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Abstract. A reversible system features not only forward computations,
but also backward computations along which the effects of forward ones
can be undone by starting from the last performed action. According to
causal reversibility, an executed action can be undone provided that all
the actions it caused have been undone already. We investigate causal
reversibility in a nondeterministic and probabilistic setting by adapting
the framework of Phillips and Ulidowski to define a reversible calculus
in which action transitions and probabilistic transitions alternate in the
style of Hansson and Jonsson. We show that the calculus meets causal re-
versibility through a suitable variant of the technique of Lanese, Phillips,
and Ulidowski that ensures the proper forward and backward interplay of
nondeterminism and probabilities. The use of the calculus is illustrated
on a quantum computing example.

1 Introduction

Reversible computing has the potential of achieving lower energy consumption
because irreversible manipulation of information must be accompanied by an
entropy increase due to heat dissipation [25,2,7,16]. Its applications encompass
biochemical reaction modeling [37,38], parallel discrete-event simulation [34,41],
fault-tolerant systems [11,48,26,47], concurrent program debugging [17,28],
robotics [30], control theory [45], and wireless communications [45].

Reversibility in a computing system has to do with the possibility of reverting
actions starting from the last performed one. In a concurrent system there may
not be a total order over executed actions, hence the last performed action may
not be uniquely identifiable. This led to the introduction of the notion of causal
reversibility [10], according to which a previously executed action can be undone
provided that all of its consequences, if any, have been undone beforehand.

In the process algebraic setting, two approaches have been developed to deal
with causal reversibility. The dynamic one of [10,24] attaches external stack-
based memories to process terms so as to store executed actions and discarded
subprocesses. A single transition relation is present, where transitions can be
labeled with forward or backward actions. In contrast, the static one of [36]
makes all process algebraic operators static – in particular action prefix and
choice – so that executed actions and discarded subprocesses are kept within
the syntax. There are two separate transition relations, a forward one and a
backward one. The two approaches have been shown to be equivalent in terms
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of labeled transition system isomorphism [27] and the common properties they
exploit to ensure causal reversibility have been systematically classified in [29].

The approach of [36,29] is adequate to study reversibility on basic process
calculi and state-transition graphs in the nondeterministic case. Recently we
have addressed its adoption in the presence of quantitative information. While
it smoothly applies to stochastically timed calculi, for which both causal re-
versibility and time reversibility [22] have been investigated in [5,4], in the case
of deterministically timed calculi its use requires a careful treatment of delays
as well as time additivity, laziness, and maximal progress as shown in [6].

In this paper we address reversibility for untimed calculi featuring both non-
determinism and probabilities and show that the approach of [36,29] has to be
adapted again, in a way different from [6]. An example of application of such
reversible calculi is randomized dining philosophers [31], in which a philosopher
may revoke the choice of the first chopstick if the second one is not available
(possibly within a short amount of time like in [4]). A different example is given
by speculative consumers [39], where to boost parallelism a consumer can proba-
bilistically predict a value on the basis of which to launch a computation, which
has to be undone if the guessed value is different from the one sent later by the
producer. Yet another example is the smart contract rollback vulnerability [9];
for instance, in a lottery a smart contract makes a probabilistic choice to draft
the winning ticket, but an attacker may try to revert the transaction in the case
that the purchased ticket is different from the winning one [15].

There are several probabilistic state-transition models that can be used as
a basis for our reversible calculus. A limited form of nondeterminism is allowed
within reactive models [18], which correspond to Markov decision processes [13]
and Rabin probabilistic automata [40]. Like in generative models [18], which
correspond to action-labeled discrete-time Markov chains [23], each transition
is labeled with an action and an execution probability, but probabilities are en-
forced only among transitions labeled with the same action. Therefore, in every
state a nondeterministic selection is made among transitions labeled with differ-
ent actions, then a probabilistic selection takes place inside the set of transitions
labeled with that action.

Internal nondeterminism, i.e., nondeterministic choices among transitions
labeled with the same action, is supported by Segala simple probabilistic au-
tomata [42]. In this model every transition is labeled only with an action and
goes from a state to a probability distribution over states. In every state the
transition to be executed is selected nondeterministically, then the reached state
is selected probabilistically among those in the support of the target probability
distribution of the chosen transition.

That combination of probability and nondeterminism is called non-alternating
to distinguish it from the alternating one of [19]. In the latter model, states are
divided into nondeterministic and probabilistic, with transitions being classified
as action transitions, which are labeled with an action and go from a nonde-
terministic state to a probabilistic one, and probabilistic transitions, which are
labeled with a probability and go from a probabilistic state to a nondeterministic
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one. A more flexible variant, called non-strictly alternating model [35], admits
action transitions between two nondeterministic states too.

Both the non-alternating model and the alternating one – whose relation-
ships have been studied in [44] – encompass nondeterministic models, generative
models, and reactive models as special cases. Since branching bisimulation se-
mantics plays a fundamental role in reversible systems [12,3,14,15], in this paper
we adopt the non-strictly alternating model because in [1] a probabilistic branch-
ing bisimulation congruence has been developed for it along with equational and
logical characterizations and a polynomial-time decision procedure. In the non-
alternating model, for which branching bisimilarity has been just defined in [43],
weak variants of bisimulation semantics are more involved because, to achieve
transitivity, they require that a single transition be matched by a convex combi-
nation of several transitions, corresponding to the use of randomized schedulers;
decision procedures can be found in [8,46].

The first contribution of this paper (Section 2) is to show how the general
method for reversing process calculi of [36] can be applied to the nondeterministic
and probabilistic case based on the non-strictly alternating model. The following
adaptations are needed, which are different from those in [6]:

– Similar to executed actions, which have to be decorated with communication
keys to know who synchronized with whom when building the backward tran-
sition relation [36], probabilistic selections have to be decorated with keys
to avoid wrong pairings in the backward direction when they have been per-
formed on both sides of a nondeterministic choice or a parallel composition.

– To comply with the adopted model, in which the forward transitions depart-
ing from a state are all either action transitions or probabilistic transitions,
like in the forward-only calculus of [1] probabilistic selections have to be
made before nondeterministic ones when going forward. As a consequence,
a probabilistic selection cannot resolve nondeterministic choices or decide
which subprocess advances in a parallel composition. This adds a technical
challenge to the definition of the operational semantic rules with respect
to [36], as nondeterministic selections – including those among concurrent
actions – have to be revoked before probabilistic ones when going backward.

The second contribution (Section 4) is to prove that the resulting calculus
meets causal reversibility. This is accomplished through notions of [10] and the
technique of [29], which however cannot be applied as they are:

– Conflicting transitions, from which concurrent transitions [10] are then de-
rived, and causal equivalence [10], which is needed to identify computations
that differ for the order of concurrent action transitions, have to be extended
with additional conditions specific to probabilistic transitions.

– The square property for concurrent transitions, on which the technique of [29]
relies to obtain causal reversibility, has to be revised to deal with extended
squares that include probabilistic transitions as well.

The paper also features an application of the resulting calculus to a quantum
computing example (Section 3) and some directions for future work (Section 5).
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F,G ::= 0 | a . F | F p⊕ G | F +G | F ‖LG
R,S ::= F | a[i] . R | R [i]p⊕ S | R p⊕[i] S | R+ S | R ‖L S

Table 1. Syntax of forward (top) and reversible (bottom) processes (. > p⊕ > + > ‖L)

2 Reversible Probabilistic Process Calculus

In this section we present the syntax and the semantics of RPPC – Reversible
Probabilistic Process Calculus, which is inspired by the process calculi in [20,1]
and tailored for a reversible setting according to the static approach of [36].

The syntax of RPPC is shown in Table 1 (along with operator precedence).
A standard forward process F describes the future behavior and is one of the
following: the terminated process 0; the action-prefixed process a . F , which is
able to perform action a ∈ A and then continues as process F , with action set
A including τ as unobservable action; the probabilistic choice F p⊕ G, where
F is selected with probability p ∈ R]0,1[ while G is selected with probability
1− p; the nondeterministic choice F +G, which is resolved based on the actions
executable by F and G; or the parallel composition F ‖LG, where processes F
and G execute in parallel and must synchronize only on actions in L ⊆ A \ {τ}.

While in [20] there is a strict alternation between nondeterministic processes
like N =

∑
h∈H ah . Ph and probabilistic processes like P =

⊕
h∈H〈ph〉 . Nh,

as in [1] we stipulate for our more liberal syntax that probabilistic choices have
to be resolved before nondeterministic ones when going forward, so that every
process either executes actions or makes probabilistic selections and no consec-
utive probabilistic transitions are possible. Thus, similar to time determinism
in [6], a probabilistic selection cannot resolve nondeterministic choices or decide
who advances in a parallel composition. When each subprocess of a nondeter-
ministic choice or a parallel composition makes a probabilistic selection, the
corresponding probabilities are then multiplied at the level of the entire process.

A reversible process R includes the past behavior. The syntax of reversible
processes differs from the one of forward processes due to the fact that, in the
former, actions and probabilities may be decorated. As in [36], an action is dec-
orated with a communication key i belonging to a countable set K. A process of
the form a[i] . R expresses that in the past it synchronized with the environment
on a and this synchronization was identified by key i. Keys are thus attached
only to executed actions and, as we will see, are necessary to remember who
synchronized with whom when undoing actions; keys could be omitted in the
absence of parallel composition. Processes R [i]p⊕ S and R p⊕[i] S indicate that
in the past a probabilistic selection was made in favor of the left or the right sub-
process, respectively. We will see that communication keys are needed to avoid
wrong pairings of probabilistic selections in the backward direction; keys could
be omitted in the absence of nondeterministic choice and parallel composition.

We denote by P the set of processes generated by the productions for R in
Table 1, while we use predicate std( ) to identify the standard forward processes
that can be derived from the productions for F in the same table. For example,
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a . (b . 0 0.5⊕ c . 0) is a standard forward process that can execute action a and
then probabilistically selects between doing action b or doing action c, while
a[i] . (b . 0 [j]0.5⊕ c . 0) is a reversible process that can either undo the probabilistic
selection in favor of b (key j) and then action a (key i), or perform action b. Note
that a . (b . 0 [j]0.5⊕ c . 0) and a . (b[i] . 0 0.5⊕ c . 0) are not in P as a future action or
probabilistic selection cannot precede a past one in the description of a process.

Let AK = A×K and RK = R]0,1[ ×K, with L = AK ∪RK ranged over by `.

The semantics for RPPC is the labeled transition system (P,L, 7−→). The tran-

sition relation 7−→ ⊆ P × L × P is given by 7−→ = −→ ∪ 99K where in turn
the forward transition relation is given by −→ = −→a ∪ −→p and the backward
transition relation is given by 99K = 99K a ∪ 99K p . In the definitions of the
transition relations, we make use of the set keya(R) of action keys and of the
set keyp(R) of probabilistic selection keys occurring in R ∈ P:

keya(F ) = ∅ keyp(F ) = ∅
keya(a[i] . R) = {i} ∪ keya(R) keyp(a[i] . R) = keyp(R)

keya(R [i]p⊕ S) = keya(R) keyp(R [i]p⊕ S) = {i} ∪ keyp(R)

keya(R p⊕[i] S) = keya(S) keyp(R p⊕[i] S) = {i} ∪ keyp(S)

keya(R+ S) = keya(R) ∪ keya(S) keyp(R+ S) = keyp(R) ∪ keyp(S)

keya(R ‖L S) = keya(R) ∪ keya(S) keyp(R ‖L S) = keyp(R) ∪ keyp(S)

as well as of predicate npa( ) to establish whether the considered process R ∈ P
contains no past actions (note that std(R) ensures npa(R)):

npa(F ) = true npa(a[i] . R) = false

npa(R [i]p⊕ S) = npa(R) npa(R p⊕[i] S) = npa(S)
npa(R+ S) = npa(R) ∧ npa(S) npa(R ‖L S) = npa(R) ∧ npa(S)

The action transition relations −→a ⊆ P ×AK ×P and 99Ka ⊆ P ×AK ×P
are the least relations respectively induced by the forward rules in the left part
of Table 2 and by the backward rules in the right part of the same table.

Rule Act1 handles processes of the form a . F , where F is written as R
subject to std(R). In addition to transforming the action prefix into a transition
label, it generates a key i that is bound to action a thus yielding the label a[i].
As can be noted, according to [36] the prefix is not discarded by the application
of the rule, instead it becomes a key-storing part of the target process that is
necessary to offer again that action after rolling back. Rule Act1• reverts action
a[i] of process a[i] . R provided that R is a standard process, which ensures that
a[i] is the only executed action that is left to undo.

The presence of rules Act2 and Act2• is motivated by the fact that rule
Act1 does not discard the executed action from the process it generates. In
particular, rule Act2 allows a process a[i] . R to execute if R itself can execute,
provided that the action performed by R picks a key j different from i so that all
the action prefixes in a sequence are decorated with distinct keys. Rule Act2•

simply propagates the execution of backward actions from inner subprocesses
that are not standard by preserving key uniqueness, in such a way that executed
actions are undone from the most recent one to the least recent one.

Rules Act3 and Act3•, along with their omitted symmetric variants for
R p⊕[i] S (in which S has been selected with probability 1−p), play an analogous



6 M. Bernardo and C.A. Mezzina

(Act1)
std(R)

a .R
a[i]−−→a a[i] . R

(Act1•)
std(R)

a[i] . R
a[i]
999Ka a .R

(Act2)
R

b[j]−−→a R
′ j 6= i

a[i] . R
b[j]−−→a a[i] . R′

(Act2•)
R

b[j]
999Ka R

′ j 6= i

a[i] . R
b[j]
999Ka a[i] . R′

(Act3)
R

b[j]−−→a R
′

R [i]p⊕ S
b[j]−−→a R

′
[i]p⊕ S

(Act3•)
R

b[j]
999Ka R

′

R [i]p⊕ S
b[j]
999Ka R

′
[i]p⊕ S

(Cho)
R

a[i]−−→a R
′

npa(S) S 6−→p

R+ S
a[i]−−→a R

′ + S

(Cho•)
R

a[i]
999Ka R

′
npa(S) S 6−→p

R+ S
a[i]
999Ka R

′ + S

(Par)

R
a[i]−−→a R

′ a /∈ L i /∈ keya(S)
S 6−→p

R ‖L S
a[i]−−→a R

′ ‖L S
(Par•)

R
a[i]
999Ka R

′ a /∈ L i /∈ keya(S)
S 6−→p

R ‖L S
a[i]
999Ka R

′ ‖L S

(Coo)
R

a[i]−−→a R
′ S

a[i]−−→a S
′ a ∈ L

R ‖L S
a[i]−−→a R

′ ‖L S′
(Coo•)

R
a[i]
999Ka R

′ S
a[i]
999Ka S

′ a ∈ L

R ‖L S
a[i]
999Ka R

′ ‖L S′

Table 2. Operational semantic rules for RPPC action transitions

propagating role for a resolved probabilistic choice. Note that executed actions
and resolved probabilistic choices are not required to feature different keys.

Unlike the classical rules for nondeterministic choice [33], according to [36]
rule Cho does not discard the part of the overall process that has not contributed
to the executed action. If process R does an action, say a[i], and becomes R′, then
the entire process R + S becomes R′ + S as the information about +S, where
S contains no past actions, is necessary for offering again the original choice
after rolling back. Once the choice is made, only the non-standard process R′

can proceed further because process S – which is standard or contains resolved
probabilistic choices – constitutes a dead context of R′. Moreover, since we have
stipulated that probabilistic choices have to be resolved before nondeterministic
ones when going forward, R+S can perform a[i] and become R′+S if S has no
probabilistic transitions, which is denoted by S 6−→p. Rule Cho• has precisely the
same structure as rule Cho, but deals with the backward transition relation; if
R′ is standard, then the dead context S will come into play again. The symmetric
variants of Cho and Cho•, in which it is S to move, are omitted. Note that, in
order to apply Cho (resp. Cho•) or its symmetric variant, at least one of R and
S must contain no past actions, meaning that it is impossible for two processes
containing past actions to execute if they are composed by a choice operator.

The semantics of parallel composition is inspired by [21]. Rule Par allows
process R within R ‖L S to individually perform an action a[i] provided a /∈ L.
It is also checked that the executing action is bound to a key i /∈ keya(S),
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thus ensuring the uniqueness of communication keys across parallel composition
too. Moreover, since we have stipulated that, when going forward, probabilistic
choices have to be resolved before nondeterministic ones (including those aris-
ing from action interleaving), it is further verified that S has no probabilistic
transitions. Rule Par• has the same structure as Par; their symmetric variants
are omitted. Rules Coo and Coo• instead allow both R and S to move by syn-
chronizing on any action in the set L as long as the communication key is the
same on both sides. The resulting cooperation action has the same name and
the same key as the two synchronizing actions.

To illustrate the need of communication keys [36], consider the standard for-
ward process (a . F1 ‖∅ a . F2) ‖{a}(a . F3 ‖∅ a . F4), which may evolve to either the
reversible process (a[i] . F1 ‖∅ a[j] . F2) ‖{a}(a[i] . F3 ‖∅ a[j] . F4) or the reversible
process (a[i] . F1 ‖∅ a[j] . F2) ‖{a}(a[j] . F3 ‖∅ a[i] . F4) after performing a forward
a[i]-transition followed by a forward a[j]-transition. When going backward,
in the absence of the two distinct communication keys i and j we do not know
that the a preceding F1 (resp. F2) synchronized with the a preceding F3 (resp.
F4) in the first case or the a preceding F4 (resp. F3) in the second case.

The probabilistic transition relations −→p ⊆ P × RK × P and 99K p ⊆
P × RK × P are the least relations respectively induced by the forward rules
in the left part of Table 3 and by the backward rules in the right part of the
same table. Each backward probabilistic transition is conventionally labeled with
the same probability as the corresponding forward transition; note however that
this probabilistic value is meaningful only in the forward direction.

Rules PSel1 and PSel2 handle probabilistic selections between standard
processes. The former rule describes the case in which R has no probabilistic
choices, hence the probability of selecting R is simply p. The latter rule describes
the case in which R has probabilistic choices, so that p is multiplied by the
probability of selecting R′. To enable reversibility, in both rules the probability
associated with the operator is decorated with a unique key and the subprocess
that has not been selected is not discarded. Rules PSel1• and PSel2• are the
backward counterparts. The symmetric variants for R p⊕[i] S (in which S has
been selected with probability 1− p) are omitted. For processes like 0 0.5⊕ 0 two

distinct transitions 0 0.5⊕ 0
(0.5)[i]−−−−−→p 0 [i]0.5⊕ 0 and 0 0.5⊕ 0

(0.5)[i]−−−−−→p 0 0.5⊕[i] 0
are generated thanks to decorations in distinct positions within the two target
processes, thus avoiding to resort to multisets of probabilistic transitions [20].

Rules PSel3 and PSel3• propagate probabilistic selections in the context
of resolved probabilistic choices followed by executed actions; their symmetric
variants are omitted. Rules PSel4 and PSel4• propagate probabilistic selec-
tions in the context of executed actions only. We remind that executed actions
and resolved probabilistic choices are not required to feature different keys.

Rule PCho1 represents a probabilistic selection made within a nondetermin-
istic choice by R alone as S 6−→p, provided that S contains no past actions and
key i does not occur in S, with PCho1• being its backward counterpart. Their
symmetric variants are omitted. Note that, as a consequence of the fact that
probabilistic choices have to be resolved before nondeterministic choices when
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(PSel1)
std(R) std(S) R 6−→p

R p⊕ S
(p)[i]−−−−→p R [i]p⊕ S

(PSel1•)
std(R) std(S) R 6−→p

R [i]p⊕ S
(p)[i]

99999Kp R p⊕ S

(PSel2)

R
(q)[j]−−−−→p R

′
std(R)

std(S) i /∈ keyp(R
′)

R p⊕ S
(p·q)[i]−−−−−→p R

′
[i]p⊕ S

(PSel2•)

R
(q)[j]

99999Kp R
′

std(R′)
std(S) i /∈ keyp(R)

R [i]p⊕ S
(p·q)[i]
999999Kp R

′
p⊕ S

(PSel3)
R

(q)[j]−−−−→p R
′ ¬std(R) j 6= i

R [i]p⊕ S
(q)[j]−−−−→p R

′
[i]p⊕ S

(PSel3•)
R

(q)[j]

99999Kp R
′ ¬std(R′) j 6= i

R [i]p⊕ S
(q)[j]

99999Kp R
′
[i]p⊕ S

(PSel4)
R

(q)[j]−−−−→p R
′

a[i] . R
(q)[j]−−−−→p a[i] . R′

(PSel4•)
R

(q)[j]

99999Kp R
′

a[i] . R
(q)[j]

99999Kp a[i] . R′

(PCho1)

R
(p)[i]−−−−→p R

′ i /∈ keyp(S)

npa(S) S 6−→p

R+ S
(p)[i]−−−−→p R

′ + S

(PCho1•)

R
(p)[i]

99999Kp R
′ i /∈ keyp(S)

npa(S) S 6−→p

R+ S
(p)[i]

99999Kp R
′ + S

(PCho2)
R

(p)[i]−−−−→p R
′ S

(q)[i]−−−−→p S
′

R+ S
(p·q)[i]−−−−−→p R

′ + S′
(PCho2•)

R
(p)[i]

99999Kp R
′ S

(q)[i]

99999Kp S
′

R+ S
(p·q)[i]
999999Kp R

′ + S′

(PPar)

R
(p)[i]−−−−→p R

′ i /∈ keyp(S)

S 6−→p

R ‖L S
(p)[i]−−−−→p R

′ ‖L S
(PPar•)

R
(p)[i]

99999Kp R
′ i /∈ keyp(S)

S 6−→p npa(S) ∨ ¬npa(R)

R ‖L S
(p)[i]

99999Kp R
′ ‖L S

(PCoo)
R

(p)[i]−−−−→p R
′ S

(q)[i]−−−−→p S
′

R ‖L S
(p·q)[i]−−−−−→p R

′ ‖L S′
(PCoo•)

R
(p)[i]

99999Kp R
′ S

(q)[i]

9999Kp S
′

R ‖L S
(p·q)[i]
999999Kp R

′ ‖L S′

Table 3. Operational semantic rules for RPPC probabilistic transitions

going forward, nondeterministic choices have to be revoked before probabilistic
choices when going backward. For instance, (a . 0 p⊕ b . 0) + c . 0 first resolves
the probabilistic choice thus becoming e.g. (a . 0 [i]p⊕ b . 0) + c . 0 and then can
perform e.g. c thus evolving to (a . 0 [i]p⊕ b . 0) + c[j] . 0, where the probabilistic
choice cannot be revoked – otherwise (a . 0 p⊕ b . 0) + c[j] . 0 would be reached
that cannot be encountered when going forward – thanks to the npa constraint.

Rule PCho2 expresses instead the fact that, since a probabilistic selection
cannot decide which subprocess is chosen in a nondeterministic choice, if each
subprocess of a nondeterministic choice makes a probabilistic selection then the
two selections are synchronized and the corresponding probabilities are multi-
plied. Rule PCho2• plays the corresponding role in the backward direction.
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Likewise, rule PPar represents a probabilistic selection made within a par-
allel composition by R alone as S 6−→p, provided that key i does not occur in S,
with PPar• being its backward counterpart. Their symmetric variants are omit-
ted. Note that PPar• additionally requires npa(S)∨¬npa(R). The npa(S) part
stems from the fact that nondeterministic choices, including those between two
interleaving actions in a parallel composition, have to be revoked before proba-
bilistic choices when going backward. As an example, (a . 0 p⊕ b . 0) ‖∅ c . 0 first re-
solves the probabilistic choice thus becoming e.g. (a . 0 [i]p⊕ b . 0) ‖∅ c . 0 and then
can perform e.g. c thus evolving to (a . 0 [i]p⊕ b . 0) ‖∅ c[j] . 0, where the probabilis-
tic choice cannot be revoked – otherwise (a . 0 p⊕ b . 0) ‖∅ c[j] . 0 would be reached
that cannot be encountered when going forward – thanks to the additional con-
straint. The ¬npa(R) part is needed when two probabilistic choices are preceded
by two interleaving actions like in a1 . (b . 0 p⊕ c . 0) ‖∅ a2 . (d . 0 q⊕ e . 0). While
going forward this can reach e.g. a1[i1] . (b . 0 [j1]p⊕ c . 0) ‖∅ a2[i2] . (d . 0 q⊕[j2] e . 0),
from which it must be possible to revoke either probabilistic choice.

Rule PCoo represents instead the fact that, since a probabilistic selection
cannot decide which subprocess advances in a parallel composition, if each sub-
process of a parallel composition makes a probabilistic selection then the two
selections are synchronized and the corresponding probabilities are multiplied.
Rule PCoo• plays the corresponding role in the backward direction.

To illustrate the need of communication keys also for probabilistic choices
(not in [36]), consider the standard forward process (a . 0 p⊕ b . 0) ‖∅(c . 0 q⊕ d . 0),
which may evolve to one of the following four reversible processes:

– (a . 0 [i]p⊕ b . 0) ‖∅(c . 0 [i]q⊕ d . 0) with probability p · q.
– (a . 0 [i]p⊕ b . 0) ‖∅(c . 0 q⊕[i] d . 0) with probability p · (1− q).
– (a . 0 p⊕[i] b . 0) ‖∅(c . 0 [i]q⊕ d . 0) with probability (1− p) · q.
– (a . 0 p⊕[i] b . 0) ‖∅(c . 0 q⊕[i] d . 0) with probability (1− p) · (1− q).

When going backward, in the absence of communication key i we do not know
which subprocess of the probabilistic choice on the left of ‖∅ was combined with
which subprocess of the probabilistic choice on the right of ‖∅.

It may be argued that what really matters is the position of the key with re-
spect to the probabilistic parameter, hence a uniform decoration within every oc-
currence of the probabilistic choice operator – e.g., 〈p⊕ and p〉⊕ – would suffice.
However, consider the standard forward process a . (b . 0 p⊕ c . 0) # (d . 0 q⊕ e . 0)
where # ∈ {+, ‖∅}. The only initial option is resolving the probabilistic choice on
the right, thus reaching for instance a . (b . 0 p⊕ c . 0) # (d . 0 [i]q⊕ e . 0). Then sup-
pose that a is executed, which can only be followed by resolving the probabilistic
choice on the left, which yields for instance a[j] . (b . 0 p⊕[k] c . 0) # (d . 0 [i]q⊕ e . 0).
Now, in the backward direction, the two probabilistic selections cannot be un-
done together – thus reaching the inconsistent a[j] . (b . 0 p⊕ c . 0) # (d . 0 q⊕ e . 0)
– because i 6= k and hence PCho2• and PCoo• are not applicable.

Process syntax prevents future actions or probabilistic selections from pre-
ceding past ones as well as both sides of a probabilistic choice from being si-
multaneously selected. However, these are not the only necessary limitations,
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Fig. 1. Labeled transition system underlying (a . 0 p⊕ b . 0) ‖∅(c . 0 q⊕ d . 0)

because not all the processes generated by the considered grammar are seman-
tically meaningful. In the case of a nondeterministic choice at least one of the
two subprocesses has to contain no past actions (but can contain resolved prob-
abilistic choices), hence for instance a[i] . 0 + b[j] . 0 is not admissible as it in-
dicates that both branches have been selected. Moreover, key uniqueness must
be enforced within processes featuring executed actions or resolved probabilis-
tic choices, so for example a[i] . b[i] . 0, a[i] . 0 ‖∅ b[i] . 0, F1 [i]p⊕ F2 [i]q⊕ F3, and
0 p⊕[i] a[j] . F # a[j] . (F1 [i]q⊕ F2) where # ∈ {+, ‖{a}} are not admissible either.

In the following we thus consider only reachable processes, whose set we de-
note by P. They include processes from which a computation can start, i.e.,
standard forward processes, as well as processes that can be derived from the
previous ones via finitely many applications of the semantic rules. Given a reach-
able process R ∈ P, if npa(R) then keya(R) = ∅ while keya(R

′) 6= ∅ for any other
process R′ reachable from R in which at least one of the actions occurring in R
has been executed, as that action has been equipped with a key inside R′.

We conclude by discussing some properties of the resulting labeled transition
system (P,L, 7−→), where we recall that 7−→ = −→ ∪ 99K, −→ = −→a ∪ −→p,
and 99K = 99K a ∪ 99K p. First of all, we observe that forward probabilistic
transitions across a parallel composition are combined with each other into single
transitions by rule PCoo in the same way as nested probabilistic choices yield a
single forward probabilistic transition by rule PSel2 and its symmetric variant.
Therefore, every state reached by a forward probabilistic transition cannot have
forward probabilistic transitions and hence the labeled transition system cannot
feature squares composed of forward probabilistic transitions, whereas it can
contain squares made out of forward action transitions due to the interleaving of
concurrent actions. As an example consider again (a . 0⊕p b . 0) ‖∅(c . 0⊕q d . 0),
whose underlying labeled transition system is depicted in Figure 1 up to keys.

Secondly, when focusing only on the forward transition relation −→ = −→a

∪ −→p, the labeled transition system is consistent with the non-strict variant [35]
of the alternating model [20]. This means that in every state all the forward tran-
sitions are either action transitions, in which case the state is nondeterministic, or
probabilistic transitions, in which case the state is probabilistic. The alternation
is not strict because, while a probabilistic state can reach via forward transitions
only nondeterministic states due to rule PSel2 and its symmetric variant as well
as rule PCoo, a nondeterministic state can reach via forward transitions either
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Fig. 2. Labeled transition system underlying a . (c . 0 p⊕ 0) ‖∅ b . 0

probabilistic states or other nondeterministic states. In contrast, a state can
have both backward action transitions and backward probabilistic transitions.
This may happen when transitions arising from probabilistic selections are in-
volved in squares along with action transitions stemming from the interleaving of
concurrent actions. For instance consider a . (c . 0 p⊕ 0) ‖∅ b . 0, whose underlying
labeled transition system is depicted in Figure 2, and look at the rectangle with
action and probabilistic transitions on the right as well as its bottommost state.

3 Example: Applying RPPC to Quantum Computing

A quantum bit, or qubit, is a physical system with two basis states conventionally
denoted by |0〉 and |1〉, which correspond to one-bit classical values. According
to quantum theory, a general state of a quantum system is a superposition or
linear combination of basis states. For instance, a qubit has state α|0〉 + β|1〉
where α, β ∈ C satisfy |α|2 + |β|2 = 1. In RPPC we can model a qubit as:

Q = m. (z p⊕ o)
where m stands for measurement, z for zero, and o for one. Measuring its value
destroys superposition and yields 0 with probability p = |α|2 and 1 with proba-
bility 1− p = |β|2, leaving the system in state |0〉 or |1〉 respectively.

Tensor product is used to represent systems made out of several qubits. For
example, a 2-qubit system has basis states |00〉, |01〉, |10〉, |11〉. Its general state
is α|00〉 + β|01〉 + γ|10〉 + δ|11〉 where |α|2 + |β|2 + |γ|2 + |δ|2 = 1. Measuring
the first (resp. second) qubit only yields 0 with probability |α|2 + |β|2 (resp.
|α|2 + |γ|2) and 1 with probability |γ|2 + |δ|2 (resp. |β|2 + |δ|2), leaving the
system in state 1√

|α|2+|β|2
(α|00〉+β|01〉) or state 1√

|γ|2+|δ|2
(γ|10〉+δ|11〉) (resp.

in state 1√
|α|2+|γ|2

(α|00〉+γ|10〉) or state 1√
|β|2+|δ|2

(β|01〉+δ|11〉)) respectively.

If both qubits are measured simultaneously, then the possible results are
0, 1, 2, 3 with corresponding probabilities |α|2, |β|2, |γ|2, |δ|2 and states
|00〉, |01〉, |10〉, |11〉, respectively. This can be modeled in RPPC as follows:

QQ = m. (z . (z q1⊕ o) p⊕ o . (z q2⊕ o))
where p · q1 = |α|2, p · (1− q1) = |β|2, (1− p) · q2 = |γ|2, (1− p) · (1− q2) = |δ|2.
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In a closed quantum system, all the operations on qubits are reversible.
A common example of such an operation is the quantum controlled-NOT gate,
or CNOT gate. This gate acts on two qubits, often called the control qubit and
the target qubit. The CNOT gate flips the state of the target qubit if and only if
the control qubit is in state |1〉. It is reversible because it is a unitary operation,
meaning that it can be undone by applying the same operation again, like NOT
on classical bits. The truth table of CNOT is as follows:

control input target input control output target output
|0〉 |0〉 |0〉 |0〉
|0〉 |1〉 |0〉 |1〉
|1〉 |0〉 |1〉 |1〉
|1〉 |1〉 |1〉 |0〉

We can model a CNOT gate in RPPC as follows, where we use primes to
distinguish output bits from input ones:

CNOT = m. (z . z . z′. z′ + z . o . z′. o′ + o . z . o′. o′ + o . o . o′. z′)
and then apply it to the 2-qubit system as follows:

QQ ‖L CNOT
where L = {m, z, o}. The following execution takes place when the input is |10〉
– o and z are executed – in which case |11〉 is returned – o′ and o′ are executed:

m[1]−−−→a m[1] . (z . (z q1⊕ o) p⊕ o . (z q2⊕ o)) ‖L
m[1] . (z . z . z′. z′ + z . o . z′. o′ + o . z . o′. o′ + o . o . o′. z′)

(1−p)[2]−−−−−→p m[1] . (z . (z q1⊕ o) p⊕[2] o . (z q2⊕ o)) ‖L
m[1] . (z . z . z′. z′ + z . o . z′. o′ + o . z . o′. o′ + o . o . o′. z′)

o[3]−−→a m[1] . (z . (z q1⊕ o) p⊕[2] o[3] . (z q2⊕ o)) ‖L
m[1] . (z . z . z′. z′ + z . o . z′. o′ + o[3] . z . o′. o′ + o . o . o′. z′)

(q2)
[4]

−−−−→p m[1] . (z . (z q1⊕ o) p⊕[2] o[3] . (z [4]q2⊕ o)) ‖L
m[1] . (z . z . z′. z′ + z . o . z′. o′ + o[3] . z . o′. o′ + o . o . o′. z′)

z[5]−−→a m[1] . (z . (z q1⊕ o) p⊕[2] o[3] . (z[5] q2[4]⊕ o)) ‖L
m[1] . (z . z . z′. z′ + z . o . z′. o′ + o[3] . z[5] . o′. o′ + o . o . o′. z′)

o′[6]−−−→a
o′[7]−−−→a m[1] . (z . (z q1⊕ o) p⊕[2] o[3] . (z[5] q2[4]⊕ o)) ‖L

m[1] . (z . z . z′. z′ + z . o . z′. o′ + o[3] . z[5] . o′[6] . o′[7] + o . o . o′. z′)
where action and selection keys are all distinct for the sake of readability.

Note that when performing o[3] process CNOT may wrongly select the fourth
branch of its nondeterministic choice, i.e., o . o . o′. z′, thus resulting in the fol-
lowing computation that cannot be completed in the forward direction:

m[1] . (z . (z q1⊕ o) p⊕[2] o . (z q2⊕ o)) ‖L
m[1] . (z . z . z′. z′ + z . o . z′. o′ + o . z . o′. o′ + o . o . o′. z′)

o[3]−−→a m[1] . (z . (z q1⊕ o) p⊕[2] o[3] . (z q2⊕ o)) ‖L
m[1] . (z . z . z′. z′ + z . o . z′. o′ + o . z . o′. o′ + o[3] . o . o′. z′)

(q2)
[4]

−−−−→p m[1] . (z . (z q1⊕ o) p⊕[2] o[3] . (z [4]q2⊕ o)) ‖L
m[1] . (z . z . z′. z′ + z . o . z′. o′ + o . z . o′. o′ + o[3] . o . o′. z′)
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This can be undone – in favor of the third branch of the aforementioned nonde-
terministic choice, i.e., o . z . o′. z′ – thanks to the fact RPPC is reversible:

m[1] . (z . (z q1⊕ o) p⊕[2] o[3] . (z [4]q2⊕ o)) ‖L
m[1] . (z . z . z′. z′ + z . o . z′. o′ + o . z . o′. o′ + o[3] . o . o′. z′)

(q2)
[4]

99999Kp m[1] . (z . (z q1⊕ o) p⊕[2] o[3] . (z q2⊕ o)) ‖L
m[1] . (z . z . z′. z′ + z . o . z′. o′ + o . z . o′. o′ + o[3] . o . o′. z′)

o[3]
999Ka m[1] . (z . (z q1⊕ o) p⊕[2] o . (z q2⊕ o)) ‖L

m[1] . (z . z . z′. z′ + z . o . z′. o′ + o . z . o′. o′ + o . o . o′. z′)
Since our calculus is fully reversible, i.e., every action can be undone in RPPC,
even m can be reverted although measurement is known to be an irreversible
operation in quantum computing. To amend this, following [11] we should see
m as an irreversible action, to which only forward semantic rules are applicable.

4 Causal Reversibility of RPPC

We now prove the causal reversibility of RPPC. This means that each reach-
able process of RPPC is able to backtrack correctly, i.e., without encountering
previously inaccessible states, and flexibly, i.e., along any path that is causally
equivalent to the one undertaken in the forward direction. This is accomplished
through the notion of concurrent transitions of [10] and the technique of [29].

A necessary condition for reversibility is the loop property [10,36,29]. It estab-
lishes that each executed action can be undone and that each undone action can
be redone, which in our setting needs to be extended to probabilistic selections.
Therefore, when considering the states associated with two reachable processes,
either there is no transition between them, or there is a pair of identically labeled
transitions such that one is a forward transition from the first to the second state
while the other is a backward transition from the second to the first state.

Proposition 1 (loop property). Let R,S ∈ P and ` ∈ L = AK ∪ RK. Then

R
`−→ S iff S

`
99KR.

Given a transition θ : R
`7−→ S with R,S ∈ P, we call R the source of θ and S

its target. If θ is a forward transition, i.e., θ : R
`−→ S, we denote by θ : S

`
99KR

the corresponding backward transition. Two transitions are said to be coinitial
if they have the same source and cofinal if they have the same target. Two tran-
sitions are composable when the target of the first transition coincides with the
source of the second transition. A finite sequence of pairwise composable tran-
sitions is called a path. We use ε for the empty path and ω to range over paths,
with |ω| denoting the length of ω, i.e., the number of transitions constituting ω.
When ω is a forward path, we denote by ω the corresponding backward path,
where the order of the transitions is reversed. The notions of source, target, coini-
tiality, cofinality, and composability naturally extend to paths. We indicate with
ω1ω2 the composition of the two paths ω1 and ω2 when they are composable.
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Before specifying when two transitions are concurrent [10], we need to present
the notion of process context along with the set of causes – identified by action
and probabilistic keys – leading to a given communication key.

A process context is a process with a hole • in it, generated by the grammar:
C ::= • | a[i] . C | C [i]p⊕ R | R p⊕[i] C | C +R | R+ C | C ‖LR | R ‖L C

We write C[S] to denote the process obtained by replacing the hole in C with S.
The causal set cau(R, i) of R ∈ P until i ∈ K under keya(R) ∩ keyp(R) = ∅

is inductively defined as:
cau(F, i) = ∅

cau(a[j] . R, i) =

{
∅ if j = i or i /∈ keya(R) ∪ keyp(R)

{j} ∪ cau(R, i) otherwise

cau(R [j]p⊕ S, i) =

{
∅ if j = i or i /∈ keya(R) ∪ keyp(R)

{j} ∪ cau(R, i) otherwise

cau(R p⊕[j] S, i) =

{
∅ if j = i or i /∈ keya(S) ∪ keyp(S)

{j} ∪ cau(S, i) otherwise

cau(R+ S, i) = cau(R, i) ∪ cau(S, i)
cau(R ‖L S, i) = cau(R, i) ∪ cau(S, i)

If i ∈ keya(R) ∪ keyp(R), then cau(R, i) represents the set of keys in R that
caused i, with cau(R, i) ⊂ keya(R) ∪ keyp(R) as on the one hand i /∈ cau(R, i)
and on the other hand keys that are not causally related to i are not considered.
Key j causes key i if it appears before i in R, i.e., if i is inside the scope of j.

We are now in a position to define, for coinitial transitions, what we mean
by concurrent transitions on the basis of the notion of conflicting transitions. As
in previous work, the first condition below tells that a forward transition is in
conflict with a coinitial backward one whenever the latter tries to undo a cause of
the key of the former (with abuse of notation the key is made explicit next to `),
while the second one deems as conflictual two action transitions respectively
generated by the two subprocesses of a nondeterministic choice. The further
third condition is an adaptation of the previous one to the probabilistic case.
Since probabilistic choices have to be resolved before nondeterministic ones, there
can never be conflicts between action transitions and probabilistic transitions.

Definition 1 (conflicting and concurrent transitions). Two coinitial tran-
sitions θ1 and θ2 from a process R ∈ P are in conflict if one of the following
conditions holds, otherwise they are said to be concurrent:

– θ1 : R
`1[i]−−→ S1 and θ2 : R

`2[j]
9999KS2 with j ∈ cau(S1, i).

– R = C[F1 + F2] with θk deriving in R from Fk
ak[ik]−−−−→a Sk for k = 1, 2.

– R = C[F1 p⊕ F2] with θk deriving in R from Fk
(pk)

[ik]

−−−−−→p Sk for k = 1, 2.

We prove causal reversibility by adapting the technique of [29], according to
which causal consistency stems from the square property – which amounts to con-
current transitions being confluent – backward transitions independence – which
generalizes the concept of backward determinism used for reversible sequential
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languages [49] – and past well foundedness – which ensures that reachable pro-
cesses have a finite past.

Before proving the three properties, as for the classical definition of square
property [29] we have to deal with the fact that probabilistic choices take prece-
dence over nondeterministic ones in the forward direction. Hence, even if from a
process there are two transitions coming from the two subprocesses of a parallel
composition, we have to determine whether either reached process can directly
perform the other transition to close the square, or it has to first resolve proba-
bilistic choices. Once such choices have been resolved, the remaining transition
can be done thus closing the square. For example, consider a . (c . 0 p⊕ 0) ‖∅ b . 0
depicted in Figure 2. It can initially perform an a-action and a b-action, but
if a is done then a probabilistic choice is enabled. Hence, before doing b, the
process has to first resolve the probabilistic choice and only then it can proceed
with b. On the other hand, if the process does b first, then it can immediately
do a, but in order to reach the same process as the left path it also has to re-
solve the probabilistic choice. As an analogous though more extended example
of square, consider the one originated from a1 . (b . 0 p⊕ c . 0) ‖∅ a2 . (d . 0 q⊕ e . 0).
These cases are handled by the second and the third clauses below.

Lemma 1 (square property). Let θ1 : R
`17−→ S1 and θ2 : R

`27−→ S2 be two
coinitial transitions from a process R ∈ P. If θ1 and θ2 are concurrent, then one
of the following holds:

– If S1 6−→p and S2 6−→p then there exist two cofinal transitions θ′2 : S1
`27−→ S

and θ′1 : S2
`17−→ S with S ∈ P.

– If S1 6−→p and S2 −→p then there exist two cofinal paths ω′2 : S1
`27−→ Sp

`p7−→ S

and ω′1 : S2
`p7−→ Sp

`17−→ S with Sp, S ∈ P.

– If S1 −→p and S2 −→p then there exist two cofinal paths ω′2 : S1
`p7−→ S1

p
`27−→

S1
q

`q7−→ S and ω′1 : S2
`q7−→ S2

q
`17−→ S2

p

`p7−→ S with S1
p , S

2
p , S

1
q , S

2
q , S ∈ P.

Lemma 2 (backward transitions independence). Let R ∈ P. Then two

coinitial backward transitions θ1 : R
`1
99KS1 and θ2 : R

`2
99KS2 are concurrent.

Lemma 3 (past well foundedness). Let R0 ∈ P. Then there is no infinite

sequence of backward transitions such that Ri
`i
99KRi+1 for all i ∈ N.

Following [10,32], we also define a notion of causal equivalence over paths. In
addition to identifying the composition of a transition and its inverse with the
empty path, it abstracts from the order of concurrent action and probabilistic
transitions. In this way, paths obtained by swapping the order of those transitions
are identified with each other.

Since probabilistic choices take precedence over nondeterministic ones in the
forward direction, a swap between two concurrenct action transitions is not al-
ways possible, unless all probabilistic choices have been made. More precisely,
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after opening a square, it may be the case that, in order to close it, the process
has to first resolve some probabilistic choices. This is rendered by the third and
fourth clauses in the definition below. For example, if we consider again process
a . (c . 0 p⊕ 0) ‖∅ b . 0 in Figure 2, we have that the action transitions a and b are
concurrent and coinitial. If we take the left path, then after doing a the process
has to resolve the probabilistic choice. Suppose it decides for the right branch,
which is labeled with (1− p). Then a process is reached in which b can be done.
On the other hand, if we take the right path, we have that the process can do b
followed by a but then again, in order to close the square, it has to resolve the
probabilistic choice; if it decides for (1 − p) the same process as the left path
is reached. Therefore the two paths can be considered as causally equivalent.
Something similar happens along the more extended square originating from
a1 . (b . 0 p⊕ c . 0) ‖∅ a2 . (d . 0 q⊕ e . 0).

Definition 2 (causal equivalence). Causal equivalence � is the smallest
equivalence relation over paths that is closed under composition and satisfies the
following clauses:

1. θ1θ
′
2 � θ2θ′1 for every two coinitial concurrent action transitions θ1 :R

`17−→ R1

and θ2 : R
`27−→ R2 and every two cofinal action transitions θ′2 : R1

`27−→ S and

θ′1 : R2
`17−→ S respectively composable with the previous ones.

2. θθ � ε and θθ � ε for every transition θ.

3. θ1θpθ
′
2 � θ2θ

′
1θ
′
p for every two coinitial concurrent action transitions

θ1 :R
`17−→ R1 and θ2 : R

`27−→ R2, every probabilistic transition θp : R1
`p7−→ R′1,

and every two cofinal transitions θ′2 : R′1
`27−→ S and θ′p : R′2

`p7−→ S, with

θ′1 : R2
`p7−→ R′2.

4. θ1θpθ
′
2θ
′
q � θ2θqθ

′
1θ
′
p for every two coinitial concurrent action transitions

θ1 :R
`17−→R1 and θ2 :R

`27−→R2, every two probabilistic transitions θp :R1
`p7−→R′1

and θq : R2
`q7−→ R′2, and every two cofinal transitions θ′q : R′2

`q7−→ S and

θ′p : R′1
`p7−→ S, with θ′1 : R2

`17−→ R′2 and θ′2 : R1
`27−→ R′1.

The further property below, called the parabolic lemma in [29], states that
every path can be seen as a backward path followed by a forward path. As
observed in [10], up to causal equivalence one can always reach for the maximum
freedom of choice among transitions by going backward and only then going
forward (not the other way around). Intuitively, computations can be viewed as
parabolas: the system first draws potential energy from its memory by undoing
all the executed actions and then restarts. The proof of the parabolic lemma has
to account for the presence of probabilistic transitions.

Lemma 4 (parabolic lemma). For each path ω, there exist two forward paths
ω1 and ω2 such that ω � ω1ω2 and |ω1|+ |ω2| ≤ |ω|.
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We conclude by obtaining a property called causal consistency in [29], which
establishes that being coinitial and cofinal is necessary and sufficient in order
for two paths to be causally equivalent, i.e., to contain concurrent action and
probabilistic transitions in different orders (swap) or to be one the empty path
and the other a transition followed by its reverse (cancelation).

Theorem 1 (causal consistency). Let ω1 and ω2 be two paths. Then ω1 � ω2

iff ω1 and ω2 are both coinitial and cofinal.

Theorem 1 shows that causal equivalence characterizes a space for admissible
rollbacks that are (i) correct as they do not lead to states not reachable by any
forward path and (ii) flexible enough to allow undo operations to be rearranged
with respect to the order in which the undone concurrent actions and probabilis-
tic transitions were originally performed. This implies that the states reached by
any backward path could be reached by performing forward paths only. Thus,
we can conclude that RPPC meets causal reversibility.

5 Conclusions

In this paper we have studied causal reversibility [10] of nondeterministic and
probabilistic process calculi in the non-strictly alternating model [20,35]. The
syntax and operational semantics have been defined by suitably adapting the
method of [36], while causal reversibility has been demonstrated by suitably
adapting the technique of [29], thus extending results developed in the fully
nondeterministic setting.

As future work, similar to the stochastically timed case [5,4], for our reversible
probabilistic calculus we plan to study behavioral equivalences as well as time
reversibility [22] and its possible relationships with causal reversibility.
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A Proofs of Results

Proof of Proposition 1.
We proceed by induction on the depth of the derivation of either transition and
then by case analysis on the last applied rule. Since each forward (resp. back-
ward) rule in Tables 2 and 3 has a fully corresponding backward (resp. forward)
rule in the same table except for PPar and PPar•, we concentrate on the last
mentioned pair of rules.

Consider R ‖L S and let R
(p)[i]−−−→p R

′ with i /∈ keyp(S) and S 6−→p, so that the

application of PPar yields R ‖L S
(p)[i]−−−→p R

′ ‖L S. By applying the induction hy-

pothesis to R
(p)[i]−−−→p R

′ we obtain R′
(p)[i]

9999Kp R. In order to apply PPar•, we also
need to have npa(S)∨¬npa(R′), which means that S has no past actions or R′ has
them. Since we are considering reachable processes and the semantics stipulates
that in the forward direction all probabilistic choices have to resolved at once and
before nondeterministic choices, the probabilistic choice in R is (i) in the scope
of an executed action prefix or (ii) just a top level probabilistic choice; moreover,
S enables (iii) at least one action or (iv) no actions at all. There are four cases
depending on the combination of the forms of R and S. We will consider only
the one in which the probabilistic choice of R is in the scope of an executed
action prefix and S has an enabled action, which is the case combining (i) and
(iii); the other cases are similar. Thus we have R = C1[a[k] . (R1 p⊕ R2)] and S =

C2[b . S′], so by applying PPar we obtain C1[a[k] . (R1 p⊕ R2)] ‖L C2[b . S′]
(p)[i]−−−→p

C1[a[k] . (R1 [i]p⊕ R2)] ‖L C2[b . S′]. Clearly ¬npa(R′) holds, so that PPar• can

be applied and we obtain R′ ‖L S
(p)[i]

9999Kp R ‖L S as desired.
The case in which we first apply PPar• and then PPar is simpler because the
conditions of PPar are less demanding than those of PPar•.

Proof of Lemma 1.
We distinguish among three cases based on the direction of θ1 and θ2:

– If θ1 and θ2 are both forward, there are three subcases:

• If their labels are actions, since θ1 and θ2 are concurrent they cannot orig-
inate from a choice operator by virtue of condition 2 of Definition 1. They
must thus be generated by a parallel composition, but not through rule
Coo because θ1 and θ2 must have different keys and hence cannot syn-
chronize. Without loss of generality, we can assume that R = R1 ‖LR2

with R1
a[i]−−→a S1, R2

b[j]−−→a S2, a, b /∈ L, and i 6= j. There are three
further subcases:

∗ If neither S1 nor S2 enables a probabilistic choice, by applying rule

Par we obtain R1 ‖LR2
a[i]−−→a S1 ‖LR2

b[j]−−→a S1 ‖L S2 as well as

R1 ‖LR2
b[j]−−→a R1 ‖ S2

a[i]−−→a S1 ‖L S2. This satisfies the first clause
of the square property.
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∗ If S2 enables a probabilistic choice whereas S1 does not, that choice
has to be resolved before letting R1 do its action transition. Suppose

that S2
(p)[k]

−−−→p S
′
2 with k 6∈ keya(S2). By applying rule PPar we

have that R1 ‖L S2
(p)[k]

−−−→p R1 ‖L S′2. Now since there are no more
enabled probabilistic choices, as they have to be resolved at once
even if they are nested in S1, by applying rule Par we have that

R1 ‖L S′2
b[j]−−→a S1 ‖L S′2. This satisfies the second clause of the square

property.
∗ If both S1 and S2 enable a probabilistic choice, then we proceed like

in the previous subcase. This satisfies the third clause of the square
property.

• If their labels are probabilities, this case never applies because it is im-
possible to derive two concurrent probabilistic transitions from the same
process.

• If one label is an action and the other is a probability, this case cannot
happen because the probabilistic choices have to be resolved first, hence
the action transition cannot be generated.

– If θ1 and θ2 are both backward, there are three subcases:

• If their labels are actions, then we proceed like in the first subcase of the
case in which θ1 and θ2 are both forward.

• If their labels are probabilities, say S1

(p)[i]

9999K a R1 and S2

(q)[j]

9999K a R2,
since i 6= j the only rule that can be applied is PPar•. This implies
that (npa(S2) ∨ ¬npa(S1)) ∧ S2 6−→p holds for the first transition and
(npa(S1)∨¬npa(S2))∧S1 6−→p holds for the second one. The only case in
which both transitions can be generated from the same process is when
Si 6−→p and ¬npa(Si) for i ∈ {1, 2}; the other cases are ruled out by

the semantics. By applying rule PPar• we have that S1 ‖L S2

(p)[i]

9999Kp

R1 ‖L S2 and S1 ‖L S2

(q)[j]

9999K p S1 ‖LR2. Now we have that R1 cannot
be a standard process and has at least one backward action transition
to do, otherwise npa(S1) would hold, but this violates the hypothesis.

Hence from R1

a[k]
999K a R′1 we can derive R1 ‖L S2

a[k]
999K a R′1 ‖L S2 by

applying rule Par•. Also, note that since the undo of an action never
enables a probabilistic choice we still have that npa(R′1). We can apply

the same reasoning to S2 and from S2
q[j]

999Kp R2

b[h]
999Ka R′2 by appyling

PPar• and Par• we derive R′1 ‖L S2

(q)[j]

9999Kp R′1 ‖LR2

b[h]
999Ka R′1 ‖LR′2.

If we start the execution from R2, with the same reasoning as above we

obtain the following execution: S1 ‖L S2

(q)[j]

9999Kp
b[h]
999Ka S1 ‖LR′2

(p)[i]

9999Kp
a[k]
999Ka R′1 ‖LR′2. This satisfies the third clause of the square property.
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• If one label is an action and the other is a probability, say S1

(p)[i]

9999Kp R1

and S2

a[j]
999Ka R2, then S2 6−→p otherwise the backward transition of the

left subprocess would not be possible. By using first PPar• and then

Par• we obtain S1 ‖L S2

(q)[i]

9999Kp R1 ‖L S2

a[j]
999Ka R1 ‖LR2. On the other

hand, by using first Par• and then PPar• we obtain S1 ‖L S2

a[j]
999Ka

S1 ‖LR2

(p)[i]

9999Kp R1 ‖LR2. This satisfies the second clause of the square
property.

– If θ1 is forward and θ2 is backward, there are three subcases:
• If their labels are actions, then we proceed like in the first subcase of the

case in which θ1 and θ2 are both forward.

• If their labels are probabilities, say S1

(p)[i]

9999Kp R1 and S2
(q)[j]−−−→p R2, since

the two transitions use different keys the only rule that can be applied is
PPar•. This implies that (npa(S2)∨¬npa(S1))∧S2 6−→p. Since S2 has a
forward probabilistic transition, the condition does not hold and hence
this case is ruled out.

• If one label is an action and the other is a probability, the case cannot
happen because from this state the undoing of a probabilistic choice is
forbidden.

Proof of Lemma 2
By Definition 1 it is not possible for two backward transitions to be in conflict.

Proof of Lemma 3.
By induction on |keya(R0)|. Indeed, every backward transition between two dif-
ferent processes decreases by one the total number of past actions, with this
number being finite.

Proof of Lemma 4
Let d(ω) be the number of discording pairs within path ω, where two forward

transitions θ1 and θ2 form a discording pair iff θ1θ
p
1 and θ2θ

q
2 occur next to each

other in that order inside ω, with θp1 and θq2 possibly empty.
If d(ω) = 0, then ω is already formed by a (possibly empty) backward path
followed by a forward one.
If d(ω) > 0, the result follows by showing that there exists ω′ � ω with |ω′| ≤ |ω|
and d(ω′) < d(ω). Since d(ω) > 0, ω contains at least one discording pair. Let

the one formed by θ1 and θ2 be the earliest one, where ω = ω1θ1θ
p
1θ2θ

q
2ω2 with

ω1 being forward.
If θ1 = θ2, then trivially ω1θ1θ

p
1θ2θ

q
2ω2 � ω1ω2 with |ω1ω2| < |ω| and d(ω1ω2) <

d(ω).
If θ1 6= θ2 with the two transitions being concurrent, by using the square
property (Lemma 1) we can swap them thereby obtaining ω1θ1θ

p
1θ2θ

q
2ω2 �

ω1θ2θ2qθ1θ
p
1ω2 with |ω1θ2θ

q
2θ1θ

p
1ω2| ≤ |ω|. If ω2 starts with a forward transi-

tion then d(ω1θ2θ1ω2) < d(ω), otherwise we keep moving right with θ1 being



24 M. Bernardo and C.A. Mezzina

part of the next earliest discording pair to consider.
If θ1 6= θ2 with the two transitions being in conflict, there is just one case ac-
cording Definition 1: θ1 and θ2 are two transitions with θ2 removing a cause of
θ1 (condition 1). Since it is not possible to perform such a θ2 after θ1, this case
does not apply.

Proof of Theorem 1.
It follows from past well foundedness and the parabolic lemma thanks to [29].



Reversibility in Process Calculi with Nondeterminism and Probabilities 25

B Strictly Alternating RPPC: Syntax and Semantics

The syntax of the standard forward processes for RPPCsa, a variant of RPPC
complying with the strictly alternating model of [20], is as follows:

N,M ::= 0 | a . P | N +M | N ‖LM
P,Q ::=

⊕
h∈H〈ph〉Nh | P ‖LQ

where H is a finite and non-empty index set, ph ∈ R]0,1] for all h ∈ H, and∑
h∈H ph = 1.
Observing that parallel composition applies to both nondeterministic pro-

cesses and probabilistic processes, action prefix and nondeterministic choice
characterize nondeterministic processes while probabilistic choice characterizes
probabilistic processes. The strict alternation arises from the fact that the con-
tinuation of an action prefix is a probabilistic process and the continuation of
every summand within a probabilistic choice is a nondeterministic process.

The syntax of the corresponding reversible processes is the following:
RN,RM ::= N | a[i] .RP | RN + RM | RN ‖L RM
RP,RQ ::= P | 〈pz〉[i]RNz

⊕
h∈H\{z}〈ph〉RNh | RP ‖L RQ

where z ∈ H singles out the summand that has been selected.
The related operational semantic rules are shown in Table 4 for action transi-

tions and in Table 5 for probabilistic transitions. As can be noted, they are fewer
than those in Tables 2 and 3, respectively, and also simpler because they use only
std and keya and do not need negative premises on probabilistic transitions.

The only subtlety is related to rules Parsa and Par•sa. In the former rule,
since RN can do an action and hence is nondeterministic, RM is nondeterminis-
tic too and hence has to be made probabilistic in the derivative process, which
would simply be accomplished by transforming it into 〈1〉RM if it were a stan-
dard forward process [20]. Function mkpr is inductively defined as follows:

mkpr(N) = 〈1〉N
mkpr(a[i] .RP) = a[i] . mkpr(RP)

mkpr(RN + RM) =

{
mkpr(RN) + RM if std(RM)
RN + mkpr(RM) if std(RN)

mkpr(RN ‖L RM) = mkpr(RN) ‖L mkpr(RM)
mkpr(P ) = P

mkpr(〈pz〉[i]RNz

⊕
h∈H\{z}〈ph〉RNh) = 〈pz〉[i]mkpr(RNz)

⊕
h∈H\{z}〈ph〉RNh

mkpr(RP ‖L RQ) = mkpr(RP) ‖L mkpr(RQ)
In the latter rule, since RN can undo an action and hence is probabilistic, RM
is probabilistic too and hence has to be made nondeterministic in the derivative
process. Function mknd is inductively defined as follows:

mknd(〈1〉N) = N
mknd(〈pz〉[i]RNz

⊕
h∈H\{z}〈ph〉RNh) = 〈pz〉[i]mknd(RNz)

⊕
h∈H\{z}〈ph〉RNh

mknd(RP ‖L RQ) = mknd(RP) ‖L mknd(RQ)
mknd(N) = N

mknd(a[i] .RP) = a[i] . mknd(RP)

mknd(RN + RM) =

{
mknd(RN) + RM if std(RM)
RN + mknd(RM) if std(RN)

mknd(RN ‖L RM) = mknd(RN) ‖L mknd(RM)
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(Act1sa)
std(RP )

a .RP
a[i]−−→a a[i] .RP

(Act1•sa)
std(RP )

a[i] .RP
a[i]
999Ka a .RP

(Act2sa)
RP

b[j]−−→a RP
′ j 6= i

a[i] .RP
b[j]−−→a a[i] .RP ′

(Act2•sa)
RP

b[j]
999Ka RP

′ j 6= i

a[i] .RP
b[j]
999Ka a[i] .RP ′

(Act3sa)
RNz

b[j]−−→a RN
′
z z ∈ H ∀h ∈ H \ {z}. std(RNh)

〈pz〉[i]RNz

⊕
h∈H\{z}

〈ph〉RNh
b[j]−−→a 〈pz〉[i]RN ′z

⊕
h∈H\{z}

〈ph〉RNh

(Act3•sa)
RNz

b[j]
999Ka RN

′
z z ∈ H ∀h ∈ H \ {z}. std(RNh)

〈pz〉[i]RNz

⊕
h∈H\{z}

〈ph〉RNh

b[j]
999Ka 〈pz〉[i]RN ′z

⊕
h∈H\{z}

〈ph〉RNh

(Chosa)
RN

a[i]−−→a RN
′

std(RM )

RN + RM
a[i]−−→a RN

′ + RM

(Cho•sa)
RN

a[i]
999Ka RN

′
std(RM )

RN + RM
a[i]
999Ka RN

′ + RM

(Parsa)
RN

a[i]−−→a RN
′ a /∈ L i /∈ keya(RM )

RN ‖L RM
a[i]−−→a RN

′ ‖L mkpr(RM)

(Par•sa)
RN

a[i]
999Ka RN

′ a /∈ L i /∈ keya(RM )

RN ‖L RM
a[i]
999Ka RN

′ ‖L mknd(RM)

(Coosa)
RN

a[i]−−→a RN
′ RM

a[i]−−→a RM
′ a ∈ L

RN ‖L RM
a[i]−−→a RN

′ ‖L RM ′

(Coo•sa)
RN

a[i]
999Ka RN

′ RM
a[i]
999Ka RM

′ a ∈ L

RN ‖L RM
a[i]
999Ka RN

′ ‖L RM ′

Table 4. Operational semantic rules for RPPCsa action transitions
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(PSel1sa)
z ∈ H ∀h ∈ H. std(RNh)⊕

h∈H

〈ph〉RNh
(pz)

[i]

−−−−→p 〈pz〉[i]RNz

⊕
h∈H\{z}

〈ph〉RNh

(PSel1•sa)
z ∈ H ∀h ∈ H. std(RNh)

〈pz〉[i]RNz

⊕
h∈H\{z}

〈ph〉RNh

(pz)
[i]

999999Kp
⊕
h∈H

〈ph〉RNh

(PSel2sa)
RNz

(q)[j]−−−−→p RN
′
z z ∈ H ∀h ∈ H \ {z}. std(RNh) j 6= i

〈pz〉[i]RNz

⊕
h∈H\{z}

〈ph〉RNh
(q)[j]−−−−→p 〈pz〉[i]RN ′z

⊕
h∈H\{z}

〈ph〉RNh

(PSel2•sa)
RNz

(q)[j]

99999Kp RN
′
z z ∈ H ∀h ∈ H \ {z}. std(RNh) j 6= i

〈pz〉[i]RNz

⊕
h∈H\{z}

〈ph〉RNh

(q)[j]

99999Kp 〈pz〉[i]RN ′z
⊕

h∈H\{z}

〈ph〉RNh

(PSel3sa)
RP

(q)[j]−−−−→p RP
′

a[i] .RP
(q)[j]−−−−→p a[i] .RP ′

(PSel3•sa)
RP

(q)[j]

99999Kp RP
′

a[i] .RP
(q)[j]

99999Kp a[i] .RP ′

(PSel4sa)
RN

(q)[j]−−−−→p RN
′

std(RM)

RN + RM
(q)[j]−−−−→p RN

′ + RM

(PSel4•sa)
RN

(q)[j]

99999Kp RN
′

std(RM)

RN + RM
(q)[j]

99999Kp RN
′ + RM

(PCoosa)
RP

(p)[i]−−−−→p RP
′ RQ

(q)[i]−−−−→p RQ
′

RP ‖L RQ
(p·q)[i]−−−−−→p RP

′ ‖L RQ ′

(PCoo•sa)
RP

(p)[i]

99999Kp RP
′ RQ

(q)[i]

99999Kp RQ
′

RP ‖L RQ
(p·q)[i]
999999Kp RP

′ ‖L RQ ′

Table 5. Operational semantic rules for RPPCsa probabilistic transitions
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