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Abstract—In the decentralized finance landscape, algorithmic
stablecoins offer a promising solution for stabilizing the value
of cryptocurrencies without relying on centralized collaterals.
However, models like the dual-token system are vulnerable to
depeg events, as demonstrated by the catastrophic collapse of
the Terra-Luna ecosystem in 2022, which saw over 50 billion
dollars in market capitalization evaporate in just a few days. This
work proposes DualTokenSim, a Python simulator designed to
analyze the behavior of cryptocurrencies based on the dual-token
model under both normal and panic scenarios. The simulator
uses automated market makers and a stochastic process to
simulate price dynamics and user behavior. The aim is to offer
an environment in which to explore and analyze solutions for
improving the resilience of algorithmic stablecoins during periods
of market instability.

Index Terms—algorithmic stablecoin, decentralized finance,
simulation, Terra-Luna, dual-token seigniorage model

I. INTRODUCTION

The financial sector, once dominated only by centralized
entities, is going to be gradually transformed by the blockchain
technology, leading to the rise of decentralized finance (DeFi).
In this new paradigm, financial services are driven by smart
contracts rather than central authorities, thus becoming acces-
sible even to unbanked individuals with just a phone and an
Internet connection [1].

DeFi platforms leverage cryptocurrencies as the primary
medium of exchange within their ecosystems. However, the
inherent volatility of these assets presents challenges for their
use in DeFi applications. To address this issue, stablecoins
were introduced, i.e., special cryptocurrencies specifically de-
signed to maintain stable value by being pegged to a fiat cur-
rency or other assets. While collateralized stablecoins ensure
stability through financial backing, they introduce a different
degree of centralization, which contradicts the decentralized
philosophy of DeFi because a company is typically responsible
for managing the collateral and facilitating its redemption.
This introduces the need for trust in the company behind the
stablecoin. A notable example is Tether, the company behind
USDT, which has faced criticism for its lack of transparency
and admitted in the past that USDT is not fully backed by
collateral [2]. For these reasons, algorithmic stablecoins (ASs)
emerge as an innovative and original solution, eliminating the

need for collateral while maintaining price stability through
algorithms. This makes them an ideal choice for achieving
complete decentralization.

There are two main models of AS: rebasing and dual-token
(or seigniorage). The Ampleforth protocol (AMPL) [3] is an
example of the rebasing model, where the total supply of
AMPL is automatically adjusted based on its price relative to a
fiat currency. This adjustment occurs directly in users’ wallets,
by increasing the number of their tokens when the price is
above the peg or decreasing it when the price falls below. On
the other hand, the Terra-Luna ecosystem [4] is an example
of the dual-token model, where a collateral token (CT), i.e.,
LUNA, is used to absorb fluctuations in the value of the AS,
i.e., TerraUSD (UST). This process helps stabilize UST’s price
by minting or burning tokens as needed, often through the
exploitation of arbitrage opportunities.

Despite their promise, ASs have faced significant failures in
their brief history, such as the resounding collapse of the Terra-
Luna ecosystem in 2022, which saw over 50 billion dollars in
market value evaporate in a few days [5]. This underscores
the vulnerability of a stablecoin without collateral backing.

This article introduces DuallokenSim, a Python simulator
designed to analyze the behavior of an AS and its CT within
a dual-token model, both under normal market conditions and
during periods of panic. The price dynamics of the tokens
and user behavior during panic scenarios are modeled by
means of a stochastic process and leveraging the simplicity
of Automated Market Makers (AMMs).

DualTokenSim enables the analysis of how an AS can re-
spond to potential solutions designed to enhance its resilience
during periods of crisis and allows for the adjustment of
various parameters, providing flexibility in exploring different
scenarios. The ability to observe the behavior of an AS in a
simulated environment is highly valuable, as these stablecoins
represent an ideal solution within the DeFi landscape.

The rest of the paper is organized as follows. In Section II,
we provide an overview of the basics of AMMs and the
dual-token model, along with a brief review of state-of-the-
art research on stablecoins. In Section III, we describe the
fundamental architecture of DualTokenSim, focusing on how
it models the price dynamics of both AS and CT as well



as how it captures user panic behavior when AS loses its
peg. In Section IV, we outline the validation process used
to evaluate DualTokenSim performance against real-world
data. In Section V, we present the results obtained from
our simulations and assess whether DualTokenSim performs
effectively in realistic scenarios. Finally, Section VI concludes
the paper.

II. BACKGROUND

In this section we explore the fundamentals of a dual-token
model, used nowadays at least for FRAX and USDD, and how
prices can be simulated through a straightforward formula. We
shall use the Terra-Luna ecosystem as a reference.

In Section II-A, we discuss the fundamentals of Automated
Market Makers, focusing specifically on the constant-product
pricing formula, the most widely used mechanism in this class
of systems. Subsequently, in Section II-B, we examine the
Terra algorithmic market module and its role in maintaining
the price stability of its stablecoins. Finally, in Section II-C,
we present an overview of existing research based on stable-
coins and the tools available for simulating cryptocurrencies
behavior.

A. Automated Market Makers

AMMs play a pivotal role in the DeFi ecosystem by en-
abling the exchange of one cryptocurrency for another without
the need for a central authority acting as an intermediary.
This is the leading philosophy of decentralized exchanges
(DEX), where the exchange process is solely driven by a
simple formula and few lines of code [6]. Unlike traditional
centralized order-book-based exchanges, AMMSs operate by
using liguidity pools (LPs), i.e., simple smart contracts that
hold token reserves.

The simplest type of AMM, known as Constant Product
Market Maker (CPMM), operates by using a constant-product
formula, which ensures that the product of the two token
reserves in the pool remains constant: k£ = x - y [7]. Here, x
and y represent the reserves of the two tokens in the pool, and
k is a constant known as the invariant of the pool. The token
balances are dynamically adjusted with each swap in such a
way that their product remains constant. This mechanism is
essential in DualTokenSim, as it provides a simple way to
model token trades and observe how their prices fluctuate in
response, effectively simulating the dynamics of a free market.

When discretizing time, we can think of each time interval
as a trade taking place within a CPMM that changes its state.
More precisely, each CPMM is described by a LP 17, 7,
consisting of two tokens T, and T},. At the discrete-time instant
n, the state of the CPMM is defined by:

e Q.(n) and Qy(n), which represent the reserves of T, and
Ty, respectively, within the LP at iteration n.

e k(n) = Qau(n) -Qp(n), which is the invariant at time n.
The invariant k& actually changes over time due to the impact
of transaction fees and variations in the liquidity of the LP
contributed by users. For instance, in the case of Uniswap, the
most used DEX with the highest Total Value Locked (TVL) [8],

0.3% of each transaction’s value is retained as a fee and
added to the LP. This increases the overall liquidity and,
consequently, alters the value of k. However, in a simulated
environment, we could set the fee to 0% and prevent any lig-
uidity increments by users in the LP, thus effectively keeping
k constant.

The CPMM state at a given time n can be written as:

Mz, 1,(Qa(n), Qu(n))

A swap can be defined as a function that operates on the
state of the CPMM. In this process, a user provides an input
quantity g, of token 7Tj to the LP and receives an output
quantity g, of token T3 from the LP, effectively purchasing T}
in exchange for 7,. The quantities exchanged are determined
by the invariant curve that governs the CPMM. If the swap is
performed at time n-+ 1, the change in the supply of the output
token 73 — which corresponds to the amount g, purchased by
the user — is given by:

k(n) k(n+1)
a = Qp(n) — Qp(n +1) RO AT (1)

In an AMM, the price of a token is measured in terms of
the other token present in the LP. Going into details, the price
P,(n) of token T, at time n is determined by the ratio of
the quantities of the two tokens inside the LP at that specific
moment. Expressed in terms of T3, it is given by:

_ Qv(n)
Qa(n)

This is what Uniswap refers to as the “mid price” [9]. It can
be viewed as the price at which one could theoretically trade
an infinitesimally small amount of one token for the other in
the LP, without slippage' of the price.

Each swap alters the supply of the two tokens, thereby
influencing their price, as described by Formula 2. This
dynamics follows the “principle of scarcity”: as the quantity of
a token in the LP decreases, its price relative to the other token
increases. Conversely, when a token becomes more abundant
in the pool, its price tends to decrease. A typical example of
the application of this principle is represented by gold and
Bitcoin, both of which maintain high value due to their rarity.

P,(n)

(in Tp/Ty) 2)

B. The Terra Stabilization Mechanism

The Terra-Luna ecosystem was the most prominent example
of a dual-token model, with its main AS, i.e., UST, supported
by its CT, i.e., LUNA. For a few years the algorithm respon-
sible for maintaining the peg to the reference value of $1
worked effectively, enabling the ecosystem to become the third
largest one by market capitalization, surpassed only by Bitcoin
and Ethereum. However, vulnerabilities in the algorithm and
not ideal management of DeFi services offered by the Terra
blockchain, such as the rich rewards promised by Anchor

I'Slippage refers to the difference between the expected price of a trade and
the actual price, which occurs when the trade size impacts the price due to
insufficient liquidity.



protocol [10], led to a dramatic collapse in 2022, resulting
in the loss of more than 50 billion dollars [5].

The Terra algorithmic Market Module (TMM) played a

central role in maintaining the price stability of UST. This
is the module that provides incentives for arbitrageurs to mint
or burn UST in response to price deviations from the peg.
An arbitrageur is an individual or entity that engages in the
practice of exploiting price discrepancies in different markets
to make profits.
When the UST’s market price falls below the peg, e.g., $0.98,
arbitrageurs can burn 1 UST obtaining automatically $1 worth
of LUNA from the protocol, making a $0.02 profit per UST
burnt. Conversely, if the UST’s price exceeds the peg, e.g.,
$1.02, they can burn $1 worth of LUNA and mint 1 UST,
again yielding a $0.02 profit. The buying or selling pressure
on UST generated by arbitrageurs helps realign the value of
the AS to the established level of one dollar. This realignment
is further supported by the principle of scarcity: specifically,
when UST becomes scarcer, its value tends to increase, while
excessive availability can lead to a decrease in value.

This dynamics could be particularly problematic during a
depeg event. In the case of the Terra-Luna collapse, panic-
driven users began burning UST following the design of
the protocol. However, this repeated action led to an exces-
sive minting of LUNA, which ultimately caused its value
to plummet. The massive increase in the supply of LUNA
triggered a severe hyperinflation, with the number of LUNAs
in circulation skyrocketing from 340 millions to over 6.5
trillions by the end of the collapse [11]. As a result, the value
of both tokens crashed, exacerbating the crisis.

Figure 1 illustrates the steps arbitrageurs take to profit
during a de-peg event, demonstrating how a dual-token model
works to restore the price of its AS.

AS Price < 1.00 $ AS Price > 1.00 %

Buy discounted AS.

-

Burn AS obtaining
1 dollar worth of CT
for each AS bumt.

Buy CT.

1

Burn CT obtaining
1 AS for each dollar
waorth of CT burnt.

Sell the newly
obtained CT on the
market.

Sell the newly
obtained AS on the
market.

Fig. 1: Strategy used by arbitrageurs in a dual-token model.

The mechanism operates via the virtual liquidity pool (VLP)
of the protocol, with LUNA’s price sourced from validator

oracles. The VLP is implemented through a variant of the
classical CPMM algorithm described in Section II-A. The cor-
responding variant of the constant-product formula is defined
as:

CP = Pool%,.. - _ (3)

o Base PTiC@LUNA

where Poolp,se is the initial quantity of USTs in the pool,
while the fraction 1/ Pricery v 4 expresses the price of LUNA
in USD as observed in external markets [12]. Priceryna i
repeatedly updated by oracles, implying that the pool actively
adapts to market fluctuations.

The TMM integrates the T'erraPools stabilization mecha-
nism, with the parameter ¢ indicating the deviation of the UST
amount in the VLP compared to its base size Poolpgse:

CcP

Poolryna = ——— 4)

Pooly st = Poolpgse + 67
Pooly st

The dynamics of ¢ plays a crucial role in adjusting the LP
sizes in response to market activities. As swaps happen and
the balance between UST and LUNA quantities shifts, ¢
changes to ensure that C'P stays constant. A key aspect of the
functionality of the market module is its ability to replenish the
VLP, progressively bringing § back towards zero. The rate of
this replenishment is determined by the Pool RecoveryPeriod
parameter, defined in terms of blocks. At the end of each
block — with one block being produced approximately every
6 seconds — ¢ is updated by changing it to:

1
§-(1— 5
( PoolRecoveryPem’od) )

This formula governs the adjustment of §, with
PoolRecoveryPeriod influencing the pace of the adjustment.
This parameter was determined by the Terra community and,
just before the time of the depegging event, its value was 36,
meaning that a partial replenishment of the VLP occurs every
36 - 6 = 216 seconds if no transactions take place during this
period [12]. Note, as a consequence, that a full replenishment
can be obtained only when the number of blocks tends to
infinity.

C. Literature Review

Stablecoins have garnered interest from researchers and
financial institutions due to their design and impact on finan-
cial stability and regulation. The ECB’s Crypto-Assets Task
Force addresses stablecoins in report n. 247 [13]. Calcaterra et
al. [14] explore core design principles and their interrelations.
Ante et al. [15] review 22 articles, highlighting types, benefits,
risks, and regulatory challenges, along with research gaps
like data scarcity. Clements [16] discusses the fragility of
algorithmic stablecoins, citing risks from market incidents
like Terra-Luna, while Zhao et al. [17] analyze volatility
in algorithmic stablecoins by using theoretical and empirical
methods to establish a framework for understanding market
conditions.

The Terra-Luna ecosystem has been the subject of several
studies, particularly regarding its challenges and the failure in



May 2022. Briola et al. [18] systematically analyze social me-
dia to describe the events leading to this failure, highlighting
the project fragility and its reliance on the Anchor protocol.
They also investigate the crash triggers using transaction data
for BTC, LUNA, and UST. Uhlig [19] introduces a new theory
and methodology to explain the gradual nature of crashes,
offering insights based on this analysis.

Existing tools include ShardingSim [20], a modular
simulator for committee-based sharding blockchains, and
DAISIM [21], an open-source model of the collateralized
DAL stablecoin. Our previous work [22] presents two MAT-
LAB simulators designed to reproduce the dynamics of the
Terra—Luna ecosystem. By contrast, DualTokenSim not only
flexibly models any dual-token algorithmic stablecoin un-
der diverse market conditions, but is also validated against
on-chain data. To our knowledge, no other public framework
combines such breadth with real-world validation.

III. DUALTOKENSIM OVERVIEW

In this section we outline the fundamentals of DualToken-
Sim, our simulator developed in Python, by focusing on two
key aspects: the management of price dynamics through the
prototype of a CPMM and the simulation of user behavior
during healthy and crisis scenarios. The simulation operates
in discrete-time intervals called iferations, during which trades
and arbitrage actions occur, altering the price of both AS and
CT. This tool is highly flexible, as it allows users to adjust
several parameters according to their preferences. Python was
chosen for its versatility, ease of use, and extensive ecosystem
of libraries, which make it ideal for implementing complex
simulations and managing dynamic data.

In Section III-A, we detail the implementation of the LPs in
DualTokenSim and explain how the prices of both AS and CT
could be expressed in USD terms. Then, in Section III-B we
briefly describe the management of tokens, their properties,
and the distinctive characteristics of each token class. Finally,
in Section III-C we discuss the stochastic process governing
trades in the LPs, highlighting how these dynamics adapt based
on whether AS is in a healthy or depegged state, as determined
by its price.

A. Price Dynamics through a CPMM

We require a method to accurately replicate price fluctua-
tions in the free market for both the AS and the CT, which
together form the backbone of the dual-token model. This
is achieved by leveraging the simplicity of CPMMs, which
operate in discrete-time intervals referred to as iterations.

To simulate token prices, a separate LP is maintained for
each token. As outlined in Formula 2, within the context of
an AMM, the price of one token is expressed in terms of the
other token in the same LP. To ensure consistency in pricing,
it is essential to establish a fixed reference; this reference
could be the USD, which serves as a stable benchmark for
analyzing token price fluctuations. Since fiat currencies cannot
be directly utilized in DeFi services, including CPMMs appli-
cations, we introduce a simplifying assumption. Specifically,

we designate the second token in each LP as Ty, a fully
collateralized stablecoin pegged to USD. This allows token
values to be expressed in USD terms, under the assumption
that 7y maintains a constant external value of 1 USD.

Two LPs are used to model the prices of AS and CT. The
first LP, denoted by 1145, simulates the market operations of
AS and consists of AS and Ty. The second pool, denoted
by TI¢7, replicates the market dynamics of CT and consists
of CT and Ty. At each discrete-time step in the simulation,
random swaps occur within IT4% and TI¢7, which alter their
states and update the prices of AS and CT accordingly.

B. Token Management

Each token is represented as an object in the context
of object-oriented programming, characterized by various
attributes. These include the name of the token, its price
expressed in USD, the total circulating supply, and the portion
of the circulating supply not locked in smart contracts (such as
AMMs). This subset of tokens, referred to as free_supply,
is available for user trading or for exploiting arbitrage oppor-
tunities within the dual-token model protocol.

There are various token classes with distinct characteristics.
For example, DualTokenSim could use generic volatile cryp-
tocurrencies, and the token 7y mentioned in Section III-A is
represented as a dummy token with a constant price of 1 USD
and an infinite circulating supply. For managing a dual-token
system, there is a dedicated token class representing AS and
another for CT. Each AS object is tightly linked to a single
CT object.

C. Stochastic Swaps

As mentioned in Section III-A, at each iteration a swap
occurs within TI4% and I1¢”. Now we need a method to de-
termine the magnitude and type of each swap, i.e., how many
units of AS and CT are bought or sold. This is accomplished
by utilizing a stochastic process, which introduces randomness
to reflect market dynamics.

The magnitude and type of swaps occurring within IT4
and TI¢7T are influenced by the health status of the market,
which depends on the AS price. The market can either be in
a healthy or panic scenario. The healthy scenario represents a
normal market condition, where users act in a more rational
manner. In contrast, when the market enters the panic scenario,
a mechanism is triggered to simulate the irrational behavior
of users, whose decisions are driven more by emotions than
by rationality. It is understood that the AS tends to maintain
its peg within the healthy scenario, while it is more likely to
lose the peg when the market enters the panic scenario.

The boundary between the panic and the healthy scenarios is
determined by a parameter called threshold. Assuming the
peg is set at $1, the market is in a healthy scenario if the price
of AS lies between 1 — threshold and 1 + threshold.
If the price falls below 1 — threshold or rises above 1 +
threshold, the market enters a panic scenario. However, the
situation where the price of AS exceeds the 1 +threshold
boundary is less critical, as it is typically driven by excessive



enthusiasm, with users often buying AS impulsively. The more
concerning situation occurs when the price drops below 1 —
threshold, signaling a potentially harmful situation for AS
due to impulsive selling by users. The threshold parameter
is set to a default value of 0.05, but it can be adjusted as
needed.

Both I14% and TI¢” have their own Gaussian distribution,
each with a specific mean x4 and variance o2. A reasonable
approach is to start the simulation with a default normal
distribution with g = 0 and 0? = 1. However, p and o>
are parameters adjustable as needed for both LPs.

The Gaussian distribution associated with II4S (or II¢7T)
determines the probability of buying/selling AS (or CT),
depending on the sign of the number randomly picked at each
iteration. A positive number corresponds to a sale, while a
negative number corresponds to a purchase. When the mean is
zero, the probability of selling the token is 50%. By adjusting
the mean and shifting consequently the Gaussian shape, we
can control the probability of selling the token, as shown in
Figure 2.

Normal and Shifted Gaussian Distributions
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Fig. 2: Normal and shifted Gaussians.

The mean of the Gaussians is updated at each iteration.
When the market is in a healthy scenario, i.e., the price of
AS is greater than 1 — threshold, the mean p remains
zero. In such a scenario, purchases and sales of both AS and
CT alternate with a 50% probability, suggesting that the peg
will be probably maintained, unless disrupted by a series of
unfortunate trades.

When the price of AS falls below 1 — threshold and the
market enters a panic scenario, the mean of the Gaussian is
updated according to a specific function. The default function
used in our simulation is f(z) = L, since it aims to capture
the irrational behavior of participants during such downturns.
However, the framework is fully customizable, as it is possible
to plug in any alternative function, and even assign different
update rules to the AS and CT so that each distribution’s mean
evolves according to its own dynamics.

As the price of AS approaches zero, the mean of the Gaussian

increases more rapidly, thereby raising the probability of
selling both AS and CT. The mean is updated at each iteration
according to the default function illustrated in Figure 3.

Gaussian Mean as a Function of AS Price
T

] __a
10 H= mmpme

=== Threshold

Gaussian Mean (u)
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Fig. 3: Function used to update the Gaussian mean based on
the AS price.

A normal Gaussian is not sufficient to determine the magni-

tude of the swap. At each iteration, the Gaussian distribution
is scaled by a factor called volatility. The number drawn
from the Gaussian is multiplied by this factor and the result
represents the amount of the token, expressed in dollars, to be
sold if positive or bought if negative. The volatility factor
directly influences the magnitude of these swaps. To maintain
uniformity, the amount of AS or CT to trade (depending on
whether we are considering IT4° or TI”") must be expressed
in dollars.
The Gaussian is actually truncated to ensure that trades re-
main physically feasible. Specifically, this truncation prevents
selling an amount exceeding the free_supply of the token
or purchasing an amount larger than the portion locked in the
specific LP. The limits of the truncated Gaussian are defined
as follows, where the specified variables can refer to either
AS or CT:

(free_supply — total_supply) - token_price

volatility

b— free_supply-token_price

volatility

The volatility parameter also affects these bounds,
thereby influencing the range of possible trade amounts. Dual-
TokenSim allows for the replication of real trading volumes by
treating volatility as a list of values, each corresponding
to a specific trading volume within a given time interval. In
summary, the dollar amount of the token to be traded is de-
termined by sampling from a truncated Gaussian distribution,
which depends on four parameters:

dollars_trade_amount = truncnorm(a,b, i, o)



This dollar amount is then converted into the corresponding
number of tokens, i.e., t rade_amount, which represents the
number of tokens to be traded in the LP:

dollars_trade_amount

trade_amount = -
token_price
Simultaneously with the trades occurring in the market, the
arbitrage operations described in Section II-B are simulated
too. These operations modify the total supply of both AS and
CT and generate buy and sell actions within the LPs with the
goal of making a profit.

IV. VALIDATION

Validation is an essential step in the development of any
simulator. The accuracy and reliability of the output of a sim-
ulator depend on its ability to replicate real-world phenomena
effectively. In a dual-token AS system, validation ensures that
the simulator accurately captures the interactions between the
AS and its CT under various market conditions, including
normal market scenarios and collapse events.

To validate DualTokenSim, we modeled the collapse of UST
that occurred in May 2022. This event provides a comprehen-
sive test case due to its complexity and the availability of
detailed real-world data on trading volumes and token sup-
plies. This replication tests the robustness of DualTokenSim
and helps us understand the mechanisms behind peg loss
and market panic. The goal is to improve the reliability of
DualTokenSim for analyzing and predicting similar systems
under stress conditions.

A. Challenges in Validation

Validating a simulator like ours that models financial mar-
kets presents several challenges. Financial markets are com-
plex systems influenced by a variety of factors, including
trader behavior and psychology, market sentiment, liquidity,
and external economic indicators. Capturing the full scope
of these dynamics in a simulation is inherently challenging.
We have made several approximations in modeling market
dynamics. In DualTokenSim, we employ two LPs to represent
market activities. However, this approach could be a simpli-
fication compared to real-world markets, where liquidity is
distributed across numerous pools, exchanges, and participants
with varying strategies and motivations.

A major challenge is replicating market behavior during
extreme volatility. Panic selling, herd behavior, and irrational
responses can disrupt normal trading patterns, thus making
accurate modeling difficult. Additionally, aligning the param-
eters of DualTokenSim with real-world data requires careful
calibration due to the often noisy and incomplete nature of
market data.

The dual-token model is characterized by complex inter-
actions between the AS and the CT, governed by algorithmic
rules that lead to non-linear behaviors. As a consequence, fine-
tuning of the simulation parameters using real data is not a
trivial task.

B. Validation Approach

We simulated the Terra ecosystem from May 1, 2022, to
May 30, 2022. The validation process involved the following
key steps:

1) Data Acquisition: We collected real-world daily trading
volumes and circulating supplies for UST and LUNA
over the period leading up to and during the col-
lapse [23].

2) Mapping Data to Simulator Parameters: The collected
data were used to calibrate the parameters of DualTo-
kenSim, particularly the volatility parameters and
the initial conditions for the LPs.

3) Simulation Execution: DualTokenSim was run over the
simulated 30-days period, generating transactions for
both the AS and the CT based on the calibrated pa-
rameters.

4) Results analysis: we compared the obtained prices and
supplies variation against the real data of UST and
LUNA.

By closely aligning the inputs of DualTokenSim with actual
market data, we aimed to reproduce key aspects of the UST
collapse, such as the loss of peg by the stablecoin, increased
selling pressure, and the consequent impact on the value of
CT. The validation required careful mapping of real-world data
into our framework and the empirical calibration of parame-
ters to replicate market behaviors. DualTokenSim operates in
discrete-time steps. We chose to model the collapse by using a
block-level granularity, with each iteration corresponding to a
block generation event on the Terra blockchain. Since the Terra
blockchain was built on the Cosmos ecosystem, a new block
was produced approximately every 6 seconds. Consequently,
each iteration of the simulation represents 6 seconds of real-
world time. For each iteration, transactions are generated for
both AS and CT by using the stochastic process presented
earlier (II-C). To align the simulated trading volumes with
the real-world daily trading volumes Vg,iiy, we create a list of
volatility values. During each iteration, we select a value v
from this list to compute the next stochastic trading amount
used in the swap for each token. The number of daily iterations

is:
24-60-60 — 14,400

]Viterations =

The average volume per iteration is then:

Viteration = ﬂ

N; iterations

In DualTokenSim, the quantity ¢ of each transaction is defined
as:

v

P, market

where Pparker 18 the current market price of the token and p is
a random variable sampled from a normal distribution:

p~N(u,o°)

2

q:

with mean p and variance 0 = 1. The absolute value |p|
ensures that ¢ is non-negative, while the sign of p determines



the transaction direction (buy or sell). To match the expected
per-iteration trading volume Vjeraion, W€ set the volatility
parameter v in such a way that:

Viteration = E[q : Pmarket] = EHp” v

where E[.] represents the expectation of the corresponding
random variable Since p follows a normal distribution with
mean p = 0 and variance o2 = 1, the expected value of [p| is
given by the mean of the folded normal distribution:

2
E[lp|]] = 04/= = 0.7979 foroc =1
™

If we solve for v, we obtain:

o Viteration _ Viteration

YT E[pl] T 07979

This calculation allows building the volatility list and then
adjusting the volatility parameter v for each iteration, ensuring
that the expected transaction volume matches the observed
trading volumes over the simulation period. In the simu-
lation code, this mapping is implemented in the function
calculate_volatility_array, which computes v for
each token based on its daily trading volumes.

To induce the system to collapse, we applied a selling
pressure to UST by adjusting the mean p of the normal
distribution from which p is sampled. Initially, ; = 0, which
implies an equal likelihood of buy and sell transactions.
Starting on the fifth simulated day (May 5, 2022), we increased
w1 to 0.1. This adjustment shifted the normal distribution, thus
resulting in a greater proportion of positive p values (remember
that p > 0 corresponds to sell transactions). Consequently,
UST experienced significant sell pressure in the simulation.
The choice of p was determined through an iterative process
of running the simulation and comparing the outcomes to
real-world price trajectories of UST and LUNA during the
collapse. By fine-tuning i, we aimed to replicate key features
of the event, including the rate of price decline, the volume
of sell transactions, and the timing of the loss of peg by the
stablecoin.

This empirical calibration involved balancing the sensitivity
of the selling pressure to price changes with the overall
stability of the simulation. A higher value of p results in a
more pronounced selling response to price declines, poten-
tially leading to unrealistic market behaviors if set too high.
Conversely, a lower 1 may underrepresent the severity of panic
selling observed in the real event.

C. Liquidity Pools Setup

To replicate the market dynamics during the collapse of
the Terra ecosystem, we implemented three distinct LPs: a
stablecoin-reference pool, a collateral-reference pool, and a
VLP connecting AS and CT. Each pool was initialized with
parameters derived from real-world data, so as to ensure
consistency with observed market conditions.

The stablecoin-reference pool was constructed by using the
AS and the reference token (USD). The initial quantity of the

stablecoin in the pool Qpooi,as Was calculated as the difference
between the total initial supply of the stablecoin Qa5 and its
free supply Qfree.as (i-€., the quantity available for trades):

onol,AS = QAS - eree,AS

The quantity of the reference token Qusp in the pool was then
computed as Qusp = (pooras - Pas, where Pyg is the initial
market price of the stablecoin. A constant product formula
governed the pricing mechanism of the LP, with a transaction
fee of 0.3%. The collateral-reference pool was initialized by
following the same procedure as the stablecoin-reference pool.
In both cases, we determined that the quantity of free tokens
is 80% of the total token quantity.

The VLP uses a seigniorage mechanism similar to that of
the Terra ecosystem (II-B). The VLP is configured with the
actual parameters from the Terra blockchain at the time of its
collapse [24]. Specifically, the recovery period of the pool is
set to 36 blocks and the base quantity of the stablecoin is set
to 6.7215 - 107.

Finally, the panic scenario is triggered when the price falls
below $0.98 (i.e., threshold = 0.02). The panic functions
that govern the selling pressures are defined as follows:

fust = ! 2.961224, f, - 0.002041
UST—I/S . o Juna =l .

To reflect the effective dynamics of the Terra collapse, we
implemented a termination condition for the VLP mechanism.
Specifically, the stabilization algorithm is halted when the
LUNA market capitalization remains below 2% of the UST
market capitalization for more than 5,000 consecutive itera-
tions. This condition mirrors the actual deactivation of the
Terra’s stability mechanism on May 12, 2022, when the severe
devaluation of LUNA rendered the algorithmic stabilization
protocol ineffective.

V. RESULTS

In this section we present the results of the simulation,
highlighting key findings and their consistency with real-world
data observed during the collapse of the Terra ecosystem in
May 2022. The results are summarized graphically in Figure 4.

First, by appropriately tuning the simulation parameters, we
were able to accurately replicate the timing of the collapse,
which occurred on May 12, 2022. This is evident in the
stablecoin price graph in Figure 4, where the simulated price
trajectory of UST closely follows the real price decline,
capturing the sudden depegging event with precision.

Second, the simulated price trajectory of LUNA also aligns
closely with the real price behavior. The rapid decline in
LUNA’s value, reflecting the system’s inability to stabilize the
stablecoin, is consistent between the simulation and historical
data.

Third, the final prices of UST and LUNA at the end of the
simulation (May 30, 2022) were 0.211635 and 0.057334 USD,
respectively. While these differ slightly from the real prices on
the same date (0.025112 for UST and 0.000127 for LUNA,
as detected on CoinMarketCap [23]), they remain within an
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Fig. 4. Comparison of simulated and real data during the Terra-Luna collapse. The top-left panel shows the simulated and
real price histories of UST (stablecoin), while the top-right panel illustrates the simulated and real price histories of LUNA
(collateral token). The simulated values are sampled every 14,400 iterations (corresponding to 24-hour intervals), while the
real values correspond to the closing prices recorded at 23:59:59 of each day. The bottom-left panel presents the market
capitalizations of UST and LUNA, both simulated and real, while the bottom-right panel displays the evolution of the virtual

pool 4, highlighting shifts in system dynamics over time.

acceptable range given the complexity of the system and the
number of parameters one can control in the model.

Lastly, the changes in token supplies, a critical metric for
dual-token algorithmic stablecoin systems like Terra-Luna,
were captured effectively. The simulation observed a reduction
in UST supply from 18.49 - 10° to 15.24 - 10° tokens, and an
increase in LUNA supply from 3.453 - 108 to 2.232 - 10!}
tokens. These variations are consistent with historical data,
which report a final UST supply of 11.27 - 10° tokens and a
final LUNA supply of 6.536 - 10'2 tokens.

VI. CONCLUSIONS

Our Python simulator DualTokenSim effectively replicates
the collapse of the Terra-Luna ecosystem by modeling price
dynamics, the surge in LUNA supply, and market behavior
during the depegging event. Its open-access nature allows for
ongoing improvements and collaboration within the research
community, with all code and technical details to be shared
online.

Key areas for enhancement include:

o Model refinement, based on incorporating more market
factors and different arbitrage dynamics for greater real-
ism.

« Validation and improvement proposals, which serve as a
testbed for evaluating modifications to the VLP mecha-
nism and new stabilization techniques.

e Automating parameter fine-tuning, by using machine
learning or optimization algorithms for more accurate and
efficient parameter calibration.

o Quantitative stability evaluation using the Mean Squared
Error (MSE) between the stablecoin price and its peg in
balanced market scenarios.

o Stress-testing under extreme market conditions, including
network congestion, flash crashes, and liquidity shocks.

One of the most promising applications of DualTokenSim is
its ability to test new dual-token AS protocols under a wide
range of market scenarios. By simulating stress conditions and
analyzing the performance of proposed designs, developers
can identify weaknesses and refine stabilization mechanisms
before deploying them in live markets.
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