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Abstract—Blockchain is one of the most promising emerging
technologies, but its large-scale deployment raises sustainability
issues, specifically in terms of energy consumption. In addition to
consensus algorithms, energy efficiency is influenced by several
other parameters, including network topology. We present
a systematic analysis of the impact of five distinct network
topologies (fat-tree, full mesh, hypercube, scale-free, and
torus) on the energy consumption of five blockchain platforms
(Algorand, Diem, Ethereum Clique, Quorum IBFT, and Solana)
under three different workloads (PayPal and VISA transaction
processing and GAFAM smart contract execution). Our results
reveal that fat-tree and full mesh are the most energy-efficient
network topologies, in particular under heavy workloads.
Moreover, they show that Algorand and Diem exhibit the lowest
energy consumption per transaction, while Ethereum Clique
features the highest energy consumption – regardless of the used
topology – and Quorum IBFT and Solana lead to higher energy
costs under intensive workloads as the network size increases.

Index Terms—blockchain, energy consumption, network
topology, emulation, sustainability.

I. INTRODUCTION

Blockchains are distributed ledgers that can be public
(permissionless) or private (permissioned). Their primary
goal is to facilitate the recording of transactions in an
immutable and transparent manner. While public blockchains
aim for decentralization and the elimination of a central
authority, private blockchains may retain some level of central
control for specific use cases [1]. Achieving these properties
necessitates a self-governing and computationally intensive
validation process executed by participating nodes, called the
consensus protocol [1]. Two notable consensus protocols for
public blockchains include Proof of Work (PoW) [2] and Proof
of Stake (PoS) [3], which are designed to synchronize node
operations and resolve conflicts within the blockchain network.

Validator nodes rely on high-performance hardware such as
GPUs, FPGAs, and ASICs to solve mathematical proofs for
block validation and rewards. Despite their efficiency, these
devices incur significant economic and environmental costs.
Consequently, the rapid adoption of blockchain has driven
energy demands, with Bitcoin mining in 2021 consuming
nearly six times the amount of energy it consumed in 2017
and matching the annual energy consumption of countries like
Finland and Argentina [4]. This has sparked global concern
and efforts to mitigate blockchain environmental impact.
Key contributors to energy inefficiency include the consensus

protocol in use and the hardware employed by participating
nodes. While research has focused on optimizing these factors
– such as transitioning from PoW to PoS [5] or developing
energy-efficient hardware like ASICs – other approaches
have considered the adoption of renewable energy sources to
mitigate carbon emissions and methods for data optimization
(e.g., data sharding) [6]. Additionally, a range of tools is
available for analyzing blockchain energy consumption,
using both predictive evaluations (e.g., via testbed and
benchmarking frameworks) and post-deployment analysis
(e.g., by means of visualization tools and measures [7]).

Despite such significant efforts and proposals to address
excessive energy consumption, the role of network topology
– affecting workload distribution, communication latency, and
overall blockchain efficiency [8] – remains largely overlooked.
This limitation hinders the development of holistic strategies
to enhance blockchain sustainability. To address this gap, we
provide a systematic and comprehensive analysis of how net-
work topologies impact blockchain energy consumption under
varying workloads, including both transaction processing and
smart contract execution. Specifically, we evaluate five distinct
network topologies – fat-tree, full mesh, hypercube, scale-free,
and torus – which represent different real-world blockchain
network configurations, ranging from public Internet networks
to private data center infrastructures [9]. We investigate their
impact on the energy consumption of five public/private
blockchains: Algorand [10], Diem [11], Ethereum Clique [12],
Quorum IBFT [13], and Solana [14]. We show how the choice
of the network topology plays a critical role in determining
the energy consumption of blockchain protocols. Specifically:
• Fat-tree and full mesh are generally the most energy-

efficient topologies across all blockchains, particularly in
handling intensive workloads.

• Hypercube performs well for transaction processing
workloads, especially for Algorand and Diem, while
scale-free and torus topologies show inefficiencies with
certain types of transactions.

• Torus underperforms in energy efficiency, particularly in
Ethereum and Solana, due to conflicts with increasing
network size.

• Algorand and Diem benefit significantly from topologies
like full mesh and hypercube, maintaining a low energy
consumption per transaction.
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• Ethereum Clique shows the highest energy consumption
per transaction, regardless of the underlying topology.

• Quorum IBFT experiences increased energy consumption
with more demanding workloads, especially under fat-tree,
hypercube, and torus topologies.

• Solana demonstrates high energy demands and operational
failures in larger node setups.
For our experimental framework, we enhanced Diablo [8],

a benchmark suite for blockchains, by incorporating
Kollaps [15], a state-of-the-art network topology emulator,
along with Intel Running Average Power Limit (RAPL) energy
indicators to measure energy consumption. This integration
enabled the generation of custom network topologies, to
emulate realistic communication patterns and measure energy
consumption under varying conditions. To align with industry
benchmarks, our workloads are derived from prior studies [8].
We modeled PayPal and VISA workloads based on their
claimed transaction capacities, while the GAFAM workload
simulated burst requests for Google, Apple, Facebook,
Amazon, and Microsoft stock trades using smart contracts.

Roadmap. §II covers background on blockchains and
energy awareness. §III presents related work. §IV explains our
evaluation methodology. §V describes our results. Finally, §VI
concludes the paper by discussing insights and limitations.

II. BACKGROUND

A blockchain is a particular distributed digital ledger
that records transactions across multiple nodes in a secure,
transparent, and tamper-proof manner. Each “block” contains
a set of transactions, cryptographically linked to the
preceding block, thus forming a “chain”. Smart contracts
are specialized self-executing blockchain programs, with
predefined conditions, written in high-level programming
languages [16]. These contracts automate processes without
intermediaries, guaranteeing trust and efficiency.

At the core of blockchain operations lies the consensus
protocol, which ensures agreement among participants on the
state of the ledger. Various consensus mechanisms exist, e.g.,
PoW [2], used by Bitcoin, which relies on computationally
intensive tasks, and PoS [3], which selects validators based
on the amount of cryptocurrency they hold. Alternative
protocols, like Delegated Proof of Stake (DPoS) [17] and
Practical Byzantine Fault Tolerance (PBFT) [18], aim to
improve efficiency and scalability.

Blockchains fall into three categories: public, private, and
consortium [19]. Public blockchains (e.g., Bitcoin), are open
to anyone and without a central authority. Private blockchains
restrict participation to authorized users and retain some
level of central control. Consortium blockchains are jointly
managed by multiple organizations. To study the impact of
network topology, we examine five blockchains: three public
ones (Algorand [10], Ethereum [12], Solana [14]), a private
one (Diem [11]), and a consortium one (Quorum [13]).

Energy Consumption in Blockchains. Blockchain
networks, especially those using PoW, face criticism
for high energy demands driven by competitive mining

and resource-intensive cryptographic puzzles. Key factors
influencing energy consumption include hash functions,
which are computationally intensive tasks [4]. Despite the
millions of participants racing to solve the puzzle, only one is
ultimately successful, leaving the others’ computational efforts
effectively wasted [4]. While validating a transaction in any
blockchain network involves two main energy components
– local computation by a node and communication energy
for packet transmission between nodes – the computational
demands of PoW are so high that the energy costs of
communication become negligible [20].

While Bitcoin’s PoW consumes between 200 and 950
kWh per transaction, Ethereum, before transitioning to
PoS, required approximately 75 kWh per transaction [20],
highlighting the need for more energy-efficient consensus
mechanisms. One of the most impactful solutions to address
PoW inefficiencies is the adoption of PoS consensus, which
can reduce energy consumption by up to 99.5% [4].

III. RELATED WORK

The literature reveals a strong emphasis on solutions and
methods for studying and analyzing energy consumption in
blockchains [7], [20]–[22]. These approaches primarily focus
on post-deployment analysis. For example, the Cambridge
Blockchain Network Sustainability Index (CBNSI) [7] is a
recent a posteriori tool offering insights into Bitcoin and
Ethereum’s energy consumption.

Conversely, predictive methods, which rely on a testing
environment, have received significantly less attention.
Although several blockchain benchmarking tools have been
developed [8], [23], they lack an efficient way of measuring
energy consumption. Instead, it is typically measured
manually or through external methods such as estimations.
For instance, the authors of [24] leverage a highly effective
benchmarking tool (BCTMark [23]) that measures energy
consumption by relying on both external instrumentation and
estimates based on Ethereum gas consumption.

In addition, a significant limitation in existing research lies
in the evaluation of network variations, encompassing not only
different topologies but also diverse network configurations
that can characterize a distributed network of nodes such as
a blockchain. Most of these predictive studies on energy con-
sumption in blockchains focus on IoT and SDN scenarios. The
authors of [21] propose an FPGA-based testbed for estimating
Bitcoin’s energy consumption. The research in [22] highlights
the critical role of the underlying network in determining the
energy efficiency of a blockchain, emphasizing how much it
depends on broadcast protocols and network size – an issue
even more pronounced in IoT contexts. The study highlights
that blockchain peers often use a random neighbor selection
mechanism to decide which peers to exchange data with,
which can lead to suboptimal communication links.

DistBlockNet [25] and Blockchain Security over SDN
(BSS) [26] lack an evaluation of energy consumption. This
gap could potentially introduce security challenges within
the architecture. The authors of [27] perform an energy



comparison between different routing protocols. However, the
consensus protocol was offloaded from the IoT devices, lead-
ing to a significant reduction in actual energy consumption.

In [20], the energy consumption of blockchain systems is
analyzed through a model that also accounts for network-
related aspects, i.e., the number of messages exchanged per
transaction. However, it was not possible to test networks
of varying sizes due to resource constraints. This practical
approach involved the use of a dedicated testbed and
monitoring devices to measure energy consumption during
the experiments. The study found that in Ripple [28] and
Stellar [29] the majority of energy costs are due to packet
transmission rather than the consensus mechanism itself. In
contrast, for PoW-based systems, the consensus mechanism
was identified as the primary source of energy consumption.

In [24] the focus is on the evaluation of applications
implemented via smart contracts. It highlights that the highest
energy consumption stems from call replications across
the entire network. This underscores the importance of
accounting for network variations in this context. However,
despite leveraging tools like EnosLib [30] using Linux
TC [31] for network modeling, the framework is unable to
fully emulate or replicate a complete network topology.

By integrating Kollaps with Diablo, we are able to emulate
comprehensive and configurable topologies with respect to
various properties (e.g., latency, bandwidth, packet drop,
jitter, etc.) with greater accuracy than other similar tools, as
demonstrated in [15]. Furthermore, we utilize Intel RAPL
energy counters to obtain measurements without the need for
external or manual instrumentation.

IV. EVALUATION METHODOLOGY

This section describes the experimental evaluation with
details on the emulated environment as well as experiment
configurations, blockchains under test, used workloads, and
considered topologies.

A. Experimental Settings
Our cluster consists of 7 Dell PowerEdge R630 servers,

each equipped with two 16-core Intel Xeon E5-2683v4 CPUs
(2.10 GHz) and 128 GB RAM, interconnected via a Dell
S6010-ON 40 GbE switch. All nodes operate on Ubuntu
Linux 22.04 LTS with kernel version 5.15.0-107-generic.

B. Framework
We conduct our experiments by using a blockchain

benchmark suite, Diablo [8], and a network topology
emulator, Kollaps [15]. These tools were selected as leading
state-of-the-art solutions in their fields.

In particular, Diablo enables distributed experiments on
platforms like the cloud through an emulated environment,
thus ensuring reproducibility, versatility, observability, and
portability, along with user-friendly features. It can manage
a distributed workload generation mechanism with nodes
interacting with the specific blockchain via a dedicated client
interface, guaranteeing synchronized evaluations. Additionally,
Diablo automates the infrastructure setup process and can
inject realistic workloads (e.g., smart contracts and transfer

(a) fat-tree (b) full mesh (c) hypercube (d) scale-free (e) torus

Fig. 1: Real-world network topologies
transactions) with varying volumes and complexities, natively
supporting Amazon Web Services (AWS) deployments.

Kollaps, on the other hand, is a cutting-edge technology for
emulating complex networks [15]. It can simulate large-scale
distributed applications by modeling end-to-end properties
such as latency, bandwidth, and packet loss. Kollaps supports
native processes and virtual machines while integrating with
container orchestrators like Docker Swarm and Kubernetes.

To collect energy data, we relied on Intel RAPL
indicators [32]. This hardware feature allows us to monitor
energy consumption across various domains of the CPU
package and its components, as well as the DRAM memory
managed by the CPU. These are incremental energy counters
that provide measurements in microjoules. In our cluster
setup, the machines are equipped with two sockets (each
with 16 cores/32 threads), so the recorded values represent
the cumulative energy consumption across both sockets.
Specifically, we queried the available energy counters by
using the sysfs/powercap interface. To convert the energy
consumption from microjoules to kilowatt-hours (kWh), we
first divide the values by 1,000,000 to obtain joules and then
use the conversion factor 1J=2.7778×10−7kWh.
C. Topologies

Our experiments rely on five distinct network topologies
(see Fig. 1), designed to simulate 10 geographically distributed
regions worldwide: Cape Town, Tokyo, Mumbai, Sydney,
Stockholm, Milan, Bahrain, Sao Paulo, Ohio, Oregon.

The fat-tree topology, widely employed in data centers,
consists of multiple hierarchical layers of interconnected
gateways. For our emulation, 20% of the gateways (2 per
region) are assigned to the first layer, while 50% (5 regions)
are assigned to the second layer. Gateway selection for
these layers is based on the lowest latency values from the
dataset; connections between layers are randomized to reduce
dynamic routing and optimize data transmission. Blockchain
nodes are connected to second-layer gateways.

The full mesh topology ensures that all nodes are directly
connected to one another, mirroring the high connectivity
typical of cloud-based environments.

In the hypercube topology, nodes connect in a binary
pattern, forming a multidimensional structure often found in
parallel computing and IoT systems. For our use case, we
employ a 4-dimensional hypercube, which can accommodate
up to 24=16 nodes, sufficient for our 10-region setup.

The scale-free topology features nodes with highly uneven
connectivity, where certain nodes maintain significantly more
links than others [33]. This structure is generated by using
the preferential attachment algorithm [34], which prioritizes
connecting new nodes to those with high connectivity. This
design is reminiscent of large-scale networks (WAN), such
as the Internet [33].



TABLE I: Blockchains main characteristics

Type Consensus Virtual Machine DApp Language
Algorand Public BA [10] AVM PyTeal
Diem Private HotStuff [36] MoveVM Move
Ethereum Public Clique [37] geth Solidity
Quorum Consortium IBFT [38] geth Solidity
Solana Public TowerBFT [39] Sealevel Solang

Finally, the torus topology is a grid-like structure where
nodes connect to adjacent ones in a wrap-around manner, thus
enabling efficient data transfer. As is common in data centers
and supercomputing environments [35], we implement a 2D
torus with 2 rows and 5 columns to model our 10 regions.

D. Blockchains under Test
Below is an overview of the blockchains analyzed in our

study, with their core characteristics summarized in Table I.
These blockchains represent diverse system architectures,

varying in their network types (e.g., public, private,
consortium), smart contract programming languages (e.g.,
Solidity, PyTeal, Move), execution environments (e.g.,
AVM, MoveVM, Geth, Sealevel), and consensus protocols
(e.g., BA, HotStuff, Clique, IBFT, TowerBFT). To ensure
consistency, we adopted the blockchain configurations used
in [8]. Specifically, for each blockchain, we utilized a specific
version indicated by a repository commit.

Algorand [10] operates using a pure PoS (Proof of
Stake) consensus mechanism, where blocks are proposed
by a randomly selected subset of nodes. During testing, we
optimized performance by polling the blockchain only after
new blocks were added, which enhanced transaction commit
detection. Experiments were conducted by using Algorand at
commit 116c06e [40].

Diem [11] employs an adaptation of the HotStuff consensus
protocol [36], achieving deterministic finality with reduced
communication overhead. Although Diem is no longer
actively developed, we used its testnet branch at commit
4b3bd1e [41]. Despite its discontinuation, Diem remains
a valuable case study for understanding permissioned
cryptocurrency systems and the broader design considerations
for future digital currencies.

Ethereum [12] serves as a public blockchain for
decentralized applications (DApps) and smart contracts. Our
experiments utilized the Clique PoA (Proof of Authority)
protocol [37], chosen for its ability to avoid inherent
throughput bottlenecks. Blocks are validated and added
sequentially by pre-defined validators in a round-robin
manner, with a minimum block interval of 1 second in our
setup. To account for Ethereum’s London upgrade (August
2021), which introduced dynamic gas fees, our benchmarks
required real-time fee adjustments and transaction signing.
Testing was performed using the Go implementation of
Ethereum (Geth), commit 72c2c0a [42].

Quorum [13], [43], an enterprise-focused version of
Ethereum, is designed for permissioned networks. Following
the configurations outlined in [8], we deployed Quorum with
the IBFT consensus protocol [38], commit 919800f [44].
This setup addresses common challenges in PoA systems,
such as message delays and resilience to arbitrary faults [37].

TABLE II: Workloads description

Workload Type Duration (s) Scenario TPS
PayPal Transfer Tx 300 Constant rate 200
VISA Transfer Tx 300 Constant rate 1,800
GAFAM Smart contract 180 Burst 20,000 down to 100

Solana [14] leverages the TowerBFT consensus proto-
col [39], which combines features from both BFT and PoS to
enhance scalability and throughput. A key innovation in Solana
is its use of Proof of History (PoH) [45] for timestamping,
which allows for fast and efficient transaction ordering. Unlike
Ethereum, Solana does not use Merkle Patricia Trie for its data
structure, instead it opts for an alternative approach designed
for high throughput and scalability. Transactions are finalized
after 30 confirmations and blocks are added every 400 mil-
liseconds. In our experiments, the API’s ability to set commit-
ment levels and monitor blocks was utilized. Given the short
timeframes typical for realistic DApps (around 120 seconds),
we periodically fetched the latest block hash during evalua-
tions. Testing was conducted by using commit 0d36961 [46].

E. Workloads
We consider three workloads modeling transfer transactions

and smart contracts (see Table II), as detailed next.
PayPal payment system workload averages 193 transactions

per second (TPS) [47]. For simplicity, we modeled it as a
constant workload of 200 TPS over 5 minutes in our tests.

VISA payment system workload averages 1,700 TPS [47].
For simplicity, we modeled it as a constant workload of
1,800 TPS over 5 minutes in our tests.

GAFAM implements a financial market smart contract
that enables users to purchase and check the availability of
stocks of Google, Apple, Facebook, Amazon, and Microsoft.
Based on the values taken from [48], the system operates for
3 minutes, peaking at 19,800 TPS before stabilizing between
25 and 140 TPS. For simplicity, we have rounded the peak
to 20,000 TPS.

V. MEASUREMENT RESULTS

We investigate the impact of the five considered topologies
on the energy consumption of the five examined blockchains
under the three aforementioned workloads. To ensure
robustness, each experiment was repeated three times. The
average energy consumption across these runs is reported
in Figs. 2 to 7. In Figs. 2 to 6 we present a multifaceted
analysis for each blockchain, including the total network
energy consumption (left), the average energy consumption
per node (middle), and the average energy consumption per
committed transaction (right). We include the specific Commit
Transaction Number (CTN) for each experiment in the bar
plot, as this is essential for energy consumption analyses.
Furthermore, for the average energy consumption per node,
we account for energy variability as the network size increases
(denoted by average · 10/40 in the legends of Figs. 2 to 6).

Specifically, we illustrate the energy variation between the
observed values for the 40 nodes configuration and the 10
nodes configuration, comparing these results to the expected
linear trend. For example, assuming linear scalability, a
consumption of 2 kWh per node with 10 nodes would translate



0
5

10
15
20
25
30

Pa
yP

al
 (k

W
h)

23
.7

 | 
CT

N:
 5

74
22

21
.8

 | 
CT

N:
 5

77
12

19
.8

 | 
CT

N:
 5

77
90

19
.9

 | 
CT

N:
 5

71
07

21
.0

 | 
CT

N:
 5

72
13

21
.9

 | 
CT

N:
 5

72
01

20
.1

 | 
CT

N:
 5

73
84

24
.5

 | 
CT

N:
 5

78
76

20
.6

 | 
CT

N:
 5

73
50

24
.1

 | 
CT

N:
 5

74
78

0
5

10
15
20
25
30

VI
SA

 (k
W

h)

22
.8

 | 
CT

N:
 1

56
42

8

24
.6

 | 
CT

N:
 1

67
62

6

20
.9

 | 
CT

N:
 1

66
44

1

23
.9

 | 
CT

N:
 1

48
51

9

23
.3

 | 
CT

N:
 1

63
59

4

21
.3

 | 
CT

N:
 1

09
02

6

22
.1

 | 
CT

N:
 1

48
15

3

22
.9

 | 
CT

N:
 1

48
35

6

21
.9

 | 
CT

N:
 8

22
76

21
.2

 | 
CT

N:
 1

15
00

5

fat-tree full mesh hypercube scale-free torus
(A) - Network topologies - Total kWh over all nodes

0
5

10
15
20
25
30

GA
FA

M
 (k

W
h)

13
.1

 | 
CT

N:
 2

53
44

17
.4

 | 
CT

N:
 2

87
90

12
.8

 | 
CT

N:
 2

40
86

17
.3

 | 
CT

N:
 1

55
92

15
.1

 | 
CT

N:
 2

69
58

16
.2

 | 
CT

N:
 2

25
91

15
.1

 | 
CT

N:
 2

46
68

13
.3

 | 
CT

N:
 2

50
25

14
.2

 | 
CT

N:
 2

31
87

15
.6

 | 
CT

N:
 1

81
77

10 nodes 40 nodes

0.0
0.5
1.0
1.5
2.0
2.5
3.0

Pa
yP

al
 (k

W
h)

2.
4 

| C
TN

: 5
74

22

2.
2 

| C
TN

: 5
77

12

2.
0 

| C
TN

: 5
77

90

2.
0 

| C
TN

: 5
71

07

2.
1 

| C
TN

: 5
72

13

0.
5 

| C
TN

: 5
72

01

0.
5 

| C
TN

: 5
73

84

0.
6 

| C
TN

: 5
78

76

0.
5 

| C
TN

: 5
73

50

0.
6 

| C
TN

: 5
74

78

0.0
0.5
1.0
1.5
2.0
2.5
3.0

VI
SA

 (k
W

h)

2.
3 

| C
TN

: 1
56

42
8

2.
5 

| C
TN

: 1
67

62
6

2.
1 

| C
TN

: 1
66

44
1

2.
4 

| C
TN

: 1
48

51
9

2.
3 

| C
TN

: 1
63

59
4

0.
5 

| C
TN

: 1
09

02
6

0.
6 

| C
TN

: 1
48

15
3

0.
6 

| C
TN

: 1
48

35
6

0.
5 

| C
TN

: 8
22

76

0.
5 

| C
TN

: 1
15

00
5

fat-tree full mesh hypercube scale-free torus
(B) - Network topologies - Average kWh per node

0.0
0.5
1.0
1.5
2.0
2.5
3.0

GA
FA

M
 (k

W
h)

1.
3 

| C
TN

: 2
53

44

1.
7 

| C
TN

: 2
87

90

1.
3 

| C
TN

: 2
40

86

1.
7 

| C
TN

: 1
55

92

1.
5 

| C
TN

: 2
69

58

0.
4 

| C
TN

: 2
25

91

0.
4 

| C
TN

: 2
46

68

0.
3 

| C
TN

: 2
50

25

0.
4 

| C
TN

: 2
31

87

0.
4 

| C
TN

: 1
81

77

10 nodes average · 10/40 40 nodes

10 4

10 3

10 2

10 1

100

Pa
yP

al
 (k

W
h)

0.
00

04
13

 | 
CT

N:
 5

74
22

0.
00

03
77

 | 
CT

N:
 5

77
12

0.
00

03
43

 | 
CT

N:
 5

77
90

0.
00

03
48

 | 
CT

N:
 5

71
07

0.
00

03
68

 | 
CT

N:
 5

72
13

0.
00

03
83

 | 
CT

N:
 5

72
01

0.
00

03
51

 | 
CT

N:
 5

73
84

0.
00

04
23

 | 
CT

N:
 5

78
76

0.
00

03
59

 | 
CT

N:
 5

73
50

0.
00

04
19

 | 
CT

N:
 5

74
78

10 4

10 3

10 2

10 1

100

VI
SA

 (k
W

h)

0.
00

01
46

 | 
CT

N:
 1

56
42

8

0.
00

01
47

 | 
CT

N:
 1

67
62

6

0.
00

01
25

 | 
CT

N:
 1

66
44

1

0.
00

01
6 

| C
TN

: 1
48

51
9

0.
00

01
43

 | 
CT

N:
 1

63
59

4

0.
00

01
99

 | 
CT

N:
 1

09
02

6

0.
00

01
5 

| C
TN

: 1
48

15
3

0.
00

01
55

 | 
CT

N:
 1

48
35

6

0.
00

02
71

 | 
CT

N:
 8

22
76

0.
00

01
87

 | 
CT

N:
 1

15
00

5

fat-tree full mesh hypercube scale-free torus
(C) - Network topologies - Average kWh per transaction

10 4

10 3

10 2

10 1

100

GA
FA

M
 (k

W
h)

0.
00

05
17

 | 
CT

N:
 2

53
44

0.
00

06
03

 | 
CT

N:
 2

87
90

0.
00

05
29

 | 
CT

N:
 2

40
86

0.
00

14
6 

| C
TN

: 1
55

92

0.
00

05
62

 | 
CT

N:
 2

69
58

0.
00

07
22

 | 
CT

N:
 2

25
91

0.
00

06
19

 | 
CT

N:
 2

46
68

0.
00

05
4 

| C
TN

: 2
50

25

0.
00

06
29

 | 
CT

N:
 2

31
87

0.
00

08
91

 | 
CT

N:
 1

81
77

10 nodes 40 nodes

Fig. 2: Algorand energy consumption (kWh): total over all nodes (A), average per node (B), average per transaction (C).
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(A) - Network topologies - Total kWh over all nodes
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(B) - Network topologies - Average kWh per node
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fat-tree full mesh hypercube scale-free torus
(C) - Network topologies - Average kWh per transaction
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Fig. 3: Diem energy consumption (kWh): total over all nodes (A), average per node (B), average per transaction (C).
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(B) - Network topologies - Average kWh per node
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fat-tree full mesh hypercube scale-free torus
(C) - Network topologies - Average kWh per transaction
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Fig. 4: Ethereum Clique energy consumption (kWh): total over all nodes (A), average per node (B), average per transaction (C).
to 0.5 kWh per node with 40 nodes. In Fig. 7, we focus on the
same topology across all blockchains. We examine the average
energy consumption per transaction, comparing it across all

blockchains for the three workloads and each topology.
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(B) - Network topologies - Average kWh per node
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(C) - Network topologies - Average kWh per transaction
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Fig. 5: Quorum IBFT energy consumption (kWh): total over all nodes (A), average per node (B), average per transaction (C).
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Fig. 6: Solana energy consumption (kWh): total over all nodes (A), average per node (B), average per transaction (C).
A. Energy Variability as the Network Expands

Let us analyze how energy consumption varies as
the system scales in size. Interestingly, the data show
that increasing the number of nodes in a network does
not necessarily lead to a proportional rise in the overall
energy consumption. In many cases, the network topology
significantly and positively impacts the blockchain energy
efficiency, although its effectiveness varies depending on the
workload being analyzed. For Algorand (see Fig. 2 A and
B), the full mesh topology stands out for its ability to reduce
energy consumption (−17%) as the network grows, across
all workloads, followed by the fat-tree topology. However,
fat-tree reacts poorly to smart-contract-based workloads,
with energy consumption per node increasing by over 20%.
Similarly, hypercube and torus also exhibit inefficiencies
under transaction processing workloads. In the case of Diem
(see Fig. 3 A and B), the fat-tree topology is, on average, the
most efficient across all workloads, with energy savings up to
35%. Hypercube also performs well for transaction processing
workloads, reducing energy consumption by 40%, a trend that
echoes the behavior observed in Algorand. However, the scale-

free topology excels under smart contract workloads (−50%)
but shows high consumption (+45%) for less intensive
transaction processing workloads, such as those resembling
PayPal. Ethereum (see Fig. 4 A and B), on the other hand,
struggles to achieve energy efficiency improvements as the
network grows, regardless of the used topology. Scale-free
and torus perform poorly across all three workloads, while
hypercube and fat-tree are the least efficient for intensive
transaction processing workloads like VISA (+40%). For
smart contract workloads, all topologies contribute to a
consumption increasing between 10% and 20%. For Quorum
(see Fig. 5 A and B), the fat-tree topology proves to be the
most energy efficient across all three workloads, particularly
for transaction processing workloads (−10% to −20%),
followed by full mesh, which does not bring significant
improvements or losses in energy consumption. Conversely,
torus is the least efficient, with consumption increases
ranging from 15% to 25%. Hypercube performs well with
smart contract workloads (+20%) but struggles with intensive
transaction processing workloads like VISA, showing a +15%
increase in energy consumption. Finally, Solana (see Fig. 6



A and B) faces severe scalability issues, with committed
transactions dropping to zero in many 40-node configurations,
which makes energy consumption irrelevant in most practical
applications. However, for transaction processing workloads,
the torus topology still emerges as inefficient (+20%). A
broader analysis highlights some common trends among
these blockchains. Full mesh and fat-tree topologies tend
to be the most energy efficient overall, adapting well to a
variety of workloads. In contrast, topologies like torus and
scale-free, while occasionally offering advantages in specific
scenarios, are generally less reliable and often responsible for
higher energy consumption, particularly in extended network
configurations or intensive transaction processing workloads.

B. Network Topology Impact on Energy per Transaction
The relationship between energy consumption and commit-

ted transactions reveals that higher energy usage does not
necessarily translate into greater transactional throughput. In-
stead, there is a clear negative correlation between energy per
transaction (kWh/commit) and the number of committed trans-
actions (see Figs. 2 to 6), which suggests that protocols capable
of handling higher transaction volumes tend to achieve greater
energy efficiency on a per-transaction basis. This highlights
the importance of designing scalable network topologies that
optimize energy use as the network grows. Additionally, Fig. 7
allows us to individually analyze each topology across all
blockchains. Protocols like Algorand and Diem exemplify this
efficiency, consistently maintaining low energy consumption
per transaction (in the 10−4 order) under topologies such as
hypercube and full mesh (see Figs. 2 and 3 C). These topolo-
gies enable both blockchains to process significant transaction
volumes with minimal energy overhead. However, torus is less
efficient in comparison, highlighting how the choice of topol-
ogy can influence energy dynamics even within otherwise effi-
cient systems. Ethereum, in stark contrast, exhibits the highest
energy consumption per transaction (ranging from the 10−3 to
10−2 order) among the analyzed blockchains, regardless of the
used network topology. This uniform inefficiency across all
topologies points to inherent limitations in Ethereum’s proto-
col design that restrict energy efficiency, especially as transac-
tion volumes grow. Quorum, while generally more adaptable,
experiences significant increases in energy consumption as
workloads intensify, particularly when transitioning from sim-
pler PayPal-like workloads to more demanding scenarios. This
trend becomes even more pronounced under smart contract
workloads, with topologies such as fat-tree, hypercube, and
torus demonstrating energy consumption values in the 10−1

order range. As the network scales, Quorum’s energy costs
escalate further, indicating potential inefficiencies in adapting
to high-demand workloads. Solana, on the other hand, shows
energy costs per transaction comparable to those of Algorand
and Diem under similar conditions, positioning it among the
most energy-efficient protocols. However, network size issues
within Solana hinder accurate quantification of its energy con-
sumption as the network grows. Observations about the torus
topology suggest that network conflicts in larger configurations

would likely lead to increased energy consumption per transac-
tion, undermining its otherwise competitive energy efficiency.

C. Workload-Specific Insights
The impact of network topology on energy efficiency

becomes even more apparent when analyzing workload-
specific behaviors across different blockchain protocols.

The PayPal workload, characterized by 200 TPS distributed
over 300 seconds, is relatively low in intensity compared
to the other two workloads. Under this workload, both
Algorand and Diem maintain low energy consumption per
transaction, with topologies such as full mesh and hypercube
performing well. On the other hand, topologies like torus
show slight inefficiencies, particularly for Ethereum and
Quorum, where energy consumption rises moderately. For
PayPal-like workloads, fat-tree and full mesh topologies are
typically the most energy efficient.

The VISA workload, featuring 1,800 TPS for 300 seconds,
significantly increases the demand on the system. Here,
Algorand and Diem again show superior efficiency, with
hypercube and full mesh ensuring energy efficiency even
under high transaction volumes. In contrast, Ethereum faces
substantial energy inefficiencies, with energy consumption
rising across all topologies. Fat-tree and hypercube emerge
as the least efficient under this workload, especially for
Ethereum, where consumption can rise by over 40%.
Similarly, Quorum exhibits an increase in energy usage under
transaction processing workloads like VISA, especially with
fat-tree and torus topologies, as the network scales.

The GAFAM workload, which executes smart contract calls
over 180 seconds, presents a unique challenge due to its burst
nature—initially reaching 20,000 TPS and then stabilizing at
100 TPS. For this workload, Algorand and Diem continue to
demonstrate low energy consumption per transaction, partic-
ularly under hypercube and full mesh topologies. Torus again
shows inefficiencies, especially with Ethereum, where energy
usage rises sharply as the burst phase of the GAFAM workload
demands high throughput. Fat-tree shows moderate efficiency
for this workload, but its energy efficiency suffers compared to
other topologies when dealing with high bursts of transactions.

VI. CONCLUSIONS

This study provides an innovative contribution to
understanding energy consumption in blockchain systems,
emphasizing the importance of network topology as a
key factor. The findings underscore the need to integrate
topological analysis into the design process to foster the
development of more sustainable blockchains.

Network topology assumes a fundamental role in
determining blockchain energy efficiency, with fat-tree and full
mesh topologies emerging as the most efficient for increasing
workloads. Algorand and Diem demonstrate superior
efficiency, achieving low energy consumption per transaction,
particularly under full mesh and hypercube configurations.
However, the differences between Algorand and Diem are
noteworthy. Algorand, as a fully decentralized blockchain,
must overcome the complexity of consensus without central
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Fig. 7: Comparison of average energy consumption (kWh) per transaction across blockchains, stratified by topology ( 10 nodes , 40 nodes ).
authority. Instead, Diem, with its centralized governance,
inherently operates with reduced energy requirements. While
Diem’s efficiency is expected given its design, Algorand’s
ability to rival it highlights its advanced protocol optimization.

In stark contrast, Ethereum Clique features high energy
consumption across all topologies and workloads, particularly
under intensive scenarios like VISA and GAFAM.

Quorum faces scalability challenges, with rising energy
costs under demanding workloads, especially in fat-tree,
hypercube, and torus topologies. Solana’s scalability issues
obscure accurate energy consumption assessments, as the
torus topology amplifies inefficiencies with network growth.

Workload-specific analyses further emphasize that full
mesh and hypercube topologies perform best under lighter
workloads (i.e., PayPal), while Algorand and Diem remain
efficient even under high-throughput tasks (i.e., VISA).
However, burst-heavy workloads (i.e., GAFAM) challenge all
networks, exposing Ethereum’s inefficiencies and reinforcing
the robustness of Algorand and Diem.

Overall, our results highlight that blockchain design must
align with optimal topologies to enhance energy efficiency.
While some public blockchains, like Ethereum, naturally align
with scale-free structures and private ones, like Diem, with
fat-tree or hypercube, our study suggests that node reconfigu-
rations could further optimize efficiency while preserving their
fundamental characteristics. The findings point to a critical
call for Ethereum to address its limitations and a broader need
for continued innovation in blockchain infrastructure to ensure
sustainability and scalability in decentralized economies.

Limitations and Future Work. We conducted experiments
on a 40-node blockchain network, offering insights into small-
scale benchmarking [49]. While we did not explore large-scale
dynamics, prior research [8] supports the representativeness of
a 40-node setup. We anticipate that scaling up would further

reinforce observed topology efficiency trends (Fig. 2-7).
Future work will expand network size by using multiple
clusters and heterogeneous machines for energy assessments.

We collected data from all three runs, allowing variance
and confidence interval calculations, though these were
omitted from figures for readability. Energy consumption was
measured at the machine level for practicality, but finer-grain
container-level analysis is possible [50]. Kollaps deploys
containers based on resource availability, with minimal
overhead from additional processes. While containerization
and emulation (Docker and Kollaps) introduce differences
from real-world deployments, they enable energy-efficient
evaluations while capturing topology impact.

Electricity costs vary by region, so we report results in kWh,
providing a basis for cost-effective topology selection and en-
vironmental impact assessment. Though this study focuses on
static networks, our framework supports dynamic simulations
of real-world events (e.g., node churn, connectivity changes).

To ensure reproducibility, we analyzed blockchain
platforms with distinct characteristics (§IV-D), aligning
with Diablo [8], but additional blockchains, topologies, and
complex workloads can be considered.

Reproducibility. We support the reproducibility
of our experiments by providing the repository link
https://doi.org/10.5281/zenodo.11409100 along with
instructions (file README_ICBC25.md) and datasets
to replicate all experiments and results in this paper.
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