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Abstract. Testing equivalence for processes featuring both nondeter-
minism and probabilities is not insensitive to the moment of occurrence of
nondeterministic or probabilistic choices among identical actions. There-
fore, it is only partially backward compatible with testing equivalences
for fully nondeterministic processes and for fully probabilistic processes.
We illustrate how its backward compatibility can be extended through
the joint use of coherent resolutions of nondeterminism and additional
decorations for transitions, to ensure the insensitivity to the aforemen-
tioned internal choices. We also show that full backward compatibility
cannot be achieved by exhibiting a counterexample with external choices
too, inspired by failure semantics for fully nondeterministic processes.

1 Introduction

Behavioral relations play a fundamental role in concurrency theory [3]. They
formalize observational mechanisms that permit relating models that, despite
their different representations in the same mathematical domain, cannot be dis-
tinguished by external entities when abstracting from certain internal details.
Moreover, they support system modeling and verification by providing a means
to relate system descriptions expressed at different levels of abstraction, as well
as to reduce the size of a system representation while preserving specific prop-
erties to be assessed later.

Several approaches to the definition of behavioral relations have appeared
in the literature, together with the investigation of their compositional, equa-
tional, and logical characteristics. Comparative concurrency theory is devoted
to the study of the discriminating power and of the mutual relationships of
behavioral relations. In the case of fully nondeterministic processes, from the
first work on this subject [15] to the elaboration of the full spectrum [22], a
number of equivalences have emerged that range from the branching-time – i.e.,
(bi)simulation-based – endpoint [33,32] to the linear-time – i.e., trace-based –
endpoint [11] passing through testing relations [16].

The spectrum becomes simpler when considering fully probabilistic pro-
cesses [29,24,2], whereas as shown in [7] it is much more variegated in the case
of processes with nondeterminism and probabilities. The reason is that only
after resolving nondeterminism via a scheduler it is possible to compute the
probability of equivalence-specific events. Examples of such events are reaching
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via given actions certain sets of equivalent states (bisimulation semantics), exe-
cuting specific action sequences (trace semantics), and passing tests formalized
themselves as processes (testing semantics), with states/traces possibly being
decorated with additional information.

Regardless of the specific approach, there are at least three alternative ways
of applying a behavioral equivalence to nondeterministic and probabilistic pro-
cesses, based on how the resolutions of nondeterminism of those processes are
compared. The three alternative ways have been addressed in the spectrum of [7]:

– The first option, coming from [38,36,37], examines the probability distri-
butions of all equivalence-specific events calculated over resolutions. Two
processes are considered equivalent if, for each resolution of either process,
there exists a resolution of the other process such that the probability of each
equivalence-specific event is the same in the two resolutions (fully matching
resolutions). The resulting portion of the spectrum closely resembles the
spectrum for fully probabilistic processes.

– The second option, deriving from [41,40,6,8], compares resolutions on the
basis of the probabilities of individual equivalence-specific events. A resolu-
tion of either process can be matched, with respect to different equivalence-
specific events, by different resolutions of the other process (partially match-
ing resolutions). The resulting equivalences are less discriminating than those
arising from fully matching resolutions and retrieve nice logical characteri-
zations for bisimilarity and compositionality properties for trace semantics.

– The third option, stemming from testing theories in [43,27,37] and adapted
to other semantics in [7], instead of comparing individual resolutions, takes
into account only the extremal probabilities of equivalence-specific events
computed over all resolutions of the two processes (max-min matching res-
olutions). The resulting equivalences are less discriminating than the ones
originated from partially matching resolutions, but both portions of the spec-
trum corresponding to these two families of equivalences feature many analo-
gies with the spectrum for fully nondeterministic processes.

In this paper, we focus on testing semantics for nondeterministic and proba-
bilistic processes, for which the third of the aforementioned options is the most
applied one [43,27,37]. Each test is formalized as a finite nondeterministic and
probabilistic process extended with success states, which is run in parallel with
the process under test thus resulting in an interaction (or testing) system in
which the process and the test have to synchronize on every action. The prob-
ability of reaching success is not unique, but depends on the specific resolution
of nondeterminism considered within the interaction system. In the third option
above, only the two maximal resolutions respectively yielding the maximum and
the minimum success probabilities are taken into account.

It is well known that behavioral equivalences for nondeterministic and proba-
bilistic processes tend to be overdiscriminating, thereby hampering the achieve-
ment of desirable properties. For example, in [28,17] it has been shown that the
testing equivalences of [43,27,37] can be characterized in terms of branching-time,
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simulation-like relations, which is consistent with the fact that those equivalences
are not insensitive to the moment of occurrence of a nondeterministic or prob-
abilistic choice that is internal, i.e., among identical actions. This is partly due
to centralized schedulers coming into play after assembling the testing system –
where a process is composed in parallel with a test, thus giving the possibility
to make decisions in either component on the basis of those made in the other –
which may be avoided via distributed schedulers [14,12,21]. Most importantly, it
is a consequence of a special instance of the copying capability [1], which shows
up in the presence of a nondeterministic choice in either component that syn-
chonizes with a probabilistic choice in the other, thus creating copies of a state
possessing several outgoing transitions where different decisions can be made.

This has a negative impact on the property, expected of any equivalence for
nondeterministic and probabilistic processes, of being backward compatible with
the corresponding equivalences for fully nondeterministic processes and for fully
probabilistic processes. As recalled in [6], the testing equivalences of [43,27,37]
turn out to coincide with the testing equivalence of [16] on fully nondetermin-
istic processes only if tests are restricted to be fully nondeterministic, and with
the testing equivalence of [13] on fully probabilistic processes only if tests are
restricted to be fully probabilistic. The two testing equivalences of [16,13] are
insensitive to internal nondeterministic or probabilistic choices, respectively.

We show that backward compatibility can be extended by making the testing
equivalences of [43,27,37] insensitive to the moment in which a nondeterminis-
tic or probabilistic choice among identical actions occurs. Instead of resorting
to a different definition of probabilistic testing equivalence like in [6], where
backward compatibility stems from comparing success probabilities in a trace-
by-trace fashion rather than cumulatively on all traces, we reuse the notion of
coherent resolution of nondeterminism for probabilistic trace semantics devel-
oped in [4,5]. In the case of testing semantics, coherency must be accompanied
by the introduction of additional transition decorations, so that the same deci-
sions are made by schedulers in distinct copies of the same state of a process
or a test occurring in a choice within the testing system. This is similar to the
technique employed in [20] for processes in which action, nondeterministic, and
probabilistic branchings alternate, with the remarkable difference that our dec-
oration procedure is much simpler. Consistent with the ready-trace semantics
characterization of [20], a counterexample inspired by failure semantics for fully
nondeterministic processes shows that full backward compatibility cannot be
achieved in the presence of certain synchronizations among external choices.

This paper is organized as follows. In Sect. 2, we recall background definitions
for nondeterministic and probabilistic processes as well as resolutions of nonde-
terminism. In Sect. 3, we present testing equivalence for those processes together
with its limitations about backward compatibility. In Sect. 4, we illustrate an
adaptation of coherent resolutions to testing systems in which transitions are
suitably decorated, so as to gain insensitivity to the moment of occurrence of
internal nondeterministic or probabilistic choices. This results in a higher level
of backward compatibility with respect to [43,27,37].
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2 Nondeterministic and Probabilistic Processes

Processes featuring nondeterminism and probability are typically described by
extending the labeled transition system (LTS) model [30] in such a way that every
action-labeled transition goes from a source state to a probability distribution
over target states [31,35] rather than to a single target state. These models are
essentially Markov decision processes [19], or probabilistic automata in the sense
of [34], that additionally allow for internal nondeterminism, i.e., equally labeled
transitions departing from the same state.

In the literature, they have been represented through a number of slightly
different probabilistic computational entities such as, e.g., concurrent Markov
chains [42], strictly alternating models [23], probabilistic automata in the sense
of [35], and the denotational probabilistic models of [25]; see [39] for an overview.
We formalize them through a variant of simple probabilistic automata [35], in
which we do not distinguish between external and internal actions.

Definition 1. A nondeterministic and probabilistic labeled transition system,
NPLTS for short, is a triple (S,A,−→) where S 6= ∅ is an at most countable
set of states, A 6= ∅ is a countable set of transition-labeling actions, and −→ ⊆
S ×A×Distr(S) is a transition relation, with Distr(S) being the set of discrete
probability distributions over S.

A transition (s, a,∆) is written s
a−→∆. We say that s′ ∈ S is not reachable

from s via that a-transition if ∆(s′) = 0, otherwise we say that it is reachable
with probability p = ∆(s′). The reachable states form the support of the target
distribution ∆, i.e., supp(∆) = {s′ ∈ S | ∆(s′) > 0}. An NPLTS can be depicted
as a directed graph in which vertices represent states and action-labeled edges
represent transitions, with states in the support of the same target distribution
being linked by a dashed line and decorated with the respective probabilities
when these are different from 1 (see the forthcoming Figs. 1 to 4).

The nondeterministic choice among all the transitions departing from state s
can be influenced by the external environment, while the probabilistic choice
of the target state for a specific outgoing transition of s takes place internally.
An NPLTS represents a fully nondeterministic process when every transition
has a target distribution with a singleton support, while it represents a fully
probabilistic process when every state has at most one outgoing transition.

In this setting, a computation is a sequence of state-to-state steps, each

denoted by s
a
−7→ s′ and derived from a state-to-distribution transition s

a−→∆.

Definition 2. Let L = (S,A,−→) be an NPLTS and s, s′ ∈ S. We say that the
finite sequence of steps:

c ≡ s0
a1
−7→ s1

a2
−7→ s2 . . . sn−1

an
−7→ sn

is a computation of L of length n ∈ N from s = s0 to s′ = sn compatible with

trace α = a1 a2 . . . an ∈ A∗, written c ∈ CC(s, α), iff for each step si−1
ai
−7→ si in c

there is a transition si−1
ai−→∆i in L such that si ∈ supp(∆i), 1 ≤ i ≤ n, where:
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– ∆i(si) is the execution probability of step si−1
ai
−7→ si conditioned on the se-

lection of transition si−1
ai−→∆i at state si−1, or simply the execution prob-

ability of that step if L is fully probabilistic.

– prob(c) =
∏

1≤i≤n∆i(si) is the execution probability of c if L is fully proba-
bilistic, assuming prob(c) = 1 when n = 0.

– For C ⊆ CC(s, α), we let prob(C) =
∑
c∈C prob(c) if L is fully probabilistic,

provided that no computation in C is a proper prefix of one of the others.

When several transitions depart from the same state s of an NPLTS L, they
describe a nondeterministic choice among different behaviors. A resolution of s
is the result of a possible way of resolving nondeterministic choices starting
from s, as if a scheduler were applied that decides which activity has to be
performed next. A resolution of nondeterminism can thus be formalized as a
fully probabilistic NPLTS Z with a tree-like structure, whose branching points
correspond to target distributions of transitions deriving from those of L.

There are two ways of resolving nondeterminism. The structure-preserving
approach constructs a resolution by importing states and transitions from the
original NPLTS via a deterministic scheduler. In a resolution of the structure-
modifying approach, (i) a transition can be produced by probabilistically com-
bining transitions of the original model via a randomized scheduler [35], or (ii) a
state can be obtained by probabilistically splitting states of the original model
via an interpolating scheduler [18], or (iii) a combination thereof [10].

In this paper, we focus on structure-preserving resolutions arising from cen-
tralized, memoryless, deterministic schedulers. At each step, a scheduler of this
kind selects one of the transitions departing from the current state, or no tran-
sitions at all thus stopping the execution. As a consequence, the resulting res-
olution is isomorphic to a submodel of the original model (or of its unfolding,
should cycles be present), thereby preserving the structure of the original model
(or of its unfolding). If the model is fully nondeterministic, each of its resolutions
coincides with a computation of the model; if the model is fully probabilistic, its
maximal resolution coincides with (the unfolding of) the entire model.

Following [26,9] we introduce a correspondence function corrZ : Z → S from
the acyclic state space of the resolution Z = (Z,A, −→Z) being built, to the
possibly cyclic state space of the considered model L = (S,A,−→L). For each

transition z
a−→Z ∆, the function corrZ must preserve the probabilities of all the

states corresponding to those in supp(∆) and must be injective over supp(∆). In
the absence of injectivity, the original structure may not be preserved in the case
that the target distribution of a transition assigns the same probability to several
inequivalent states. This is exemplified in Fig. 1. The correspondence function
that maps z to s, z′1 and z′2 to s′1, and z′′1 and z′′2 to s′′1 would cause the rightmost
NPLTS to be considered a legal resolution of the leftmost NPLTS, which is not
correct as the former is not isomorphic to any submodel of the latter.

Definition 3. Let L = (S,A,−→L) be an NPLTS and s ∈ S. An acyclic NPLTS
Z = (Z,A, −→Z) is a structure-preserving resolution of s, written Z ∈ Ressp(s),
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Fig. 1. Lack of injectivity breaks structure preservation

iff there exists a correspondence function corrZ : Z → S such that s = corrZ(zs),
for some zs ∈ Z acting as the initial state of Z, and for all z ∈ Z it holds that:

– If z
a−→Z ∆ then corrZ(z)

a−→L Γ , with corrZ being injective over supp(∆)
and satisfying ∆(z′) = Γ (corrZ(z′)) for all z′ ∈ supp(∆).

– At most one transition departs from z.

Z is maximal, written Z ∈ Ressp,max(s), iff for all z ∈ Z, whenever z has no
outgoing transitions, then corrZ(z) has no outgoing transitions either.

3 Partial Compatibility of NPLTS Testing Equivalence

The testing theories developed in [43,27,37] for nondeterministic and probabilis-
tic processes are based on comparing the extremal probabilities of passing a test.
We formalize both processes and tests as NPLTS models, with the difference that
a test has finitely many states and transitions, features an acyclic graph struc-
ture, and may contain occurrences of a success state. A test is passed by a process
with a certain probability if there exists a resolution of nondeterminism of the
parallel composition of the process and the test, with synchronization being en-
forced on any action, in which the probability of reaching a state having success
in its test component is equal to the given probability.

Definition 4. A nondeterministic and probabilistic test, NPT for short, is an
acyclic NPLTS T = (O,A,−→) where both O and −→ are finite, with O con-
taining a distinguished success state denoted by ω having no outgoing transitions.
We say that a computation of T is successful iff its last state is ω.

Definition 5. Let L = (S,A,−→L) be an NPLTS and T = (O,A,−→T )
be an NPT. The interaction system of L and T is the NPLTS I(L, T ) =
(S ×O,A,−→) where:

– Every (s, o) ∈ S ×O is called a configuration, which is successful iff o = ω.

– (s, o)
a−→∆ iff s

a−→L∆1 and o
a−→T ∆2 with ∆(s′, o′) = ∆1(s′) · ∆2(o′)

for all (s′, o′) ∈ S ×O.
– A computation of I(L, T ) is successful iff so is its last configuration.



Extending Backward Compatibility of Probabilistic Testing 7

We observe that I(L, T ) and any Z ∈ Ressp(s, o) have finitely many com-
putations due to the test structure; we denote by SC(zs,o) the set of successful
computations from the initial state zs,o of Z. Only maximal resolutions of non-
determinism are taken into account within interaction systems, because the ones
that are not maximal do not expose all successful computations and hence may
erroneously lead to conclude that the minimal success probability is zero. We
respectively denote by t and u the supremum and infimum of a set of numbers.

Definition 6. Let L = (S,A,−→L) be an NPLTS. States s1, s2 ∈ S are prob-
abilistic testing equivalent, written s1 ∼PTe-tu s2, iff for every NPT T =
(O,A,−→T ) with initial state o ∈ O it holds that:⊔

Z1∈Ressp,max(s1,o)

prob(SC(zs1,o)) =
⊔

Z2∈Ressp,max(s2,o)

prob(SC(zs2,o))
d

Z1∈Ressp,max(s1,o)

prob(SC(zs1,o)) =
d

Z2∈Ressp,max(s2,o)

prob(SC(zs2,o))

As shown in Thm. 4.4 of [6], the discriminating power of ∼PTe-tu does not
change if randomized schedulers are used in place of deterministic ones. As fur-
ther shown in Thm. 4.8 of [6], ∼PTe-tu is backward compatible with the testing
equivalence of [16] on fully nondeterministic processes (in the sense that the two
equivalences coincide on those processes) only if tests are restricted to be fully
nondeterministic in ∼PTe-tu. Likewise, ∼PTe-tu is backward compatible with
the testing equivalence of [13] on fully probabilistic processes only if tests are
restricted to be fully probabilistic in ∼PTe-tu. We recall below the definition of
testing equivalence for the two considered classes of processes.

Definition 7. Let L = (S,A,−→L) be a fully nondeterministic NPLTS. States
s1, s2 ∈ S are fully nondeterministic testing equivalent, written s1 ∼FNDTe s2, iff
for every fully nondeterministic NPT T = (O,A,−→T ) with initial state o ∈ O
it holds that:

– There exists a successful computation from (s1, o) iff there exists a successful
computation from (s2, o) – known as may testing.

– All maximal computations from (s1, o) are successful iff all maximal compu-
tations from (s2, o) are successful – known as must testing.

Definition 8. Let L = (S,A,−→L) be a fully probabilistic NPLTS. States s1, s2
∈ S are fully probabilistic testing equivalent, written s1 ∼FPTe s2, iff for every
fully probabilistic NPT T = (O,A,−→T ) with initial state o ∈ O it holds that:

prob(SC(s1, o)) = prob(SC(s2, o))

The reason for the aforementioned incompleteness of backward compatibility
can be illustrated through some counterexamples. For the two fully nondeter-
ministic NPLTS models in Fig. 2(A) whose initial states are s1 and s2, it is well
known that s1 ∼FNDTe s2, but s1 6∼PTe-tu s2 because the fully probabilistic
NPT with initial state o tells them apart. Assuming p ≥ 1 − p, the interaction
system with initial state (s1, o) has two maximal resolutions yielding t = p and
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Fig. 2. (A) Two ∼FNDTe-equivalent fully nondeterministic NPLTS models that are
∼PTe-tu-distinguished by a fully probabilistic test. (B) Two ∼FPTe-equivalent fully
probabilistic NPLTS models ∼PTe-tu-distinguished by a fully nondeterministic test.
In both cases, an internal nondeterministic choice on b synchronizes with an internal
probabilistic choice on b. This originates copies of the same state in the corresponding
interaction systems, as well as sensitivity to the moment of occurrence of the internal
choice in the original systems under test.
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u = 1 − p, while the interaction system with initial state (s2, o) has four max-
imal resolutions yielding t = 1 and u = 0 instead. The synchronization of the
nondeterministic choice between the two b-transitions reachable from s2 with
the probabilistic choice between the two b-transitions reachable from o creates
two copies of state s′2 in the second interaction system. The same internal non-
deterministic choice is enabled in either copy, thereby giving the scheduler the
opportunity of performing the incoherent selections that lead to the two maximal
resolutions respectively yielding t = 1 and u = 0.

The situation is similar in Fig. 2(B) with the two ∼FPTe-equivalent fully
probabilistic NPLTS models whose initial states are r1 and r2. They are distin-
guished with respect to ∼PTe-tu by the fully nondeterministic NPT whose initial
state is u. This is due to the two copies of u′ in the second interaction system,
in each of which the same internal nondeterministic choice is enabled.

4 Extending Compatibility via Coherent Resolutions

The anomalies shown in Fig. 2 are due to the freedom of schedulers of making
different decisions in states enabling the same actions. For these situations, in [4]
we proposed to limit the excessive power of schedulers by restricting them to yield
coherent resolutions. Intuitively, this means that, if several states in the support
of the target distribution of a transition are equivalent, then the decisions made
by the scheduler in those states have to be coherent with each other, so that the
states to which they correspond in any resolution are equivalent too. Although
developed for trace semantics, we now show that the notion of coherent resolution
applies to testing semantics as well.

The restriction to coherent maximal resolutions of interaction systems is the
basis for developing a variant ∼c

PTe-tu of probabilistic testing equivalence whose
backward compatibility with ∼FNDTe and ∼FPTe is higher than ∼PTe-tu. Similar
to [20], in addition to coherency, within resolutions of interaction systems we
need suitable decorations to differentiate among identically labeled transitions
departing from states deriving from copies of a state of the process or the test.

In Fig. 2, for instance, both states (s′2, o
′) and (s′2, o

′′) embody a copy of s′2.
Therefore, with respect to a scheduler, in those two states only the choice of
their two left b-transitions or right b-transitions should be considered coherent,
which can be achieved by decorating in the same way corresponding transitions
departing from the two considered states. The situation is similar for (r′2, u

′) and
(r′′2 , u

′), with the difference that the state being copied comes from the test.
Unlike [20], our decoration procedure is very simple. The decoration of each

transition of the process and of the test is just a serial number, then each transi-
tion of the interaction system inherits the serial numbers of the two transitions
from which it is originated. This is illustrated in Fig. 3, where in the maximal
resolution whose initial state is z′s2,o the two b-transitions are coherent with each
other because they both derive from the b-transition of s′2 decorated with 1, while
this is not the case in the maximal resolution whose initial state is z′′s2,o because
the two b-transitions respectively stem from the two b-transitions of s′2.
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Fig. 3. Application of the simplified decoration procedure based on serial numbers

The coherency constraints behind the formalization of coherent resolutions
have been introduced in [4]. They rely on coherent trace distributions, which are
suitable families of sets of traces weighted with their execution probabilities in
a given resolution, built through the following operations. To take decorations
into account, which we assume to be unique within any NPLTS, we replace A
with B = A× N× N and adapt definitions accordingly.

Definition 9. For b ∈ B, p ∈ R, TD ⊆ 2B
∗×R, and T ⊆ B∗ × R we define:

b .TD = {b . T | T ∈ TD} b . T = {(b β, p′) | (β, p′) ∈ T}
p · TD = {p · T | T ∈ TD} p · T = {(β, p · p′) | (β, p′) ∈ T}

dtr(TD) = {dtr(T ) | T ∈ TD} dtr(T ) = {β ∈ B∗ | ∃p′ ∈ R. (β, p′) ∈ T}
while for TD1,TD2 ⊆ 2B

∗×R we define:

TD1 + TD2 =


{T1 + T2 | T1 ∈ TD1 ∧ T2 ∈ TD2 ∧ dtr(T1) ≡ dtr(T2)}

if dtr(TD1) ≡ dtr(TD2)
{T1 + T2 | T1 ∈ TD1 ∧ T2 ∈ TD2}

otherwise
where for T1, T2 ⊆ B∗ × R we define:
T1 + T2 = {(β1, p1 + p2) | (β1, p1) ∈ T1 ∧ (β2, p2) ∈ T2 ∧ β1 ≡ β2} ∪

{(β, p) ∈ T1 ∪ T2 | there is no (ξ, q) in the other trace set s.t. β ≡ ξ}
with:

– β1 ≡ β2 iff either β1 = β2 = ε, or β1 = 〈a, h1, k1〉β′1, β2 = 〈a, h2, k2〉β′2,
h1 = h2 ∨ k1 = k2, and β′1 ≡ β′2.

– dtr(T1) ≡ dtr(T2) iff for each β1 ∈ dtr(T1) there exists β2 ∈ dtr(T2) such that
β1 ≡ β2, and vice versa.

– dtr(TD1) ≡ dtr(TD2) iff for each T1 ∈ TD1 there exists T2 ∈ TD2 such that
dtr(T1) ≡ dtr(T2), and vice versa.

Weighted trace set addition T1 + T2 is commutative and associative, with
probabilities of equivalent traces in the two summands being always added up
for coherency purposes. In constrast, trace distribution addition is only commu-
tative. Essentially, the two summands in TD1 + TD2 represent two families of
sets of weighted traces executable in the resolutions of two states in the support
of a target distribution. Every weighted trace set T1 ∈ TD1 is summed with
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every weighted trace set T2 ∈ TD2 – so as to characterize an overall resolution –
unless TD1 and TD2 have equivalent families of trace sets, in which case summa-
tion is restricted to weighted trace sets featuring equivalent traces for the sake
of coherency. Due to the lack of associativity, in the definition below all trace
distributions ∆(s′) ·TDc

n−1(s′) exhibiting a trace set family equivalent to Θ have
to be summed up first, which is ensured by the presence of a double summation.

Definition 10. Let (S,B,−→) be an NPLTS and s ∈ S. The coherent deco-
rated trace distribution of s is the subset of 2B

∗×R]0,1] defined as follows:
TDc(s) =

⋃
n∈N TDc

n(s)
with the coherent decorated trace distribution of s whose traces have length at
most n, i.e., TDc

n(s), being defined as:
(ε, 1) †

⋃
s

a,h,k−→ ∆

〈a, h, k〉 .

( ∑
Θ∈dtr(∆,n−1)

dtr(TDc
n−1(s

′))≡Θ∑
s′∈supp(∆)

∆(s′) · TDc
n−1(s′)

)
if n > 0 and s has outgoing transitions

{{(ε, 1)}}
otherwise

where dtr(∆,n− 1) = {dtr(TDc
n−1(s′)) | s′ ∈ supp(∆)} and the operator (ε, 1) †

is such that (ε, 1) † TD = {{(ε, 1)} ∪ T | T ∈ TD}.

As shown by several examples in [4], the coherency constraints should in-
volve all TDc

n( ) distributions separately – rather than TDc( ) – and should not
consider the probabilities contained in those trace distributions – which are in-
stead necessary for alternative characterizations of probabilistic trace semantics.
In [5] it was further shown that the coherency constraints should be based on a
monotonic construction in which any TDc

n( ) incrementally builds on TDc
n−1( ),

in the sense that every weighted trace set in the former should include as a sub-
set a weighted trace set in the latter. This is achieved through a fully coherent
variant of trace distribution, which we adapt below.

Definition 11. Let (S,B,−→) be an NPLTS and s ∈ S. The fully coherent
decorated trace distribution of s is the subset of 2B

∗×R]0,1] defined as follows:
TDfc(s) =

⋃
n∈N TDfc

n (s)
with the fully coherent decorated trace distribution of s whose traces have length
at most n being the subset of TDc

n(s) defined as:

TDfc
n (s) =


{T ∈ TDc

n(s) | ∃T ′ ∈ TDfc
n−1(s). T ′ ⊆ T}

if n > 0 and s has outgoing transitions
{{(ε, 1)}}

otherwise

Since testing semantics makes use of maximal resolutions only, with respect
to [4,5] the first coherency constraint suffices and is adapted as follows.

Definition 12. Let L = (S,B,−→L) be an NPLTS, s ∈ S, Z = (Z,B, −→Z) ∈
Ressp,max(s) with correspondence function corrZ : Z → S. We say that Z is a
coherent maximal resolution of s, written Z ∈ Rescsp,max(s), iff for all z ∈ Z,
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whenever z
a,h,k−→Z ∆, then for all n ∈ N and z′, z′′ ∈ supp(∆) it holds that:

dtr(TDfc
n (corrZ(z′))) ≡ dtr(TDfc

n (corrZ(z′′))) =⇒ dtr(TDfc
n (z′)) ≡ dtr(TDfc

n (z′′))

Definition 13. Let L = (S,A × N,−→L) be an NPLTS and T = (O,A × N,
−→T ) be an NPT. The decorated interaction system of L and T is the NPLTS

I(L, T ) = (S ×O,B,−→) where (s, o)
a,h,k−→ ∆ iff s

a,h−→L∆1 and o
a,k−→T ∆2 with

∆(s′, o′) = ∆1(s′) ·∆2(o′) for all (s′, o′) ∈ S ×O.

Definition 14. Let L = (S,A × N,−→L) be an NPLTS. States s1, s2 ∈ S are
coherent probabilistic testing equivalent, written s1 ∼c

PTe-tu s2, iff for every
NPT T = (O,A× N,−→T ) with initial state o ∈ O it holds that:⊔

Z1∈Rescsp,max(s1,o)

prob(SC(zs1,o)) =
⊔

Z2∈Rescsp,max(s2,o)

prob(SC(zs2,o))
d

Z1∈Rescsp,max(s1,o)

prob(SC(zs1,o)) =
d

Z2∈Rescsp,max(s2,o)

prob(SC(zs2,o))

As an example, dtr(TDfc
1 (s′2, o

′)) = {{ε, 〈b, 1, 1〉}, {ε, 〈b, 2, 1〉}} is identified
via ≡ with dtr(TDfc

1 (s′2, o
′′)) = {{ε, 〈b, 1, 2〉}, {ε, 〈b, 2, 2〉}}, hence the states to

which they correspond in any coherent maximal resolution of (s2, o) must result
in an analogous identification. In contrast, 〈b, 1, 1〉 cannot be identified with
〈b, 2, 2〉 because 1 = h1 6= h2 = 2 and 1 = k1 6= k2 = 2. Likewise, 〈b, 2, 1〉 cannot
be identified with 〈b, 1, 2〉 because 2 = h1 6= h2 = 1 and 1 = k1 6= k2 = 2. As a
consequence, the two maximal resolutions of (s2, o) in Fig. 2 respectively having
initial states z′′s2,o and z′′′s2,o and success probabilities 1 and 0, with the former
appearing also in Fig. 3 together with its decorations, are not coherent. It thus
turns out that s1 ∼c

PTe-tu s2; for similar reasons, r1 ∼c
PTe-tu r2.

We finally prove that the joint use of coherency and decorations makes
∼c

PTe-tu insensitive to the moment of occurrence of internal nondeterministic
or probabilistic choices. Before that, we show that full backward compatibility
with ∼FNDTe and ∼FPTe cannot be achieved, though. Consider the two fully
nondeterministic NPLTS models with initial states t1 and t2 in Fig. 4. These
two models are known to be failure equivalent, i.e., identified by the must-part
of ∼FNDTe [15], hence we may expect them to be identified by ∼c

PTe-tu too. How-
ever, this is not the case, as witnessed by the fully probabilistic NPT with initial
state w because of the maximal resolution of (t2, w) with success probability 1,
in which the (external) nondeterministic choice between the b-transition and the
c-transition after the central a-transition of t2 synchronizes with the (external)
probabilistic choice between the b-transition and the c-transition departing from
the two states in the support of the a-transition of w.

The backward compatibility of ∼c
PTe-tu extends till the point in which the

following property Sext holds: whenever an external nondeterministic choice of
the process (resp. test) synchronizes with an external probabilistic choice of the
test (resp. process), then all the states in the support of the target distribution
of the resulting (interaction system) transition enable the same set of actions.

Theorem 1. Let L = (S,A×N,−→L) be an NPLTS and admit only NPTs T =
(O,A×N,−→T ) such that I(L, T ) = (S×O,B,−→) meets Sext. For s1, s2 ∈ S:
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Fig. 4. Limit to the extension of the backward compatibility of ∼c
PTe-tu

1. If L is fully nondeterministic, then s1 ∼c
PTe-tu s2 ⇐⇒ s1 ∼FNDTe s2.

2. If L is fully probabilistic, then s1 ∼c
PTe-tu s2 ⇐⇒ s1 ∼FPTe s2.
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A Proofs of Results

Proof of Thm. 1.
Given an NPLTS L = (S,A× N,−→L) and s1, s2 ∈ S, we proceed as follows:

1. Suppose that L is fully nondeterministic.
The implication s1 ∼c

PTe-tu s2 =⇒ s1 ∼FNDTe s2 is straightforward. When
restricting ourselves to fully nondeterministic tests, which are the only ones
considered by ∼FNDTe, each interaction system involving L turns out to be
fully nondeterministic too and trivially meets Sext. As a consequence, given
a fully nondeterministic NPT T = (O,A×N,−→T ) with initial state o ∈ O,
the maximal resolutions of I(L, T ) coincide with the maximal computations
of I(L, T ) itself. Therefore, the probability of performing a successful com-
putation within a maximal resolution of I(L, T ) can only be 1 or 0, where
for all s ∈ S it holds that s may pass T – i.e., there exists at least one suc-
cessful computation from (s, o) – iff

⊔
Z∈Rescsp,max(s,o)

prob(SC(zs,o)) = 1 and

s must pass T – i.e., all maximal computations from (s, o) are successful – iffd
Z∈Rescsp,max(s,o)

prob(SC(zs,o)) = 1. From s1 ∼c
PTe-tu s2 it thus follows that

the t-equality constraint implies the may-part of ∼FNDTe and the u-equality
constraint implies the must-part of ∼FNDTe, hence s1 ∼FNDTe s2.
We now assume that s1 ∼FNDTe s2 and, to avoid falling back into the pre-
vious case, consider an NPT T = (O,A× N,−→T ) with initial state o ∈ O
that is not fully nondeterministic, so that it features at least one transition
whose target distribution contains several states in its support. Suppose that
I(L, T ) meets Sext. Thanks to coherency and additional decorations, it holds
that copies in I(L, T ) of internal and external nondeterministic choices in L
are dealt with consistently in any Z ∈ Rescsp,max(s, o) for all s ∈ S:

– Let us address internal nondeterministic choices first. Distinct computa-
tions of L with a common prefix up to a state with an internal nondeter-
ministic choice on some action b cannot be all involved in the generation
of computations in the same resolution Z, even in the presence of a
transition in T whose target distribution contains in its support sev-
eral states with outgoing b-transitions that can synchronize with those
of the aforementioned state in L. Due to coherency and additional dec-
orations, only one of the considered computations of L can be involved,
and the continuations of those computations in Z (each starting with b)
are all based on the continuation (starting with b as well) of the only
computation of L involved, thereby exercising the same resolution of T .

– This holds true also in the case of an external nondeterministic choice
of L that, in the synchronization with a probabilistic choice of T , yields
in I(L, T ) copies in each of which the same actions are enabled.

In conclusion, coherency and additional decorations ensure that, as long as
L features no nondeterministic choices or only nondeterministic choices each
of which:

– does not synchronize with any probabilistic choice of T ;
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– is internal and synchronizes with probabilistic choices of T ;
– is external (possibly with several transitions labeled with the same ac-

tions) and synchronizes with probabilistic choices of T in such a way
that, for each synchronization, the same actions are enabled in all the
copies arising from that synchronization;

every resolution Z ∈ Rescsp,max(s, o) stems from the synchronization of a
single computation of s labeled with some action sequence α ∈ A∗ and
a resolution Z ′ ∈ Rescsp,max(o). Therefore, observing that prob(SC(zs,o)) =∑
α∈A∗ prob(SCC(zs,o, α)), where SCC(zs,o, α) is the set of successful compu-

tations from zs,o compatible with α, since from the may-part of s1 ∼FNDTe s2
it follows that s1 and s2 are trace equivalent [16], we derive s1 ∼c

PTe-tu s2.
2. Suppose that L is fully probabilistic.

The implication s1 ∼c
PTe-tu s2 =⇒ s1 ∼FPTe s2 is straightforward. When

restricting ourselves to fully probabilistic tests, which are the only ones
considered by ∼FPTe, each interaction system involving L turns out to be
fully probabilistic too and trivially meets Sext. As a consequence, given a
fully probabilistic NPT T = (O,A × N,−→T ) with initial state o ∈ O,
I(L, T ) has a single maximal resolution, which coincides with I(L, T ) itself,
so that

⊔
Z∈Rescsp,max(s,o)

prob(SC(zs,o)) =
d
Z∈Rescsp,max(s,o)

prob(SC(zs,o)) =

prob(SC(s, o)) for all s ∈ S.
We now assume that s1 ∼FPTe s2 and, to avoid falling back into the previous
case, consider an NPT T = (O,A×N,−→T ) with initial state o ∈ O that is
not fully probabilistic, so that it features at least one state that has several
outgoing transitions. Suppose that I(L, T ) meets Sext. The proof that from
this we derive s1 ∼c

PTe-tu s2 is similar to the one of property 1 in which we
started from s1 ∼FNDTe s2, with the following differences:

– The various cases related to internal/external nondeterministic choices
apply to T instead of L.

– In those cases, every resolution Z ∈ Rescsp,max(s, o) stems from the syn-
chronization of the complete submodel of L rooted at s and a resolution
Z ′ ∈ Rescsp,max(o), which are both fully probabilistic.

– We exploit the fact that from s1 ∼FPTe s2 it follows that, for all α ∈ A∗,
s1 and s2 perform the action sequence α with the same probability.
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