
BRIDGING CAUSAL REVERSIBILITY AND TIME REVERSIBILITY:

A STOCHASTIC PROCESS ALGEBRAIC APPROACH

MARCO BERNARDO AND CLAUDIO A. MEZZINA

Dipartimento di Scienze Pure e Applicate, Università di Urbino, Italy
e-mail address: marco.bernardo@uniurb.it, claudio.mezzina@uniurb.it

Abstract. Causal reversibility blends reversibility and causality for concurrent systems.
It indicates that an action can be undone provided that all of its consequences have been
undone already, thus making it possible to bring the system back to a past consistent state.
Time reversibility is instead considered in the field of stochastic processes, mostly for
efficient analysis purposes. A performance model based on a continuous-time Markov chain
is time reversible if its stochastic behavior remains the same when the direction of time is
reversed. We bridge these two theories of reversibility by showing the conditions under
which causal reversibility and time reversibility are both ensured by construction. This is
done in the setting of a stochastic process calculus, which is then equipped with a variant
of stochastic bisimilarity accounting for both forward and backward directions.

1. Introduction

The interest into computation reversibility dates back to the 60’s, when it was observed
that irreversible computations cause heat dissipation into circuits [Lan61]. More precisely,
Landauer’s principle states that any logically irreversible manipulation of information,
such as the erasure of bits or the merging of computation paths, must be accompanied
by a corresponding entropy increase in non-information-bearing degrees of freedom of the
information processing apparatus or its environment [Ben03]. Hence, according to this
principle, which has been recently verified in [BAP+12] and given a physical foundation
in [Fra18], any logically reversible computation, in which no information is erased, may
be potentially carried out without releasing any heat. This suggested that low energy
consumption could be achieved by resorting to reversible computing, in which there is no
information loss [Ben73]. Nowadays, reversible computing has several applications such as
biochemical reaction modeling [PUY13, Pin17], parallel discrete-event simulation [PP14,
SOJB18], robotics [LES18], control theory [SPP19], fault tolerant systems [DK05, dKH10,
LLM+13, VS18], and concurrent program debugging [GLM14, LNPV18a].

In a reversible system, we see two directions of computation: a forward one, coinciding
with the normal way of computing, and a backward one, which is able to undo the effects of
the forward one when needed. In the literature, there are different variants of reversibility.

Key words and phrases: Reversibility, Causality, Markov Chains, Process Calculi, Bisimilarity.

Preprint submitted to
Logical Methods in Computer Science

© M. Bernardo and C.A. Mezzina
CC© Creative Commons

http://creativecommons.org/about/licenses

2 M. BERNARDO AND C.A. MEZZINA

λa,

_

b,µ
_

c, γ

λa, b,µ

c, γ

λa, b,µ

λa,

_

b,µ
_

c, γ

λa, b,µ

c, γ
_

c, γ
_

Figure 1: Making a system causally reversible and time reversible

For instance, in a Petri net reversibility means that one can always reach the initial mark-
ing [BKMP18], while in a distributed system it stands for the capability of returning to a past
consistent state [DK04, DK05]. In contrast, in the performance evaluation field reversibility
is related to time and is instrumental to develop efficient analysis methods [Kel79].

Our focus is on integrating causal reversibility and time reversibility. Causal reversibility
describes the capability of going back to a past state that is consistent with the computational
history of a system; in this setting, quantitative aspects have been totally disregarded. On the
other hand, the theory of time reversibility studies the conditions under which the stochastic
behavior of a system remains the same when the direction of time is reversed; unfortunately,
it has been applied to concurrent systems without explicitly taking causality into account.
In this paper, we aim at bridging these two theories by showing how causal reversibility
and time reversibility can be jointly achieved. To this purpose, since process algebra
constitutes a common ground for concurrency theory and probability theory [LS91, Hil96],
we develop our proposal by considering a stochastic process calculus, in which actions are
equipped with positive real numbers. Each of these numbers expresses the rate at which
the corresponding action is executed and uniquely identifies the exponential distribution
that quantifies the duration of the action, so that the stochastic process underlying such a
calculus turns out to be a continuous-time Markov chain (CTMC) [KS60].

Ensuring that a system is both causally reversible and time reversible is not a trivial task.
Consider for instance a system that can perform either action a at rate λ followed by action b
at rate µ, or action c at rate γ. In stochastic process algebra terms, it would be represented
as <a, λ>.<b, µ>.0 + <c, γ>.0 where “.” is the action prefix operator, “+” is the choice
operator, and 0 is the terminated process. The underlying labeled transition system is the
action-labeled CTMC depicted in the leftmost part of Figure 1. This system is not reversible
because, given a pair of states connected by a transition, it is not possible to go from the
target state back to the source state. So the first step towards reversibility is to add a
backward transition for each such pair of states, which is labeled with the same action as the
forward transition together with a suitable backward rate. The resulting labeled transition
system is the action-labeled CTMC depicted in the central part of Figure 1.

However, this system is not causally reversible because after performing a and b (resp. c)
the system could go back by undoing c (resp. b and a), i.e., the actions in the backward
direction could be different from those in the forward direction. In order for this system
to be time reversible, the product of the rates along any cycle should be the same when
changing direction [Kel79]. This holds for cycles of length 2 or 4 involving only actions
a and b, whereas it is not the case in general with cycles of length 3 involving all the
actions, unless λ · µ · γ̄ = γ · µ̄ · λ̄ as happens, e.g., when λ = λ̄, µ = µ̄, and γ = γ̄, i.e.,
when every backward rate is equal to the corresponding forward rate. The version depicted

BRIDGING CAUSAL REVERSIBILITY AND TIME REVERSIBILITY 3

in the rightmost part of Figure 1, which is obtained from <a, λ>.<b, µ>.0 + <c, γ>.0
by applying the approach we propose, is both causally reversible and time reversible.

The contribution of this paper is threefold. Firstly, we apply for the first time the general
methodology for reversing process calculi of [PU07] to a stochastic process calculus. In
particular, we provide forward and backward operational semantic rules – featuring forward
and backward actions and rates – and then we show that the resulting calculus is causally
reversible. The latter is accomplished by importing from the reduction semantics setting
of [DK04] the notion of concurrent transitions, which is new in the structural operational
semantics framework of [PU07] and is then handled through the recent technique of [LPU20].

Secondly, we prove that time reversibility can be obtained by using in the operational
semantic rules backward rates equal to the corresponding forward rates or by restricting the
syntax in such a way that parallel composition cannot occur within the scope of action prefix
or choice. This is quite different from the approach adopted for example in [Har03, MR15],
where time reversibility is verified a posteriori, as we instead produce a calculus in which
time reversibility can be guaranteed by construction. The difference in the approach does
not prevent us from importing in our setting compositionality results from those works.

Thirdly, we address behavioral equivalences for our reversible stochastic process calculus,
in order to provide a means to identify systems possessing the same functional and perfor-
mance properties. In particular, we focus on Markovian bisimilarity [Hil96], which equates
systems capable of stepwise mimicking each other’s functional and performance behavior. We
extend a result of [DMV90] to our stochastic setting by showing that a variant of Markovian
bisimilarity on computations accounting for both forward and backward directions coincides
with Markovian bisimilarity on states, thus inheriting the nice properties of the latter [Ber07].

This paper, which is a revised and enriched version of [BM20], is organized as follows. In
Sections 2 and 3 we recall background notions about causal reversibility and time reversibility,
respectively. In Section 4 we develop our proposal of integration for these two forms of
reversibility in the setting of a CTMC-based process calculus, which is then equipped in
Section 5 with a forward and backward Markovian bisimilarity. In Section 6 we provide
some examples. Finally, in Section 7 we conclude with some directions for future work.

2. Causal Reversibility of Concurrent Systems

Reversibility in a computing system has to do with the possibility of reverting the last
performed action. In a sequential system, this is very simple as there exists just one last action,
hence the only challenge is how to store the information needed to reverse this last action.
After Bennett [Ben73], several techniques have been developed to reverse the computations of
a sequential program [Lee86, YG07, HGCH21, PV15].

In a concurrent system, the situation is much more complex as the last action may not
be uniquely identifiable. Indeed, there might be several concurrent last actions. One could
resort to timestamps to decide which action is the last one, but having synchronized clocks
in a distributed system is rather difficult. A good approximation is to consider as last action
every action that has not caused any other action yet. This is at the basis of the so called
causal reversibility, which relates reversibility with causality [DK04, DK05]. Intuitively, the
definition states that, in a concurrent system, any executed action can be undone provided
that all of its consequences, if any, have been undone beforehand.

In the process algebra literature, specifically for CCS [Mil89], two approaches have been
developed to reverse a computation and to keep track of past actions: the dynamic approach

4 M. BERNARDO AND C.A. MEZZINA

of [DK04] and the static approach of [PU07]. Despite these two approaches being quite
different, they have been recently shown to be equivalent in terms of labeled transition
system isomorphism [LMM21]. On the application side, the former approach is more suitable
for systems whose operational semantics is given in terms of reduction semantics, hence it
is to be preferred in the case of very expressive calculi [LMS10, CKV13, LM20] as well as
programming languages [LLMS12, LNPV18b]. On the other hand, the latter approach is
very handy when it comes to deal with labeled transition systems and basic process calculi.

The dynamic approach relies on RCCS [DK04], a variant of CCS that uses external
memories attached to processes to record all the actions executed by the processes themselves.
Every RCCS process is thus of the form m . P , where m is a memory whilst P is a CCS
process. At the beginning of the computation, if P is not sequential, i.e., it contains
occurrences of the parallel composition operator, then an empty memory is distributed
among all the sequential components. Every time that one of the sequential components
performs an action, the action is pushed on top of the memory stack of the component as
it is its last executed action. This construction is shown to allow a concurrent system to
backtrack along any causally equivalent path in such a way that no previously inaccessible
state is reached, which is the essence of causal reversibility.

In contrast, the static approach of [PU07] proposes a general method, of which CCSK
is a result, to reverse process calculi whose operational semantic rules are expressed in the
path format of [BV93]. The basic idea of this method is to make all the operators of the
calculus static and each executed action univocally identified by a communication key. In
particular, since dynamic process algebraic operators like action prefix “.” and choice “+”
would disappear after a transition – thus causing information loss – all of them are kept
within target processes of transitions. This is the approach that we will follow for defining
our reversible stochastic process calculus in Section 4.

For example, consider the CCS process a.P + b.Q, which either performs action a and
then behaves as process P , or performs action b and then behaves as process Q. In the

CCS transition a.P + b.Q
a−→ P , both the executed action a and the discarded process b.Q

are lost after performing the transition, hence it is not possible to get back to the initial

state. In CCSK the same process evolves instead as a.P + b.Q
a[i]−−→ a[i].P + b.Q, where

a[i].P + b.Q behaves like P in further forward transitions while the colored parts can be seen
as decorations of P to be used only in backward transitions. Alternatively, a[i].P + b.Q can
be seen as C[P], where P is the active part and C = a[i]. •+ b.Q is its dead context. In this
way the use of external memories of [DK04] is avoided, because all the necessary information
for enabling reversibility is syntactically maintained within processes. Note that action a is
decorated with a fresh key [i] – e.g., a natural number – so as to distinguish among several
actions executed in the past that have the same name. As we will see in Section 4, this is
important for correctly managing communications when going backward.

3. Time Reversibility of Markov Chains

In the performance evaluation field, a different notion of reversibility, called time reversibility,
is considered. We illustrate it in the specific case of continuous-time Markov chains, which
are discrete-state stochastic processes characterized by the memoryless property [KS60].

A stochastic process describes the evolution of some random phenomenon over time
through a set of random variables, one for each time instant. A stochastic process X(t)
taking values from a discrete state space S for t ∈ R≥0 is a continuous-time Markov chain

BRIDGING CAUSAL REVERSIBILITY AND TIME REVERSIBILITY 5

(CTMC) iff for all n ∈ N, time instants t0 < t1 < · · · < tn < tn+1 ∈ R≥0, and states
s0, s1, . . . , sn, sn+1 ∈ S it holds that Pr{X(tn+1) = sn+1 | X(ti) = si, 0 ≤ i ≤ n} =
Pr{X(tn+1) = sn+1 | X(tn) = sn}, i.e., the probability of moving from one state to another
does not depend on the particular path that has been followed in the past to reach the
current state, hence that path can be forgotten.

A CTMC can be equivalently represented as a labeled transition system or as a state-
indexed matrix. In the first case, each transition is labeled with some probabilistic information
describing the evolution from the source state s to the target state s′ of the transition itself.
In the second case, the same information is stored into an entry, indexed by those two states,
of a square matrix. The value of this information is, in general, a function of time.

We restrict ourselves to time-homogeneous CTMCs, in which conditional probabilities of
the form Pr{X(t+t′) = s′ | X(t) = s} do not depend on t, so that the information considered

above is given by limt′→0
Pr{X(t+t′)=s′|X(t)=s}

t′ . This limit yields a number called the rate
at which the CTMC moves from state s to state s′ and characterizes the exponentially
distributed random time taken by the considered move. It can be shown that the sojourn
time in any state s ∈ S is exponentially distributed with rate given by the sum of the rates of
the moves of s. The average sojourn time in s is the inverse of such a sum and the probability
of moving from s to s′ is the ratio of the corresponding rate to the aforementioned sum.

A CTMC is irreducible iff each of its states is reachable from every other state with
probability greater than 0. A state s ∈ S is recurrent iff the CTMC will eventually return
to s with probability 1, in which case s is called positive recurrent iff the expected number
of steps until the CTMC returns to it is finite. A CTMC is ergodic iff it is irreducible and
all of its states are positive recurrent; ergodicity coincides with irreducibility in the case that
the CTMC has finitely many states, as they form a finite strongly connected component.

Every time-homogeneous and ergodic CTMC X(t) is stationary, which means that
(X(ti + t′))1≤i≤n has the same joint distribution as (X(ti))1≤i≤n for all n ∈ N≥1 and
t1 < · · · < tn, t

′ ∈ R≥0. In this case, X(t) has a unique steady-state probability distribution
π = (π(s))s∈S that fulfills π(s) = limt→∞ Pr{X(t) = s | X(0) = s′} for any s′ ∈ S because
the CTMC has reached equilibrium. These probabilities are computed by solving the linear
system of global balance equations π · Q = 0 subject to

∑
s∈S π(s) = 1 and π(s) ∈ R>0

for all s ∈ S. The infinitesimal generator matrix Q = (qs,s′)s,s′∈S contains for each pair of
distinct states the rate of the corresponding move, which is 0 in the absence of a direct move
between them, while qs,s = −

∑
s′ 6=s qs,s′ for all s ∈ S, i.e., every diagonal element contains

the opposite of the total exit rate of the corresponding state, so that each row of Q sums up
to 0. Therefore π ·Q = 0 means that, once reached equilibrium, for every state the incoming
probability flux is equal to the outgoing probability flux.

Due to state space explosion and numerical stability problems, the calculation of the
solution of the global balance equation system is not always feasible [Ste94]. However, it
can be tackled in the case that the behavior of the considered CTMC remains the same
when the direction of time is reversed. A CTMC X(t) is time reversible iff (X(ti))1≤i≤n has
the same joint distribution as (X(t′ − ti))1≤i≤n for all n ∈ N≥1 and t1 < · · · < tn, t

′ ∈ R≥0.
In this case X(t) and its reversed version Xr(t) = X(−t), t ∈ R≥0, are stochastically identical,
in particular they are stationary and share the same steady-state probability distribution π.
In order for a stationary CTMC X(t) to be time reversible, it is necessary and sufficient
that the partial balance equations π(s) · qs,s′ = π(s′) · qs′,s are satisfied for all s, s′ ∈ S such
that s 6= s′ or, equivalently, that qs1,s2 · . . . · qsn−1,sn · qsn,s1 = qs1,sn · qsn,sn−1 · . . . · qs2,s1

6 M. BERNARDO AND C.A. MEZZINA

P,Q ::= 0 | <a, λ>.P | P +Q | P ‖L Q
R,S ::= P | <a, λ>[i].R | R+ S | R ‖L S

Table 1: Syntax of forward processes (top) and reversible processes (bottom)

for all n ∈ N≥2 and distinct s1, . . . , sn ∈ S [Kel79]. Note that the sum of the partial balance
equations for s ∈ S yields the global balance equation π(s) · |qs,s| =

∑
s′ 6=s π(s′) · qs′,s.

The time-reversed version Xr(t) of a stationary CTMC X(t) can be defined even when
X(t) is not reversible. As shown in [Kel79, Har03], this is accomplished by using the steady-
state probability distribution π of X(t), with Xr(t) turning out to be a CTMC too and having

the same steady-state probability distribution π. More precisely, qrsj ,si = π(si)
π(sj)

· qsi,sj for all

si 6= sj , i.e., the rate from state sj to state si in the time-reversed CTMC is proportional to
the rate from state si to state sj in the original CTMC, where the coefficient is given by the
ratio of π(si) to π(sj). Note that the time-reversed version of Xr(t) is X(t).

4. Integrating Causal Reversibility and Time Reversibility

In this section, we integrate the two concepts of causal reversibility and time reversibility
recalled in the previous two sections by means of a simple calculus named RMPC – Reversible
Markovian Process Calculus. We start with its syntax – where actions are paired with rates –
and its semantics, which are inspired by [PU07]. We then show that the reversibility induced
by RMPC is consistent with causality by adapting the notion of concurrent transitions
from [DK04] and exploiting the technique of [LPU20]. Finally, we exhibit the conditions under
which time reversibility is achieved too and we compare our setting, in which time reversibility
is ensured by construction, with those of [Har03, MR15], in which time reversibility is verified
a posteriori, and import from them some results enabling an efficient analysis of performance.

4.1. Syntax of RMPC. The syntax of RMPC is shown in Table 1. A standard forward
process P can be one of the following: the terminated process 0; the action-prefixed process
<a, λ>.P , which is able to perform an action a at rate λ – called an exponentially timed
action as its duration follows an exponential distribution of parameter λ – and then continues
as process P ; the choice P +Q between processes P and Q based on the rates of their initial
actions; or the parallel composition P ‖L Q, indicating that processes P and Q execute in
parallel and must synchronize only on actions belonging to L.

A reversible process R is built on top of forward processes. As in [PU07], the syntax of
reversible processes differs from the one of forward processes due to the fact that in the former
each prefix <a, λ> can be decorated with a communication key i thus becoming <a, λ>[i].
A process of the form <a, λ>[i].R expresses that in the past the process synchronized with
the environment and this synchronization was identified by key i. Keys are thus attached
only to already executed actions; they are not needed in the absence of parallel composition,
provided that executed actions are marked in some way.

Let A be a countable set of actions (ranged over by a, b), R = R>0 be a set of rates
(ranged over by λ, µ), and K be a countable set of keys (ranged over by i, j). Let L = A×R×K
be a set of labels each formed by an action, a rate, and a communication key (ranged over
by `). Given a forward label ` = <a, λ>[i], we write ` = <a, λ>[i] for the corresponding

BRIDGING CAUSAL REVERSIBILITY AND TIME REVERSIBILITY 7

Act1
std(R)

<a, λ>.R
<a,λ>[i]−−−−−→ <a, λ>[i].R

Act1•
std(R)

<a, λ>[i].R
<a,λ>[i]
9999999K<a, λ>.R

Act2
R

<b,µ>[j]−−−−−→ R′ j 6= i

<a, λ>[i].R
<b,µ>[j]−−−−−→ <a, λ>[i].R′

Act2•
R

<b,µ>[j]
9999999KR′ j 6= i

<a, λ>[i].R
<b,µ>[j]
9999999K<a, λ>[i].R′

Cho
R

<a,λ>[i]−−−−−→ R′ std(S)

R+ S
<a,λ>[i]−−−−−→ R′ + S

Cho• R
<a,λ>[i]
9999999KR′ std(S)

R+ S
<a,λ>[i]
9999999KR′ + S

Par
R

<a,λ>[i]−−−−−→ R′ a /∈ L i /∈ key(S)

R ‖L S
<a,λ>[i]−−−−−→ R′ ‖L S

Par• R
<a,λ>[i]
9999999KR′ a /∈ L i /∈ key(S)

R ‖L S
<a,λ>[i]
9999999KR′ ‖L S

Coo
R

<a,λ>[i]−−−−−→ R′ S
<a,µ>[i]−−−−−→ S′ a ∈ L

R ‖L S
<a,λ·µ>[i]−−−−−−→ R′ ‖L S′

Coo• R
<a,λ>[i]
9999999KR′ S

<a,µ>[i]
9999999K S′ a ∈ L

R ‖L S
<a,λ·µ>[i]
99999999KR′ ‖L S′

Table 2: Structural operational semantic rules for RMPC

backward label, where λ stands for the backward rate of the action – i.e., the rate at which
the action is undone – whose value will be discussed later on.

We denote by P the set of processes generated by the production for R in Table 1,
while we use predicate std() to identify the standard forward processes that can be
derived from the production for P in the same table. For example, <a, λ>.<b, µ>.0 is a
standard forward process that can perform action a at rate λ followed by action b at rate µ,
while <a, λ>[i].<b, µ>.0 is a non-standard reversible process that can either undo action a
at rate λ or perform action b at rate µ. Note that <a, λ>.<b, µ>[j].0 /∈ P because a future
action cannot precede a past action in the description of the behavior of a process.

The set key(R) of keys occurring in a process R ∈ P is inductively defined as follows:
key(P) = ∅

key(<a, λ>[i].R) = {i} ∪ key(R)
key(R+ S) = key(R) ∪ key(S)
key(R ‖L S) = key(R) ∪ key(S)

4.2. Semantics for RMPC. The semantics for RMPC is the labeled transition system

(P,L, 7−→). As in [PU07], the transition relation 7−→ ⊆ P×L×P is given by 7−→ = −→ ∪ 99K,
where the forward transition relation −→ and the backward transition relation 99K are
the least relations respectively induced by the forward rules in the left part of Table 2 and
by the backward rules in the right part of the same table.

Rule Act1 handles processes of the form <a, λ>.P , where P is written as R subject to
std(R). In addition to transforming the action prefix into a transition label, it generates a
key i that is bound to the action <a, λ> thus yielding the label <a, λ>[i]. As can be noted,
the prefix is not discarded by the application of the rule, instead it becomes a key-storing

8 M. BERNARDO AND C.A. MEZZINA

part of the target process that is necessary to offer again that action after coming back.
Rule Act1• reverts the action <a, λ>[i] of the process <a, λ>[i].R provided that R is a
standard process, which ensures that <a, λ>[i] is the only past action that is left to undo.
One of the main design choices of the entire framework is how the rate λ of the backward
action is calculated. For the time being, we leave it unspecified in Act1• as the value of this
rate is not needed to prove the causal consistency part of reversibility; we will see later on
that it may be important to achieve time reversibility.

The presence of rules Act2 and Act2• is motivated by the fact that rule Act1 does
not discard the executed prefix from the process it generates. In particular, rule Act2 allows
a process <a, λ>[i].R to execute if R itself can execute provided that the action performed
by R picks a key j different from i, so that all the action prefixes in a sequence are decorated
with distinct keys. Rule Act2• simply propagates the execution of backward actions from
inner subprocesses that are not standard as long as key uniqueness is preserved, in such a
way that past actions are overall undone from the most recent one to the least recent one.

Unlike the classical rules for the choice operator [Mil89], rule Cho does not discard the
part of the overall process that has not contributed to the executed action. More in detail,
if process R does an action, say <a, λ>[i], and becomes R′, then the entire process R+ S
becomes R′ + S as the information about +S is necessary for offering again the original
choice after coming back. Once the choice is made, only the non-standard process R′ can
proceed further, with the standard process S constituting a dead context of R′. Note that,
in order to apply rule Cho, at least one of R and S has to be standard, meaning that it
is impossible for two non-standard processes to execute if they are composed by a choice
operator. Rule Cho• has precisely the same structure as rule Cho, but deals with the
backward transition relation; if R′ is standard, then the dead context S will come into play
again. For both rules, we omit their symmetric variants in which it is S to move.

The semantics of parallel composition is inspired by [Hoa85]. Rule Par allows process R
within R ‖L S to individually perform an action <a, λ>[i] provided that a /∈ L. It is also
checked that the executing action is bound to a fresh key i /∈ key(S), thus ensuring the
uniqueness of communication keys across parallel composition too. Rule Coo instead allows
both R and S to move by synchronizing on any action in the set L, provided that the
communication key is the same on both sides, i.e., i ∈ key(R′) ∩ key(S′). The resulting
cooperation action has the same name and the same key and is assumed to be exponentially
distributed with rate given by the product of the rates of the two involved actions [Hil94].
Rules Par• and Coo• respectively have the same structure as Par and Coo; the symmetric
variants of Par and Par• are omitted.

In our stochastic setting, choice and parallel composition are not subject to nonde-
terminism. The decision of which action is chosen or which process advances is made
probabilistically based on the rates of the actions that are ready to execute. This mechanism
is called the race policy [Hil96] because the higher the rate, i.e., the faster the action, the
higher its execution probability. This is consistent with the fact that the minimum of a set
of exponentially distributed random variables is still exponentially distributed, from which it
follows that, as already mentioned in Section 3, the sojourn time in any state of a CTMC is
exponentially distributed with rate given by the sum of the rates of the outgoing transitions.
The average sojourn time in that state is the inverse of such a sum and the probability of
moving from that state to another one is the ratio of the rate of the corresponding transition
to the aforementioned sum.

BRIDGING CAUSAL REVERSIBILITY AND TIME REVERSIBILITY 9

We further recall from [Hil96] that the race policy and the memoryless property of
CTMCs allow the interleaving view of concurrency – typically employed in nondeterministic
process calculi – to be adopted in the setting of a stochastic process calculus like RMPC.
Consider the standard process <a, λ>.0 ‖∅ <b, µ>.0. It can initially execute either action a
at rate λ, which happens with probability λ

λ+µ , or action b at rate µ, which happens with

probability µ
λ+µ ; the average sojourn time in the corresponding state is 1

λ+µ . Observing

that the probability of simultaneous termination of the two actions is zero, suppose that a
terminates first. In the state reached by the corresponding forward transition labeled with a
and λ the execution of b is still in progress, so there will be an outgoing forward transition
labeled with b and a parameter quantifying the residual duration of b. That parameter is
still µ because, thanks to the memoryless property, the residual time to the termination of b
is still exponentially distributed with rate µ (see the left part of the forthcoming Figure 3).

4.3. Reachable Processes. The syntax in Table 1 prevents future actions from preceding
past actions. However, this is not the only necessary limitation, because not all the processes
generated by the considered grammar are semantically meaningful. On the one hand, in the
case of a choice at least one of the two subprocesses must be standard, hence for instance
<a, λ>[i].0 + <b, µ>[j].0 is not admissible as it indicates that both branches have been
selected. On the other hand, key uniqueness must be enforced within non-standard processes,
so for example <a, λ>[i].<b, µ>[i].0 and <a, λ>[i].0 ‖∅ <b, µ>[i].0 are not admissible either.

In the rest of the paper, we thus consider only reachable processes, whose set we denote
by P. They include processes from which a computation can start, i.e., standard forward
processes, as well as processes that can be derived from the previous ones via finitely many
applications of the rules for −→ in Table 2. Given a reachable process R ∈ P, we observe
that if std(R) then key(R) = ∅ while any other process R′ reachable from R is such that
key(R′) 6= ∅, as at least one of the actions occurring in R has been executed and hence
it has been equipped with a communication key inside R′.

4.4. Preliminary Reversibility Properties. A basic property in order for RMPC to be
reversible, both in the causal sense and in the time one, is the so called loop lemma [DK04,
PU07]. This property states that each executed action can be undone and that any undone
action can be redone. In other words, when considering the states associated with two
arbitrary reachable processes, either there is no transition between them, or there is a pair
of transitions such that one is a forward transition from the first state to the second state
while the other is a backward transition from the second state to the first state.

Lemma 4.1 (loop lemma). Let R,S ∈ P. Then R
<a,λ>[i]−−−−−→ S iff S

<a,λ>[i]
9999999KR.

Proof. By induction on the depth of the derivation of the considered transition by noting that
each forward (resp. backward) rule has a corresponding backward (resp. forward) rule.

Given a sequence σ = `1 . . . `n of n ∈ N>0 labels, R
σ−→ S denotes a sequence of forward

transitions R
`1−→ R1

`2−→ · · · `n−→ S labeled with that sequence. If σ = `n . . . `1 is the

corresponding backward sequence, then for each `i occurring in σ it holds that Ri−1
`i−→ Ri

iff Ri
`i
99KRi−1. The loop lemma thus generalizes as follows.

Corollary 4.2. Let R,S ∈ P. Then R
σ−→ S iff S

σ
99KR.

10 M. BERNARDO AND C.A. MEZZINA

4.5. Causal Reversibility of RMPC. We now prove the causal reversibility of RMPC,
which means that each of its reachable processes is able to backtrack correctly, i.e., without en-
countering previously inaccessible states, and flexibly, i.e., along any causally equivalent path.
To this purpose, we start by borrowing some machinery from [DK04], in particular the notion
of concurrent transitions, that needs to be adapted because the reversing method of [PU07]
we have followed is different from the one of [DK04] we are going to exploit.

Given a transition θ = R
`7−→ S with R,S ∈ P, we call R the source of θ and S its target.

If θ is a forward transition, i.e., θ = R
`−→ S, we denote by θ = S

`
99KR the corresponding

backward transition. Two transitions are said to be coinitial if they have the same source
and cofinal if they have the same target. Two transitions are composable when the target of
the first transition coincides with the source of the second transition. A finite sequence of
pairwise composable transitions is called a computation. We use ε for the empty computation
and ω to range over computations, with |ω| denoting the length of ω expressed as the
number of transitions constituting it. When ω is a forward computation, we denote by ω the
corresponding backward computation. The notions of source, target, coinitiality, cofinality,
and composability naturally extend to computations. We indicate with ω1ω2 the composition
of the two computations ω1 and ω2 when they are composable.

Before specifying when two transitions are concurrent, we need to present the set of
causes – identified by keys – that lead to a given communication key, along with the notion
of process context.

The causal set cau(R, i) of process R ∈ P until key i ∈ K is inductively defined as:
cau(P, i) = ∅

cau(<a, λ>[j].R, i) =

{
∅ if j = i or i /∈ key(R)
{j} ∪ cau(R, i) otherwise

cau(R+ S, i) = cau(R, i) ∪ cau(S, i)
cau(R ‖L S, i) = cau(R, i) ∪ cau(S, i)

If i ∈ key(R), then cau(R, i) represents the set of keys in R that caused i, with cau(R, i) ⊂
key(R) because on the one hand i /∈ cau(R, i) and on the other hand keys that are not
causally related to i are not considered. A key j causes i if it appears syntactically before i
in R or, said otherwise, i is inside the scope of j.

A process context is a process with a hole in it, generated by the grammar:
C ::= • | <a, λ>[i].C | R+ C | C +R | R ‖L C | C ‖L R

We write C[R] to denote the process obtained from C by replacing its hole with R.
We are now in a position to define what we mean by concurrent transitions on the

basis of the notion of conflicting transitions. The first condition below tells that a forward
transition is in conflict with a backward one whenever the latter tries to undo a cause of
the key of the former. The second condition below deems as conflictual two transitions
respectively generated by the two subprocesses of a choice.

Definition 4.3 (conflicting and concurrent transitions). Two coinitial transitions θ1 and θ2
from a process R ∈ P are in conflict iff one of the following two conditions holds:

(1) θ1 = R
<a,λ>[i]−−−−−→ S1 and θ2 = R

<b,µ>[j]
9999999K S2 with j ∈ cau(S1, i).

(2) R = C[P1 + P2] with θk deriving from Pk
<ak,λk>[ik]−−−−−−−→ Sk for k = 1, 2.

Two coinitial transitions are concurrent when they are not in conflict.

BRIDGING CAUSAL REVERSIBILITY AND TIME REVERSIBILITY 11

<b, µ>.<a, λ>.P

<b, µ>[j].<a, λ>.P

<b,µ>[j]
44

<a,λ>[i]// <b, µ>[j].<a, λ>[i].P

<a, λ>.P +<a, λ>.P
<a,λ>[i]

tt

<a,λ>[i]

**
<a, λ>[i].P +<a, λ>.P <a, λ>.P +<a, λ>[i].P

Figure 2: Two examples of conflicting transitions

Figure 2 shows two related examples. In the former, the process <b, µ>[j].<a, λ>.P can
perform two transitions: a backward one and a forward one. They are in conflict according
to the first condition of Definition 4.3 as the backward transition removes the key j that is
in the causal set of i. In the latter, we have that process <a, λ>.P +<a, λ>.P is able to
trigger two forward transitions. Since they arise from the same choice operator, they are in
conflict according to the second condition of Definition 4.3.

Remark 4.4. In a stochastic process calculus like RMPC the semantic treatment of the
choice operator is not trivial because for a process of the form <a, λ>.P + <a, λ>.P
the operational rules should produce either a single a-transition whose rate is λ + λ, or
two a-transitions each having rate λ that do not collapse into a single one [Hil96]. In our
reversible framework, two distinct transitions are naturally generated thanks to the fact that
the key associated with the executed action and the discarded alternative subprocess are
stored into the reached process, as shown in the bottom part of Figure 2.

We finally show that reversibility is causally consistent in our concurrent framework.
This can be done in two ways: either by adapting the original proof of [DK04], as we
did in [BM20], or by using the general technique recently provided by [LPU20]. We opt
for the latter, according to which causal consistency stems from the diamond property –
which amounts to concurrent transitions being confluent – backward transition independence
– which generalizes the concept of backward determinism used for reversible sequential
languages [YG07] – and past well foundedness – which ensures that reachable processes have
a finite past.

Concurrent transitions can commute as formally stated below by the diamond property
(as an example see the left part of the forthcoming Figure 3), while conflicting ones cannot.

Lemma 4.5 (diamond property). Let θ1 = R
`17−→ S1 and θ2 = R

`27−→ S2 be two coinitial
transitions from a process R ∈ P. If θ1 and θ2 are concurrent, then there exist two cofinal

transitions θ′2 = S1
`27−→ S and θ′1 = S2

`17−→ S with S ∈ P.

Proof. The proof is by case analysis on the direction of θ1 and θ2. We distinguish three
cases according to whether the two transitions are both forward, both backward, or one
forward and the other backward. Suppose that `1 = <a, λ>[i] and `2 = <b, µ>[j], with
i 6= j otherwise θ1 and θ2 would be generated by the two subprocesses of a choice operator
and hence could not be concurrent:

12 M. BERNARDO AND C.A. MEZZINA

• Suppose that θ1 and θ2 are both forward. Since θ1 and θ2 are concurrent, by virtue of
Definition 4.3 the two transitions cannot originate from a choice operator. They must
thus be generated by a parallel composition, but not through the Coo rule because θ1
and θ2 have different keys and hence cannot synchronize. Without loss of generality,

we can assume that R = R1 ‖L R2 with R1
<a,λ>[i]−−−−−→ S1 and R2

<b,µ>[j]−−−−−→ S2 and a, b 6∈ L.

By applying the Par rule, we have that R1 ‖L R2
<a,λ>[i]−−−−−→ S1 ‖L R2

<b,µ>[j]−−−−−→ S1 ‖L S2
as well as R1 ‖L R2

<b,µ>[j]−−−−−→ R1 ‖L S2
<a,λ>[i]−−−−−→ S1 ‖L S2.

• The case in which θ1 and θ2 are both backward is similar to the previous one.
• Suppose that θ1 is forward and θ2 is backward. Since θ1 and θ2 are concurrent, by virtue

of Definition 4.3 the backward transition cannot remove a cause of the forward one.
Since either subprocess of a choice operator or a parallel composition cannot perform a
forward transition and a backward transition without preventing the backward one from
removing a cause of the forward one, and in the case of the choice operator only one of
the two subprocesses can perform transitions, without loss of generality we can assume

that R = R1 ‖L R2 with R1
<a,λ>[i]−−−−−→ S1 and R2

<b,µ>[j]
9999999K S2 as well as a, b 6∈ L so as to

preserve causes. By applying the Par rule, we have that R1 ‖L R2
<a,λ>[i]−−−−−→ S1 ‖L R2

<b,µ>[j]
9999999K S1 ‖L S2 as well as R1 ‖L R2

<b,µ>[j]
9999999KR1 ‖L S2

<a,λ>[i]−−−−−→ S1 ‖L S2.

Lemma 4.6 (backward transition independence). Let R ∈ P. Then any two coinitial

backward transitions θ1 = R
<a,λ>[i]
9999999K S1 and θ2 = R

<b,µ>[j]
9999999K S2 are concurrent.

Proof. Since by Definition 4.3 there is no case in which two backward transitions are
conflicting, the property trivially holds.

Lemma 4.7 (past well foundedness). Let R0 ∈ P. Then there is no infinite sequence of

backward transitions such that Ri
`i
99KRi+1 for all i ∈ N.

Proof. It can be easily proved by induction on |key(R0)| by observing that a backward
transition decreases by one the total number of keys of R0, with this number being finite.

Following [DK04, Lév76], we also define a notion of causal equivalence over computations,
which abstracts from the order of concurrent transitions. In this way, computations obtained
by swapping the order of their concurrent transitions are identified with each other (see for
instance the left part of the forthcoming Figure 3) and the composition of a computation
with its inverse is identified with the empty computation.

Definition 4.8 (causal equivalence). Causal equivalence is the smallest equivalence relation
� on computations that is closed under composition and satisfies the following:

(1) θ1θ
′
2 � θ2θ′1 for any two coinitial concurrent transitions θ1 = R

`17−→ R1 and θ2 = R
`27−→ R2

and any two cofinal transitions θ′2 = R1
`27−→ S and θ′1 = R2

`17−→ S respectively composable
with the previous ones.

(2) θθ � ε and θθ � ε.

The further property below, called parabolic lemma in [LPU20], states that any com-
putation can be seen as a backward computation followed by a forward computation. As
observed in [DK04], up to causal equivalence one can always reach for the maximum freedom
of choice among transitions by going backward and only then going forward (not the other

BRIDGING CAUSAL REVERSIBILITY AND TIME REVERSIBILITY 13

way around). Intuitively, one could depict computations as parabolas: the system first draws
potential energy from its memory, by undoing all the executed actions, and then restarts.

Lemma 4.9 (parabolic lemma). For any computation ω, there exist two forward computa-
tions ω1 and ω2 such that ω � ω1ω2 and |ω1|+ |ω2| ≤ |ω|.

Proof. It follows from the diamond property and backward transition independence thanks
to [LPU20].

Theorem 4.10 (causal consistency). Let ω1 and ω2 be two computations. Then ω1 � ω2

iff ω1 and ω2 are both coinitial and cofinal.

Proof. It follows from past well foundedness and the parabolic lemma thanks to [LPU20].

Theorem 4.10 shows that causal equivalence characterizes a space for admissible rollbacks
that are (i) correct as they do not lead to states not reachable by some forward computation
and (ii) flexible enough to allow undo operations to be rearranged with respect to the order
in which the undone concurrent transitions were originally performed. This implies that
the states reached by any backward computation could be reached by performing forward
computations only. Therefore, we can conclude that RMPC meets causal reversibility.

4.6. Time Reversibility of RMPC. The rules in Table 2 associate with any process

R ∈ P a labeled transition system JRK = (P,L, 7−→, R) whose initial state corresponds to R.
To investigate time reversibility, we have to derive from JRK the underlying CTMC MJRK
and we have to specify the value of any rate λ labeling a backward transition.

First of all, we observe that every state of JRK with an outgoing forward transition
actually has infinitely many copies of that transition. The motivation is that rules Act1
and Act2 generate a transition for each possible admissible key, with the key being part of
both the label and the reached process. For example, <a, λ>.P has an outgoing forward
transition towards <a, λ>[i].P for each i ∈ K; note that from each <a, λ>[i].P there is
instead a single outgoing backward transition to <a, λ>.P . When building the CTMC
underlying <a, λ>.P , only one of those outgoing forward transitions has to be considered,
otherwise the corresponding state would have an infinite exit rate.

In the construction of MJRK we thus need to reason in terms of transition bundles.
A transition bundle collects all the transitions departing from the same state and labeled
with the same action, the same rate, and different keys, whose target states are syntactically
identical up to keys in the same positions. To this purpose, we make use of contexts to
introduce ≡K as the smallest equivalence relation on P that satisfies the following:

• If C does not contain occurrences of ‖L with a ∈ L and i and j do not occur in C and R,
then C[<a, λ>[i].R] ≡K C[<a, λ>[j].R].
• If a ∈ L1∩ . . .∩Ln−1 for n ≥ 2, i and j do not occur in C, C1, . . . , Cn, R1, . . . , Rn, and no

further a with key i occurs in C, then C[C1[<a, λ1>[i].R1] ‖L1 . . . ‖Ln−1 Cn[<a, λn>[i].Rn]]
≡K C[C1[<a, λ1>[j].R1] ‖L1 . . . ‖Ln−1 Cn[<a, λn>[j].Rn]].

As for the second case, for instance <a, λ1>.P1 ‖{a} <a, λ2>.P2 evolves to <a, λ1>[i].P1 ‖{a}
<a, λ2>[i].P2 for all i ∈ K, but we cannot replace <a, λ1>[i].P1 with <a, λ1>[j].P1, unless
we replace <a, λ2>[i].P2 with <a, λ2>[j].P2 too, because <a, λ1>[j].P1 ‖{a} <a, λ2>[i].P2

has no backward transition to <a, λ1>.P1 ‖{a} <a, λ2>.P2 when j 6= i.
Among the representations mentioned in Section 3, below we choose to formalize MJRK

as a labeled transition system because this is closer to JRK obtained from the rules in Table 2.

14 M. BERNARDO AND C.A. MEZZINA

Definition 4.11 (underlying CTMC). The CTMC underlying a process R ∈ P is the labeled

transition system MJRK = (P/≡K,A×R, 7−→K, [R]≡K) where:

• P/≡K is the quotient set of ≡K over P, i.e., the set of classes of ≡K-equivalent processes,
representing the set of states.
• [R]≡K is the ≡K-equivalence class of R, which simply is {R} when R is standard and

hence contains no keys, representing the initial state.

• 7−→K ⊆ (P/≡K)×(A×R)×(P/≡K) is the transition relation given by 7−→K = −→K ∪ 99KK:

– [S]≡K
<a,λ>−−−−→K [S′]≡K whenever S

<a,λ>[i]−−−−−→ S′ for some i ∈ K.

– [S]≡K
<a,λ>
99999KK [S′]≡K whenever S

<a,λ>[i]
9999999K S′ for some i ∈ K.

When moving from JRK toMJRK, individual states are thus replaced by classes of states
that are syntactically identical up to keys in the same positions; moreover, keys are removed
from transition labels. As a consequence, every state of MJRK turns out to have finitely
many outgoing transitions. We also note that MJRK is an action-labeled CTMC, as each of
its transitions is labeled not only with a rate but also with an action.

As a preliminary step towards time reversibility, we have to show thatMJRK is stationary.
It holds that MJRK is even ergodic thanks to the loop lemma.

Lemma 4.12. Let R ∈ P. Then MJRK is time homogeneous and ergodic.

Proof. The time homogeneity of MJRK is a straightforward consequence of the fact that its
rates simply are positive real numbers, not time-dependent functions. The ergodicity of
MJRK stems from the fact that the graph representing MJRK is a finite strongly connected
component due to Corollary 4.2.

The proof of time reversibility exploits the necessary and sufficient condition based
on partial balance equations [Kel79] (see Section 3). The loop lemma and the assumption
λ = λ for all λ ∈ R>0 ensure that the steady-state probability distribution of MJRK is the
uniform distribution. From this it immediately follows that the partial balance equations
are satisfied, i.e., that time reversibility holds.

Lemma 4.13. Let R ∈ P, S be the set of states of MJRK, and n = |S|. If every backward
rate is equal to the corresponding forward rate, then the steady-state probability distribution
π of MJRK satisfies π(s) = 1/n for all s ∈ S.

Proof. If n = 1, i.e., R is equal to 0 or to the parallel composition of several standard
processes whose initial actions have to synchronize but are different from each other, then
trivially π(s) = 1/n = 1 for the only state s ∈ S.
Suppose now that n ≥ 2. From Lemma 4.12 it follows that MJRK has a unique steady-state
probability distribution π. Due to Lemma 4.1, each outgoing forward/backward transition of
an arbitrary state s ∈ S has a corresponding incoming backward/forward transition, hence
the global balance equation for s reformulated in terms of transitions looks as follows, where
s′ (resp., s′′) is the target state of a forward (resp., backward) transition departing from s:
π(s) · (

∑
s
<a′,λ′>−−−−−→Ks′

λ′ +
∑

s
<a′′,λ′′>
999999999KKs′′

λ′′) =
∑

s′
<a′,λ′>
99999999KKs

π(s′) · λ′ +
∑

s′′
<a′′,λ′′>−−−−−−→Ks

π(s′′) · λ′′

Since every backward rate is equal to the corresponding forward rate, the global balance
equation for s boils down to:
π(s) · (

∑
s
<a′,λ′>−−−−−→Ks′

λ′ +
∑

s
<a′′,λ′′>
999999999KKs′′

λ′′) =
∑

s′
<a′,λ′>
99999999KKs

π(s′) · λ′ +
∑

s′′
<a′′,λ′′>−−−−−−→Ks

π(s′′) · λ′′

BRIDGING CAUSAL REVERSIBILITY AND TIME REVERSIBILITY 15

Since the two summations related to s′ as well as the two summations related to s′′ have
the same number of summands, the equation above is satified when π(s) = π(s′) = π(s′′)
for each s′ reached by a forward transition of s and each s′′ reached by a backward transition
of s. All global balance equations are thus satisfied when π(s) = 1/n for all s ∈ S.

Theorem 4.14 (time reversibility 1). Let R ∈ P. If every backward rate is equal to the
corresponding forward rate, then MJRK is time reversible.

Proof. Let S be the set of states ofMJRK and n = |S|; to avoid trivial cases, suppose n ≥ 2.
From Lemma 4.12 it follows thatMJRK has a unique steady-state probability distribution π.
Now consider s, s′ ∈ S with s 6= s′ connected by transitions. The proof resembles the one of
Lemma 4.13, but focuses on partial balance equations rather than on global ones.
Due to Lemma 4.1, the partial balance equation for s and s′ reformulated in terms of
transitions looks as follows:

π(s) · (
∑

s
<a′,λ′>−−−−−→Ks′

λ′ +
∑

s
<a′′,λ′′>
999999999KKs′

λ′′) = π(s′) · (
∑

s′
<a′,λ′>
99999999KKs

λ′ +
∑

s′
<a′′,λ′′>−−−−−−→Ks

λ′′)

Since every backward rate is equal to the corresponding forward rate, the partial balance
equation for s and s′ boils down to:

π(s) · (
∑

s
<a′,λ′>−−−−−→Ks′

λ′ +
∑

s
<a′′,λ′′>
999999999KKs′

λ′′) = π(s′) · (
∑

s′
<a′,λ′>
99999999KKs

λ′ +
∑

s′
<a′′,λ′′>−−−−−−→Ks

λ′′)

Since π(s) = π(s′) = 1/n due to Lemma 4.13 and the two left summations on both sides
as well as the two right summations on both sides have the same number of summands,
the equation above is satified. The result then follows from the fact that s and s′ are two
arbitrary distinct states connected by transitions.

The result above holds under the assumption λ = λ for all λ ∈ R>0. This constraint
on rates can be relaxed if we exploit the structure of the graph representing MJRK. For
example, it is well known that CTMCs in the form of stationary birth-death processes are
time reversible [Kel79], where a birth-death process comprises a totally ordered set of states
such that every state different from the final one has a (birth) transition to the next state
and every state different from the initial one has a (death) transition to the previous state.
Time reversibility extends to tree-like birth-death processes [Kel79], where each such variant
comprises a partially ordered set of states such that every non-final state may have several
birth transitions and every non-initial state has one death transition to its only parent state.

Lemma 4.15. Let R ∈ P. If parallel composition does not occur in R, then MJRK is a
tree-like birth-death process.

Proof. The fragment of graph representing MJRK that includes only forward transitions,
i.e., generated by applying only the rules in the left part of Table 2, is a tree in the absence
of parallel composition inside R. In fact, observing that if R is 0 then the graph contains a
single state with no transitions, in any state other than 0 there are two options:

• The application of rule Act1 or Act2 yields a new transition towards a new state due to
the generation of a fresh communication key that is stored within the new state.
• The application of rule Cho yields a single new transition or two new transitions –

depending on whether a single subprocess is standard or both subprocesses are standard –
each of which reaches a new state due to the generation of a fresh communication key
that is stored within the new state and the fact that the dead context – i.e., the standard
subprocess that stays idle – is stored within the new state too (this is important in order

16 M. BERNARDO AND C.A. MEZZINA

for the two new states to be different when the two subprocesses are standard and identical,
see the bottom part of Figure 2).

For each forward transition generated by one of the three forward rules mentioned
above, the corresponding backward rule generates the corresponding backward transition.
Therefore MJRK is a tree-like birth-death process.

Theorem 4.16 (time reversibility 2). Let R ∈ P. If parallel composition does not occur
in R, then MJRK is time reversible.

Proof. A straightforward consequence of Lemma 4.15 above and Lemma 1.5 of [Kel79]
establishing the time reversibility of any stationary tree-like birth-death process. Note that
unlike MJRK the graph mentioned in the latter lemma is not directed, i.e., each of its edges
can be traversed in both directions, but this is the same as having two directed edges in
opposite directions like a forward transition and the corresponding backward transition.

The time reversibility of CTMC-based compositional models of concurrent systems
has already been investigated in [Har03]. That work examines conditions relying on the
conservation of total exit rates of states in addition to the conservation of products of rates
around cycles [Kel79] (see Section 3), which support the hierarchical and compositional
reversal of stochastic process algebra terms. These conditions also lead to the efficient
calculation of steady-state probability distributions in a product form typical of queueing
theory [Kle75], thus avoiding the need of solving the global balance equations of the entire
system. More recently, in [MR15] similar conditions have been employed to characterize the
class of ρ-reversible stochastic automata, which allow for state permutations. Under certain
constraints, the joint steady-state probability distribution of the composition of two such
automata is the product of the steady-state probability distributions of the two automata.

The main difference between our approach to time reversibility and the aforementioned
ones is twofold. Firstly, our approach is part of a more general framework in which also
causal reversibility is addressed. Secondly, our approach is inspired by the idea of [PU07]
of developing a formalism in which it is possible to express models whose reversibility is
guaranteed by construction, instead of building a posteriori the time-reversed version of a
certain model like in [Har03] or verifying a posteriori whether a given model is time reversible
or not like in [MR15].

It is worth noting that these methodological differences do not prevent us from importing
in our setting some results from [Har03, MR15], although a few preliminary observations
about notational differences are necessary. Both [Har03] and [MR15] make a distinction
between active actions, each of which is given a rate, and passive actions, each of which
is given a weight, with the constraint that, in case of synchronization, the rate of the
active action is multiplied by the weight of the corresponding passive action. In RMPC
there is no such distinction, however the same operation, i.e., multiplication, is applied
to the rates of two synchronizing actions. A passive action can thus be rendered as an
action with rate 1, while a set of alternative passive actions can be rendered as a set of
actions whose rates sum up to 1. Moreover, in [MR15] synchronization is enforced between
any active-passive pair of identical actions, whereas in RMPC the parallel composition
operator is enriched with an explicit synchronization set L, which yields as a special case
the aforementioned synchronization discipline when L is equal to the set A of all the actions.
We can therefore conclude that our parallel composition operator is a generalization of
those used in [Har03, MR15], hence the recalled notational differences do not hamper the
transferral of results.

BRIDGING CAUSAL REVERSIBILITY AND TIME REVERSIBILITY 17

In [Har03] the compositionality of a CTMC-based stochastic process calculus is exploited
to prove RCAT – Reversed Compound Agent Theorem, which establishes the conditions
under which the time-reversed version of the cooperation of two processes is equal to the
cooperation of the time-reversed versions of those two processes. The application of RCAT
leads to product-form solution results from stochastic process algebraic models, including a
new different proof of Jackson’s theorem for product-form queueing networks [Jac63].

In [MR15] the notion of ρ-reversibility is introduced for stochastic automata, which are
essentially action-labeled CTMCs. Function ρ is a state permutation that ensures (i) for
each action the equality of the total exit rate of any state s and ρ(s) and (ii) the conservation
of action-related rate products across cycles when considering states in the forward direction
and their ρ-counterparts in the backward direction. For any ergodic ρ-reversible automaton,
it turns out that π(s) = π(ρ(s)) for every state s. Moreover, the synchronization inspired
by [Pla85] of two ρ-reversible stochastic automata is still ρ-reversible and, in case of ergodicity,
under certain conditions the steady-state probability of any compound state is the product
of the steady-state probabilities of the two constituent states.

Our time reversibility result for RMPC can be rephrased in the setting of [MR15] in
terms of ρ-reversibility with ρ being the identity function over states. As a consequence,
the following two results stem from Theorems 4.14 and 4.16 of the present paper and,
respectively, Theorems 2 and 3 of [MR15].

Corollary 4.17 (time reversibility closure). Let R1, R2 ∈ P and L ⊆ A. Under the
assumptions of Theorem 4.14 or Theorem 4.16, MJR1 ‖L R2K is time reversible too.

Corollary 4.18 (product form). Let R1, R2 ∈ P and L ⊆ A. Under the assumptions of
Theorem 4.14 or Theorem 4.16, if the set of states S of MJR1 ‖L R2K is equal to SR1 × SR2

where SRk is the set of states of MJRkK for k ∈ {1, 2}, then π(s1, s2) = πR1(s1) · πR2(s2)
for all (s1, s2) ∈ SR1 × SR2.

The product-form result above avoids the calculation of the global balance equations
overMJR1 ‖L R2K, as π(s1, s2) can simply be obtained by multiplying πR1(s1) with πR2(s2).
However, the condition S = SR1×SR2 requires to check that every state in the full Cartesian
product is reachable from R1 ‖L R2. This means that no compound state is such that its
constituent states enable some action but none of these enabled actions can be executed
due to the constraints imposed by the synchronization set L. The condition S = SR1 × SR2

implies that MJR1 ‖L R2K is ergodic over the full Cartesian product of the two original
state spaces, which is the condition used in [MR15]. Although implicit in the statement of
the corollary, the time reversibility of MJR1 ‖L R2K is essential for the product-form result.

We conclude by observing that an important consequence of time reversibility for
processes without parallel composition, i.e., the result of Theorem 4.16, and time reversibility
closure with respect to parallel composition, i.e., the result of Corollary 4.17, is the fact
that time reversibility extends to the entire sublanguage P′ of RMPC in which parallel
composition cannot occur within the scope of action prefix or choice. This is quite useful
because systems are typically modeled as the parallel composition of a number of sequential
processes, i.e., processes in which only action prefix and choice can occur.

Corollary 4.19 (time reversibility 3). Let R ∈ P′. Then MJRK is time reversible.

18 M. BERNARDO AND C.A. MEZZINA

5. Forward and Backward Markovian Bisimilarity

In this section, we equip RMPC with a notion of equivalence capable of identifying syntacti-
cally different processes that expose the same observable behavior in terms of executable
actions and their rates. A well known behavioral equivalence for forward-only stochastic
process calculi is Markovian bisimilarity [Hil96]. It equates systems that stepwise mimic
each other’s functional and performance behavior and enjoys nice properties in terms of
compositional reasoning as well as equational and logical characterizations [Ber07]. We show
below how it can be adapted to our reversible setting.

In the following, we work at the state space level, rather than at the linguistic level,
because we address different variants of Markovian bisimilarity that are defined not only over
states, with which process terms are naturally associated, but also over computations, which
are more easily expressed through states and transitions. We thus consider an action-labeled

CTMC (S,A×R, 7−→), where A is a countable set of actions while R = R>0 is a set of rates,
which in the case of RMPC is obtained by collecting transitions into bundles as formalized
in Definition 4.11. Moreover, we use symbols {| and |} as multiset parentheses.

Definition 5.1 (Markovian bisimilarity). Two states s1, s2 ∈ S are Markovian bisimilar,
written s1 ∼MB s2, iff there exists a Markovian bisimulation B such that (s1, s2) ∈ B.
An equivalence relation B over the set of states S is a Markovian bisimulation iff, whenever
(s1, s2) ∈ B, then for all actions a ∈ A and equivalence classes C ∈ S/B:

rate(s1, a, C) = rate(s2, a, C)

where rate(s, a, C) =
∑
{|λ ∈ R | ∃s′ ∈ C. s <a,λ>7−−−−→ s′ |}.

Following [PU07], we may adapt Markovian bisimilarity to our reversible calculus by
means of two conditions like the one in the definition above, with the former referring
to forward transitions and the latter referring to backward transitions. By so doing, we
would end up with a very restrictive equivalence, as for instance <a, λ>.0 ‖∅ <b, µ>.0
and <a, λ>.<b, µ>.0 + <b, µ>.<a, λ>.0 would be told apart. As shown in Figure 3, in
the former process from <a, λ>[i].0 ‖∅ <b, µ>[j].0 both a backward a-transition and a
backward b-transition are enabled, whilst in the latter process from <a, λ>[i].<b, µ>[j].0 +
<b, µ>.<a, λ>.0 only a backward b-transition is enabled as well as from <a, λ>.<b, µ>.0 +
<b, µ>[i].<a, λ>[j].0 only a backward a-transition is enabled. In other words, the so-called
expansion law [Mil89], which transforms a parallel composition into a choice among all
of its possible interleaved computations, would not hold, because the two aforementioned
transitions in the former process are concurrent and hence when going backward there is no
obligation to follow the path traversed in the forward direction, whereas this is not the case
with the latter process.

As recognized in [DMV90], in order to set up a more useful equivalence in a reversible
setting, it is necessary to enforce not only causality but also history preservation. This means
that, when going backward, a process can only move along the path representing the history
that brought the process to the current state. For example, if <a, λ>.0 ‖∅ <b, µ>.0 performs
a before b, then a and b can be undone in any order from <a, λ>[i].0 ‖∅ <b, µ>[j].0 because
there is no causality constraint between the two actions, but history is preserved only if b is
undone before a. To accomplish this, bisimilarity has to be defined over computations, not
over states, and the notion of transition has to be suitably revised. We start by adapting
the notation of the nondeterministic setting of [DMV90] to our stochastic setting.

BRIDGING CAUSAL REVERSIBILITY AND TIME REVERSIBILITY 19

b,µ
_

λa,
_λa, b,µ

b,µ λa,

λa,
_

b,µ
_

λa, 0_ O/|| b,µ 0_>. < >.<

λa, 0_ O/|| b,µ 0_i>[]. < j>[].<

O/|| b,µ 0_< j>[]....λa, 0_ O/||i>[].< ...

b,µ b,µ
_

λa,
_

b,µ
_λa, b,µ

λa,
_

λa,

λa, b,µ 0_+ ...< i>[].< >.

λa, b,µ 0_+ ...< i>[].< >[].j

0_b,µ λa,λa, b,µ 0_+ >.< >.<>.< >.<

b,µ λa, 0_... +< >[].<i >[].j

b,µ λa, 0_... +< >[].< >.i

Figure 3: MJ<a, λ>.0 ‖∅ <b, µ>.0K and MJ<a, λ>.<b, µ>.0 +<b, µ>.<a, λ>.0K

Definition 5.2 (path). A sequence ξ = (s0, <a1, λ1>, s1) . . . (sn−1, <an, λn>, sn) ∈ 7−→∗
is called a path of length n from state s0. We let first(ξ) = s0 and last(ξ) = sn;
the empty path is indicated with ε. We denote by path(s) the set of paths from state s.

Definition 5.3 (run). A pair ρ = (s, ξ) is called a run from state s iff ξ ∈ path(s), in
which case we let path(ρ) = ξ, first(ρ) = first(ξ), last(ρ) = last(ξ), with first(ρ) =
last(ρ) = s when ξ = ε. We denote by run(s) the set of runs from state s. Given
ρ = (s, ξ) ∈ run(s) and ρ′ = (s′, ξ′) ∈ run(s′), their composition ρρ′ = (s, ξξ′) ∈ run(s) is

defined iff last(ρ) = first(ρ′). We write ρ
<a,λ>7−−−−→ ρ′ iff there exists ρ′′ = (s, (s,<a, λ>, s′))

with s = last(ρ) such that ρ′ = ρρ′′; note that first(ρ) = first(ρ′).

In the considered action-labeled CTMC (S,A × R, 7−→), we work with the set U of

runs in lieu of S. Furthermore, we view the transition relation 7−→ as being symmetric
with respect to source and target states, so that every transition can be traversed in both
directions. In the setting of RMPC, this amounts to considering only the forward transition
relation thanks to Lemma 4.1. Given a run ρ, an action a, and a bisimulation equivalence
class C, based on [DMV90] we distinguish between the total rate of outgoing and incoming
run transitions, respectively, when moving between ρ and C via a. Forward and backward
Markovian bisimilarity thus relies on checking both outgoing and incoming rate equalities.

Definition 5.4 (forward and backward Markovian bisimilarity). Two states s1, s2 ∈ S are
forward and backward Markovian bisimilar, written s1 ∼FBMB s2, iff there exists a forward
and backward Markovian bisimulation B such that ((s1, ε), (s2, ε)) ∈ B. An equivalence
relation B over the set of runs U is a forward and backward Markovian bisimulation iff,
whenever (ρ1, ρ2) ∈ B, then for all actions a ∈ A and equivalence classes C ∈ U/B:

rateO(ρ1, a, C) = rateO(ρ2, a, C)
rateI(ρ1, a, C) = rateI(ρ2, a, C)

where:

rateO(ρ, a, C) =
∑
{|λ ∈ R | ∃ρ′ ∈ C. ρ <a,λ>7−−−−→ ρ′ |}

rateI(ρ, a, C) =
∑
{|λ ∈ R | ∃ρ′ ∈ C. ρ′ <a,λ>7−−−−→ ρ |}

Theorem 5.5. Let s1, s2 ∈ S. Then s1 ∼FBMB s2 =⇒ s1 ∼MB s2.

Proof. Suppose that s1 ∼FBMB s2 and let B be a forward and backward Markovian bisimulation
on U such that ((s1, ε), (s2, ε)) ∈ B. We show that B′ = {(last(ρ1), last(ρ2)) | (ρ1, ρ2) ∈ B}
is a Markovian bisimulation on S, from which s1 ∼MB s2 will follow.
Consider (last(ρ1), last(ρ2)) ∈ B′. By definition of B′, we have that (ρ1, ρ2) ∈ B. Since B is

20 M. BERNARDO AND C.A. MEZZINA

a forward and backward Markovian bisimulation, for all a ∈ A and C ∈ U/B it holds in partic-

ular that rateO(ρ1, a, C) = rateO(ρ2, a, C). Since ρk
<a,λ>7−−−−→ ρ′k iff last(ρk)

<a,λ>7−−−−→ last(ρ′k)
for k ∈ {1, 2} and – provided that function last is lifted from runs to sets of runs – any equiv-
alence class C ′ ∈ S/B′ is of the form [last(ρ)]B′ = {last(ρ′) ∈ S | (last(ρ), last(ρ′)) ∈ B′}
= last({ρ′ ∈ U | (ρ, ρ′) ∈ B}) = last([ρ]B), i.e., C ′ = last(C) for some equivalence
class C ∈ U/B, it follows that for all a ∈ A and C ′ ∈ S/B such that C ′ = last(C)
for C ∈ U/B it holds that rate(last(ρ1), a, C

′) = rateO(ρ1, a, C) = rateO(ρ2, a, C) =
rate(last(ρ2), a, C

′).

The behavioral equivalence ∼FBMB is strictly finer than ∼MB. Indeed, it turns out to be

exceedingly discriminating. For example, a CTMC with the only two transitions s1
<a,λ>7−−−−→ s′1

and s1
<a,µ>7−−−−→ s′′1 would be distinguished from a CTMC having only transition s2

<a,λ+µ>7−−−−−−→ s′2.

Observing that in terms of runs the considered transitions are reformulated as ρ1
<a,λ>7−−−−→ ρ′1,

ρ1
<a,µ>7−−−−→ ρ′′1, and ρ2

<a,λ+µ>7−−−−−−→ ρ′2 where ρ1 = (s1, ε) and ρ2 = (s2, ε), the reflexive, symmetric,
and transitive closure of the relation {(ρ1, ρ2), (ρ′1, ρ

′
2), (ρ′′1, ρ

′
2)} would work well when moving

forward, as for instance rateO(ρ1, a, C) = λ + µ = rateO(ρ2, a, C) for C = {ρ′1, ρ′′1, ρ′2},
whereas this would not be the case when moving backward, as for instance rateI(ρ

′
1, a, C) = λ,

rateI(ρ
′′
1, a, C) = µ, and rateI(ρ

′
2, a, C) = λ+ µ for C = {ρ1, ρ2}.

This example suggests that rate-based quantitative aspects should be neglected when
going backward. Indeed, summing up rates when considering transitions departing from the
same state is consistent with the fact that the sojourn time in that state is exponentially
distributed with rate given by the sum of the rates of the outgoing transitions. Operationally,
as mentioned at the end of Section 4.2, this can be interpreted as if there were a race
among those transitions to decide which one will be executed, with each transition having a
winning probability proportional to its rate. This race interpretation no longer applies in the
backward direction, as we sum up rates of transitions that may depart from different states.
We therefore consider a variant of ∼FBMB that abstracts from time when going backward. It
is worth noting that, if it abstracted from time also when going forward, then we would
precisely obtain the strong back and forth bisimilarity of [DMV90].

Definition 5.6 (forward and time-abstract backward Markovian bisimilarity). Two states
s1, s2 ∈ S are forward and time-abstract backward Markovian bisimilar, written s1 ∼FTABMB s2,
iff there exists a forward and time-abstract backward Markovian bisimulation B such that
((s1, ε), (s2, ε)) ∈ B. An equivalence relation B over the set of runs U is a forward and
time-abstract backward Markovian bisimulation iff, whenever (ρ1, ρ2) ∈ B, then for all
actions a ∈ A and equivalence classes C ∈ U/B:

rateO(ρ1, a, C) = rateO(ρ2, a, C)
transI(ρ1, a, C) = transI(ρ2, a, C)

where transI(ρ, a, C) = 1 if there exist ρ′ ∈ C and λ ∈ R such that ρ′
<a,λ>7−−−−→ ρ, otherwise

transI(ρ, a, C) = 0.

We conclude by showing that ∼FTABMB – which is defined on runs, compares for any
action both outgoing total rates and the existence of incoming transitions, and preserves
history when going backward even in the presence of concurrent transitions – coincides with
the standard ∼MB – which is defined on states and compares for any action only outgoing
total rates – thus generalizing the first result of [DMV90] to our stochastic setting. As a
consequence, when lifted to P, the former equivalence inherits the compositionality properties

BRIDGING CAUSAL REVERSIBILITY AND TIME REVERSIBILITY 21

and the equational and logical characterizations of the latter [Ber07], including in particular
the expansion law as well as the stochastic variant of idempotency according to which
<a, λ>.P +<a, µ>.P is identified with <a, λ+ µ>.P .

Theorem 5.7. Let s1, s2 ∈ S. Then s1 ∼FTABMB s2 ⇐⇒ s1 ∼MB s2.

Proof. The proof is divided into two parts:

• The proof of s1 ∼FTABMB s2 =⇒ s1 ∼MB s2 is identical to the proof of Theorem 5.5 as only
outgoing total rates are considered.
• Suppose that s1 ∼MB s2. Let ct be the mapping that associates with each path ξ its

colored trace, i.e., the path obtained from ξ by replacing each state with its Markovian
bisimulation equivalence class:
ct((s0, <a1, λ1>, s1)(s1, <a2, λ2>, s2) . . . (sn−1, <an, λn>, sn)) =

([s0]∼MB , <a1, λ1>, [s1]∼MB)([s1]∼MB , <a2, λ2>, [s2]∼MB) . . . ([sn−1]∼MB , <an, λn>, [sn]∼MB)
Let B = {(ρ1, ρ2) | ρ1 ∈ Run(s1), ρ2 ∈ Run(s2), ct(path(ρ1)) = ct(path(ρ2))}, which con-
tains in particular ((s1, ε), (s2, ε)). We show that its reflexive, symmetric, and transitive
closure B′ is a forward and time-abstract backward Markovian bisimulation.
Given (ρ1, ρ2) ∈ B, i.e., ρ1 ∈ Run(s1) and ρ2 ∈ Run(s2) such that ct(path(ρ1)) =
ct(path(ρ2)), with l being the length of path(ρ1) and path(ρ2), let us examine the
forward and backward directions respectively:
– By virtue of ct(path(ρ1)) = ct(path(ρ2)), it holds in particular that last(ρ1) ∼MB

last(ρ2), hence for all a ∈ A and C ∈ S/∼MB we have that rate(last(ρ1), a, C) =

rate(last(ρ2), a, C). Since last(ρk)
<a,λ>7−−−−→ last(ρ′k) iff ρk

<a,λ>7−−−−→ ρ′k for k ∈ {1, 2},
with ρ′k still belonging to Run(sk), and any equivalence class C ′ ∈ (Run(s1)∪Run(s2))/B′
is made of runs with paths of the same length that traverse the same sequence of
Markovian bisimulation equivalence classes of states and perform the same sequence of
exponentially timed actions, it follows that for all a ∈ A and C ′ ∈ (Run(s1)∪Run(s2))/B′:
∗ if the length of all the runs of C ′ is less than l + 1, then it trivially holds that
rateO(ρ1, a, C

′) = 0 = rateO(ρ2, a, C
′);

∗ otherwise, assuming that the states reached after l+ 1 transitions by all of the runs of
C ′ belong to some C ∈ S/∼MB, it holds that rateO(ρ1, a, C

′) = rate(last(ρ1), a, C) =
rate(last(ρ2), a, C) = rateO(ρ2, a, C

′).
– Since ct(path(ρ1)) = ct(path(ρ2)), it cannot be the case that path(ρ1) = ε and
path(ρ2) 6= ε, or vice versa. If path(ρ1) = path(ρ2) = ε, then for all a ∈ A and C ′ ∈
(Run(s1) ∪ Run(s2))/B′ it trivially holds that transI(ρ1, a, C

′) = 0 = transI(ρ2, a, C
′).

Suppose that path(ρ1) 6= ε 6= path(ρ2), with ρk = ρ′kρ
′′
k and ρ′′k = (s′k, (s

′
k, <a, λ>, s

′′
k)),

so that s′k
<a,λ>7−−−−→ s′′k is the last transition in path(ρk) and hence ρ′k

<a,λ>7−−−−→ ρk with
ρ′k still belonging to Run(sk), for k ∈ {1, 2}. From ct(path(ρ1)) = ct(path(ρ2)),
it follows in particular that s′1 ∼MB s

′
2. As a consequence, for all a ∈ A and C ′ ∈

(Run(s1) ∪ Run(s2))/B′:
∗ if the length of all runs of C ′ is less than l, then it trivially holds that transI(ρ1, a, C

′) =
0 = transI(ρ2, a, C

′);
∗ otherwise, assuming that the states reached after l − 1 transitions by all runs of C ′

belong to some C ∈ S/∼MB, it holds that transI(ρ1, a, C
′) = 1 = transI(ρ2, a, C

′)
or transI(ρ1, a, C

′) = 0 = transI(ρ2, a, C
′) depending on whether s′1, s

′
2 ∈ C or

s′1, s
′
2 /∈ C.

22 M. BERNARDO AND C.A. MEZZINA

6. Examples

In this section, we show how to use RMPC for modeling scenarios coming from two different
application domains: distributed systems and systems biology.

6.1. Consensus Protocols. The two-phase commit protocol (2PC) [Mul93] is a distributed
algorithm that coordinates all the processes participating in a distributed transaction on
whether to commit or abort the transaction itself. In the first phase, a process acting as the
coordinator initiates a voting procedure to decide whether the transaction can be committed
or not. All the participants in the distributed transaction receive a request to vote and then
reply either yes for commit or no for abort depending on their local state of the transaction.
In the second phase, the coordinator decides according to the received votes. If all the
participants have agreed to commit, then the coordinator decides to commit, otherwise to
abort, and notifies its decision to the participants.

In RMPC the considered distributed system can be modeled as the parallel composition
of the coordinator with m ≥ 2 processes participating in the transaction:

2PC = Coord ‖L P1 ‖L P2 ‖L . . . ‖L Pm
where L = {vt, cmt, abt} ∪ {yi, ni | i ∈ I}, for I = {1, 2, . . . ,m}, is the set of actions on
which the coordinator and all the participating processes have to synchronize.

The coordinator sends the request to vote at rate λ, then it waits for a yes/no answer from
each process and decides to commit only if all processes have replied yes; the commit/abort
decision is broadcast at rate δ. The coordinator has a component for each possible process,
with all these components being in parallel among them with empty synchronization set
(rendered as

∏
for brevity), and a component counting the positive answers regardless of

the order in which they arrive:
Coord = <vt, λ>.(Coord′ ‖Y Coord′′)
Coord′ =

∏
i∈I(<yi, 1>.0 +<ni, 1>.<abt, δ>.0)

Coord′′ = <y1, 1>.<y2, 1>.<ym, 1>.<cmt, δ>.0
where Y = {yi | i ∈ I} and the use of rate 1 in certain actions indicates the passivity of the
coordinator with respect to the synchronization on the corresponding activities.

After performing its part of transaction at rate µi, the i-th participating process waits
for a vote request. Then at rate ρi it answers yes with probability pi, in which case it waits
for the commit or abort decision of the coordinator, or no with probability qi = 1 − pi,
in which case it waits for the abort decision of the coordinator (let γi = ρi ·pi and ηi = ρi ·qi):

Pi = <ti, µi>.<vt, 1>.P
′
i

P′i = <yi, γi>.(<cmt, 1>.0 +<abt, 1>.0) +<ni, ηi>.<abt, 1>.0
Even if a process chooses to commit, the coordinator may decide to abort. On the other
hand, if a process chooses to abort, it is granted that the overall transaction will be aborted.

Assuming m = 2 for simplicity, a standard forward computation may start with the
following three transitions and reach a term that we call 2PC′:

2PC
<t1,µ1>[1]−−−−−−−→ <t2,µ2>[2]−−−−−−−→ <vt,λ>[3]−−−−−−→ <vt, λ>[3].(Coord′ ‖Y Coord′′) ‖L

<t1, µ1>[1].<vt, 1>[3].P′1 ‖L
<t2, µ2>[2].<vt, 1>[3].P′2

The two participating processes can now choose independently of each other. If process 1
votes yes while process 2 votes no, so that the coordinator decides to abort the transaction,
then the computation may continue as follows and reach a term that we call 2PC′′:

BRIDGING CAUSAL REVERSIBILITY AND TIME REVERSIBILITY 23

2PC′
<y1,γ1>[4]−−−−−−−→ <n2,η2>[5]−−−−−−−→ <abt,δ>[6]−−−−−−→

<vt, λ>[3].
((

(<y1, 1>[4].0 +<n1, 1>.<abt, δ>.0) ‖∅
(<y2, 1>.0 +<n2, 1>[5].<abt, δ>[6].0)

)
‖L

<y1, 1>[4].<y2, 1>.<cmt, δ>.0
)
‖L

<t1, µ1>[1].<vt, 1>[3].(<y1, γ1>[4].(<cmt, 1>.0 +<abt, 1>[6].0) +<n1, η1>.<abt, 1>.0) ‖L
<t2, µ2>[2].<vt, 1>[3].(<y1, γ1>.(<cmt, 1>.0 +<abt, 1>.0) +<n1, η1>[5].<abt, 1>[6].0)
where the coordinator and the two processes could only synchronize on the abort action.

At this point, the computation can only continue as a distributed rollback like the one
below, which takes place with no need to model it due to the reversibility of RMPC:

2PC′′
<abt,δ>[6]
99999999K

<n2,η2>[5]
99999999K

<y1,γ1>[4]
99999999K

<vt,λ>[3]
99999999K

<t2,µ2>[2]
99999999K

<t1,µ1>[1]
99999999K 2PC

Note that this is not the only possibility, as there are other backward computations causally
equivalent to the one above obtained by exchanging the order in which actions y1 and n2
on the one hand and actions t1 and t2 on the other hand are undone.

6.2. Protein Interaction Networks. Consider a prototypical model from systems bi-
ology where a molecule A has multiple binding sites to which a molecule B can bind
reversibly [CFG08]. Since the number of reactions grows exponentially with the number of
binding sites, as in [STTV22] we only examine the case of two binding sites. We denote by
A1,0 (resp., A0,1) a molecule A having a binding with a single molecule B on the first (resp.,
second) site and by A1,1 a molecule A in the case that the binding is with two molecules B,
one on each site. In the description of the reaction network of such molecules, the left column
below indicates the binding (i.e., forward) rules while the right column below indicates the
unbinding (i.e., backward) rules where, according to the standard biochemical notation,
A+ B stands for the presence of at least one molecule A and at least one molecule B as
well as κbi and κui represent the rates of the corresponding binding and unbinding rules:

A+B
κb1−−→ A1,0 A1,0

κu1−−→ A+B

A+B
κb2−−→ A0,1 A0,1

κu2−−→ A+B

A0,1 +B
κb1−−→ A1,1 A1,1

κu1−−→ A0,1 +B

A1,0 +B
κb2−−→ A1,1 A1,1

κu2−−→ A1,0 +B

In RMPC we can model the same network as follows:
Net = A ‖L (B ‖∅ B)
A = <b1, 1>.0 ‖∅ <b2, 1>.0
B = <b1, κb1>.0 +<b2, κb2>.0

where L = {b1, b2}. Note that there is no need to model the unbinding rules thanks to the
reversibility of RMPC. So for instance the forward computation:

Net
<b1,κb1>[1]
−−−−−−−→ (<b1, 1>[1].0 ‖∅ <b2, 1>.0) ‖L(

(<b1, κb1>[1].0 +<b2, κb2>.0) ‖∅ (<b1, κb1>.0 +<b2, κb2>.0)
)

<b2,κb2>[2]
−−−−−−−→ (<b1, 1>[1].0 ‖∅ <b2, 1>[2].0) ‖L(

(<b1, κb1>[1].0 +<b2, κb2>.0) ‖∅ (<b1, κb1>.0 +<b2, κb2>[2].0)
)

has the following two backward counterparts as the two unbindings can happen in any order
from the reached term that we call Net′:

Net′
<b2,κb2>[2]
999999999K

<b1,κb1>[1]
999999999K Net

Net′
<b1,κb1>[1]
999999999K

<b2,κb2>[2]
999999999K Net

24 M. BERNARDO AND C.A. MEZZINA

7. Conclusions

After Landauer [Lan61] and Bennett [Ben73], reversible computing has attracted a growing
attention mainly for the possibility of building energy efficient circuits. Nowadays, the
interest has spread into many application areas and hence reversible computing requires a
deep investigation of its theoretical foundations in computer science. There exist different
interpretations of reversibility in the literature. In this paper, we have addressed our research
quest towards bridging causal reversibility [DK04, DK05] – developed in concurrency theory
– and time reversibility [Kel79] – originated for the efficient analysis of stochastic processes.

We have accomplished this in the setting of process algebra because it constitutes a
common ground for concurrency theory and probability theory [LS91, Hil96]. Specifically,
we have introduced the stochastic process calculus RMPC, whose syntax and semantics
follow the approach of [PU07], with the aim of paving the way to concurrent system models
that are causally reversible and time reversible by construction. Causal reversibility has been
proved by exploiting the technique of [LPU20] after importing in the setting of [PU07] some
notions coming from [DK04]. Time reversibility has been shown under the constraint that
every backward rate is equal to the corresponding forward rate – regardless of the syntactical
structure of processes – or that parallel composition cannot occur within the scope of action
prefix or choice – regardless of the values of backward rates – and has allowed us to inherit
from [MR15] a product form result that enables the efficient calculation of performance
measures. Finally, as far as Markovian bisimilarity [Hil96] is concerned, we have developed
two forward and backward variants inspired by [DMV90], with the former preserving the
expansion law and the latter preserving a stochastic variant of the idempotency law too.

There are several lines of research that we plan to undergo, ranging from the application
of our results to case studies modeled with RMPC to the development of further theoretical
results possibly admitting the presence of irreversible actions. In particular, we would like to
investigate further conditions under which time reversibility is achieved. Our conjecture is
that time reversibility should hold for the entire set of RMPC reachable processes regardless
of their backward rates and syntactical structure. This would imply that the methodology
of [PU07] for reversing process calculi – which we have followed in this paper – is fully robust
not only with respect to causal reversibility, but also with respect to time reversibility.

Moreover, we wish to find a suitable way of adding recursion to the syntax of RMPC.
From the point of view of the ergodicity of the underlying CTMC, the absence of recursion
is not a problem because every forward transition has the corresponding backward transition
by construction. However, there might be situations in which recursion is necessary to
appropriately describe the behavior of a system. Because of the use of communication keys, a
simple process of the form P , <a, λ>.P , whose standard labeled transition system features
a single state with a self-looping transition, produces a sequence of infinitely many distinct
states even if we resort to transition bundles. Our claim is that the specific cooperation
operator that we have considered may require a mechanism lighter than communication
keys to keep track of past actions, which may avoid the generation of an infinite state space
in the presence of recursion.

Acknowledgment

We would like to thank Andrea Marin and Sabina Rossi for the valuable discussions on time
reversibility and the anonymous referees for their constructive comments and suggestions.

BRIDGING CAUSAL REVERSIBILITY AND TIME REVERSIBILITY 25

This research has been supported by the Italian MUR PRIN 2020 project NiRvAna –
Noninterference and Reversibility Analysis in Private Blockchains, the Italian INdAM
GNCS 2022 project Proprietà Qualitative e Quantitative di Sistemi Reversibili, and the
French ANR 2018 project DCore – Causal Debugging for Concurrent Systems.

References

[BAP+12] A. Bérut, A. Arakelyan, A. Petrosyan, S. Ciliberto, R. Dillenschneider, and E. Lutz. Experimental
verification of Landauer’s principle linking information and thermodynamics. Nature, 483:187–189,
2012.

[Ben73] C.H. Bennett. Logical reversibility of computations. IBM Journal of Research and Development,
17:525–532, 1973.

[Ben03] C.H. Bennett. Notes on Landauer’s principle, reversible computation, and Maxwell’s demon.
Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of
Modern Physics, 34:501–510, 2003.

[Ber07] M. Bernardo. A survey of Markovian behavioral equivalences. In Formal Methods for Performance
Evaluation, volume 4486 of LNCS, pages 180–219. Springer, 2007.

[BKMP18] K. Barylska, M. Koutny, L. Mikulski, and M. Piatkowski. Reversible computation vs. reversibility
in Petri nets. Science of Computer Programming, 151:48–60, 2018.

[BM20] M. Bernardo and C.A. Mezzina. Towards bridging time and causal reversibility. In Proc. of
FORTE 2020, volume 12136 of LNCS, pages 22–38. Springer, 2020.

[BV93] J.C.M. Baeten and C. Verhoef. A congruence theorem for structured operational semantics with
predicates. In Proc. of CONCUR 1993, volume 715 of LNCS, pages 477–492. Springer, 1993.

[CFG08] H. Conzelmann, D. Fey, and E.D. Gilles. Exact model reduction of combinatorial reaction
networks. BMC Systems Biology, 2(78):1–25, 2008.

[CKV13] I. Cristescu, J. Krivine, and D. Varacca. A compositional semantics for the reversible π-calculus.
In Proc. of LICS 2013, pages 388–397. IEEE-CS Press, 2013.

[DK04] V. Danos and J. Krivine. Reversible communicating systems. In Proc. of CONCUR 2004, volume
3170 of LNCS, pages 292–307. Springer, 2004.

[DK05] V. Danos and J. Krivine. Transactions in RCCS. In Proc. of CONCUR 2005, volume 3653 of
LNCS, pages 398–412. Springer, 2005.

[dKH10] E. de Vries, V. Koutavas, and M. Hennessy. Communicating transactions. In Proc. of CON-
CUR 2010, volume 6269 of LNCS, pages 569–583. Springer, 2010.

[DMV90] R. De Nicola, U. Montanari, and F.W. Vaandrager. Back and forth bisimulations. In Proc. of
CONCUR 1990, volume 458 of LNCS, pages 152–165. Springer, 1990.

[Fra18] M.P. Frank. Physical foundations of Landauer’s principle. In Proc. of RC 2018, volume 11106 of
LNCS, pages 3–33. Springer, 2018.

[GLM14] E. Giachino, I. Lanese, and C.A. Mezzina. Causal-consistent reversible debugging. In Proc. of
FASE 2014, volume 8411 of LNCS, pages 370–384. Springer, 2014.

[Har03] P.G. Harrison. Turning back time in Markovian process algebra. Theoretical Computer Science,
290:1947–1986, 2003.

[HGCH21] L. Hay-Schmidt, R. Glück, M.H. Cservenka, and T. Haulund. Towards a unified language
architecture for reversible object-oriented programming. In Proc. of RC 2021, volume 12805 of
LNCS, pages 96–106. Springer, 2021.

[Hil94] J. Hillston. The nature of synchronisation. In Proc. of PAPM 1994, pages 51–70. University of
Erlangen, Technical Report 27-4, 1994.

[Hil96] J. Hillston. A Compositional Approach to Performance Modelling. Cambridge University Press,
1996.

[Hoa85] C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.
[Jac63] J.-R. Jackson. Jobshop-like queueing systems. Management Science, 10:131–142, 1963.
[Kel79] F.P. Kelly. Reversibility and Stochastic Networks. John Wiley & Sons, 1979.
[Kle75] L. Kleinrock. Queueing Systems. John Wiley & Sons, 1975.
[KS60] J.G. Kemeny and J.L. Snell. Finite Markov Chains. Van Nostrand, 1960.

26 M. BERNARDO AND C.A. MEZZINA

[Lan61] R. Landauer. Irreversibility and heat generated in the computing process. IBM Journal of
Research and Development, 5:183–191, 1961.

[Lee86] G.B. Leeman Jr. A formal approach to undo operations in programming languages. ACM
Transactions on Programming Languages and Systems, 8:50–87, 1986.

[LES18] J.S. Laursen, L.-P. Ellekilde, and U.P. Schultz. Modelling reversible execution of robotic assembly.
Robotica, 36:625–654, 2018.

[Lév76] J.-J. Lévy. An algebraic interpretation of the λβK-calculus; and an application of a labelled
λ-calculus. Theoretical Computer Science, 2:97–114, 1976.

[LLM+13] I. Lanese, M. Lienhardt, C.A. Mezzina, A. Schmitt, and J.-B. Stefani. Concurrent flexible
reversibility. In Proc. of ESOP 2013, volume 7792 of LNCS, pages 370–390. Springer, 2013.

[LLMS12] M. Lienhardt, I. Lanese, C.A. Mezzina, and J.-B. Stefani. A reversible abstract machine and
its space overhead. In Proc. of FMOODS/FORTE 2012, volume 7273 of LNCS, pages 1–17.
Springer, 2012.

[LM20] I. Lanese and D. Medić. A general approach to derive uncontrolled reversible semantics. In Proc.
of CONCUR 2020, volume 171 of LIPIcs, pages 33:1–33:24. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2020.

[LMM21] I. Lanese, D. Medić, and C.A. Mezzina. Static versus dynamic reversibility in CCS. Acta
Informatica, 58:1–34, 2021.

[LMS10] I. Lanese, C.A. Mezzina, and J.-B. Stefani. Reversing higher-order π. In Proc. of CONCUR 2010,
volume 6269 of LNCS, pages 478–493. Springer, 2010.

[LNPV18a] I. Lanese, N. Nishida, A. Palacios, and G. Vidal. CauDEr: A causal-consistent reversible debugger
for Erlang. In Proc. of FLOPS 2018, volume 10818 of LNCS, pages 247–263. Springer, 2018.

[LNPV18b] I. Lanese, N. Nishida, A. Palacios, and G. Vidal. A theory of reversibility for Erlang. Journal of
Logical and Algebraic Methods in Programming, 100:71–97, 2018.

[LPU20] I. Lanese, I.C.C. Phillips, and I. Ulidowski. An axiomatic approach to reversible computation. In
Proc. of FOSSACS 2020, volume 12077, pages 442–461. Springer, 2020.

[LS91] K.G. Larsen and A. Skou. Bisimulation through probabilistic testing. Information and Computa-
tion, 94:1–28, 1991.

[Mil89] R. Milner. Communication and Concurrency. Prentice Hall, 1989.
[MR15] A. Marin and S. Rossi. Quantitative analysis of concurrent reversible computations. In Proc. of

FORMATS 2015, volume 9268 of LNCS, pages 206–221. Springer, 2015.
[Mul93] S. Mullender. Distributed Systems. Addison-Wesley, 1993.
[Pin17] G.M. Pinna. Reversing steps in membrane systems computations. In Proc. of CMC 2017, volume

10725 of LNCS, pages 245–261. Springer, 2017.
[Pla85] B. Plateau. On the stochastic structure of parallelism and synchronization models for distributed

algorithms. In Proc. of SIGMETRICS 1985, pages 147–154. ACM Press, 1985.
[PP14] K.S. Perumalla and A.J. Park. Reverse computation for rollback-based fault tolerance in large

parallel systems - Evaluating the potential gains and systems effects. Cluster Computing, 17:303–
313, 2014.

[PU07] I.C.C. Phillips and I. Ulidowski. Reversing algebraic process calculi. Journal of Logic and
Algebraic Programming, 73:70–96, 2007.

[PUY13] I.C.C. Phillips, I. Ulidowski, and S. Yuen. A reversible process calculus and the modelling of the
ERK signalling pathway. In Proc. of RC 2012, volume 7581 of LNCS, pages 218–232. Springer,
2013.

[PV15] A. Palacios and G. Vidal. Concolic execution in functional programming by program instrumen-
tation. In Proc. of LOPSTR 2015, volume 9527 of LNCS, pages 277–292. Springer, 2015.

[SOJB18] M. Schordan, T. Oppelstrup, D.R. Jefferson, and P.D. Barnes Jr. Generation of reversible C++
code for optimistic parallel discrete event simulation. New Generation Computing, 36:257–280,
2018.

[SPP19] H. Siljak, K. Psara, and A. Philippou. Distributed antenna selection for massive MIMO using
reversing Petri nets. IEEE Wireless Communication Letters, 8:1427–1430, 2019.

[Ste94] W.J. Stewart. Introduction to the Numerical Solution of Markov Chains. Princeton University
Press, 1994.

BRIDGING CAUSAL REVERSIBILITY AND TIME REVERSIBILITY 27

[STTV22] G. Squillace, M. Tribastone, M. Tschaikowski, and A. Vandin. An algorithm for the formal
reduction of differential equations as over-approximations. In Proc. of QEST 2022, volume 13479
of LNCS, pages 173–191. Springer, 2022.

[VS18] M. Vassor and J.-B. Stefani. Checkpoint/rollback vs causally-consistent reversibility. In Proc. of
RC 2018, volume 11106 of LNCS, pages 286–303. Springer, 2018.

[YG07] T. Yokoyama and R. Glück. A reversible programming language and its invertible self-interpreter.
In Proc. of PEPM 2007, pages 144–153. ACM Press, 2007.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse 2,
10777 Berlin, Germany

	1. Introduction
	2. Causal Reversibility of Concurrent Systems
	3. Time Reversibility of Markov Chains
	4. Integrating Causal Reversibility and Time Reversibility
	4.1. Syntax of RMPC
	4.2. Semantics for RMPC
	4.3. Reachable Processes
	4.4. Preliminary Reversibility Properties
	4.5. Causal Reversibility of RMPC
	4.6. Time Reversibility of RMPC

	5. Forward and Backward Markovian Bisimilarity
	6. Examples
	6.1. Consensus Protocols
	6.2. Protein Interaction Networks

	7. Conclusions
	Acknowledgment
	References

