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Abstract
We introduce a process calculus for nondeterministic systems that are reversible, i.e., capable of undoing

their actions starting from the last performed one. The considered systems are sequential so as to be

neutral with respect to interleaving semantics vs. truly concurrent semantics of parallel composition. As

a natural continuation of previous work on strong bisimilarity in this reversible setting, we investigate

compositionality properties and equational characterizations of weak variants of forward-reverse bisim-

ilarity as well as of its two components, i.e., weak forward bisimilarity and weak reverse bisimilarity.

1. Introduction

Reversibility in computing started to gain attention since the seminal works of Landauer [1] and

Bennett [2], where it was shown that reversible computations may achieve lower levels of heat

dissipation. Nowadays reversible computing has many applications ranging from computational

biochemistry and parallel discrete-event simulation to robotics, control theory, fault tolerant

systems, and concurrent program debugging.

In a reversible system, two directions of computation can be observed: a forward one, coin-

ciding with the normal way of computing, and a backward one, along which the effects of the

forward one can be undone when needed in a causally consistent way, i.e., by returning to a past

consistent state. The latter task is not easy to accomplish in a concurrent system, because the

undo procedure necessarily starts from the last performed action and this may not be uniquely

identifiable. The usually adopted strategy is that an action can be undone provided that all of

its consequences, if any, have been undone beforehand [3].

In the process algebra literature, two approaches have been developed to reverse computations

based on keeping track of past actions: the dynamic one of [3] and the static one of [4], later

shown to be equivalent in terms of labeled transition systems isomorphism [5].

The former approach yields RCCS, a variant of CCS [6] that uses stack-based memories

attached to processes so as to record all the actions executed by the processes themselves.

A single transition relation is defined, while actions are divided into forward and backward

resulting in forward and backward transitions. This approach is suitable when the operational
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semantics is given in terms of reduction semantics, like in the case of very expressive calculi

as well as programming languages.

In contrast, the latter approach proposes a general method, of which CCSK is a result, to

reverse calculi, relying on the idea of retaining within the process syntax all executed actions,

which are suitably decorated, and all dynamic operators, which are thus made static. A forward

transition relation and a backward transition relation are separately defined, which are labeled

with actions extended with communication keys so as to remember who synchronized with

whom when going backward. This approach is very handy when it comes to deal with labeled

transition systems and basic process calculi.

In [4] forward-reverse bisimilarity was introduced too. Unlike standard bisimilarity [7, 6], it

is truly concurrent as it does not satisfy the expansion law of parallel composition into a choice

among all possible action sequencings. The interleaving view can be restored in a reversible

setting by employing back-and-forth bisimilarity [8]. This is defined on computation paths

instead of states, thus preserving not only causality but also history as backward moves are

constrained to take place along the path followed when going forward even in the presence of

concurrency. In the latter setting, a single transition relation is considered, which is viewed as

bidirectional, and in the bisimulation game the distinction between going forward or backward

is made by matching outgoing or incoming transitions of the considered processes, respectively.

In [9] forward-reverse bisimilarity and its two components, i.e., forward bisimilarity and re-

verse bisimilarity, have been investigated in terms of compositionality properties and equational

characterizations, both for nondeterministic processes and for Markovian processes. In order

to remain neutral with respect to interleaving view vs. true concurrency, the study has been

conducted over a sequential processes calculus, in which parallel composition is not admitted

so that not even the communication keys of [4] are needed. Furthermore, a single transition

relation viewed as bidirectional and the distinction between outgoing and incoming transitions

in the bisimulation game have been adopted like in [8].

In this paper we extend the work done in [9] to weak variants of forward-reverse, forward,

and reverse bisimilarities over nondeterministic reversible sequential processes, where by weak

we mean that the considered equivalences abstract from unobservable actions, traditionally

denoted by 𝜏 . As far as compositionality is concerned, compared to [9] we discover that an

initiality condition is necessary not only for forward bisimilarity but also for forward-reverse

bisimilarity, which additionally solves the congruence problem with respect to nondeterministic

choice affecting all weak variants of bisimilarity [6, 10]. As for equational characterizations,

we retrieve the 𝜏 -laws of weak bisimilarity [6] and branching bisimilarity [10] over standard

forward-only processes in the case of forward bisimilarity and forward-reverse bisimilarity

respectively, along with some variants of those laws in the case of reverse bisimilarity. Together

with the results in [8, 11], this emphasizes once more the connection between forward-reverse

bisimilarity and branching bisimilarity.

The paper is organized as follows. In Section 2 we recall syntax and semantics for the calculus

of nondeterministic reversible sequential processes as well as the forward, reverse, and forward-

reverse bisimilarities introduced in [9]. In Section 3 we define the weak variants of the three

aforementioned bisimilarities. In Section 4 we study their compositionality properties. Finally,

in Section 5 we provide sound and ground-complete equational characterizations for the three

weak bisimilarities.
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2. Background

2.1. Syntax of Nondeterministic Reversible Sequential Processes

Given a countable set 𝐴 of actions – ranged over by 𝑎, 𝑏, 𝑐 – including an unobservable action

denoted by 𝜏 , the syntax of reversible sequential processes is as follows [9]:

𝑃 ::= 0 | 𝑎 . 𝑃 | 𝑎†. 𝑃 | 𝑃 + 𝑃
where:

• 0 is the terminated process.

• 𝑎 . 𝑃 is a process that can execute action 𝑎 and whose continuation is 𝑃 .

• 𝑎† . 𝑃 is a process that executed action 𝑎 and whose continuation is in 𝑃 .

• 𝑃1 + 𝑃2 expresses a nondeterministic choice between 𝑃1 and 𝑃2 as far as both of them

have not executed any action yet.

We syntactically characterize through suitable predicates three classes of processes generated

by the grammar above. Firstly, we have initial processes, i.e., processes in which all the actions

are unexecuted:

initial(0)
initial(𝑎 . 𝑃 ) ⇐= initial(𝑃 )

initial(𝑃1 + 𝑃2) ⇐= initial(𝑃1) ∧ initial(𝑃2)
Secondly, we have final processes, i.e., processes in which all the actions along a single path

have been executed:

final(0)
final(𝑎†. 𝑃 ) ⇐= final(𝑃 )

final(𝑃1 + 𝑃2) ⇐= (final(𝑃1) ∧ initial(𝑃2)) ∨ (initial(𝑃1) ∧ final(𝑃2))
Multiple paths arise only in the presence of alternative compositions, i.e., nondeterministic

choices. At each occurrence of +, only the subprocess chosen for execution can move, while

the other one, although not selected, is kept as an initial subprocess within the overall process

to support reversibility.

Thirdly, we have the processes reachable from an initial one, whose set we denote by P:

reachable(0)
reachable(𝑎 . 𝑃 ) ⇐= initial(𝑃 )
reachable(𝑎†. 𝑃 ) ⇐= reachable(𝑃 )

reachable(𝑃1 + 𝑃2) ⇐= (reachable(𝑃1) ∧ initial(𝑃2)) ∨ (initial(𝑃1) ∧ reachable(𝑃2))
It is worth noting that:

• 0 is the only process that is both initial and final as well as reachable.

• Every initial or final process is reachable too.

• P also contains processes that are neither initial nor final, like e.g. 𝑎†. 𝑏 . 0.

• The relative positions of already executed actions and actions to be executed matter;

in particular, an action of the former kind can never follow one of the latter kind.

For instance, 𝑎†. 𝑏 . 0 ∈ P whereas 𝑏 . 𝑎†. 0 /∈ P.
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(Actf )
initial(𝑃 )

𝑎 . 𝑃
𝑎−→ 𝑎†. 𝑃

(Actp)
𝑃

𝑏−→ 𝑃 ′

𝑎†. 𝑃
𝑏−→ 𝑎†. 𝑃 ′

(Chol)
𝑃1

𝑎−→ 𝑃 ′
1 initial(𝑃2)

𝑃1 + 𝑃2
𝑎−→ 𝑃 ′

1 + 𝑃2

(Chor)
𝑃2

𝑎−→ 𝑃 ′
2 initial(𝑃1)

𝑃1 + 𝑃2
𝑎−→ 𝑃1 + 𝑃 ′

2

Table 1
Operational semantic rules for reversible action prefix and nondeterministic choice

2.2. Operational Semantic Rules

According to the approach of [4], dynamic operators such as action prefix and alternative

composition have to be made static by the semantics, so as to retain within the syntax all the

information needed to enable reversibility. For the sake of minimality, unlike [4] we do not

generate two distinct transition relations – a forward one −→ and a backward one −⇝ – but a

single transition relation, which we implicitly regard as being symmetric like in [8] to enforce

the loop property: each executed action can be undone and each undone action can be redone.

In our setting, a backward transition from 𝑃 ′
to 𝑃 (𝑃 ′ 𝑎

−⇝ 𝑃 ) is subsumed by the correspond-

ing forward transition 𝑡 from 𝑃 to 𝑃 ′
(𝑃

𝑎−→ 𝑃 ′
). As will become clear with the definition of

bisimulation equivalences, like in [8] when going forward we view 𝑡 as an outgoing transition

of 𝑃 , while when going backward we view 𝑡 as an incoming transition of 𝑃 ′
. The semantic

rules for −→ ⊆ P×𝐴× P are defined in Table 1 and generate the labeled transition system

(P, 𝐴,−→) [9].

The first rule for action prefix (Actf where f stands for forward) applies only if 𝑃 is initial

and retains the executed action in the target process of the generated forward transition by

decorating the action itself with †. The second rule for action prefix (Actp where p stands for

propagation) propagates actions executed by inner initial subprocesses.

In both rules for alternative composition (Chol and Chor where l stands for left and r stands

for right), the subprocess that has not been selected for execution is retained as an initial

subprocess in the target process of the generated transition. When both subprocesses are initial,

both rules for alternative composition are applicable, otherwise only one of them can be applied

and in that case it is the non-initial subprocess that can move, because the other one has been

discarded at the moment of the selection.

Every state corresponding to a non-final process has at least one outgoing transition, while

every state corresponding to a non-initial process has exactly one incoming transition due to

the decoration of executed actions. The labeled transition system underlying an initial process

turns out to be a tree, whose branching points correspond to occurrences of +.

Example 2.1. The labeled transition systems generated by the rules in Table 1 for the two

initial processes 𝑎 . 0 and 𝑎 . 0 + 𝑎 . 0 are depicted in Figure 1. As for the one on the right,

we observe that, in the case of a standard process calculus, a single 𝑎-transition from 𝑎 . 0+𝑎 . 0
to 0 would have been generated due to the absence of action decorations within processes.
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0_a . 0_a . +

0_a . 0_a . +0_a . 0_a . +0_a . 

0_a . 

.

a aa

Figure 1: Labeled transition systems underlying 𝑎 . 0 and 𝑎 . 0 + 𝑎 . 0

2.3. Strong Forward, Reverse, and Forward-Reverse Bisimilarities

While forward bisimilarity considers only outgoing transitions [7, 6], reverse bisimilarity consid-

ers only incoming transitions. Forward-reverse bisimilarity [4] considers instead both outgoing

transitions and incoming ones. Here are their strong versions studied in [9], where strong means

not abstracting from 𝜏 -actions.

Definition 2.2. We say that𝑃1, 𝑃2 ∈ P are forward bisimilar, written𝑃1 ∼FB 𝑃2, iff (𝑃1, 𝑃2) ∈
ℬ for some forward bisimulation ℬ. A symmetric relation ℬ over P is a forward bisimulation iff

for all (𝑃1, 𝑃2) ∈ ℬ and 𝑎 ∈ 𝐴:

• Whenever 𝑃1
𝑎−→ 𝑃 ′

1, then 𝑃2
𝑎−→ 𝑃 ′

2 with (𝑃 ′
1, 𝑃

′
2) ∈ ℬ.

Definition 2.3. We say that 𝑃1, 𝑃2 ∈ P are reverse bisimilar, written 𝑃1 ∼RB 𝑃2, iff (𝑃1, 𝑃2) ∈
ℬ for some reverse bisimulation ℬ. A symmetric relation ℬ over P is a reverse bisimulation iff

for all (𝑃1, 𝑃2) ∈ ℬ and 𝑎 ∈ 𝐴:

• Whenever 𝑃 ′
1

𝑎−→ 𝑃1, then 𝑃 ′
2

𝑎−→ 𝑃2 with (𝑃 ′
1, 𝑃

′
2) ∈ ℬ.

Definition 2.4. We say that 𝑃1, 𝑃2 ∈ P are forward-reverse bisimilar, written 𝑃1 ∼FRB 𝑃2,

iff (𝑃1, 𝑃2) ∈ ℬ for some forward-reverse bisimulation ℬ. A symmetric relation ℬ over P is a

forward-reverse bisimulation iff for all (𝑃1, 𝑃2) ∈ ℬ and 𝑎 ∈ 𝐴:

• Whenever 𝑃1
𝑎−→ 𝑃 ′

1, then 𝑃2
𝑎−→ 𝑃 ′

2 with (𝑃 ′
1, 𝑃

′
2) ∈ ℬ.

• Whenever 𝑃 ′
1

𝑎−→ 𝑃1, then 𝑃 ′
2

𝑎−→ 𝑃2 with (𝑃 ′
1, 𝑃

′
2) ∈ ℬ.

∼FRB ⊊ ∼FB ∩ ∼RB with the inclusion being strict because, e.g., the two final processes

𝑎†. 0 and 𝑎†. 0 + 𝑐 . 0 are identified by ∼FB (no outgoing transitions on both sides) and by ∼RB

(only an incoming 𝑎-transition on both sides), but distinguished by ∼FRB as in the latter process

action 𝑐 is enabled again after undoing 𝑎 (and hence there is an outgoing 𝑐-transition in addition

to an outgoing 𝑎-transition). Moreover, ∼FB and ∼RB are incomparable because for instance:

𝑎†. 0 ∼FB 0 but 𝑎†. 0 ̸∼RB 0
𝑎 . 0 ∼RB 0 but 𝑎 . 0 ̸∼FB 0

Note that that ∼FRB = ∼FB over initial processes, with ∼RB strictly coarser, whilst ∼FRB ̸=
∼RB over final processes because, after going backward, previously discarded subprocesses

come into play again in the forward direction.

Example 2.5. The two processes considered in Example 2.1 are identified by all the three

equivalences. This is witnessed by any bisimulation that contains the pairs (𝑎 . 0, 𝑎 . 0 + 𝑎 . 0),
(𝑎†. 0, 𝑎†. 0 + 𝑎 . 0), and (𝑎†. 0, 𝑎 . 0 + 𝑎†. 0).
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As observed in [9], it makes sense that ∼FB identifies processes with a different past and that

∼RB identifies processes with a different future, in particular with 0 that has neither past nor

future. However, for ∼FB this results in a compositionality violation with respect to alternative

composition. As an example:

𝑎†. 𝑏 . 0 ∼FB 𝑏 . 0
𝑎†. 𝑏 . 0 + 𝑐 . 0 ̸∼FB 𝑏 . 0 + 𝑐 . 0

because in 𝑎†. 𝑏 . 0+𝑐 . 0 action 𝑐 is disabled due to the presence of the already executed action 𝑎†,
while in 𝑏 . 0 + 𝑐 . 0 action 𝑐 is enabled as there are no past actions preventing it from occurring.

Note that a similar phenomenon does not happen with ∼RB as 𝑎†. 𝑏 . 0 ̸∼RB 𝑏 . 0 due to the

incoming 𝑎-transition of 𝑎†. 𝑏 . 0.

This problem, which does not show up for ∼RB and ∼FRB because these two equivalences

cannot identify an initial process with a non-initial one, leads to the following variant of ∼FB

that is sensitive to the presence of the past.

Definition 2.6. We say that 𝑃1,𝑃2∈P are past-sensitive forward bisimilar, written 𝑃1∼FB:ps𝑃2,

iff (𝑃1, 𝑃2) ∈ ℬ for some past-sensitive forward bisimulation ℬ. A relation ℬ over P is a

past-sensitive forward bisimulation iff it is a forward bisimulation such that initial(𝑃1) ⇐⇒
initial(𝑃2) for all (𝑃1, 𝑃2) ∈ ℬ.

Now ∼FB:ps is sensitive to the presence of the past:

𝑎†. 𝑏 . 0 ̸∼FB:ps 𝑏 . 0
but can still identify non-initial processes having a different past:

𝑎†1 . 𝑃 ∼FB:ps 𝑎†2 . 𝑃
It holds that ∼FRB ⊊ ∼FB:ps ∩ ∼RB, with ∼FRB=∼FB:ps over initial processes as well as

∼FB:ps and ∼RB being incomparable because, e.g., for 𝑎1 ̸= 𝑎2:

𝑎†1 . 𝑃 ∼FB:ps 𝑎†2 . 𝑃 but 𝑎†1 . 𝑃 ̸∼RB 𝑎†2 . 𝑃
𝑎1 . 𝑃 ∼RB 𝑎2 . 𝑃 but 𝑎1 . 𝑃 ̸∼FB:ps 𝑎2 . 𝑃

In [9] it has been shown that all the considered bisimilarities are congruences with respect to

action prefix, while only ∼FB:ps, ∼RB, and ∼FRB are congruences with respect to alternative

composition too, with ∼FB:ps being the coarsest congruence with respect to + contained in ∼FB.

Sound and ground-complete equational characterizations have also been provided for the three

equivalences that are congruences with respect to both operators.

3. Weak Bisimilarity and Reversibility

In this section we introduce weak variants of forward, reverse, and forward-reverse bisimilarities,

i.e., variants capable of abstracting from 𝜏 -actions.

In the following definitions, 𝑃
𝜏*
==⇒ 𝑃 ′

means that 𝑃 ′ = 𝑃 or there exists a nonempty

sequence of finitely many 𝜏 -transitions such that the target of each of them coincides with the

source of the subsequent one, with the source of the first one being 𝑃 and the target of the

last one being 𝑃 ′
. Moreover,

𝜏*
==⇒ 𝑎−→ 𝜏*

==⇒ stands for an 𝑎-transition possibly preceded and

followed by finitely many 𝜏 -transitions. We further let �̄� = 𝐴 ∖ {𝜏}.

6
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Definition 3.1. We say that 𝑃1, 𝑃2 ∈ P are weakly forward bisimilar, written 𝑃1 ≈FB 𝑃2, iff

(𝑃1, 𝑃2) ∈ ℬ for some weak forward bisimulation ℬ. A symmetric binary relation ℬ over P is a

weak forward bisimulation iff for all (𝑃1, 𝑃2) ∈ ℬ:

• Whenever 𝑃1
𝜏−→ 𝑃 ′

1, then 𝑃2
𝜏*
==⇒ 𝑃 ′

2 and (𝑃 ′
1, 𝑃

′
2) ∈ ℬ.

• Whenever 𝑃1
𝑎−→ 𝑃 ′

1 for 𝑎 ∈ �̄�, then 𝑃2
𝜏*
==⇒ 𝑎−→ 𝜏*

==⇒ 𝑃 ′
2 and (𝑃 ′

1, 𝑃
′
2) ∈ ℬ.

Definition 3.2. We say that 𝑃1, 𝑃2 ∈ P are weakly reverse bisimilar, written 𝑃1 ≈RB 𝑃2, iff

(𝑃1, 𝑃2) ∈ ℬ for some weak reverse bisimulation ℬ. A symmetric binary relation ℬ over P is a

weak reverse bisimulation iff for all (𝑃1, 𝑃2) ∈ ℬ:

• Whenever 𝑃 ′
1

𝜏−→ 𝑃1, then 𝑃 ′
2

𝜏*
==⇒ 𝑃2 and (𝑃 ′

1, 𝑃
′
2) ∈ ℬ.

• Whenever 𝑃 ′
1

𝑎−→ 𝑃1 for 𝑎 ∈ �̄�, then 𝑃 ′
2

𝜏*
==⇒ 𝑎−→ 𝜏*

==⇒ 𝑃2 and (𝑃 ′
1, 𝑃

′
2) ∈ ℬ.

Definition 3.3. We say that 𝑃1,𝑃2∈P are weakly forward-reverse bisimilar, written 𝑃1≈FRB𝑃2,

iff (𝑃1, 𝑃2) ∈ ℬ for some weak forward-reverse bisimulation ℬ. A symmetric binary relation ℬ
over P is a weak forward-reverse bisimulation iff for all (𝑃1, 𝑃2) ∈ ℬ:

• Whenever 𝑃1
𝜏−→ 𝑃 ′

1, then 𝑃2
𝜏*
==⇒ 𝑃 ′

2 and (𝑃 ′
1, 𝑃

′
2) ∈ ℬ.

• Whenever 𝑃1
𝑎−→ 𝑃 ′

1 for 𝑎 ∈ �̄�, then 𝑃2
𝜏*
==⇒ 𝑎−→ 𝜏*

==⇒ 𝑃 ′
2 and (𝑃 ′

1, 𝑃
′
2) ∈ ℬ.

• Whenever 𝑃 ′
1

𝜏−→ 𝑃1, then 𝑃 ′
2

𝜏*
==⇒ 𝑃2 and (𝑃 ′

1, 𝑃
′
2) ∈ ℬ.

• Whenever 𝑃 ′
1

𝑎−→ 𝑃1 for 𝑎 ∈ �̄�, then 𝑃 ′
2

𝜏*
==⇒ 𝑎−→ 𝜏*

==⇒ 𝑃2 and (𝑃 ′
1, 𝑃

′
2) ∈ ℬ.

Each of the three weak bisimilarities is strictly coarser than the corresponding strong one.

Similar to the strong case, ≈FRB ⊊ ≈FB ∩ ≈RB with ≈FB and ≈RB being incomparable.

Unlike the strong case, ≈FRB ̸= ≈FB over initial processes. For instance, 𝜏 . 𝑎 . 0 + 𝑎 . 0 + 𝑏 . 0
and 𝜏 . 𝑎 . 0 + 𝑏 . 0 are identified by ≈FB but told apart by ≈FRB: if the former performs 𝑎,

the latter responds with 𝜏 followed by 𝑎 and if it subsequently undoes 𝑎 thus becoming 𝜏 †. 𝑎 . 0+
𝑏 . 0 in which only 𝑎 is enabled, the latter can only respond by undoing 𝑎 thus becoming

𝜏 . 𝑎 . 0 + 𝑎 . 0 + 𝑏 . 0 in which both 𝑎 and 𝑏 are enabled. An analogous counterexample with

non-initial 𝜏 -actions is given by 𝑐 . (𝜏 . 𝑎 . 0 + 𝑎 . 0 + 𝑏 . 0) and 𝑐 . (𝜏 . 𝑎 . 0 + 𝑏 . 0).

4. Congruence Properties

In this section we investigate the compositionality of the three weak bisimilarities with respect

to the considered process operators. Firstly, we observe that ≈FB suffers from the same problem

with respect to alternative composition as ∼FB. Secondly, ≈FB and ≈FRB feature the same

problem as weak bisimilarity for standard forward-only processes [6], i.e., for≈∈ {≈FB,≈FRB}
it holds that:

7
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𝜏 . 𝑎 . 0 ≈ 𝑎 . 0
𝜏 . 𝑎 . 0 + 𝑏 . 0 ̸≈ 𝑎 . 0 + 𝑏 . 0

because if 𝜏 . 𝑎 . 0 + 𝑏 . 0 performs 𝜏 thereby evolving to 𝜏 †. 𝑎 . 0 + 𝑏 . 0 where only 𝑎 is enabled

in the forward direction, then 𝑎 . 0 + 𝑏 . 0 can neither move nor idle in the attempt to evolve in

such a way to match 𝜏 †. 𝑎 . 0 + 𝑏 . 0.

To solve both problems it is sufficient to redefine the two equivalences by making them

sensitive to the presence of the past, exactly as in the strong case for forward bisimilarity. By

so doing, 𝜏 . 𝑎 . 0 is no longer identified with 𝑎 . 0: if the former performs 𝜏 thereby evolving

to 𝜏 †. 𝑎 . 0 and the latter idles, then 𝜏 †. 𝑎 . 0 and 𝑎 . 0 are told apart because they are not both

initial or non-initial.

Definition 4.1. We say that 𝑃1, 𝑃2 ∈ P are weakly past-sensitive forward bisimilar, writ-

ten 𝑃1 ≈FB:ps 𝑃2, iff (𝑃1, 𝑃2) ∈ ℬ for some weak past-sensitive forward bisimulation ℬ.

A binary relation ℬ over P is a weak past-sensitive forward bisimulation iff it is a weak forward

bisimulation such that initial(𝑃1) ⇐⇒ initial(𝑃2) for all (𝑃1, 𝑃2) ∈ ℬ.

Definition 4.2. We say that 𝑃1, 𝑃2 ∈ P are weakly past-sensitive forward-reverse bisimilar,
written 𝑃1 ≈FRB:ps 𝑃2, iff (𝑃1, 𝑃2) ∈ ℬ for some weak past-sensitive forward-reverse bisimula-

tion ℬ. A binary relation ℬ over P is a weak past-sensitive forward-reverse bisimulation iff it is a

weak forward-reverse bisimulation such that initial(𝑃1) ⇐⇒ initial(𝑃2) for all (𝑃1, 𝑃2) ∈ ℬ.

Observing that ∼FRB ⊊ ≈FRB:ps as the former naturally satisfies the initiality condition, we

show the following congruence results. When present, side conditions on subprocesses just

ensure that the overall processes are reachable.

Theorem 4.3. Let ≈∈ {≈FB,≈FB:ps,≈RB,≈FRB,≈FRB:ps}, ≈′ ∈ {≈FB:ps,≈RB,≈FRB:ps},

and 𝑃1, 𝑃2 ∈ P:

• If 𝑃1 ≈ 𝑃2 then for all 𝑎 ∈ 𝐴:

– 𝑎 . 𝑃1 ≈ 𝑎 . 𝑃2 provided that initial(𝑃1) ∧ initial(𝑃2).

– 𝑎†. 𝑃1 ≈ 𝑎†. 𝑃2.

• If 𝑃1 ≈′ 𝑃2 then for all 𝑃 ∈ P:

– 𝑃1 +𝑃 ≈′ 𝑃2 +𝑃 and 𝑃 +𝑃1 ≈′ 𝑃 +𝑃2 provided that initial(𝑃 )∨ (initial(𝑃1)∧
initial(𝑃2)).

• ≈FB:ps is the coarsest congruence with respect to + contained in ≈FB.

• ≈FRB:ps is the coarsest congruence with respect to + contained in ≈FRB.

Like in the non-past-sensitive case, ≈FRB:ps ̸= ≈FB:ps over initial processes, as shown by

𝜏 . 𝑎 . 0 + 𝑎 . 0 and 𝜏 . 𝑎 . 0: if the former performs 𝑎, the latter responds with 𝜏 followed by 𝑎
and if it subsequently undoes 𝑎 thus becoming the non-initial process 𝜏 †. 𝑎 . 0, the latter can

only respond by undoing 𝑎 thus becoming the initial process 𝜏 . 𝑎 . 0 + 𝑎 . 0. An analogous

counterexample with non-initial 𝜏 -actions is given again by 𝑐 . (𝜏 . 𝑎 . 0 + 𝑎 . 0 + 𝑏 . 0) and

𝑐 . (𝜏 . 𝑎 . 0 + 𝑏 . 0).
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It is worth noting that the aforementioned compositionality problems with respect to alter-

native composition may not be solved, in this reversible setting, by employing the construction

of [6] for building a weak bisimulation congruence. If we introduced a variant ≈′
FB of ≈FB such

that, when considering two initial processes, a 𝜏 -transition on either side must be matched by a

𝜏 -transition on the other side – possibly preceded and followed by finitely many 𝜏 -transitions

– with the two reached processes being related by ≈FB, then again 𝑎†. 𝑏 . 0 ≈′
FB 𝑏 . 0 but

𝑎†. 𝑏 . 0 + 𝑐 . 0 ̸≈′
FB 𝑏 . 0 + 𝑐 . 0 as explained in Section 2.3.

5. Equational Characterizations

In this section we investigate the equational characterizations of ≈FB:ps, ≈RB, and ≈FRB:ps

so as to highlight the fundamental laws of these behavioral equivalences. In the following, by

deduction system we mean a set comprising the following axioms and inference rules over P –

possibly enriched by a set 𝒜 of additional axioms – corresponding to the fact that ≈FB:ps, ≈RB,

and ≈FRB:ps are equivalence relations as well as congruences with respect to action prefix and

alternative composition as established by Theorem 4.3:

• Reflexivity, symmetry, transitivity: 𝑃 = 𝑃 ,

𝑃1 = 𝑃2

𝑃2 = 𝑃1
,

𝑃1 = 𝑃2 𝑃2 = 𝑃3

𝑃1 = 𝑃3
.

• .-Substitutivity:

𝑃1 = 𝑃2 initial(𝑃1) ∧ initial(𝑃2)

𝑎 . 𝑃1 = 𝑎 . 𝑃2
,

𝑃1 = 𝑃2

𝑎†. 𝑃1 = 𝑎†. 𝑃2

.

• +-Substitutivity:

𝑃1 = 𝑃2 initial(𝑃 ) ∨ (initial(𝑃1) ∧ initial(𝑃2))

𝑃1 + 𝑃 = 𝑃2 + 𝑃 𝑃 + 𝑃1 = 𝑃 + 𝑃2
.

It is known from [9] that, for the three strong bisimilarities, alternative composition turns

out to be associative and commutative and to admit 0 as neutral element, like in the case of

bisimilarity over standard forward-only processes [12]. The same holds true for ≈FB:ps, ≈RB,

and ≈FRB:ps as they are strictly coarser than their strong counterparts. This is formalized by

axioms 𝒜1 to 𝒜3 in Table 2.

Then, we have axioms specific to ∼FB:ps [9], which are thus valid for ≈FB:ps too. Axioms 𝒜4

and 𝒜5 together establish that the past can be neglected when moving only forward, but

the presence of the past cannot be ignored. Axiom 𝒜6 states that a previously non-selected

alternative can be discarded after starting moving only forward.

Likewise, we have axioms specific to ∼RB [9], which are thus valid for ≈RB too. Axiom 𝒜7

means that the future can be completely canceled when moving only backward. Axiom 𝒜8

states that a previously non-selected alternative can be discarded when moving only backward.

Since there are no constraints on 𝑃 , axiom 𝒜8 subsumes axiom 𝒜3.

Furthermore, the idempotency of alternative composition in the case of bisimilarity over

standard forward-only processes, i.e., 𝑃 + 𝑃 = 𝑃 [12], changes as follows depending on the

considered equivalence [9]:

• For ∼FB:ps, and hence ≈FB:ps too, idempotency is explicitly formalized by axiom 𝒜9,

which is disjoint from axiom 𝒜6 where 𝑃 cannot be initial.

9
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(𝒜1) (𝑃1 + 𝑃2) + 𝑃3 = 𝑃1 + (𝑃2 + 𝑃3)
(𝒜2) 𝑃1 + 𝑃2 = 𝑃2 + 𝑃1

(𝒜3) 𝑃 + 0 = 𝑃

(𝒜4) [∼FB:ps] 𝑎†. 𝑃 = 𝑃 if ¬initial(𝑃 )

(𝒜5) [∼FB:ps] 𝑎†1 . 𝑃 = 𝑎†2 . 𝑃 if initial(𝑃 )
(𝒜6) [∼FB:ps] 𝑃 +𝑄 = 𝑃 if ¬initial(𝑃 ), where initial(𝑄)

(𝒜7) [∼RB] 𝑎 . 𝑃 = 𝑃 where initial(𝑃 )
(𝒜8) [∼RB] 𝑃 +𝑄 = 𝑃 if initial(𝑄)

(𝒜9) [∼FB:ps] 𝑃 + 𝑃 = 𝑃 where initial(𝑃 )
(𝒜10) [∼FRB] 𝑃 +𝑄 = 𝑃 if initial(𝑄) ∧ to_initial(𝑃 ) = 𝑄

(𝒜𝜏
1) [≈FB:ps] 𝑎 . 𝜏 . 𝑃 = 𝑎 . 𝑃 where initial(𝑃 )

(𝒜𝜏
2) [≈FB:ps] 𝑃 + 𝜏 . 𝑃 = 𝜏 . 𝑃 where initial(𝑃 )

(𝒜𝜏
3) [≈FB:ps] 𝑎 . (𝑃1 + 𝜏 . 𝑃2) + 𝑎 . 𝑃2 = 𝑎 . (𝑃1 + 𝜏 . 𝑃2) where initial(𝑃1) ∧ initial(𝑃2)

(𝒜𝜏
4) [≈FB:ps] 𝑎†. 𝜏 . 𝑃 = 𝑎†. 𝑃 where initial(𝑃 )

(𝒜𝜏
5) [≈RB] 𝜏 †. 𝑃 = 𝑃

(𝒜𝜏
6) [≈FRB:ps] 𝑎 . (𝜏 . (𝑃1 + 𝑃2) + 𝑃1) = 𝑎 . (𝑃1 + 𝑃2) where initial(𝑃1) ∧ initial(𝑃2)

(𝒜𝜏
7) [≈FRB:ps] 𝑎†. (𝜏 . (𝑃1 + 𝑃2) + 𝑃 ′

1) = 𝑎†. (𝑃 ′
1 + 𝑃2) if to_initial(𝑃 ′

1) = 𝑃1,

where initial(𝑃1) ∧ initial(𝑃2)
(𝒜𝜏

8) [≈FRB:ps] 𝑎†. (𝜏 †. (𝑃 ′
1 + 𝑃2) + 𝑃1) = 𝑎†. (𝑃 ′

1 + 𝑃2) if to_initial(𝑃 ′
1) = 𝑃1,

where initial(𝑃1)

Table 2
Axioms characterizing ≈FB:ps, ≈RB, ≈FRB:ps

• For ∼RB, and hence ≈RB either, an additional axiom is not needed as idempotency follows

from axiom 𝒜8 by taking 𝑄 equal to 𝑃 .

• For ∼FRB, and hence ≈FRB:ps too, idempotency is formalized by axiom 𝒜10, where func-

tion to_initial brings a process back to its initial version by removing all action decorations:

to_initial(0) = 0
to_initial(𝑎 . 𝑃 ) = 𝑎 . 𝑃
to_initial(𝑎†. 𝑃 ) = 𝑎 . to_initial(𝑃 )

to_initial(𝑃1 + 𝑃2) = to_initial(𝑃1) + to_initial(𝑃2)
This axiom appeared for the first time in [13] and subsumes axioms 𝒜9 and 𝒜6 for ∼FB:ps

and ≈FB:ps as well as axiom 𝒜8 for ∼RB and ≈RB.

Let us now focus on axioms specific to ≈FB:ps, ≈RB, and ≈FRB:ps, which are usually called

𝜏 -laws. Axioms 𝒜𝜏
1 to 𝒜𝜏

3 are valid for ≈FB:ps and coincide with those for weak bisimulation

congruence over standard forward-only processes [12]. A variant of 𝒜𝜏
1 with 𝑎 being decorated,

i.e., axiom 𝒜𝜏
4 , is also valid for ≈FB:ps; note that 𝑎†. 𝜏 †. 𝑃 = 𝑎†. 𝑃 is valid too, but it follows

from reflexity (𝑃 = 𝑃 ), axiom 𝒜5 or axiom 𝒜4 depending on whether 𝑃 is initial or not

(𝜏 †. 𝑃 = 𝑎†. 𝑃 ), and axiom 𝒜4 applied to the lefthand side along with transitivity. As far

as 𝜏 . 𝑃 = 𝑃 is concerned, which over standard forward-only processes is valid for weak

10
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bisimilarity but not for weak bisimulation congruence [12], its reverse counterpart holds for

≈RB, yielding axiom 𝒜𝜏
5 . Axioms 𝒜𝜏

6 , 𝒜𝜏
7 , 𝒜𝜏

8 are valid for ≈FRB:ps and are related to the only

𝜏 -law of branching bisimulation congruence [10].

In the following, we denote by ⊢ the deduction relation and we examine the three sets of

additional axioms below:

• 𝒜𝜏
FB:ps = {𝒜1,𝒜2,𝒜3,𝒜4,𝒜5,𝒜6,𝒜9,𝒜𝜏

1 ,𝒜𝜏
2 ,𝒜𝜏

3 ,𝒜𝜏
4} for ≈FB:ps.

• 𝒜𝜏
RB = {𝒜1,𝒜2,𝒜7,𝒜8,𝒜𝜏

5} for ≈RB.

• 𝒜𝜏
FRB:ps = {𝒜1,𝒜2,𝒜3,𝒜10,𝒜𝜏

6 ,𝒜𝜏
7 ,𝒜𝜏

8} for ≈FRB:ps.

After proving its soundness, we demonstrate the ground completeness of the equational

characterization for each of the three considered weak bisimilarities by introducing as usual

equivalence-specific normal forms to which every process is shown to be reducible, so that we

then work with normal forms only. For each of the three weak bisimilarities, the normal form

comes from the one of the corresponding strong bisimilarity in [9] and relies on the fact that

alternative composition is associative and commutative, hence the binary + can be generalized

to the 𝑛-ary

∑︀
𝑖∈𝐼 for a finite nonempty index set 𝐼 . The proofs of the ground completeness

theorems will be by induction on the size of a process, which is inductively defined as follows:

size(0) = 1
size(𝑎 . 𝑃 ) = 1 + size(𝑃 )
size(𝑎†. 𝑃 ) = 1 + size(𝑃 )

size(𝑃1 + 𝑃2) = max(size(𝑃1), size(𝑃2))
We start with the soundness and ground completeness of 𝒜𝜏

FB:ps with respect to ≈FB:ps.

To this purpose, we introduce the following function that extracts the forward behavior from a

process by eliminating executed actions and non-selected alternatives:

to_forward(𝑃 ) = 𝑃 if initial(𝑃 )
to_forward(𝑎†. 𝑃 ) = to_forward(𝑃 )

to_forward(𝑃1 + 𝑃2) = to_forward(𝑃1) if ¬initial(𝑃1) ∧ initial(𝑃2)
to_forward(𝑃1 + 𝑃2) = to_forward(𝑃2) if ¬initial(𝑃2) ∧ initial(𝑃1)

which yields an initial process and satisfies the following properties.

Proposition 5.1. Let 𝑃, 𝑃 ′, 𝑃 ′′, 𝑄 ∈ P and 𝑎 ∈ 𝐴:

• to_forward(𝑃 ) is initial, with to_forward(𝑃 ) = 𝑃 when initial(𝑃 ) while to_forward(𝑃 )
∼FB 𝑃 when ¬initial(𝑃 ).

• 𝑃
𝑎−→ 𝑃 ′

iff to_forward(𝑃 )
𝑎−→ 𝑃 ′′

with 𝑃 ′ ∼FB:ps 𝑃
′′
.

• If 𝑃 ≈FB:ps 𝑄, then to_forward(𝑃 ) ≈FB:ps to_forward(𝑄) when 𝑃 and 𝑄 are initial or

cannot execute 𝜏 -actions, else to_forward(𝑃 ) ≈FB to_forward(𝑄).

Theorem 5.2. Let 𝑃1, 𝑃2 ∈ P. If 𝒜𝜏
FB:ps ⊢ 𝑃1 = 𝑃2 then 𝑃1 ≈FB:ps 𝑃2.

Definition 5.3. We say that 𝑃 ∈ P is in forward normal form, written F-nf, iff it is equal to one

of the following:

11
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• 0.

•

∑︀
𝑖∈𝐼 𝑎𝑖 . 𝑃𝑖, where each 𝑃𝑖 is initial and in F-nf.

• 𝑎†. 𝑃 ′
, where 𝑃 ′

is initial and in F-nf.

Lemma 5.4. For all 𝑃 ∈ P there exists 𝑄 ∈ P in F-nf such that 𝒜𝜏
FB:ps ⊢ 𝑃 = 𝑄.

Following the approach adopted in [6] for weak bisimulation congruence over standard

forward-only processes, for ≈FB:ps we introduce a saturated normal form where, unlike [6],

two distinct equivalent processes 𝑃 ′
and 𝑃 ′′

come into play instead of a single process due to

the presence of action decorations within processes in our reversible setting. This leads to the

so-called saturation lemma, which immediately follows the definition below and, unlike [6],

features to_forward(𝑃 ′) in place of 𝑃 ′
in the final part of its statement.

Definition 5.5. We say that 𝑃 ∈ P is in forward saturated normal form, written F-snf, iff it is

equal to one of the following:

• 0

•

∑︀
𝑖∈𝐼 𝑎𝑖 . 𝑃𝑖, where each 𝑃𝑖 is initial and in F-snf

• 𝑎†. 𝑃 ′
, where 𝑃 ′

is initial and in F-snf

and whenever 𝑃
𝜏*
==⇒ 𝑎−→ 𝜏*

==⇒ 𝑃 ′
, then 𝑃

𝑎−→ 𝑃 ′′
with 𝑃 ′ ≈FB:ps 𝑃

′′
.

Lemma 5.6. [saturation lemma] Let 𝑃 ∈ P be initial. If 𝑃
𝜏*
==⇒ 𝑎−→ 𝜏*

==⇒ 𝑃 ′
then 𝒜𝜏

FB:ps ⊢
𝑃 = 𝑃 + 𝑎 . to_forward(𝑃 ′).

Lemma 5.7. For all 𝑃 ∈ P in F-nf there exists 𝑄 ∈ P in F-snf such that 𝒜𝜏
FB:ps ⊢ 𝑃 = 𝑄.

Theorem 5.8. Let 𝑃1, 𝑃2 ∈ P. If 𝑃1 ≈FB:ps 𝑃2 then 𝒜𝜏
FB:ps ⊢ 𝑃1 = 𝑃2.

As for the soundness and ground completeness of 𝒜𝜏
RB with respect to ≈RB, the latter does

not require saturation as no choice occurs when going backward.

Theorem 5.9. Let 𝑃1, 𝑃2 ∈ P. If 𝒜𝜏
RB ⊢ 𝑃1 = 𝑃2 then 𝑃1 ≈RB 𝑃2.

Definition 5.10. We say that 𝑃 ∈ P is in reverse normal form, written R-nf, iff it is equal to

one of the following:

• 0.

• 𝑎†. 𝑃 ′
, where 𝑃 ′

is in R-nf.

Lemma 5.11. For all 𝑃 ∈ P there exists 𝑄 ∈ P in R-nf such that 𝒜𝜏
RB ⊢ 𝑃 = 𝑄.

Theorem 5.12. Let 𝑃1, 𝑃2 ∈ P. If 𝑃1 ≈RB 𝑃2 then 𝒜𝜏
RB ⊢ 𝑃1 = 𝑃2.

12
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We conclude with the soundness and ground completeness of 𝒜𝜏
FRB:ps with respect to

≈FRB:ps.

Theorem 5.13. Let 𝑃1, 𝑃2 ∈ P. If 𝒜𝜏
FRB:ps ⊢ 𝑃1 = 𝑃2 then 𝑃1 ≈FRB:ps 𝑃2.

Definition 5.14. We say that 𝑃 ∈ P is in forward-reverse normal form, written FR-nf, iff it is

equal to one of the following:

• 0.

•

∑︀
𝑖∈𝐼 𝑎𝑖 . 𝑃𝑖, where each 𝑃𝑖 is initial and in FR-nf.

• 𝑎†. 𝑃 ′
, where 𝑃 ′

is in FR-nf.

• 𝑎†. 𝑃 ′ +
∑︀

𝑖∈𝐼 𝑎𝑖 . 𝑃𝑖, where 𝑃 ′
is in FR-nf and each 𝑃𝑖 is initial and in FR-nf.

Lemma 5.15. For all 𝑃 ∈ P there exists 𝑄 ∈ P in FR-nf such that 𝒜𝜏
FRB:ps ⊢ 𝑃 = 𝑄.

Similar to branching bisimulation semantics over standard forward-only processes [14],

saturation is unsound for ≈FRB:ps. In particular, a normal form based on saturation cannot be

set up for ≈FRB:ps. First of all, the backward version of:

whenever 𝑃
𝜏*
==⇒ 𝑎−→ 𝜏*

==⇒ 𝑃 ′, then 𝑃
𝑎−→ 𝑃 ′′

with 𝑃 ′ ≈FRB:ps 𝑃
′′

which is:

whenever 𝑃 ′ 𝜏*
==⇒ 𝑎−→ 𝜏*

==⇒ 𝑃, then 𝑃 ′′ 𝑎−→ 𝑃 with 𝑃 ′ ≈FRB:ps 𝑃
′′

can be satisfied only when 𝑃 ′
and 𝑃 ′′

coincide because 𝑃 can have only one incoming transition.

Secondly, not even the forward version of saturation works for ≈FRB:ps:

• Consider 𝑃 ≜ 𝜏 . (𝑎 . 𝜏 . 0 + 𝑏 . 0) + 𝑎 . 0 + 𝑏 . 0 along with its two transitions:

𝑃
𝜏*
==⇒ 𝑎−→ 𝜏*

==⇒ 𝜏 †. (𝑎†. 𝜏 †. 0 + 𝑏 . 0) + 𝑎 . 0 + 𝑏 . 0 ≜ 𝑃 ′

𝑃
𝑎−→ 𝜏 . (𝑎 . 𝜏 . 0 + 𝑏 . 0) + 𝑎†. 0 + 𝑏 . 0 ≜ 𝑃 ′′

Then 𝑃 ′ ̸≈FRB:ps 𝑃
′′
. Indeed, if 𝑃 ′

undoes 𝜏 with 𝑃 ′′
staying idle and then undoes 𝑎

thus reaching the non-initial process 𝜏 †. (𝑎 . 𝜏 . 0 + 𝑏 . 0) + 𝑎 . 0 + 𝑏 . 0, then 𝑃 ′′
can only

respond by undoing 𝑎 thus reaching the initial process 𝑃 .

• Consider 𝑄 ≜ 𝜏 . 𝑎 . (𝜏 . 0 + 𝑏 . 0) + 𝑎 . 0 + 𝑏 . 0 along with its two transitions:

𝑄
𝜏*
==⇒ 𝑎−→ 𝜏*

==⇒ 𝜏 †. 𝑎†. (𝜏 †. 0 + 𝑏 . 0) + 𝑎 . 0 + 𝑏 . 0 ≜ 𝑄′

𝑄
𝑎−→ 𝜏 . 𝑎 . (𝜏 . 0 + 𝑏 . 0) + 𝑎†. 0 + 𝑏 . 0 ≜ 𝑄′′

Then𝑄′ ̸≈FRB:ps 𝑄
′′
. Indeed, if𝑄′

undoes 𝜏 thus reaching 𝜏 †. 𝑎†. (𝜏 . 0+𝑏 . 0)+𝑎 . 0+𝑏 . 0
with 𝑄′′

staying idle, then in the forward direction the newly reached process can perform

𝑏 whereas 𝑄′′
cannot.

To investigate the ground completeness of 𝒜𝜏
FRB:ps for ≈FRB:ps, first of all we develop an

alternative characterization of ≈FRB:ps. This is inspired by the construction employed in [6]

over forward-only processes to define weak bisimulation congruence on the basis of weak

bisimulation equivalence. Consider for example 𝜏 . 𝑎 . 0 and 𝑎 . 0, which are identified by ≈FRB

13
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but told apart by ≈FRB:ps. The reason for distinguishing them is that if 𝜏 . 𝑎 . 0 performs 𝜏
thereby evolving to the non-initial process 𝜏 †. 𝑎 . 0, then the only way for 𝑎 . 0 to respond is

idling thus remaining in an initial process. In the weak bisimulation congruence setting of [6],

this would be reformulated in terms of the fact that the latter process has no initial 𝜏 -transition

and hence cannot match the initial 𝜏 -transition of the former process.

In our reversible setting, the construction of [6] needs to be adapted as follows. In the case

of two initial processes, every transition of either process must be matched by an identically

labeled transition of the other process, with the two reached non-initial processes being related

by ≈FRB. In the case of two non-initial processes, in addition to requiring them to be ≈FRB-

equivalent, we also have to make sure that their initial versions are equivalent in the sense

above. For instance, the two non-initial processes 𝜏 †. 𝑎†. 0 and 𝑎†. 0 are identified by ≈FRB, but

to_initial(𝜏 †. 𝑎†. 0) = 𝜏 . 𝑎 . 0 ̸≈FRB:ps 𝑎 . 0 = to_initial(𝑎†. 0), hence 𝜏 †. 𝑎†. 0 ̸≈FRB:ps 𝑎†. 0
too. On the other hand, it is not enough to guarantee that the initial versions are equivalent, as

for example to_initial(𝑎†. 𝑏 . 0) = 𝑎 . 𝑏 . 0 = to_initial(𝑎†. 𝑏†. 0) but 𝑎†. 𝑏 . 0 ̸≈FRB 𝑎†. 𝑏†. 0.

Definition 5.16. We say that 𝑃1, 𝑃2 ∈ P are weakly forward-reverse bisimulation congruent,
written 𝑃1 ≈FRB:c 𝑃2, iff:

• either 𝑃1 and 𝑃2 are both initial and, for all 𝑎 ∈ 𝐴, whenever 𝑃1
𝑎−→ 𝑃 ′

1, then 𝑃2
𝑎−→ 𝑃 ′

2

and 𝑃 ′
1 ≈FRB 𝑃 ′

2, and vice versa;

• or 𝑃1 and 𝑃2 are both non-initial, 𝑃1 ≈FRB 𝑃2, and to_initial(𝑃1) ≈FRB:c to_initial(𝑃2).

Theorem 5.17. Let 𝑃1, 𝑃2 ∈ P. Then 𝑃1 ≈FRB:c 𝑃2 iff 𝑃1 ≈FRB:ps 𝑃2.

Secondly, we recast in our reversible setting a preliminary result for the completeness of

the axiomatization of branching bisimulation congruence provided in [15]. This yields two

lemmas, where the former is about ≈FRB-equivalent initial processes that are then prefixed by

an unexecuted action, while the latter has to do with ≈FRB-equivalent arbitrary processes that

are then prefixed by an executed action. The proof of the former lemma and part of the latter

lemma is inspired by the proof of the preliminary result in the aforementioned paper. Each

lemma is followed by the corresponding ground completeness result of 𝒜𝜏
FRB:ps for ≈FRB:ps, in

which the lemma itself can be employed thanks to the alternative characterization of ≈FRB:ps.

The former completeness result thus deals with ≈FRB:ps-equivalent initial processes. The latter

completeness result instead addresses ≈FRB:ps-equivalent non-initial processes, with the related

lemma exploiting completeness over initial processes.

Lemma 5.18. Let 𝑃1, 𝑃2 ∈ P be initial and 𝑎 ∈ 𝐴. If 𝑃1 ≈FRB 𝑃2 then 𝒜𝜏
FRB:ps ⊢ 𝑎 . 𝑃1 =

𝑎 . 𝑃2.

Theorem 5.19. Let 𝑃1, 𝑃2 ∈ P be initial. If 𝑃1 ≈FRB:ps 𝑃2 then 𝒜𝜏
FRB:ps ⊢ 𝑃1 = 𝑃2.

Lemma 5.20. Let 𝑃1, 𝑃2 ∈ P and 𝑎 ∈ 𝐴. If 𝑃1 ≈FRB 𝑃2 then 𝒜𝜏
FRB:ps ⊢ 𝑎†. 𝑃1 = 𝑎†. 𝑃2.

Theorem 5.21. Let 𝑃1, 𝑃2 ∈ P be not initial. If 𝑃1 ≈FRB:ps 𝑃2 then 𝒜𝜏
FRB:ps ⊢ 𝑃1 = 𝑃2.

14
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A. Proofs of Results

Proof of Theorem 4.3.

Let 𝑃1, 𝑃2 ∈ P:

• Let 𝑃1 ≈ 𝑃2 and 𝑎 ∈ 𝐴 and consider a ≈-bisimulation ℬ containing the pair (𝑃1, 𝑃2).
Then:

ℬ′ = ℬ ∪ {(𝑎 . 𝑃 ′
1, 𝑎 . 𝑃

′
2) | initial(𝑃 ′

1) ∧ initial(𝑃 ′
2) ∧ (𝑃 ′

1, 𝑃
′
2) ∈ ℬ}

∪ {(𝑎†. 𝑃 ′
1, 𝑎

†. 𝑃 ′
2) | (𝑃 ′

1, 𝑃
′
2) ∈ ℬ}

is a ≈-bisimulation too because:

– If ≈ considers moving forward, then both 𝑎 . 𝑃 ′
1 and 𝑎 . 𝑃 ′

2 with initial(𝑃 ′
1) and

initial(𝑃 ′
2) turn out to have a single outgoing 𝑎-transition and these two 𝑎-transitions

respectively reach 𝑎†. 𝑃 ′
1 and 𝑎†. 𝑃 ′

2, which form a pair of ℬ′
. Note that whether

𝑎 = 𝜏 or not is unimportant.

– Moving backward is not allowed from 𝑎 . 𝑃 ′
1 and 𝑎 . 𝑃 ′

2 with initial(𝑃 ′
1) and initial(𝑃 ′

2)
as they are both initial and hence have no incoming transitions.

– 𝑎†. 𝑃 ′
1 and 𝑎†. 𝑃 ′

2 have ≈-matching outgoing/incoming transitions – depending on

whether ≈ considers moving forward/backward – respectively determined by the

two ≈-equivalent processes 𝑃 ′
1 and 𝑃 ′

2.

In particular, if 𝑃 ′
1 and 𝑃 ′

2 are initial and ≈ considers moving backward, then 𝑎†. 𝑃 ′
1

and 𝑎†. 𝑃 ′
2 turn out to have a single incoming 𝑎-transition and these two 𝑎-transitions

respectively depart from 𝑎 . 𝑃 ′
1 and 𝑎 . 𝑃 ′

2, which form a pair of ℬ′
.

Therefore 𝑎 . 𝑃1 ≈ 𝑎 . 𝑃2, provided that initial(𝑃1)∧initial(𝑃2), as well as 𝑎†. 𝑃1 ≈ 𝑎†. 𝑃2.

• Let 𝑃1 ≈′ 𝑃2 and 𝑃 ∈ P and consider a ≈′
-bisimulation ℬ containing the pair (𝑃1, 𝑃2):

– Then:

ℬ′ = ℬ ∪ {(𝑃 ′
1 + 𝑃 ′, 𝑃 ′

2 + 𝑃 ′) | (𝑃 ′
1, 𝑃

′
2) ∈ ℬ ∧

(initial(𝑃 ′) ∨ (initial(𝑃 ′
1) ∧ initial(𝑃 ′

2)))}
is a ≈′

-bisimulation too because 𝑃 ′
1+𝑃 ′

and 𝑃 ′
2+𝑃 ′

have ≈′
-matching outgoing/in-

coming transitions – depending on whether ≈′
considers moving forward/backward

– determined by the two ≈′
-equivalent processes 𝑃 ′

1 and 𝑃 ′
2 respectively when

initial(𝑃 ′) or by 𝑃 ′
when initial(𝑃 ′

1) ∧ initial(𝑃 ′
2).

In the forward case, since from (𝑃 ′
1, 𝑃

′
2) ∈ ℬ it follows that initial(𝑃 ′

1) ⇐⇒
initial(𝑃 ′

2), when initial(𝑃 ′) all the initial actions of 𝑃 ′
are enabled both in 𝑃 ′

1 +𝑃 ′

and in 𝑃 ′
2 + 𝑃 ′

if initial(𝑃 ′
1) ∧ initial(𝑃 ′

2) or in neither of them if ¬initial(𝑃 ′
1) ∧

¬initial(𝑃 ′
2).

Therefore 𝑃1 + 𝑃 ≈′ 𝑃2 + 𝑃 provided that initial(𝑃 ) ∨ (initial(𝑃1) ∧ initial(𝑃2)).

– The proof of 𝑃 + 𝑃1 ≈′ 𝑃 + 𝑃2 is similar because the two operational semantic

rules for alternative composition are symmetric.

• We have to prove that 𝑃1 ≈FB:ps 𝑃2 iff 𝑃1 + 𝑃 ≈FB 𝑃2 + 𝑃 for all 𝑃 ∈ P such that

initial(𝑃 ) ∨ (initial(𝑃1) ∧ initial(𝑃2)).
If 𝑃1 ≈FB:ps 𝑃2 then 𝑃1 + 𝑃 ≈FB:ps 𝑃2 + 𝑃 as we have proved before for all 𝑃 ∈ P
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such that initial(𝑃 ) ∨ (initial(𝑃1) ∧ initial(𝑃2)), hence 𝑃1 + 𝑃 ≈FB 𝑃2 + 𝑃 because

≈FB:ps⊂≈FB.

As far as the reverse implication is concerned, we reason on the contrapositive. Suppose

that 𝑃1 ̸≈FB:ps 𝑃2:

– If it is not the case that initial(𝑃1) ⇐⇒ initial(𝑃2), say ¬initial(𝑃1) and initial(𝑃2),
then, even if 𝑃1 and 𝑃2 have matching outgoing transitions, it turns out that 𝑃1 +
𝑐 . 0 ̸≈FB 𝑃2 + 𝑐 . 0, where 𝑐 ̸= 𝜏 is an action occurring neither in 𝑃1 nor in 𝑃2,

because 𝑃2 + 𝑐 . 0 has an outgoing 𝑐-transition whilst 𝑃1 + 𝑐 . 0 has not (not even

one that is preceded by finitely many 𝜏 -transitions). Note that initial(𝑐 . 0).

– If 𝑃1 and 𝑃2 are both initial or non-initial but have no matching outgoing transitions,

then 𝑃1 + 0 and 𝑃2 + 0 have no matching outgoing transitions either, hence 𝑃1 +
0 ̸≈FB 𝑃2 + 0. Note that initial(0).

• The proof that 𝑃1 ≈FRB:ps 𝑃2 iff 𝑃1 + 𝑃 ≈FRB 𝑃2 + 𝑃 for all 𝑃 ∈ P such that

initial(𝑃 ) ∨ (initial(𝑃1) ∧ initial(𝑃2)) is similar to the previous one. In particular, when

reasoning on the contrapositive of the reverse implication, we have that:

– If ¬initial(𝑃1) and initial(𝑃2) then, even if 𝑃1 and 𝑃2 have matching outgoing and

incoming transitions, it turns out that 𝑃1 + 𝑐 . 0 ̸≈FRB 𝑃2 + 𝑐 . 0, where 𝑐 ̸= 𝜏 is an

action occurring neither in 𝑃1 nor in 𝑃2.

– If 𝑃1 and 𝑃2 have no matching outgoing or incoming transitions, then 𝑃1 + 0 and

𝑃2+0 have no matching outgoing or incoming transitions either, hence𝑃1+0 ̸≈FRB

𝑃2 + 0.

Proof of Proposition 5.1.

The first property is a straightforward consequence of the definition of to_forward and the fact

that ∼FB considers only the forward behavior of processes. Note that to_forward(𝑃 ) ∼FB:ps 𝑃
cannot hold when 𝑃 is not initial because to_forward(𝑃 ) is initial.

As for the second property, by construction to_forward(𝑃 ) is obtained from 𝑃 by removing

all decorated (executed) actions as well as all non-selected alternatives, which are all the parts

of 𝑃 from which an outgoing transition cannot be generated. As a consequence 𝑃
𝑎−→ 𝑃 ′

iff

to_forward(𝑃 )
𝑎−→ 𝑃 ′′

with 𝑃 ′ ∼FB:ps 𝑃
′′
. Due to the first property, 𝑃 ′

does not coincide with

𝑃 ′′
when 𝑃 is not initial, because in that case 𝑃 ′

contains decorated actions along with possible

non-selected alternatives that cannot be present in 𝑃 ′′
. However 𝑃 ′ ∼FB:ps 𝑃 ′′

(instead of

𝑃 ′ ∼FB 𝑃 ′′
only) because both 𝑃 ′

and 𝑃 ′′
are not initial.

As for the third property, we distinguish two cases:

• If 𝑃 and 𝑄 are initial, then to_forward(𝑃 ) = 𝑃 ≈FB:ps 𝑄 = to_forward(𝑄).

• If 𝑃 and 𝑄 are not initial, then to_forward(𝑃 ) ̸= 𝑃 and to_forward(𝑄) ̸= 𝑄.

Suppose that to_forward(𝑃 )
𝑎−→ 𝑃 ′

. Then, due to the second property, 𝑃
𝑎−→ 𝑃 ′′

with

𝑃 ′ ∼FB:ps 𝑃
′′

and hence 𝑃 ′ ≈FB:ps 𝑃
′′

because ∼FB:ps is contained in ≈FB:ps. There

are two subcases:
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– If 𝑎 ̸= 𝜏 , from 𝑃 ≈FB:ps 𝑄 it follows that 𝑄
𝜏*
==⇒ 𝑎−→ 𝜏*

==⇒𝑄′′
with 𝑃 ′′ ≈FB:ps 𝑄

′′
.

By repeatedly applying the second property we get to_forward(𝑄)
𝜏*
==⇒ 𝑎−→ 𝜏*

==⇒𝑄′

with 𝑄′ ≈FB:ps 𝑄
′′

(as neither 𝑄′
nor 𝑄′′

is initial). The result stems from 𝑃 ′ ≈FB:ps

𝑃 ′′ ≈FB:ps 𝑄′′ ≈FB:ps 𝑄′
by exploiting the fact that ≈FB:ps is symmetric and

transitive.

– If 𝑎 = 𝜏 , from 𝑃 ≈FB:ps 𝑄 it follows that 𝑄
𝜏*
==⇒𝑄′′

with 𝑃 ′′ ≈FB:ps 𝑄′′
. By

repeatedly applying the second property we get to_forward(𝑄)
𝜏*
==⇒𝑄′

with 𝑄′ ≈FB

𝑄′′
(instead of 𝑄′ ≈FB:ps 𝑄

′′
) as 𝑄′′

is not initial while 𝑄′
may be initial (this is the

case when no 𝜏 is performed by to_forward(𝑄)). Since ≈FB:ps is contained in ≈FB,

the result stems from 𝑃 ′ ≈FB 𝑃 ′′ ≈FB 𝑄′′ ≈FB 𝑄′
by exploiting the fact that ≈FB

is symmetric and transitive.

Proof of Theorem 5.2.

A straightforward consequence of the axioms and inference rules behind ⊢ together with the

fact that ≈FB:ps is an equivalence relation and a congruence (Theorem 4.3) and the fact that the

lefthand side process of each additional axiom in 𝒜𝜏
FB:ps is ≈FB:ps-equivalent to the righthand

side process of the same axiom.

Proof of Lemma 5.4.

Similar to the proof of [9, Lemma 1] (which uses axioms 𝒜1, 𝒜2, 𝒜3, 𝒜4, 𝒜6) because, in the

considered normal form, 𝜏 -actions do not play a role different from the one of visible actions;

in particular, unexecuted 𝜏 -actions are not abstracted away unless they are inside non-selected

alternatives.

Proof of Lemma 5.6.

Suppose that 𝑃 is in F-nf. Should this not be the case, thanks to Lemma 5.4 we could find 𝑄 in

F-nf such that 𝒜𝜏
FB:ps ⊢ 𝑃 = 𝑄, hence proving the result for 𝑄 would entail the validity of the

result for 𝑃 by substitutivity. In particular:

• If 𝑃
𝜏*
==⇒ 𝑎−→ 𝜏*

==⇒ 𝑃 ′
, then 𝑄

𝜏*
==⇒ 𝑎−→ 𝜏*

==⇒𝑄′
with 𝑃 ′ ≈FB:ps 𝑄

′
due to 𝒜𝜏

FB:ps ⊢ 𝑃 =
𝑄 implying 𝑃 ≈FB:ps 𝑄 by soundness (Theorem 5.2) and the fact that 𝑄 cannot idle

when 𝑎 = 𝜏 because 𝑃 and 𝑄 are both initial.

• 𝒜𝜏
FB:ps ⊢ to_forward(𝑃 ′) = to_forward(𝑄′) because 0 summands possibly occurring in

to_forward(𝑃 ′) can be eliminated via 𝒜3 and 𝑄 is a F-nf for 𝑃 so that 𝑄′
cannot abstract

from unexecuted 𝜏 -actions unless they are inside non-selected alternatives (which by the

way can occur neither in to_forward(𝑃 ′) nor in 𝑄′
and hence to_forward(𝑄′)).

We thus proceed by induction on the syntactical structure of the initial process 𝑃 in F-nf

such that 𝑃
𝜏*
==⇒ 𝑎−→ 𝜏*

==⇒ 𝑃 ′
(note that 𝑃 cannot be 0), where in the following the finite index

set 𝐼 can be empty in which case the corresponding summation is meant to disappear:

• If 𝑃 is

∑︀
𝑖∈𝐼 𝑎𝑖 . 𝑃𝑖 + 𝑎 . �̄� and 𝑃 ′

is

∑︀
𝑖∈𝐼 𝑎𝑖 . 𝑃𝑖 + 𝑎†. �̄� – i.e., no 𝜏 -transitions precede

and follow the 𝑎-transition in 𝑃
𝜏*
==⇒ 𝑎−→ 𝜏*

==⇒ 𝑃 ′
– where we note that �̄� is in F-nf and
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initial because so is 𝑃 , then 𝒜𝜏
FB:ps ⊢ 𝑃 = 𝑃 + 𝑎 . �̄� by 𝒜9 applied to 𝑎 . �̄� inside 𝑃 and

substitutivity, with �̄� = to_forward(𝑃 ′).

• If 𝑃 is

∑︀
𝑖∈𝐼 𝑎𝑖 . 𝑃𝑖+𝑎 .𝑄 and

∑︀
𝑖∈𝐼 𝑎𝑖 . 𝑃𝑖+𝑎†. 𝑄

𝜏*
==⇒ 𝜏−→ 𝜏*

==⇒ 𝑃 ′
– i.e., no 𝜏 -transitions

precede but at least one 𝜏 -transition follows the 𝑎-transition in 𝑃
𝜏*
==⇒ 𝑎−→ 𝜏*

==⇒ 𝑃 ′
– then:

– Since

∑︀
𝑖∈𝐼 𝑎𝑖 . 𝑃𝑖 + 𝑎†. 𝑄

𝜏*
==⇒ 𝜏−→ 𝜏*

==⇒ 𝑃 ′
comes from 𝑄

𝜏*
==⇒ 𝜏−→ 𝜏*

==⇒𝑄′
with

to_forward(𝑃 ′) = to_forward(𝑄′) and 𝑄 initial and in F-nf, by the induction hy-

pothesis 𝒜𝜏
FB:ps ⊢ 𝑄 = 𝑄+ 𝜏 . to_forward(𝑃 ′).

– 𝒜𝜏
FB:ps ⊢ 𝑃 = 𝑃 + 𝑎 . to_forward(𝑃 ′) because:

∗ 𝒜𝜏
FB:ps ⊢ 𝑃 = 𝑃 + 𝑎 .𝑄 by 𝒜9 applied to 𝑎 .𝑄 inside 𝑃 and substitutivity.

∗ 𝒜𝜏
FB:ps ⊢ 𝑃 = 𝑃+𝑎 . (𝑄+𝜏 . to_forward(𝑃 ′)) by substitutivity and transitivity.

∗ 𝒜𝜏
FB:ps ⊢ 𝑃 = 𝑃 + 𝑎 . (𝑄 + 𝜏 . to_forward(𝑃 ′)) + 𝑎 . to_forward(𝑃 ′) by 𝒜𝜏

3 ,

substitutivity, and transitivity.

∗ 𝒜𝜏
FB:ps ⊢ 𝑃 = 𝑃 + 𝑎 .𝑄+ 𝑎 . to_forward(𝑃 ′) by substitutivity and transitivity.

∗ 𝒜𝜏
FB:ps ⊢ 𝑃 = 𝑃 + 𝑎 . to_forward(𝑃 ′) by 𝒜9 as 𝑃 contains 𝑎 .𝑄 as summand,

substitutivity, and transitivity.

• If 𝑃 is

∑︀
𝑖∈𝐼 𝑎𝑖 . 𝑃𝑖 + 𝜏 .𝑄 and

∑︀
𝑖∈𝐼 𝑎𝑖 . 𝑃𝑖 + 𝜏 †. 𝑄

𝜏*
==⇒ 𝑎−→ 𝜏*

==⇒ 𝑃 ′
– i.e., at least one

𝜏 -transition precedes the 𝑎-transition in 𝑃
𝜏*
==⇒ 𝑎−→ 𝜏*

==⇒ 𝑃 ′
– then:

– Since

∑︀
𝑖∈𝐼 𝑎𝑖 . 𝑃𝑖 + 𝜏 †. 𝑄

𝜏*
==⇒ 𝑎−→ 𝜏*

==⇒ 𝑃 ′
comes from 𝑄

𝜏*
==⇒ 𝑎−→ 𝜏*

==⇒𝑄′
with

to_forward(𝑃 ′) = to_forward(𝑄′) and 𝑄 initial and in F-nf, by the induction hy-

pothesis 𝒜𝜏
FB:ps ⊢ 𝑄 = 𝑄+ 𝑎 . to_forward(𝑃 ′).

– 𝒜𝜏
FB:ps ⊢ 𝑃 = 𝑃 + 𝑎 . to_forward(𝑃 ′) because:

∗ 𝒜𝜏
FB:ps ⊢ 𝑃 = 𝑃 + 𝜏 .𝑄 by 𝒜9 applied to 𝜏 .𝑄 inside 𝑃 and substitutivity.

∗ 𝒜𝜏
FB:ps ⊢ 𝑃 = 𝑃 + 𝜏 .𝑄+𝑄 by 𝒜𝜏

2 , substitutivity, and transitivity.

∗ 𝒜𝜏
FB:ps ⊢ 𝑃 = 𝑃 + 𝜏 .𝑄 + 𝑄 + 𝑎 . to_forward(𝑃 ′) by substitutivity and

transitivity.

∗ 𝒜𝜏
FB:ps ⊢ 𝑃 = 𝑃 + 𝜏 .𝑄+ 𝑎 . to_forward(𝑃 ′) by 𝒜𝜏

2 , substitutivity, and transi-

tivity.

∗ 𝒜𝜏
FB:ps ⊢ 𝑃 = 𝑃 + 𝑎 . to_forward(𝑃 ′) by 𝒜9 as 𝑃 contains 𝜏 .𝑄 as summand,

substitutivity, and transitivity.

Proof of Lemma 5.7.

We proceed by induction on the syntactical structure of 𝑃 in F-nf:

• If 𝑃 is 0, then it is sufficient to take 𝑄 equal to 0.
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• If 𝑃 is

∑︀
𝑖∈𝐼 𝑎𝑖 . 𝑃𝑖, then by the induction hypothesis for all 𝑖 ∈ 𝐼 there is 𝑄𝑖 in F-snf

such that 𝒜𝜏
FB:ps ⊢ 𝑃𝑖 = 𝑄𝑖, hence 𝒜𝜏

FB:ps ⊢ 𝑃 =
∑︀

𝑖∈𝐼 𝑎𝑖 . 𝑄𝑖 by substitutivity with

respect to action prefix and alternative composition.

Suppose that

∑︀
𝑖∈𝐼 𝑎𝑖 . 𝑄𝑖

𝜏*
==⇒ 𝑎−→ 𝜏*

==⇒𝑄′
but there is no𝑄′′

such that

∑︀
𝑖∈𝐼 𝑎𝑖 . 𝑄𝑖

𝑎−→𝑄′′

with 𝑄′ ≈FB:ps 𝑄′′
. Since

∑︀
𝑖∈𝐼 𝑎𝑖 . 𝑄𝑖 is initial, from Lemma 5.6 we get 𝒜𝜏

FB:ps ⊢∑︀
𝑖∈𝐼 𝑎𝑖 . 𝑄𝑖 =

∑︀
𝑖∈𝐼 𝑎𝑖 . 𝑄𝑖 + 𝑎 . to_forward(𝑄′), hence 𝒜𝜏

FB:ps ⊢ 𝑃 =
∑︀

𝑖∈𝐼 𝑎𝑖 . 𝑄𝑖 +
𝑎 . to_forward(𝑄′) by transitivity, where to_forward(𝑄′) is initial and in F-snf.

Therefore

∑︀
𝑖∈𝐼 𝑎𝑖 . 𝑄𝑖+𝑎 . to_forward(𝑄′)

𝜏*
==⇒ 𝑎−→ 𝜏*

==⇒𝑄′
and moreover

∑︀
𝑖∈𝐼 𝑎𝑖 . 𝑄𝑖+

𝑎 . to_forward(𝑄′)
𝑎−→

∑︀
𝑖∈𝐼 𝑎𝑖 . 𝑄𝑖+𝑎†. to_forward(𝑄′), where𝑄′ ≈FB:ps

∑︀
𝑖∈𝐼 𝑎𝑖 . 𝑄𝑖+

𝑎†. to_forward(𝑄′) as from 𝑄′
and 𝑎†. to_forward(𝑄′) being both non-initial it follows

that 𝑄′ ≈FB:ps 𝑎
†. to_forward(𝑄′), at which point we exploit the soundness of 𝒜6 (Theo-

rem 5.2) on the righthand side and the fact that ≈FB:ps is transitive.

• If 𝑃 is 𝑏†. �̂� , then by the induction hypothesis there is �̂� in F-snf such that 𝒜𝜏
FB:ps ⊢

�̂� = �̂�, hence 𝒜𝜏
FB:ps ⊢ 𝑃 = 𝑏†. �̂� by substitutivity with respect to action prefix.

Suppose that 𝑏†. �̂�
𝜏*
==⇒ 𝑎−→ 𝜏*

==⇒𝑄′
but there is no 𝑄′′

such that 𝑏†. �̂�
𝑎−→𝑄′′

with

𝑄′ ≈FB:ps 𝑄′′
. Since �̂� is initial, from Lemma 5.6 and substitutivity we get 𝒜𝜏

FB:ps ⊢
𝑏†. �̂� = 𝑏†. (�̂� + 𝑎 . to_forward(𝑄′)), hence 𝒜𝜏

FB:ps ⊢ 𝑃 = 𝑏†. (�̂� + 𝑎 . to_forward(𝑄′))
by transitivity, where to_forward(𝑄′) is initial and in F-snf.

Therefore 𝑏†. (�̂� + 𝑎 . to_forward(𝑄′))
𝜏*
==⇒ 𝑎−→ 𝜏*

==⇒𝑄′
and moreover

𝑏†. (�̂�+ 𝑎 . to_forward(𝑄′))
𝑎−→ 𝑏†. (�̂�+ 𝑎†. to_forward(𝑄′)), where 𝑄′ ≈FB:ps 𝑏

†. (�̂�+
𝑎†. to_forward(𝑄′)) as from 𝑄′

and 𝑎†. to_forward(𝑄′) being both non-initial it follows

that 𝑄′ ≈FB:ps 𝑎
†. to_forward(𝑄′), at which point we exploit the soundness of 𝒜6 and

𝒜4 (Theorem 5.2) on the righthand side and the fact that ≈FB:ps is transitive.

Proof of Theorem 5.8.

Suppose that 𝑃1 and 𝑃2 are both in F-snf. Should this not be the case, thanks to Lemmas 5.4

and 5.7 we could find 𝑄1 and 𝑄2 in F-snf such that 𝒜𝜏
FB:ps ⊢ 𝑃1 = 𝑄1 and 𝒜𝜏

FB:ps ⊢ 𝑃2 =
𝑄2, hence 𝒜𝜏

FB:ps ⊢ 𝑄2 = 𝑃2 by symmetry. Due to soundness (Theorem 5.2), we would

get 𝑃1 ≈FB:ps 𝑄1, hence 𝑄1 ≈FB:ps 𝑃1 as ≈FB:ps is symmetric, and 𝑃2 ≈FB:ps 𝑄2. Since

𝑃1 ≈FB:ps 𝑃2, we would also get 𝑄1 ≈FB:ps 𝑄2 as ≈FB:ps is transitive. Proving 𝑄1 ≈FB:ps

𝑄2 =⇒ 𝒜𝜏
FB:ps ⊢ 𝑄1 = 𝑄2 would finally entail 𝒜𝜏

FB:ps ⊢ 𝑃1 = 𝑃2 by transitivity.

We proceed by induction on 𝑘 = size(𝑃1) + size(𝑃2) ∈ N≥2:

• If 𝑘 = 2, then from 𝑃1 ≈FB:ps 𝑃2 and 𝑃1 and 𝑃2 in F-snf we derive that both 𝑃1 and 𝑃2

are equal to 0, from which the result follows by reflexivity.

• Let 𝑘 > 2 with 𝑃1 being

∑︀
𝑖∈𝐼1 𝑎1,𝑖 . 𝑃1,𝑖 and 𝑃2 being

∑︀
𝑖∈𝐼2 𝑎2,𝑖 . 𝑃2,𝑖, where ev-

ery 𝑃1,𝑖 and every 𝑃2,𝑖 is initial and in F-snf. Since 𝑃1 ≈FB:ps 𝑃2, whenever for

some 𝑎1,𝑖1 = 𝑎 we have 𝑃1
𝑎−→ 𝑎†. 𝑃1,𝑖1 +

∑︀
𝑖∈𝐼1∖{𝑖1} 𝑎1,𝑖 . 𝑃1,𝑖, then for some 𝑎2,𝑖2 =

𝑎 we have 𝑃2
𝑎−→ 𝑎†. 𝑃2,𝑖2 +

∑︀
𝑖∈𝐼2∖{𝑖2} 𝑎2,𝑖 . 𝑃2,𝑖 as 𝑃2 is in F-snf where 𝑎†. 𝑃1,𝑖1 +∑︀

𝑖∈𝐼1∖{𝑖1} 𝑎1,𝑖 . 𝑃1,𝑖 ≈FB:ps 𝑎
†. 𝑃2,𝑖2+

∑︀
𝑖∈𝐼2∖{𝑖2} 𝑎2,𝑖 . 𝑃2,𝑖, and vice versa. Since𝑃1,𝑖1 =
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to_forward(𝑎†. 𝑃1,𝑖1 +
∑︀

𝑖∈𝐼1∖{𝑖1} 𝑎1,𝑖 . 𝑃1,𝑖) and 𝑃2,𝑖2 = to_forward(𝑎†. 𝑃2,𝑖2 +∑︀
𝑖∈𝐼2∖{𝑖2} 𝑎2,𝑖 . 𝑃2,𝑖), from the third property in Proposition 5.1 two cases arise:

– If𝑃1,𝑖1 ≈FB:ps 𝑃2,𝑖2 , then from the induction hypothesis we obtain𝒜𝜏
FB:ps ⊢ 𝑃1,𝑖1 =

𝑃2,𝑖2 , hence 𝒜𝜏
FB:ps ⊢ 𝑎1,𝑖1 . 𝑃1,𝑖1 = 𝑎2,𝑖2 . 𝑃2,𝑖2 by substitutivity with respect to

action prefix.

– If 𝑃1,𝑖1 ≈FB 𝑃2,𝑖2 but 𝑃1,𝑖1 ̸≈FB:ps 𝑃2,𝑖2 – as is the case, e.g., when 𝑎1,𝑖1 . 𝑃1,𝑖1 is

𝑎 . 𝜏 . 0 and 𝑎2,𝑖2 . 𝑃2,𝑖2 is 𝑎 . 0 – then 𝑃1,𝑖1 can execute 𝜏 -actions (thus reaching non-

initial processes) to which 𝑃2,𝑖2 can respond only by idling (thus remaining in an ini-

tial process), or vice versa. If the considered summand of 𝑃1 is 𝑎1,𝑖1 . 𝜏 . 𝑃
′
1,𝑖1

, we ex-

ploit the soundness of 𝒜𝜏
1 (Theorem 5.2) to obtain 𝑎1,𝑖1 . 𝜏 . 𝑃

′
1,𝑖1

≈FB:ps 𝑎1,𝑖1 . 𝑃
′′
1,𝑖1

where 𝑃 ′′
1,𝑖1

is a subprocess of 𝑃 ′
1,𝑖1

that is initial, in F-snf, and not executing 𝜏 -

actions, so that 𝑃 ′′
1,𝑖1

≈FB:ps 𝑃2,𝑖2 and we can then proceed like in the previous case

where 𝒜𝜏
1 is additionally applied.

More generally, the considered summand of 𝑃1 may be of the form 𝑎1,𝑖1 . (𝜏 . 𝑃
′
1,𝑖1

+
. . . ), but then 𝑃 ′

1,𝑖1
, after executing possible 𝜏 -actions, must offer all the alternative

visible actions enabled by 𝑃2,𝑖2 and only those actions, otherwise 𝑃1,𝑖1 ≈FB 𝑃2,𝑖2

cannot hold given that 𝑃2,𝑖2 can only idle whenever 𝑃1,𝑖1 executes a 𝜏 -action. As a

consequence, for every subprocess alternative to 𝜏 . 𝑃 ′
1,𝑖1

:

∗ If it starts with a 𝜏 -action, then for the same reason it must offer all the alterna-

tive visible actions enabled by 𝑃2,𝑖2 and only those actions, hence it must be

≈FB:ps-equivalent to 𝜏 . 𝑃 ′
1,𝑖1

and can be absorbed by 𝜏 . 𝑃 ′
1,𝑖1

by exploiting the

soundness of 𝒜9 (Theorem 5.2).

∗ If it starts with a visible action, then that action must be enabled by 𝑃2,𝑖2

in order for 𝑃1,𝑖1 ≈FB 𝑃2,𝑖2 to hold and the considered subprocess can be

absorbed within 𝜏 . 𝑃 ′
1,𝑖1

as follows by exploiting the soundness of 𝒜9 and 𝒜𝜏
2

(Theorem 5.2).

· 𝜏 . 𝑃 ′
1,𝑖1

is expanded to 𝑃 ′
1,𝑖1

+ 𝜏 . 𝑃 ′
1,𝑖1

via 𝒜𝜏
2 , with its application being

repeated in the case that 𝑃 ′
1,𝑖1

starts with a 𝜏 -action and so on, until the

considered subprocess appears in the expansion.

· The original occurrence of the considered subprocess and the new one

inside the expansion are merged into a single one via 𝒜9.

· The resulting process is contracted back to 𝜏 . 𝑃 ′
1,𝑖1

via as many applications

of 𝒜𝜏
2 .

The result finally follows by substitutivity with respect to alternative composition and, in

the presence of identical summands on the same side, axiom 𝒜9 possibly preceded by

applications of axioms 𝒜1 and 𝒜2 to move identical summands next to each other.

• Let 𝑘 > 2 with 𝑃1 being 𝑎†1. 𝑃
′
1 and 𝑃2 being 𝑎†2. 𝑃

′
2, where 𝑃 ′

1 and 𝑃 ′
2 are both initial and

in F-snf. Since 𝑃 ′
1 = to_forward(𝑃1) and 𝑃 ′

2 = to_forward(𝑃2), from 𝑃1 ≈FB:ps 𝑃2 and

the third property in Proposition 5.1 two cases arise:
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– If 𝑃 ′
1 ≈FB:ps 𝑃

′
2, then from the induction hypothesis we obtain 𝒜𝜏

FB:ps ⊢ 𝑃 ′
1 = 𝑃 ′

2,

hence 𝒜𝜏
FB:ps ⊢ 𝑎†. 𝑃 ′

1 = 𝑎†. 𝑃 ′
2 by substitutivity with respect to action prefix.

Thanks to 𝒜5 we derive 𝒜𝜏
FB:ps ⊢ 𝑎†1. 𝑃

′
1 = 𝑎†. 𝑃 ′

1 and 𝒜𝜏
FB:ps ⊢ 𝑎†. 𝑃 ′

2 = 𝑎†2. 𝑃
′
2,

from which the result follows by transitivity.

– If 𝑃 ′
1 ≈FB 𝑃 ′

2 but 𝑃 ′
1 ̸≈FB:ps 𝑃

′
2 – as is the case, e.g., when 𝑎†1. 𝑃

′
1 is 𝑎†1. 𝜏 . 0 and

𝑎†2. 𝑃
′
2 is 𝑎†2. 0 – then 𝑃 ′

1 can execute 𝜏 -actions (thus reaching non-initial processes)

to which 𝑃 ′
2 can respond only by idling (thus remaining in an initial process), or vice

versa. If 𝑃1 is 𝑎†1. 𝜏 . 𝑃
′′
1 , we exploit the soundness of 𝒜𝜏

4 (Theorem 5.2) to obtain

𝑃1 ≈FB:ps 𝑎
†
1. 𝑃

′′′
1 where 𝑃 ′′′

1 is a subprocess of 𝑃 ′′
1 that is initial, in F-snf, and not

executing 𝜏 -actions, so that 𝑃 ′′′
1 ≈FB:ps 𝑃 ′

2 and we can then proceed like in the

previous case where 𝒜𝜏
4 is additionally applied.

More generally, the considered summand of 𝑃1 may be of the form 𝑎†1,𝑖1 . (𝜏 . 𝑃
′
1,𝑖1

+
. . . ), but then every subprocess alternative to 𝜏 . 𝑃 ′

1,𝑖1
can be suitably absorbed as

shown before.

Note that the case 𝑘 > 2 with 𝑃1 being

∑︀
𝑖∈𝐼1 𝑎1,𝑖 . 𝑃1,𝑖 or 0 and 𝑃2 being 𝑎†2. 𝑃

′
2, or vice versa,

cannot occur because the former is initial while the latter is not. Likewise, the case 𝑘 > 2 with

𝑃1 being

∑︀
𝑖∈𝐼1 𝑎1,𝑖 . 𝑃1,𝑖 and 𝑃2 being 0, or vice versa, would contradict 𝑃1 ≈FB:ps 𝑃2.

Proof of Theorem 5.9.

A straightforward consequence of the axioms and inference rules behind ⊢ together with the

fact that ≈RB is an equivalence relation and a congruence (Theorem 4.3) and the fact that the

lefthand side process of each additional axiom in 𝒜𝜏
RB is ≈RB-equivalent to the righthand side

process of the same axiom.

Proof of Lemma 5.11.

Similar to the proof of [9, Lemma 2] (which uses axioms 𝒜1, 𝒜2, 𝒜7, 𝒜8) because, in the

considered normal form, 𝜏 -actions do not play a role different from the one of visible actions;

in particular, executed 𝜏 -actions are not abstracted away.

Proof of Theorem 5.12.

Suppose that 𝑃1 and 𝑃2 are both in R-nf. Should this not be the case, thanks to Lemma 5.11

we could find 𝑄1 and 𝑄2 in R-nf such that 𝒜𝜏
RB ⊢ 𝑃1 = 𝑄1 and 𝒜𝜏

RB ⊢ 𝑃2 = 𝑄2, hence

𝒜𝜏
RB ⊢ 𝑄2 = 𝑃2 by symmetry. Due to soundness (Theorem 5.9), we would get 𝑃1 ≈RB 𝑄1,

hence 𝑄1 ≈RB 𝑃1 as ≈RB is symmetric, and 𝑃2 ≈RB 𝑄2. Since 𝑃1 ≈RB 𝑃2, we would also

derive 𝑄1 ≈RB 𝑄2 as ≈RB is transitive. Proving 𝑄1 ≈RB 𝑄2 =⇒ 𝒜𝜏
RB ⊢ 𝑄1 = 𝑄2 would

finally entail 𝒜𝜏
RB ⊢ 𝑃1 = 𝑃2 by transitivity.

We proceed by induction on 𝑘 = size(𝑃1) + size(𝑃2) ∈ N≥2:

• If 𝑘 = 2, then from 𝑃1 ≈RB 𝑃2 and 𝑃1 and 𝑃2 in R-nf we derive that both 𝑃1 and 𝑃2 are

equal to 0, from which the result follows by reflexivity.

• If 𝑘 > 2, then from 𝑃1 ≈RB 𝑃2 and 𝑃1 and 𝑃2 in R-nf we derive that 𝑃1 is 𝑎†1. 𝑃
′
1 and 𝑃2

is 𝑎†2. 𝑃
′
2. There are three cases:
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– If 𝑎1 ̸= 𝜏 ̸= 𝑎2, then 𝑎1 = 𝑎2 and 𝑃 ′
1 ≈RB 𝑃 ′

2 otherwise 𝑃1 ≈RB 𝑃2 could not hold.

From the induction hypothesis we obtain 𝒜𝜏
RB ⊢ 𝑃 ′

1 = 𝑃 ′
2, hence 𝒜𝜏

RB ⊢ 𝑎†1. 𝑃
′
1 =

𝑎†2. 𝑃
′
2 by substitutivity with respect to action prefix.

– If 𝑎1 = 𝜏 , then 𝒜𝜏
RB ⊢ 𝑎†1. 𝑃

′
1 = 𝑃 ′

1 by axiom 𝒜𝜏
5 , hence 𝑎†1. 𝑃

′
1 ≈RB 𝑃 ′

1 due to

soundness (Theorem 5.9) and 𝑃 ′
1 ≈RB 𝑎†1. 𝑃

′
1 as ≈RB is symmetric. From 𝑃1 ≈RB

𝑃2 it then follows that 𝑃 ′
1 ≈RB 𝑎†2. 𝑃

′
2 as ≈RB is transitive. From the induction

hypothesis we obtain 𝒜𝜏
RB ⊢ 𝑃 ′

1 = 𝑎†2. 𝑃
′
2, hence 𝒜𝜏

RB ⊢ 𝑎†1. 𝑃
′
1 = 𝑎†1. 𝑎

†
2. 𝑃

′
2 by

substitutivity with respect to action prefix and 𝒜𝜏
RB ⊢ 𝑎†1. 𝑃

′
1 = 𝑎†2. 𝑃

′
2 by axiom

𝒜𝜏
5 applied to 𝑎†1. 𝑎

†
2. 𝑃

′
2 and transitivity.

– The case 𝑎2 = 𝜏 is similar to the previous one.

Proof of Theorem 5.13.

A straightforward consequence of the axioms and inference rules behind ⊢ together with the

fact that ≈FRB:ps is an equivalence relation and a congruence (Theorem 4.3) and the fact that

the lefthand side process of each additional axiom in 𝒜𝜏
FRB:ps is ≈FRB:ps-equivalent to the

righthand side process of the same axiom.

Proof of Lemma 5.15.

Similar to the proof of [9, Lemma 3] (which uses axioms 𝒜1, 𝒜2, 𝒜3) because, in the considered

normal form, 𝜏 -actions do not play a role different from the one of visible actions; in particular,

neither unexecuted 𝜏 -actions nor executed 𝜏 -actions are abstracted away.

Proof of Theorem 5.17.

The proof is divided into two parts:

• Suppose that 𝑃1 ≈FRB:c 𝑃2. There are two cases:

– If 𝑃1 and 𝑃2 are initial, it holds that, for all 𝑎 ∈ 𝐴, whenever 𝑃1
𝑎−→ 𝑃 ′

1, then

𝑃2
𝑎−→ 𝑃 ′

2 and 𝑃 ′
1 ≈FRB 𝑃 ′

2, and vice versa. Since every pair 𝑃 ′
1 and 𝑃 ′

2 is composed

of two ≈FRB-equivalent non-initial processes whose only incoming transitions are

identically labeled and respectively depart from the two initial processes 𝑃1 and 𝑃2,

it follows that 𝑃1 ≈FRB:ps 𝑃2 (and 𝑃 ′
1 ≈FRB:ps 𝑃

′
2 for all those pairs).

– If𝑃1 and𝑃2 are not initial, then𝑃1 ≈FRB 𝑃2 and to_initial(𝑃1) ≈FRB:c to_initial(𝑃2).
While stepwise mimicking each other behavior in the forward direction, 𝑃1 and

𝑃2 can only encounter pairs of non-initial processes related by ≈FRB. By virtue of

to_initial(𝑃1) ≈FRB:c to_initial(𝑃2), while stepwise mimicking each other behavior

in the backward direction, there is a way for 𝑃1 and 𝑃2 not to respectively end up

in an initial process and a non-initial process. In conclusion, 𝑃1 ≈FRB:ps 𝑃2.

• Suppose that 𝑃1 ≈FRB:ps 𝑃2. There are two cases:

– If 𝑃1 and 𝑃2 are initial, whenever 𝑃1 has a 𝜏 -transition to a non-initial process that

is ≈FRB-equivalent to 𝑃2, then 𝑃2 must have a 𝜏 -transition to a non-initial process

that is ≈FRB-equivalent to 𝑃1, and vice versa, otherwise 𝑃1 ≈FRB:ps 𝑃2 would be

contradicted. Therefore, for all 𝑎 ∈ 𝐴, whenever 𝑃1
𝑎−→ 𝑃 ′

1, then 𝑃2
𝑎−→ 𝑃 ′

2 and

𝑃 ′
1 ≈FRB 𝑃 ′

2, and vice versa, i.e., 𝑃1 ≈FRB:c 𝑃2.
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– Let 𝑃1 and 𝑃2 be not initial. On the one hand, we have that 𝑃1≈FRB:ps𝑃2 implies

𝑃1 ≈FRB 𝑃2. On the other hand, from 𝑃1 ≈FRB:ps 𝑃2 it follows that, while stepwise

mimicking each other behavior in the backward direction, there is a way for 𝑃1

and 𝑃2 not to respectively end up in an initial process and a non-initial process.

Therefore to_initial(𝑃1) ≈FRB:ps to_initial(𝑃2) and hence to_initial(𝑃1) ≈FRB:c

to_initial(𝑃2) due to what we have proved in the first case of the first part of the

proof. In conclusion, 𝑃1 ≈FRB:c 𝑃2.

Proof of Lemma 5.18.

Suppose that 𝑃1 and 𝑃2 are both in FR-nf. Should this not be the case, thanks to Lemma 5.15

we could find 𝑄1 and 𝑄2 in FR-nf such that 𝒜𝜏
FRB:ps ⊢ 𝑃1 = 𝑄1 and 𝒜𝜏

FRB:ps ⊢ 𝑃2 = 𝑄2,

hence 𝒜𝜏
FRB:ps ⊢ 𝑄2 = 𝑃2 by symmetry. Due to soundness (Theorem 5.13), we would get

𝑃1 ≈FRB:ps 𝑄1, hence 𝑄1 ≈FRB:ps 𝑃1 as ≈FRB:ps is symmetric, and 𝑃2 ≈FRB:ps 𝑄2. Therefore

𝑄1 ≈FRB 𝑃1 and 𝑃2 ≈FRB 𝑄2 because ≈FRB:ps is contained in ≈FRB. From 𝑃1 ≈FRB 𝑃2

we would then get 𝑄1 ≈FRB 𝑄2 as ≈FRB is transitive. Since 𝑃1, 𝑃2, 𝑄1, 𝑄2 are initial and

𝒜𝜏
FRB:ps ⊢ 𝑃1 = 𝑄1 =⇒ 𝑎 . 𝑃1 = 𝑎 .𝑄1 and 𝒜𝜏

FRB:ps ⊢ 𝑄2 = 𝑃2 =⇒ 𝑎 .𝑄2 = 𝑎 . 𝑃2 by

substitutivity with respect to action prefix, proving 𝑄1 ≈FRB 𝑄2 =⇒ 𝒜𝜏
FRB:ps ⊢ 𝑎 .𝑄1 =

𝑎 .𝑄2 would finally entail 𝒜𝜏
FRB:ps ⊢ 𝑎 . 𝑃1 = 𝑎 . 𝑃2 by transitivity.

We proceed by induction on 𝑘 = size(𝑃1) + size(𝑃2) ∈ N≥2:

• If 𝑘 = 2, then from 𝑃1 ≈FRB 𝑃2 and 𝑃1 and 𝑃2 in FR-nf we derive that both 𝑃1 and 𝑃2

are equal to 0, from which the result follows by reflexivity and substitutivity with respect

to action prefix.

• Let 𝑘 > 2, so that 𝑃1 is

∑︀
𝑖∈𝐼1 𝑎1,𝑖 . 𝑃1,𝑖 or 0 and 𝑃2 is

∑︀
𝑖∈𝐼2 𝑎2,𝑖 . 𝑃2,𝑖 or 0, where every

𝑃1,𝑖 and every 𝑃2,𝑖 is initial and in FR-nf (when either process is 0, all the actions of

the other process must be 𝜏 ). For the sake of uniformity, also 0 will be denoted as a

summation, in which the index set is empty. Consider the following two conditions:

1. There exists 𝑖 ∈ 𝐼1 such that 𝑎1,𝑖 = 𝜏 and 𝑃1,𝑖 ≈FRB 𝑃2.

2. There exists 𝑖 ∈ 𝐼2 such that 𝑎2,𝑖 = 𝜏 and 𝑃2,𝑖 ≈FRB 𝑃1.

We distinguish three cases:

– Suppose that neither condition 1 nor condition 2 holds. Since 𝑃1 ≈FRB 𝑃2, when-

ever for some 𝑎1,𝑖1 = 𝑏 we have 𝑃1
𝑏−→ 𝑏†. 𝑃1,𝑖1 +

∑︀
𝑖∈𝐼1∖{𝑖1} 𝑎1,𝑖 . 𝑃1,𝑖, then for

some 𝑎2,𝑖2 = 𝑏 it must be 𝑃2
𝑏−→ 𝑏†. 𝑃2,𝑖2 +

∑︀
𝑖∈𝐼2∖{𝑖2} 𝑎2,𝑖 . 𝑃2,𝑖 where 𝑏†. 𝑃1,𝑖1 +∑︀

𝑖∈𝐼1∖{𝑖1} 𝑎1,𝑖 . 𝑃1,𝑖 ≈FRB 𝑏†. 𝑃2,𝑖2 +
∑︀

𝑖∈𝐼2∖{𝑖2} 𝑎2,𝑖 . 𝑃2,𝑖, and vice versa (note

that 𝑃2 – resp. 𝑃1 – cannot idle when 𝑏 = 𝜏 ).

Since every pair of ≈FRB-equivalent reached processes is composed of two non-

initial processes whose only incoming transitions are identically labeled and respec-

tively depart from the two≈FRB-equivalent initial processes𝑃1 and𝑃2, we have that

𝑃1,𝑖1 = to_forward(𝑏†. 𝑃1,𝑖1 +
∑︀

𝑖∈𝐼1∖{𝑖1} 𝑎1,𝑖 . 𝑃1,𝑖) ≈FRB to_forward(𝑏†. 𝑃2,𝑖2 +∑︀
𝑖∈𝐼2∖{𝑖2} 𝑎2,𝑖 . 𝑃2,𝑖) = 𝑃2,𝑖2 . From the induction hypothesis it follows that𝒜𝜏

FRB:ps
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⊢ 𝑎1,𝑖1 . 𝑃1,𝑖1 = 𝑎2,𝑖2 . 𝑃2,𝑖2 , hence 𝒜𝜏
FRB:ps ⊢ 𝑃1 = 𝑃2 by substitutivity with re-

spect to alternative composition and, in the presence of identical summands on the

same side, axiom 𝒜10 possibly preceded by applications of axioms 𝒜1 and 𝒜2 to

move identical summands next to each other. Finally 𝒜𝜏
FRB:ps ⊢ 𝑎 . 𝑃1 = 𝑎 . 𝑃2 by

substitutivity with respect to action prefix.

– Suppose that both condition 1 and condition 2 hold. Then there exist 𝑖1 ∈ 𝐼1 and

𝑖2 ∈ 𝐼2 such that 𝑎1,𝑖1 = 𝜏 = 𝑎2,𝑖2 and 𝑃1,𝑖1 ≈FRB 𝑃2 ≈FRB 𝑃1 ≈FRB 𝑃2,𝑖2 , hence

𝑃1,𝑖1 ≈FRB 𝑃2,𝑖2 , where we have exploited the fact that ≈FRB is symmetric and

transitive. Since the considered chain of equalities can be rewritten as 𝑃1 ≈FRB

𝑃2,𝑖2 ≈FRB 𝑃1,𝑖1 ≈FRB 𝑃2 by virtue of the same two properties, from the induction

hypothesis and transitivity it follows that 𝒜𝜏
FRB:ps ⊢ 𝑎 . 𝑃1 = 𝑎 . 𝑃2,𝑖2 = 𝑎 . 𝑃1,𝑖1 =

𝑎 . 𝑃2.

– Suppose that only one of the two conditions holds, say condition 1. For every

summand 𝜏 . 𝑃1,𝑖 of 𝑃1 such that 𝑃1,𝑖 ≈FRB 𝑃2 it holds that 𝒜𝜏
FRB:ps ⊢ 𝜏 . 𝑃1,𝑖 =

𝜏 . 𝑃2 by the induction hypothesis. Indicating with 𝑃 ′
1 the summation of all the

other summands of 𝑃1 – for each of which 𝑎1,𝑖 ̸= 𝜏 or 𝑃1,𝑖 ̸≈FRB 𝑃2 – we obtain

𝒜𝜏
FRB:ps ⊢ 𝑃1 = 𝜏 . 𝑃2+𝑃 ′

1 by substitutivity with respect to alternative composition

and, in the presence of identical summands on the righthand side, axiom𝒜10 possibly

preceded by applications of axioms 𝒜1 and 𝒜2 to move identical summands next to

each other, hence 𝒜𝜏
FRB:ps ⊢ 𝑎 . 𝑃1 = 𝑎 . (𝜏 . 𝑃2+𝑃 ′

1) by substitutivity with respect

to action prefix.

Since 𝑃1 ≈FRB 𝑃2, condition 1 does not hold over 𝑃 ′
1, and condition 2 does not hold

(over 𝑃2), similar to the first case for each summand 𝑎1,𝑖1 . 𝑃1,𝑖1 of 𝑃 ′
1 there must

be a summand 𝑎2,𝑖2 . 𝑃2,𝑖2 of 𝑃2 such that 𝑎1,𝑖1 = 𝑎2,𝑖2 and 𝑃1,𝑖1 ≈FRB 𝑃2,𝑖2 , and

vice versa, hence 𝒜𝜏
FRB:ps ⊢ 𝑎1,𝑖1 . 𝑃1,𝑖1 = 𝑎2,𝑖2 . 𝑃2,𝑖2 by the induction hypothesis.

Indicating with 𝑃 ′
2 the summation of all the other summands of 𝑃2 – none of which

matches a summand of 𝑃 ′
1 – we obtain 𝒜𝜏

FRB:ps ⊢ 𝑃2 = 𝑃 ′
2 + 𝑃 ′

1 by substitutivity

with respect to alternative composition.

Therefore 𝒜𝜏
FRB:ps ⊢ 𝑎 . 𝑃1 = 𝑎 . (𝜏 . 𝑃2 + 𝑃 ′

1) = 𝑎 . (𝜏 . (𝑃 ′
2 + 𝑃 ′

1) + 𝑃 ′
1) =

𝑎 . (𝑃 ′
2 + 𝑃 ′

1) = 𝑎 . 𝑃2 by substitutivity, 𝒜𝜏
6 , and transitivity.

[Example: 𝑃1 ≜ 𝜏 . (𝑏 . 0 + 𝑐 . 0 + 𝑑 . 0) + 𝑑 . 0, 𝑃2 ≜ 𝑏 . 0 + 𝑐 . 0 + 𝑑 . 0.]

Proof of Theorem 5.19.

Suppose that 𝑃1 and 𝑃2 are both in FR-nf. Should this not be the case, thanks to Lemma 5.15

we could find 𝑄1 and 𝑄2 in FR-nf such that 𝒜𝜏
FRB:ps ⊢ 𝑃1 = 𝑄1 and 𝒜𝜏

FRB:ps ⊢ 𝑃2 = 𝑄2,

hence 𝒜𝜏
FRB:ps ⊢ 𝑄2 = 𝑃2 by symmetry. Due to soundness (Theorem 5.13), we would

get 𝑃1 ≈FRB:ps 𝑄1, hence 𝑄1 ≈FRB:ps 𝑃1 as ≈FRB:ps is symmetric, and 𝑃2 ≈FRB:ps 𝑄2.

Since 𝑃1 ≈FRB:ps 𝑃2, we would also get 𝑄1 ≈FRB:ps 𝑄2 as ≈FRB:ps is transitive. Proving

𝑄1 ≈FRB:ps 𝑄2 =⇒ 𝒜𝜏
FRB:ps ⊢ 𝑄1 = 𝑄2 would finally entail 𝒜𝜏

FRB:ps ⊢ 𝑃1 = 𝑃2 by

transitivity.

There are two cases based on 𝑘 = size(𝑃1) + size(𝑃2) ∈ N≥2:

• If 𝑘 = 2, then from 𝑃1 ≈FRB:ps 𝑃2 and 𝑃1 and 𝑃2 in FR-nf we derive that both 𝑃1 and

𝑃2 are equal to 0, from which the result follows by reflexivity.
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• If 𝑘 > 2, then from 𝑃1 ≈FRB:ps 𝑃2 and 𝑃1 and 𝑃2 in FR-nf we derive that 𝑃1 is∑︀
𝑖∈𝐼1 𝑎1,𝑖 . 𝑃1,𝑖 and 𝑃2 is

∑︀
𝑖∈𝐼2 𝑎2,𝑖 . 𝑃2,𝑖, where every 𝑃1,𝑖 and every 𝑃2,𝑖 is initial and

in FR-nf. Since 𝑃1 ≈FRB:ps 𝑃2 is the same as 𝑃1 ≈FRB:c 𝑃2 due to Theorem 5.17,

whenever for some 𝑎1,𝑖1 = 𝑎 we have 𝑃1
𝑎−→ 𝑎†. 𝑃1,𝑖1 +

∑︀
𝑖∈𝐼1∖{𝑖1} 𝑎1,𝑖 . 𝑃1,𝑖, then

for some 𝑎2,𝑖2 = 𝑎 we have 𝑃2
𝑎−→ 𝑎†. 𝑃2,𝑖2 +

∑︀
𝑖∈𝐼2∖{𝑖2} 𝑎2,𝑖 . 𝑃2,𝑖 where 𝑎†. 𝑃1,𝑖1 +∑︀

𝑖∈𝐼1∖{𝑖1} 𝑎1,𝑖 . 𝑃1,𝑖 ≈FRB 𝑎†. 𝑃2,𝑖2 +
∑︀

𝑖∈𝐼2∖{𝑖2} 𝑎2,𝑖 . 𝑃2,𝑖, and vice versa.

Since every pair of ≈FRB-equivalent reached processes is composed of two non-initial

processes whose only incoming transitions are identically labeled and respectively depart

from the two equivalent initial processes𝑃1 and𝑃2, we have that𝑃1,𝑖1 = to_forward(𝑎†. 𝑃1,𝑖1

+
∑︀

𝑖∈𝐼1∖{𝑖1} 𝑎1,𝑖 . 𝑃1,𝑖) ≈FRB to_forward(𝑎†. 𝑃2,𝑖2+
∑︀

𝑖∈𝐼2∖{𝑖2} 𝑎2,𝑖 . 𝑃2,𝑖) = 𝑃2,𝑖2 . Since

𝑃1,𝑖1 and 𝑃2,𝑖2 are initial, 𝒜𝜏
FRB:ps ⊢ 𝑎1,𝑖1 . 𝑃1,𝑖1 = 𝑎2,𝑖2 . 𝑃2,𝑖2 by Lemma 5.18 and hence

𝒜𝜏
FRB:ps ⊢ 𝑃1 = 𝑃2 by substitutivity with respect to alternative composition and, in

the presence of identical summands on the same side, axiom 𝒜10 possibly preceded by

applications of axioms 𝒜1 and 𝒜2 to move identical summands next to each other.

Proof of Lemma 5.20.

Suppose that 𝑃1 and 𝑃2 are both in FR-nf. Should this not be the case, thanks to Lemma 5.15

we could find 𝑄1 and 𝑄2 in FR-nf such that 𝒜𝜏
FRB:ps ⊢ 𝑃1 = 𝑄1 and 𝒜𝜏

FRB:ps ⊢ 𝑃2 = 𝑄2,

hence 𝒜𝜏
FRB:ps ⊢ 𝑄2 = 𝑃2 by symmetry. Due to soundness (Theorem 5.13), we would get

𝑃1 ≈FRB:ps 𝑄1, hence 𝑄1 ≈FRB:ps 𝑃1 as ≈FRB:ps is symmetric, and 𝑃2 ≈FRB:ps 𝑄2. Therefore

𝑄1 ≈FRB 𝑃1 and 𝑃2 ≈FRB 𝑄2 because ≈FRB:ps is contained in ≈FRB. From 𝑃1 ≈FRB 𝑃2

we would then get 𝑄1 ≈FRB 𝑄2 as ≈FRB is transitive. Since 𝒜𝜏
FRB:ps ⊢ 𝑃1 = 𝑄1 =⇒

𝑎†. 𝑃1 = 𝑎†. 𝑄1 and 𝒜𝜏
FRB:ps ⊢ 𝑄2 = 𝑃2 =⇒ 𝑎†. 𝑄2 = 𝑎†. 𝑃2 by substitutivity with respect

to action prefix, proving 𝑄1 ≈FRB 𝑄2 =⇒ 𝒜𝜏
FRB:ps ⊢ 𝑎†. 𝑄1 = 𝑎†. 𝑄2 would finally entail

𝒜𝜏
FRB:ps ⊢ 𝑎†. 𝑃1 = 𝑎†. 𝑃2 by transitivity.

We proceed by induction on 𝑘 = size(𝑃1) + size(𝑃2) ∈ N≥2:

• If 𝑘 = 2, then from 𝑃1 ≈FRB 𝑃2 and 𝑃1 and 𝑃2 in FR-nf we derive that both 𝑃1 and 𝑃2

are equal to 0, from which the result follows by reflexivity and substitutivity with respect

to action prefix.

• Let 𝑘 > 2 with 𝑃1 being

∑︀
𝑖∈𝐼1 𝑎1,𝑖 . 𝑃1,𝑖 or 0 and 𝑃2 being

∑︀
𝑖∈𝐼2 𝑎2,𝑖 . 𝑃2,𝑖 or 0, where

every 𝑃1,𝑖 and every 𝑃2,𝑖 is initial and in FR-nf (when either process is 0, all the actions

of the other process must be 𝜏 ). The proof is similar to the one of the corresponding case

in the proof of Lemma 5.18, with the use of 𝑎† in place of 𝑎 and the final application of

𝒜𝜏
7 in lieu of 𝒜𝜏

6 .

• Let 𝑘 > 2 with 𝑃1 being 𝑎†1. 𝑃
′
1 or 𝑎†1. 𝑃

′
1+

∑︀
𝑖∈𝐼1 𝑎1,𝑖 . 𝑃1,𝑖 and 𝑃2 being 𝑎†2. 𝑃

′
2 or 𝑎†2. 𝑃

′
2+∑︀

𝑖∈𝐼2 𝑎2,𝑖 . 𝑃2,𝑖, where𝑃 ′
1 and𝑃 ′

2 are in FR-nf, every𝑃1,𝑖 and every𝑃2,𝑖 is initial and in FR-

nf, to_initial(𝑎†1. 𝑃
′
1) ≈FRB

∑︀
𝑖∈𝐼1 𝑎1,𝑖 . 𝑃1,𝑖 so that 𝑎†1. 𝑃

′
1+

∑︀
𝑖∈𝐼1 𝑎1,𝑖 . 𝑃1,𝑖 ≈FRB 𝑎†1. 𝑃

′
1

by the soundness of axiom 𝒜10 (Theorem 5.13) as ≈FRB:ps is contained in ≈FRB, and

to_initial(𝑎†2. 𝑃
′
2) ≈FRB

∑︀
𝑖∈𝐼2 𝑎2,𝑖 . 𝑃2,𝑖 so that 𝑎†2. 𝑃

′
2 +

∑︀
𝑖∈𝐼2 𝑎2,𝑖 . 𝑃2,𝑖 ≈FRB 𝑎†2. 𝑃

′
2

for the same reason. There are two cases:
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– If 𝑎1 = 𝑎2, then 𝑃 ′
1 ≈FRB 𝑃 ′

2 otherwise 𝑃1 ≈FRB 𝑃2 could not hold. Therefore

𝒜𝜏
FRB:ps ⊢ 𝑎†1. 𝑃

′
1 = 𝑎†2. 𝑃

′
2 by the induction hypothesis.

– If 𝑎1 ̸= 𝑎2, from 𝑃1 ≈FRB 𝑃2 it follows that either action is 𝜏 , say 𝑎1, while the

other action is observable. Then 𝑃 ′
1 ≈FRB 𝑃2 otherwise 𝑃1 ≈FRB 𝑃2 could not

hold. Therefore 𝒜𝜏
FRB:ps ⊢ 𝜏 †. 𝑃 ′

1 = 𝜏 †. 𝑃2 by the induction hypothesis, hence

𝒜𝜏
FRB:ps ⊢ 𝑎†. 𝜏 †. 𝑃 ′

1 = 𝑎†. 𝜏 †. 𝑃2 by substitutivity with respect to action prefix and

then 𝒜𝜏
FRB:ps ⊢ 𝑎†. 𝑃1 = 𝑎†. 𝑃2 by axiom 𝒜𝜏

8 applied to the righthand side and

transitivity.

• Let 𝑘 > 2 with 𝑃1 being 𝑎†1. 𝑃
′
1 +

∑︀
𝑖∈𝐼1 𝑎1,𝑖 . 𝑃1,𝑖 and 𝑃2 being 𝑎†2. 𝑃

′
2 +

∑︀
𝑖∈𝐼2 𝑎2,𝑖 . 𝑃2,𝑖,

where 𝑃 ′
1 and 𝑃 ′

2 are in FR-nf, every 𝑃1,𝑖 and every 𝑃2,𝑖 is initial and in FR-nf,

to_initial(𝑎†1. 𝑃
′
1) ̸≈FRB

∑︀
𝑖∈𝐼1 𝑎1,𝑖 . 𝑃1,𝑖, and to_initial(𝑎†2. 𝑃

′
2) ̸≈FRB

∑︀
𝑖∈𝐼2 𝑎2,𝑖 . 𝑃2,𝑖

(note that if it were ̸≈FRB inside either process, then 𝑃1 ≈FRB 𝑃2 could not hold). Ob-

serving that only 𝑎†1. 𝑃
′
1 and 𝑎†2. 𝑃

′
2 can move but, after going back to 𝑃1 and 𝑃2, also∑︀

𝑖∈𝐼1 𝑎1,𝑖 . 𝑃1,𝑖 and

∑︀
𝑖∈𝐼2 𝑎2,𝑖 . 𝑃2,𝑖 can move, there are two cases:

– If every 𝜏 -summand of to_initial(𝑃1) has a ≈FRB-matching 𝜏 -summand of

to_initial(𝑃2) and vice versa, then 𝑎†1. 𝑃
′
1 ≈FRB:ps 𝑎†2. 𝑃

′
2, hence 𝑎1 = 𝑎2 and

𝑃 ′
1 ≈FRB:ps 𝑃

′
2, as well as

∑︀
𝑖∈𝐼1 𝑎1,𝑖 . 𝑃1,𝑖 ≈FRB:ps

∑︀
𝑖∈𝐼2 𝑎2,𝑖 . 𝑃2,𝑖, hence𝒜𝜏

FRB:ps

⊢
∑︀

𝑖∈𝐼1 𝑎1,𝑖 . 𝑃1,𝑖 =
∑︀

𝑖∈𝐼2 𝑎2,𝑖 . 𝑃2,𝑖 by completeness (Theorem 5.19). There-

fore 𝒜𝜏
FRB:ps ⊢ 𝑎†1. 𝑃

′
1 = 𝑎†2. 𝑃

′
2 by the induction hypothesis, hence 𝒜𝜏

FRB:ps ⊢
𝑎†1. 𝑃

′
1 +

∑︀
𝑖∈𝐼1 𝑎1,𝑖 . 𝑃1,𝑖 = 𝑎†2. 𝑃

′
2 +

∑︀
𝑖∈𝐼2 𝑎2,𝑖 . 𝑃2,𝑖 by substitutivity with respect

to alternative composition and then 𝒜𝜏
FRB:ps ⊢ 𝑎†. (𝑎†1. 𝑃

′
1 +

∑︀
𝑖∈𝐼1 𝑎1,𝑖 . 𝑃1,𝑖) =

𝑎†. (𝑎†2. 𝑃
′
2 +

∑︀
𝑖∈𝐼2 𝑎2,𝑖 . 𝑃2,𝑖) by substitutivity with respect to action prefix.

– Otherwise any other 𝜏 -summand of to_initial(𝑃1) must be such that its continua-

tion is ≈FRB-equivalent to to_initial(𝑃2) or vice versa, where we can exploit the

soundness of axiom 𝒜10 (Theorem 5.13) as ≈FRB:ps is contained in ≈FRB to reduce

the summation of all such 𝜏 -summands to a single one. Such a single 𝜏 -summand

can occur in either process and each of the other summands in that process must

be ≈FRB:ps-equivalent to one of the summands of the other process. There are two

subcases:

∗ If 𝑎1 = 𝜏 and 𝑎2 ̸= 𝜏 , so that 𝑃 ′
1 ≈FRB 𝑃2, or vice versa, we have that

𝒜𝜏
FRB:ps ⊢ 𝜏 †. 𝑃 ′

1 = 𝜏 †. 𝑃2 by the induction hypothesis, hence 𝒜𝜏
FRB:ps ⊢

𝜏 †. 𝑃 ′
1 +

∑︀
𝑖∈𝐼1 𝑎1,𝑖 . 𝑃1,𝑖 = 𝜏 †. 𝑃2 +

∑︀
𝑖∈𝐼1 𝑎1,𝑖 . 𝑃1,𝑖 by substitutivity with re-

spect to alternative composition and then𝒜𝜏
FRB:ps ⊢ 𝑎†. (𝜏 †. 𝑃 ′

1+
∑︀

𝑖∈𝐼1 𝑎1,𝑖 . 𝑃1,𝑖)

= 𝑎†. (𝜏 †. 𝑃2 +
∑︀

𝑖∈𝐼1 𝑎1,𝑖 . 𝑃1,𝑖) by substitutivity with respect to action prefix.

Due to completeness (Theorem 5.19) and substitutivity with respect to alter-

native composition, 𝒜𝜏
FRB:ps ⊢ 𝑃2 = 𝑎†2. 𝑃

′
2 + 𝑃 ′′

2 +
∑︀

𝑖∈𝐼1 𝑎1,𝑖 . 𝑃1,𝑖 where

𝑃 ′′
2 is the summation of the initial summands of 𝑃2 not ≈FRB:ps-equivalent

to any of the initial summands of 𝑃1. Therefore 𝒜𝜏
FRB:ps ⊢ 𝑎†. (𝜏 †. 𝑃 ′

1 +∑︀
𝑖∈𝐼1 𝑎1,𝑖 . 𝑃1,𝑖) = 𝑎†. (𝜏 †. (𝑎†2. 𝑃

′
2+𝑃 ′′

2 +
∑︀

𝑖∈𝐼1 𝑎1,𝑖 . 𝑃1,𝑖)+
∑︀

𝑖∈𝐼1 𝑎1,𝑖 . 𝑃1,𝑖) =
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𝑎†. (𝑎†2. 𝑃
′
2 + 𝑃 ′′

2 +
∑︀

𝑖∈𝐼1 𝑎1,𝑖 . 𝑃1,𝑖) by substitutivity, axiom 𝒜𝜏
8 , and transitiv-

ity.

[Example: 𝑃1 ≜ 𝜏 †. (𝑏†. 0 + 𝑐 . 0 + 𝑑 . 0) + 𝑑 . 0, 𝑃2 ≜ 𝑏†. 0 + 𝑐 . 0 + 𝑑 . 0.]

∗ If 𝑎1 = 𝑎2, so that 𝑃 ′
1 ≈FRB 𝑃 ′

2, and the aforementioned single 𝜏 -summand

occurs in to_initial(𝑃1), or viceversa, we have that 𝒜𝜏
FRB:ps ⊢ 𝑎†1. 𝑃

′
1 = 𝑎†2. 𝑃

′
2

by the induction hypothesis. Since the occurrence of that 𝜏 -summand in

to_initial(𝑃1), specifically in

∑︀
𝑖∈𝐼1 𝑎1,𝑖 . 𝑃1,𝑖, implies

∑︀
𝑖∈𝐼1 𝑎1,𝑖 . 𝑃1,𝑖 ≈FRB:ps

𝜏 . (to_initial(𝑎†2. 𝑃
′
2)+

∑︀
𝑖∈𝐼2 𝑎2,𝑖 . 𝑃2,𝑖), we have that𝒜𝜏

FRB:ps ⊢
∑︀

𝑖∈𝐼1 𝑎1,𝑖 . 𝑃1,𝑖

= 𝜏 . (to_initial(𝑎†2. 𝑃
′
2) +

∑︀
𝑖∈𝐼2 𝑎2,𝑖 . 𝑃2,𝑖) by completeness (Theorem 5.19).

Therefore𝒜𝜏
FRB:ps ⊢ 𝑎†1. 𝑃

′
1+

∑︀
𝑖∈𝐼1 𝑎1,𝑖 . 𝑃1,𝑖 = 𝑎†2. 𝑃

′
2+𝜏 . (to_initial(𝑎†2. 𝑃

′
2)+∑︀

𝑖∈𝐼2 𝑎2,𝑖 . 𝑃2,𝑖) by substitutivity with respect to alternative composition,

hence𝒜𝜏
FRB:ps ⊢ 𝑎†. (𝑎†1. 𝑃

′
1+

∑︀
𝑖∈𝐼1 𝑎1,𝑖 . 𝑃1,𝑖) = 𝑎†. (𝑎†2. 𝑃

′
2+𝜏 . (to_initial(𝑎†2. 𝑃

′
2)

+
∑︀

𝑖∈𝐼2 𝑎2,𝑖 . 𝑃2,𝑖)) by substitutivity with respect to action prefix and then

𝒜𝜏
FRB:ps ⊢ 𝑎†. (𝑎†1. 𝑃

′
1 +

∑︀
𝑖∈𝐼1 𝑎1,𝑖 . 𝑃1,𝑖) = 𝑎†. (𝑎†2. 𝑃

′
2 +

∑︀
𝑖∈𝐼2 𝑎2,𝑖 . 𝑃2,𝑖) by

axiom 𝒜𝜏
7 applied to the righthand side and transitivity.

[Example: 𝑃1 ≜ 𝑑†. 0 + 𝜏 . (𝑑 . 0 + 𝑏 . 0 + 𝑐 . 0), 𝑃2 ≜ 𝑑†. 0 + 𝑏 . 0 + 𝑐 . 0.]

• Let 𝑘 > 2 with 𝑃1 being 𝑎†1. 𝑃
′
1 +

∑︀
𝑖∈𝐼1 𝑎1,𝑖 . 𝑃1,𝑖 and 𝑃2 being

∑︀
𝑖∈𝐼2 𝑎2,𝑖 . 𝑃2,𝑖, or vice

versa, where 𝑃 ′
1 is in FR-nf, every 𝑃1,𝑖 and every 𝑃2,𝑖 is initial and in FR-nf, and with abuse

of notation 𝐼1 and 𝐼2 can be empty in which case the 𝐼1-related summation disappears

while the 𝐼2-related summation is 0.

It must be 𝑎1 = 𝜏 otherwise 𝑃1 ≈FRB 𝑃2 could not hold, so that 𝑃 ′
1 ≈FRB 𝑃2 and

each of the initial summands of 𝑃1 must be ≈FRB:ps-equivalent to one of the initial sum-

mands of 𝑃2. Therefore 𝒜𝜏
FRB:ps ⊢ 𝜏 †. 𝑃 ′

1 = 𝜏 †. 𝑃2 by the induction hypothesis, hence

𝒜𝜏
FRB:ps ⊢ 𝜏 †. 𝑃 ′

1 +
∑︀

𝑖∈𝐼1 𝑎1,𝑖 . 𝑃1,𝑖 = 𝜏 †. 𝑃2 +
∑︀

𝑖∈𝐼1 𝑎1,𝑖 . 𝑃1,𝑖 by substitutivity with

respect to alternative composition and then 𝒜𝜏
FRB:ps ⊢ 𝑎†. (𝜏 †. 𝑃 ′

1 +
∑︀

𝑖∈𝐼1 𝑎1,𝑖 . 𝑃1,𝑖) =

𝑎†. (𝜏 †. 𝑃2 +
∑︀

𝑖∈𝐼1 𝑎1,𝑖 . 𝑃1,𝑖) by substitutivity with respect to action prefix.

Due to completeness (Theorem 5.19) and substitutivity with respect to alternative com-

position, 𝒜𝜏
FRB:ps ⊢ 𝑃2 = 𝑃 ′′

2 +
∑︀

𝑖∈𝐼1 𝑎1,𝑖 . 𝑃1,𝑖 where 𝑃 ′′
2 is the summation of the

initial summands of 𝑃2 not ≈FRB:ps-equivalent to any of the initial summands of 𝑃1.

Therefore 𝒜𝜏
FRB:ps ⊢ 𝑎†. (𝜏 †. 𝑃 ′

1 +
∑︀

𝑖∈𝐼1 𝑎1,𝑖 . 𝑃1,𝑖) = 𝑎†. (𝜏 †. (𝑃 ′′
2 +

∑︀
𝑖∈𝐼1 𝑎1,𝑖 . 𝑃1,𝑖) +∑︀

𝑖∈𝐼1 𝑎1,𝑖 . 𝑃1,𝑖) = 𝑎†. (𝑃 ′′
2 +

∑︀
𝑖∈𝐼1 𝑎1,𝑖 . 𝑃1,𝑖) by substitutivity, axiom 𝒜𝜏

8 , and transi-

tivity.

[Example: 𝑃1 ≜ 𝜏 †. (𝑏 . 0 + 𝑐 . 0 + 𝑑 . 0) + 𝑑 . 0, 𝑃2 ≜ 𝑏 . 0 + 𝑐 . 0 + 𝑑 . 0.]

Proof of Theorem 5.21.

Suppose that 𝑃1 and 𝑃2 are both in FR-nf as done in the proof of Theorem 5.19. There are two

cases:

• Let 𝑃1 be 𝑎†1. 𝑃
′
1 or 𝑎†1. 𝑃

′
1+

∑︀
𝑖∈𝐼1 𝑎1,𝑖 . 𝑃1,𝑖 and 𝑃2 be 𝑎†2. 𝑃

′
2 or 𝑎†2. 𝑃

′
2+

∑︀
𝑖∈𝐼2 𝑎2,𝑖 . 𝑃2,𝑖,

where𝑃 ′
1 and𝑃 ′

2 are in FR-nf, every𝑃1,𝑖 and every𝑃2,𝑖 is initial and in FR-nf, to_initial(𝑎†1. 𝑃
′
1)

≈FRB:ps
∑︀

𝑖∈𝐼1 𝑎1,𝑖 . 𝑃1,𝑖 so that 𝑎†1. 𝑃
′
1 +

∑︀
𝑖∈𝐼1 𝑎1,𝑖 . 𝑃1,𝑖 ≈FRB:ps 𝑎

†
1. 𝑃

′
1 by the sound-

ness of axiom 𝒜10 (Theorem 5.13), and to_initial(𝑎†2. 𝑃
′
2) ≈FRB:ps

∑︀
𝑖∈𝐼2 𝑎2,𝑖 . 𝑃2,𝑖 so that
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𝑎†2. 𝑃
′
2 +

∑︀
𝑖∈𝐼2 𝑎2,𝑖 . 𝑃2,𝑖 ≈FRB:ps 𝑎

†
2. 𝑃

′
2 for the same reason.

Since 𝑃1 ≈FRB:ps 𝑃2 is the same as 𝑃1 ≈FRB:c 𝑃2 due to Theorem 5.17, from the fact

that 𝑃1 and 𝑃2 are not initial it follows that to_initial(𝑃1) ≈FRB:c to_initial(𝑃2) and

hence 𝑎1 = 𝑎2 with to_initial(𝑃 ′
1) ≈FRB to_initial(𝑃 ′

2), so that 𝑃 ′
1 ≈FRB 𝑃 ′

2 other-

wise 𝑃1 ≈FRB:ps 𝑃2 could not hold. As a consequence 𝒜𝜏
FRB:ps ⊢ 𝑎†1. 𝑃

′
1 = 𝑎†2. 𝑃

′
2 by

Lemma 5.20.

• Let 𝑃1 be 𝑎†1. 𝑃
′
1 +

∑︀
𝑖∈𝐼1 𝑎1,𝑖 . 𝑃1,𝑖 and 𝑃2 be 𝑎†2. 𝑃

′
2 +

∑︀
𝑖∈𝐼2 𝑎2,𝑖 . 𝑃2,𝑖, where 𝑃 ′

1 and 𝑃 ′
2

are in FR-nf, every 𝑃1,𝑖 and every 𝑃2,𝑖 is initial and in FR-nf, to_initial(𝑎†1. 𝑃
′
1) ̸≈FRB:ps∑︀

𝑖∈𝐼1 𝑎1,𝑖 . 𝑃1,𝑖, and to_initial(𝑎†2. 𝑃
′
2) ̸≈FRB:ps

∑︀
𝑖∈𝐼2 𝑎2,𝑖 . 𝑃2,𝑖 (note that if it were

̸≈FRB:ps inside either process, then 𝑃1 ≈FRB:ps 𝑃2 could not hold).

Observing that only 𝑎†1. 𝑃
′
1 and 𝑎†2. 𝑃

′
2 can move and, after going back to 𝑃1 and 𝑃2, also∑︀

𝑖∈𝐼1 𝑎1,𝑖 . 𝑃1,𝑖 and

∑︀
𝑖∈𝐼2 𝑎2,𝑖 . 𝑃2,𝑖 can move but it holds that to_initial(𝑎†1. 𝑃

′
1) ̸≈FRB:ps∑︀

𝑖∈𝐼1 𝑎1,𝑖 . 𝑃1,𝑖 and to_initial(𝑎†2. 𝑃
′
2) ̸≈FRB:ps

∑︀
𝑖∈𝐼2 𝑎2,𝑖 . 𝑃2,𝑖, from 𝑃1 ≈FRB:ps 𝑃2 it

follows that 𝑎1 = 𝑎2 with 𝑃 ′
1 ≈FRB 𝑃 ′

2 and

∑︀
𝑖∈𝐼1 𝑎1,𝑖 . 𝑃1,𝑖 ≈FRB:ps

∑︀
𝑖∈𝐼2 𝑎2,𝑖 . 𝑃2,𝑖.

Therefore 𝒜𝜏
FRB:ps ⊢ 𝑎†1. 𝑃

′
1 = 𝑎†2. 𝑃

′
2 by Lemma 5.20 and 𝒜𝜏

FRB:ps ⊢
∑︀

𝑖∈𝐼1 𝑎1,𝑖 . 𝑃1,𝑖 =∑︀
𝑖∈𝐼2 𝑎2,𝑖 . 𝑃2,𝑖 by Theorem 5.19, hence 𝒜𝜏

FRB:ps ⊢ 𝑎†1. 𝑃
′
1 +

∑︀
𝑖∈𝐼1 𝑎1,𝑖 . 𝑃1,𝑖 = 𝑎†2. 𝑃

′
2 +∑︀

𝑖∈𝐼2 𝑎2,𝑖 . 𝑃2,𝑖 by substitutivity with respect to alternative composition.
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