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Abstract. We provide two alternative characterizations of hereditary
history-preserving bisimilarity: a denotational one, on stable configura-
tion structures, and an operational one, on a reversible process calculus.
The characterizing equivalence is forward-reverse bisimilarity extended
with a check for backward ready multiset equality. Unlike previous ap-
proaches, the focus is thus on counting identically labeled events rather
than uniquely identifying them. We also investigate the relationships be-
tween event identifier logic, characterizing the former bisimilarity, and
backward ready multiset logic, characterizing the latter bisimilarity.

1 Introduction

In the spectrum of truly concurrent bisimilarities [23,19,32], there are two equiv-
alences that are particularly important: history-preserving bisimilarity [34] and
hereditary history-preserving bisimilarity [6]. They are the coarsest equivalence
and the finest equivalence, respectively, that are preserved under action refine-
ment and are capable of respecting causality, branching, and their interplay while
abstracting from choices between identical alternatives [23]. Moreover, hereditary
history-preserving bisimilarity can be obtained as a special case of a categorical
definition of bisimilarity over concurrency models [25].

History-preserving and hereditary history-preserving bisimilarities are de-
fined over truly concurrent models such as event structures [35] or their vari-
ants, in particular configuration structures [24]. A configuration is a finite set
of non-conflicting events that is downward-closed with respect to a causality re-
lation over events. The bisimulation game compares configuration transitions.
While history-preserving bisimilarity considers only outgoing transitions, hered-
itary history-preserving bisimilarity takes into account also incoming transi-
tions. In other words, the former stepwise matches only forward computations,
whereas the latter examines backward computations too. Both equivalences rely
on ternary bisimulation relations, where the third component is a labeling- and
causality-preserving bijection from the set of events executed so far in the first
structure to the set of events executed so far in the second structure.

Logical characterizations of both equivalences have been provided in [33,4].
Furthermore, an axiomatization for hereditary history-preserving bisimilarity
has been developed over forward-only processes in [21]. Finally, history-preserving
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Fig. 1. Configuration graphs: autoconcurrency (a), autocausation (b), and autoconflict

bisimilarity is known to coincide with causal bisimilarity [15,16], hence the latter
offers a characterization and an axiomatization [18] for the former. In this paper,
we concentrate on characterizations of hereditary history-preserving bisimilarity.

The first alternative characterization of hereditary history-preserving bisimi-
larity has appeared in [6] for configuration graphs of prime event structures. The
characterizing equivalence is called back-and-forth bisimilarity – not to be con-
fused with the homonymous one in [17], which retrieves an interleaving semantics
by constraining backward computations to take place along the corresponding
forward computations even in the presence of concurrency. The main difference
between hereditary history-preserving bisimilarity and back-and-forth bisimilar-
ity is that the latter relies on binary bisimulation relations, hence no labeling-
and causality-preserving bijection is stepwise built during the bisimulation game.
The characterization result holds under the assumption of no autoconcurrency,
i.e., the absence of configurations from which it is possible to execute two iden-
tically labeled, distinct events that are not in conflict with each other.

In Figures 1(a) and (b) we show the configuration graphs respectively asso-
ciated with the following two processes for a given action a:

– Autoconcurrency on a, which is expressed as a ‖ a where ‖ stands for parallel
composition. There are two equally labeled, non-conflicting events, denoted
by Ua and Ta, that can be executed in any order.

– Autocausation on a, which is expressed as a . a where dot represents action
prefix. There are two equally labeled, non-conflicting events, denoted by a
and .a, such that the former has to be executed before the latter.

These two configuration graphs are back-and-forth bisimilar as witnessed by
the symmetric binary relation that contains the pairs of configurations (∅, ∅),
({Ua}, {a}), ({Ta}, {a}), and ({Ua,Ta}, {a, .a}). However, they are not hereditary
history-preserving bisimilar because, with respect to the last pair, there is no
(labeling- and) causality-preserving bijection that maps the two independent
events Ua and Ta to the two causally-related events a and .a.

The second alternative characterization of hereditary history-preserving
bisimilarity has been given in [31]. The characterizing equivalence is the forward-
reverse bisimilarity – very close in spirit to the back-and-forth bisimilarity of [6]
– originally defined in [30] for a reversible variant of CCS [29] called CCSK. The
operational semantics of CCSK produces labeled transition systems based on a
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forward transition relation and a backward one ensuring the loop property [13].
Each transition label comprises an action and a communication key; the latter is
necessary when building backward transitions so as to know who synchronized
with whom in the forward direction. In [31] forward-reverse bisimilarity has been
generalized to configuration graphs of prime event structures and shown to co-
incide with hereditary history-preserving bisimilarity in the absence of repeated,
identically labeled events along forward computations, which implies the absence
of autoconcurrency (and autocausation), i.e., the assumption made in [6].

In [32] it has been shown, by working on stable configuration structures,
how to relax the conditions under which the two characterization results of [6]
and [31] hold. Specifically, it is sufficient to require the absence of equidepth
autoconcurrency, i.e., the absence of identically labeled events occurring at the
same depth within a configuration; the depth of an event is defined as the length
of the longest causal chain of events up to and including the considered event.

The third alternative characterization of hereditary history-preserving bisim-
ilarity has been provided in [3] and, unlike the previous two, does not need any
restrictive assumption. Based on earlier work [2] – in which hereditary history-
preserving bisimilarity was shown to coincide with back-and-forth barbed bisim-
ulation congruence over singly-labeled processes, i.e., processes with no autocon-
currency and autoconflict (see Figure 1(c)) – it has been developed in the setting
of a different reversible variant of CCS called RCCS [13,14,27]. While in CCSK
all executed actions and discarded alternative subprocesses are kept within the
syntax of processes so as to enable reversibility, in RCCS the same information
is stored into stack-based memories attached to processes; the two approaches
have been proven to be equivalent in [28]. The idea in [3] is to import hereditary
history-preserving bisimilarity in the RCCS setting by encoding memories, i.e.,
the past behavior, as identified configuration structures. These are stable con-
figuration structures enriched with unique event identifiers, used in transition
labels and exploited when undoing synchronizations. The characterizing equiva-
lence, called back-and-forth bisimilarity and defined over RCCS processes, relies
on ternary bisimulation relations in which the third component is a bijection
from the set of identifiers of the actions executed so far in the first process to
the set of identifiers of the actions executed so far in the second process.

Having to reintroduce a third component in the bisimulation relations in or-
der to exactly characterize hereditary history-preserving bisimilarity amounts to
certifying that “reversibility is not just back and forth” [3], i.e., the forward and
backward bisimulation games alone are not enough. The question then becomes
whether and to what extent a systematic event identification is really necessary.

This question also arises from the fact that, in the aforementioned bisim-
ulation games, CCSK transition labels such as a[i] and a[j] are deemed to be
different if the two keys i and j are different [30] – which results in the absence
of repeated, identically labeled events along forward computations [31] – while
identified RCCS transition labels like i:a and j:a are viewed as compatible even
if i and j are different [3]. On the one hand, in CCSK the two processes a ‖ a and
a . a are told apart by forward-reverse bisimilarity because the former evolves to
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a[i] ‖ a[j], which can undo a[i] and a[j] in any order, while the latter evolves
to a[i] . a[j], from which only a[j] can be undone, hence undoing a[i] cannot
be matched by undoing a[j]. On the other hand, in identified RCCS the same
two processes are distinguished by back-and-forth bisimilarity because, although
undoing i:a can be matched by undoing j:a, it is not possible to establish a suit-
able bijection from a distributed memory containing i:a in a location and j:a in
another location to a centralized memory containing j:a on top of i:a.

In this paper we propose a totally different approach to exactly characterize
hereditary history-preserving bisimilarity. Rather than the unique identification
of identically labeled events, the focus is on counting them. Let us consider again
Figures 1(a) and (b). If we look at the two top (resp. bottom) configurations,
we note that the one on the left has two outgoing (resp. incoming) transitions,
while the one on the right has only one. As for the top configuration on the left,
in principle we may not know whether the branch is due to the fact that the two
events are concurrent or conflicting. However, for the bottom configuration on
the left we can certainly say that the two events are concurrent, as the models
we are considering are truly concurrent and hence the configuration graph of
process a . a+ a . a where + stands for nondeterministic choice (see Figure 1(d))
cannot be isomorphic to the one of a ‖ a because it must have two different
bottom configurations ({.+a, .+.a} and {+.a,+..a}) instead of a single one.

As an extension of the notion of backward ready set exploited in [8] to axiom-
atize forward-reverse bisimilarity over reversible concurrent processes, we define
the backward ready multiset of a configuration or process to be the multiset of
labels of its incoming transitions. After recalling in Section 2 the definitions of
stable configuration structure [24], hereditary history-preserving bisimilarity [6],
and event identifier logic [33], we provide the following contributions:

– In Section 3 we exhibit a denotational characterization on stable configura-
tion structures: hereditary history-preserving bisimilarity turns out to coin-
cide with forward-reverse bisimilarity extended with a clause for checking
the equality of the backward ready multisets of matching configurations.

– In Section 4 we exhibit an operational characterization based on a variant of
the reversible process calculus of [9,8] where executed action identification is
limited to synchronizations. After revising its proved operational semantics
inspired by [18] so as to faithfully account for causality and concurrency, we
set up a backward-ready-multiset variant of forward-reverse bisimilarity and
devise a backward ready multiset logic characterizing it. Then we define a de-
notational semantics based on stable configuration structures in which events
are formalized as proof terms [10,11], so as to import the notion of hered-
itary history-preserving bisimilarity. We show that the stable configuration
structures associated with two processes are hereditary history-preserving
bisimilar iff the two processes are equated by the backward-ready-multiset
variant of forward-reverse bisimilarity.

– In Section 5 we start the investigation of the relationships between the event
identifier logic of [33] and our backward ready multiset logic.

Section 6 concludes the paper with directions for future work.
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2 Hereditary History-Preserving Bisimilarity

In this section we recall hereditary history-preserving bisimilarity [6] over stable
configuration structures [24] along with its logical characterization based on
event identifier logic [33].

In the following two definitions taken from [23], Pfin(E) denotes the set of
finite subsets of set E while f � X denotes the restriction of function f to set X.

Definition 1. A configuration structure is a quadruple C = (E , C,A, l) where:

– E is a set of events.
– C ⊆ Pfin(E) is a set of configurations.
– A is a countable set of labels.
– l :

⋃
X∈C X → A is a labeling function.

C is said to be stable iff it is:

– Rooted: ∅ ∈ C.
– Connected: ∀X ∈ C \ {∅}.∃e ∈ X.X \ {e} ∈ C.
– Closed under bounded unions and intersections: ∀X,Y, Z ∈ C. X∪Y ⊆ Z =⇒
X ∪ Y,X ∩ Y ∈ C.

The causality relation over X ∈ C is defined by letting e1 ≤X e2 for e1, e2 ∈ X
iff e2 ∈ Y implies e1 ∈ Y for all Y ∈ C such that Y ⊆ X; we write e1 <X e2

when e1 ≤X e2 and e1 6= e2. Two events e1, e2 ∈ X are concurrent in X iff
e1 6<X e2 and e2 6<X e1. We write X

a−→CX
′ for X,X ′ ∈ C and a ∈ A iff

X ⊆ X ′, X ′ \X = {e}, and l(e) = a.

Definition 2. We say that two stable configuration structures Ci = (Ei, Ci,A, li),
i ∈ {1, 2}, are hereditary history-preserving bisimilar, written C1 ∼HHPB C2,
iff there exists a hereditary history-preserving bisimulation between C1 and C2,
i.e., a relation B ⊆ C1 × C2 × P(E1 × E2) such that:

– (∅, ∅, ∅) ∈ B.
– Whenever (X1, X2, f) ∈ B then:

• f ⊆ E1 × E2 is a bijection from X1 ∈ C1 to X2 ∈ C2 that preserves:

∗ Labeling: l1(e) = l2(f(e)) for all e ∈ X1.
∗ Causality: e ≤X1

e′ ⇐⇒ f(e) ≤X2
f(e′) for all e, e′ ∈ X1.

• For each X1
a−→C1

X ′1 there exist X2
a−→C2

X ′2 and f ′ ⊆ E1×E2 such that
(X ′1, X

′
2, f
′) ∈ B and f ′ � X1 = f , and vice versa.

• For each X ′1
a−→C1

X1 there exist X ′2
a−→C2

X2 and f ′ ⊆ E1×E2 such that
(X ′1, X

′
2, f
′) ∈ B and f � X ′1 = f ′, and vice versa.

Since there is a single transition relation, similar to [17,6] in the bisimulation
game above a distinction is made between the outgoing transitions of X1 and X2

(X1
a−→C1

X ′1 and X2
a−→C2

X ′2 in the forward direction) and their incoming

transitions (X ′1
a−→C1

X1 and X ′2
a−→C2

X2 in the backward direction).
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Hereditary history-preserving bisimilarity is characterized by event identifier
logic [33]. The set LEI of its formulas is generated by the following syntax:

φ ::= true | ¬φ | φ ∧ φ | 〈x : a〉〉φ | (x : a)φ | 〈〈x〉φ
where a ∈ A and x ∈ I, with I being a countable set of identifiers. The unary
operators 〈x : a〉〉 and (x : a) act as binders for the identifiers inside them.
Therefore, the set of identifiers that occur free in φ ∈ LEI is defined by induction
on the syntactical structure of φ as follows:

fi(true) = ∅
fi(¬φ) = fi(φ)

fi(φ1 ∧ φ2) = fi(φ1) ∪ fi(φ2)
fi(〈x : a〉〉φ) = fi(φ) \ {x}
fi((x : a)φ) = fi(φ) \ {x}

fi(〈〈x〉φ) = fi(φ) ∪ {x}
where we say that φ is closed if fi(φ) = ∅, open otherwise.

In order to assign meaning to open formulas, environments are employed
to indicate what events the free identifiers are bound to. Given a configuration
structure C = (E , C,A, l), an environment is a partial function ρ : I ⇀ E . Given
X ∈ C and φ ∈ LEI, we say that ρ is a permissible environment for X and φ
iff ρ maps every free identifier in φ to an event in X. Denoting with dom(ρ)
the domain of ρ, rge(ρ) the codomain of ρ, and ρφ the restriction ρ � fi(φ),
permissibility is formalized as fi(φ) ⊆ dom(ρ) and rge(ρφ) ⊆ X. The set of
permissible environments for X and φ is indicated by pe(X,φ).

The satisfaction relation |=⊆ (C × EI)×LEI, with EI being the set of func-
tions from I to E , i.e., the set of environments, is defined by induction on the
syntactical structure of φ ∈ LEI as follows:
X |=ρ true
X |=ρ ¬φ′ iff X 6|=ρ φ

′

X |=ρ φ1 ∧ φ2 iff X |=ρ φ1 and X |=ρ φ2

X |=ρ 〈x : a〉〉φ′ iff there is X
l(e)−→CX

′ such that l(e) = a and X ′ |=ρ[x 7→e] φ
′

X |=ρ (x : a)φ′ iff there is e ∈ X such that l(e) = a and X |=ρ[x 7→e] φ
′

X |=ρ 〈〈x〉φ′ iff there is X ′
l(e)−→CX such that ρ(x) = e and X ′ |=ρ φ

′

where it is understood that the environment in the subscript of every occurrence
of |= is permissible for the configuration on the left and the formula on the right.
Moreover, ρ[x 7→ e] is ρ\{(x, ρ(x))}∪{(x, e)} if x ∈ dom(ρ), ρ∪{(x, e)} otherwise.

Let Lc
EI be the set of closed formulas of LEI. Given φ ∈ Lc

EI, we write X |= φ
as a shorthand for X |=∅ φ and C |= φ as a shorthand for ∅ |= φ. Image finiteness
means no configuration has infinitely many transitions with the same label.

Theorem 1 ([33]). Let Ci = (Ei, Ci,A, li), i ∈ {1, 2}, be two image-finite stable
configuration structures. Then C1 ∼HHPB C2 iff ∀φ ∈ Lc

EI.C1 |= φ ⇐⇒ C2 |= φ.

3 Characterization on Stable Configuration Structures

The first characterization that we provide for ∼HHPB is on stable configuration
structures. From a ternary bisimulation relation we move to a binary one where,
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instead of stepwise building a labeling- and causality-preserving bijection be-
tween the events of matching configurations – which are the events executed so
far in both stable configuration structures – we just count the identically la-
beled incoming transitions of matching configurations. Given a configuration X,
its backward ready multiset is defined as brm(X) = {| a ∈ A | X ′ a−→CX |} where
{| and |} are multiset delimiters. We thus decorate the resulting forward-reverse
bisimilarity with the acronym brm, standing for backward ready multiset.

Definition 3. We say that two stable configuration structures Ci = (Ei, Ci,A, li),
i ∈ {1, 2}, are brm-forward-reverse bisimilar, written C1 ∼FRB:brm C2, iff there
exists a brm-forward-reverse bisimulation between C1 and C2, i.e., a relation
B ⊆ C1 × C2 such that (∅, ∅) ∈ B and, whenever (X1, X2) ∈ B, then:

– For each X1
a−→C1 X

′
1 there exists X2

a−→C2 X
′
2 such that (X ′1, X

′
2) ∈ B, and

vice versa.
– For each X ′1

a−→C1
X1 there exists X ′2

a−→C2
X2 such that (X ′1, X

′
2) ∈ B, and

vice versa.
– brm(X1) = brm(X2).

Theorem 2. Let Ci = (Ei, Ci,A, li), i ∈ {1, 2}, be two stable configuration struc-
tures. Then C1 ∼HHPB C2 iff C1 ∼FRB:brm C2.

4 Operational Characterization

The second characterization that we provide for ∼HHPB is operational. More
precisely, we present a variant of the syntax (Section 4.1) and the proved opera-
tional semantics (Section 4.2) of the reversible process calculus of [9,8], followed
by a redefinition of brm-forward-reverse bisimilarity on that variant along with
a modal logic characterization (Section 4.3). Then we develop a denotational se-
mantics for the modified calculus based on stable configuration structures (Sec-
tion 4.4), so as to import the notion of hereditary history-preserving bisimilarity.
Finally, we prove that the stable configuration structures associated with two
processes are hereditary history-preserving bisimilar iff the two processes are
brm-forward-reverse bisimilar (Section 4.5).

4.1 Syntax of Reversible Concurrent Processes

In the representation of a process, we are used to describe only its future be-
havior. However, in order to support reversibility in the style of [30], we need to
equip the syntax with information about the past, in particular the actions that
have already been executed. Taking inspiration from CCS [29] and CSP [12],
given a countable set A of actions including an unobservable action denoted
by τ , we extend as follows the syntax for reversible concurrent processes of [9,8]:

P ::= 0 | a . P | a†ξ. P | P + P | P ‖L P
ξ ::= ε | 〈θ, θ〉L

where a ∈ A, L ⊆ A \ {τ}, ε is the empty string, θ is a proof term (its syntax
will be provided in Section 4.2), and:
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– 0 is the terminated process.
– a . P is a process that can execute action a and whose forward continuation

is P (unexecuted action prefix).
– a†ξ. P is a process that executed action a and whose forward continuation is

inside P , which can undo action a after all executed actions within P have
been undone (executed action prefix).

– P1 + P2 expresses a nondeterministic choice between P1 and P2 as far as
neither has executed any action yet, otherwise only the one that was selected
in the past can move (past-sensitive alternative composition).

– P1 ‖L P2 expresses that P1 and P2 proceed independently of each other on
actions in L = A \ L, while they have to synchronize on every action in L
(parallel composition).

We can characterize two important classes of processes via as many pred-
icates. Firstly, we define initial processes, in which all actions are unexecuted
and hence no †-decoration appears:

init(0)
init(a . P ) if init(P )

init(P1 + P2) if init(P1) ∧ init(P2)
init(P1 ‖L P2) if init(P1) ∧ init(P2)

Secondly, we define well-formed processes, whose set we denote by P, in which
both unexecuted and executed actions can occur in certain circumstances:

wf(0)
wf(a . P ) if init(P )

wf(a†ξ. P ) if wf(P )
wf(P1 + P2) if (wf(P1) ∧ init(P2)) ∨ (init(P1) ∧ wf(P2))
wf(P1 ‖L P2) if wf(P1) ∧ wf(P2)

Well formedness not only imposes that every unexecuted action is followed by
an initial process, but also that in every alternative composition at least one
subprocess is initial. Multiple paths may arise in the presence of both alterna-
tive and parallel compositions. However, at each occurrence of the former, only
the subprocess chosen for execution can move. Although not selected, the other
subprocess is kept as an initial subprocess within the overall process, in the same
way as executed actions are kept inside the syntax [11,30], so as to support re-
versibility. As an example, in a†. b . 0+c . d . 0 the subprocess c . d . 0 cannot move
because a was selected in the choice between a and c.

It is worth noting that:

– 0 is both initial and well-formed.
– Any initial process is well-formed too.
– P also contains processes that are not initial like, e.g., a†. b . 0, which can

either do b or undo a.
– In P the relative positions of already executed actions and actions to be

executed matter. Precisely, an action of the former kind can never occur
after one of the latter kind. For instance, a†. b . 0 ∈ P whereas b . a†. 0 /∈ P.

– In P the subprocesses of an alternative composition can be both initial, but
cannot be both non-initial. For example, a . 0+b . 0 ∈ P while a†. 0+b†. 0 /∈ P.
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Sometimes we will need to bring a process back to its initial version. This is
accomplished by removing all †-decorations through function to init : P → Pinit

with Pinit being the set of initial processes of P, which is defined as follows:
to init(P ) = P if init(P )

to init(a†ξ. P ′) = a . to init(P ′)
to init(P1 + P2) = to init(P1) + to init(P2) if ¬init(P1) ∨ ¬init(P2)
to init(P1 ‖L P2) = to init(P1) ‖L to init(P2) if ¬init(P1) ∨ ¬init(P2)

4.2 Proved Operational Semantics

According to [30] dynamic operators such as action prefix and alternative com-
position have to be made static in the operational semantic rules, so as to retain
within the syntax all the information needed to enable reversibility. Unlike [30]
we do not generate a forward transition relation and a backward one, but a single
transition relation that we deem to be symmetric in order to enforce the loop
property [13]: every executed action can be undone and every undone action can
be redone. A backward transition from P ′ to P is subsumed by the correspond-
ing forward transition t from P to P ′. As already done in Sections 2 and 3 as well
as in [17,6], we will view t as an outgoing transition of P when going forward,
while we will view t as an incoming transition of P ′ when going backward.

Following [8] we provide an operational semantics based on [18], which is
very concrete as every transition is labeled with a proof term [10,11]. This is an
action preceded by the sequence of operator symbols in the scope of which the
action occurs inside the source process of the transition. In the case of a binary
operator, the corresponding symbol also specifies whether the action occurs to
the left or to the right. The syntax that we adopt for the set Θ of proof terms
is the following where a ∈ A and L ⊆ A \ {τ}:

θ ::= a | .aθ | .+θ | +.θ | ULθ | TLθ | 〈θ, θ〉L
The proved operational semantic rules are in Table 1 and generate the proved

labeled transition system (P, Θ,−→) where −→ ⊆ P × Θ × P is the proved
transition relation. We denote by P ( P the set of processes that are reachable
from an initial one via −→. Not all well-formed processes are reachable; for
example, a†. 0 ‖{a} 0 is not reachable from a . 0 ‖{a} 0 as action a on the left
cannot synchronize with any action on the right. From now on we consider
only P and denote by Pinit the subset of its initial processes. Every process in P
may have several outgoing transitions and, if it is not initial, has at least one
incoming transition.

The first rule for action prefix (Actf where f stands for forward) applies
only if P is initial and retains the executed action in the target process of the
generated forward transition by decorating the action itself with †. The second
rule (Actp where p stands for propagation) propagates actions of inner initial
subprocesses by putting an a-dot before them in the label for each outer executed
a-action prefix that is encountered.

In both rules for alternative composition (Chol and Chor where l stands
for left and r stands for right), the subprocess that has not been selected for
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(Actf)
init(P )

a . P
a−→ a†. P

(Actp)
P

θ−→ P ′

a†ξ. P
.aθ−−→ a†ξ. P ′

(Chol)
P1

θ−→ P ′
1 init(P2)

P1 + P2
.+θ−→ P ′

1 + P2

(Chor)
P2

θ−→ P ′
2 init(P1)

P1 + P2
+.θ−→ P1 + P ′

2

(Parl)
P1

θ−→ P ′
1 act(θ) /∈ L

P1 ‖L P2
ULθ−−→ P ′

1 ‖L P2

(Parr)
P2

θ−→ P ′
2 act(θ) /∈ L

P1 ‖L P2
TLθ−−→ P1 ‖L P ′

2

(Syn)
P1

θ1−→ P ′
1 P2

θ2−→ P ′
2 act(θ1) = act(θ2) ∈ L

P1 ‖L P2
〈θ1,θ2〉L−−−−−→ enr(P ′

1 ‖L P ′
2, 〈θ1, θ2〉L)

Table 1. Proved operational semantic rules for reversible concurrent processes

execution is retained as an initial subprocess in the target process of the gen-
erated transition. When both subprocesses are initial, both rules for alternative
composition are applicable, otherwise only one of them can be applied and in
that case it is the non-initial subprocess that can move, because the other one
has been discarded at the moment of the selection. The symbol .+ or +. is added
at the beginning of the proof term.

Due to the †-decorations of executed actions inside the process syntax, over
the set Pseq of sequential processes – in which there are no occurrences of parallel
composition – every non-initial process has exactly one incoming transition,
proved labeled transition systems turn out to be trees, and well formedness
coincides with reachability [9].

Example 1. The proved labeled transition system underlying the initial sequen-
tial process a . 0 has a single transition a . 0

a−→ a†. 0. In contrast, the proved
labeled transition system underlying the initial sequential process a . 0 + a . 0

has the two transitions a . 0 + a . 0
.+a−→ a†. 0 + a . 0 and a . 0 + a . 0

+.a−→ a . 0 + a†. 0.
Note that the two target processes are different from each other due to the pres-
ence of action decorations, whereas a single a-transition from a . 0 + a . 0 to 0
would be generated in the setting of a forward-only process calculus.

The three rules for parallel composition use partial function act : Θ ⇀ A
to extract an action from a proof term θ. This function, which will be used
throughout the paper, is defined by induction on the syntactical structure of θ
as follows:

act(a) = a
act(.aθ

′) = act(θ′)
act(.+θ′) = act(+.θ′) = act(θ′)

act(ULθ′) = act(TLθ′) = act(θ′)

act(〈θ1, θ2〉L) =

{
act(θ1) if act(θ1) = act(θ2)
undefined otherwise

In the first two rules (Parl and Parr), a single subprocess proceeds by perform-
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ing an action not belonging to L, with UL or TL being placed at the beginning
of the proof term. In the third rule (Syn), both subprocesses synchronize on an
action in L and the resulting proof term contains both individual proof terms.
If L = ∅ or L = A\{τ}, then the two subprocesses are fully independent or fully
synchronized, respectively, on observable actions.

The natural target process P ′1 ‖L P ′2 of a synchronization has to be suitably
manipulated in rule Syn to correctly reflect causality and concurrency. More
precisely, the †-decoration of every executed action participating in the synchro-
nization has to be enriched with a proof term of the form 〈θ1, θ2〉L. This is accom-
plished by taking enr(P ′1 ‖L P ′2, 〈θ1, θ2〉L) = enr′(P ′1 ‖L P ′2, 〈θ1, θ2〉L, 〈θ1, θ2〉L)
as target process, where partial function enr′ : P × Θ × Θ ⇀ P is defined by
induction on the syntactical structure of its first argument P ∈ P as follows:

enr′(0, θ, θ̄) = 0
enr′(a . P ′, θ, θ̄) = undefined

enr′(a†ξ. P ′, θ, θ̄) =

a†θ̄. P ′ if θ = a
a†ξ. enr′(P ′, θ′, θ̄) if θ = .aθ

′

undefined otherwise

enr′(P1 + P2, θ, θ̄) =

 enr′(P1, θ
′, θ̄) + P2 if θ = .+θ′

P1 + enr′(P2, θ
′, θ̄) if θ = +.θ′

undefined otherwise

enr′(P1 ‖L P2, θ, θ̄) =


enr′(P1, θ

′, θ̄) ‖L P2 if θ = ULθ′
P1 ‖L enr′(P2, θ

′, θ̄) if θ = TLθ′
enr′(P1, θ1, θ̄) ‖L enr′(P2, θ2, θ̄) if θ = 〈θ1, θ2〉L
undefined otherwise

Example 2. The proved labeled transition system underlying the initial process
(a . 0 ‖∅ a . 0) ‖{a} a . a . 0, which is the synchronization of autoconcurrency with
autocausation, has the following two maximal transition sequences:

– (a . 0 ‖∅ a . 0) ‖{a} a . a . 0
〈U∅a,a〉{a}−−−−−−−→(a†〈U∅a,a〉{a} . 0 ‖∅ a . 0) ‖{a} a†〈U∅a,a〉{a} . a . 0
〈T∅a,.aa〉{a}−−−−−−−−→(a†〈U∅a,a〉{a} . 0 ‖∅ a†〈T∅a,.aa〉{a} . 0) ‖{a} a†〈U∅a,a〉{a} . a†〈T∅a,.aa〉{a} . 0

– (a . 0 ‖∅ a . 0) ‖{a} a . a . 0
〈T∅a,a〉{a}−−−−−−−→(a . 0 ‖∅ a†〈T∅a,a〉{a} . 0) ‖{a} a†〈T∅a,a〉{a} . a . 0
〈U∅a,.aa〉{a}−−−−−−−−→(a†〈U∅a,.aa〉{a} . 0 ‖∅ a†〈T∅a,a〉{a} . 0) ‖{a} a†〈T∅a,a〉{a} . a†〈U∅a,.aa〉{a} . 0

Note that the target processes of the two sequences are different thanks to the
different additional decorations of the pairs of synchronizing executed actions.
Without those decorations, the two sequences would end up in the same process
(a†. 0 ‖∅ a†. 0) ‖{a} a†. a†. 0 – thus yielding a diamond-shaped transition system

– which would not reflect the fact that the two executed a-actions in a†. a†. 0
cannot be undone in any order as the first one causes the second one.

Example 3. The proved labeled transition system underlying the initial process
(a . 0 ‖∅ a . 0) ‖{a}(a . 0 ‖∅ a . 0), which is the synchronization of autoconcurrency
with itself, has the following four maximal transition sequences:
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– (a . 0 ‖∅ a . 0) ‖{a}(a . 0 ‖∅ a . 0)
〈U∅a,U∅a〉{a}−−−−−−−−→ (a†〈U∅a,U∅a〉{a} . 0 ‖∅ a . 0) ‖{a}(a†〈U∅a,U∅a〉{a} . 0 ‖∅ a . 0)
〈T∅a,T∅a〉{a}−−−−−−−−→ (a†〈U∅a,U∅a〉{a} . 0 ‖∅ a†〈T∅a,T∅a〉{a} . 0) ‖{a}

(a†〈U∅a,U∅a〉{a} . 0 ‖∅ a†〈T∅a,T∅a〉{a} . 0)
– (a . 0 ‖∅ a . 0) ‖{a}(a . 0 ‖∅ a . 0)

〈T∅a,T∅a〉{a}−−−−−−−−→ (a . 0 ‖∅ a†〈T∅a,T∅a〉{a} . 0) ‖{a}(a . 0 ‖∅ a†〈T∅a,T∅a〉{a} . 0)
〈U∅a,U∅a〉{a}−−−−−−−−→ (a†〈U∅a,U∅a〉{a} . 0 ‖∅ a†〈T∅a,T∅a〉{a} . 0) ‖{a}

(a†〈U∅a,U∅a〉{a} . 0 ‖∅ a†〈T∅a,T∅a〉{a} . 0)
– (a . 0 ‖∅ a . 0) ‖{a}(a . 0 ‖∅ a . 0)

〈U∅a,T∅a〉{a}−−−−−−−−→ (a†〈U∅a,T∅a〉{a} . 0 ‖∅ a . 0) ‖{a}(a . 0 ‖∅ a†〈U∅a,T∅a〉{a} . 0)
〈T∅a,U∅a〉{a}−−−−−−−−→ (a†〈U∅a,T∅a〉{a} . 0 ‖∅ a†〈T∅a,U∅a〉{a} . 0) ‖{a}

(a†〈T∅a,U∅a〉{a} . 0 ‖∅ a†〈U∅a,T∅a〉{a} . 0)
– (a . 0 ‖∅ a . 0) ‖{a}(a . 0 ‖∅ a . 0)

〈T∅a,U∅a〉{a}−−−−−−−−→ (a . 0 ‖∅ a†〈T∅a,U∅a〉{a} . 0) ‖{a}(a†〈T∅a,U∅a〉{a} . 0 ‖∅ a . 0)
〈U∅a,T∅a〉{a}−−−−−−−−→ (a†〈U∅a,T∅a〉{a} . 0 ‖∅ a†〈T∅a,U∅a〉{a} . 0) ‖{a}

(a†〈T∅a,U∅a〉{a} . 0 ‖∅ a†〈U∅a,T∅a〉{a} . 0)

While the target processes of the first (resp. last) two sequences are equal, the
target process of the first two sequences is different from the one of the last two
sequences due to the different additional decorations of the pairs of synchronizing
executed actions. This results in a double-diamond-shaped transition system
like the one of (a . 0 ‖∅ a . 0) + (a . 0 ‖∅ a . 0). Without those decorations, the four
sequences would end up in the same process (a†. 0 ‖∅ a†. 0) ‖{a}(a†. 0 ‖∅ a†. 0),
thus yielding a single-diamond-shaped transition system.

4.3 Forward-Reverse Bisimilarity and Backward Ready Multisets

We now redefine brm-forward-reverse bisimilarity over P. Unlike stable configu-
ration structures, for processes we can syntactically construct their (finite) back-
ward ready multisets, intended as the multisets of actions occurring in the labels
of their incoming transitions. In the following we use ⊕ for multiset union, which
adds multiplicities of identical elements, and ⊗ for multiset intersection, which
multiplies the multiplicities of those elements. The backward ready multiset of
P ∈ P is inductively defined as follows where L = A \ L:

brm(0) = ∅
brm(a . P ′) = ∅

brm(a†ξ. P ′) =

{
{| a |} if init(P ′)
brm(P ′) if ¬init(P ′)

brm(P1 + P2) =

∅ if init(P1) ∧ init(P2)
brm(P1) if ¬init(P1) ∧ init(P2)
brm(P2) if init(P1) ∧ ¬init(P2)

brm(P1 ‖L P2) = (brm(P1)⊗ L)⊕ (brm(P2)⊗ L)⊕ (brm(P1)⊗ brm(P2)⊗ L)
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The first two clauses stated below are the same as the ones of forward-reverse
bisimilarity ∼FRB over a single transition relation defined in [9,8]. Note the use
of function act to abstract from operator symbols inside transition labels.

Definition 4. We say that P1, P2 ∈ P are brm-forward-reverse bisimilar, writ-
ten P1 ∼FRB:brm P2, iff P1 and P2 are related by a brm-forward-reverse bisim-
ulation, i.e., a symmetric relation B over P such that, whenever (Q1, Q2) ∈ B,
then:

– For each Q1
θ1−→Q′1 there exists Q2

θ2−→Q′2 such that act(θ1) = act(θ2) and
(Q′1, Q

′
2) ∈ B.

– For each Q′1
θ1−→Q1 there exists Q′2

θ2−→Q2 such that act(θ1) = act(θ2) and
(Q′1, Q

′
2) ∈ B.

– brm(Q1) = brm(Q2).

Example 4. a . 0 ‖∅ a . 0 6∼FRB:brm a . a . 0 as in the forward bisimulation game
they respectively reach a†. 0 ‖∅ a† . 0 and a†. a†. 0 after performing two a-transi-
tions, where brm(a†. 0 ‖∅ a† . 0) = {| a, a |} 6= {| a |} = brm(a†. a†. 0). Likewise,
(a . 0 ‖∅ a . 0) ‖{a} a . a . 0 6∼FRB:brm (a . 0 ‖∅ a . 0). In contrast, (a . 0 ‖∅ a . 0) ‖{a}
(a . 0 ‖∅ a . 0) ∼FRB:brm (a . 0 ‖∅ a . 0) + (a . 0 ‖∅ a . 0) ∼FRB:brm a . 0 ‖∅ a . 0.

An axiomatization of ∼FRB:brm can be derived from the one of ∼FRB in [8] by
using backward ready multisets instead of backward ready sets when extending
action prefixes at process encoding time. We conclude this section by developing
a modal logic characterization for ∼FRB:brm inspired by the one of ∼FRB in [7].

The set LBRM of formulas of the backward ready multiset logic is generated
by the following syntax:

φ ::= true |M | ¬φ | φ ∧ φ | 〈a〉φ | 〈a†〉φ
where M : A → N and a ∈ A. The satisfaction relation |=⊆ P×LBRM is defined
by induction on the syntactical structure of φ ∈ LBRM as follows:

P |= true
P |= M iff brm(P ) = M
P |= ¬φ′ iff P 6|= φ′

P |= φ1 ∧ φ2 iff P |= φ1 and P |= φ2

P |= 〈a〉φ′ iff there exists P
θ−→ P ′ such that act(θ) = a and P ′ |= φ′

P |= 〈a†〉φ′ iff there exists P ′
θ−→ P such that act(θ) = a and P ′ |= φ′

Note that every P ∈ P is image finite, i.e., it has finitely many outgoing (and
incoming) transitions labeled with proof terms containing the same action.

Theorem 3. Let P1, P2 ∈ P. Then P1 ∼FRB:brm P2 iff ∀φ ∈ LBRM. P1 |= φ⇐⇒
P2 |= φ.

4.4 Denotational Semantics on Stable Configuration Structures

To enable a comparison between hereditary history-preserving bisimilarity over
stable configuration structures and brm-forward-reverse bisimilarity over pro-
cesses, we proceed with the introduction of a denotational semantics for P based
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on stable configuration structures. The first step consists of redefining the process
operators of Section 4.1 over stable configuration structures. Taking inspiration
from [11], we do this by using proof terms in Θ to formalize events:

– The terminated stable configuration structure N is defined as (∅, {∅},A, ∅).
– Let a ∈ A and C = (E , C,A, l) be a stable configuration structure such that
E ⊆ Θ. The action prefix a .C is defined as (E ′, C′,A, l′) where:

• E ′ = {a} ∪ {.aθ | θ ∈ E}.
• C′ = {∅} ∪ {X ′ ∈ Pfin(E ′) | ∃X ∈ C. X ′ = {a} ∪ {.aθ | θ ∈ X}}.
• l′ = {(a, a)} ∪ {(.aθ, act(.aθ)) | ∃X ∈ C. θ ∈ X}.

– Let Ci = (Ei, Ci,A, li) be a stable configuration structure such that Ei ⊆ Θ
for i ∈ {1, 2}. The alternative composition C1 + C2 is defined as (E , C,A, l)
where:

• E = {.+θ | θ ∈ E1} ∪ {+.θ | θ ∈ E2}.
• C = {X ∈ Pfin(E) | ∃X1 ∈ C1. X = {.+θ | θ ∈ X1}} ∪

{X ∈ Pfin(E) | ∃X2 ∈ C2. X = {+.θ | θ ∈ X2}}.
• l = {(.+θ, act(.+θ)) | ∃X1 ∈ C1. θ ∈ X1} ∪

{(+.θ,act(+.θ)) | ∃X2 ∈ C2. θ ∈ X2}.
– Let Ci = (Ei, Ci,A, li) be a stable configuration structure such that Ei ⊆ Θ

for i ∈ {1, 2} and L ⊆ A \ {τ}. The parallel composition C1 ‖L C2 is defined
as (E , C,A, l) where:

• E = {ULθ | θ ∈ E1 ∧ act(θ) /∈ L} ∪ {TLθ | θ ∈ E2 ∧ act(θ) /∈ L} ∪
{〈θ1, θ2〉L | θ1 ∈ E1 ∧ θ2 ∈ E2 ∧ act(θ1) = act(θ2) ∈ L}.

• C = {X ∈ Pfin(E) | proj1(X) ∈ C1 ∧ proj2(X) ∈ C2 ∧ ∀e, e′ ∈ X.
((proj1({e}) = proj1({e′}) 6= ∅∨proj2({e}) = proj2({e′}) 6= ∅) =⇒
e = e′) ∧ [local injectivity of projections]

(e 6= e′ =⇒ [coincidence freeness (a single event per transition)]
∃Y ⊆ X. (proj1(Y ) ∈ C1 ∧ proj2(Y ) ∈ C2 ∧ (e ∈ Y ⇐⇒ e′ /∈ Y )))}

with projections being defined as follows:

∗ proj1(X) = {θ1 ∈ E1 |ULθ1 ∈ X ∨ ∃θ2 ∈ E2. 〈θ1, θ2〉L ∈ X}.
∗ proj2(X) = {θ2 ∈ E2 | TLθ2 ∈ X ∨ ∃θ1 ∈ E1. 〈θ1, θ2〉L ∈ X}.

• l = {(ULθ, act(ULθ)) | ∃X1 ∈ C1. θ ∈ X1 ∧ act(θ) /∈ L} ∪
{(TLθ, act(TLθ)) | ∃X2 ∈ C2. θ ∈ X2 ∧ act(θ) /∈ L} ∪
{(〈θ1, θ2〉L, act(〈θ1, θ2〉L)) | ∃X1 ∈ C1.∃X2 ∈ C2.

θ1 ∈ X1 ∧ θ2 ∈ X2 ∧ act(θ1) = act(θ2) ∈ L}.

Then with each process P ∈ P we denotationally associate a stable configu-
ration structure semantics in a way similar to [35,3], with the notable difference
that we represent events via proof terms. More precisely, each process is given
a pair formed by a stable configuration structure, built by using the opera-
tors above, and a configuration of that structure. The idea is that all processes
reachable from the same initial process share the same configuration structure.
In contrast, the designated configuration uniquely identifies the specific process
through the proof terms labeling a sequence of proved transitions by means of
which the considered process is reached from the initial one.
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Note that such a sequence is empty if P is initial – which corresponds to
the empty configuration – and unique if P is sequential. In the case that P is
neither initial nor sequential, if there are several transition sequences reaching
it – meaning that non-synchronizing actions of different parallel subprocesses
have been executed – then they result in the same configuration [11], because
independent actions can be executed in any order and the order of the elements
within a configuration – which is a set – does not matter.

Definition 5. The stable configuration structure semantics of P ∈ P is the pair
JP K = (CP , XP ) where:

– CP = scs(to init(P )), with the stable configuration structure scs(Q) associ-
ated with an initial process Q ∈ P being defined by induction on the syntac-
tical structure of Q as follows:
• scs(0) = N.
• scs(a .Q′) = a . scs(Q′).
• scs(Q1 +Q2) = scs(Q1) + scs(Q2).
• scs(Q1 ‖LQ2) = scs(Q1) ‖L scs(Q2).

– XP = ∅ if P is initial, otherwise XP = {θi | 1 ≤ i ≤ n} for some n ∈ N≥1

such that there exists Pi−1
θi−→ Pi for all 1 ≤ i ≤ n with P0 = to init(P ) and

Pn = P .

Example 5. Ja . 0 ‖∅ a . 0K comprises (see Figure 1(a)):

– The two events U∅a and T∅a.
– The four configurations ∅, {U∅a}, {T∅a}, and {U∅a,T∅a}.
– The two maximal computations ∅ a−→Ca . 0 ‖∅ a . 0

{U∅a}
a−→Ca . 0 ‖∅ a . 0

{U∅a,T∅a}
and ∅ a−→Ca . 0 ‖∅ a . 0

{T∅a}
a−→Ca . 0 ‖∅ a . 0

{U∅a,T∅a}.

In contrast, Ja . a . 0K comprises (see Figure 1(b)):

– The two events a and .aa.
– The three configurations ∅, {a}, and {a, .aa}.
– The only maximal computation ∅ a−→Ca . a . 0 {a}

a−→Ca . a . 0 {a, .aa}.

Therefore, Ja . 0 ‖∅ a . 0K 6∼HHPB Ja . a . 0K because a causally precedes .aa while
U∅a and T∅a are independent of each other and hence no (labeling- and) causality-
preserving bijection would relate the former two events to the latter two.

4.5 Operational Characterization Result

We start by establishing a connection between proved transitions of processes
and transitions of stable configuration structures associated with processes.

Lemma 1. Let P, P ′ ∈ P and θ ∈ Θ. Then P
θ−→ P ′ iff XP

act(θ)−−−−→CP XP ′ .

We are now in a position of proving our operational characterization result.

Theorem 4. Let P1, P2 ∈ P. Then JP1K ∼HHPB JP2K iff P1 ∼FRB:brm P2.
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5 Relationships between LEI and LBRM

From Theorems 4, 3, and 1 it follows that two processes satisfy the same formulas
of LBRM iff their associated stable configuration structures satisfy the same for-
mulas of LEI. It is therefore interesting to investigate the relationships between
the two logics. On the one hand, we show how to reinterpret LEI over pro-
cesses (Section 5.1) and LBRM over stable configuration structures (Section 5.2).
On the other hand, we discuss how to translate LBRM into LEI (Section 5.3) and
vice versa (Section 5.4).

5.1 Reinterpreting LEI over P

The only non-trivial case is the one of the binder (x : a). The process analogous
of an event in a configuration that is labeled with a certain action is a subprocess
starting with an executed occurrence of that action. Indicating with sp(P ) the
set of all subprocesses of P , let apt(a†. P ′, P ) be the proof term associated with
the execution of action a of the subterm a†. P ′ of P . Formally, apt(a†. P ′, P ) = θ
iff a†. P ′ ∈ sp(P ) and there exist P ′′, P ′′′ ∈ P such that a . to init(P ′) ∈ sp(P ′′),

P ′′
θ−→ P ′′′, act(θ) = a, and a†. to init(P ′) ∈ sp(P ′′′).

The satisfaction relation |=⊆ (P×ΘI)×LEI is defined by induction on the
syntactical structure of φ ∈ LEI as follows:
P |=ρ true
P |=ρ ¬φ′ iff P 6|=ρ φ

′

P |=ρ φ1 ∧ φ2 iff P |=ρ φ1 and P |=ρ φ2

P |=ρ 〈x : a〉〉φ′ iff there is P
θ−→ P ′ such that act(θ) = a and P ′ |=ρ[x7→θ] φ

′

P |=ρ (x : a)φ′ iff there is a†. P ′ ∈ sp(P ) such that P |=ρ[x 7→apt(a†. P ′,P )] φ

P |=ρ 〈〈x〉φ′ iff there is P ′
θ−→ P such that ρ(x) = θ and P ′ |=ρ φ

′

where it is understood that the environment in the subscript of every occurrence
of |= is permissible for the configuration identifying (in the associated denota-
tional semantics) the process on the left – e.g., XP in the case of process P –
and the formula on the right.

Theorem 5. Let P ∈ P. Then ∀φ∈LEI.∀ρ∈pe(XP , φ). P |=ρφ⇐⇒ JP K |=ρφ.

To prove that, consequently, LEI reinterpreted over P characterizes ∼FRB:brm,
we follow [33] and hence first show that any substitution of the variables freely
occurring in a formula requires a modification of the permissible environment.

Lemma 2. Let P ∈ P, φ ∈ LEI, and ρ ∈ pe(XP , φ). Given a substitution σ
that – not necessarily injectively – maps fi(φ) to a set of fresh identifiers that
do not occur either free or bound in φ, let σ(φ) be the formula obtained from φ
by replacing each occurrence of x ∈ fi(φ) with σ(x) and let ρσ ∈ pe(XP , σ(φ))
be the environment obtained from ρ by replacing each x ∈ fi(φ) with σ(x). Then
P |=ρ φ iff P |=ρσ σ(φ).

Corollary 1. Let P1, P2 ∈ P. Then P1 ∼FRB:brm P2 iff ∃f1,2.∀φ ∈ LEI.∀ρ ∈
pe(XP1

, φ). P1 |=ρ φ ⇐⇒ P2 |=f1,2◦ρ φ where f1,2 is a label-preserving bijection
from XP1

to XP2
.
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5.2 Reinterpreting LBRM over Stable Configuration Structures

Let us denote by JPK the set of all stable configuration structures – whose events
are proof terms – that turn out to be the denotational semantics of some P ∈ P.
Recalling that JP K = (CP , XP ), when writing JP K |= φ we mean XP |= φ.

The satisfaction relation |= ⊆ JPK × LBRM is defined by induction on the
syntactical structure of φ ∈ LBRM as follows:

JP K |= true

JP K |= M iff {| a ∈ A | XP ′
a−→CP ′ XP |} = M

JP K |= ¬φ′ iff JP K 6|= φ′

JP K |= φ1 ∧ φ2 iff JP K |= φ1 and JP K |= φ2

JP K |= 〈a〉φ′ iff there exists XP
a−→CP XP ′ such that JP ′K |= φ′

JP K |= 〈a†〉φ′ iff there exists XP ′
a−→CP ′ XP such that JP ′K |= φ′

Every process and its associated stable configuration structure satisfy the
same formulas of LBRM. As a consequence, LBRM reinterpreted over stable con-
figuration structures characterizes ∼HHPB.

Theorem 6. Let P ∈ P. Then ∀φ ∈ LBRM. P |= φ⇐⇒ JP K |= φ.

Corollary 2. Let P1, P2 ∈ P. Then JP1K ∼HHPB JP2K iff ∀φ ∈ LBRM. JP1K |= φ
⇐⇒ JP2K |= φ.

5.3 Translating LBRM into LEI

The main difficulty is the encoding of multisets, as they are not present in LEI.
In the translation function we thus introduce two additional parameters:

– The first one is a finite set A of actions, e.g., those occurring in a process P .
Since P |= M iff brm(P ) = M , the LEI formula corresponding to M has to
express the fact that every action in the support of M , i.e., supp(M) = {a ∈
A | M(a) > 0}, can be undone a number of times equal to its multiplicity,
while any action in A \ supp(M) cannot be undone at all. We assume that
supp(M) is finite to avoid infinite conjunctions in the translation.

– The second one is a finite sequence %n : {1, . . . , n} → I × A of pairs each
formed by an identifier and an action. It acts like a stack-based memory that
keeps track of executed actions, bound to variables via 〈x : a〉〉 and (x : a).

The translation function TBE : LBRM × Pfin(A) × {%n | n ∈ N≥1} → LEI

is defined by induction on the syntactical structure of φ ∈ LBRM as follows:
TBE(true, A, %n) = true

TBE(M,A, %n) =
∧

ai∈supp(M)

(
M(ai)∧
k=1

〈〈xi,k〉true ∧
](ai,%n)−M(ai)∧

h=1

¬〈〈zi,h〉true

)
∧

∧
b∈A\supp(M)

¬(y : b)〈〈y〉true with y fresh

TBE(¬φ′, A, %n) = ¬TBE(φ′, A, %n)
TBE(φ1 ∧ φ2, A, %n) = TBE(φ1, A, %n) ∧ TBE(φ2, A, %n)
TBE(〈a〉φ′, A, %n) = 〈x : a〉〉TBE(φ′, A, %n ∪ {(n+ 1, (x, a))}) with x fresh
TBE(〈a†〉φ′, A, %n) = (x : a)〈〈x〉TBE(φ′, A, %n) with x fresh
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where in the translation of M the finite sequence %n is such that:

– (xi,k, ai) ∈ rge(%n), with xi,k 6= xi,k′ for k 6= k′ and all the identifiers xi,k
being taken starting from the end of %n, i.e., the top of the stack.

– ](ai, %n) is the number of occurrences of ai in %n.
– (zi,h, ai) ∈ rge(%n), with zi,h /∈ {xi,k | 1 ≤ k ≤ M(ai)} and zi,h 6= zi,h′ for
h 6= h′.

Theorem 7. Let P ∈ P, φ ∈ LBRM, and act(P ) be the set of actions in P .
Then P |= φ iff ∃%n.∃ρ ∈ pe(P, TBE(φ, act(P ), %n)). P |=ρ TBE(φ, act(P ), %n).

5.4 Translating LEI into LBRM

The challenge is the encoding of formulas of the form (x : a)φ, because identifiers
are not present in LBRM and the satisfaction of these formulas is not necessarily
related to actions to be done or undone in this moment. Rather, it is generically
related to executed actions. On the other hand, it is not clear how multisets
would come into play. The study of this translation is left for future work.

6 Conclusions

In this paper we have proposed an entirely new approach to characterize heredi-
tary history-preserving bisimilarity, both denotationally and operationally, even
in the presence of autoconcurrency, autocausation, and autoconflict. Unlike [3],
the focus is on counting identically labeled events rather than uniquely iden-
tifying them, thus avoiding bijections between events altogether. Moreover, on
the operational side, it has turned out that proof terms naturally lend them-
selves to identification purposes; in a reversible setting like ours, they have been
used for the first time in [1]. Finally, we have logically characterized backward-
ready-multiset forward-reverse bisimilarity with backward ready multiset logic
and investigated the relationships of the latter with event identifier logic [33].

The operational characterization is particularly important for several rea-
sons. Firstly, in addition to the equational characterization over forward-only
processes developed in [21], hereditary history-preserving bisimilarity can be
axiomatized over reversible processes by resorting to the approach of [18] as
applied in [8], provided that backward ready multisets are considered in place
of backward ready sets. Secondly, in addition to the logics of [33,4], hereditary
history-preserving bisimilarity can be characterized also in terms of backward
ready multiset logic. The latter is simpler as it does not make use of variables and
binders, but the former contain fragments that have been proven to characterize
various behavioral equivalences in the true concurrency spectrum [23,19,32].

As for future work, we would like to complete the investigation of the rela-
tionships between backward ready multiset logic and event identifier logic, as
well as to extend it to the logic of [4]. Another direction to pursue is whether
our results apply to configuration structures that are not stable, i.e., in which
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it is not necessarily the case that causality among events can be always repre-
sented in terms of partial orders, possibly defined locally to each configuration.
Hereditary history-preserving bisimilarity has been defined over non-stable mod-
els in [22,5] and a logical characterization for it has been provided in [5], which
is a conservative extension of the one in [4].

Finally, we plan to study backward-ready-multiset forward-reverse bisimi-
larity checking by taking into account, as far as hereditary history-preserving
bisimilarity is concerned, the undecidability result over finite labeled transition
systems extended with an independence relation between transitions of [26] and
the polynomial-time algorithm over basic parallel processes of [20].
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A Proofs of Results

Since the proofs of Theorems 3, 5, 6, and 7, of Lemma 2, and of Corollary 1
proceed by induction on the depth of a formula of LEI or LBRM, where the
depth is intended as an upper bound to the depth of the syntax tree of the
considered formula, we collect here the related definitions:

– The depth of φ ∈ LEI is defined by induction on the syntactical structure
of φ as follows:

depth(true) = 0
depth(¬φ′) = 1 + depth(φ′)

depth(φ1 ∧ φ2) = 1 + max(depth(φ1), depth(φ2))
depth(〈x : a〉〉φ′) = 1 + depth(φ′)
depth((x : a)φ′) = 1 + depth(φ′)

depth(〈〈x〉φ′) = 1 + depth(φ′)

– The depth of φ ∈ LBRM is defined by induction on the syntactical structure
of φ as follows:

depth(true) = 0
depth(M) = 0

depth(¬φ′) = 1 + depth(φ′)
depth(φ1 ∧ φ2) = 1 + max(depth(φ1), depth(φ2))

depth(〈a〉φ′) = 1 + depth(φ′)
depth(〈a†〉φ′) = 1 + depth(φ′)

Theorem 2 holds under the assumption that, in the presence of au-
toconcurrency, for each maximal set of conflicting events (i.e., events
jointly occurring in no configuration) all the events in the set are
caused by the same event. The two configuration structures in Fig-
ure 12 of [32], which come from the two event structures in Figure 11
of the same paper and do not satisfy the assumption, are distinguished
by ∼HHPB but identified by ∼FRB:brm as pointed out by I. Ulidowski,
I. Phillips, and C. Aubert in a personal communication to the authors.
Below is the revised proof.

Proof of Theorem 2. The proof is divided into two parts:

– Suppose that C1 ∼HHPB C2 due to some hereditary history-preserving bisim-
ulation B. Then C1 ∼FRB:brm C2 follows by proving that B′ = {(X1, X2) |
(X1, X2, f) ∈ B} is a brm-forward-reverse bisimulation. Observing that
the starting clause and the clauses for outgoing and incoming transitions
matching of ∼FRB:brm (see Definition 3) are a simplification of those
of ∼HHPB (see Definition 2), given (X1, X2) ∈ B′, i.e., (X1, X2, f) ∈ B
for some labeling- and causality-preserving bijection f from X1 to X2,
we just have to show that brm(X1) = brm(X2).
Suppose that this is not the case, say X1 has fewer incoming a-transitions
than X2. Without loss of generality, we can assume that X1 has one incoming
a-transition while X2 has two. Then in C2 there is a diamond closing into X2,
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i.e., there exist three configurations Y2, X ′2, and X ′′2 and two a-labeled events

e′2 and e′′2 such that Y2
l2(e′2)−−−−→C2

X ′2, Y2
l2(e′′2 )−−−−→C2

X ′′2 , X ′2
l2(e′′2 )−−−−→C2

X2, and

X ′′2
l2(e′2)−−−−→C2 X2, with e′2 and e′′2 concurrent in X2.

Due to (X1, X2, f) ∈ B, in C1 there must be two configurations Y1 and X ′1

and two a-labeled events e′1 and e′′1 such that Y1
l1(e′1)−−−−→C1

X ′1
l1(e′′1 )−−−−→C1

X1,
with e′1 ≤X1 e

′′
1 because X1 has a single incoming a-transition. Since B is a

hereditary history-preserving bisimulation, f should relate e′1, e
′′
1 ∈ X1 with

e′2, e
′′
2 ∈ X2 in a causality-preserving way, but this is not possible because

f(e′1) 6≤X2
f(e′′1) where f(e′1) ∈ {e′2, e′′2} and f(e′′1) ∈ {e′2, e′′2} \ {f(e′1)}.

– Suppose that C1 ∼FRB:brm C2 due to some maximal brm-forward-reverse
bisimulation B. Then, given (X1, X2) ∈ B, the existence in C1 of a sequence of

transitions X1,n
l1(e1,n)−−−−−→C1 X1,n−1 . . . X1,1

l1(e1,1)−−−−−→C1 X1 implies the existence

in C2 of a sequence of transitions X2,n
l2(e2,n)−−−−−→C2 X2,n−1 . . . X2,1

l2(e2,1)−−−−−→C2 X2

such that l1(e1,h) = l2(e2,h) and (X1,h, X2,h) ∈ B for all h = 1, . . . , n, and
vice versa. Note that e1,h 6= e1,k and e2,h 6= e2,k for all h 6= k because in
each transition the source configuration and the target configuration differ
by one event, which is the executed event (see Definition 1).
Thus C1 ∼HHPB C2 follows by proving that B′ = {(X1, X2, {(e1,h, e2,h) |

h ∈ H}) | (X1, X2) ∈ B ∧Xi,|H|
li(ei,|H|)−−−−−−→Ci Xi,|H|−1 . . . Xi,1

li(ei,1)−−−−→Ci Xi for
i ∈ {1, 2} ∧ l1(e1,h) = l2(e2,h) for all h ∈ H ∧ (X1,h, X2,h) ∈ B for all h ∈ H
∧ X1,|H| = ∅ = X2,|H|} is a hereditary history-preserving bisimulation.
Observing that (∅, ∅) ∈ B implies (∅, ∅, ∅) ∈ B′, take (X1, X2, {(e1,h, e2,h) |
h ∈ H}) ∈ B′, so that (X1, X2) ∈ B:

• If X1
a−→C1 X

′
1 due to some a-labeled event e1, then X2

a−→C2 X
′
2 due

to some a-labeled event e2 such that (X ′1, X
′
2) ∈ B. Since e1 /∈ X1 and

e2 /∈ X2, it holds that (X ′1, X
′
2, {(e1,h, e2,h) | h ∈ H} ∪ {(e1, e2)}) ∈ B′.

If we start from X2
a−→C2

X ′2, then we reason in the same way.

• If X ′1
a−→C1

X1 due to some a-labeled event e1, then X ′2
a−→C2

X2 due
to some a-labeled event e2 such that (X ′1, X

′
2) ∈ B. Since e1 /∈ X ′1,

e2 /∈ X ′2, and brm(X1) = brm(X2), the latter transition can be selected
in such a way to satisfy {(e1,h, e2,h) | h ∈ H} � X ′1 = {(e1,h, e2,h) |
h ∈ H}\{(e1, e2)}, hence (X ′1, X

′
2, {(e1,h, e2,h) | h ∈ H}\{(e1, e2)}) ∈ B′.

If we start from X ′2
a−→C2

X2, then we reason in the same way.
• f = {(e1,h, e2,h) | h ∈ H} certainly is a bijection from X1 to X2 – as the

events along either computation are different from each other, so the two
reached configurations X1 and X2 contain the same number of events,
and paired in a stepwise manner – that preserves labeling – by definition
of B′. If |H| ≤ 1 then causality is trivially preserved.
Suppose that X1 and X2 break causality and, among all the pairs of
B-related configurations that break causality, they are the closest ones
to ∅ and ∅ (in terms of number of transitions to be executed from either

empty configuration). Breaking causality means that X1
a−→C1 X

′
1 due

to an a-labeled event e′1 /∈ X1 such that e1 ≤X′
1
e′1 for some e1 ∈ X1,
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but all the responses X2
a−→C2

X ′2 complying with B, which is maximal,
are such that g(e1) 6≤X′

2
g(e′1), where g is f extended with the new pair

of events.
(In Figure 12 of [32], X1 and X2 are states 6E and 6F , X ′1 and X ′2 are
states 13E and 12F , e1 = a2, e′1 = b2, g(e1) = a2, g(e′1) = b3.)
From X1 and X2 we go backward by following the respective computa-
tions undertaken in the forward direction with respect to B′ – without
undoing e1 – until we reach Y1 and Y2 such that (Y1, Y2) ∈ B having
several incoming transitions. Note that Y1 and Y2 have the same number
of incoming transitions because B is a brm-forward-reverse bisimulation.
(In Figure 12 of [32], Y1 and Y2 are again states 6E and 6F .)
In Y1 and Y2 we undo two identically labeled transitions matched by B,
respectively corresponding to two events e′′1 and e′′2 , different from the
two transitions with which we arrived at Y1 and Y2 via the computations
undertaken in the forward direction with respect to B′. Let Y ′1 and Y ′2
be the two newly reached configurations such that (Y ′1 , Y

′
2) ∈ B.

(In Figure 12 of [32], Y ′1 and Y ′2 are states 3E and 3F , e′′1 = a3, e′′2 = a3.)
There are two cases:

∗ If in Y ′1 it is possible to perform a transition corresponding to e′1, then
we execute it so as to recreate e1 ≤ e′1 along a different computation
of C1. Therefore Y ′2 responds by executing an identically labeled tran-
sition corresponding to some event e′2 such that h(e1) ≤ h(e′1) = e′2,
where h is the resulting bijection, as Y ′1 and Y ′2 are closer to ∅ and ∅
than X1 and X2 – remember the assumption that X1 and X2 are
the first B-related configurations that break causality. Let Y ′′1 and
Y ′′2 be the two newly reached configurations such that (Y ′′1 , Y

′′
2 ) ∈ B.

(In Figure 12 of [32], Y ′′1 and Y ′′2 are states 8E and 8F , e′2 = b2.)
In Y ′′1 it is possible to perform a transition corresponding to e′′1 oth-
erwise we would not have been able to go from ∅ to X ′1 via Y ′1 and X1

by encountering e′′1 and e′1. In other words, e′′1 and e′1 are concurrent.
If in Y ′′2 it were possible to perform a transition corresponding to e′′2 ,
then in X2 we had to be able to execute a transition corresponding
to e′2 thanks to concurrency, but this contradicts the assumption that
X2 cannot respond to X1 in a causality-preserving way. Therefore
e′′2 and e′2 have to be in conflict with each other (note that e′2 /∈ X2

and e′′2 /∈ Y ′′2 ), but this contradicts the assumption of the absence
of conflicting events caused by different events. Indeed, since e′′2 is
taken from the bottom side of a diamond opposite to the one of g(e1),
e′′2 must be concurrent to g(e1), hence if e′′2 and e′2 were conflicting,
then they would not be caused by the same event.

∗ If in Y ′1 it is not possible to perform a transition corresponding to e′1,
then we keep going forward until we find it by executing transitions
corresponding to all the events that have been undone by going from
X1 and X2 back to Y1 and Y2.

If the aforementioned Y1 and Y2 did not exist, then while going backward
from X1 and X2 by following the respective computations undertaken in
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the forward direction with respect to B′ – without undoing e1 – we should
reach Z1 and Z2 such that (Z1, Z2) ∈ B with at least one of them hav-
ing several outgoing transitions. The reason is that if neither Y1 and Y2

nor Z1 and Z2 existed, then there would be a single computation from
∅ to X1 and a single computation from ∅ to X2 – in which all events are
causally related and hence there is no concurrency – thus contradicting
e1 ≤X′

1
e′1 and g(e1) 6≤X′

2
g(e′1) as it would hold that g(e1) ≤X′

2
g(e′1).

However, since after leaving Z1 and Z2 towards X1 and X2 there would
be neither B-related configurations with several incoming transitions nor
B-related configurations at least one of which has several outgoing tran-
sitions, there would be a single computation from Z1 to X1 and a single
computation from Z2 to X2 – in which all events are causally related
and hence there is no concurrency – thus contradicting again e1 ≤X′

1
e′1

and g(e1) 6≤X′
2
g(e′1) as it would hold that g(e1) ≤X′

2
g(e′1).

Proof of Theorem 3. The proof is divided into two parts:

– Assuming that P1 ∼FRB:brm P2 and P1 |= φ for an arbitrary formula φ ∈
LFRB:brm, we prove that P2 |= φ too by proceeding by induction on k =
depth(φ):

• If k = 0 then φ is either true or M . In the former case, it is trivially
satisfied by P2 too. In the latter case, it is satisfied by P2 too because
P1 ∼FRB:brm P2 and hence brm(P1) = brm(P2).

• If k ≥ 1 then there are four cases:

∗ If φ is ¬φ′ then from P1 |= ¬φ′ we derive that P1 6|= φ′. If it were
P2 |= φ′ then by the induction hypothesis it would hold that P1 |= φ′,
which is not the case. Therefore P2 6|= φ′ and hence P2 |= ¬φ′ too.

∗ If φ is φ1 ∧ φ2 then from P1 |= φ1 ∧ φ2 we derive that P1 |= φ1 and
P1 |= φ2. From the induction hypothesis it follows that P2 |= φ1 and
P2 |= φ2 and hence P2 |= φ1 ∧ φ2 too.

∗ If φ is 〈a〉φ′ then from P1 |= 〈a〉φ′ we derive that there exists

P1
θ1−→ P ′1 such that act(θ1) = a and P ′1 |= φ′. From P1 ∼FRB:brm P2

it then follows that there exists P2
θ2−→ P ′2 such that act(θ2) = a and

P ′1 ∼FRB:brm P ′2. By applying the induction hypothesis we derive
that P ′2 |= φ′ and hence P2 |= 〈a〉φ′ too.

∗ If φ is 〈a†〉φ′ then from P1 |= 〈a†〉φ′ we derive that there exists

P ′1
θ1−→ P1 such that act(θ1) = a and P ′1 |= φ′. From P1 ∼FRB:brm P2

it then follows that there exists P ′2
θ2−→ P2 such that act(θ2) = a and

P ′1 ∼FRB:brm P ′2. By applying the induction hypothesis we derive
that P ′2 |= φ′ and hence P2 |= 〈a†〉φ′ too.

– Assuming that P1 and P2 satisfy the same formulas in LBRM, we prove that
the symmetric relation B = {(Q1, Q2) ∈ P× P | Q1 and Q2 satisfy the same
formulas in LBRM} is a brm-forward-reverse bisimulation.
Given (Q1, Q2) ∈ B:
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• If Q1
θ1−→Q′1 suppose by contradiction that there is no Q′2 satisfying the

same formulas as Q′1 such that Q2
θ2−→Q′2 and act(θ1) = act(θ2), i.e.,

(Q′1, Q
′
2) ∈ B for no Q′2 act(θ1)-reachable from Q2. Since Q2 has finitely

many outgoing transitions, the set of processes that Q2 can reach by per-
forming an act(θ1)-transition is finite, say {Q′2,1, . . . , Q′2,n} with n ≥ 0.
Since none of the processes in the set satisfies the same formulas as Q′1,
for each 1 ≤ i ≤ n there exists φi ∈ LBRM such that Q′1 |= φi but
Q′2,i 6|= φi.

We can then construct the formula 〈act(θ1)〉
n∧
i=1

φi that is satisfied by Q1

but not by Q2; if n = 0 then it is sufficient to take 〈act(θ1)〉true.
This formula violates (Q1, Q2) ∈ B, hence there must exist at least

one Q′2 satisfying the same formulas as Q′1 such that Q2
θ2−→Q′2 and

act(θ1) = act(θ2), so that (Q′1, Q
′
2) ∈ B.

• If Q′1
θ1−→Q1 suppose by contradiction that there is no Q′2 satisfying the

same formulas as Q′1 such that Q′2
θ2−→Q2 and act(θ1) = act(θ2), i.e.,

(Q′1, Q
′
2) ∈ B for no Q′2 act(θ1)-reaching Q2. Since Q2 has finitely many

incoming transitions, the set of processes that can reach Q2 by perform-
ing an act(θ1)-transition is finite, say {Q′2,1, . . . , Q′2,n} with n ≥ 0. Since
none of the processes in the set satisfies the same formulas as Q′1, for
each 1 ≤ i ≤ n there exists φi ∈ LBRM such that Q′1 |= φi but Q′2,i 6|= φi.

We can then construct the formula 〈act(θ1)†〉
n∧
i=1

φi that is satisfied by Q1

but not by Q2; if n = 0 then it is sufficient to take 〈act(θ1)†〉true.
This formula violates (Q1, Q2) ∈ B, hence there must exist at least

one Q′2 satisfying the same formulas as Q′1 such that Q′2
θ2−→Q2 and

act(θ1) = act(θ2), so that (Q′1, Q
′
2) ∈ B.

• The fact that brm(Q1) = brm(Q2) follows from the fact that Q1 and Q2

satisfy, in particular, the same formulas of the form M .

Proof of Lemma 1. The proof is divided into two parts:

– Suppose that P
θ−→ P ′. We show that XP

act(θ)−−−−→CP XP ′ by proceeding by
induction on the number n ∈ N≥1 of applications of operational semantic

rules in Table 1 that are necessary to derive the transition P
θ−→ P ′:

• If n = 1 then P is a .Q with init(Q), a .Q
a−→ a†. Q by rule Actf , and P ′

is a†. Q. From init(P ) it follows that JP K = (CP , ∅) and JP ′K = (CP , {a}),
hence XP

a−→CP XP ′ .
• If n > 1 then there are three cases:

∗ Let P be a†. Q so that P
.aθ

′

−−→ P ′ with P ′ being a†. Q′. Then Q
θ′−→Q′

by rule Actp, hence XQ
act(θ′)−−−−→CQ XQ′ by the induction hypothesis

with JQK = (CQ, XQ) and JQ′K = (CQ, XQ′).

Let to init(Q)
θ1−→ . . .

θn−→Q
θ′−→Q′ with n ∈ N, so XQ = {θi |
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1 ≤ i ≤ n} and XQ′ = XQ ∪ {θ′}. Then to init(P ) = a . to init(Q)
a−→ .aθ1−−→ . . .

.aθn−−−→ P
.aθ

′

−−→ P ′, JP K = (a .CQ, XP ) with XP = {a} ∪
{.aθi | θi ∈ XQ}, and JP ′K = (a .CQ, XP ′) with XP ′ = XP ∪ {.aθ′}

and .aθ
′ /∈ XP . Thus XP

act(.aθ
′)−−−−−→CP XP ′ with CP = a .CQ.

∗ Let P be P1 + P2. There are two subcases:

· If P1 moves, i.e., P
.+θ′−−→ P ′ with P ′ being P ′1 + P2 and init(P2),

then P1
θ′−→ P ′1 by rule Chol, hence XP1

act(θ′)−−−−→CP1
XP ′

1
by the in-

duction hypothesis with JP1K = (CP1 , XP1) and JP ′1K = (CP1 , XP ′
1
).

Let to init(P1)
θ1−→ . . .

θn−→ P1
θ′−→ P ′1 with n ∈ N, so XP1 =

{θi | 1 ≤ i ≤ n} and XP ′
1

= XP1
∪ {θ′}. Then to init(P ) =

to init(P1)+P2
.+θ1−−→ . . .

.+θn−−→ P1+P2
.+θ′−−→ P ′, JP K = (CP1 +CP2),

XP ) with XP = {.+θi | θi ∈ XP1
}, and JP ′K = (CP1

+ CP2
, XP ′)

with XP ′ = XP ∪{.+θ′} and .+θ′ /∈ XP . Thus XP
act(.+θ′)−−−−−→CP XP ′

with CP = CP1 + CP2 .
· The subcase in which P2 moves and P1 is initial is like the pre-

vious one.

∗ Let P be P1 ‖L P2. Given two sequences
−→
θ1 and

−→
θ2 of proof terms

labeling two sequences of proved transitions respectively departing
from P1 and P2, we characterize their interleaving and synchroniza-
tion through the function zip : Θ∗ × Θ∗ × 2A\{τ} → Θ∗ defined
by induction on the sum of the lengths of its first two arguments−→
θ1 ,
−→
θ2 ∈ Θ∗ as follows:

zip(
−→
θ1 ,
−→
θ2 , L) =



ULθ′zip(
−→
θ′1 ,
−→
θ2) if

−→
θ1 = θ′

−→
θ′1 ∧ act(θ′) /∈ L ∧ (

−→
θ2 = ε∨

(
−→
θ2 = θ′′

−→
θ′′2 ∧ (act(θ′′) ∈ L ∨ |

−→
θ1 | ≥ |

−→
θ2 |)))

TLθ′′zip(
−→
θ1 ,
−→
θ′′2 ) if

−→
θ2 = θ′′

−→
θ′′2 ∧ act(θ′′) /∈ L ∧ (

−→
θ1 = ε∨

(
−→
θ1 = θ′

−→
θ′1 ∧ (act(θ′) ∈ L ∨ |

−→
θ1 | < |

−→
θ2 |)))

〈θ′, θ′′〉Lzip(
−→
θ1 ,
−→
θ2) if

−→
θ1 = θ′

−→
θ′1 ∧

−→
θ2 = θ′′

−→
θ′′2 ∧ act(θ′) = act(θ′′) ∈ L

ε otherwise
There are three subcases:

· If act(θ) /∈ L and P1 moves, i.e., P
ULθ′−−−→ P ′ with P ′ being P ′1 ‖L P2,

then P1
θ′−→ P ′1 by rule Parl, hence XP1

act(θ′)−−−−→CP1
XP ′

1
by the in-

duction hypothesis with JP1K = (CP1 , XP1) and JP ′1K = (CP1 , XP ′
1
).

Let to init(P1)
θ1,1−−→ . . .

θ1,n1−−−→ P1
θ′−→ P ′1 with n1 ∈ N, so XP1 =

{θ1,i | 1 ≤ i ≤ n1} and XP ′
1

= XP1
∪ {θ′}. Also let to init(P2)

θ2,1−−→ . . .
θ2,n2−−−→ P2 with n2 ∈ N, so XP2

= {θ2,i | 1 ≤ i ≤ n2}.
We denote by

−→
θ1 and

−→
θ2 the two sequences of proof terms. Then

to init(P ) = to init(P1) ‖L to init(P2) reaches P via a sequence

of proved transitions labeled with zip(
−→
θ1 ,
−→
θ2 , L) and afterwards

P ′ via P
ULθ′−−−→ P ′, JP K = (CP1

‖L CP2
, XP ) with XP = {θ̄ |
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θ̄ in zip(
−→
θ1 ,
−→
θ2 , L)}, and JP ′K = (CP1

‖L CP2
, XP ′) with XP ′ =

XP ∪ {ULθ′} and ULθ′ /∈ XP . Thus XP
act(ULθ′)−−−−−−→CP XP ′ with

CP = CP1
‖L CP2

.
· The subcase in which act(θ) /∈ L and P2 moves is like the previous

one.

· If act(θ) ∈ L, i.e., P
〈θ1,θ2〉L−−−−−→ P ′ with P ′ being enr(P ′1 ‖L P ′2, 〈θ1, θ2〉L),

then Pk
θk−→ P ′k for k ∈ {1, 2} by rule Syn, henceXPk

act(θk)−−−−→CPk
XP ′

k

by the induction hypothesis with JPkK = (CPk , XPk) and JP ′kK =
(CPk , XP ′

k
).

For k ∈ {1, 2} let to init(Pk)
θk,1−−→ . . .

θk,nk−−−→ Pk
θk−→ P ′k with

nk ∈ N, so XPk = {θk,i | 1 ≤ i ≤ nk} and XP ′
k

= XPk ∪ {θk};
we denote by

−→
θk the sequence of proof terms. Then to init(P ) =

to init(P1) ‖L to init(P2) reaches P via a sequence of proved tran-

sitions labeled with zip(
−→
θ1 ,
−→
θ2 , L) and afterwards P ′ via P

〈θ1,θ2〉L−−−−−→ P ′,

JP K = (CP1 ‖L CP2 , XP ) with XP = {θ̄ | θ̄ in zip(
−→
θ1 ,
−→
θ2 , L)},

and JP ′K = (CP1 ‖L CP2 , XP ′) with XP ′ = XP ∪ {〈θ1, θ2〉L}
and 〈θ1, θ2〉L /∈ XP . Thus XP

act(〈θ1,θ2〉L)−−−−−−−−→CP XP ′ with CP =
CP1
‖L CP2

.

– Suppose that XP
act(θ)−−−−→CP XP ′ . Consider a variant Θ′ of Θ in which .+, +.,

UL, and TL are given a subscript equal to the subprocess that does not
move and this is applied to the corresponding rules in Table 1 as well as the
corresponding operations on stable configuration structures in Section 4.4.

Although the configuration structure transition XP
act(θ)−−−−→CP XP ′ is not gen-

erated inductively, from the only event θ – enriched as described above –
in XP ′ \XP we can pinpoint act(θ) within P and P ′.
Assuming that θ does not have subterms of the form 〈θ1, θ2〉L, meaning that

XP
act(θ)−−−−→CP XP ′ originated from a single action, we define the notion of

process context C[•] = ctx(θ) by induction on the syntactical structure of
θ ∈ Θ′ as follows:

ctx(θ) =



• if θ ∈ A
a†. ctx(θ′) if θ = .aθ

′

ctx(θ′) +Q if θ = .+Qθ
′ where init(Q)

Q+ ctx(θ′) if θ = +.Qθ
′ where init(Q)

ctx(θ′) ‖LQ if θ = UL,Qθ′
Q ‖L ctx(θ′) if θ = TL,Qθ′

Since XP is the set of proof terms labeling a sequence of proved transitions

from to init(P ) to P , from XP
act(θ)−−−−→CP XP ′ it follows that P must con-

tain an occurrence of act(θ) in an initial subprocess of the form act(θ) . P̄ .

Then P = C[act(θ) . P̄ ] with act(θ) . P̄
act(θ)−−−−→ act(θ)†. P̄ and hence P =

C[act(θ) . P̄ ]
θ−→ C[act(θ)†. P̄ ] = P ′.

If θ has subterms of the form 〈θ1, θ2〉L, then we proceed in a similar way by
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constructing a context with as many •-holes as there are synchronizing sub-
processes. The following clause has to be added to the inductive definition
of process context: ctx(θ) = ctx(θ1) ‖L ctx(θ2) if θ = 〈θ1, θ2〉L.

Similar to Theorem 2, Theorem 4 holds under the assumption that, in
the presence of autoconcurrency, for each maximal set of conflicting
actions (i.e., actions inside subprocesses composed by nondeterminis-
tic choice) no two actions in the set occur in other two subprocesses
that are composed in parallel – remember that events are unique
while every action may have several occurrences. The two configura-
tion structures in Figure 12 of [32], which come from the two event
structures in Figure 11 of the same paper, are respectively expressed
by the two processes (with a final relabeling ai 7→ a and bi 7→ b):

((a1 . b1 . 0) ‖∅(a2 . b2 . 0) ‖∅(a3 . b3 . 0))
‖{a1,a3,b1,b2,b3}
((a1 . 0 + a3 . 0) ‖∅(b1 . 0 + b2 . 0) ‖{b2}(b2 . 0 + b3 . 0))

and:
((a1 . b1 . 0) ‖∅(a2 . b2 . 0) ‖∅(a3 . b3 . 0))
‖{a1,a3,b1,b2}
((a1 . 0 + a3 . 0) ‖{a3}(a3 . 0 + b2 . 0) ‖{b2}(b1 . 0 + b2 . 0))

which do not satisfy the assumption. Below is the revised proof.

Proof of Theorem 4. The proof is divided into two parts:

– Suppose that JP1K ∼HHPB JP2K. Then P1 ∼FRB:brm P2 follows by proving
that the symmetric relation B = {(Q1, Q2) | JQ1K ∼HHPB JQ2K} is a brm-
forward-reverse bisimulation. Let (Q1, Q2) ∈ B, so that JQ1K ∼HHPB JQ2K:

• If Q1
θ1−→Q′1 then XQ1

act(θ1)−−−−→CQ1
XQ′

1
due to Lemma 1, hence

XQ2

act(θ2)−−−−→CQ2
XQ′

2
with act(θ1) = act(θ2) and JQ′1K ∼HHPB JQ′2K

because JQ1K ∼HHPB JQ2K, from which it follows that Q2
θ2−→Q′2

due to Lemma 1 with (Q′1, Q
′
2) ∈ B.

• If Q′1
θ1−→Q1 then XQ′

1

act(θ1)−−−−→CQ′
1
XQ1

due to Lemma 1, hence

XQ′
2

act(θ2)−−−−→CQ′
2
XQ2

with act(θ1) = act(θ2) and JQ′1K ∼HHPB JQ′2K

because JQ1K ∼HHPB JQ2K, from which it follows that Q′2
θ2−→Q2

due to Lemma 1 with (Q′1, Q
′
2) ∈ B.

• The stable configuration structure semantics preserves actions inside
transition labels (Lemma 1), uniquely identifies different occurrences of
the same action in a process via as many different proof terms in the
set of events, and is able to distinguish between causality and concur-
rency like the proved operational semantics of Table 1. Therefore, from
JQ1K ∼HHPB JQ2K – in particular the incoming transition matching be-
tween XQ1 and XQ2 and the labeling- and causality-preserving bijection
from XQ1

to XQ2
– it follows that there must be a one-to-one correspon-

dence between the incoming proved transitions of Q1 and the incoming
proved transitions of Q2, hence brm(Q1) = brm(Q2).
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– Suppose that P1 ∼FRB:brm P2. Then the existence of a sequence of proved

transitions to init(P1) = P1,1

θP1,1−−−→ P1,2 . . . P1,n

θP1,n−−−→ P1 implies the exis-

tence of a sequence of proved transitions to init(P2) = P2,1

θP2,1−−−→ P2,2 . . .

P2,n

θP2,n−−−→ P2 such that act(θP1,h
) = act(θP2,h

) and P1,h ∼FRB:brm P2,h

for all h = 1, . . . , n, and vice versa. Note that θP1,h
6= θP1,k

and θP2,h
6= θP2,k

for all h 6= k because different occurrences of the same action in a process
are identified by different proof terms.
Thus JP1K ∼HHPB JP2K follows by proving that B = {(XQ1 , XQ2 , {(θQ1,h

, θQ2,h
)

| h ∈ H}) | Q1 ∼FRB:brm Q2∧to init(Qi) = Qi,1
θQi,1−−−→Qi,2 . . . Qi,|H|

θQi,|H|−−−−→Qi
for i ∈ {1, 2} ∧ act(θQ1,h

) = act(θQ2,h
) for all h ∈ H ∧ Q1,h ∼FRB:brm Q2,h

for all h ∈ H} is a hereditary-history preserving bisimulation. Observing
that Q1 ∼FRB:brm Q2 implies (∅, ∅, ∅) ∈ B when Q1 and Q2 are both initial,
take (XQ1

, XQ2
, {(θQ1,h

, θQ2,h
) | h ∈ H}) ∈ B, so that Q1 ∼FRB:brm Q2:

• If XQ1

act(θ1)−−−−→CQ1
XQ′

1
then Q1

θ1−→Q′1 due to Lemma 1, hence Q2
θ2−→Q′2

with act(θ1) = act(θ2) and Q′1 ∼FRB:brm Q′2 because Q1 ∼FRB:brm Q2,

from which it follows that XQ2

act(θ2)−−−−→CQ2
XQ′

2
due to Lemma 1. Since

θ1 /∈ XQ1 and θ2 /∈ XQ2 , it holds that (XQ′
1
, XQ′

2
, {(θQ1,h

, θQ2,h
) | h ∈ H}

∪ {(θ1, θ2)}) ∈ B.

If we start from XQ2

act(θ2)−−−−→CQ2
XQ′

2
, then we reason in the same way.

• If XQ′
1

act(θ1)−−−−→CQ′
1
XQ1

then Q′1
θ1−→Q1 due to Lemma 1, hence Q′2

θ2−→Q2

with act(θ1) = act(θ2) and Q′1 ∼FRB:brm Q′2 because Q1 ∼FRB:brm Q2,

from which it follows that XQ′
2

act(θ2)−−−−→CQ′
2
XQ2 due to Lemma 1. Since

θ1 /∈ XQ′
1
, θ2 /∈ XQ′

2
, and brm(Q1) = brm(Q2), the latter transition can

be selected in such a way to satisfy {(θQ1,h
, θQ2,h

) | h ∈ H} � XQ′
1

=
{(θQ1,h

, θQ2,h
) | h ∈ H} \ {(θ1, θ2)}, hence (XQ′

1
, XQ′

2
, {(θQ1,h

, θQ2,h
) |

h ∈ H} \ {(θ1, θ2)}) ∈ B.

If we start from XQ′
2

act(θ2)−−−−→CQ′
2
XQ2

, then we reason in the same way.

• f = {(θQ1,h
, θQ2,h

) | h ∈ H} certainly is a bijection from XQ1
to XQ2

–
as the events along either computation are different from each other, so
the two reached configurations XQ1

and XQ2
contain the same number

of events, and paired in a stepwise manner – that preserves labeling –
by definition of B. If |H| ≤ 1 then causality is trivially preserved.
Suppose that XQ1

and XQ2
break causality and, among all the pairs of

configurations associated with ∼FRB:brm-equivalent processes that break
causality, they are the closest ones to ∅ and ∅ (in terms of number of
transitions to be executed from either empty configuration). The rest
of the proof is like the one of the corresponding part of the proof of
Theorem 2, with Lemma 1 being exploited as well.
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Proof of Theorem 5. We proceed by induction on k = depth(φ):

– If k = 0 then φ is true and both P and JP K satisfy it.

– If k ≥ 1 then there are five cases:

• If φ is ¬φ′ then by the induction hypothesis:
P |=ρ ¬φ′ iff P 6|=ρ φ

′

iff JP K 6|=ρ φ
′

iff JP K |=ρ ¬φ′

• If φ is φ1 ∧ φ2 then by the induction hypothesis:
P |=ρ φ1 ∧ φ2 iff P |=ρ φ1 and P |=ρ φ2

iff JP K |=ρ φ1 and JP K |=ρ φ2

iff JP K |=ρ φ1 ∧ φ2

• If φ is 〈x : a〉〉φ′ then by Lemma 1 and the induction hypothesis:

P |=ρ 〈x : a〉〉φ′ iff there is P
θ−→ P ′ s.t. act(θ) = a and P ′ |=ρ[x7→θ] φ

′

iff there is XP
act(θ)−−−−→CP XP ′ s.t. act(θ) = a and JP ′K |=ρ[x7→θ] φ

′

iff JP K |=ρ 〈x : a〉〉φ′

• If φ is (x : a)φ′ then by the induction hypothesis:
P |=ρ (x : a)φ′ iff there is a†. P ′ ∈ sp(P ) s.t. P |=ρ[x 7→apt(a†. P ′,P )] φ

′

iff there is θ ∈ XP s.t. θ = apt(a†. P ′, P ) and JP K |=ρ[x 7→apt(a†. P ′,P )] φ
′

iff there is θ ∈ XP s.t. act(θ) = a and JP K |=ρ[x 7→θ] φ
′

iff JP K |=ρ (x : a)φ′

• If φ is 〈〈x〉φ′ then by Lemma 1 and the induction hypothesis:

P |=ρ 〈〈x〉φ′ iff there is P ′
θ−→ P s.t. ρ(x) = θ and P ′ |=ρ φ

′

iff there is XP ′
act(θ)−−−−→CP ′ XP s.t. ρ(x) = θ and JP ′K |=ρ φ

′

iff JP K |=ρ 〈〈x〉φ′

Proof of Lemma 2. We proceed by induction on k = depth(φ):

– If k = 0 then φ must be true. Since true is closed, we have that σ(true) = true
and ρσ = ρ, hence the result trivially follows.

– If k ≥ 1 then there are five cases:

• If φ is ¬φ′ then by the induction hypothesis:
P |=ρ ¬φ′ iff P 6|=ρ φ

′

iff P 6|=ρσ σ(φ′)
iff P |=ρσ σ(¬φ′)

• If φ is φ1 ∧ φ2 then by the induction hypothesis:
P |=ρ φ1 ∧ φ2 iff P |=ρ φ1 and P |=ρ φ2

iff P |=ρσ1 σ1(φ1) and P |=ρσ2 σ2(φ2)
iff P |=ρσ σ(φ1) and P |=ρσ σ(φ2)
iff P |=ρσ σ(φ1 ∧ φ2)

provided that σ1(x) = σ2(x) for all x ∈ fi(φ1)∩fi(φ2) and σ � fi(φk) = σk
for k ∈ {1, 2}.
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• If φ is 〈x : a〉〉φ′ then by the induction hypothesis:

P |=ρ 〈x : a〉〉φ′ iff there is P
θ−→ P ′ s.t. act(θ) = a and P ′ |=ρ[x7→θ] φ

′

iff there is P
θ−→ P ′ s.t. act(θ) = a and P ′ |=(ρ[x 7→θ])σ′ σ

′(φ′)

iff there is P
θ−→ P ′ s.t. act(θ) = a and P ′ |=ρσ [x 7→θ] σ(φ′)

iff P |=ρσ σ(〈x : a〉〉φ′)
provided that σ = σ′ if x /∈ fi(φ′) while σ[x 7→ σ′(x)] = σ′ if x ∈ fi(φ′).

• If φ is (x : a)φ′ then by the induction hypothesis:
P |=ρ (x : a)φ′ iff there is a†. P ′ ∈ sp(P ) s.t. P |=ρ[x7→apt(a†. P ′,P )] φ

′

iff there is a†. P ′ ∈ sp(P ) s.t. P |=(ρ[x 7→apt(a†. P ′,P )])σ′ σ
′(φ′)

iff there is a†. P ′ ∈ sp(P ) s.t. P |=ρσ [x 7→apt(a†. P ′,P )] σ(φ′)
iff P |=ρσ σ((x : a)φ′)

provided that σ = σ′ if x /∈ fi(φ′) while σ[x 7→ σ′(x)] = σ′ if x ∈ fi(φ′).

• If φ is 〈〈x〉φ′ then by the induction hypothesis:

P |=ρ 〈〈x〉φ′ iff there is P ′
θ−→ P s.t. ρ(x) = θ and P ′ |=ρ φ

′

iff there is P ′
θ−→ P s.t. ρσ

′
(σ′(x)) = θ and P ′ |=ρσ′ σ

′(φ′)

iff there is P ′
θ−→ P s.t. ρσ(σ(x)) = θ and P ′ |=ρσ σ(φ′)

iff P |=ρσ σ(〈〈x〉φ′)
as ρσ

′
(σ′(x)) = ρ(x), provided that σ\{(x, σ(x))} = σ′ if x /∈ fi(φ′) while

σ = σ′ if x ∈ fi(φ′).

Proof of Corollary 1. The proof is divided into two parts:

– Assuming that P1 ∼FRB:brm P2, we observe that the existence of a se-

quence of proved transitions to init(P1)
θP1,1−−−→ . . .

θP1,n−−−→ P1 implies the ex-

istence of a sequence of proved transitions to init(P2)
θP2,1−−−→ . . .

θP2,n−−−→ P2

such that act(θP1,h) = act(θP2,h) for all h = 1, . . . , n, and vice versa, where
{θP1,h | 1 ≤ h ≤ n} = XP1 and {θP2,h | 1 ≤ h ≤ n} = XP2 . Note that n = 0
when P1 and P2 are both initial; moreover θP1,h 6= θP1,k and θP2,h 6= θP2,k

for all h 6= k. Let f1,2 = {(θP1,h, θP2,h) | 1 ≤ h ≤ n}, which clearly is a
label-preserving bijection from XP1

to XP2
.

We proceed by induction on k = depth(φ):

• If k = 0 then φ must be true, which is trivially satisfied by P1 and P2

regardless of their respective permissible environments.

• If k ≥ 1 then there are five cases:

∗ If φ is ¬φ′ then by the induction hypothesis:
P1 |=ρ ¬φ′ iff P1 6|=ρ φ

′

iff P2 6|=f1,2◦ρ φ
′

iff P2 |=f1,2◦ρ ¬φ′
∗ If φ is φ1 ∧ φ2 then by the induction hypothesis:

P1 |=ρ φ1 ∧ φ2 iff P1 |=ρ φ1 and P1 |=ρ φ2

iff P2 |=f1,2◦ρ φ1 and P2 |=f1,2◦ρ φ2

iff P2 |=f1,2◦ρ φ1 ∧ φ2
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∗ If φ is 〈x : a〉〉φ′ then by P1 ∼FRB:brm P2 and the induction hypoth-
esis:

P1 |=ρ 〈x : a〉〉φ′ iff there is P1
θ1−→ P ′1 s.t. act(θ1) = a and P ′1 |=ρ[x7→θ1] φ

′

iff there is P2
θ2−→ P ′2 s.t. act(θ2) = a and P ′2 |=f ′

1,2◦ρ[x 7→θ1] φ
′

iff P2 |=f1,2◦ρ 〈x : a〉〉φ′
provided that f1,2 ∪ {(θ1, θ2)} = f ′1,2.

∗ If φ is (x : a)φ′ then by P1 ∼FRB:brm P2 and the induction hypothesis:
P1 |=ρ (x : a)φ′ iff there is a†. P ′1 ∈ sp(P1) s.t. P1 |=ρ[x7→apt(a†. P ′

1,P1)] φ
′

iff there is a†. P ′2 ∈ sp(P2) s.t. P2 |=f1,2◦ρ[x 7→apt(a†. P ′
1,P1)] φ

′

iff P2 |=f1,2◦ρ (x : a)φ′

∗ If φ is 〈〈x〉φ′ then by P1 ∼FRB:brm P2 and the induction hypothesis:

P1 |=ρ 〈〈x〉φ′ iff there is P ′1
θ1−→ P1 s.t. ρ(x) = θ1 and P ′1 |=ρ φ

′

iff there is P ′2
θ2−→ P2 s.t. ρ(x) = θ2 and P ′2 |=f ′

1,2◦ρ φ
′

iff P2 |=f1,2◦ρ 〈〈x〉φ′
provided that f1,2 = f ′1,2 ∪ {(θ1, θ2)}.

– Assuming that there exists a label-preserving bijection from XP1
to XP2

such
that P1 and P2 satisfy the same formulas of LEI under suitable permissi-
ble environments related by the aforementioned bijection, the result follows
by proving that the symmetric relation B = {(Q1, Q2) | ∃f1,2.∀φ ∈ LEI.
∀ρ ∈ pe(Q1, φ). Q1 |=ρ φ ⇐⇒ Q2 |=f1,2◦ρ φ where f1,2 is a label-preserving
bijection from XQ1 to XQ2} is a brm-forward-reverse bisimulation.
Given (Q1, Q2) ∈ B:

• If Q1
θ1−→Q′1 suppose by contradiction that there is no Q′2 satisfying

the same formulas as Q′1 for some label-preserving bijection f ′1,2 from

XQ′
1

to XQ′
2

such that Q2
θ2−→Q′2 and act(θ1) = act(θ2), i.e., (Q′1, Q

′
2) ∈

B for no Q′2 act(θ1)-reachable from Q2. Since Q2 has finitely many
outgoing transitions, the set of processes that Q2 can reach by per-
forming an act(θ1)-transition is finite, say {Q′2,1, . . . , Q′2,n} with n ≥ 0.
Since none of the processes in the set satisfies the same formulas as Q′1,
for each 1 ≤ i ≤ n there exists φi ∈ LEI such that Q′1 |=ρi φi
but Q′2,i 6|=f ′

1,2,i◦ρi φi for all label-preserving bijections f ′1,2,i from XQ′
1

to XQ′
2,i

.
Since the formulas φ1, . . . , φn may contain different identifiers, let
{zθ | θ ∈ XQ′

1
} be a set of fresh identifiers different from each other and

the related environment ρ′ be defined by ρ′(zθ) = θ for all θ ∈ XQ′
1
. Also

let every substitution σi be defined by σi(x) = zρ′(x) for all x ∈ fi(φi),
so that ρi(x) = ρ′(σi(x)). It holds that Q′1 |=ρ′ σi(φi) by Lemma 2
and Q′2,i 6|=f ′

1,2,i◦ρ′ σi(φi) for all label-preserving bijections f ′1,2,i from
XQ′

1
to XQ′

2,i
.

We can then construct the formula 〈zθ1 : act(θ1)〉〉
n∧
i=1

σi(φi) that is sat-

isfied by Q1 under ρ such that ρ[zθ1 7→ θ1] = ρ′ but not by Q2 under
f1,2 ◦ ρ for all label-preserving bijections f1,2 from XQ1 to XQ2 ; if n = 0
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then it is sufficient to take 〈zθ1 : act(θ1)〉〉true. This formula violates
(Q1, Q2) ∈ B, hence there must exist at least one Q′2 satisfying the same
formulas as Q′1 for some label-preserving bijection f ′1,2 from XQ′

1
to XQ′

2

such that Q2
θ2−→Q′2 and act(θ1) = act(θ2), so that (Q′1, Q

′
2) ∈ B.

• If Q′1
θ1−→Q1 suppose by contradiction that there is no Q′2 satisfying the

same formulas as Q′1 for some label-preserving bijection f ′1,2 from XQ′
1

to

XQ′
2

such that Q′2
θ2−→Q2 and act(θ1) = act(θ2), i.e., (Q′1, Q

′
2) ∈ B for no

Q′2 act(θ1)-reaching Q2. Since Q2 has finitely many incoming transitions,
the set of processes that can reach Q2 by performing an act(θ1)-transition
is finite, say {Q′2,1, . . . , Q′2,n} with n ≥ 0. Since none of the processes in
the set satisfies the same formulas as Q′1, for each 1 ≤ i ≤ n there exists
φi ∈ LEI such that Q′1 |=ρi φi but Q′2,i 6|=f ′

1,2,i◦ρi φi.
Since the formulas φ1, . . . , φn may contain different identifiers, let
{zθ | θ ∈ XQ′

1
} be a set of fresh identifiers different from each other and

the related environment ρ′ be defined by ρ′(zθ) = θ for all θ ∈ XQ′
1
. Also

let every substitution σi be defined by σi(x) = zρ′(x) for all x ∈ fi(φi),
so that ρi(x) = ρ′(σi(x)). It holds that Q′1 |=ρ′ σi(φi) by Lemma 2
and Q′2,i 6|=f ′

1,2,i◦ρ′ σi(φi) for all label-preserving bijections f ′1,2,i from
XQ′

1
to XQ′

2,i
.

We can then construct the formula 〈〈zθ1〉
n∧
i=1

σi(φi) that is satisfied by Q1

under ρ = ρ′ but not by Q2 under f1,2 ◦ ρ for all label-preserving bijec-
tions f1,2 from XQ1

to XQ2
; if n = 0 then it is sufficient to take 〈zθ1〉〉true.

This formula violates (Q1, Q2) ∈ B, hence there must exist at least one
Q′2 satisfying the same formulas as Q′1 for some label-preserving bijec-

tion f ′1,2 from XQ′
1

to XQ′
2

such that Q′2
θ2−→Q2 and act(θ1) = act(θ2),

so that (Q′1, Q
′
2) ∈ B.

• Suppose by contradiction that brm(Q1) 6= brm(Q2). In order not to fall
back into one of the previous cases, we assume that there is an action a
with different nonzero multiplicities in brm(Q1) and brm(Q2). Without
loss of generality, we further assume that a occurs with multiplicity 2 in
brm(Q1) and 1 in brm(Q2).
We can then construct the formula 〈〈x〉true∧ 〈〈y〉true that is satisfied by
Q1 under ρ such that act(ρ(x)) = act(ρ(y)) = a and ρ(x) 6= ρ(y) but
not by Q2 under f1,2 ◦ ρ for all label-preserving bijections f1,2 from XQ1

to XQ2
. This formula violates (Q1, Q2) ∈ B, hence it must be the case

that brm(Q1) = brm(Q2).

Proof of Theorem 6. We proceed by induction on k = depth(φ):

– If k = 0 then there are two cases:

• If φ is true then both P and JP K satisfy it.
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• If φ is M then by Lemma 1:
P |= M iff brm(P ) = M

iff {| act(θ) | P ′ θ−→ P |} = M

iff {| act(θ) | XP ′
act(θ)−−−−→CP ′ XP |} = M

iff JP K |= M

– If k ≥ 1 then there are four cases:

• If φ is ¬φ′ then by the induction hypothesis:
P |= ¬φ′ iff P 6|= φ′

iff JP K 6|= φ′

iff JP K |= ¬φ′
• If φ is φ1 ∧ φ2 then by the induction hypothesis:

P |= φ1 ∧ φ2 iff P |= φ1 and P |= φ2

iff JP K |= φ1 and JP K |= φ2

iff JP K |= φ1 ∧ φ2

• If φ is 〈a〉φ′ then by Lemma 1 and the induction hypothesis:

P |= 〈a〉φ′ iff there is P
θ−→ P ′ s.t. act(θ) = a and P ′ |= φ′

iff there is XP
act(θ)−−−−→CP XP ′ s.t. act(θ) = a and JP ′K |= φ′

iff JP K |= 〈a〉φ′
• If φ is 〈a†〉φ′ then by Lemma 1 and the induction hypothesis:

P |= 〈a†〉φ′ iff there is P ′
θ−→ P s.t. act(θ) = a and P ′ |= φ′

iff there is XP ′
act(θ)−−−−→CP ′ XP s.t. act(θ) = a and JP ′K |= φ′

iff JP K |= 〈a†〉φ′

Proof of Corollary 2. From Theorems 4, 3 and 6 it follows that:
JP1K ∼HHPB JP2K iff P1 ∼FRB:brm P2

iff ∀φ ∈ LBRM. P1 |= φ⇐⇒ P2 |= φ
iff ∀φ ∈ LBRM. JP1K |= φ⇐⇒ JP2K |= φ

Proof of Theorem 7. We proceed by induction on k = depth(φ):

– If k = 0 then there are two cases:

• If φ is true then TBE(true, act(P ), %n) = true and P satisfies both formulas
(the second one for all %n and ρ).

• If φ is M then we divide the proof into two parts. Starting from P |= M ,
we derive that brm(P ) = M , hence for all ai ∈ supp(M) there exists

P ′ai,k
θai,k−−−→ P for 1 ≤ k ≤M(ai) such that act(θai,k) = ai, with P having

no other incoming transitions. If we consider any sequence of proved

transitions P1
θ1−→ P2

θ2−→ . . .
θm−→ Pm+1 such that P1 is to init(P ) and

Pm+1 is P , all the proof terms θai,k appear in the sequence θ1, . . . , θm

because the transitions P ′ai,k
θai,k−−−→ P are all independent from each other.

In the construction of %n, for all ai ∈ supp(M) we have to consider all the
ai-transitions along any path from to init(P ) to P . Therefore, we take



36 M. Bernardo, A. Esposito, and C.A. Mezzina

as n the number of proof terms θj in the sequence θ1, . . . , θm such that
act(θj) = ai for all ai ∈ supp(M). Since brm(P ) = M , the total number
of incoming transitions of P is

∑
ai∈supp(M)

M(ai), while the number of

proof terms θj in the sequence θ1, . . . , θm such that act(θj) = ai and
θj 6∈ {θai,k | 1 ≤ k ≤ M(ai)} is n −

∑
ai∈supp(M)

M(ai). We can map all

numbers between 1 and n−
∑

ai∈supp(M)

M(ai) to the pairs (zi,h, ai) and all

numbers between n−
∑

ai∈supp(M)

M(ai) + 1 and n to the pairs (xi,k, ai).

At this point, we can construct ρ by mapping every xi,k to θai,k and

every zi,h to θai,h such that there is no transition P ′ai,h
θai,h−−−→ P .

It turns out that P |=ρ TBE(M, act(P ), %n) =
∧

ai∈supp(M)

(
M(ai)∧
k=1

〈〈xi,k〉true

∧
](ai,%n)−M(ai)∧

h=1

¬〈〈zi,h〉true) ∧
∧

b∈act(P )\supp(M)

¬(y : b)〈〈y〉true as we now

show by considering each of the three main conjunctions separately:

∗ P |=ρ

M(ai)∧
k=1

〈〈xi,k〉true because, from the way we have constructed ρ,

we know that it maps every xi,k exactly to the proof term θi,k such

that there exists a transition P ′i,k
θai,k−−−→ P with act(θai,k) = ai. More-

over, every P ′i,k trivially satisfies true.

∗ P |=ρ

](ai,%m)−M(ai)∧
h=1

¬〈〈zi,h〉true because, as in the previous case, we

have constructed ρ in such a way that every zi,h is mapped to the
proof term θai,h such that act(θai,h) = ai and there is no transition

P ′ai,h
θai,h−−−→ P . Hence, P |=ρ ¬〈〈zi,h〉true for any zi,h.

∗ P |=ρ

∧
b∈act(P )\supp(M)

¬(y : b)〈〈y〉true because if b /∈ supp(M) then:

· either there is no b†. P ′ ∈ sp(P ) and hence P 6|=ρ (y : b)〈〈y〉true,
i.e., P |=ρ ¬(y : b)〈〈y〉true;

· or, if such a process exists, P does not have any incoming transi-

tion P ′
θ−→ P such that act(θ) = b and hence P 6|=ρ[y 7→θ] 〈〈y〉true,

from which it follows that P 6|=ρ (y : b)〈〈y〉true, i.e., P |=ρ ¬(y :
b)〈〈y〉true.

The converse is straightforward because, if there exist %n and
ρ ∈ pe(TBE(M, act(P ), %n)) such that P |=ρ TBE(M, act(P ), %n), then
we can note that the conjunctions in TBE(M, act(P ), %n) express the
fact that P has exactly

∑
ai∈supp(M)

M(ai) incoming transitions such that

every ai ∈ supp(M) appears M(ai) times, while there are no incoming
transitions of P labeled with actions not in supp(M). Thus, we can derive
that brm(P ) = M , i.e., P |= M .
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– If k ≥ 1 then there are four cases:
• If φ is ¬φ′ then by the induction hypothesis:

P |= ¬φ′ iff P 6|= φ′

iff ∃%n.∃ρ. P 6|=ρ TBE(φ′, act(P ), %n)
iff ∃%n.∃ρ. P |=ρ ¬TBE(φ′, act(P ), %n)
iff ∃%n.∃ρ. P |=ρ TBE(¬φ′, act(P ), %n)

• If φ is φ1 ∧ φ2 then we divide the proof into two parts. Starting from
P |= φ1 ∧ φ2, by the induction hypothesis and Lemma 2:

P |= φ1 ∧ φ2 implies P |= φ1 and P |= φ2

implies ∃%n1
.∃ρ1. P |=ρ1 TBE(φ1, act(P ), %n1

) and ∃%n2
.∃ρ2. P |=ρ2 TBE(φ2, act(P ), %n2

)
implies ∃%n1

.∃%n2
.∃ρσ. P |=ρσ σ(TBE(φ1, act(P ), %n1

)) and P |=ρσ σ(TBE(φ2, act(P ), %n2
))

implies ∃%n1 .∃%n2 .∃ρσ. P |=ρσ σ(TBE(φ1, act(P ), %n1)) ∧ σ(TBE(φ2, act(P ), %n2))
implies ∃%n.∃ρσ. P |=ρσ σ(TBE(φ1, act(P ), %n)) ∧ σ(TBE(φ2, act(P ), %n))
implies ∃%σn.∃ρσ. P |=ρσ TBE(φ1, act(P ), %σn) ∧ TBE(φ2, act(P ), %σn)
implies ∃%σn.∃ρσ. P |=ρσ TBE(φ1 ∧ φ2, act(P ), %σn)

where:
∗ ρσ maps a set fresh of identifiers zθ, one for each θ appearing in

any path from to init(P ) to P , to the corresponding proof term, i.e.,
ρσ(zθ) = θ.

∗ σ is defined as σ(x) = zρ1(x) for all x ∈ fi(TBE(φ1, act(P ), %n1
)) and

σ(x) = zρ2(x) for all x ∈ fi(TBE(φ2, act(P ), %n2
)).

∗ Since P |= φ1 and P |= φ2, both %n1 and %n2 have to be built
consistently with any path from to init(P ) to P , hence they can be
replaced by a single %n that is built in the same consistent way.

∗ %σn is defined as %σn(m) = (σ(x), a) for all 1 ≤ m ≤ n such that
%n(m) = (x, a) and x ∈ fi(TBE(φ, act(P ), %n)). Since all free identi-
fiers are captured by %n, σ(TBE(φ, act(P ), %n)) = TBE(φ, act(P ), %σn).

As for the converse:
∃%n.∃ρ. P |=ρ TBE(φ1 ∧ φ2, act(P ), %n) implies ∃%n.∃ρ. P |=ρ TBE(φ1, act(P ), %n) ∧ TBE(φ2, act(P ), %n)

implies ∃%n.∃ρ. P |=ρ TBE(φ1, act(P ), %n) and P |=ρ TBE(φ2, act(P ), %n)
implies P |= φ1 and P |= φ2

implies P |= φ1 ∧ φ2

• If φ is 〈a〉φ′ then by the induction hypothesis:

P |= 〈a〉φ′ iff there is P
θ−→ P ′ s.t. act(θ) = a and P ′ |= φ′

iff there is P
θ−→ P ′ s.t. act(θ) = a

and ∃%n.∃ρ. P ′ |=ρ[x7→θ] TBE(φ′, act(P ′), %n ∪ {(n+ 1, (x, a))})
iff ∃%n.∃ρ. P |=ρ 〈x : a〉〉TBE(φ′, act(P ), %n ∪ {(n+ 1, (x, a))})
iff ∃%n.∃ρ. P |=ρ TBE(〈a〉φ′, act(P ), %n)

• If φ is 〈a†〉φ′ then by the induction hypothesis:

P |= 〈a†〉φ′ iff there is P ′
θ−→ P s.t. act(θ) = a and P ′ |= φ′

iff there is P ′
θ−→ P s.t. act(θ) = a and ∃%n.∃ρ. P ′ |=ρ[x7→θ] TBE(φ′, act(P ′), %n)

iff there is P ′
θ−→ P s.t. act(θ) = a and ∃%n.∃ρ. P |=ρ[x 7→θ] 〈〈x〉TBE(φ′, act(P ), %n)

iff there is a†. P ′′ ∈ sp(P ) s.t. apt(a†. P ′′, P ) = θ and P |=ρ[x 7→apt(a†. P ′′,P )] 〈〈x〉TBE(φ′, act(P ), %n)
iff ∃%n.∃ρ. P |=ρ (x : a)〈〈x〉TBE(φ′, act(P ), %n)
iff ∃%n.∃ρ. P |=ρ TBE(〈a†〉φ′, act(P ), %n)
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