adequacy of our
proposal through some examples about a database management system.

1 Introduction

The notion of noninterference was introduced in [34] to reason about the way
in which illegitimate information flows can occur in multi-level security systems
due to covert channels from high-level agents to low-level ones. Since the first
definition, conceived for deterministic systems, there have been several exten-
sions to more expressive domains, such as nondeterministic systems, systems
in which quantitative aspects like time and probability play a central role, and
reversible systems; see, e.g., [26,2,47,37,64,59,8,5,3,41,25,24]. Likewise, different
verification approaches have been proposed; see, e.g., [67,30,27,48,4].

Noninterference guarantees that low-level agents cannot infer from their ob-
servations what high-level ones are doing. Regardless of its specific definition,
noninterference is closely tied to the notion of behavioral equivalence [32] be-
cause, given a multi-level security system, the idea is to compare the system
behavior with high-level actions being prevented and the system behavior with
the same actions being hidden. A natural framework in which to study system
behavior is given by process algebra [49]. In this setting, weak bisimilarity has
been employed in [26] to reason formally about covert channels and illegitimate
information flows as well as to study a classification of noninterference properties
for irreversible nondeterministic systems.

Noninterference analysis has been recently extended to reversible systems
– featuring forward and backward computations – in the nondeterministic set-
ting [25] and in the probabilistic one [24]. Reversibility has started to gain at-
tention in computing since it has been shown that it may achieve lower levels
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of energy consumption [43,9]. Its applications range from biochemical reaction
modeling [56,57] and parallel discrete-event simulation [53,61] to robotics [46],
wireless communications [62], fault-tolerant systems [21,65,44,63], program de-
bugging [29,45], and distributed algorithms [66,15].

As shown in [25,24], noninterference properties based on weak bisimilarity
are not adequate in a reversible context because they fail to detect information
flows emerging when backward computations are triggered. A more appropriate
semantics turns out to be branching bisimilarity [33] because it coincides with
weak back-and-forth bisimilarity [22]. The latter behavioral equivalence requires
systems to be able to mimic each other’s behavior stepwise not only when per-
forming actions in the standard forward direction, but also when undoing those
actions in the backward direction. Formally, weak back-and-forth bisimilarity is
defined over computation paths instead of states thus preserving not only causal-
ity but also history, as backward moves are constrained to take place along the
same path followed in the forward direction even in the presence of concurrency.

In this paper we extend the approach of [25,24] to a stochastically timed
setting, so as to address noninterference properties in a framework featuring
nondeterminism, time, and reversibility. To accomplish this we move to a model
combining nondeterminism and stochastic time given by the interactive Markov
chain model of [38], in which transitions are divided into action transitions,
each labeled with an action, and rate transition, each labeled with a positive
real number called rate that expresses an exponentially distributed delay. The
reason for choosing this model in which time passing is orthogonal to action
execution, instead of a model in which action execution and time passing are
integrated [35,39,40,19,58,14,12,10] (see [13] for encodings between integrated-
time and orthogonal-time calculi), is that the former naturally supports the
definition of behavioral equivalences abstracting from unobservable actions [38]
– which are necessary for noninterference analysis – whereas this is not the case
in the latter [11], which was employed in [3,41] for stochastic variants of some
noninterference properties.

Following [38] we build a process calculus featuring action prefix separated
from rate prefix. As for behavioral equivalences, we adopt the weak Marko-
vian bisimilarity of [38] and introduce a novel Markovian branching bisimilarity.
By using these two equivalences we recast the noninterference properties of [26,28]
for irreversible systems and the noninterference properties of [25] for reversible
systems, respectively, to study their preservation and compositionality aspects
as well as to provide a taxonomy similar to those in [26,25,24]. Reversibility
comes into play by extending one of the results of [22] to the interactive Markov
chain model; we show that a Markovian variant of weak back-and-forth bisimi-
larity coincides with our Markovian branching bisimilarity.

This paper is organized as follows. In Section 2 we recall the interactive
Markov chain model of [38] along with various definitions of strong and weak
bisimilarities for it and a process calculus interpreted on it. In Section 3 we recast
in our stochastically timed framework a selection of noninterference properties
taken from [26,28,25]. In Section 4 we study their preservation and composition-
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ality characteristics as well as their taxonomy, which in Section 5 we relate to the
nondeterministic taxonomy of [25] and the probabilistic one of [24]. In Section 6
we establish a connection with reversibility by introducing a weak Markovian
back-and-forth bisimilarity and proving that it coincides with Markovian branch-
ing bisimilarity. In Section 7 we present examples of obfuscation and permission
mechanisms in database management systems to show the adequacy of our ap-
proach to information flows in reversible systems featuring nondeterminism and
stochastic time. Finally, in Section 8 we provide some concluding remarks.

2 Background Definitions and Results

In this section we recall the interactive Markov chain model of [38] (Section 2.1)
along with its strong and weak Markovian bisimilarities and define a novel
Markovian branching bisimilarity (Section 2.2). Then we introduce a Markovian
process language inspired by [38] (Section 2.3) through which we will express
bisimulation-based information-flow security properties accounting for nonde-
terminism and stochastic time.

2.1 Markovian Labeled Transition Systems

To represent the behavior of a process featuring nondeterminism and stochastic
time, we use a Markovian labeled transition system. This is a variant of a labeled
transition system [42] where, according to the interactive Markov chain model
of [38], transitions are labeled with actions or positive real numbers called rates
expressing exponentially distributed delays. We assume that the action set Aτ
contains a set A of observable actions and a single action τ /∈ A representing
unobservable actions.

Definition 1. A Markovian labeled transition system (MLTS) is a triple
(S,Aτ ,−→) where S is an at most countable set of states, Aτ = A ∪ {τ} is a
countable set of actions, and −→ = −→a ∪ −→r is the transition relation, with
−→a ⊆ S×Aτ×S being the action transition relation whilst −→r ⊆ S×R>0×S
being the rate transition relation.

An action transition (s, a, s′) is written s
a−→a s

′ while a rate transition

(s, λ, s′) is written s
λ−→r s

′, where s is the source state and s′ is the target
state. We say that s′ is reachable from s, written s′ ∈ reach(s), iff s′ = s or there
exists a sequence of finitely many transitions such that the target state of each
of them coincides with the source state of the subsequent one, with the source
of the first one being s and the target of the last one being s′.

The label of a rate transition is the inverse of the average duration of the cor-
responding exponentially distributed delay, which enjoys the memoryless prop-
erty : the residual duration after the execution starts is still exponentially dis-

tributed with the same rate. If the outgoing rate transitions of state s are s
λi−→r si

for 1 ≤ i ≤ n, then the race policy applies. This means that the average sojourn
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time in s is given by the minimum of the n exponentially distributed delays
– which is exponentially distributed with rate

∑
1≤i≤n λi – and the execution

probability of transition j is given by λj/
∑

1≤i≤n λi. As for the interplay be-
tween action transitions and rate transitions, like in [38] we assume maximal
progress, i.e., τ -transitions take precedence over rate transitions.

2.2 Bisimulation Equivalences

Bisimilarity [52,49] identifies processes that are able to mimic each other’s be-
havior stepwise, i.e., having the same branching structure. In the interactive
Markov chain model, this extends to stochastic behavior [38]. Let rate(s, C) =∑
s

λ−→r s′,s′∈C
λ be the cumulative rate with which state s reaches a state in C.

Due to maximal progress, cumulative rates are compared only in states with no
outgoing τ -transitions, denoted 6τ−→a.

Definition 2. Let (S,Aτ ,−→) be an MLTS. We say that s1, s2 ∈ S are strongly
Markovian bisimilar, written s1 ∼m s2, iff (s1, s2) ∈ B for some strong Marko-
vian bisimulation B. An equivalence relation B over S is a strong Markovian
bisimulation iff, whenever (s1, s2) ∈ B, then:

– For each s1
a−→a s

′
1 there exists s2

a−→a s
′
2 such that (s′1, s

′
2) ∈ B.

– If s1 6
τ−→a then rate(s1, C) = rate(s2, C) for all equivalence classes C in the

quotient set S/B.

Weak bisimilarity [49] is additionally capable of abstracting from unobserv-

able actions. Let s
τ∗

==⇒a s
′ mean that s′ ∈ reach(s) and, when s′ 6= s, there exists

a finite sequence of transitions from s to s′ each of which is labeled with τ .

Moreover let
â

==⇒a stand for
τ∗

==⇒a if a = τ or
τ∗

==⇒a
a−→a

τ∗
==⇒a if a 6= τ .

The Markovian adaptation below is taken from [38].

Definition 3. Let (S,Aτ ,−→) be an MLTS. We say that s1, s2 ∈ S are weakly
Markovian bisimilar, written s1 ≈mw s2, iff (s1, s2) ∈ B for some weak Marko-
vian bisimulation B. An equivalence relation B over S is a weak Markovian
bisimulation iff, whenever (s1, s2) ∈ B, then:

– For each s1
a−→a s

′
1 there exists s2

â
==⇒a s

′
2 such that (s′1, s

′
2) ∈ B.

– If s1 6
τ−→a then there exists s2

τ∗
==⇒a s̄2 such that s̄2 6

τ−→a, (s1, s̄2) ∈ B, and
rate(s1, C) = rate(s̄2, C) for all equivalence classes C ∈ S/B.

Branching bisimilarity [33] is finer than weak bisimilarity as it preserves the
branching structure of processes even when abstracting from τ -actions – see
condition (s1, s̄2) ∈ B in the action transitions matching of the definition below.
We adapt it to the Markovian setting as follows.

Definition 4. Let (S,Aτ ,−→) be an MLTS. We say that s1, s2 ∈ S are Marko-
vian branching bisimilar, written s1 ≈mb s2, iff (s1, s2) ∈ B for some Markovian
branching bisimulation B. An equivalence relation B over S is a Markovian
branching bisimulation iff, whenever (s1, s2) ∈ B, then:
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s1
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a

Fig. 1. States s1 and s2 are related by ≈mw but distinguished by ≈mb

– For each s1
a−→a s

′
1:

• either a = τ and (s′1, s2) ∈ B;

• or there exists s2
τ∗

==⇒a s̄2
a−→a s

′
2 such that (s1, s̄2) ∈ B and (s′1, s

′
2) ∈ B.

– If s1 6
τ−→a then there exists s2

τ∗
==⇒a s̄2 such that s̄2 6

τ−→a, (s1, s̄2) ∈ B, and
rate(s1, C) = rate(s̄2, C) for all equivalence classes C ∈ S/B.

In [38] it is argued that the weak bisimilarity of Definition 3 is already very
close to branching bisimilarity, because maximal progress forces a check given
by condition (s1, s̄2) ∈ B on the branching structure of the considered processes.
We show that our novel Definition 4, which sticks to the original one of [33],
is more discriminating. Consider Figure 1, where every MLTS is depicted as a
directed graph in which vertices represent states and action- or rate-labeled edges
represent transitions. The initial states s1 and s2 of the two MLTSs are weakly
Markovian bisimilar but not Markovian branching bisimilar. On the one hand,
each of the two states reachable from s1 with rate 3.4 and the state reachable
from s2 with rate 6.8 after a τ -transition are all weakly Markovian bisimilar and
hence the cumulative rate to reach them is the same from both initial states.
On the other hand, the two states reachable from s1 are not Markovian branching
bisimilar, because if the one on the right performs a then the one on the left
cannot respond by performing τ followed by a because the state reached after
τ no longer enables b. Thus, with respect to Markovian branching bisimilarity,
s1 reaches with rate 3.4 two different equivalence classes, while s2 reaches with
rate 6.8 only one of them.

2.3 A Markovian Process Calculus with High and Low Actions

We now introduce a Markovian process calculus to formalize the security proper-
ties of interest. To address two security levels, we partition the setA of observable
actions into AH ∪AL, with AH ∩AL = ∅, where AH is the set of high-level ac-
tions, ranged over by h, and AL is the set of low-level actions, ranged over by l.
Note that τ /∈ AH ∪ AL.
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Prefix a . P
a−→a P

Choice
P1

a−→a P
′
1

P1 + P2
a−→a P

′
1

P2
a−→a P

′
2

P1 + P2
a−→a P

′
2

Parallel
P1

a−→a P
′
1 a /∈ L

P1 ‖L P2
a−→a P

′
1 ‖L P2

P2
a−→a P

′
2 a /∈ L

P1 ‖L P2
a−→a P1 ‖L P ′2

Synch
P1

a−→a P
′
1 P2

a−→a P
′
2 a ∈ L

P1 ‖L P2
a−→a P

′
1 ‖L P ′2

Restriction
P

a−→a P
′ a /∈ L

P \ L a−→a P
′ \ L

Hiding
P

a−→a P
′ a ∈ L

P /L
τ−→a P

′ /L

P
a−→a P

′ a /∈ L
P /L

a−→a P
′ /L

Table 1. Operational semantic rules for action transitions

The set P of process terms is obtained by considering typical operators from
CCS [49] and CSP [18] together with rate prefix from [38]. In addition to prefix,
choice, and parallel composition – which is taken from CSP so as not to hide
synchronizations among high-level actions by turning them into τ as would hap-
pen with the CCS parallel composition – we include restriction and hiding as
they are necessary to formalize noninterference properties. The syntax for P is:

P ::= 0 | a . P | (λ) . P | P + P | P ‖L P | P \ L | P /L
where:

– 0 is the terminated process.

– a . , for a ∈ Aτ , is the action prefix operator describing a process that can
initially perform action a.

– (λ) . , for λ ∈ R>0, is the rate prefix operator describing a process that can
initially let an exponentially distributed delay pass with average duration
1/λ.

– + is the alternative composition operator expressing a choice between
two processes, which is nondeterministic in case of actions, probabilistic in
case of rates according to the race policy, or subject to maximal progress
otherwise.

– ‖L , for L ⊆ A, is the parallel composition operator allowing two processes
to proceed independently on any action not in L as well as on rates thanks to
the memoryless property of exponential distributions [38] and forcing them
to synchronize on every action in L.

– \L, for L ⊆ A, is the restriction operator, which prevents the execution of
all actions belonging to L.

– /L, for L ⊆ A, is the hiding operator, which turns all the executed actions
belonging to L into the unobservable action τ .



Noninterference Analysis of Stochastically Timed Reversible Systems 7

RatePrefix (λ) . P
λ−→r P

RateChoice
P1

λ−→r P
′
1

P1 + P2
λ−→r P

′
1

P2
λ−→r P

′
2

P1 + P2
λ−→r P

′
2

RateParallel
P1

λ−→r P
′
1

P1 ‖L P2
λ−→r P

′
1 ‖L P2

P2
λ−→r P

′
2

P1 ‖L P2
λ−→r P1 ‖L P ′2

RateRestriction
P

λ−→r P
′

P \ L λ−→r P
′ \ L

RateHiding
P

λ−→r P
′

P /L
λ−→r P

′ /L

Table 2. Operational semantic rules for rate transitions

The operational semantic rules for the process language are shown in Ta-
bles 1 and 2 for action and rate transitions respectively. Together they produce
the MLTS (P,Aτ ,−→) where −→ = −→a ∪ −→r, to which the bisimulation
equivalences defined in Section 2.2 are applicable. While −→a ⊆ P × Aτ × P
is a relation, −→r ⊆ P×R>0×P is deemed to be a multirelation [38]; e.g., from
(λ1) . P + (λ2) . P there must be two rate transitions to P even when λ1 = λ2
otherwise the average sojourn time in the source process would be altered.

3 Markovian Information-Flow Security Properties

In this section we recast the definitions of noninteference properties of [26,28,25] –
Nondeterministic Non-Interference (NNI) and Non-Deducibility on Composition
(NDC) – by taking as behavioral equivalence the weak or branching bisimilarity
of Section 2.2. The intuition behind noninterference in a two-level security system
is that, if a group of agents at the high level performs some actions, the effect
of those actions should not be seen by any agent at the low level. To formalize
this, the restriction and hiding operators play a central role.

Definition 5. Let P ∈ P and ≈ ∈ {≈mw,≈mb}:

– P ∈ BSNNI≈ ⇐⇒ P \ AH ≈ P /AH.
– P ∈ BNDC≈ ⇐⇒ for all Q ∈ P such that each of its prefixes belongs to AH

and for all L ⊆ AH, P \ AH ≈ ((P ‖LQ) /L) \ AH.
– P ∈ SBSNNI≈ ⇐⇒ for all P ′ ∈ reach(P ), P ′ ∈ BSNNI≈ .
– P ∈ P BNDC≈ ⇐⇒ for all P ′ ∈ reach(P ), P ′ ∈ BNDC≈ .

– P ∈ SBNDC≈ ⇐⇒ for all P ′, P ′′ ∈ reach(P ) such that P ′
h−→a P

′′,
P ′ \ AH ≈ P ′′ \ AH.

Bisimulation-based Strong Nondeterministic Non-Interference (BSNNI) has
been one of the first and most intuitive proposals. Basically, it is satisfied by any
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process P that behaves the same when its high-level actions are prevented (as
modeled by P \AH) or when they are considered as hidden, unobservable actions
(as modeled by P /AH). The equivalence between these two low-level views of P
states that a low-level agent cannot deduce the high-level behavior of the sys-
tem. For instance, in our Markovian setting, a low-level agent that observes the
execution of l in P = l . (2 ·λ) . 0+ l . ((λ) . h . l1 . 0+(λ) . h . l2 . 0)+ l . ((λ) . l1 . 0+
(λ) . l2 . 0) cannot infer anything about the execution of h. Indeed, after the exe-
cution of l, what the low-level agent observes is either a terminal state, reached
with rate 2 · λ, or the execution of either l1 or l2, both with rate λ. Formally,
P \ {h} ≈ P / {h} because l . (2 · λ) . 0 + l . ((λ) . 0 + (λ) . 0) + l . ((λ) . l1 . 0 +
(λ) . l2 . 0) ≈ l . (2·λ) . 0+l . ((λ) . τ . l1 . 0+(λ) . τ . l2 . 0)+l . ((λ) . l1 . 0+(λ) . l2 . 0),
hence P is BSNNI≈ .

BSNNI≈ is not powerful enough to capture covert channels that derive from
the behavior of a high-level agent interacting with the system. For instance,
l . (2·λ) . 0+l . ((λ) . h1 . l1 . 0+(λ) . h2 . l2 . 0)+l . ((λ) . l1 . 0+(λ) . l2 . 0) is BSNNI≈
for the same reason discussed above. However, a high-level agent could decide
to enable only h1, thus yielding the low-level view of the system l . (2 · λ) . 0 +
l . ((λ) . τ . l1 . 0+(λ) . 0)+l . ((λ) . l1 . 0+(λ) . l2 . 0), which is clearly distinguishable
from l . (2 ·λ) . 0 + l . ((λ) . 0 + (λ) . 0) + l . ((λ) . l1 . 0 + (λ) . l2 . 0), as in the former
there is a case in which the low-level agent can observe l1 but not l2 after the
execution of l. To avoid such a limitation, the most obvious solution consists
of checking explicitly the interaction on any action set L ⊆ AH between the
system and every possible high-level agent Q. The resulting property is the
Bisimulation-based Non-Deducibility on Composition (BNDC), which features a
universal quantification over Q containing only high-level actions.

Note that in this Markovian setting the high-level agent Q cannot exhibit
any rate prefix by definition, otherwise no process would satisfy the BNDC
property. To see why, consider the trivially safe process l . 0 and the high-level
agent (λ) . h . 0. The processes (l . 0) \ AH and ((l . 0 ‖L(λ) . h . 0) /L) \ AH are
not equivalent, regardless of the specific L ⊆ AH, because the former can only
perform the low-level action l while the latter can also let time pass before or
after the execution of l.

To overcome the verification problems related to the quantification over Q,
several properties stronger than BNDC have been proposed. They all express
some persistency conditions, stating that the security checks have to be extended
to all the processes reachable from a secure one. Three of the most representative
ones among such properties are the variant of BSNNI that requires every reach-
able process to satisfy BSNNI itself, called Strong BSNNI (SBSNNI), the variant
of BNDC that requires every reachable process to satisfy BNDC itself, called
Persistent BNDC (P BNDC), and Strong BNDC (SBNDC), which requires the
low-level view of every reachable process to be the same before and after the ex-
ecution of any high-level action, meaning that the execution of high-level actions
must be completely transparent to low-level agents. In the nondeterministic and
probabilistic settings, P BNDC and SBSNNI have been proven to coincide in
the case of both weak bisimilarity and branching bisimilarity [28,25,24].
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4 Characteristics of Markovian Security Properties

In this section we investigate preservation and compositionality characteristics
of the noninterference properties introduced in the previous section (Section 4.1)
as well as the inclusion relationships between the ones based on ≈mw and the
ones based on ≈mb (Section 4.2).

4.1 Preservation and Compositionality

All the Markovian noninterference properties of Definition 5 turn out to be
preserved by the bisimilarity employed in their definition. This means that if a
process P1 is secure under any of such properties, then every other equivalent
process P2 is secure too according to the same property. This is very useful for
automated property verification, as it allows us to work with the process with
the smallest state space among the equivalent ones.

The preservation result of Theorem 1 immediately follows from Lemma 1
below, which ensures that ≈mw and ≈mb are congruences with respect to all
the operators occurring in the aforementioned noninterference properties. Con-
gruence with respect to action and rate prefixes is also addressed as it will be
exploited in the proof of the compositionality result of Theorem 2. Some of the
following congruence properties for ≈mw are already known from [38].

Lemma 1. Let P1, P2 ∈ P and ≈ ∈ {≈mw,≈mb}. If P1 ≈ P2 then:

1. a . P1 ≈ a . P2 for all a ∈ Aτ .
2. (λ) . P1 ≈ (λ) . P2 for all λ ∈ R>0.
3. P1 ‖L P ≈ P2 ‖L P and P ‖L P1 ≈ P ‖L P2 for all L ⊆ A and P ∈ P.
4. P1 \ L ≈ P2 \ L for all L ⊆ A.
5. P1 /L ≈ P2 /L for all L ⊆ A.

Theorem 1. Let P1, P2 ∈ P, ≈ ∈ {≈mw,≈mb}, and P ∈ {BSNNI≈ ,BNDC≈ ,
SBSNNI≈ ,P BNDC≈ ,SBNDC≈}. If P1 ≈ P2 then P1 ∈ P ⇐⇒ P2 ∈ P.

As far as modular verification is concerned, like in the nondeterministic and
probabilistic settings [26,25,24] only the local properties SBSNNI≈ , P BNDC≈ ,
and SBNDC≈ are compositional, i.e., are preserved by some operators of the
calculus in certain circumstances. Moreover, similar to [25,24], compositionality
with respect to parallel composition is limited, for SBSNNI≈mb

and P BNDC≈mb
,

to the case in which synchronizations can take place only among low-level ac-
tions, i.e., L ⊆ AL. A limitation to low-level actions applies to action prefix
and hiding as well, whilst this is not the case for restriction. Another anal-
ogy with the nondeterministic and probabilistic settings [26,25,24] is that none
of the considered noninterference properties is compositional with respect to
alternative composition. As an example, let us examine processes P1 = l . 0
and P2 = h . 0. Both processes are BSNNI≈ , as (l . 0) \ {h} ≈ (l . 0) / {h} and
(h . 0) \ {h} ≈ (h . 0) / {h}, but P1 +P2 /∈ BSNNI≈ , because (l . 0 +h . 0) \ {h} ≈
l . 0 6≈ l . 0 + τ . 0 ≈ (l . 0 + h . 0) / {h}. It is easy to check that P1 + P2 /∈ P also
for P ∈ {BNDC≈ ,SBSNNI≈ ,SBNDC≈}.
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Theorem 2. Let P, P1, P2 ∈ P, ≈ ∈ {≈mw,≈mb}, P ∈ {SBSNNI≈ ,P BNDC≈ ,
SBNDC≈}. Then:

1. P ∈ P =⇒ a . P ∈ P for all a ∈ AL ∪ {τ}.
2. P ∈ P =⇒ (λ) . P ∈ P for all λ ∈ R>0.
3. P1, P2 ∈ P =⇒ P1 ‖L P2 ∈ P for L ⊆ AL if P ∈ {SBSNNI≈mb

,P BNDC≈mb
}

or for L ⊆ A if P ∈ {SBSNNI≈mw
,P BNDC≈mw

,SBNDC≈mw
,SBNDC≈mb

}.
4. P ∈ P =⇒ P \ L ∈ P for all L ⊆ A.
5. P ∈ P =⇒ P /L ∈ P for all L ⊆ AL.

4.2 Taxonomy of Security Properties

First of all, similar to the nondeterministic and probabilistic settings [26,25,24]
the properties in Definition 5 turn out to be increasingly finer. This result holds
for both those based on ≈mw and those based on ≈mb.

Theorem 3. Let ≈ ∈ {≈mw,≈mb}. Then:
SBNDC≈ ( SBSNNI≈ = P BNDC≈ ( BNDC≈ ( BSNNI≈

Secondly, we observe that all the ≈mb-based noninterference properties imply
the corresponding ≈mw-based ones, due to the fact that ≈mb is finer than ≈mw.

Theorem 4. The following inclusions hold:

1. BSNNI≈mb
( BSNNI≈mw .

2. BNDC≈mb
( BNDC≈mw

.
3. SBSNNI≈mb

( SBSNNI≈mw
.

4. P BNDC≈mb
( P BNDC≈mw

.
5. SBNDC≈mb

( SBNDC≈mw
.

All the inclusions above are strict by virtue of the following result; for an
example of P1 and P2 below, see Figure 1.

Theorem 5. Let P1, P2 ∈ P be such that P1 ≈mw P2 but P1 6≈mb P2. If no
high-level actions occur in P1 and P2, then Q ∈ {P1 + h . P2, P2 + h . P1} is such
that:

1. Q ∈ BSNNI≈mw
but Q /∈ BSNNI≈mb

.
2. Q ∈ BNDC≈mw but Q /∈ BNDC≈mb

.
3. Q ∈ SBSNNI≈mw but Q /∈ SBSNNI≈mb

.
4. Q ∈ P BNDC≈mw but Q /∈ P BNDC≈mb

.
5. Q ∈ SBNDC≈mw

but Q /∈ SBNDC≈mb
.

The diagram in Figure 2 summarizes the inclusions among the various non-
interference properties based on the results in Theorems 3 and 4, where P → Q
means that P is strictly included in Q. These inclusions follow the same pattern
as the nondeterministic and probabilistic settings [25,24].

The arrows missing in the diagram, witnessing incomparability, are justified
by the following counterexamples:
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BSNNI≈mw

BNDC≈mw

SBSNNI≈mw

P BNDC≈mw

SBNDC≈mw

BSNNI≈mb

BNDC≈mb

SBSNNI≈mb

P BNDC≈mb

SBNDC≈mb

Fig. 2. Taxonomy of security properties based on Markovian bisimilarities

– SBNDC≈mw vs. SBSNNI≈mb
. The process τ . l . 0+l . l . 0+h . l . 0 is BSNNI≈mb

as (τ . l . 0 + l . l . 0 + h . l . 0) \ {h} ≈mb τ . l . 0 + l . l . 0 ≈mb τ . l . 0 + l . l . 0 +
τ . l . 0 ≈mb (τ . l . 0 + l . l . 0 + h . l . 0) / {h}. It is also SBSNNI≈mb

because
every reachable process does not enable further high-level actions. How-
ever, it is not SBNDC≈mw

because after executing the high-level action h
it can perform a single l-action, while the original process with the restric-
tion on high-level actions can go along a path where it performs two l-actions.
On the other hand, the process Q mentioned in Theorem 5 is SBNDC≈mw

but neither BSNNI≈mb
nor SBSNNI≈mb

.

– SBSNNI≈mw
vs. BNDC≈mb

. The process l . h . l . 0+ l . 0+ l . l . 0 is BSNNI≈mb

as (l . h . l . 0 + l . 0 + l . l . 0)\{h} ≈mb l . 0 + l . 0 + l . l . 0 ≈mb l . τ . l . 0 + l . 0 +
l . l . 0 ≈mb (l . h . l . 0 + l . 0 + l . l . 0) / {h}. The same process is BNDC≈mb

too as it includes only one high-level action, hence the only possible high-
level strategy coincides with the check conducted by BSNNI≈mb

. However,
it is not SBSNNI≈mw

because of the reachable process h . l . 0, which is not
BSNNI≈mw

. On the other hand, the process Q mentioned in Theorem 5
is SBSNNI≈mw but not BSNNI≈mb

and, therefore, not even BNDC≈mb
.

– BNDC≈mw
vs. BSNNI≈mb

. The process l . (2·λ) . 0+l . ((λ) . h1 . l1 . 0+(λ) . h1 .
l1 . 0 + l . ((λ) . l1 . 0 + (λ) . l2 . 0)) is BSNNI≈mb

but not BNDC≈mw
as dis-

cussed in Section 3. In contrast, the process Q mentioned in Theorem 5
is both BSNNI≈mw and BNDC≈mw , but not BSNNI≈mb

.

Like in the nondeterministic and probabilistic settings [25,24], the strongest
property based on weak Markovian bisimilarity (SBNDC≈mw

) and the weakest
property based on Markovian branching bisimilarity (BSNNI≈mb

) are incompa-
rable too. The former is a very restrictive property because it requires a local
check every time a high-level action is performed, while the latter requires a
check only on the initial state. On the other hand, as shown in Theorem 5, it is
very easy to construct processes that are secure under properties based on ≈mw

but not on ≈mb, due to the minimal number of high-level actions in Q.
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5 Relating Nondeterministic, Probabilistic, and
Markovian Taxonomies

Let us compare our Markovian taxonomy with the nondeterministic one of [25].
In the following, we assume that ≈w denotes the weak nondeterministic bisimi-
larity of [49] and ≈b denotes the nondeterministic branching bisimilarity of [33].
These can also be derived from the corresponding definitions in Section 2.2 by
ignoring the clause involving the rate function. Since we are abstracting from
time, given a process P ∈ P we can obtain its nondeterministic variant, denoted
by nd(P ), by replacing every occurrence of (λ) . P ′ with τ . P ′. However, to re-
spect maximal progress, first we have to eliminate every subprocess starting with
a rate prefix that is alternative to a subprocess starting with a τ -prefix. To ac-
complish this transformation syntactically, we focus on the set Pseq of sequential
processes, i.e., without parallel composition; this is not too restrictive because,
in the absence of recursion, parallel composition can be eliminated by repeatedly
applying a Markovian variant of the expansion law [38].

The next proposition states that if two sequential processes are equivalent
according to any of the weak bisimilarities in Section 2.2, then their nondeter-
ministic variants are equivalent according to the corresponding nondeterministic
weak bisimilarity. The inverse does not hold; e.g., processes P1 = (1) . a . 0 and
P2 = (2) . a . 0 are such that P1 6≈mw P2 and P1 6≈mb P2, but their nondetermin-
istic counterparts coincide as both of them are equal to τ . a . 0.

Proposition 1. Let P1, P2 ∈ Pseq. Then:

– P1 ≈mw P2 =⇒ nd(P1) ≈w nd(P2).
– P1 ≈mb P2 =⇒ nd(P1) ≈b nd(P2).

An immediate consequence is that if a sequential process is secure under any
of the Markovian noninterference properties of Section 3, then its nondetermin-
istic variant is secure under the corresponding nondeterministic property. The
taxonomy of Figure 2 thus extends to the left the one in [25], as each of the
properties of Section 3 is finer than its nondeterministic counterpart.

Corollary 1. Let Pmk ∈ {BSNNI≈mk
,BNDC≈mk

,SBSNNI≈mk
,P BNDC≈mk

,
SBNDC≈mk

} and Pnd ∈ {BSNNI≈nd
,BNDC≈nd

,SBSNNI≈nd
,P BNDC≈nd

,
SBNDC≈nd

} for ≈mk ∈ {≈mw,≈mb} and ≈nd ∈ {≈w,≈b}, where Pnd is meant
to be the nondeterministic variant of Pmk. Then P ∈ Pmk =⇒ nd(P ) ∈ Pnd

for all P ∈ Pseq.

We now compare our Markovian taxonomy with the probabilistic one of [24],
which relies on the weak probabilistic bisimilarity ≈pw of [54] and the proba-
bilistic branching bisimilarity ≈pb of [6], also derivable from the corresponding
definitions in Section 2.2 by replacing the clause involving cumulative rates with
a clause involving cumulative probabilities. We focus on the set Palt,seq of pro-
cesses in which action prefixes and rate prefixes alternate – to comply with the
strictly alternating model of [36] adopted for probabilistic processes – that are
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sequential – as rate transitions, as opposed to probabilistic ones, do not syn-
chronize. Since we are abstracting from time, given a process P ∈ Palt,seq we can
obtain its probabilistic variant, denoted by pr(P ), by replacing every occurrence
of

∑
i∈I(λi) . Pi with

⊕
i∈I [pi]pr(Pi) where

⊕
is the probabilistic choice operator

and pi = λi/
∑
j∈I λj . It is worth noting that over Palt,seq the weak bisimilari-

ties ≈mw and ≈mb boil down to the strong bisimilarity ∼m of Definition 2. This
is due to the strict alternation between action prefixes and rate prefixes and
the fact that the two weak bisimilarities do not abstract from rate transitions
(≈pw and ≈pb can instead abstract from probabilistic transitions).

The next proposition states that if two sequential alternating processes are
equivalent according to any of the weak bisimilarities in Section 2.2, then their
probabilistic variants are equivalent according to the corresponding probabilistic
weak bisimilarity. The inverse does not hold; e.g., the probabilistic counterparts
of the two inequivalent processes (1) . a . 0 and (2) . a . 0 coincide as both of them
are equal to [1]a . 0.

Proposition 2. Let P1, P2 ∈ Palt,seq. Then:

– P1 ≈mw P2 =⇒ pr(P1) ≈pw pr(P2).
– P1 ≈mb P2 =⇒ pr(P1) ≈pb pr(P2).

An immediate consequence is that if a sequential alternating process is secure
under any of the Markovian noninterference properties of Section 3, then its
probabilistic variant is secure under the corresponding probabilistic property.
The taxonomy of Figure 2 thus extends to the left also the one in [24], as each
of the properties of Section 3 is finer than its probabilistic counterpart.

Corollary 2. Let Pmk ∈ {BSNNI≈mk
,BNDC≈mk

,SBSNNI≈mk
,P BNDC≈mk

,
SBNDC≈mk

} and Ppr ∈ {BSNNI≈pr ,BNDC≈pr ,SBSNNI≈pr ,P BNDC≈pr ,
SBNDC≈pr

} for ≈mk ∈ {≈mw,≈mb} and ≈pr ∈ {≈pw,≈pb}, where Ppr is meant
to be the probabilistic variant of Pmk. Then P ∈ Pmk =⇒ pr(P ) ∈ Ppr for all
P ∈ Palt,seq.

6 Reversibility via Weak Markovian Back-and-Forth
Bisimilarity

In [22] it was shown that, for nondeterministic processes, weak back-and-forth
bisimilarity coincides with branching bisimilarity. We now extend that result so
that Markovian branching bisimilarity can be employed in the noninterference
analysis of reversible processes featuring nondeterminism and stochastic time.

An MLTS (S,Aτ ,−→) represents a reversible process if each of its transitions
is seen as bidirectional. When going backward, it is of paramount importance to
respect causality, i.e., the last performed transition must be the first one to be
undone. Following [22] we set up an equivalence that enforces not only causality
but also history preservation. This means that, when going backward, a process
can only move along the path representing the history that brought the process
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to the current state even in the presence of concurrency. To accomplish this, the
equivalence has to be defined over computations, not over states, and the notion
of transition has to be suitably revised. We start by adapting the notation of
the nondeterministic setting of [22] to our nondeterministic and stochastically
timed setting. We use ` for a label in Aτ ∪ R>0.

Definition 6. A sequence ξ = (s0, `1, s1)(s1, `2, s2) . . . (sn−1, `n, sn) ∈ −→ ∗ is
a path of length n from state s0. We let first(ξ) = s0 and last(ξ) = sn; the empty
path is indicated with ε. We denote by path(s) the set of paths from s.

Definition 7. A pair ρ = (s, ξ) is called a run from state s iff ξ ∈ path(s),
in which case we let path(ρ) = ξ, first(ρ) = first(ξ) = s, last(ρ) = last(ξ), with
first(ρ) = last(ρ) = s when ξ = ε. We denote by run(s) the set of runs from
state s. Given ρ = (s, ξ) ∈ run(s) and ρ′ = (s′, ξ′) ∈ run(s′), their composition

ρρ′ = (s, ξξ′) ∈ run(s) is defined iff last(ρ) = first(ρ′) = s′. We write ρ
`−→ ρ′

iff there exists ρ′′ = (s̄, (s̄, `, s′)) with s̄ = last(ρ) such that ρ′ = ρρ′′; note that
first(ρ) = first(ρ′). Moreover rate is lifted in the expected way.

In the considered MLTS we work with the set U of runs in lieu of S. Fol-
lowing [22], given a run ρ, we distinguish between outgoing and incoming ac-
tion transitions of ρ during the weak bisimulation game. Like in [16], this does
not apply to rate transitions, in the sense that the cumulative rates of incom-
ing rate transitions are not compared. If this were not the case, states like
(λ1) . (0\∅)+(λ2) . (0 / ∅) and (λ1+λ2) . 0 – which are indistinguishable in the for-
ward direction – would be told apart because the incoming cumulative rate from
the class formed by those two states is λ1, λ2, or λ1 + λ2 depending on whether
0 \ ∅, 0 / ∅, or 0 is considered. When comparing the cumulative rates of outgoing
transitions, we slightly deviate from the corresponding clause in Definition 4
to set up a more symmetric clause inspired by an alternative characterization of
≈mw in [38] that is helpful to prove the forthcoming Lemma 2.

Definition 8. Let (S,Aτ ,−→) be an MLTS. We say that s1, s2 ∈ S are weakly
Markovian back-and-forth bisimilar, written s1 ≈mbf s2, iff ((s1, ε), (s2, ε)) ∈ B
for some weak Markovian back-and-forth bisimulation B. An equivalence rela-
tion B over U is a weak Markovian back-and-forth bisimulation iff, whenever
(ρ1, ρ2) ∈ B, then:

– For each ρ1
a−→a ρ

′
1 there exists ρ2

â
==⇒a ρ

′
2 such that (ρ′1, ρ

′
2) ∈ B.

– For each ρ′1
a−→a ρ1 there exists ρ′2

â
==⇒a ρ2 such that (ρ′1, ρ

′
2) ∈ B.

– For each ρ1
τ∗

==⇒a ρ
′
1 with ρ′1 6

τ−→a there exists ρ2
τ∗

==⇒a ρ
′
2 with ρ′2 6

τ−→a such
that (ρ′1, ρ

′
2) ∈ B and rate(ρ′1, C) = rate(ρ′2, C) for all equivalence classes

C ∈ U/B.

– For each ρ′1
λ1−→r ρ1 with ρ′1 6

τ−→a there exists ρ′2
τ∗

==⇒a ρ̄
′
2
λ2−→r ρ̄2

τ∗
==⇒a ρ2 with

ρ̄′2 6
τ−→a such that (ρ1, ρ̄2) ∈ B, (ρ′1, ρ̄

′
2) ∈ B, and (ρ′1, ρ

′
2) ∈ B.
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We show that weak Markovian back-and-forth bisimilarity over runs coincides
with ≈mb, the forward-only Markovian branching bisimilarity over states. We
proceed by adopting the proof strategy followed in [22] to show that their weak
back-and-forth bisimilarity over runs coincides with the forward-only branching
bisimilarity over states of [33]. Therefore we start by proving that ≈mbf satisfies
the cross property. This means that, whenever two runs of two ≈mbf -equivalent
states can perform a sequence of finitely many τ -transitions such that each of
the two target runs is ≈mbf -equivalent to the source run of the other sequence,
then the two target runs are ≈mbf -equivalent to each other as well.

Lemma 2. Let s1, s2 ∈ S with s1 ≈mbf s2. For all ρ′1, ρ
′′
1 ∈ run(s1) such that

ρ′1
τ∗

==⇒a ρ
′′
1 and for all ρ′2, ρ

′′
2 ∈ run(s2) such that ρ′2

τ∗
==⇒a ρ

′′
2 , if ρ′1 ≈mbf ρ

′′
2 and

ρ′′1 ≈mbf ρ
′
2 then ρ′′1 ≈mbf ρ

′′
2 .

Theorem 6. Let s1, s2 ∈ S. Then s1 ≈mbf s2 ⇐⇒ s1 ≈mb s2.

Therefore the properties BSNNI≈mb
, BNDC≈mb

, SBSNNI≈mb
, P BNDC≈mb

,
and SBNDC≈mb

do not change if ≈mb is replaced by ≈mbf . This allows us to
study noninterference properties for reversible systems featuring nondeterminism
and stochastic time by using ≈mb in a standard Markovian process calculus
like the one of Section 2.3, without having to resort to external memories [20],
communication keys [55], or executed action decorations [17].

7 Use Case: DBMS Obfuscation and Permission
Mechanisms

In [25] we have modeled the authentication mechanism of a database manage-
ment system (DBMS) in which the database can be used to feed a machine
learning (ML) module for training purposes, where reversible transactions are
supported [23]. Due to privacy issues, DBMS users are not allowed to know
which data are actually chosen to train the ML module [7]. Hence, for analysis
purposes, the interactions between users and the DBMS are considered to be
low level, while the interactions between the DBMS and the ML module are
considered to be high level. The aim of the noninterference analysis is thus to
check whether users can infer the utilization of their data in the ML dataset.
In this section we present two novel examples for that scenario, which show the
nature of the interferences emerging in a stochastically timed setting and the
greater expressive power of branching bisimulation semantics in this setting.

Let lw be a low-level action expressing the execution of a write transaction
and low be an analogous action that includes also the additional application of
an obfuscation mechanism over written data for privacy purposes [1]. We assume
that only obfuscated data can feed the ML module. Given the high-level actions
h and h′ denoting interactions between the DBMS and the ML module, consider
the following process:

DBMS = h . τ . (lw . 0 + low . h
′ . 0) +

τ . (τ . (lw . 0 + low . 0) + lw . 0)
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The subprocess guarded by the high-level action h represents the behavior of
the DBMS whenever the ML module is activated through the h-based inter-
action. After an internal activity, the DBMS offers a choice between the two
available transaction mechanisms, by assuming that only in the second case the
transaction data will feed the ML module (through the h′-based interaction).
The alternative subprocess guarded by a τ -action describes the behavior of the
DBMS whenever the ML module is not involved. Note that this subprocess repli-
cates the behavior above to simulate the presence of the ML module and, thus,
makes it transparent from the viewpoint of users. In addition, the subprocess
immediately enables also action lw for efficiency reasons and because, in any
case, the transaction data will not feed the ML module.

Since the two low views τ . (lw . 0+ low . τ . 0) and τ . (lw . 0+ low . 0)+ lw . 0 are
both weakly bisimilar and branching bisimilar, we immediately derive that all the
noninterference properties of the nondeterministic taxonomy are satisfied. In par-
ticular, note that DBMS \ {h, h′} and DBMS / {h, h′} enable weakly/branching
bisimilar behaviors by virtue of the observation above. However, if we add to
the model the time spent by the DBMS in the internal activity before the choice
about the possible obfuscation, we obtain:

DBMS stoch timed = h . (λ1) . (lw . 0 + low . h
′ . 0) +

τ . ((λ2) . (lw . 0 + low . 0) + lw . 0)
where the rates λ1 and λ2 govern the delays discussed above for the ML mod-
ule being involved or not respectively (note that DBMS is the nondeterministic
version of DBMS stoch timed). In this enriched process, the equivalence between
the two low views (λ1) . (lw . 0 + low . τ . 0) and (λ2) . (lw . 0 + low . 0) + lw . 0 does
not hold for the Markovian versions of the two bisimilarities. This means that
no noninterference property of the Markovian taxonomy is satisfied. Note that
this negative result holds also in the case λ1 = λ2, because only in the second
subprocess it is possible to observe action lw with no delay.

Let us consider a more sophisticated variant of the system above, including
an explicit permission mechanism involving users. Let lno auth be a low-level
action expressing that users do not authorize the DBMS to feed the ML module
with the data of their transaction, lno auth o be a low-level action expressing
that users do not authorize the obfuscation of the data of their transaction, and
lcommit be a low-level action expressing the execution of the transaction. Then
in the following process:
DBMS ′ = h . (lno auth . lcommit . 0 + τ . (lno auth o . lcommit . 0 + τ . lcommit . h

′ . 0)) +
τ . ((lno auth . lcommit . 0 + τ . (lno auth o . lcommit . 0 + τ . lcommit . 0)) +

τ . lcommit . 0)
the subprocess guarded by the high-level action h – call it P – expresses the
behavior of the system whenever the ML module is active. In particular, in such
a case, once that no authorization has been forbidden, the committed data are
transferred to the training set (through the h′-based interaction). Now, consider
the alternative subprocess guarded by a τ -action and modeling the absence of
the ML module – call it Q. This subprocess simulates the same behavior as P in
the absence of the ML module and, in addition, enables the branch τ . lcommit . 0
expressing the immediate execution of the transaction, which does not require
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any authorization because the ML module is not active. The two subprocesses
P / {h′} and Q are weakly bisimilar but not branching bisimilar. In fact, P / {h′}
cannot respond to the τ -action of Q leading to lcommit . 0 in a way that complies
with the branching bisimulation semantics.

From the back-and-forth perspective, consider executing the run τ . lcommit . 0
of Q and the run τ . τ . lcommit . τ . 0 of P / {h′}. By undoing the actions of the
Q-run it is not possible to go back to a state enabling action lno auth o before
enabling action lno auth. Instead, this is possible by undoing the other run. This
is enough to distinguish P / {h′} and Q in the setting of reversible transac-
tions. Therefore, by following the same observations as the previous example,
it turns out that the weak-bisimilarity-based noninterference properties are sat-
isfied, while those based on branching bisimilarity are not. Finally, if we add
the same rate λ just before the execution of any action lcommit – thus yielding
DBMS ′stoch timed – the same considerations continue to hold, thereby confirming
the greater expressive power of branching bisimulation semantics even in the
Markovian setting.

8 Conclusions

In this paper we have extended to a stochastically timed setting our previ-
ous preservation, compositionality, and classification results about a selection of
noninterference properties for (irreversible and) reversible systems developed in
a nondeterministic setting [25] and in a probabilistic one [24]. The two behav-
ioral equivalences for those noninterference properties are the weak Markovian
bisimilarity of [38] and a newly defined Markovian branching bisimilarity. Both
equivalences are designed to comply with the assumption of maximal progress.

Since we have shown that Markovian branching bisimilarity coincides with a
Markovian variant of the weak back-and-forth bisimilarity of [22], noninterfer-
ence properties based on this equivalence can be applied to reversible Markovian
systems. This extends the analogous result in [25] for nondeterministic systems
as well as the one in [24] for systems featuring nondeterminism and probabilities.

Regarding future extensions, we are working on incorporating recursion into
the process language under consideration, which will enable us to model systems
that may not terminate. This requires identifying an adequate Markovian variant
of the up-to technique for weak and branching bisimilarities [60,31], to be used
in the proof of some results where we can now proceed by induction on the depth
of the tree-like MLTS underlying the considered process term.

Another direction to pursue is the comparison of our work with those, based
on an integrated-time Markovian model, of [3], addressing stochastic variants of
BSNNI and SBNDC, and [41], which studies a stochastic variant of P BNDC.

Finally, we would like to develop a taxonomy for deterministically timed
systems, in which action execution is separated from time passing according to
the model of [50,51] governed by time determinism and time additivity.
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A Proofs of Results

Proof of Lemma 1. We first prove the five results for the ≈pw-based proper-
ties. The congruence of ≈mw with respect to action prefix, rate prefix, parallel
composition, and hiding has already been proven in [38], so we focus only on
restriction. Let B be a weak Markovian bisimulation witnessing P1 ≈mw P2.
The equivalence relation B′ = IP ∪ {(Q1 \ L,Q2 \ L) | (Q1, Q2) ∈ B} is a weak
Markovian bisimulation too. Given (Q1\L,Q2\L) ∈ B′ with (Q1, Q2) ∈ B, there
are two cases for action transitions based on the operational semantic rules in
Table 1:

– If Q1 \ L
τ−→aQ

′
1 \ L with Q1

τ−→aQ
′
1, then there exists Q2

τ∗
==⇒aQ

′
2 such

that (Q′1, Q
′
2) ∈ B. Since the restriction operator does not apply to τ ,

we have that Q2 \ L
τ∗

==⇒aQ
′
2 \ L with (Q′1 \ L,Q′2 \ L) ∈ B′.

– If Q1 \ L
a−→aQ

′
1 \ L with Q1

a−→aQ
′
1 and a /∈ L ∪ {τ}, then there exists

Q2
τ∗

==⇒a
a−→a

τ∗
==⇒aQ

′
2 such that (Q′1, Q

′
2) ∈ B. Since the restriction operator

does not apply to τ and a /∈ L, we have that Q2 \ L
τ∗

==⇒a
a−→a

τ∗
==⇒aQ

′
2 \ L

with (Q′1 \ L,Q′2 \ L) ∈ B′.

As for rates, to avoid trivial cases consider an equivalence class C ′ = C \ L =

{Q \ L | Q ∈ C} for some C ∈ P/B. Suppose that Q1 \ L 6 τ−→a so that

Q1 6
τ−→a too and hence from (Q1, Q2) ∈ B it follows that there exists Q2

τ∗
==⇒a Q̄2

such that Q̄2 6 τ−→a, (Q1, Q̄2) ∈ B, and rate(Q1, C) = rate(Q̄2, C). Since the
restriction operator does not apply to τ and rate transitions, we have that

Q2 \L
τ∗

==⇒a Q̄2 \L with Q̄2 \L 6
τ−→a, (Q1 \L, Q̄2 \L) ∈ B′, and rate(Q1 \L,C ′) =

rate(Q1, C) = rate(Q̄2, C) = rate(Q̄2 \ L,C ′).
We then prove the five results for the ≈mb-based properties. Let B be a

Markovian branching bisimulation witnessing P1 ≈mb P2:

1. The equivalence relation B′ = (B ∪ {(a .Q1, a .Q2) | (Q1, Q2) ∈ B})+ is a
Markovian branching bisimulation too. The result immediately follows from
the fact that, given (a .Q1, a .Q2) ∈ B′ with (Q1, Q2) ∈ B, a .Q1

a−→aQ1 is

matched by a .Q2
τ∗

==⇒a a .Q2
a−→aQ2 with (a .Q1, a .Q2) ∈ B′ and (Q1, Q2)

∈ B′ as well as, in the case a 6= τ , a .Q1 6τ−→a with a .Q2
τ∗

==⇒a a .Q2 6τ−→a

and rate(a .Q1, C
′) = rate(a .Q2, C

′) = 0 for all C ′ ∈ P/B′.
2. The equivalence relation B′ = (B ∪ {((λ) . Q1, (λ) . Q2) | (Q1, Q2) ∈ B})+

is a Markovian branching bisimulation too. The result immediately follows
from the fact that, given ((λ) . Q1, (λ) . Q2) ∈ B′ with (Q1, Q2) ∈ B, both

processes can only perform a λ-transition. Precisely, (λ) . Q1 6 τ−→a with

(λ) . Q2
τ∗

==⇒a (λ) . Q2 6 τ−→a and rate((λ) . Q1, C̄) = rate((λ) . Q2, C̄) = λ for
C̄ = [Q1]B′ while rate((λ) . Q1, C

′) = rate((λ) . Q2, C
′) = 0 for any other

C ′ ∈ P/B′.
3. The equivalence relation B′ = IP ∪{(Q1 ‖LQ,Q2 ‖LQ) | (Q1, Q2) ∈ B∧Q ∈

P} and its variant B′′ in which Q occurs to the left of parallel composition
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in each pair are Markovian branching bisimulations too. Let us focus on B′.
Given (Q1 ‖LQ,Q2 ‖LQ) ∈ B′ with (Q1, Q2) ∈ B, there are three cases for
action transitions based on the operational semantic rules in Table 1:

– If Q1 ‖LQ
a−→aQ

′
1 ‖LQ with Q1

a−→aQ
′
1 and a /∈ L, then either a = τ

and (Q′1, Q2) ∈ B, or there exists Q2
τ∗

==⇒a Q̄2
a−→aQ

′
2 such that (Q1, Q̄2)

∈ B and (Q′1, Q
′
2) ∈ B. Since synchronization does not apply to τ

and a /∈ L, in the former subcase Q2 ‖LQ is allowed to stay idle with

(Q′1 ‖LQ,Q2 ‖LQ) ∈ B′, while in the latter subcaseQ2 ‖LQ
τ∗

==⇒a Q̄2 ‖LQ
a−→aQ

′
2 ‖LQ with (Q1 ‖LQ, Q̄2 ‖LQ) ∈ B′ and (Q′1 ‖LQ,Q′2 ‖LQ) ∈ B′.

– The case Q1 ‖LQ
a−→aQ1 ‖LQ′ with Q

a−→aQ
′ and a /∈ L is trivial.

– If Q1 ‖LQ
a−→aQ

′
1 ‖LQ′ with Q1

a−→aQ
′
1, Q

a−→aQ
′, and a ∈ L, then

there exists Q2
τ∗

==⇒a Q̄2
a−→aQ

′
2 such that (Q1, Q̄2) ∈ B and (Q′1, Q

′
2) ∈

B. Since synchronization does not apply to τ and a ∈ L, we have that

Q2 ‖LQ
τ∗

==⇒a Q̄2 ‖LQ
a−→aQ

′
2 ‖LQ′ with (Q1 ‖LQ, Q̄2 ‖LQ) ∈ B′ and

(Q′1 ‖LQ′, Q′2 ‖LQ′) ∈ B′.
As for rates, to avoid trivial cases consider an equivalence class C ′ = C ‖LQ′ =

{R ‖LQ′ | R ∈ C} for some C ∈ P/B. Suppose that Q1 ‖LQ 6 τ−→a so

that Q1 6 τ−→a and Q 6 τ−→a too and hence from (Q1, Q2) ∈ B it fol-

lows that there exists Q2
τ∗

==⇒a Q̄2 such that Q̄2 6 τ−→a, (Q1, Q̄2) ∈ B, and
rate(Q1, C) = rate(Q̄2, C). Since synchronization does not apply to τ and

rate transitions, we have that Q2 ‖LQ
τ∗

==⇒a Q̄2 ‖LQ with Q̄2 ‖LQ 6 τ−→a,
(Q1 ‖LQ, Q̄2 ‖LQ) ∈ B′, and rate(Q1 ‖LQ,C ′) = rate(Q1, C) = rate(Q̄2, C)
= rate(Q̄2 ‖LQ,C ′) if Q = Q′, rate(Q1 ‖LQ,C ′) = rate(Q, {Q′}) =
rate(Q̄2 ‖LQ,C ′) if Q1, Q̄2 ∈ C, rate(Q1 ‖LQ,C ′) = 0 = rate(Q̄2 ‖LQ,C ′)
otherwise.

4. The equivalence relation B′ = IP ∪ {(Q1 \ L,Q2 \ L) | (Q1, Q2) ∈ B} is a
Markovian branching bisimulation too. Given (Q1 \ L,Q2 \ L) ∈ B′ with
(Q1, Q2) ∈ B, there are two cases for action transitions based on the opera-
tional semantic rules in Table 1:

– If Q1 \L
τ−→aQ

′
1 \L with Q1

τ−→aQ
′
1, then either (Q′1, Q2) ∈ B, or there

exists Q2
τ∗

==⇒a Q̄2
τ−→aQ

′
2 such that (Q1, Q̄2) ∈ B and (Q′1, Q

′
2) ∈ B.

Since the restriction operator does not apply to τ , in the former subcase
Q2 \ L is allowed to stay idle with (Q′1 \ L,Q2 \ L) ∈ B′, while in the

latter subcase Q2 \L
τ∗

==⇒a Q̄2 \L
τ−→aQ

′
2 \L with (Q1 \L, Q̄2 \L) ∈ B′

and (Q′1 \ L,Q′2 \ L) ∈ B′.
– If Q1 \ L

a−→aQ
′
1 \ L with Q1

a−→aQ
′
1 and a /∈ L ∪ {τ}, then there

exists Q2
τ∗

==⇒a Q̄2
a−→aQ

′
2 such that (Q1, Q̄2) ∈ B and (Q′1, Q

′
2) ∈ B.

Since the restriction operator does not apply to τ and a /∈ L, we have

that Q2 \ L
τ∗

==⇒a Q̄2 \ L
a−→aQ

′
2 \ L with (Q1 \ L, Q̄2 \ L) ∈ B′ and

(Q′1 \ L,Q′2 \ L) ∈ B′.
As for rates, we reason like in the proof of the corresponding result for ≈mw.
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5. The equivalence relation B′ = IP ∪ {(Q1 /L,Q2 /L) | (Q1, Q2) ∈ B} is
a Markovian branching bisimulation too. Given (Q1 /L,Q2 /L) ∈ B′ with
(Q1, Q2) ∈ B, there are two cases for action transitions based on the opera-
tional semantic rules in Table 1:
– If Q1 /L

τ−→aQ
′
1 /L with Q1

τ−→aQ
′
1, then either (Q′1, Q2) ∈ B, or there

exists Q2
τ∗

==⇒a Q̄2
τ−→aQ

′
2 such that (Q1, Q̄2) ∈ B and (Q′1, Q

′
2) ∈ B.

Since the hiding operator does not apply to τ , in the former subcase
Q2 /L is allowed to stay idle with (Q′1 /L,Q2 /L) ∈ B′, while in the

latter subcase Q2 /L
τ∗

==⇒a Q̄2 /L
τ−→aQ

′
2 /L with (Q1 /L, Q̄2 /L) ∈ B′

and (Q′1 /L,Q
′
2 /L) ∈ B′.

– If Q1 /L
a−→aQ

′
1 /L with Q1

b−→aQ
′
1 and b ∈ L∧a = τ or b /∈ L∪{τ}∧

a = b, then there exists Q2
τ∗

==⇒a Q̄2
b−→aQ

′
2 such that (Q1, Q̄2) ∈ B

and (Q′1, Q
′
2) ∈ B. Since the hiding operator does not apply to τ , we

have that Q2 /L
τ∗

==⇒a Q̄2 /L
a−→aQ

′
2 /L with (Q1 /L, Q̄2 /L) ∈ B′ and

(Q′1 /L,Q
′
2 /L) ∈ B′.

As for rates, to avoid trivial cases consider an equivalence class C ′ = C /L =

{Q/L | Q ∈ C} for some C ∈ P/B. Suppose thatQ1 /L 6
τ−→a so thatQ1 6

τ−→a

too and hence from (Q1, Q2) ∈ B it follows that there exists Q2
τ∗

==⇒a Q̄2 such

that Q̄2 6 τ−→a, (Q1, Q̄2) ∈ B, and rate(Q1, C) = rate(Q̄2, C). Since the
hiding operator does not apply to τ and rate transitions, we have that

Q2 /L
τ∗

==⇒a Q̄2 /L with Q̄2 /L 6τ−→a, (Q1 /L, Q̄2 /L) ∈ B′, and rate(Q1 /L,
C ′) = rate(Q1, C) = rate(Q̄2, C) = rate(Q̄2 /L,C

′).

Proof of Theorem 1. A straightforward consequence of the definition of the
various properties, i.e., Definition 5, and Lemma 1.

Lemma 3. Let P1, P2, P ∈ P and ≈ ∈ {≈mw,≈mb}. Then:

1. If P1, P2 ∈ SBSNNI≈ and L ⊆ A \ {τ} for ≈mw or L ⊆ AL for ≈mb,
then (Q1 ‖LQ2) \ AH ≈ (R1 ‖LR2) /AH for all Q1, R1 ∈ reach(P1) and
Q2, R2 ∈ reach(P2) such that Q1 ‖LQ2, R1 ‖LR2 ∈ reach(P1 ‖L P2), Q1 \AH
≈ R1 /AH, and Q2 \ AH ≈ R2 /AH.

2. If P ∈ SBSNNI≈ and L ⊆ A\ {τ}, then (Q/AH) \L ≈ (R \L) /AH for all
Q,R ∈ reach(P ) such that Q/AH ≈ R \ AH.

3. If P1, P2∈SBNDC≈ and L⊆A\{τ}, then (Q1 ‖LQ2)\AH ≈ (R1 ‖LR2)\AH
for all Q1,R1∈reach(P1) and Q2,R2∈reach(P2) such that Q1 ‖LQ2, R1 ‖LR2

∈ reach(P1 ‖L P2), Q1 \ AH ≈ R1 \ AH and Q2 \ AH ≈ R2 \ AH.

Proof. We first prove the three results for the ≈mw-based properties. Let B be an
equivalence relation containing all the pairs of processes that have to be shown
to be ≈mw-equivalent according to the considered result:

1. Starting from (Q1 ‖LQ2) \ AH and (R1 ‖LR2) /AH related by B, so that
Q1 \ AH ≈mw R1 /AH and Q2 \ AH ≈mw R2 /AH, there are thirteen cases
for action transitions based on the operational semantic rules in Table 1.
In the first five cases, it is (Q1 ‖LQ2) \ AH to move first:
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– If (Q1 ‖LQ2)\AH
l−→a (Q′1 ‖LQ2)\AH with Q1

l−→aQ
′
1 and l /∈ L, then

Q1 \AH
l−→aQ

′
1 \AH as l /∈ AH. From Q1 \AH ≈mw R1 /AH it follows

that there exists R1 /AH
τ∗

==⇒a
l−→a

τ∗
==⇒aR

′
1 /AH such that Q′1\AH ≈mw

R′1 /AH. Since synchronization does not apply to τ and l /∈ L, we have

that (Q1 ‖LQ2) /AH
τ∗

==⇒a
l−→a

τ∗
==⇒a (R′1 ‖LR2) /AH with ((Q′1 ‖LQ2)\

AH, (R′1 ‖LR2) /AH) ∈ B.

– If (Q1 ‖LQ2)\AH
l−→a (Q1 ‖LQ′2)\AH with Q2

l−→aQ
′
2 and l /∈ L, then

the proof is similar to the one of the previous case.

– If (Q1 ‖LQ2) \ AH
l−→a (Q′1 ‖LQ′2) \ AH with Qi

l−→aQ
′
i for i ∈ {1, 2}

and l ∈ L, then Qi \ AH
l−→aQ

′
i \ AH as l /∈ AH. From Qi \ AH ≈mw

Ri /AH it follows that there exists Ri /AH
τ∗

==⇒a
l−→a

τ∗
==⇒aR

′
i /AH such

that Q′i \ AH ≈mw R′i /AH. Since synchronization does not apply to τ

and l ∈ L, we have that (R1 ‖LR2) /AH
τ∗

==⇒a
l−→a

τ∗
==⇒a (R′1 ‖LR′2) /AH

with ((Q′1 ‖LQ′2) \ AH, (R′1 ‖LR′2) /AH) ∈ B.

– If (Q1 ‖LQ2) \ AH
τ−→a (Q′1 ‖LQ2) \ AH with Q1

τ−→aQ
′
1, then Q1 \

AH
τ−→aQ

′
1 \ AH as τ /∈ AH. From Q1 \ AH ≈mw R1 /AH it follows

that there exists R1 /AH
τ∗

==⇒aR
′
1 /AH such that Q′1 \AH ≈mw R′1 /AH.

Since synchronization does not apply to τ , we have that (R1 ‖LR2) /AH
τ∗

==⇒a (R′1 ‖LR2) /AH with ((Q′1 ‖LQ2) \ AH, (R′1 ‖LR2) /AH) ∈ B.

– If (Q1 ‖LQ2)\AH
τ−→a (Q1 ‖LQ′2)\AH with Q2

τ−→aQ
′
2, then the proof

is similar to the one of the previous case.

In the other eight cases, instead, it is (R1 ‖LR2) /AH to move first:

– If (R1 ‖LR2) /AH
l−→a (R′1 ‖LR2) /AH with R1

l−→aR
′
1 and l /∈L, then

R1 /AH
l−→aR

′
1 /AH as l /∈AH. From R1 /AH ≈mw Q1 \ AH it follows

that there exists Q1\AH
τ∗

==⇒a
l−→a

τ∗
==⇒aQ

′
1\AH such that R′1 /AH ≈mw

Q′1 \ AH. Since synchronization does not apply to τ and l /∈ L, we have

that (Q1‖LQ2)\AH
τ∗

==⇒a
l−→a

τ∗
==⇒a (Q′1‖LQ2)\AH with ((R′1‖LR2)/AH,

(Q′1 ‖LQ2) \ AH) ∈ B.

– If (R1 ‖LR2) /AH
l−→a (R1 ‖LR′2) /AH with R2

l−→aR
′
2 and l /∈ L, then

the proof is similar to the one of the previous case.

– If (R1 ‖LR2) /AH
l−→a (R′1 ‖LR′2) /AH with Ri

l−→aR
′
i for i ∈ {1, 2}

and l ∈ L, then Ri /AH
l−→aR

′
i /AH as l /∈ AH. From Ri /AH ≈mw

Qi \AH it follows that there exists Qi \AH
τ∗

==⇒a
l−→a

τ∗
==⇒aQ

′
i \AH such

that R′i /AH ≈mw Q′i \ AH. Since synchronization does not apply to τ

and l ∈ L, we have that (Q1 ‖LQ2)\AH
τ∗

==⇒a
l−→a

τ∗
==⇒a (Q′1 ‖LQ′2)\AH

with ((R′1 ‖LR′2)/AH, (Q′1 ‖LQ′2) \ AH) ∈ B.

– If (R1 ‖LR2) /AH
τ−→a (R′1 ‖LR2) /AH with R1

τ−→aR
′
1, then R1 /AH

τ−→aR
′
1 /AH as τ /∈ AH. From R1 /AH ≈mw Q1 \ AH it follows that

there exists Q1 \ AH
τ∗

==⇒aQ
′
1 \ AH such that R′1 /AH ≈mw Q′1 \ AH.
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Since synchronization does not apply to τ , we have that (Q1 ‖LQ2) \
AH

τ∗
==⇒a (Q′1 ‖LQ2) \ AH with ((R′1 ‖LR2)/AH, (Q′1 ‖LQ2) \ AH) ∈ B.

– If (R1 ‖LR2) /AH
τ−→a (R1 ‖LR′2) /AH with R2

τ−→aR
′
2, then the proof

is similar to the one of the previous case.

– If (R1 ‖LR2) /AH
τ−→a (R′1 ‖LR2) /AH with R1

h−→aR
′
1 and h /∈ L,

then R1 /AH
τ−→aR

′
1 /AH as h ∈ AH. The rest of the proof is like the

one of the fourth case.

– If (R1 ‖LR2) /AH
τ−→a (R1 ‖LR′2) /AH with R2

h−→aR
′
2 and h /∈ L,

then the proof is similar to the one of the previous case.

– If (R1 ‖LR2) /AH
τ−→a (R′1 ‖LR′2) /AH with Ri

h−→aR
′
i for i ∈ {1, 2}

and h ∈ L, then Ri /AH
τ−→aR

′
i /AH as h ∈ AH. From Ri /AH ≈mw

Qi \ AH it follows that there exists Qi \ AH
τ∗

==⇒aQ
′
i \ AH such that

R′i /AH ≈mw Q′i\AH. Since synchronization does not apply to τ and h ∈
L, we have that (Q1‖LQ2)\AH

τ∗
==⇒a (Q′1‖LQ′2)\AH with ((R′1‖LR′2) /AH,

(Q′1 ‖LQ′2) \ AH) ∈ B.

As for rates, to avoid trivial cases consider an equivalence class C ∈ P/B that
involves processes reachable from P1 ‖L P2, specifically C = {(S1,i ‖L S2,i) \
AH, (S1,j ‖L S2,j) /AH | Sk,h ∈ reach(Pk) ∧ S1,h ‖L S2,h ∈ reach(P1 ‖L P2) ∧
Sk,i \ AH ≈mw Sk,j /AH}. Suppose that (Q1 ‖LQ2) \ AH 6τ−→a so that Qk \
AH 6τ−→a too and hence from Qk\AH ≈mw Rk /AH it follows that there exists

Rk /AH
τ∗

==⇒a R̄k /AH such that R̄k /AH 6τ−→a, Qk \AH ≈mw R̄k /AH, and
rate(Qk \ AH, C ′) = rate(R̄k /AH, C ′) for all C ′ ∈ P/≈mw. Since synchro-

nization does not apply to τ , we have that (R1 ‖LR2) /AH
τ∗

==⇒a (R̄1 ‖L R̄2)

/AH with (R̄1 ‖L R̄2) /AH 6τ−→a and ((Q1 ‖LQ2)\AH, (R̄1 ‖L R̄2) /AH) ∈ B.
Since the restriction and hiding operators do not apply to rate transitions,
we have that:

rate((Q1 ‖LQ2) \ AH, C) = rate((Q1 \ AH) ‖L(Q2 \ AH), C)
rate((R̄1 ‖L R̄2) /AH, C) = rate((R̄1 /AH) ‖L(R̄2 /AH), C)

Based on which subprocess moves so that the overall process reaches C (which
we assume to be reachable in one move to avoid trivial cases in which cumu-
lative rates are zero), we have that:

rate((Q1 \ AH) ‖L(Q2 \ AH), C) = rate(Q1 \ AH, C1)
rate((R̄1 /AH) ‖L(R̄2 /AH), C) = rate(R̄1 /AH, C1)

or:
rate((Q1 \ AH) ‖L(Q2 \ AH), C) = rate(Q2 \ AH, C2)
rate((R̄1 /AH) ‖L(R̄2 /AH), C) = rate(R̄2 /AH, C2)

where:
C1 = {S1,h \ AH | (S1,h ‖L S2,h) \ AH ∈ C}∪

{S1,h /AH | (S1,h ‖L S2,h) /AH ∈ C}
C2 = {S2,h \ AH | (S1,h ‖L S2,h) \ AH ∈ C}∪

{S2,h /AH | (S1,h ‖L S2,h) /AH ∈ C}
Since Qk \ AH ≈mw R̄k /AH and Ck is the union of some ≈mw-equivalence
classes for k ∈ {1, 2}, we have that:
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rate(Q1 \ AH, C1) = rate(R̄1 /AH, C1)
rate(Q2 \ AH, C2) = rate(R̄2 /AH, C2)

If we start from (R1 ‖LR2) /AH 6τ−→a, then the proof is similar.
2. Starting from (Q/AH)\L and (R\L) /AH related by B, so that Q/AH ≈mw

R \ AH, there are six cases for action transitions based on the operational
semantic rules in Table 1. In the first three cases, it is (Q/AH) \L to move
first:

– If (Q/AH)\L l−→a (Q′ /AH)\L with Q
l−→aQ

′ and l /∈ L, then Q/AH
l−→aQ

′ /AH as l /∈ AH. From Q/AH ≈mw R \AH it follows that there

exists Q \ AH
τ∗

==⇒a
l−→a

τ∗
==⇒aR

′ \ AH such that Q′ /AH ≈mw R′ \ AH.
Since the restriction and hiding operators do not apply to τ and l, we

have that (R \L) /AH
τ∗

==⇒a
l−→a

τ∗
==⇒a (R′ \L) /AH with ((Q′ /AH) \L,

(R′ \ L) /AH) ∈ B.

– If (Q/AH)\L τ−→a (Q′/AH)\L with Q
τ−→aQ

′, then Q/AH
τ−→aQ

′/AH
as τ /∈ AH. From Q/AH ≈mw R \ AH it follows that there exists

R \AH
τ∗

==⇒aR
′ \AH such that Q′ /AH ≈mw R′ \AH. Since the restric-

tion and hiding operators do not apply to τ , we have that (R \ L) /AH
τ∗

==⇒a (R′ \ L) /AH with ((Q′ /AH) \ L, (R′ \ L) /AH) ∈ B.

– If (Q/AH)\L τ−→a (Q′/AH)\L with Q
h−→aQ

′, then Q/AH
τ−→aQ

′/AH
as h ∈ AH. The rest of the proof is like the one of the previous case.

In the other three cases, instead, it is (R \ L) /AH to move first:

– If (R\L) /AH
l−→a (R′ \L) /AH with R

l−→aR
′ and l /∈ L, then R\AH

l−→aR
′ \AH as l /∈ AH. From R \AH ≈mw Q/AH it follows that there

exists Q/AH
τ∗

==⇒a
l−→a

τ∗
==⇒aQ

′ /AH such that R′ \ AH ≈mw Q′ /AH.
Since the restriction operator does not apply to τ and l, we have that

(Q/AH)\L τ∗
==⇒a

l−→a
τ∗

==⇒a (Q′ /AH)\L with ((R′\L) /AH, (Q′ /AH)\
L) ∈ B.

– If (R \ L) /AH
τ−→a (R′ \ L) /AH with R

τ−→aR
′, then R \ AH

τ−→a

R′ \ AH as τ /∈ AH. From R \ AH ≈mw Q/AH it follows that there ex-

ists Q/AH
τ∗

==⇒aQ
′ /AH such that R′ \ AH ≈mw Q′ /AH. Since the

restriction operator does not apply to τ , we have that (Q/AH) \ L
τ∗

==⇒a (Q′ /AH) \ L with ((R′ \ L) /AH, (Q′ /AH) \ L) ∈ B.

– If (R\L) /AH
τ−→a (R′\L) /AH with R

h−→aR
′ and h /∈ L, then R/AH

τ−→aR
′ /AH as h ∈ AH (note that R \ AH cannot perform h). From

R/AH ≈mw R \ AH – as P ∈ SBSNNI≈mw
and R ∈ reach(P ) – and

R \ AH ≈mw Q/AH it follows that there exists Q/AH
τ∗

==⇒aQ
′ /AH

such that R′ /AH ≈mw Q′ /AH and hence R′ \ AH ≈mw Q′ /AH – as
R′ /AH ≈mw R′ \AH due to P ∈ SBSNNI≈mw

and R′ ∈ reach(P ). Since
the restriction operator does not apply to τ , we have that (Q/AH) \ L
τ∗

==⇒a (Q′ /AH) \ L with ((R′ \ L) /AH, (Q′ /AH) \ L) ∈ B.
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As for rates, to avoid trivial cases consider an equivalence class C ∈ P/B
that involves processes reachable from P , specifically C = {(Si /AH)\L, (Sj\
L) /AH | Sh ∈ reach(P )∧Si \AH ≈mw Sj /AH}. Suppose that (Q/AH)\L
6 τ−→a so that Q/AH 6 τ−→a too and hence from Q/AH ≈mw R \ AH ≈mw

R/AH – as P ∈ SBSNNI≈mw
and R ∈ reach(P ) – it follows that there ex-

ists R/AH
τ∗

==⇒a R̄ /AH such that R̄ /AH 6τ−→a, Q/AH ≈mw R̄ /AH ≈mw

R̄ \ AH, and rate(Q/AH, C) = rate(R̄ \ AH, C) for all C ∈ P/ ≈mw.
Since the restriction and hiding operators do not apply to τ , we have that

(R \ L) /AH
τ∗

==⇒a (R̄ \ L) /AH with (R̄ \ L) /AH 6τ−→a – as R̄ /AH 6τ−→a –
and ((Q/AH) \L, (R̄ \L) /AH) ∈ B. Since the restriction and hiding oper-
ators do not apply to rate transitions, we have that:

rate((Q/AH) \ L,C) = rate(Q \ AH, C̄)
rate((R̄ \ L) /AH, C) = rate(R̄ /AH, C̄)

where:
C̄ = {Si \ AH | (Si /AH) \ L ∈ C} ∪ {Sj /AH | (Sj \ L) /AH ∈ C}

Since Q \ AH ≈mw R̄ /AH and C̄ is the union of some ≈mw-equivalence
classes, we have that:

rate(Q \ AH, C̄) = rate(R̄ /AH, C̄)

If we start from (R \ L) /AH 6τ−→a, then the proof is similar.

3. Starting from (Q1 ‖LQ2) \ AH and (R1 ‖LR2) \ AH related by B, so that
Q1 \ AH ≈mw R1 \ AH and Q2 \ AH ≈mw R2 \ AH, there are five cases for
action transitions based on the operational semantic rules in Table 1:

– If (Q1 ‖LQ2)\AH
l−→a (Q′1 ‖LQ2)\AH with Q1

l−→aQ
′
1 and l /∈ L, then

Q1 \AH
l−→aQ

′
1 \AH as l /∈ AH. From Q1 \AH ≈mw R1 \AH it follows

that there exists R1\AH
τ∗

==⇒a
l−→a

τ∗
==⇒aR

′
1\AH such that Q′1\AH ≈mw

R′1 \ AH. Since synchronization does not apply to τ and l /∈ L, we have

that (R1‖LR2)\AH
τ∗

==⇒a
l−→a

τ∗
==⇒a (R′1‖LR2)\AH with ((Q′1‖LQ2)\AH,

(R′1 ‖LR2) \ AH) ∈ B.

– If (Q1 ‖LQ2)\AH
l−→a (Q1 ‖LQ′2)\AH with Q2

l−→aQ
′
2 and l /∈ L, then

the proof is similar to the one of the previous case.

– If (Q1 ‖LQ2) \ AH
l−→a (Q′1 ‖LQ′2) \ AH with Qi

l−→aQ
′
i for i ∈ {1, 2}

and l ∈ L, then Qi \ AH
l−→aQ

′
i \ AH as l /∈ AH. From Qi \ AH ≈mw

Ri \AH it follows that there exists Ri \AH
τ∗

==⇒a
l−→a

τ∗
==⇒aR

′
i \AH such

that Q′i \ AH ≈mw R′i \ AH. Since synchronization does not apply to τ

and l ∈ L, we have that (R1 ‖LR2)\AH
τ∗

==⇒a
l−→a

τ∗
==⇒a (R′1 ‖LR′2)\AH

with ((Q′1 ‖LQ′2) \ AH, (R′1 ‖LR′2) \ AH) ∈ B.

– If (Q1 ‖LQ2) \ AH
τ−→a (Q′1 ‖LQ2) \ AH with Q1

τ−→aQ
′
1, then Q1 \

AH
τ−→aQ

′
1 \ AH as τ /∈ AH. From Q1 \ AH ≈mw R1 \ AH it follows

that there exists R1 \AH
τ∗

==⇒aR
′
1 \AH such that Q′1 \AH ≈mw R′1 \AH.

Since synchronization does not apply to τ , we have that (R1 ‖LR2) \
AH

τ∗
==⇒a (R′1 ‖LR2) \ AH with ((Q′1 ‖LQ2) \ AH, (R′1 ‖LR2) \ AH) ∈ B.
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– If (Q1 ‖LQ2)\AH
τ−→a (Q1 ‖LQ′2)\AH with Q2

τ−→aQ
′
2, then the proof

is similar to the one of the previous case.

As for rates, to avoid trivial cases consider an equivalence class C ∈ P/B that
involves processes reachable from P1 ‖L P2, specifically C = {(S1,i ‖L S2,i) \
AH | Sk,h ∈ reach(Pk) ∧ S1,h ‖L S2,h ∈ reach(P1 ‖L P2) ∧ Sk,i \ AH ≈mw

Sk,j \ AH}. Suppose that (Q1 ‖LQ2) \ AH 6 τ−→a so that Qk \ AH 6 τ−→a

too and hence from Qk \ AH ≈mw Rk \ AH it follows that there exists

Rk \AH
τ∗

==⇒a R̄k \AH such that R̄k \AH 6τ−→a, Qk \AH ≈mw R̄k \AH, and
rate(Qk \ AH, C ′) = rate(R̄k \ AH, C ′) for all C ′ ∈ P/ ≈mw. Since synchro-

nization does not apply to τ , we have that (R1 ‖LR2)\AH
τ∗

==⇒a (R̄1 ‖L R̄2)\
AH with (R̄1 ‖L R̄2) \AH 6τ−→a and ((Q1 ‖LQ2) \AH, (R̄1 ‖L R̄2) \AH) ∈ B.
Since the restriction operator does not apply to rate transitions, we have that:

rate((Q1 ‖LQ2) \ AH, C) = rate((Q1 \ AH) ‖L(Q2 \ AH), C)
rate((R̄1 ‖L R̄2) \ AH, C) = rate((R̄1 \ AH) ‖L(R̄2 \ AH), C)

Based on which subprocess moves so that the overall process reaches C (which
we assume to be reachable in one move to avoid trivial cases in which cumu-
lative rates are zero), we have that:

rate((Q1 \ AH) ‖L(Q2 \ AH), C) = rate(Q1 \ AH, C1)
rate((R̄1 \ AH) ‖L(R̄2 \ AH), C) = rate(R̄1 \ AH, C1)

or:
rate((Q1 \ AH) ‖L(Q2 \ AH), C) = rate(Q2 \ AH, C2)
rate((R̄1 \ AH) ‖L(R̄2 \ AH), C) = rate(R̄2 \ AH, C2)

where:
C1 = {S1,h \ AH | (S1,h ‖L S2,h) \ AH ∈ C}
C2 = {S2,h \ AH | (S1,h ‖L S2,h) \ AH ∈ C}

Since Qk \ AH ≈mw R̄k \ AH and Ck is the union of some ≈mw-equivalence
classes for k ∈ {1, 2}, we have that:

rate(Q1 \ AH, C1) = rate(R̄1 \ AH, C1)
rate(Q2 \ AH, C2) = rate(R̄2 \ AH, C2)

If we start from (R1 ‖LR2) \ AH 6τ−→a, then the proof is similar.

We then prove the three results for the ≈mb-based properties. Let B be an equiv-
alence relation containing all the pairs of processes that have to be shown to be
≈mb-equivalent according to the considered result:

1. Starting from (Q1 ‖LQ2) \ AH and (R1 ‖LR2) /AH related by B, so that
Q1 \AH ≈mb R1 /AH and Q2 \AH ≈mb R2 /AH, there are twelve cases for
action transitions based on the operational semantic rules in Table 1. In the
first five cases, it is (Q1 ‖LQ2) \ AH to move first:

– If (Q1 ‖LQ2) \ AH
l−→a (Q′1 ‖LQ2) \ AH with Q1

l−→aQ
′
1 and l /∈ L,

then Q1 \ AH
l−→aQ

′
1 \ AH as l /∈ AH. From Q1 \ AH ≈mb R1 /AH

it follows that there exists R1 /AH
τ∗

==⇒a R̄1 /AH
l−→aR

′
1 /AH such that

Q1 \ AH ≈mb R̄1 /AH and Q′1 \ AH ≈mb R
′
1 /AH. Since synchroniza-

tion does not apply to τ and l /∈ L, we have that (R1 ‖LR2) /AH
τ∗

==⇒a
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(R̄1 ‖LR2) /AH
l−→a (R′1 ‖LR2) /AH with ((Q1 ‖LQ2)\AH, (R̄1 ‖LR2) /

AH) ∈ B and ((Q′1 ‖LQ2) \ AH, (R′1 ‖LR2) /AH) ∈ B.

– If (Q1 ‖LQ2)\AH
l−→a (Q1 ‖LQ′2)\AH with Q2

l−→aQ
′
2 and l /∈ L, then

the proof is similar to the one of the previous case.

– If (Q1 ‖LQ2) \ AH
l−→a (Q′1 ‖LQ′2) \ AH with Qi

l−→aQ
′
i for i ∈ {1, 2}

and l ∈ L, then Qi \ AH
l−→aQ

′
i \ AH as l /∈ AH. From Qi \ AH ≈mb

Ri /AH it follows that there exists Ri /AH
τ∗

==⇒a R̄i /AH
l−→aR

′
i /AH

such that Qi\AH ≈mb R̄i /AH and Q′i\AH ≈mb R
′
i /AH. Since synchro-

nization does not apply to τ and l ∈ L, we have that (R1 ‖LR2) /AH
τ∗

==⇒a

(R̄1 ‖L R̄2) /AH
l−→a (R′1 ‖LR′2) /AH with ((Q1 ‖LQ2)\AH, (R̄1 ‖L R̄2) /

AH) ∈ B and ((Q′1 ‖LQ′2) \ AH, (R′1 ‖LR′2) /AH) ∈ B.

– If (Q1 ‖LQ2) \ AH
τ−→a (Q′1 ‖LQ2) \ AH with Q1

τ−→aQ
′
1, then

Q1 \AH
τ−→aQ

′
1 \AH as τ /∈ AH. From Q1 \AH ≈mb R1 /AH it follows

that either Q′1 \AH ≈mb R1 /AH, or there exists R1 /AH
τ∗

==⇒a R̄1 /AH
τ−→aR

′
1 /AH such that Q1\AH ≈mb R̄1 /AH and Q′1\AH ≈mb R

′
1 /AH.

Since synchronization does not apply to τ , in the former subcase
(R1 ‖LR2) /AH is allowed to stay idle with ((Q′1 ‖LQ2) \ AH,
(R1 ‖LR2) /AH) ∈ B, while in the latter subcase (R1 ‖LR2) /AH

τ∗
==⇒a

(R̄1 ‖LR2) /AH
τ−→a (R′1 ‖LR2) /AH with ((Q1 ‖LQ2)\AH, (R̄1 ‖LR2) /

AH) ∈ B and ((Q′1 ‖LQ2) \ AH, (R′1 ‖LR2) /AH) ∈ B.

– If (Q1 ‖LQ2)\AH
τ−→a (Q1 ‖LQ′2)\AH with Q2

τ−→aQ
′
2, then the proof

is similar to the one of the previous case.
In the other seven cases, instead, it is (R1 ‖LR2) /AH to move first:

– If (R1 ‖LR2) /AH
l−→a (R′1 ‖LR2) /AH with R1

l−→aR
′
1 and l /∈ L, then

R1 /AH
l−→aR

′
1 /AH as l /∈ AH. From R1 /AH ≈mb Q1 \ AH it fol-

lows that there exists Q1 \ AH
τ∗

==⇒a Q̄1 \ AH
l−→aQ

′
1 \ AH such that

R1 /AH ≈mb Q̄1 \ AH and R′1 /AH ≈mb Q′1 \ AH. Since synchro-
nization does not apply to τ and l /∈ L, we have that (Q1 ‖LQ2) \
AH

τ∗
==⇒a (Q̄1 ‖LQ2) \ AH

l−→a (Q′1 ‖LQ2) \ AH with ((R1 ‖LR2)/AH,
(Q̄1 ‖LQ2) \ AH) ∈ B and ((R′1 ‖LR2)/AH, (Q′1 ‖LQ2) \ AH) ∈ B.

– If (R1 ‖LR2) /AH
l−→a (R1 ‖LR′2) /AH with R2

l−→aR
′
2 and l /∈ L, then

the proof is similar to the one of the previous case.

– If (R1 ‖LR2) /AH
l−→a (R′1 ‖LR′2) /AH with Ri

l−→aR
′
i for i ∈ {1, 2}

and l ∈ L, then Ri /AH
l−→aR

′
i /AH as l /∈ AH. From Ri /AH ≈mb

Qi \ AH it follows that there exists Qi \ AH
τ∗

==⇒a Q̄i \ AH
l−→aQ

′
i \ AH

such that Ri /AH ≈mb Q̄i \ AH and R′i /AH ≈mb Q
′
i \ AH. Since syn-

chronization does not apply to τ and l ∈ L, we have that (Q1 ‖LQ2) \
AH

τ∗
==⇒a (Q̄1 ‖L Q̄2) \ AH

l−→a (Q′1 ‖LQ′2) \ AH with ((R1 ‖LR2)/AH,
(Q̄1 ‖L Q̄2) \ AH) ∈ B and ((R′1 ‖LR′2) /AH, (Q′1 ‖LQ′2) \ AH) ∈ B.

– If (R1 ‖LR2) /AH
τ−→a (R′1 ‖LR2) /AH with R1

τ−→aR
′
1, then R1 /AH

τ−→aR
′
1 /AH as τ /∈ AH. From R1 /AH ≈mb Q1 \ AH it follows that
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either R′1 /AH ≈mb Q1 \ AH, or there exists Q1 \ AH
τ∗

==⇒a Q̄1 \ AH
τ−→aQ

′
1 \ AH such that R1 /AH ≈mb Q̄1 \ AH and R′1 /AH ≈mb Q

′
1 \

AH. Since synchronization does not apply to τ , in the former subcase
(Q1 ‖LQ2)\AH is allowed to stay idle with ((R′1 ‖LR2)/AH, (Q1 ‖LQ2)\
AH) ∈ B, while in the latter subcase (Q1 ‖LQ2) \AH

τ∗
==⇒a (Q̄1 ‖LQ2) \

AH
τ−→a (Q′1 ‖LQ2) \ AH with ((R1 ‖LR2)/AH, (Q̄1 ‖LQ2) \ AH) ∈ B

and ((R′1 ‖LR2)/AH, (Q′1 ‖LQ2) \ AH) ∈ B.

– If (R1 ‖LR2) /AH
τ−→a (R1 ‖LR′2) /AH with R2

τ−→aR
′
2, then the proof

is similar to the one of the previous case.

– If (R1 ‖LR2) /AH
τ−→a (R′1 ‖LR2) /AH with R1

h−→aR
′
1 and h /∈ L,

then R1 /AH
τ−→aR

′
1 /AH as h ∈ AH. The rest of the proof is like the

one of the fourth case.

– If (R1 ‖LR2) /AH
τ−→a (R1 ‖LR′2) /AH with R2

h−→aR
′
2 and h /∈ L,

then the proof is similar to the one of the previous case.

As for rates, we reason like in the proof of the corresponding result for ≈mw.
2. Starting from (Q/AH)\L and (R\L) /AH related by B, so that Q/AH ≈mb

R \ AH, there are six cases for action transitions based on the operational
semantic rules in Table 1. In the first three cases, it is (Q/AH) \L to move
first:

– If (Q/AH)\L l−→a (Q′ /AH)\L with Q
l−→aQ

′ and l /∈ L, then Q/AH
l−→aQ

′ /AH as l /∈ AH. From Q/AH ≈mb R \ AH it follows that there

exists R\AH
τ∗

==⇒a R̄\AH
l−→aR

′\AH such that Q/AH ≈mb R̄\AH and
Q′ /AH ≈mb R

′ \ AH. Since the restriction and hiding operators do not

apply to τ and l, we have that (R \L) /AH
τ∗

==⇒a (R̄ \L) /AH
l−→a (R′ \

L) /AH with ((Q/AH) \ L, (R̄ \ L) /AH) ∈ B and ((Q′ /AH) \ L, (R′ \
L) /AH) ∈ B.

– If (Q/AH)\L τ−→a (Q′/AH)\L with Q
τ−→aQ

′, then Q/AH
τ−→aQ

′/AH
as τ /∈ AH. From Q/AH ≈mb R\AH it follows that either Q′ /AH ≈mb

R \ AH, or there exists R \ AH
τ∗

==⇒a R̄ \ AH
τ−→aR

′ \ AH such that
Q/AH ≈mb R̄\AH and Q′ /AH ≈mb R

′ \AH. Since the restriction and
hiding operators do not apply to τ , in the former subcase (R \ L) /AH
is allowed to stay idle with ((Q′ /AH) \ L, (R \ L) /AH) ∈ B, while in

the latter subcase (R \L) /AH
τ∗

==⇒a (R̄ \L) /AH
τ−→a (R′ \L) /AH with

((Q/AH) \L, (R̄ \L) /AH) ∈ B and ((Q′ /AH) \L, (R′ \L) /AH) ∈ B.

– If (Q/AH)\L τ−→a (Q′/AH)\L with Q
h−→aQ

′, then Q/AH
τ−→aQ

′/AH
as h ∈ AH. The rest of the proof is like the one of the previous case.

In the other three cases, instead, it is (R \ L) /AH to move first:

– If (R\L) /AH
l−→a (R′ \L) /AH with R

l−→aR
′ and l /∈ L, then R\AH

l−→aR
′ \ AH as l /∈ AH. From R \ AH ≈mb Q/AH it follows that there

exists Q/AH
τ∗

==⇒a Q̄ /AH
l−→aQ

′ /AH such that R \ AH ≈mb Q̄ /AH
and R′ \ AH ≈mb Q

′ /AH. Since the restriction operator does not apply
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to τ and l, we have that (Q/AH)\L τ∗
==⇒a (Q̄ /AH)\L l−→a (Q′ /AH)\L

with ((R\L) /AH, (Q̄ /AH)\L) ∈ B and ((R′\L) /AH, (Q′ /AH)\L) ∈
B.

– If (R \ L) /AH
τ−→a (R′ \ L) /AH with R

τ−→aR
′, then R \ AH

τ−→a

R′ \ AH as τ /∈ AH. From R \ AH ≈mb Q/AH it follows that either

R′ \ AH ≈mb Q/AH, or there exists Q/AH
τ∗

==⇒a Q̄ /AH
τ−→aQ

′ /AH
such that R \ AH ≈mb Q̄ /AH and R′ \ AH ≈mb Q′ /AH. Since the
restriction operator does not apply to τ , in the former subcase (Q/AH)\
L is allowed to stay idle with ((R′ \L) /AH, (Q/AH) \L) ∈ B, while in

the latter subcase (Q/AH) \L τ∗
==⇒a (Q̄ /AH) \L τ−→a (Q′ /AH) \L with

((R \L) /AH, (Q̄ /AH) \L) ∈ B and ((R′ \L) /AH, (Q′ /AH) \L) ∈ B.

– If (R\L) /AH
τ−→a (R′\L) /AH with R

h−→aR
′ and h /∈ L, then R/AH

τ−→aR
′ /AH as h ∈ AH (note that R \ AH cannot perform h). From

R/AH ≈mb R \ AH – as P ∈ SBSNNI≈mb
and R ∈ reach(P ) – and

R\AH ≈mb Q/AH it follows that either R′ /AH ≈mb Q/AH and hence
R′ \AH ≈mb Q/AH – as R′ /AH ≈mb R

′ \AH due to P ∈ SBSNNI≈mb

and R′ ∈ reach(P ) – or there exists Q/AH
τ∗

==⇒a Q̄ /AH
τ−→aQ

′ /AH
such that R/AH ≈mb Q̄ /AH and R′ /AH ≈mb Q′ /AH and hence
R \ AH ≈mb Q̄ /AH and R′ \ AH ≈mb Q′ /AH. Since the restriction
operator does not apply to τ , in the former subcase (Q/AH)\L is allowed
to stay idle with ((R′ \ L) /AH, (Q/AH) \ L) ∈ B, while in the latter

subcase (Q/AH) \ L τ∗
==⇒a (Q̄ /AH) \ L τ−→a (Q′ /AH) \ L with ((R \

L) /AH, (Q̄ /AH) \ L) ∈ B and ((R′ \ L) /AH, (Q′ /AH) \ L) ∈ B.

As for rates, we reason like in the proof of the corresponding result for ≈mw.

3. Starting from (Q1 ‖LQ2) \ AH and (R1 ‖LR2) \ AH related by B, so that
Q1 \ AH ≈mb R1 \ AH and Q2 \ AH ≈mb R2 \ AH, there are five cases for
action transitions based on the operational semantic rules in Table 1:

– If (Q1 ‖LQ2) \ AH
l−→a (Q′1 ‖LQ2) \ AH with Q1

l−→aQ
′
1 and l /∈ L,

then Q1 \ AH
l−→aQ

′
1 \ AH as l /∈ AH. From Q1 \ AH ≈mb R1 \ AH

it follows that there exists R1 \ AH
τ∗

==⇒a R̄1 \ AH
l−→aR

′
1 \ AH such

that Q1 \ AH ≈mb R̄1 \ AH and Q′1 \ AH ≈mb R′1 \ AH. Since syn-
chronization does not apply to τ and l /∈ L, we have that (R1 ‖LR2) \
AH

τ∗
==⇒a (R̄1 ‖LR2) \ AH

l−→a (R′1 ‖LR2) \ AH with ((Q1 ‖LQ2) \ AH,
(R̄1 ‖LR2) \ AH) ∈ B and ((Q′1 ‖LQ2) \ AH, (R′1 ‖LR2) \ AH) ∈ B.

– If (Q1 ‖LQ2)\AH
l−→a (Q1 ‖LQ′2)\AH with Q2

l−→aQ
′
2 and l /∈ L, then

the proof is similar to the one of the previous case.

– If (Q1 ‖LQ2) \ AH
l−→a (Q′1 ‖LQ′2) \ AH with Qi

l−→aQ
′
i for i ∈ {1, 2}

and l ∈ L, then Qi \ AH
l−→aQ

′
i \ AH as l /∈ AH. From Qi \ AH ≈mb

Ri \ AH it follows that there exists Ri \ AH
τ∗

==⇒a R̄i \ AH
l−→aR

′
i \ AH

such that Qi \ AH ≈mb R̄i \ AH and Q′i \ AH ≈mb R′i \ AH. Since
synchronization does not apply to τ and l ∈ L, we have that (R1 ‖LR2)\
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AH
τ∗

==⇒a (R̄1 ‖L R̄2) \ AH
l−→a (R′1 ‖LR′2) \ AH with ((Q1 ‖LQ2) \ AH,

(R̄1 ‖L R̄2) \ AH) ∈ B and ((Q′1 ‖LQ′2) \ AH, (R′1 ‖LR′2) \ AH) ∈ B.

– If (Q1 ‖LQ2) \ AH
τ−→a (Q′1 ‖LQ2) \ AH with Q1

τ−→aQ
′
1, then Q1 \

AH
τ−→aQ

′
1 \AH as τ /∈ AH. From Q1 \AH ≈mb R1 \AH it follows that

either Q′1 \ AH ≈mb R1 \ AH, or there exists R1 \ AH
τ∗

==⇒a R̄1 \ AH
τ−→aR

′
1 \ AH such that Q1 \ AH ≈mb R̄1 \ AH and Q′1 \

AH ≈mb R
′
1 \AH. Since synchronization does not apply to τ , in the for-

mer subcase (R1 ‖LR2) \ AH is allowed to stay idle with ((Q′1 ‖LQ2) \
AH, (R1 ‖LR2) \ AH) ∈ B, while in the latter subcase (R1 ‖LR2) \ AH
τ∗

==⇒a (R̄1 ‖LR2) \ AH
τ−→a (R′1 ‖LR2) \ AH with ((Q1 ‖LQ2) \ AH,

(R̄1 ‖LR2) \ AH) ∈ B and ((Q′1 ‖LQ2) \ AH, (R′1 ‖LR2) \ AH) ∈ B.

– If (Q1 ‖LQ2)\AH
τ−→a (Q1 ‖LQ′2)\AH with Q2

τ−→aQ
′
2, then the proof

is similar to the one of the previous case.
As for rates, we reason like in the proof of the corresponding result for ≈mw.

Proof of Theorem 2. We first prove the five results for SBSNNI≈ , from which
it will follow that they hold for P BNDC≈ too by virtue of the forthcoming
Theorem 3:

1. Given an arbitrary P ∈ SBSNNI≈ and an arbitrary a ∈ AL ∪ {τ}, from
P \ AH ≈ P /AH we derive that a . (P \ AH) ≈ a . (P /AH) because ≈ is
a congruence with respect to action prefix by virtue of Lemma 1(1), from
which it follows that (a . P ) \ AH ≈ (a . P ) /AH, i.e., a . P ∈ BSNNI≈ ,
because a /∈ AH. To conclude the proof, it suffices to observe that all the
processes reachable from a . P after performing a are processes reachable
from P , which are known to be BSNNI≈ .

2. Given an arbitrary P ∈ SBSNNI≈ and an arbitrary λ ∈ R>0, from P \AH ≈
P /AH we derive that (λ) . (P \ AH) ≈ (λ) . (P /AH) because ≈ is a con-
gruence with respect to rate prefix by virtue of Lemma 1(2), from which
it follows that ((λ) . P ) \ AH ≈ ((λ) . P ) /AH, i.e., (λ) . P ∈ BSNNI≈ ,
because the restriction and hiding operators do not apply to rates. To con-
clude the proof, it suffices to observe that all the processes reachable from
(λ) . P after a delay governed by λ has elapsed are processes reachable from
P , which are known to be BSNNI≈ .

3. Given two arbitrary P1, P2 ∈ P such that P1, P2 ∈ SBSNNI≈ and an arbi-
trary L ⊆ AL, the result follows from Lemma 3(1) by taking Q1 identical to
R1 and Q2 identical to R2.

4. Given an arbitrary P ∈ SBSNNI≈ and an arbitrary L ⊆ A \ {τ}, the result
follows from Lemma 3(2) by taking Q identical to R – which will be denoted
by P ′ – because:
– (P ′ \ L) \ AH ≈ (P ′ \ AH) \ L as the order in which restriction sets are

considered is unimportant.
– (P ′ \ AH) \ L ≈ (P ′ /AH) \ L because P ′ \ AH ≈ P ′ /AH – as P ∈

SBSNNI≈ and P ′ ∈ reach(P ) – and ≈ is a congruence with respect to
the restriction operator due to Lemma 1(4).
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– (P ′ /AH) \ L ≈ (P ′ \ L) /AH as shown in Lemma 3(2).
– From the transitivity of ≈ we obtain that (P ′ \L)\AH ≈ (P ′ \L) /AH.

5. Given an arbitrary P ∈ SBSNNI≈ and an arbitrary L ⊆ AL, for every P ′ ∈
reach(P )
it holds that P ′ \AH ≈ P ′ /AH, from which we derive that (P ′ \AH) /L ≈
(P ′/AH) /L because ≈ is a congruence with respect to the hiding operator
due to Lemma 1(5). Since L ∩ AH = ∅, we have that (P ′ \ AH) /L is iso-
morphic to (P ′ /L) \ AH and (P ′ /AH) /L is isomorphic to (P ′ /L) /AH,
hence (P ′ /L) \ AH ≈ (P ′ /L) /AH, i.e., P ′ /L is BSNNI≈ .

We then prove the five results for SBNDC≈ :

1. Given an arbitrary P ∈ SBNDC≈ and an arbitrary a ∈ AL∪{τ}, it trivially
holds that a . P ∈ SBNDC≈ because a is not high and all the processes
reachable from a . P after performing a are processes reachable from P , which
is known to be SBNDC≈ .

2. Given an arbitrary P ∈ SBNDC≈ and an arbitrary λ ∈ R>0, it trivially holds
that (λ) . P ∈ SBNDC≈ because all the processes reachable from (λ) . P after
a delay governed by λ has elapsed are processes reachable from P , which is
known to be SBNDC≈ .

3. Given two arbitrary P1, P2 ∈ Pmk such that P1, P2 ∈ SBNDC≈ and an ar-
bitrary L ⊆ A\{τ}, the result follows from Lemma 3(3) as can be seen by ob-

serving that whenever P ′1 ‖L P ′2
h−→a P

′′
1 ‖L P ′′2 for P ′1 ‖L P ′2 ∈ reach(P1 ‖L P2):

– If P ′1
h−→a P

′′
1 , P ′′2 = P ′2 (hence P ′2\AH ≈ P ′′2 \AH), and h /∈ L, then from

P1 ∈ SBNDC≈ it follows that P ′1 \AH ≈ P ′′1 \AH, which in turn entails
that (P ′1 ‖L P ′2) \AH ≈ (P ′′1 ‖L P ′′2 ) \AH because ≈ is a congruence with
respect to the parallel composition operator due to Lemma 1(3) and
restriction distributes over parallel composition.

– If P ′2
h−→a P

′′
2 , P ′′1 = P ′1, and h /∈ L, then we reason like in the previous

case.
– If P ′1

h−→a P
′′
1 , P ′2

h−→a P
′′
2 , and h ∈ L, then from P1, P2 ∈ SBNDC≈ it

follows that P ′1 \AH ≈ P ′′1 \AH and P ′2 \AH ≈ P ′′2 \AH, which in turn
entail that (P ′1 ‖L P ′2)\AH ≈ (P ′′1 ‖L P ′′2 )\AH because ≈ is a congruence
with respect to the parallel composition operator due to Lemma 1(3) and
restriction distributes over parallel composition.

4. Given an arbitrary P ∈ SBNDC≈ and an arbitrary L ⊆ A \ {τ}, for every

P ′ ∈ reach(P ) and for every P ′′ such that P ′
h−→a P

′′ it holds that P ′\AH ≈
P ′′ \AH, from which we derive that (P ′ \AH)\L ≈ (P ′′ \AH)\L because ≈
is a congruence with respect to the restriction operator due to Lemma 1(4).
Since (P ′ \ AH) \ L is isomorphic to (P ′ \ L) \ AH and (P ′′ \ AH) \ L is
isomorphic to (P ′′ \ L) \ AH, we have that (P ′ \ L) \ AH ≈ (P ′′ \ L) \ AH.

5. Given an arbitrary P ∈ SBNDC≈ and an arbitrary L ⊆ AL, for every

P ′ ∈ reach(P ) and for every P ′′ such that P ′
h−→a P

′′ it holds that P ′\AH ≈
P ′′ \ AH, from which we derive that (P ′ \ AH) /L ≈ (P ′′ \ AH) /L because
≈ is a congruence with respect to the hiding operator due to Lemma 1(5).



Noninterference Analysis of Stochastically Timed Reversible Systems 35

Since L∩AH = ∅, we have that (P ′ \AH) /L is isomorphic to (P ′ /L) \AH
and (P ′′ \ AH) /L is isomorphic to (P ′′ /L) \ AH, hence (P ′ /L) \ AH ≈
(P ′′ /L) \ AH.

Lemma 4. Let P, P1, P2 ∈ P and ≈ ∈ {≈mw,≈mb}. Then:

1. If P ∈ SBNDC≈ , P ′ ∈ reach(P ), and P ′ /AH
τ∗

==⇒a P
′′ /AH, then

P ′ \ AH
τ∗

==⇒a P̂
′′ \ AH with P ′′ \ AH ≈ P̂ ′′ \ AH.

2. If P1, P2 ∈ SBNDC≈ ∩ Pmk,nhc and P1 \ AH ≈ P2 \ AH, then P1 /AH ≈
P2 /AH.

3. If P2 ∈ SBSNNI≈ and L ⊆ AH, then P ′1 \ AH ≈ ((P ′2 ‖LQ) /L) \ AH
for all Q ∈ P having only prefixes in AH and for all P ′1 ∈ reach(P1) and
P ′2 ∈ reach(P2) such that P ′1 \ AH ≈ P ′2 /AH.

Proof. We first prove the three results for the ≈mw-based properties:

1. We proceed by induction on the number n ∈ N of τ -transitions along P ′ /AH
τ∗

==⇒a P
′′ /AH:

– If n = 0 then P ′ /AH stays idle and P ′′ /AH is P ′ /AH. Likewise,

P ′\AH can stay idle, i.e., P ′\AH
τ∗

==⇒a P
′\AH, with P ′\AH ≈mw P ′\AH

as ≈mw is reflexive.
– Let n > 0 and P ′0/AH

τ−→a P
′
1/AH

τ−→a . . .
τ−→a P

′
n−1/AH

τ−→a P
′
n/AH

where P ′0 is P ′ and P ′n is P ′′. From the induction hypothesis it follows

that P ′ \ AH
τ∗

==⇒a P̂
′
n−1 \ AH with P ′n−1 \ AH ≈mw P̂ ′n−1 \ AH. As far

as the n-th τ -transition P ′n−1 /AH
τ−→ P ′n /AH is concerned, there are

two cases depending on whether it is originated from P ′n−1
τ−→a P

′
n or

P ′n−1
h−→a P

′
n:

• If P ′n−1
τ−→a P

′
n then P ′n−1 \AH

τ−→a P
′
n \AH. Since P ′n−1 \AH ≈mw

P̂ ′n−1 \ AH, there exists P̂ ′n−1 \ AH
τ∗

==⇒a P̂
′
n \ AH such that P ′n \

AH ≈mw P̂ ′n\AH. Therefore P ′\AH
τ∗

==⇒a P̂
′
n\AH with P ′′\AH ≈mw

P̂ ′n \ AH.

• If P ′n−1
h−→a P

′
n then from P ∈ SBNDC≈mw it follows that P ′n−1 \

AH ≈mw P ′n \ AH. Since P ′n−1 \ AH ≈mw P̂ ′n−1 \ AH and ≈mw

is symmetric and transitive, we obtain P ′n \ AH ≈mw P̂ ′n−1 \ AH.

Therefore P ′ \ AH
τ∗

==⇒a P̂
′
n−1 \ AH with P ′′ \ AH ≈mw P̂ ′n−1 \ AH.

2. Let B be an equivalence relation containing all the pairs of processes that
have to be shown to be ≈mw-equivalent according to the considered result.
Starting from (P1 /AH, P2 /AH) ∈ B, so that P1 \ AH ≈mw P2 \ AH, there
are three cases for action transitions based on the operational semantic rules
in Table 1:

– If P1 /AH
τ−→a P

′
1 /AH with P1

h−→a P
′
1, then P1 \ AH ≈mw P ′1 \ AH

as h ∈ AH and P1 ∈ SBNDC≈mw . Since P ′1 \ AH ≈mw P2 \ AH,
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as P1 \ AH ≈mw P2 \ AH and ≈mw is symmetric and transitive, with
P ′1, P2 ∈ SBNDC≈mw

, we have that P2 /AH is allowed to stay idle with
(P ′1 /AH, P2 /AH) ∈ B.

– If P1 /AH
l−→a P

′
1 /AH with P1

l−→a P
′
1, then P1 \ AH

l−→a P
′
1 \ AH

as l /∈ AH. From P1 \ AH ≈mw P2 \ AH it follows that there ex-

ists P2 \ AH
l̂

==⇒a P
′
2 \ AH such that P ′1 \ AH ≈mw P ′2 \ AH. Thus

P2 /AH
l̂

==⇒a P
′
2 /AH as l, τ /∈ AH. Since P ′1 \ AH ≈mw P ′2 \ AH with

P ′1, P
′
2 ∈ SBNDC≈mw

, we have that (P ′1 /AH, P ′2 /AH) ∈ B.

– If P1 /AH
τ−→a P

′
1 /AH with P1

τ−→a P
′
1, then the proof is like the one

of the previous case.

As for rates, suppose that P1 /AH 6τ−→a so that P1 \ AH 6τ−→a too and hence

from P1 \AH ≈mw P2 \AH it follows that there exists P2 \AH
τ∗

==⇒a P̄2 \AH
such that P̄2 \ AH 6 τ−→a, P1 \ AH ≈mw P̄2 \ AH, and rate(P1 \ AH, C) =
rate(P̄2 \AH, C) for all C ∈ P/B. Since the hiding and restriction operators

do not apply to τ and rate transitions, it follows that P2 /AH
τ∗

==⇒a P̄2 /AH
with P̄2 /AH 6 τ−→a (if P̄2 /AH could perform τ due to P̄2

h−→a P̄
′
2, then

P̄2\AH ≈mw P̄ ′2\AH as P̄2 ∈ SBNDC≈mw , hence it would just be a matter of
going ahead until one not enabling τ is encountered, which certainly happens
because the considered processes belong to Pmk,nhc), (P1 /AH, P̄2 /AH) ∈ B,
and rate(P1/AH, C) = rate(P1\AH, C) = rate(P̄2\AH, C) = rate(P̄2/AH, C)
for all C ∈ P/B.

3. Let B be an equivalence relation containing all the pairs of processes that have
to be shown to be ≈mw-equivalent according to the considered result. Starting
from P ′1 \ AH and ((P ′2 ‖LQ) /L) \ AH related by B, so that P ′1 \ AH ≈mw

P ′2 /AH, there are six cases for action transitions based on the operational
semantic rules in Table 1. In the first two cases, it is P ′1 \AH to move first:

– Let P ′1 \ AH
l−→a P

′′
1 \ AH. We observe that from P ′2 ∈ reach(P2) and

P2 ∈ SBSNNI≈mw
it follows that P ′2 \ AH ≈mw P ′2 /AH, so that P ′1 \

AH ≈mw P ′2 /AH ≈mw P ′2 \ AH, i.e., P ′1 \ AH ≈mw P ′2 \ AH, as ≈mw is
symmetric and transitive. As a consequence, since l 6= τ there exists P ′2 \
AH

l
==⇒a P

′′
2 \AH such that P ′′1 \AH ≈mw P ′′2 \AH. Thus ((P ′2 ‖LQ) /L)\

AH
l

==⇒a ((P ′′2 ‖LQ) /L) \AH with (P ′′1 \AH, ((P ′′2 ‖LQ) /L) \AH) ∈ B
because P ′′1 ∈ reach(P1), P ′′2 ∈ reach(P2), and P ′′1 \ AH ≈mw P ′′2 /AH as
P2 ∈ SBSNNI≈mw

.

– Let P ′1 \AH
τ−→a P

′′
1 \AH. The proof is like the one of the previous case

with
τ∗

==⇒a used in place of
l

==⇒a.

In the other four cases, instead, it is ((P ′2 ‖LQ) /L) \ AH to move first:

– Let ((P ′2 ‖LQ) /L)\AH
l−→a ((P ′′2 ‖LQ) /L)\AH with P ′2

l−→a P
′′
2 so that

P ′2 \ AH
l−→a P

′′
2 \ AH as l /∈ AH. We observe that from P ′2 ∈ reach(P2)

and P2 ∈ SBSNNI≈mw
it follows that P ′2 \ AH ≈mw P ′2 /AH, so that

P ′2 \ AH ≈mw P ′2 /AH ≈mw P ′1 \ AH, i.e., P ′2 \ AH ≈mw P ′1 \ AH, as
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≈mw is symmetric and transitive. As a consequence, since l 6= τ there

exists P ′1 \ AH
l

==⇒a P
′′
1 \ AH such that P ′′2 \ AH ≈mw P ′′1 \ AH. Thus

(((P ′′2 ‖LQ) /L) \ AH, P ′′1 \ AH) ∈ B because P ′′1 ∈ reach(P1), P ′′2 ∈
reach(P2), and P ′′1 \ AH ≈mw P ′′2 /AH as P2 ∈ SBSNNI≈mw .

– Let ((P ′2 ‖LQ) /L) \ AH
τ−→a ((P ′′2 ‖LQ) /L) \ AH with P ′2

τ−→a P
′′
2 so

that P ′2 \ AH
τ−→a P

′′
2 \ AH as τ /∈ AH. The proof is like the one of the

previous case with
τ∗

==⇒a used in place of
l

==⇒a.

– If ((P ′2 ‖LQ) /L) \ AH
τ−→a ((P ′2 ‖LQ′) /L) \ AH with Q

τ−→aQ
′, then

trivially (((P ′2 ‖LQ′) /L) \ AH, P ′1 \ AH) ∈ B as P ′2 ≈mw P ′2 and hence
P ′2 /AH ≈mw P ′2 /AH by Lemma 1(5).

– Let ((P ′2 ‖LQ) /L) \ AH
τ−→a ((P ′′2 ‖LQ′) /L) \ AH with P ′2

h−→a P
′′
2 –

so that P ′2 /AH
τ−→a P

′′
2 /AH as h ∈ AH – and Q

h−→aQ
′ for h ∈ L.

We observe that from P ′2, P
′′
2 ∈ reach(P2) and P2 ∈ SBSNNI≈mw

it
follows that P ′2 \ AH ≈mw P ′2 /AH and P ′′2 \ AH ≈mw P ′′2 /AH, so

that P ′2 \ AH
τ∗

==⇒a P
′′
2 \ AH as P ′2 /AH

τ−→a P
′′
2 /AH and P ′2 \ AH ≈mw

P ′2 /AH ≈mw P ′1 \AH, i.e., P ′2 \AH ≈mw P ′1 \AH, as ≈mw is symmetric

and transitive. As a consequence there exists P ′1 \AH
τ∗

==⇒a P
′′
1 \AH such

that P ′′2 \AH ≈mw P ′′1 \AH. Thus (((P ′′2 ‖LQ′) /L) \AH, P ′′1 \AH) ∈ B
because P ′′1 ∈ reach(P1), P ′′2 ∈ reach(P2), and P ′′1 \ AH ≈mw P ′′2 /AH as
P2 ∈ SBSNNI≈mw

.

As for rates, to avoid trivial cases consider an equivalence class C ∈ P/B that
involves processes reachable from P ′1 \ AH and ((P ′2 ‖LQ) /L) \ AH, specifi-
cally C = {R1,i \AH, ((R2,j ‖L Sj) /L) \AH | Sj ∈ P having only prefixes in

AH ∧ Rk,h ∈ reach(Pk) ∧ R1,i \ AH ≈mw R2,j /AH}. If P ′1 \ AH 6τ−→a then

from P ′1 \AH ≈mw P ′2 /AH it follows that there exists P ′2 /AH
τ∗

==⇒a P̄
′
2 /AH

such that P̄ ′2 /AH 6 τ−→a, P ′1 \ AH ≈mw P̄ ′2 /AH, and rate(P ′1 \ AH, C ′) =
rate(P̄ ′2 /AH, C ′) for all C ′ ∈ P/≈mw. Since synchronization as well as the
restriction and hiding operators do not apply to τ , we have that ((P ′2 ‖LQ) /L)

\ AH
τ∗

==⇒a ((P̄ ′2 ‖LQ′) /L) \ AH with ((P̄ ′2 ‖LQ′) /L) \ AH 6 τ−→a and (P ′1 \
AH, ((P̄ ′2 ‖LQ′) /L) \ AH) ∈ B. Since the restriction and hiding operators
do not apply to rate transitions and Q cannot perform any rate transition,
we have that:

rate(P ′1 \ AH, C) = rate(P ′1 \ AH, C̄)
rate(((P̄ ′2 ‖LQ) /L) \ AH, C) = rate(P̄ ′2 /AH, C̄)

where:
C̄ = {R1,i \ AH ∈ C} ∪ {R2,j /AH | ((R2,j ‖L Sj) /L) \ AH ∈ C}

Since P ′1 \ AH ≈mw P̄ ′2 /AH and C̄ is the union of some ≈mw-equivalence
classes, we have that:

rate(P ′1 \ AH, C̄) = rate(P̄ ′2 /AH, C̄)

If we start from ((P ′2 ‖LQ) /L) \ AH 6τ−→a, then the proof is similar.
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We then prove the three results for the ≈mb-based properties:

1. We proceed by induction on the number n ∈ N of τ -transitions along P ′ /AH
τ∗

==⇒a P
′′ /AH:

– If n = 0 then the proof is like the one of the corresponding result for
≈mw.

– Let n > 0 and P ′0/AH
τ−→a P

′
1/AH

τ−→a . . .
τ−→a P

′
n−1/AH

τ−→a P
′
n/AH

where P ′0 is P ′ and P ′n is P ′′. From the induction hypothesis it follows

that P ′ \ AH
τ∗

==⇒a P̂
′
n−1 \ AH with P ′n−1 \ AH ≈mb P̂

′
n−1 \ AH. The rest

of the proof is like the one of the corresponding result for ≈mw with the
following difference:

• If P ′n−1
τ−→a P

′
n then P ′n−1 \AH

τ−→a P
′
n \AH. Since P ′n−1 \AH ≈mb

P̂ ′n−1 \ AH:

∗ either P ′n\AH ≈mb P̂
′
n−1\AH, in which case P̂ ′n−1\AH stays idle

and hence P ′\AH
τ∗

==⇒a P̂
′
n−1\AH with P ′′\AH ≈mb P̂

′
n−1\AH;

∗ or there exists P̂ ′n−1 \AH
τ∗

==⇒a P̄n−1 \AH
τ−→a P̂

′
n \AH such that

P ′n−1 \ AH ≈mb P̄n−1 \ AH and P ′n \ AH ≈mb P̂
′
n \ AH, hence

P ′ \ AH
τ∗

==⇒a P̂
′
n \ AH with P ′′ \ AH ≈mb P̂

′
n \ AH.

2. Let B be an equivalence relation containing all the pairs of processes that
have to be shown to be ≈mb-equivalent according to the considered result.
Starting from (P1 /AH, P2 /AH) ∈ B, so that P1 \ AH ≈mb P2 \ AH, there
are three cases for action transitions based on the operational semantic rules
in Table 1:

– If P1 /AH
τ−→a P

′
1 /AH with P1

h−→a P
′
1, then the proof is like the one

of the corresponding result for ≈mw.

– If P1 /AH
l−→a P

′
1 /AH with P1

l−→a P
′
1, then P1 \ AH

l−→a P
′
1 \ AH as

l /∈ AH. From P1 \ AH ≈mb P2 \ AH it follows that there exists P2 \
AH

τ∗
==⇒a P̄2 \AH

l−→a P
′
2 \AH such that P1 \AH ≈mb P̄2 \AH and P ′1 \

AH ≈mb P
′
2\AH. Thus P2 /AH

τ∗
==⇒a P̄2 /AH

l−→a P
′
2 /AH as l, τ /∈ AH.

Since P1 \AH ≈mb P̄2 \AH with P1, P̄2 ∈ SBNDC≈mb
and P ′1 \AH ≈mb

P ′2 \AH with P ′1, P
′
2 ∈ SBNDC≈mb

, we have that (P1 /AH, P̄2 /AH) ∈ B
and (P ′1 /AH, P ′2 /AH) ∈ B.

– If P1 /AH
τ−→a P

′
1 /AH with P1

τ−→a P
′
1, then P1 \ AH

τ−→a P
′
1 \ AH as

τ /∈ AH. There are two subcases:

• If P ′1 \ AH ≈mb P2 \ AH then P2 \ AH is allowed to stay idle with
(P ′1 /AH, P2 /AH) ∈ B because P ′1 \ AH ≈mb P2 \ AH and P ′1, P2 ∈
SBNDC≈mb

.
• If P ′1 \AH 6≈mb P2 \AH then the proof is like the one of the previous

case with
τ−→a used in place of

l−→a.

As for rates, we reason like in the proof of the corresponding result for ≈mw.
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3. Let B be an equivalence relation containing all the pairs of processes that have
to be shown to be ≈mb-equivalent according to the considered result. Starting
from P ′1 \ AH and ((P ′2 ‖LQ) /L) \ AH related by B, so that P ′1 \ AH ≈mb

P ′2 /AH, there are six cases for action transitions based on the operational
semantic rules in Table 1. In the first two cases, it is P ′1 \AH to move first:

– Let P ′1 \ AH
l−→a P

′′
1 \ AH. We observe that from P ′2 ∈ reach(P2) and

P2 ∈ SBSNNI≈mb
it follows that P ′2 \ AH ≈mb P ′2 /AH, so that P ′1 \

AH ≈mb P
′
2 /AH ≈mb P

′
2 \ AH, i.e., P ′1 \ AH ≈mb P

′
2 \ AH, as ≈mb is

symmetric and transitive. As a consequence, since l 6= τ there exists P ′2 \
AH

τ∗
==⇒a P̄

′
2 \AH

l−→a P
′′
2 \AH such that P ′1 \AH ≈mb P̄

′
2 \AH and P ′′1 \

AH ≈mb P
′′
2 \ AH. Thus ((P ′2 ‖LQ) /L) \ AH

τ∗
==⇒a ((P̄ ′2 ‖LQ) /L) \ AH

l−→a ((P ′′2 ‖LQ) /L) \ AH with (P ′1 \ AH, ((P̄ ′2 ‖LQ) /L) \ AH) ∈ B –
because P ′1 ∈ reach(P1), P̄ ′2 ∈ reach(P2), and P ′1 \ AH ≈mb P̄

′
2 /AH as

P2 ∈ SBSNNI≈mb
– and (P ′′1 \ AH, ((P ′′2 ‖LQ) /L) \ AH) ∈ B – because

P ′′1 ∈ reach(P1), P ′′2 ∈ reach(P2), and P ′′1 \ AH ≈mb P
′′
2 /AH as P2 ∈

SBSNNI≈mb
.

– If P ′1 \ AH
τ−→a P

′′
1 \ AH there are two subcases:

• If P ′′1 \ AH ≈mb P
′
2 /AH then (P ′2 ‖LQ) /L) \ AH is allowed to stay

idle with (P ′′1 \AH, ((P ′2 ‖LQ) /L)\AH) ∈ B because P ′′1 ∈ reach(P1)
and P ′2 ∈ reach(P2).

• If P ′′1 \AH 6≈mb P
′
2 /AH then the proof is like the one of the previous

case with
τ−→a used in place of

l−→a.
In the other four cases, instead, it is ((P ′2 ‖LQ) /L) \ AH to move first:

– Let ((P ′2 ‖LQ) /L)\AH
l−→a ((P ′′2 ‖LQ) /L)\AH with P ′2

l−→a P
′′
2 so that

P ′2 \ AH
l−→a P

′′
2 \ AH as l /∈ AH. We observe that from P ′2 ∈ reach(P2)

and P2 ∈ SBSNNI≈mb
it follows that P ′2 \ AH ≈mb P ′2 /AH, so that

P ′2 \AH ≈mb P
′
2 /AH ≈mb P

′
1 \AH, i.e., P ′2 \AH ≈mb P

′
1 \AH, as ≈mb

is symmetric and transitive. As a consequence, since l 6= τ there exists

P ′1 \ AH
τ∗

==⇒a P̄
′
1 \ AH

l−→a P
′′
1 \ AH such that P ′2 \ AH ≈mb P̄ ′1 \ AH

and P ′′2 \ AH ≈mb P
′′
1 \ AH. Thus (((P ′2 ‖LQ) /L) \ AH, P̄ ′1 \ AH) ∈ B

– because P̄ ′1 ∈ reach(P1), P ′2 ∈ reach(P2), and P̄ ′1 \ AH ≈mb P
′
2 /AH as

P2 ∈ SBSNNI≈mb
– and (((P ′′2 ‖LQ) /L) \ AH, P ′′1 \ AH) ∈ B – because

P ′′1 ∈ reach(P1), P ′′2 ∈ reach(P2), and P ′′1 \ AH ≈mb P
′′
2 /AH as P2 ∈

SBSNNI≈mb
.

– If ((P ′2 ‖LQ) /L)\AH
τ−→a ((P ′′2 ‖LQ) /L)\AH with P ′2

τ−→a P
′′
2 so that

P ′2 \ AH
τ−→a P

′′
2 \ AH as τ /∈ AH, there are two subcases:

• If P ′′2 \ AH ≈mb P
′
1 \ AH then P ′1 \ AH is allowed to stay idle with

(((P ′′2 ‖LQ) /L) \ AH, P ′1 \ AH) ∈ B because P ′1 ∈ reach(P1), P ′′2 ∈
reach(P2), and P ′1 \ AH ≈mb P

′′
2 /AH as P2 ∈ SBSNNI≈mb

.
• If P ′′2 \AH 6≈mb P

′
1 \AH then the proof is like the one of the previous

case with
τ−→a used in place of

l−→a.
– If ((P ′2 ‖LQ) /L) \ AH

τ−→a ((P ′2 ‖LQ′) /L) \ AH with Q
τ−→aQ

′, then
trivially (((P ′2 ‖LQ′) /L) \ AH, P ′1 \ AH) ∈ B as P ′2 ≈mb P

′
2 and hence

P ′2 /AH ≈mb P
′
2 /AH by Lemma 1(5).
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– Let ((P ′2 ‖LQ) /L)\AH
τ−→a ((P ′′2 ‖LQ′) /L)\AH with P ′2

h−→a P
′′
2 – so

that P ′2 /AH
τ−→a P

′′
2 /AH as h ∈ AH – and Q

h−→aQ
′ for h ∈ L. We

observe that from P ′2, P
′′
2 ∈ reach(P2) and P2 ∈ SBSNNI≈mb

it follows
that P ′2 \ AH ≈mb P ′2 /AH and P ′′2 \ AH ≈mb P ′′2 /AH, so that P ′2 \
AH

τ−→a P
′′
2 \ AH and P ′2 \ AH ≈mb P ′2 /AH ≈mb P ′1 \ AH, i.e., P ′2 \

AH ≈mb P
′
1 \ AH, as ≈mb is symmetric and transitive. There are two

subcases:
• If P ′′2 \ AH ≈mb P

′
1 \ AH then P ′1 \ AH is allowed to stay idle with

(((P ′′2 ‖LQ′) /L) \ AH, P ′1 \ AH) ∈ B because P ′1 ∈ reach(P1), P ′′2 ∈
reach(P2), and P ′1 \ AH ≈mb P

′′
2 /AH as P2 ∈ SBSNNI≈mb

.

• If P ′′2 \AH 6≈mb P
′
1 \AH then there exists P ′1 \AH

τ∗
==⇒a P̄

′
1 \AH

τ−→a

P ′′1 \AH such that P ′2 \AH ≈mb P̄
′
1 \AH and P ′′2 \AH ≈mb P

′′
1 \AH.

Thus (((P ′2 ‖LQ) /L) \ AH, P̄ ′1 \ AH) ∈ B – because P̄ ′1 ∈ reach(P1),
P ′2 ∈ reach(P2), and P̄ ′1 \ AH ≈mb P

′
2 /AH as P2 ∈ SBSNNI≈mb

–
and (((P ′′2 ‖LQ′) /L) \AH, P ′′1 \AH) ∈ B – because P ′′1 ∈ reach(P1),
P ′′2 ∈ reach(P2), and P ′′1 \ AH ≈mb P

′′
2 /AH as P2 ∈ SBSNNI≈mb

.

As for rates, we reason like in the proof of the corresponding result for ≈mw.

Proof of Theorem 3. We first prove the results for the ≈mw-based properties.
Let us examine each relationship separately:

– SBNDC≈mw ⊆ SBSNNI≈mw . We need to prove that for a given P ∈ P, if P ∈
SBNDC, it follows that for every P ′ reachable from P , P ′ ∈ BSNNI≈mw .
Since the processes we are considering are not recursive we can treat them
as trees, and hence we can proceed by induction on their depth. In this case
we will proceed by induction on the depth of P :

• If the depth of P is 0 then P has no outgoing transitions and it behaves
as 0. This obviously entails that P \ AH ≈mw P /AH.
• If the depth of P is n+ 1 with n ∈ N, then take any P ′ of depth n such

that P
a−→a P

′ or P
λ−→r P

′. By hypothesis, P, P ′ ∈ SBNDC≈mw and by
induction hypothesis P ′ ∈ SBSNNI≈mw

. Hence, we just need to prove
that P \ AH ≈mw P /AH. There are three cases:

∗ If a /∈ AH then both P \ AH and P /AH can execute a and reach,
respectively, P ′ \ AH and P ′ /AH, which are weakly probabilistic
bisimilar by induction hypothesis. Thus Definition 3 is respected.

∗ If a ∈ AH we have that P /AH
τ−→a P

′ /AH, with P
a−→a P

′. By
induction hypothesis we have that P ′ \ AH ≈mw P ′ /AH, and since
a ∈ AH and P ∈ SBNDC≈mw we have P \AH ≈mw P ′\AH. By tran-
sitivity it follows that P \ AH ≈mw P ′ /AH which, combined with

P /AH
τ−→a P

′ /AH, determines the condition required by Defini-
tion 3.

∗ If P
λ−→r P

′ then both P \ AH and P /AH can perform the same

transitions, i.e., P \ AH
λ−→r P

′ \ AH and P /AH
λ−→r P

′ /AH, be-
cause the hiding and restriction operators do not apply to Markovian
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transitions. The processes P ′ /AH and P ′\AH are weakly Markovian
bisimilar because of the induction hypothesis.

– SBSNNI≈mw
= P BNDC≈mw

. SBSNNI≈w
⊆ P BNDC≈mw

follows from
Lemma 4(3) by taking P ′1 identical to P ′2 and both reachable from P ∈
SBSNNI≈mw .
On the other hand, if P ∈ P BNDC≈mw then P ′ ∈ BNDC≈mw for every
P ′ ∈ reach(P ). Since BNDC≈mw

⊆ BSNNI≈mw
as will be shown in the last

case of the proof of this part of the theorem, P ′ ∈ BSNNI≈mw
for every

P ′ ∈ reach(P ), i.e., P ∈ SBSNNI≈mw
.

– SBSNNI≈mw
⊆ BNDC≈mw

. If P ∈ SBSNNI≈mw
= P BNDC≈mw

then it
immediately follows that P ∈ BNDC≈mw .

– BNDC≈mw ⊆ BSNNI≈mw . If P ∈ BNDC≈mw , i.e., P \AH ≈mw (P ‖LQ) /L)\
AH for all Q ∈ P such that each of its prefixes belongs to AH and for all
L ⊆ AH, then we can consider in particular Q̂ capable of stepwise mimicking
the high-level behavior of P , in the sense that Q̂ is able to synchronize with
all the high-level actions executed by P and its reachable processes, along
with L̂ = AH. As a consequence (P ‖L̂ Q̂) / L̂)\AH is isomorphic to P /AH,

hence P \AH ≈mw (P ‖L̂ Q̂) / L̂) \AH ≈mw P /AH, i.e., P ∈ BSNNI≈mw
, as

≈mw is transitive.

We then prove the results for the ≈mb-based properties. Let us examine each
relationship separately:

– SBNDC≈mb
⊆ SBSNNI≈mb

. We need to prove that for a given P ∈ P, if P ∈
SBNDC, it follows that for every P ′ reachable from P , P ′ ∈ BSNNI≈mb

.
Since the processes we are considering are not recursive we can treat them
as trees, and hence we can proceed by induction on their depth. In this case
we will proceed by induction on the depth of P :

• If the depth of P is 0 then P has no outgoing transitions and it behaves
as 0. This obviously entails that P \ AH ≈mb P /AH.

• If the depth of P is n + 1 with n ∈ N, then take any P ′ of depth n
such that P

a−→a P
′. By hypothesis, P, P ′ ∈ SBNDC≈mb

and by induc-
tion hypothesis P ′ ∈ SBSNNI≈mb

. Hence, we just need to prove that
P \ AH ≈mb P /AH. There are three cases:

∗ If a /∈ AH then both P \ AH and P /AH can execute a and reach,
respectively, P ′ \ AH and P ′ /AH, which are Markovian branching
bisimilar by induction hypothesis. Thus Definition 4 is respected.

∗ If a ∈ AH we have that P /AH
τ−→a P

′ /AH, with P
a−→a P

′. By
induction hypothesis we have that P ′ \ AH ≈mb P

′ /AH, and since
a ∈ AH and P ∈ SBNDC≈mb

we have P \AH ≈mb P
′ \AH. By tran-

sitivity it follows that P \ AH ≈mb P
′ /AH which, combined with

P /AH
τ−→a P

′ /AH, determines the condition required by Defini-
tion 4.

∗ If P
λ−→r P

′ then both P \ AH and P /AH can perform the same

transitions, i.e., P \ AH
λ−→r P

′ \ AH and P /AH
λ−→r P

′ /AH, be-
cause the hiding and restriction operators do not apply to Markovian
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transitions. The processes P ′ /AH and P ′\AH are weakly Markovian
bisimilar because of the induction hypothesis.

– SBSNNI≈mb
= P BNDC≈mb

. The proof is like the one of the corresponding
result for ≈mw.

– SBSNNI≈mb
⊆ BNDC≈mb

. The proof is like the one of the corresponding
result for ≈mw.

– BNDC≈mb
⊆ BSNNI≈mb

. The proof is like the one of the corresponding
result for ≈mw.

Proof of Theorem 5 Let Q be P1 + h . P2 (the proof is similar for Q equal
to P2 + h . P1) and observe that no high-level actions occur in every process
reachable from Q except Q itself:

1. Since the only high-level action occurring in Q is h, in the proof of Q ∈
BSNNI≈mw

the only interesting case is the transitionQ/AH
τ−→a P2 /AH, to

whichQ\AH responds by staying idle because P2 /AH ≈mw P2 ≈mw P1 ≈mw

Q \ AH, i.e., P2 /AH ≈mw Q \ AH as ≈mw is symmetric and transitive.
On the other hand, Q /∈ BSNNI≈mb

because P2 6≈mb P1 in the same situation
as before.

2. Since Q ∈ BSNNI≈mw
by the previous result and no high-level actions oc-

cur in every process reachable from Q other than Q, it holds that Q ∈
SBSNNI≈mw and hence Q ∈ BNDC≈mw by virtue of Theorem 3.
On the other hand, from Q /∈ BSNNI≈mb

by the previous result it follows
that Q /∈ BNDC≈mb

by virtue of Theorem 3.
3. We already know from the proof of the previous result that Q ∈ SBSNNI≈mw

.
On the other hand, from Q /∈ BSNNI≈mb

by the first result it follows that
Q /∈ SBSNNI≈mb

by virtue of Theorem 3.
4. An immediate consequence of P BNDC≈mw

= SBSNNI≈mw
and P BNDC≈mb

= SBSNNI≈mb
as established by Theorem 3.

5. Since the only high-level action occurring in Q is h, in the proof of Q ∈
SBNDC≈mw the only interesting case is the transition Q

h−→a P2, for which
it holds that Q\AH ≈mw P1 ≈mw P2 ≈mw P2\AH, i.e., Q\AH ≈mw P2\AH
as ≈mw is transitive.
On the other hand, Q /∈ SBNDC≈mb

because P1 6≈mb P2 in the same situa-
tion as before.

Proof of Proposition 1 We prove the two results separately:

– We need to prove that the symmetric relation B = {(nd(P1),nd(P2)) |
P1 ≈mw P2} is a weak bisimulation. We start by observing that from P1 ≈mw

P2 it follows that for each P1
a−→a P

′
1 there exists P2

â
==⇒a P

′
2 such that

P ′1 ≈mw P ′2. Since nd(P1) and nd(P2) are obtained by eliminating every rate
transition that is alternative to a τ -transition and replacing each remaining
rate transition with a τ -transition, for each nd(P1)

a−→a nd(P ′1) there exists

nd(P2)
â

==⇒a nd(P ′2) such that (nd(P ′1),nd(P ′2)) ∈ B.
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– We need to prove that the symmetric relation B = {nd(P1),nd(P2)) | P1 ≈mb

P2} is a branching bisimulation. We start by observing that from P1 ≈mb

P2 it follows that for each P1
a−→a P

′
1 either a = τ and P ′1 ≈mb P2, or

there exists P2
τ∗

==⇒a P̄2
a−→a P

′
2 such that P1 ≈mb P̄2 and P ′1 ≈mb P

′
2. Since

nd(P1) and nd(P2) are obtained by eliminating every rate transition that
is alternative to a τ -transition and replacing each remaining rate transi-
tion with a τ -transition, for each nd(P1)

a−→a nd(P ′1) either a = τ and

(nd(P ′1),nd(P2)) ∈ B, or there exists nd(P2)
τ∗

==⇒a nd(P̄2)
a−→a nd(P ′2) such

that (nd(P1),nd(P̄2)) ∈ B and (nd(P ′1),nd(P ′2)) ∈ B.

Proof of Corollary 1 The result directly follows from Proposition 1.

Definition 9. A probabilistic labeled transition system (PLTS) is a triple
(S,Aτ ,−→) where S = Sn ∪ Sp with Sn ∩ Sp = ∅ is an at most countable set
of states, Aτ = A ∪ {τ} is a countable set of actions, and −→ = −→a ∪ −→p

is the transition relation, with −→a ⊆ Sn ×Aτ ×Sp being the action transition
relation whilst −→p ⊆ Sp×R]0,1]×Sn being the probabilistic transition relation
satisfying

∑
(s,p,s′)∈−→p

p ∈ {0, 1} for all s ∈ Sp. We further define function
prob as follows:

prob(s, s′) =


p if s ∈ Sp ∧

∑
s
p′−→p s′

p′ = p > 0

1 if s ∈ Sn ∧ s′ = s

0 otherwise

and denote by ==⇒ a sequence of alternating τ - and probabilistic transitions.

Definition 10. Let (S,Aτ ,−→) be a PLTS. We say that s1, s2 ∈ S are weakly
probabilistic bisimilar, written s1 ≈p s2, iff (s1, s2) ∈ B for some weak proba-
bilistic bisimulation B. An equivalence relation B over S is a weak probabilistic
bisimulation iff, whenever (s1, s2) ∈ B, then:

– For each s1
a−→a s

′
1 there exists s2

â
==⇒ s′2 such that (s′1, s

′
2) ∈ B.

– prob(s1, C) = prob(s2, C) for all equivalence classes C ∈ S/B.

Definition 11. Let (S,Aτ ,−→) be a PLTS. We say that s1, s2 ∈ S are prob-
abilistic branching bisimilar, written s1 ≈pb s2, iff (s1, s2) ∈ B for some proba-
bilistic branching bisimulation B. An equivalence relation B over S is a proba-
bilistic branching bisimulation iff, whenever (s1, s2) ∈ B, then:

– For each s1
a−→a s

′
1:

• either a = τ and (s′1, s2) ∈ B;

• or there exists s2 ==⇒ s̄2
a−→a s

′
2 such that (s1, s̄2) ∈ B and (s′1, s

′
2) ∈ B.

– prob(s1, C) = prob(s2, C) for all equivalence classes C ∈ S/B.
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Proof of Proposition 2 We prove the two results separately:

– We need to prove that the equivalence relation B = {(pr(P1), pr(P2)) |
P1 ≈mw P2} is a weak probabilistic bisimulation.
As for action transitions, we start by observing that from P1 ≈mw P2

it follows that for each P1
a−→a P

′
1 there exists P2

a−→a P
′
2 – due to the

strict alternation – such that P ′1 ≈mw P ′2. Since pr(P1) and pr(P2) are ob-
tained by replacing each rate transition with a probabilistic one, for each
pr(P1)

a−→a pr(P ′1) there exists pr(P2)
a−→a pr(P ′2) such that (pr(P ′1), pr(P ′2))

∈ B.
As for probabilities, for each P

γ−→r P
′ there exists pr(P )

p−→p pr(P ′) with
p = γ/

∑
P

δ−→rQ
δ. Due to the strict alternation, from P1 ≈mw P2 it fol-

lows that
∑
P1

λ−→r P ′1,P
′
1∈C

λ =
∑
P2

µ−→r P ′2,P
′
2∈C

µ for each C ∈ Pmk/ ≈mw

and hence
∑
P1

λ−→r P ′1
λ =

∑
P2

µ−→r P ′2
µ. Since every equivalence class C ′ ∈

Ppr/B is of the form [pr(Q)]B = {pr(Q′) | Q ≈mw Q′}, we have that∑
pr(P1)

p−→p pr(P ′1),pr(P
′
1)∈C′

p =
∑

pr(P2)
q−→p pr(P ′2),pr(P

′
2)∈C′

q where every p

and every q is obtained from the corresponding rate ratios respectively in-
volving λ and µ.

– We need to prove that the equivalence relation B = {(pr(P1), pr(P2)) |
P1 ≈mb P2} is a probabilistic branching bisimulation.
As for action transitions, we start by observing that from P1 ≈mb P2 it
follows that for each P1

a−→a P
′
1 either a = τ and P ′1 ≈mb P2, or there ex-

ists P2
τ∗

==⇒a P2
a−→a P

′
2 – due to the strict alternation – such that P ′1 ≈mb

P ′2. Since pr(P1) and pr(P2) are obtained by replacing each rate transi-

tion with a probabilistic one, for each pr(P1)
a−→a pr(P ′1) either a = τ and

(pr(P ′1), pr(P2)) ∈ B, or there exists pr(P2)
τ∗

==⇒a pr(P2)
a−→a pr(P ′2) such that

(pr(P ′1), pr(P ′2)) ∈ B.
As for probabilities, we reason like in the proof of the corresponding result
for ≈pw.

Proof of Corollary 2 The result directly follows from Proposition 2.

Proof of Lemma 2. Given s1, s2 ∈ S with s1 ≈mbf s2, consider the transitive
closure B+ of the reflexive and symmetric relation B =≈mbf ∪{(ρ′′1 , ρ′′2), (ρ′′2 , ρ

′′
1) ∈

(run(s1)×run(s2))∪(run(s2)×run(s1)) | ∃ρ′1 ∈ run(s1), ρ′2 ∈ run(s2). ρ′1
τ∗

==⇒a ρ
′′
1

∧ ρ′2
τ∗

==⇒a ρ
′′
2 ∧ ρ′1 ≈mbf ρ

′′
2 ∧ ρ′′1 ≈mbf ρ

′
2}. The result will follow by proving that

B+ is a weak Markovian back-and-forth bisimulation, because this implies that
ρ′′1 ≈mbf ρ

′′
2 for every additional pair – i.e., B+ satisfies the cross property –

as well as B+ = ≈mbf – hence ≈mbf satisfies the cross property too.
Let (ρ′′1 , ρ

′′
2) ∈ B \ ≈mbf to avoid trivial cases. Then there exist ρ′1 ∈ run(s1)

and ρ′2 ∈ run(s2) such that ρ′1
τ∗

==⇒a ρ
′′
1 , ρ′2

τ∗
==⇒a ρ

′′
2 , ρ′1 ≈mbf ρ

′′
2 , and ρ′′1 ≈mbf ρ

′
2.

There are two cases for action transitions:

– In the forward case, assume that ρ′′1
a−→a ρ

′′′
1 , from which we derive ρ′1

τ∗
==⇒a ρ

′′
1

a−→a ρ
′′′
1 . From ρ′1 ≈mbf ρ

′′
2 it follows that there exists ρ′′2

τ∗
==⇒a ρ

′′′
2 if a = τ or
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ρ′′2
τ∗

==⇒a
a−→a

τ∗
==⇒a ρ

′′′
2 if a 6= τ , such that ρ′′′1 ≈mbf ρ

′′′
2 and hence (ρ′′′1 , ρ

′′′
2 ) ∈

B.

When starting from ρ′′2
a−→a ρ

′′′
2 , we exploit ρ′2

τ∗
==⇒a ρ

′′
2 and ρ′′1 ≈mbf ρ′2

instead.
– In the backward case, assume that ρ′′′1

a−→a ρ
′′
1 . From ρ′′1 ≈mbf ρ

′
2 it follows

that there exists ρ′′′2
τ∗

==⇒a ρ
′
2 if a = τ , so ρ′′′2

τ∗
==⇒a ρ

′′
2 , or ρ′′′2

τ∗
==⇒a

a−→ τ∗
==⇒a ρ

′
2

if a 6= τ , so ρ′′′2
τ∗

==⇒a
a−→a

τ∗
==⇒a ρ

′′
2 , such that ρ′′′1 ≈mbf ρ

′′′
2 and hence (ρ′′′1 , ρ

′′′
2 )

∈ B.

When starting from ρ′′′2
a−→a ρ

′′
2 , we exploit ρ′1 ≈mbf ρ′′2 and ρ′1

τ∗
==⇒a ρ

′′
1

instead.

Likewise, there are two cases for rate transitions:

– In the forward case, assume that ρ′′1
τ∗

==⇒a ρ
′′′
1 with ρ′′′1 6τ−→a, from which we de-

rive ρ′1
τ∗

==⇒a ρ
′′′
1 . From ρ′1 ≈mbf ρ

′′
2 it follows that there exists ρ′′2

τ∗
==⇒a ρ

′′′
2 with

ρ′′′2 6 τ−→a such that ρ′′′1 ≈mbf ρ′′′2 and rate(ρ′′′1 , C) = rate(ρ′′′2 , C)
for all C ∈ U/≈mbf . Since every equivalence class C ′ ∈ U/B+ is the union
of equivalence classes with respect to ≈mbf , it holds that rate(ρ′′′1 , C

′) =
rate(ρ′′′2 , C

′).

When starting from ρ′′2
τ∗

==⇒a ρ
′′′
2 with ρ′′′2 6 τ−→a, we exploit ρ′2

τ∗
==⇒a ρ

′′
2 and

ρ′′1 ≈mbf ρ
′
2 instead.

– In the backward case, assume that ρ′′′1
λ1−→r ρ

′′
1 with ρ′′′1 6τ−→a. From ρ′′1 ≈mbf

ρ′2 it follows that there exists ρ′′′2
τ∗

==⇒a ρ̄
′′′
2

λ2−→r ρ̄
′
2
τ∗

==⇒a ρ
′
2 with ρ̄′′′2 6τ−→a, so

ρ′′′2
τ∗

==⇒a ρ̄
′′′
2

λ2−→r ρ̄
′
2
τ∗

==⇒a ρ
′′
2 with ρ̄′′′2 6 τ−→a, such that ρ′′1 ≈mbf ρ̄

′
2, ρ′′′1 ≈mbf

ρ̄′′′2 , and ρ′′′1 ≈mbf ρ
′′′
2 , hence (ρ′′1 , ρ̄

′
2) ∈ B, (ρ′′′1 , ρ̄

′′′
2 ) ∈ B, and (ρ′′′1 , ρ

′′′
2 ) ∈ B.

When starting from ρ′′′2
λ2−→r ρ

′′
2 with ρ′′′2 6 τ−→a, we exploit ρ′1 ≈mbf ρ

′′
2 and

ρ′1
τ∗

==⇒a ρ
′′
1 instead.

Proof of Theorem 6. The proof is divided into two parts:

– Suppose that s1 ≈mbf s2 and let B be a weak Markovian back-and-forth
bisimulation over U such that ((s1, ε), (s2, ε)) ∈ B. Assume that B only con-
tains all the pairs of ≈mbf -equivalent runs from s1 and s2,
so that Lemma 2 is applicable to B. We show that B′ = {(last(ρ1), last(ρ2)) |
(ρ1, ρ2) ∈ B} is a Markovian branching bisimulation over the states in S
reachable from s1 and s2, from which s1 ≈mb s2 will follow. Note that B′ is
an equivalence relation because so is B.
Given (last(ρ1), last(ρ2)) ∈ B′, by definition of B′ we have that (ρ1, ρ2) ∈ B.

Let rk = last(ρk) for k ∈ {1, 2}, so that (r1, r2) ∈ B′. Suppose that r1
a−→a r

′
1,

i.e., ρ1
a−→a ρ

′
1 where last(ρ′1) = r′1. There are two cases:

• If a = τ then from (ρ1, ρ2) ∈ B it follows that there exists ρ2
τ∗

==⇒a ρ
′
2

such that (ρ′1, ρ
′
2) ∈ B. This means that we have a sequence of n ≥ 0
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transitions of the form ρ2,i
τ−→a ρ2,i+1 for all 0 ≤ i ≤ n − 1 where

ρ2,0 is ρ2 while ρ2,n is ρ′2 so that (ρ′1, ρ2,n) ∈ B as (ρ′1, ρ
′
2) ∈ B.

If n = 0 then we are done because ρ′2 is ρ2 and hence (ρ′1, ρ2) ∈ B as
(ρ′1, ρ

′
2) ∈ B – thus (r′1, r2) ∈ B′ – otherwise from ρ2,n we go back to

ρ2,n−1 via ρ2,n−1
τ−→a ρ2,n. Recalling that (ρ′1, ρ2,n) ∈ B, if ρ′1 can re-

spond by staying idle, so that (ρ′1, ρ2,n−1) ∈ B, and n = 1, then we
are done because ρ2,n−1 is ρ2 and hence (ρ′1, ρ2) ∈ B as (ρ′1, ρ2,n−1) ∈
B – thus (r′1, r2) ∈ B′ – otherwise we go further back to ρ2,n−2 via

ρ2,n−2
τ−→a ρ2,n−1. If ρ′1 can respond by staying idle, so that (ρ′1, ρ2,n−2) ∈

B, and n = 2, then we are done because ρ2,n−2 is ρ2 and hence (ρ′1, ρ2) ∈
B as (ρ′1, ρ2,n−2) ∈ B – thus (r′1, r2) ∈ B′ – otherwise we keep going
backward.
By repeating this procedure, since (ρ′1, ρ2,n) ∈ B either we get to
(ρ′1, ρ2,n−n) ∈ B and we are done because this implies that (ρ′1, ρ2) ∈ B
– thus (r′1, r2) ∈ B′ – or for some 0 < m ≤ n such that (ρ′1, ρ2,m) ∈ B the

incoming transition ρ2,m−1
τ−→a ρ2,m is matched by ρ̄1

τ∗
==⇒a ρ1

τ−→a ρ
′
1

with (ρ̄1, ρ2,m−1) ∈ B. In the latter case, since ρ̄1
τ∗

==⇒a ρ1, ρ2
τ∗

==⇒a ρ2,m−1,
(ρ̄1, ρ2,m−1) ∈ B, and (ρ1, ρ2) ∈ B, from Lemma 2 we derive that

(ρ1, ρ2,m−1)∈B. Consequently ρ2
τ∗

==⇒a ρ2,m−1
τ−→a ρ2,m with (ρ1, ρ2,m−1)

∈ B and (ρ′1, ρ2,m) ∈ B, thus r2
τ∗

==⇒a last(ρ2,m−1)
τ−→a last(ρ2,m) with

(r1, last(ρ2,m−1)) ∈ B′ and (r′1, last(ρ2,m)) ∈ B′.
• If a 6= τ then from (ρ1, ρ2) ∈ B it follows that there exists ρ2

τ∗
==⇒a ρ̄2

a−→a

ρ̄′2
τ∗

==⇒a ρ
′
2 such that (ρ′1, ρ

′
2) ∈ B.

From (ρ′1, ρ
′
2) ∈ B and ρ̄′2

τ∗
==⇒a ρ

′
2 it follows that there exists ρ̄′1

τ∗
==⇒a ρ

′
1

such that (ρ̄′1, ρ̄
′
2)∈B. Since ρ1

a−→a ρ
′
1 and hence the last transition in

ρ′1 is labeled with a, we derive that ρ̄′1 is ρ′1 and hence (ρ′1, ρ̄
′
2) ∈ B.

From (ρ′1, ρ̄
′
2) ∈ B and ρ̄2

a−→a ρ̄
′
2 it follows that there exists ρ̄1

τ∗
==⇒a ρ1

a−→a ρ
′
1 such that (ρ̄1, ρ̄2) ∈ B.

Since ρ̄1
τ∗

==⇒a ρ1, ρ2
τ∗

==⇒a ρ̄2, (ρ̄1, ρ̄2) ∈ B, and (ρ1, ρ2) ∈ B, from Lemma 2
we derive that (ρ1, ρ̄2) ∈ B.

Consequently ρ2
τ∗

==⇒a ρ̄2
a−→a ρ̄

′
2 with (ρ1, ρ̄2) ∈ B and (ρ′1, ρ̄

′
2) ∈ B, thus

r2
τ∗

==⇒a last(ρ̄2)
a−→a last(ρ̄′2) with (r1, last(ρ̄2)) ∈ B′ and (r′1, last(ρ̄′2)) ∈

B′.
As for rates, given ρ ∈ run(s1)∪run(s2), the equivalence class C ′ρ with respect
to B′ is of the form [last(ρ)]B′ = {last(ρ′) | (last(ρ), last(ρ′)) ∈ B′} = last({ρ′ |
(ρ, ρ′) ∈ B}) = last([ρ]B), i.e., C ′ρ = last(Cρ) for some equivalence class Cρ
with respect to B, provided that function last is lifted from runs to sets of
runs.

Suppose that r1 6 τ−→a so that ρ1
τ∗

==⇒a ρ1 with ρ1 6 τ−→a. From (ρ1, ρ2) ∈ B
it follows that there exists ρ2

τ∗
==⇒a ρ

′
2 with ρ′2 6 τ−→a such that (ρ1, ρ

′
2) ∈ B

and rate(ρ1, C) = rate(ρ′2, C) for all C ∈ U/B. Thus there exists r2
τ∗

==⇒a r
′
2



Noninterference Analysis of Stochastically Timed Reversible Systems 47

with r′2 = last(ρ′2) and r′2 6 τ−→a such that (r1, r
′
2) ∈ B′ and rate(r1, C

′
ρ) =

rate(ρ1, Cρ) = rate(ρ′2, Cρ) = rate(r′2, C
′
ρ) for all equivalence classes C ′ρ with

respect to B′ such that C ′ρ = last(Cρ) for some equivalence class Cρ with
respect to B.

– Suppose that s1 ≈mb s2 and let B be a Markovian branching bisimulation
over S such that (s1, s2) ∈ B. Assume that B only contains all the pairs of
≈mb-equivalent states reachable from s1 and s2. We show that the reflexive
and transitive closure B′∗ of B′ = {(ρ1, ρ2), (ρ2, ρ1) ∈ (run(s1) × run(s2)) ∪
(run(s2)× run(s1)) | (last(ρ1), last(ρ2)) ∈ B} is a weak Markovian back-and-
forth bisimulation over the runs in U from s1 and s2, from which (s1, ε) ≈mbf

(s2, ε), i.e., s1 ≈mbf s2, will follow.
Given (ρ1, ρ2) ∈ B′, by definition of B′ we have that (last(ρ1), last(ρ2)) ∈ B.
Let rk = last(ρk) for k ∈ {1, 2}, so that (r1, r2) ∈ B. There are two cases for
action transitions:

• If ρ1
a−→a ρ

′
1, i.e., r1

a−→a r
′
1 where r′1 = last(ρ′1), then either a = τ and

(r′1, r
′
2) ∈ B where r′2 = r2, or there exists r2

τ∗
==⇒a r̄2

a−→a r
′
2 such that

(r1, r̄2) ∈ B and (r′1, r
′
2) ∈ B. In both cases ρ2

â
==⇒a ρ

′
2 where last(ρ′2) =

r′2, so that (ρ′1, ρ
′
2) ∈ B′.

• If ρ′1
a−→a ρ1, i.e., r′1

a−→a r1 where r′1 = last(ρ′1), there are two subcases:

∗ If ρ′1 is (s1, ε), i.e., r′1
a−→a r1 is s1

a−→a r1 and last(ρ′1) = s1, then
from (s1, s2) ∈ B it follows that either a = τ and (r1, r2) ∈ B where

r2 = s2, or there exists s2
τ∗

==⇒a r̄2
a−→a r2 such that (s1, r̄2) ∈ B and

(r1, r2) ∈ B. In both cases ρ′2
â

==⇒a ρ2 where last(ρ′2) = s2, so that
(ρ′1, ρ

′
2) ∈ B′.

∗ If ρ′1 is not (s1, ε) then from (s1, s2) ∈ B it follows that s1 reaches
r′1 with a sequence of moves that are B-compatible with those with
which s2 reaches some r′2 such that (r′1, r

′
2) ∈ B as B only contains

all the states reachable from s1 and s2. Therefore either a = τ and

(r1, r
′
2) ∈ B where r′2 = r2, or there exists r′2

τ∗
==⇒a r̄2

a−→a r2 such

that (r′1, r̄2) ∈ B and (r1, r2) ∈ B. In both cases ρ′2
â

==⇒a ρ2 where
last(ρ′2) = r′2, so that (ρ′1, ρ

′
2) ∈ B′.

Likewise, there are two cases for rate transitions:

• Given ρ ∈ run(s1) ∪ run(s2), the equivalence class C ′ρ with respect to
B′∗ is of the form [ρ]B′∗ = {ρ′ ∈ run(s1)∪ run(s2) | last(ρ′) ∈ [last(ρ)]B},
i.e., C ′ρ corresponds to some equivalence class Cρ with respect to B. Sup-

pose that ρ1
τ∗

==⇒a ρ
′
1 with ρ′1 6

τ−→a so that r1
τ∗

==⇒a r
′
1 with r′1 = last(ρ′1)

6τ−→a. From (r1, r2) ∈ B it follows that there exists r2
τ∗

==⇒a r̄2 such that

(r′1, r̄2) ∈ B and, since r′1 6 τ−→a, there exists r̄2
τ∗

==⇒a r
′
2 with r′2 6 τ−→a

such that (r′1, r
′
2) ∈ B and rate(r′1, C) = rate(r′2, C) for all C ∈ S/B.

Thus there exists ρ2
τ∗

==⇒a ρ
′
2 with last(ρ′2) = r′2 and ρ′2 6 τ−→a such that

(ρ′1, ρ
′
2) ∈ B and rate(ρ′1, C

′
ρ) = rate(last(ρ′1), Cρ) = rate(last(ρ′2), Cρ) =

rate(ρ′2, C
′
ρ) for all equivalence classes C ′ρ with respect to B′∗.
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• If ρ′1
λ1−→r ρ1 with ρ′1 6

τ−→a, i.e., r′1
λ1−→r r1 where r′1 = last(ρ′1) 6τ−→a, there

are two subcases:

∗ If ρ′1 is (s1, ε), i.e., r′1
λ1−→r r1 is s1

λ1−→r r1 and last(ρ′1) = s1, then

from (s1, s2) ∈ B and s1 6
τ−→a it follows that there exists s2

τ∗
==⇒a r̄

′
2

with r̄′2 6 τ−→a and r2 ∈ reach(r̄′2) such that (r′1, r̄
′
2) ∈ B, which

in turn implies that there exists r̄′2
λ2−→r r̄2 such that (r1, r̄2) ∈ B,

hence (r2, r̄2) ∈ B as ≈mb is symmetric and transitive. If r2 and r̄2

coincide then we are done because ρ′2
τ∗

==⇒a ρ̄
′
2
λ2−→r ρ2

τ∗
==⇒a ρ2, where

last(ρ′2) = s2 and last(ρ̄′2) = r̄′2, and (ρ′1, ρ̄
′
2) ∈ B′ and (ρ′1, ρ

′
2) ∈ B′.

Otherwise, from r2 ∈ reach(r̄2) and (r2, r̄2) ∈ B it follows that there

must exists r̄2
τ∗

==⇒a r2 and hence we are done because ρ′2
τ∗

==⇒a ρ̄
′
2
λ2−→r

ρ̄2
τ∗

==⇒a ρ2, where last(ρ̄2) = r̄2, and (ρ1, ρ̄2) ∈ B′, (ρ′1, ρ̄
′
2) ∈ B′, and

(ρ′1, ρ
′
2) ∈ B′.

∗ If ρ′1 is not (s1, ε) then from (s1, s2) ∈ B it follows that s1 reaches
r′1 with a sequence of moves that are B-compatible with those with
which s2 reaches some r′2 such that (r′1, r

′
2) ∈ B as B only contains all

the states reachable from s1 and s2. From (r′1, r
′
2) ∈ B and r′1 6

τ−→a it

follows that there exists r′2
τ∗

==⇒a r̄
′
2 with r̄′2 6

τ−→a and r2 ∈ reach(r̄′2)
such that (r′1, r̄

′
2) ∈ B, at which points the proof continues like the

one of the previous subcase.
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