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Abstract

This thesis explores reversibility in process algebra along with behavioral-equivalence-based noninterference analysis
applied to reversible systems, thus presenting advances in theoretical foundations as well as practical applications.
Reversibility is the capability of a system of undoing its own actions starting from the last performed one, in such
a way that a consistent state is reached. This is not trivial to achieve in the case of concurrent systems, as the
last performed action may not be uniquely identifiable and causality should be respected while going backward.
Noninterference analysis supports the execution of secure computations in multi-level security systems by avoiding
information leakage. This guarantees that low-level agents cannot infer, from their observations or through covert
channels, the confidential behavior of high-level agents.

Building on previous works by De Nicola-Montanari-Vaandrager, Boudol-Castellani, Danos-Krivine, and
Phillips-Ulidowski, in the first part of the thesis we introduce a lighter process algebraic language for reversible
systems, which allows for both forward and backward computations without relying on communication keys or
stack-based memories to support reversibility. The focus is on bisimulation semantics in the strong and weak cases,
for which we define a forward version, which adheres to the interleaving style, as well as a reverse version and a
forward-reverse version, which are truly concurrent instead. Key contributions include congruence results, modal
logic characterizations, and sound and complete axiomatizations uniformly developed by following the proved trees
approach of Degano-Priami. We also establish connections with other behavioral equivalences. Over sequential pro-
cesses, reverse bisimilarities coincide with reverse trace equivalences while weak forward-reverse bisimilarity coin-
cides with Van Glabbeek-Weijland’s branching bisimilarity. Moreover, strong forward-reverse bisimilarity extended
with backward ready multisets equality corresponds to Bednarczyk’s hereditary history-preserving bisimilarity, thus
providing for the latter a simpler alternative characterization valid also in the presence of autoconcurrency.

In the second part, we address Goguen-Meseguer’s noninterference for reversible systems by relying on branch-
ing bisimilarity due to its connection with De Nicola-Montanari-Vaandrager’s weak back-and-forth bisimilarity.
We start by extending to the reversible setting Focardi-Gorrieri’s classical taxonomy based on Milner’s weak
bisimilarity over nondeterministic processes, then we highlight the preservation and compositionality features of
the resulting noninterference properties based on branching bisimilarity. We show the effectiveness in detecting
covert channels arising in a reversible framework through some examples about database management system
authentication. The same approach is subsequently applied to reversible processes exhibiting nondeterminism and
probabilities expressed in the strictly alternating model of Hansson-Jonsson. We recast all the noninterference
properties of interest by using weak and branching probabilistic bisimilarities, study their characteristics, establish
a new taxonomy along with its relationships with the nondeterministic one, and illustrate their adequacy on a prob-
abilistic smart contract lottery. Lastly, we consider reversible processes featuring nondeterminism and stochastic
time expressed as Hermanns’ interactive Markov chains. We define noninterference properties based on weak and
branching stochastic bisimilarities, study their characteristics, further extend the aforementioned taxonomies, and
provide some examples about obfuscation and permission mechanisms in database management systems.
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Chapter 1

Introduction

Reversibility [101, 17] and noninterference [82] are fundamental concepts in computer science. The former refers
to the capability of undoing computations in a causally consistent manner and brings with it the promise of lower
energy consumption. The latter deals with the absence of unintended information leaks that may take place along
covert channels, thus safeguarding the integrity of multi-level security systems.

Both concepts will be studied from a process algebraic perspective. The reason is that process calculi, which
include examples such as CCS [112], CSP [45], ACP [18], and LOTOS [38] along with the tool support provided
by CADP [72] and mCRL2 [84], constitute a foundational theory for concurrent and distributed systems. They
comprise observable and unobservable actions as well as operators like sequential, alternative, and parallel com-
positions whereby building complex system descriptions from simpler ones. A central role is played by behavioral
equivalences [20], which identify syntactically different process terms that exhibit the same observable behavior.

1.1 Reversible Computing
Reversibility is a well established concept in mathematics, physics, chemistry, and biology, where we find notions
such as inverse operations, formulas, laws, and reactions. Formally speaking, given a function from an input set
to an output set, reversibility has to do with the capability of each output to uniquely define the corresponding
input, i.e., the invertibility of the function. As a consequence, irreversibility can be described via non-invertible
functions; for example, conjunctions and disjunctions computed inside circuits are not reversible, while negation
is reversible. In computing, especially in the case of concurrent and distributed systems, a dual phenomenon is
nondeterminism, where it is the input that does not uniquely define the corresponding output.

Reversibility started to receive attention in computing only a few decades ago with the seminal work of Lan-
dauer [101] and Bennett [17]. It was observed that irreversible computations cause heat dissipation into circuits.
More precisely, Landauer’s principle states that any logically irreversible manipulation of information, such as the
erasure of bits or the merging of computation paths, must be accompanied by a corresponding entropy increase in
non-information-bearing degrees of freedom of the information processing apparatus or its environment. In partic-
ular, there is a minimal heat generation due to extra work for standardizing signals and making them independent
of their history, so that it becomes impossible to determine input signals from output ones. According to this
principle – which has been later verified in [36] and given a physical foundation in [70] – any logically reversible
computation, in which no information is lost, may be potentially carried out without releasing any heat. In other
words, the logical irreversibility of a function implies the physical irreversibility of computing that function and
the consequent dissipative effects.
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In addition to low energy consumption, reversible computing has applications in many areas nowadays, among
which we mention the following:

• Robotics [108], wireless communications [137], and fault-tolerant systems [54, 141, 102, 139], where reversibil-
ity supports backtrack or rollback operations when encountering obstacles or malfunctionings.

• Parallel discrete-event simulation [119, 132], where it is necessary to go back whenever an inconsistent state
is reached by the optimistic approach followed to speed up the simulation itself.

• Distributed algorithms [143, 31], where it is vital for individual participants to be able to escape from
situations in which resources cannot be acquired or consensus cannot be achieved.

• Program debugging [73, 105], where reversibility helps avoiding to reproduce situations in which errors
occurred, especially in the presence of concurrency as nondeterminism hinders reproducibility.

• Biochemical system modeling [125, 126], for a faithful representation of phenomena that are reversible
in nature.

A reversible computing system features two directions of computation. The forward one coincides with the
normal way of computing. The backward one undoes the effects of the forward one so as to return to a consistent
state, i.e., a state that can be encountered while moving in the forward direction. Returning to a consistent state
is not an easy task to accomplish in a concurrent system, because the undo procedure necessarily starts from the
last performed action and this may not be uniquely identifiable due to concurrency. The strategy to adopt should
respect causality, i.e., an action can be undone provided that all the actions it subsequently caused, if any, have
been undone beforehand [53].

1.1.1 Reversible Process Calculi

In this thesis we address reversibility in a process algebraic framework, for which we refer the reader to [112, 45,
18, 38, 20, 72, 84] and the references therein. Process calculi were not natively equipped with inverse operators,
hence do not directly support reversibility. To make them reversible, two approaches have been developed that
keep track of executed actions and are able to revert computations in a causally consistent manner. The two
approaches have been shown to be equivalent in [103] and the common properties they exploit to ensure causal
reversibility have been systematically classified in [107].

The dynamic approach of [53, 100] is represented by RCCS (R for reversible) and its mobile variants [104, 52].
RCCS is an extension of CCS [112] that uses stack-based memories attached to processes so as to store all executed
actions and all subprocesses discarded upon choices. A single transition relation is defined, while actions are divided
into forward and backward thereby resulting in forward and backward transitions respectively. This approach is
adequate in the case of very expressive calculi as well as programming languages.

The static approach of [121] proposes instead a general method to reverse calculi, of which CCSK (K for keys)
and its quantitative variants [32, 37, 33, 34] are a result. The idea is to make all process algebraic operators static
– in particular action prefix and choice – so that executed actions and discarded alternative subprocesses are kept
within the syntax. A forward transition relation and a backward transition relation are defined separately. Their
labels are actions extended with communication keys so as to know, upon generating backward transitions, which
actions synchronized with each other in the forward direction. This approach is very handy when dealing with
basic process calculi.
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Figure 1.1: Comparing forward, reverse, and forward-reverse bisimilarities: interleaving vs. true concurrency

1.1.2 Bisimulation Semantics for Reversible Processes

Syntactically different process terms that denote the same behavior can be identified by means of behavioral
equivalences. Among the many relations proposed in the literature [76], bisimilarity [117, 112] plays a central role.
It represents the capability of mimicking each other’s behavior stepwise. Given two bisimilar processes, whenever
either process can perform a certain action, then the other process can respond with the same action and after the
execution of that action the two processes are still related, so that this game can go ahead endlessly. In [121] the
definition of bisimilarity was adapted to reversible processes by matching forward transitions on the one hand and
backward transitions on the other hand. In a reversible setting with a single transition relation, it can be further
adapted by matching outgoing transitions when going forward and incoming transitions when going backward [57].

Let us denote by ∼FRB the resulting forward-reverse bisimilarity and by ∼FB and ∼RB its two components, i.e.,
forward bisimilarity – which considers only outgoing transitions – and reverse bisimilarity – which considers only
incoming transitions. Unlike ∼FB, which corresponds to classical bisimilarity [117, 112], as noted in [121] it turns
out that ∼FRB – and also ∼RB – does not satisfy the expansion law of parallel composition into a nondeterministic
choice among all possible action sequencings. In Figure 1.1 we depict two labeled transition systems respectively
representing a process that can perform action a in parallel with action b – i.e., a . 0 ‖∅ b . 0 using a CSP-like parallel
composition [45] – and a process that can perform either a followed by b or b followed by a – i.e., a . b . 0 + b . a . 0
with + denoting a CCS-like nondeterministic choice [112] – where a 6= b and † decorates executed actions.

The forward bisimulation game yields the usual interleaving setting by relating the two top states, the two left
intermediate states, the two right intermediate states, and the three bottom states. However, the three bottom
states are no longer related if we play the reverse bisimulation game, as the bottom state in the first system has two
differently labeled incoming transitions while either bottom state in the second system has only one. The remaining
pairs of states are related by reverse bisimilarity as they have identically labeled incoming transitions, whereas they
are told apart by forward-reverse bisimilarity due to the failure of the interplay between outgoing and incoming
transitions matching. More precisely, any two corresponding intermediate states are not forward-reverse bisimilar
because their identically labeled outgoing transitions reach the aforementioned inequivalent bottom states. In turn,
the two initial states are not forward-reverse bisimilar either, because their identically labeled outgoing transitions
reach the aforementioned inequivalent intermediate states. In summary, reverse and forward-reverse bisimilarities
are truly concurrent.
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For the sake of completeness, we recall that an interleaving view of parallel composition can be restored under
the forward-reverse bisimulation game by considering computation paths (instead of states) like in the back-
and-forth bisimilarity of [57]. Besides causality, this approach additionally preserves history, in the sense that
backward moves are constrained to take place along the path followed in the forward direction even in the presence
of concurrency. For instance, in the labeled transition system on the left, after performing a and then b it is not
possible to undo a before b – as the forward computation is a b and we have to backtrack – although there are no
causality constraints between actions a and b.

1.2 Noninterference in Multi-Level Security Systems

Noninterference was introduced by Goguen and Meseguer [82] to reason about the way in which illegitimate
information flows can occur in multi-level security systems due to covert channels from high-level agents to low-
level ones. Since the first definition, conceived for deterministic systems, a lot of work has been done leading to
a variety of extensions to nondeterministic or quantitative domains, in multiple frameworks going from language-
based security to concurrency theory; see, e.g., [67, 4, 110, 87, 140, 130, 15, 7, 5, 94] and the references therein.
Analogously, to verify information-flow security properties based on noninterference, several different approaches
have been proposed ranging from the application of type theory [144] and abstract interpretation [74] to control
flow and equivalence or model checking [68, 111, 6].

Noninterference guarantees that low-level agents cannot infer from their observations what high-level ones are
doing. Regardless of its specific definition, noninterference is closely tied to the notion of behavioral equivalence [76]
because, given a multi-level security system, the idea is to compare the system behavior with high-level actions
being prevented and the system behavior with the same actions being hidden. A natural framework in which to
study system behavior is given by process algebra. In this setting, weak bisimilarity [112] has been employed in [67]
to reason formally about covert channels and illegitimate information flows as well as to study a classification of
noninterference properties for nondeterministic systems.

1.2.1 Noninterference Properties

One of the first and most intuitive proposals of noninterference property has been Bisimulation-based Strong
Nondeterministic Non-Interference (BSNNI) [67]. Given a process P and denoting by AH the set of all possible
high-level actions, the property is satisfied if P with its high-level actions being prevented – modeled by P \ AH
where \ is a CCS-like restriction operator [112] – behaves the same as P with its high-level actions being hidden
– modeled by P /AH where / is a CSP-like hiding operator [45]. The equivalence between these two low-level
views of P means that a low-level agent cannot infer the high-level behavior of the system. For instance, in the
process l . 0 + h . l . 0, which can either perform the low-level action l alone or the high-level action h followed by
the low-level action l, a low-level agent that observes the execution of l cannot infer anything about the execution
of h. Indeed, (l . 0 + h . l . 0) \ {h} and (l . 0 + h . l . 0) / {h} are equivalent because the former process behaves as
l . 0, the latter process behaves as l . 0 + τ . l . 0 with τ representing the unobservable action, and l . 0 ≈ l . 0 + τ . l . 0
with ≈ being any τ -abstracting equivalence in the bisimulation style.

BSNNI is not powerful enough to detect information leakages that derive from the behavior of a high-level
agent interacting with the system. For instance, l . 0 + h1 . h2 . l . 0 is BSNNI for the same reason discussed above.
However, a high-level agent like h1 . 0 enables h1 and then disables h2, thus yielding the low-level view of the system
l . 0 + τ . 0, which is clearly distinguishable from l . 0 as only in the former a low-level agent may not observe l.
To avoid such a limitation, the most obvious solution consists of checking explicitly the interaction on any action
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set included in AH between the system and every possible high-level agent Q. The resulting property is called
Bisimulation-based Non-Deducibility on Composition (BNDC) [67].

To circumvent the verification problems related to the universal quantification over Q, several properties have
been proposed that are stronger than BNDC. They all express some persistency conditions, stating that the security
checks have to be extended to all the processes reachable from a secure one. Three of the most representative
ones among such properties are the variant of BSNNI that requires every reachable process to satisfy BSNNI itself,
called Strong BSNNI (SBSNNI) [67], the variant of BNDC that requires every reachable process to satisfy BNDC
itself, called Persistent BNDC (P_BNDC) [69], and Strong BNDC (SBNDC) [67], which requires the low-level
view of every reachable process to be the same before and after the execution of any high-level action, meaning
that the execution of high-level actions must be completely transparent to low-level agents.

1.2.2 Nondeterministic Systems

The foundational work on noninterference for nondeterministic systems in a process algebraic framework has been
carried out in [67] by employing weak bisimilarity [112]. The aforementioned properties have been studied in
terms of their preservation under weak bisimilarity – meaning that, whenever a process is secure under any of
such properties, then every other equivalent process is secure too according to the same property – as well as
their compositionality with respect to typical process algebraic operators – the composition of processes enjoying
the same persistent property possess that property too. Furthemore, a taxonomy of those properties has been
developed that explicitly highlights the inclusion relationships.

1.2.3 Probabilistic Systems

Noninterference in probabilistic systems extends classical security analysis by accounting for scenarios where ad-
versaries may exploit probabilistic behavior to infer confidential information. In this setting, security properties
must ensure that high-level actions do not affect the probability distribution of observable behaviors, thus pre-
venting probabilistic covert channels. Unlike purely nondeterministic models, probabilistic models require a more
fine-grained analysis to capture leakages.

In [7] a combination of the generative and reactive probabilistic models of [79] is considered. On top of it,
a probabilistic process calculus is built, where not only choice but also parallel composition and hiding are deco-
rated with a probabilistic parameter, so that the selection among all the actions executable by a process is fully
probabilistic. Using a behavioral equivalence akin to the weak probabilistic bisimilarity of [13], probabilistic vari-
ants of BSNNI, BNDC, and SBNDC are investigated with respect to preservation and compositionality features.
Their taxonomy is also developed and compared with the nondeterministic one of [67].

1.2.4 Stochastically Timed Systems

Noninterference in stochastically timed systems further extends information flow analysis as time-related informa-
tion can be exploited to infer high-level activities or alter the steady-state behavior of the system. Based on process
algebraic frameworks inspired by [93] – where every action is enriched with a positive real number expressing the
rate of the exponential distribution quantifying the duration of the action – together with stochastic variants of
weak bisimilarity, in [5] stochastic variants of BSNNI and SBNDC are considered whilst in [94] a stochastic variant
of P_BNDC is examined.
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1.3 Contributions and Organization of the Thesis
In this thesis we present a fully fledged process algebraic theory of reversible concurrent systems (Part I) and
we extend noninterference analysis to reversible multi-level security systems (Part II).

The first contribution of this thesis is a lighter approach to the definition of reversible process calculi, which
avoids both stack-based memories [53, 100] and communication keys with the related infinite branching [121].
Like in [121], we keep in the process syntax all the information needed to support reversibility, in particular
executed actions and discarded subprocesses. Similar to [53, 100], the operational semantics generates a la-
beled transition system based on a single transition relation. Following [57], we deem the transition relation
to be symmetric: each transition is viewed as an outgoing transition of its source state when going forward or
an incoming transition of its target state when going backward. Consequently, as in [42] we can mark all executed
actions with the same symbol, which we choose to be † (Chapter 2).

The second contribution is a systematic study of the properties of ∼FRB and its two components ∼FB and ∼RB,
of which we consider both the strong variants, treating all the actions in the same way, and the weak variants,
capable of abstracting from unobservable actions (Chapter 3). In particular:

• We compare the discriminating power of the considered bisimilarities and investigate whether they are con-
gruences with respect to the operators of our reversible process calculus to support compositional reasoning
(Chapter 4).

• We provide modal logic characterizations of the considered bisimilarities, which illustrate what properties are
preserved by each of them and offer diagnostic information to explain why two processes are not equivalent
(Chapter 5).

• We exhibit sound and complete axiomatizations of the considered bisimilarities, which elucidate the fun-
damental equational laws behind those equivalences. Since forward bisimilarities are interleaving whereas
reverse and forward-reverse bisimilarities are truly concurrent, to uniformly derive expansion laws of parallel
composition for all of them we use encodings based on the proved trees approach of [59] (Chapter 6).

• We show alternative characterizations of reverse and forward-reverse bisimilarities, so as to establish con-
nections with other behavioral equivalences such as trace equivalences [45], branching bisimilarity [80], and
hereditary history-preserving bisimilarity [16] (Chapter 7).

The third contribution is recognizing that, while weak bisimilarity is appropriate for the noninterfence analysis
of standard forward-only systems [67], to study information flow in reversible systems a more discriminating weak
equivalence is needed, as witnessed by a number of examples. One possibility is to resort to weak forward-reverse
bisimilarity. However, given its truly concurrent nature, it may turn out to be too discriminating. From this
viewpoint a better option is branching bisimilarity [80], because it coincides with weak forward-reverse bisimilarity
over sequential processes as well as weak back-and-forth bisimilarity [57], which works under the assumption that
backward moves are constrained to stick to the same path undertaken in the forward direction.

The fourth contribution is recasting the noninterference properties of [67, 69] by using branching bisimilarity,
investigating their preservation and compositionality features, and establishing a taxonomy for them to be compared
with the one based on weak bisimilarity. This is done not only in the case of nondeterministic systems (Chapter 8),
but also in the case of nondeterministic systems extended with probabilities according to the strictly alternating
model of [86] (Chapter 9) as well as in the case of nondeterministic systems extended with stochastic time based
on the interactive Markov chain model of [90] (Chapter 10).

The thesis concludes by summarizing our findings and indicating future work (Chapter 11).
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Chapter 2

A Lighter Calculus for Reversible Concurrent
Systems

In this chapter, whose contents have appeared in [27, 29], we present the syntax (Section 2.1) and the seman-
tics (Section 2.2) of a process algebraic language for expressing reversible concurrent systems in a compositional
way. Although inspired by CCSK [121] and RCCS [53, 100], our calculus is lighter because there are neither
communication keys nor stack-based memories.

2.1 Syntax of Reversible Concurrent Processes

In the representation of a system, we are used to describe only its future behavior. In order to support reversibility
according to [121], we have to enrich the syntax with information about the past, in particular which actions have
already been executed. Unlike [121], we do not need to add distinct communication keys to non-synchronizing
executed actions because the operational semantics will be based on a single transition relation like in [53, 100].
Similar to [42], it thus suffices to mark all executed actions with the same symbol, which we choose to be †.

Given a countable set A of actions including an unobservable action that we denote by τ , our language PRPC
(Proved Reversible Process Calculus) has the following syntax inspired by those of CCS [112] and CSP [45]:

P ::= 0 | a . P | a†. P | P xρq | P + P | P ‖L P
where a ∈ A, ρ : A → A such that ρ(τ) = τ , L ⊆ A \ {τ}, and:

• 0 is the terminated process.
• a . P is a process that can execute action a and whose forward continuation is P (unexecuted action prefix).
• a†. P is a process that executed action a and whose forward continuation is inside P , which can undo action a

after all executed actions within P have been undone (executed action prefix).
• P xρq is a process in which all actions executed by P are renamed according to function ρ – expressed for

short as a set of elements of the form a 7→ b with a 6= b – where τ is left unchanged whilst observable actions
can be modified and even hidden, i.e., turned into τ (renaming).

• P1 +P2 expresses a nondeterministic choice between P1 and P2 as far as neither has executed any action yet,
otherwise only the one that was selected in the past can move (past-sensitive alternative composition).

• P1 ‖L P2 expresses that P1 and P2 proceed independently of each other on actions in L = A \ L while they
have to synchronize on every action in L (parallel composition).
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We can characterize two important classes of processes via as many predicates defined by induction on the
syntactical structure of a process P . Firstly, we define initial processes, in which all actions are unexecuted and
hence no † appears:

initial(0)
initial(a . P ′) iff initial(P ′)

initial(P ′ xρq) iff initial(P ′)
initial(P1 + P2) iff initial(P1) ∧ initial(P2)
initial(P1 ‖L P2) iff initial(P1) ∧ initial(P2)

Secondly, we define well-formed processes, whose set we denote by P, in which both unexecuted and executed
actions can occur in certain circumstances:

wf(0)
wf(a . P ′) iff initial(P ′)
wf(a†. P ′) iff wf(P ′)
wf(P ′ xρq) iff wf(P ′)

wf(P1 + P2) iff (wf(P1) ∧ initial(P2)) ∨ (initial(P1) ∧ wf(P2))
wf(P1 ‖L P2) iff wf(P1) ∧ wf(P2)

Well formedness not only imposes that every unexecuted action is followed by an initial process, but also that
in every alternative composition at least one subprocess is initial. Multiple paths arise in the presence of both
alternative and parallel compositions. However, at each occurrence of the former, only the subprocess chosen for
execution can move. Although not selected, the other subprocess is kept as an initial subprocess within the overall
process in the same way as executed actions are kept inside the syntax [42, 121], so as to support reversibility. For
example, in a†. b . 0 + c . d . 0 the subprocess c . d . 0 cannot move as a was selected in the choice between a and c.

It is worth noting that:

• 0 is both initial and well-formed.

• Any initial process is well-formed too.

• P also contains processes that are not initial like, e.g., a†. b . 0, which can either do b or undo a.

• In P the relative positions of already executed actions and actions to be executed matter. More precisely,
an action of the former kind can never occur after one of the latter kind. For instance, a†. b . 0 ∈ P whereas
b . a†. 0 /∈ P.

• In P the subprocesses of an alternative composition can be both initial, but cannot be both non-initial.
As an example, a . 0 + b . 0 ∈ P whilst a†. 0 + b†. 0 /∈ P.

2.2 Proved Structural Operational Semantics

According to [121], dynamic operators such as action prefix and alternative composition have to be made static
in the operational semantic rules, so as to keep in the syntax all the information needed to support reversibility.
Unlike [121], we do not generate a forward transition relation and a backward one, but a single transition relation
that, like in [57], we deem to be symmetric in order to enforce the loop property [53]: every executed action can be
undone and every undone action can be redone. In our setting a backward transition from P ′ to P is subsumed by
the corresponding forward transition t from P to P ′. As we will see in Chapter 3, following [57] we view t as an
outgoing transition of P when going forward, while we view t as an incoming transition of P ′ when going backward.
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(Actf)
initial(P )

a . P
a−→ a†. P

(Actp)
P

θ−→ P ′

a†. P
.aθ−−→ a†. P ′

(Ren)
P

θ−→ P ′

P xρq
xqρθ−−→ P ′ xρq

(Chol)
P1

θ−→ P ′1 initial(P2)

P1 + P2
.+θ−→ P ′1 + P2

(Chor)
P2

θ−→ P ′2 initial(P1)

P1 + P2
+. θ−→ P1 + P ′2

(Parl)
P1

θ−→ P ′1 act(θ) /∈ L

P1 ‖L P2
ULθ−−→ P ′1 ‖L P2

(Parr)
P2

θ−→ P ′2 act(θ) /∈ L

P1 ‖L P2
TLθ−−→ P1 ‖L P ′2

(Syn)
P1

θ1−→ P ′1 P2
θ2−→ P ′2 act(θ1) = act(θ2) ∈ L

P1 ‖L P2
〈θ1,θ2〉L−−−−−→ P ′1 ‖L P ′2

Table 2.1: Proved operational semantic rules for reversible concurrent processes

To enable the uniform derivation of expansion laws for parallel composition (see Chapter 6) under the various
bisimilarities that we will consider, we provide an operational semantics based on [59], which is very concrete as
every transition is labeled with a proof term [41, 42]. This is an action preceded by the sequence of operator
symbols in the scope of which the action occurs inside the source process of the transition. In the case of a binary
operator, the corresponding symbol also specifies whether the action occurs to the left or to the right. The syntax
that we adopt for the set Θ of proof terms is as follows:

θ ::= a | .aθ | xqρθ | .+θ | +. θ | ULθ | TLθ | 〈θ, θ〉L
where a, ρ, L are added as subscripts as they may turn out to be useful (see, e.g., the forthcoming function act).

The proved operational semantic rules are in Table 2.1 and generate the proved labeled transition system
(P,Θ,−→) where −→ ⊆ P×Θ×P is the proved transition relation. We denote by P ( P the set of processes that
are reachable from an initial one via −→. Not all well-formed processes are reachable; for example, a†. 0 ‖{a} 0 is
not reachable from a . 0 ‖{a} 0 as action a on the left cannot synchronize with any action on the right. From now on
we consider only P and denote by Pinit the set of initial processes as they are all reachable.

The first rule for action prefix (Actf where f stands for forward) applies only if P is initial and retains the
executed action in the target process of the generated forward transition by decorating the action itself with †.
The second rule (Actp where p stands for propagation) propagates actions of inner initial subprocesses by putting
an a-dot before them in the transition label for each outer executed a-action prefix that is encountered.

In the only rule for renaming (Ren), the transition label is changed according to the τ -preserving renaming
function ρ by placing a ρ-corner pair at the beginning of the proof term.

In both rules for alternative composition (Chol and Chor where l stands for left and r stands for right),
the subprocess that has not been selected for execution is retained as an initial subprocess in the target process of
the generated transition. When both subprocesses are initial, both rules for alternative composition are applicable,
otherwise only one of them can be applied and in that case it is the non-initial subprocess that can move, because
the other one has been discarded at the moment of the selection. The symbol .+ or +. is added at the beginning of
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the proof term.
The three rules for parallel composition use partial function act : Θ ⇀ A to extract an action from a proof

term θ. This function, which will be used throughout the first part of the thesis, is defined by induction on the
syntactical structure of θ as follows:

act(a) = a
act(.aθ′) = act(θ′)
act(xqρθ′) = ρ(act(θ′))

act(.+θ′) = act(+. θ′) = act(θ′)
act(ULθ′) = act(TLθ′) = act(θ′)

act(〈θ1, θ2〉L) =

{
act(θ1) if act(θ1) = act(θ2)
undefined otherwise

In the first two rules (Parl and Parr), a single subprocess proceeds by performing an action not belonging to L, with
UL or TL being placed at the beginning of the proof term. In the third rule (Syn), both subprocesses synchronize
on an action in L and the resulting proof term contains both individual proof terms. If L = ∅ or L = A \ {τ},
then the two subprocesses are fully independent or fully synchronized, respectively, on observable actions.

Example 2.1. The proved labeled transition systems generated by the rules in Table 2.1 for the two initial
processes a . 0 ‖∅ b . 0 and a . b . 0 + b . a . 0 are shown in Figure 1.1 even though each of their transitions is labeled
with act(θ) instead of θ, e.g., on the left label a should be U∅a and label b should be T∅b. As another example,
the proved labeled transition systems for the two initial processes a . 0 + a . 0 and a . 0 are depicted below:

0_a . 0_a . 0_a . +

+a.+a.

0_a . 0_a . + 0_a . 0_a . + 0_a . 

a

.

In the case of a forward-only process calculus like CCS [112], a single a-transition would be generated from a . 0+a . 0
to 0 due to the absence of decorated actions within processes.

Every process may have several outgoing transitions and, if it is not initial, has at least one incoming transition.
Let Pseq be the set of sequential processes of P, in which there are no occurrences of parallel composition. Due to
the decoration of executed actions inside the process syntax, over Pseq it holds that every non-initial process has
exactly one incoming transition, the underlying labeled transition systems turn out to be trees, and well formedness
coincides with reachability.

Proposition 2.1. Let P ∈ Pseq:

1. If P is not initial then it has exactly one incoming transition.

2. If P is initial then its underlying labeled transition system is a tree.

Proof. For the first property we proceed by induction on the syntactical structure of P ∈ Pseq with ¬initial(P ):

• If P is a†. P ′ there are two cases:

– If initial(P ′) then a†. P ′ has exactly one incoming transition, which is labeled with a, by virtue of rule
Actf in Table 2.1.



2.2 Proved Structural Operational Semantics 13

– If ¬initial(P ′) then by the induction hypothesis P ′ has exactly one incoming transition and hence so
does a†. P ′ by virtue of rule Actp in Table 2.1.

• If P is P ′ xρq then by the induction hypothesis P ′ has exactly one incoming transition and hence so does
P ′ xρq by virtue of rule Ren in Table 2.1.

• If P is P1 + P2 there are two cases:

– If ¬initial(P1) then by the induction hypothesis P1 has exactly one incoming transition and hence so
does P1 +P2 by virtue of rule Chol in Table 2.1 and the fact that, if the source process of the transition
to P1 +P2 is initial, then its outgoing transitions have target processes that pairwise differ for the action
that is decorated with † inside each of them.

– If ¬initial(P2) then the proof is similar with Chor in lieu of Chol.

The second property is a consequence of the first one.
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Chapter 3

Forward, Reverse, and Forward-Reverse
Bisimilarities

In this chapter, whose contents have appeared in [27, 25, 29], we define forward, reverse, and forward-reverse
bisimilarities over the set P of reachable processes introduced in the previous chapter, both in the strong case
(Section 3.1) and in the weak one (Section 3.2). They will allow us to identify syntactically different processes that
exhibit the same behavior.

3.1 Strong Bisimilarities

When defining bisimilarity in a reversible setting, one can consider only the forward direction like in [117, 112],
only the backward direction, or both directions like in [121]. In the specific reversible setting of PRPC, in which
there is a single transition relation viewed as being symmetric [57], the bisimulation game compares only outgoing
transitions in the first case, only incoming transitions in the second case, or both kinds of transitions in the
third case. Below we present the strong versions of the three bisimilarities, i.e., the versions that treat τ -actions
as if they were observable. In the definitions of bisimilarities we abstract from operator symbols inside transition
labels by using function act.

Definition 3.1. We say that P1, P2 ∈ P are forward bisimilar, written P1 ∼FB P2, iff (P1, P2) ∈ B for some
forward bisimulation B. A symmetric relation B over P is a forward bisimulation iff, whenever (P1, P2) ∈ B, then:

• For each P1
θ1−→ P ′1 there exists P2

θ2−→ P ′2 such that act(θ1) = act(θ2) and (P ′1, P
′
2) ∈ B.

Definition 3.2. We say that P1, P2 ∈ P are reverse bisimilar, written P1 ∼RB P2, iff (P1, P2) ∈ B for some reverse
bisimulation B. A symmetric relation B over P is a reverse bisimulation iff, whenever (P1, P2) ∈ B, then:

• For each P ′1
θ1−→ P1 there exists P ′2

θ2−→ P2 such that act(θ1) = act(θ2) and (P ′1, P
′
2) ∈ B.

Definition 3.3. We say that P1, P2 ∈ P are forward-reverse bisimilar, written P1 ∼FRB P2, iff (P1, P2) ∈ B
for some forward-reverse bisimulation B. A symmetric relation B over P is a forward-reverse bisimulation iff,
whenever (P1, P2) ∈ B, then:
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• For each P1
θ1−→ P ′1 there exists P2

θ2−→ P ′2 such that act(θ1) = act(θ2) and (P ′1, P
′
2) ∈ B.

• For each P ′1
θ1−→ P1 there exists P ′2

θ2−→ P2 such that act(θ1) = act(θ2) and (P ′1, P
′
2) ∈ B.

Proposition 3.1. Let ∼ ∈ {∼FB,∼RB,∼FRB}. Then ∼ is an equivalence relation.

Proof. ∼ is reflexive because the identity relation over P, i.e., {(P, P ) | P ∈ P} is a ∼-bisimulation. ∼ is
symmetric because so is every ∼-bisimulation. ∼ is transitive because the composition of two ∼-bisimulations,
i.e., B1 ◦ B2 = {(P1, P2) ∈ P× P | ∃P ∈ P. (P1, P ) ∈ B1 ∧ (P, P2) ∈ B2} is still a ∼-bisimulation.

Example 3.1. The first two processes in Example 2.1 are identified only by ∼FB and trivially ∼RB as they are
initial (see Figure 1.1), while the last two processes are identified by all the three equivalences as witnessed by any
bisimulation that contains the pairs (a . 0 + a . 0, a . 0), (a†. 0 + a . 0, a†. 0), and (a . 0 + a†. 0, a†. 0).

It is easy to establish two necessary conditions for the three bisimilarities considered so far. Following the
terminology of [116, 19], the two conditions respectively make use of the forward ready set in the forward direction
and the backward ready set in the backward direction; the latter condition will be exploited in Chapter 6 when
developing the expansion laws for parallel composition under reverse and forward-reverse semantics.

We proceed by induction on the syntactical structure of P ∈ P to define its forward ready set frs(P ) ⊆ A,
i.e., the set of actions that P can immediately execute (labels of its outgoing transitions), as well as its backward
ready set brs(P ) ⊆ A, i.e., the set of actions whose execution led to P (labels of its incoming transitions), where
we use ρ(A) to denote {ρ(a) | a ∈ A}:

frs(0) = ∅ brs(0) = ∅
frs(a . P ′) = {a} brs(a . P ′) = ∅

frs(a†. P ′) = frs(P ′) brs(a†. P ′) =

{
{a} if initial(P ′)
brs(P ′) if ¬initial(P ′)

frs(P ′ xρq) = ρ(frs(P ′)) brs(P ′ xρq) = ρ(brs(P ′))

frs(P1 + P2) =


frs(P1) ∪ frs(P2) if initial(P1) ∧ initial(P2)
frs(P1) if ¬initial(P1) ∧ initial(P2)
frs(P2) if initial(P1) ∧ ¬initial(P2)

brs(P1 + P2) =


∅ if initial(P1) ∧ initial(P2)
brs(P1) if ¬initial(P1) ∧ initial(P2)
brs(P2) if initial(P1) ∧ ¬initial(P2)

frs(P1 ‖L P2) = (frs(P1) ∩ L) ∪ (frs(P2) ∩ L) ∪ (frs(P1) ∩ frs(P2) ∩ L)

brs(P1 ‖L P2) = (brs(P1) ∩ L) ∪ (brs(P2) ∩ L) ∪ (brs(P1) ∩ brs(P2) ∩ L)

Proposition 3.2. Let P1, P2 ∈ P. Then:

1. If P1 ∼ P2 for ∼ ∈ {∼FB,∼FRB}, then frs(P1) = frs(P2).

2. If P1 ∼ P2 for ∼ ∈ {∼RB,∼FRB}, then brs(P1) = brs(P2).

Proof. A straightforward consequence of the definitions of the considered equivalences.
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3.2 Weak Bisimilarities

We now introduce weak variants [112] of forward, reverse, and forward-reverse bisimilarities, i.e., variants capable
of abstracting from τ -actions. In the following definitions, P ==⇒ P ′ means that P ′ = P or there exists a nonempty
sequence of finitely many τ -transitions such that the target of each of them coincides with the source of the subse-
quent one, with the source of the first one being P and the target of the last one being P ′. Moreover, ==⇒ θ−→==⇒
stands for an act(θ)-transition possibly preceded and followed by finitely many τ -transitions. Following [112],
for the three weak variants we also provide three alternative definitions, which will be exploited in the proofs of
the forthcoming Theorem 5.2, Theorem 7.2, Lemma 7.1, Theorem 7.3, and Theorem 7.4.

Definition 3.4. We say that P1, P2 ∈ P are weakly forward bisimilar, written P1 ≈FB P2, iff (P1, P2) ∈ B for
some weak forward bisimulation B. A symmetric relation B over P is a weak forward bisimulation iff, whenever
(P1, P2) ∈ B, then:

• For each P1
θ1−→ P ′1 with act(θ1) = τ there exists P2 ==⇒ P ′2 such that (P ′1, P

′
2) ∈ B.

• For each P1
θ1−→ P ′1 with act(θ1) 6= τ there exists P2 ==⇒ θ2−→==⇒ P ′2 such that act(θ1) = act(θ2) and

(P ′1, P
′
2) ∈ B.

Proposition 3.3. A symmetric relation B over P is a weak forward bisimulation iff, whenever (P1, P2) ∈ B, then:

• For each P1 ==⇒ P ′1 there exists P2 ==⇒ P ′2 such that (P ′1, P
′
2) ∈ B.

• For each P1 ==⇒ θ1−→==⇒ P ′1 with act(θ1) 6= τ there exists P2 ==⇒ θ2−→==⇒ P ′2 such that act(θ1) = act(θ2) and
(P ′1, P

′
2) ∈ B.

Proof. The proof is divided into two parts:

• Assume that B is a weak forward bisimulation and consider (P1, P2) ∈ B. There are three cases:

– If P1 ==⇒ P ′1 where the sequence of τ -transitions is empty, i.e., P1 ==⇒ P1, then P2 stays idle, i.e.,
P2 ==⇒ P2, with the two target processes being related by B.

– If P1 ==⇒ P ′1 where the sequence of τ -transitions is not empty, then each such transition is matched
according to B on the side of P2, hence there exists P2 ==⇒ P ′2 such that (P ′1, P

′
2) ∈ B.

– If P1 ==⇒ θ1−→==⇒ P ′1 with act(θ1) 6= τ , then each transition in the sequence is matched according to B
on the side of P2, hence there exists P2 ==⇒ θ2−→==⇒ P ′2 such that act(θ1) = act(θ2) and (P ′1, P

′
2) ∈ B.

• Assume that B satisfies the property stated in the proposition and consider (P1, P2) ∈ B. There are two cases:

– If P1
θ1−→ P ′1 with act(θ1) = τ , which can be rewritten as P1 ==⇒ P ′1, then there exists P2 ==⇒ P ′2 such

that (P ′1, P
′
2) ∈ B.

– If P1
θ1−→ P ′1 with act(θ1) 6= τ , which can be rewritten as P1 ==⇒ P1

θ1−→ P ′1 ==⇒ P ′1, then there exists
P2 ==⇒ θ2−→==⇒ P ′2 such that act(θ1) = act(θ2) and (P ′1, P

′
2) ∈ B.
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Definition 3.5. We say that P1, P2 ∈ P are weakly reverse bisimilar, written P1 ≈RB P2, iff (P1, P2) ∈ B for
some weak reverse bisimulation B. A symmetric relation B over P is a weak reverse bisimulation iff, whenever
(P1, P2) ∈ B, then:

• For each P ′1
θ1−→ P1 with act(θ1) = τ there exists P ′2 ==⇒ P2 such that (P ′1, P

′
2) ∈ B.

• For each P ′1
θ1−→ P1 with act(θ1) 6= τ there exists P ′2 ==⇒ θ2−→==⇒ P2 such that act(θ1) = act(θ2) and

(P ′1, P
′
2) ∈ B.

Proposition 3.4. A symmetric relation B over P is a weak reverse bisimulation iff, whenever (P1, P2) ∈ B, then:

• For each P ′1 ==⇒ P1 there exists P ′2 ==⇒ P2 such that (P ′1, P
′
2) ∈ B.

• For each P ′1 ==⇒ θ1−→==⇒ P1 with act(θ1) 6= τ there exists P ′2 ==⇒ θ2−→==⇒ P2 such that act(θ1) = act(θ2) and
(P ′1, P

′
2) ∈ B.

Proof. The proof is divided into two parts:

• Assume that B is a weak reverse bisimulation and consider (P1, P2) ∈ B. There are three cases:

– If P ′1 ==⇒ P1 where the sequence of τ -transitions is empty, i.e., P1 ==⇒ P1, then P2 stays idle, i.e.,
P2 ==⇒ P2, with the two target processes being related by B.

– If P ′1 ==⇒ P1 where the sequence of τ -transitions is not empty, then each such transition is matched
according to B on the side of P2, hence there exists P ′2 ==⇒ P2 such that (P ′1, P

′
2) ∈ B.

– If P ′1 ==⇒ θ1−→==⇒ P1 with act(θ1) 6= τ , then each transition in the sequence is matched according to B
on the side of P2, hence there exists P ′2 ==⇒ θ2−→==⇒ P2 such that act(θ1) = act(θ2) and (P ′1, P

′
2) ∈ B.

• Assume that B satisfies the property stated in the proposition and consider (P1, P2) ∈ B. There are two cases:

– If P ′1
θ1−→ P1 with act(θ1) = τ , which can be rewritten as P ′1 ==⇒ P1, then there exists P2 ==⇒ P ′2 such

that (P ′1, P
′
2) ∈ B.

– If P ′1
θ1−→ P1 with act(θ1) 6= τ , which can be rewritten as P ′1 ==⇒ P ′1

θ1−→ P1 ==⇒ P1, then there exists
P ′2 ==⇒ θ2−→==⇒ P2 such that act(θ1) = act(θ2) and (P ′1, P

′
2) ∈ B.

Definition 3.6. We say that P1, P2 ∈ P are weakly forward-reverse bisimilar, written P1 ≈FRB P2, iff (P1, P2) ∈ B
for some weak forward-reverse bisimulation B. A symmetric relation B over P is a weak forward-reverse bisimu-
lation iff, whenever (P1, P2) ∈ B, then:

• For each P1
θ1−→ P ′1 with act(θ1) = τ there exists P2 ==⇒ P ′2 such that (P ′1, P

′
2) ∈ B.

• For each P1
θ1−→ P ′1 with act(θ1) 6= τ there exists P2 ==⇒ θ2−→==⇒ P ′2 such that act(θ1) = act(θ2) and

(P ′1, P
′
2) ∈ B.
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• For each P ′1
θ1−→ P1 with act(θ1) = τ there exists P ′2 ==⇒ P2 such that (P ′1, P

′
2) ∈ B.

• For each P ′1
θ1−→ P1 with act(θ1) 6= τ there exists P ′2 ==⇒ θ2−→==⇒ P2 such that act(θ1) = act(θ2) and

(P ′1, P
′
2) ∈ B.

Proposition 3.5. A symmetric relation B over P is a weak forward-reverse bisimulation iff, whenever (P1, P2) ∈ B,
then:

• For each P1 ==⇒ P ′1 there exists P2 ==⇒ P ′2 such that (P ′1, P
′
2) ∈ B.

• For each P1 ==⇒ θ1−→==⇒ P ′1 with act(θ1) 6= τ there exists P2 ==⇒ θ2−→==⇒ P ′2 such that act(θ1) = act(θ2) and
(P ′1, P

′
2) ∈ B.

• For each P ′1 ==⇒ P1 there exists P ′2 ==⇒ P2 such that (P ′1, P
′
2) ∈ B.

• For each P ′1 ==⇒ θ1−→==⇒ P1 with act(θ1) 6= τ there exists P ′2 ==⇒ θ2−→==⇒ P2 such that act(θ1) = act(θ2) and
(P ′1, P

′
2) ∈ B.

Proof. It stems from the combination of all the cases in the proofs of Propositions 3.3 and 3.4.

Proposition 3.6. Let ≈ ∈ {≈FB,≈RB,≈FRB}. Then ≈ is an equivalence relation.

Proof. See the proof of Proposition 3.1, where Propositions 3.3, 3.4, and 3.5 are exploited to show transitivity via
bisimulation composition.

Like in the strong case, it is easy to establish two necessary conditions for the three weak bisimilarities con-
sidered so far, which respectively make use of weak variants of the forward ready set and the backward ready set;
the latter condition will be exploited in Chapter 6 when dealing with expansion laws for parallel composition under
weak reverse and forward-reverse semantics. The two sets frsw(P ) ⊆ A \ {τ} and brsw(P ) ⊆ A \ {τ} are defined
as follows for P ∈ P:

frsw(P ) = {a ∈ A \ {τ} | P ==⇒ θ−→==⇒ P ′ ∧ act(θ) = a}
brsw(P ) = {a ∈ A \ {τ} | P ′==⇒ θ−→==⇒ P ∧ act(θ) = a}

Note that frsw(P ) = frs(P ) (resp. brsw(P ) = brs(P )) when P has no unexecuted (resp. executed) actions named τ
or changed to τ by some renaming function.

Proposition 3.7. Let P1, P2 ∈ P. Then:

1. If P1 ≈ P2 for ≈ ∈ {≈FB,≈FRB}, then frsw(P1) = frsw(P2).

2. If P1 ≈ P2 for ≈ ∈ {≈RB,≈FRB}, then brsw(P1) = brsw(P2).

Proof. A straightforward consequence of the alternative characterizations of the considered equivalences.
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We observe that brsw(P ) can be characterized syntactically. We start by defining over P a weak variant of
predicate initial in which executed τ -actions are admitted at the beginning of a process:

initialw(0)
initialw(a . P ′) iff initial(P ′)
initialw(τ †. P ′) iff initialw(P ′)

initialw(P ′ xρq) iff initialw(ρ†τ (P ′))
initialw(P1 + P2) iff (initialw(P1) ∧ initial(P2)) ∨ (initial(P1) ∧ initialw(P2))
initialw(P1 ‖L P2) iff initialw(P1) ∧ initialw(P2)

where ρ†τ (P ) is the process obtained from P ∈ P by changing to τ all of its executed actions renamed τ by ρ
(below symbol ◦ denotes the composition of renaming functions):

ρ†τ (0) = 0

ρ†τ (a . P ′) = a . ρ†τ (P ′)

ρ†τ (a†. P ′) =

{
τ †. ρ†τ (P ′) if ρ(a) = τ

a†. ρ†τ (P ′) if ρ(a) 6= τ

ρ†τ (P ′ xρ′q) = (ρ ◦ ρ′)†τ (P ′)

ρ†τ (P1 + P2) = ρ†τ (P1) + ρ†τ (P2)

ρ†τ (P1 ‖L P2) = ρ†τ (P1) ‖L ρ†τ (P2)

so that initialw((a†. 0) xa 7→ τq), i.e., initialw(τ †. 0), and initialw(((a†1. 0) xa1 7→ aq ‖{a}(a
†
2. 0) xa2 7→ aq) xa 7→ τq),

i.e., initialw(τ †. 0 ‖∅ τ †. 0), are true. Note that initial(P ) implies initialw(P ). Then brsw(P ) ⊆ A \ {τ} can be
inductively characterized as follows:

brsw(0) = ∅
brsw(a . P ′) = ∅

brsw(a†. P ′) =

{
{a} if a 6= τ ∧ initialw(P ′)
brsw(P ′) if a = τ ∨ ¬initialw(P ′)

brsw(P ′ xρq) = ρ(brsw(ρ†τ (P ′)))

brsw(P1 + P2) =


∅ if initial(P1) ∧ initial(P2)
brsw(P1) if ¬initial(P1) ∧ initial(P2)
brsw(P2) if initial(P1) ∧ ¬initial(P2)

brsw(P1 ‖L P2) = (brsw(P1) ∩ L) ∪ (brsw(P2) ∩ L) ∪ (brsw(P1) ∩ brsw(P2) ∩ L)
We point out that initialw is used in place of initial only in the clause of brsw for executed action prefix. In this
way brsw(a†. τ †. 0) = {a} because initialw(τ †. 0), otherwise we would have erroneously obtained ∅ as ¬initial(τ †. 0).
We also emphasize the use of ρ†τ in the clause for renaming, thanks to which we derive brsw((a†. b†. 0) xb 7→ τq) =
brsw(a†. τ †. 0) = {a} as expected.

We finally observe that a similar characterization for frsw(P ) is not possible. For instance, if we defined ρτ (P )
as the process obtained from P by changing to τ all of its unexecuted actions renamed τ by ρ, then the deadlocked
process (a . c ‖{a,b} b . d) xa 7→ τ, b 7→ τq would become (τ . c ‖{a,b} τ . d), which can move instead.



Chapter 4

DiscriminatingPower andCongruence Property

In this chapter, whose contents have appeared in [27, 25, 29], we compare the discriminating power of the six
bisimilarities defined in the previous chapter and investigate whether they are congruences with respect to the
operators of PRPC so as to support compositional reasoning, both in the strong case (Section 4.1) and in the weak
one (Section 4.2).

4.1 Strong Bisimilarities

It holds that ∼FRB ( ∼FB ∩ ∼RB. The inclusion is strict because for example the two processes a†. 0 and a†. 0+c . 0
are identified by ∼FB – as there are no outgoing transitions on both sides – and ∼RB – as there is only one incoming
a-transition on both sides – but distinguished by ∼FRB – as in the latter process c is enabled again after undoing a
and hence there is one outgoing c-transition in addition to one outgoing a-transition. Moreover, ∼FB and ∼RB are
incomparable because for instance:

a†. 0 ∼FB 0 but a†. 0 6∼RB 0
a . 0 ∼RB 0 but a . 0 6∼FB 0

Note that that ∼FRB = ∼FB over initial sequential processes, with ∼RB being strictly coarser as it relates all initial
processes, whilst ∼FRB 6= ∼RB over processes with no outgoing transitions (which we may call final) because, after
going backward, previously discarded subprocesses come into play again in the forward direction.

In principle, it makes sense that ∼FB identifies processes with a different past and that ∼RB identifies processes
with a different future, in particular with 0 that has neither past nor future. However, for ∼FB this results in a
compositionality violation with respect to alternative composition. As an example:

a†. b . 0 ∼FB b . 0 but a†. b . 0 + c . 0 6∼FB b . 0 + c . 0
because in a†. b . 0 + c . 0 action c is disabled by virtue of the already executed action a†, while in b . 0 + c . 0 action
c is enabled as there are no past actions preventing it from occurring. Note that a similar phenomenon does not
happen with ∼RB as a†. b . 0 6∼RB b . 0 due to the incoming a-transition of a†. b . 0. In other words, the insensitivity
to the presence of the past breaks the compositionality of ∼FB, while the insensitivity to the presence of the future
does not violate the compositionality of ∼RB.

This problem, which does not show up for ∼RB and ∼FRB because these two equivalences cannot identify an
initial process with a non-initial one, leads to the following variant of ∼FB that is sensitive to the presence of
the past.
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Definition 4.1. We say that P1, P2 ∈ P are past-sensitive forward bisimilar, written P1 ∼FB:ps P2, iff (P1, P2) ∈ B
for some past-sensitive forward bisimulation B. A symmetric relation B over P is a past-sensitive forward bisim-
ulation iff it is a forward bisimulation such that initial(P1)⇐⇒ initial(P2) for all (P1, P2) ∈ B.

Proposition 4.1. ∼FB:ps is an equivalence relation.

Proof. See the proof of Proposition 3.1, where the initiality constraint is trivially satisfied by the identity relation
as well as bisimulation composition.

Since ∼FB:ps is sensitive to the presence of the past, we have that a†. b . 0 6∼FB:ps b . 0, but non-initial processes
having a different past can still be identified as we will see in a moment. It holds that ∼FRB ( ∼FB:ps ∩ ∼RB,
with ∼FRB =∼FB:ps over initial sequential processes as well as ∼FB:ps and ∼RB being incomparable because, e.g.,
for a1 6= a2:

a†1 . P ∼FB:ps a
†
2 . P but a†1 . P 6∼RB a†2 . P

a1 . P ∼RB a2 . P but a1 . P 6∼FB:ps a2 . P
We show that all the four strong bisimilarities are congruences with respect to action prefix, renaming, and

parallel composition, while only ∼FB:ps, ∼RB, and ∼FRB are congruences with respect to alternative composition
too. Moreover, ∼FB:ps turns out to be the coarsest congruence with respect to + contained in ∼FB.

Theorem 4.1. Let ∼ ∈ {∼FB,∼FB:ps,∼RB,∼FRB}, ∼′ ∈ {∼FB:ps,∼RB,∼FRB}, and P1, P2 ∈ P:

1. If P1 ∼ P2 then for all a ∈ A:

• a . P1 ∼ a . P2 provided that initial(P1) ∧ initial(P2).

• a†. P1 ∼ a†. P2.

2. If P1 ∼ P2 then for all ρ : A → A such that ρ(τ) = τ :

• P1 xρq ∼ P2 xρq.

3. If P1 ∼′ P2 then for all P ∈ P:

• P1 + P ∼′ P2 + P and P + P1 ∼′ P + P2 provided that initial(P ) ∨ (initial(P1) ∧ initial(P2)).

4. P1 ∼FB:ps P2 iff P1 + P ∼FB P2 + P for all P ∈ P such that initial(P ) ∨ (initial(P1) ∧ initial(P2)).

5. If P1 ∼ P2 then for all P ∈ P and L ⊆ A \ {τ}:

• P1 ‖L P ∼ P2 ‖L P and P ‖L P1 ∼ P ‖L P2 provided that P1 ‖L P, P2 ‖L P, P ‖L P1, P ‖L P2 ∈ P.

Proof. Let P1, P2 ∈ P:

1. Let P1 ∼ P2 and a ∈ A and consider a ∼-bisimulation B containing the pair (P1, P2). Then:
B′ = {(a .Q1, a .Q2) | (Q1, Q2) ∈ B ∧ initial(Q1) ∧ initial(Q2)} ∪ {(a†. Q1, a

†. Q2) | (Q1, Q2) ∈ B}
is a ∼-bisimulation too (note that B does not need to be included in B′ as action prefix is a static operator
in our reversible setting) because:
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• If ∼ considers moving forward, then both a .Q1 and a .Q2 with initial(Q1) and initial(Q2) turn out
to have a single outgoing a-transition and these two a-transitions respectively reach a†. Q1 and a†. Q2,
which form a pair of B′.

• Moving backward is not allowed from a .Q1 and a .Q2 with initial(Q1) and initial(Q2) as they are both
initial and hence have no incoming transitions.

• a†. Q1 and a†. Q2 have ∼-matching outgoing/incoming transitions – depending on whether ∼ considers
moving forward/backward – respectively determined by the two ∼-equivalent processes Q1 and Q2.
In particular, if Q1 and Q2 are initial and ∼ considers moving backward, then a†. Q1 and a†. Q2 turn
out to have a single incoming a-transition and these two a-transitions respectively depart from a .Q1

and a .Q2, which form a pair of B′.

Therefore a . P1 ∼ a . P2, provided that initial(P1) ∧ initial(P2), as well as a†. P1 ∼ a†. P2.

2. Let P1 ∼ P2 and ρ : A → A be such that ρ(τ) = τ and consider a ∼-bisimulation B containing the pair
(P1, P2). Then:

B′ = {(Q1 xρq, Q2 xρq) | (Q1, Q2) ∈ B}
is a ∼-bisimulation too because the ∼-matching transitions of Q1 and Q2 are trivially preserved by ρ.
Therefore P1 xρq ∼ P2 xρq.

3. Let P1 ∼′ P2 and P ∈ P and consider a ∼′-bisimulation B containing the pair (P1, P2). Then:
B′ = {(Q1 +Q,Q2 +Q) | (Q1, Q2) ∈ B ∧ (initial(Q) ∨ (initial(Q1) ∧ initial(Q2)))}

is a ∼′-bisimulation too (note that B does not need to be included in B′ as alternative composition is a
static operator in our reversible setting) because Q1 + Q and Q2 + Q have ∼′-matching outgoing/incoming
transitions – depending on whether ∼′ considers moving forward/backward – determined by the two
∼′-equivalent processes Q1 and Q2 when initial(Q) or by Q when initial(Q1) ∧ initial(Q2). Note that in the
forward case, since from (Q1, Q2) ∈ B it follows that initial(Q1) ⇐⇒ initial(Q2), when initial(Q) all the
initial actions of Q are enabled both in Q1 + Q and in Q2 + Q if initial(Q1) ∧ initial(Q2) or in neither of
them if ¬initial(Q1) ∧ ¬initial(Q2).
Therefore P1 + P ∼′ P2 + P provided that initial(P ) ∨ (initial(P1) ∧ initial(P2)).
The proof that P + P1 ∼′ P + P2 is similar because the two operational semantic rules for alternative
composition in Table 2.1 are symmetric.

4. If P1 ∼FB:ps P2 then, based on what we have proved above, P1 + P ∼FB:ps P2 + P for all P ∈ P such that
initial(P ) ∨ (initial(P1) ∧ initial(P2)) – so that initial(P1 + P ) ⇐⇒ initial(P2 + P ) is satisfied – and hence
P1 + P ∼FB P2 + P because ∼FB:ps (∼FB.
As for the reverse implication, we reason on the contrapositive. If P1 6∼FB:ps P2 there are two cases:

• If P1 and P2 have no matching outgoing transitions, then P1 + 0 and P2 + 0, where initial(0), have no
matching outgoing transitions either, hence P1 + 0 6∼FB P2 + 0.

• If initial(P1) ⇐⇒ initial(P2) does not hold, say ¬initial(P1) and initial(P2), then, even if P1 and P2

have matching outgoing transitions, it turns out that P1 + c . 0 6∼FB P2 + c . 0, where initial(c . 0) and
c is an action occurring neither in P1 nor in P2, because P2 + c . 0 has an outgoing c-transition whilst
P1 + c . 0 has not.
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5. Let P1 ∼ P2, P ∈ P, and L ⊆ A \ {τ} and consider a ∼-bisimulation B containing the pair (P1, P2). Then:
B′ = {(Q1 ‖LQ,Q2 ‖LQ) | (Q1, Q2) ∈ B ∧Q1 ‖LQ,Q2 ‖LQ ∈ P}

is a ∼-bisimulation too because Q1 ‖LQ and Q2 ‖LQ have ∼-matching outgoing/incoming transitions –
depending on whether ∼ considers moving forward/backward – determined by the two ∼-equivalent
processes Q1 and Q2 or by Q, both when moving independent of each other and when synchronizing on an
action in L. Note that if initial(Q1)⇐⇒ initial(Q2), then initial(Q1 ‖LQ)⇐⇒ initial(Q2 ‖LQ).
Therefore P1 ‖L P ∼ P2 ‖L P provided that P1 ‖L P, P2 ‖L P ∈ P.
The proof that P ‖L P1 ∼ P ‖L P2 is similar because the three operational semantic rules for parallel
composition in Table 2.1 are symmetric.

4.2 Weak Bisimilarities

Each of the three weak bisimilarities is strictly coarser than the corresponding strong one. Similar to the strong
case, ≈FRB ( ≈FB ∩ ≈RB with ≈FB and ≈RB being incomparable. Unlike the strong case, ≈FRB 6= ≈FB over
initial sequential processes. For instance, τ . a . 0 + a . 0 + b . 0 and τ . a . 0 + b . 0 are identified by ≈FB but told
apart by ≈FRB: if the former performs a, the latter responds with τ followed by a and if it subsequently undoes a
thus becoming τ †. a . 0 + b . 0 in which only a is enabled, the latter can only respond by undoing a thus becoming
τ . a . 0 + a . 0 + b . 0 in which both a and b are enabled. An analogous counterexample with non-initial τ -actions is
given by c . (τ . a . 0 + a . 0 + b . 0) and c . (τ . a . 0 + b . 0).

As for compositionality, we observe that ≈FB suffers from the same problem with respect to alternative com-
position as ∼FB. Moreover, ≈FB and ≈FRB feature the same problem as weak bisimilarity for forward-only
processes [112], i.e., for ≈ ∈ {≈FB,≈FRB} it holds that:

τ . a . 0 ≈ a . 0 but τ . a . 0 + b . 0 6≈ a . 0 + b . 0
because if τ . a . 0 + b . 0 performs τ thereby evolving to τ †. a . 0 + b . 0 where only a is enabled in the forward
direction, then a . 0 + b . 0 can neither idle nor move in the attempt to match τ †. a . 0 + b . 0.

To solve both problems it is sufficient to redefine the two equivalences by making them sensitive to the presence
of the past, exactly like in the strong case for forward bisimilarity. By so doing, τ . a . 0 is no longer identified with
a . 0: if the former performs τ thereby evolving to τ †. a . 0 and the latter idles, then τ †. a . 0 and a . 0 are told apart
because the latter is initial while the former is not.

Definition 4.2. We say that P1, P2 ∈ P are weakly past-sensitive forward bisimilar, written P1 ≈FB:ps P2, iff
(P1, P2) ∈ B for some weak past-sensitive forward bisimulation B. A symmetric relation B over P is a weak
past-sensitive forward bisimulation iff it is a weak forward bisimulation such that initial(P1)⇐⇒ initial(P2) for all
(P1, P2) ∈ B.

Definition 4.3. We say that P1, P2 ∈ P are weakly past-sensitive forward-reverse bisimilar, written P1 ≈FRB:ps P2,
iff (P1, P2) ∈ B for some weak past-sensitive forward-reverse bisimulation B. A symmetric relation B over P
is a weak past-sensitive forward-reverse bisimulation iff it is a weak forward-reverse bisimulation such that
initial(P1)⇐⇒ initial(P2) for all (P1, P2) ∈ B.

Proposition 4.2. Let ≈ ∈ {≈FB:ps,≈FRB:ps}. Then ≈ is an equivalence relation.

Proof. See the proof of Propositions 3.6 and 4.1.
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Note that ∼FRB ( ≈FRB:ps as the former naturally satisfies the initiality condition, while ∼FB and ≈FB:ps are
incomparable because a†. 0 and 0 are identified by ∼FB and told apart by ≈FB:ps but a . τ . 0 and a . 0 are identified
by ≈FB:ps and told apart by ∼FB. Like in the non-past-sensitive case, ≈FRB:ps 6= ≈FB:ps over initial sequential
processes, as shown by τ . a . 0 + a . 0 and τ . a . 0: if the former performs a, the latter responds with τ followed
by a and if it subsequently undoes a thus becoming the non-initial process τ †. a . 0, the latter can only respond by
undoing a thus becoming the initial process τ . a . 0+a . 0. An analogous counterexample with non-initial τ -actions
is given again by c . (τ . a . 0 + a . 0 + b . 0) and c . (τ . a . 0 + b . 0).

We show that all the five weak bisimilarities are congruences with respect to action prefix, renaming, and
parallel composition, while only ≈FB:ps, ≈RB, and ≈FRB:ps are congruences with respect to alternative composition
too. Moreover, ≈FB:ps and ≈FRB:ps turn out to be the coarsest congruences with respect to + respectively contained
in ≈FB and ≈FRB.

Theorem 4.2. Let ≈ ∈ {≈FB,≈FB:ps,≈RB,≈FRB,≈FRB:ps}, ≈′ ∈ {≈FB:ps,≈RB,≈FRB:ps}, and P1, P2 ∈ P:

1. If P1 ≈ P2 then for all a ∈ A:

• a . P1 ≈ a . P2 provided that initial(P1) ∧ initial(P2).

• a†. P1 ≈ a†. P2.

2. If P1 ≈ P2 then for all ρ : A → A such that ρ(τ) = τ :

• P1 xρq ≈ P2 xρq.

3. If P1 ≈′ P2 then for all P ∈ P:

• P1 + P ≈′ P2 + P and P + P1 ≈′ P + P2 provided that initial(P ) ∨ (initial(P1) ∧ initial(P2)).

4. P1 ≈FB:ps P2 iff P1 + P ≈FB P2 + P for all P ∈ P such that initial(P ) ∨ (initial(P1) ∧ initial(P2)).

5. P1 ≈FRB:ps P2 iff P1 + P ≈FRB P2 + P for all P ∈ P such that initial(P ) ∨ (initial(P1) ∧ initial(P2)).

6. If P1 ≈ P2 then for all P ∈ P and L ⊆ A \ {τ}:

• P1 ‖L P ≈ P2 ‖L P and P ‖L P1 ≈ P ‖L P2 provided that P1 ‖L P, P2 ‖L P, P ‖L P1, P ‖L P2 ∈ P.

Proof. See the proof of Theorem 4.1, where:

• In the case of the renaming operator, ≈-matching transitions of Q1 and Q2 are preserved by ρ even when
their labels are turned into τ .

• In the proof of the two coarsest congruence results, we take c 6= τ .
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We conclude by noting that the aforementioned compositionality problems with respect to alternative com-
position may not be solved, in our reversible setting, by employing the construction of [112] for building a weak
bisimulation congruence on top of weak bisimilarity over forward-only processes. In particular, if we introduced a
variant ≈′FB of ≈FB such that, given two processes related by ≈′FB, a τ -transition on either side must be matched by
a τ -transition on the other side with the two reached processes being related by ≈FB, then again a†. b . 0 ≈′FB b . 0
but a†. b . 0 + c . 0 6≈′FB b . 0 + c . 0. It is therefore essential to keep initial processes separate from non-initial ones
to achieve compositionality.

However, the construction of [112] can be adapted to our reversible setting, a fact that will be exploited in the
proof of the forthcoming Theorem 6.10. In the case of two initial processes, every transition of either process must
be matched by a transition of the other process labeled with the same action, with the two reached non-initial
processes being related by ≈B for B ∈ {FB,FRB}. In the case of two non-initial processes, in addition to requiring
them to be ≈B-equivalent, we may have to make sure that their initial versions are equivalent in the sense above.
Let us define function to_initial : P→ Pinit by induction on the syntactical structure of P ∈ P as follows:

to_initial(P ) = P if initial(P )
to_initial(a†. P ′) = a . to_initial(P ′)
to_initial(P ′ xρq) = to_initial(P ′) xρq if ¬initial(P ′)

to_initial(P1 + P2) = to_initial(P1) + to_initial(P2) if ¬initial(P1) ∨ ¬initial(P2)
to_initial(P1 ‖L P2) = to_initial(P1) ‖L to_initial(P2) if ¬initial(P1) ∨ ¬initial(P2)

For instance, the two non-initial processes τ †. a†. 0 and a†. 0 are identified by ≈FRB, but to_initial(τ †. a†. 0) =
τ . a . 0 6≈FRB:ps a . 0 = to_initial(a†. 0), hence τ †. a†. 0 6≈FRB:ps a

†. 0 either. On the other hand, it is not enough to
guarantee that their initial versions are equivalent. For example, to_initial(a†. b . 0) = a . b . 0 = to_initial(a†. b†. 0)
but a†. b . 0 6≈FRB a†. b†. 0.

Definition 4.4. We say that P1, P2 ∈ P are weakly forward (resp. forward-reverse) bisimulation congruent, written
P1 ≈B:c P2 for B ∈ {FB,FRB}, iff one of the following two clauses holds:

• P1 and P2 are both initial and for all P1
θ1−→ P ′1 there exists P2

θ2−→ P ′2 such that act(θ1) = act(θ2) and
P ′1 ≈B P ′2, and vice versa.

• P1 and P2 are both non-initial, P1 ≈B P2, and – when B = FRB – to_initial(P1) ≈B:c to_initial(P2).

Theorem 4.3. Let P1, P2 ∈ P and B ∈ {FB,FRB}. Then P1 ≈B:c P2 iff P1 ≈B:ps P2.

Proof. The proof is divided into two parts:

• Suppose that P1 ≈B:c P2. There are two cases:

– If P1 and P2 are initial, then for all P1
θ1−→ P ′1 there exists P2

θ2−→ P ′2 such that act(θ1) = act(θ2) and
P ′1 ≈B P ′2, and vice versa. For B = FB this is enough to conclude that P1 ≈B:ps P2, while for B = FRB it
stems from all those P ′1 and P ′2 being≈B-equivalent non-initial processes whose only incoming transitions
are labeled with the same action and respectively depart from the two initial processes P1 and P2 (hence
P ′1 ≈B:ps P

′
2 for all those pairs).

– If P1 and P2 are not initial, then P1 ≈B P2 and to_initial(P1) ≈B:c to_initial(P2). While stepwise
mimicking each other’s behavior in the forward direction, P1 and P2 can only encounter pairs of non-
initial processes related by ≈B. For B = FRB, by virtue of to_initial(P1) ≈B:c to_initial(P2), while



4.2 Weak Bisimilarities 27

stepwise mimicking each other’s behavior in the backward direction, there is a way for P1 and P2 not
to respectively end up in an initial process and a non-initial process. In conclusion, P1 ≈B:ps P2.

• Suppose that P1 ≈B:ps P2. There are two cases:

– If P1 and P2 are initial, whenever P1 has a τ -transition to a non-initial process that is ≈B-equivalent
to P2, then P2 must have a τ -transition to a non-initial process that is ≈B-equivalent to P1, and vice
versa, otherwise P1 ≈B:ps P2 could not hold. Therefore, for all P1

θ1−→ P ′1 there exists P2
θ2−→ P ′2 such

that act(θ1) = act(θ2) and P ′1 ≈B P ′2, and vice versa, i.e., P1 ≈B:c P2.

– Let P1 and P2 be not initial. On the one hand, we have that P1 ≈B:ps P2 implies P1 ≈B P2. On
the other hand, when B = FRB, from P1 ≈B:ps P2 it follows that, while stepwise mimicking each
other’s behavior in the backward direction, there is a way for P1 and P2 not to respectively end up
in an initial process and a non-initial process. Therefore to_initial(P1) ≈B:ps to_initial(P2) and hence
to_initial(P1) ≈B:c to_initial(P2) due to what we have shown in the previous case. In conclusion,
P1 ≈B:c P2.
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Chapter 5

Modal Logic Characterizations

In this chapter, whose contents have appeared in [26, 29], after introducing a general modal logic with forward
and backward modalities (Section 5.1), we exhibit fragments of that modal logic (see the forthcoming Table 5.1)
that characterize the three strong bisimilarities ∼FB, ∼RB, ∼FRB, the three weak bisimilarities ≈FB, ≈RB, ≈FRB,
and the three past-sensitive variants ∼FB:ps, ≈FB:ps, ≈FRB:ps (Section 5.2). These characterizations show what
properties are preserved by each bisimilarity and are useful to provide diagnostic information, in the form of
distinguishing formulas, that explains why two processes are not bisimilar.

5.1 A Modal Logic with Forward and Backward Modalities

We start by presenting a general modal logic L from which we will take nine fragments to characterize the nine
aforementioned bisimilarities. It consists of Hennessy-Milner logic [88] – which includes true, negation, conjunction,
and modality 〈a〉 representing the possibility of performing a – extended with the proposition init, the strong
backward modality 〈a†〉, the two weak forward modalities 〈〈τ〉〉 and 〈〈a〉〉, and the two weak backward modalities
〈〈τ †〉〉 and 〈〈a†〉〉, where a 6= τ within weak modalities. The syntax of its formulas is the following:

φ ::= true | init | ¬φ | φ ∧ φ | 〈a〉φ | 〈a†〉φ | 〈〈τ〉〉φ | 〈〈a〉〉φ | 〈〈τ †〉〉φ | 〈〈a†〉〉φ
The satisfaction relation |=⊆ P× L is defined by induction on the syntactical structure of φ ∈ L as follows:

P |= true
P |= init iff initial(P )
P |= ¬φ′ iff P 6|= φ′

P |= φ1 ∧ φ2 iff P |= φ1 and P |= φ2

P |= 〈a〉φ′ iff there exists P θ−→ P ′ such that act(θ) = a and P ′ |= φ′

P |= 〈a†〉φ′ iff there exists P ′ θ−→ P such that act(θ) = a and P ′ |= φ′

P |= 〈〈τ〉〉φ′ iff there exists P ==⇒ P ′ such that P ′ |= φ′

P |= 〈〈a〉〉φ′ iff there exists P ==⇒ θ−→==⇒ P ′ such that act(θ) = a and P ′ |= φ′

P |= 〈〈τ †〉〉φ′ iff there exists P ′==⇒ P such that P ′ |= φ′

P |= 〈〈a†〉〉φ′ iff there exists P ′==⇒ θ−→==⇒ P such that act(θ) = a and P ′ |= φ′

Derived operators can be considered too, like false defined as ¬true, φ1 ∨ φ2 defined as ¬(¬φ1 ∧ ¬φ2), [a]φ defined
as ¬〈a〉¬φ, and so on. Note that every P ∈ P is image finite, i.e., it has finitely many outgoing transitions labeled
with proof terms containing the same action.
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true init ¬ ∧ 〈a〉 〈a†〉 〈〈τ〉〉 〈〈a〉〉 〈〈τ †〉〉 〈〈a†〉〉
LFB X X X X

LFB:ps X X X X X
LRB X X X X

LFRB X X X X X

LτFB X X X X X

LτFB:ps X X X X X X
LτRB X X X X X

LτFRB X X X X X X X

LτFRB:ps X X X X X X X X

Table 5.1: Fragments of L characterizing the nine bisimilarities

The use of backward operators is not new in the definition of properties of programs through temporal log-
ics [109] or modal logics [89]. In particular, in the latter work a logic with a past operator was introduced to capture
interesting properties of generalized labeled transition systems where only observable actions are considered. In
that setting it was proven that the equivalence induced by the considered logic coincides with a generalization of
the strong bisimilarity of [112]. This result was later confirmed in [58] by showing that the addition of a strong
backward modality – interpreted over computation paths instead of states – provides no additional discriminating
power with respect to Hennessy-Milner logic, i.e., the induced equivalence is again the strong bisimilarity of [112].

In contrast, we have seen that the strong forward bisimilarities ∼FB and ∼FB:ps do not coincide with the strong
forward-reverse bisimilarity ∼FRB and this extends to their weak counterparts. Therefore, in our context – in which
all the equivalences are defined over states – the presence of backward modalities matters. It is worth noting that
our two weak backward modalities are similar to the ones considered in [57, 58] to characterize weak back-and-forth
bisimilarity defined over computation paths.

5.2 Fragments Characterizing the Nine Bisimilarities

We can characterize all the nine bisimilarities defined in the two previous chapters by taking suitable fragments of L.
For each of the four strong bisimilarities ∼B, where B ∈ {FB,FB:ps,RB,FRB}, we denote the corresponding logic
by LB. We proceed similarly for each of the five weak bisimilarities ≈B, where B ∈ {FB,FB:ps,RB,FRB,FRB:ps},
to obtain the corresponding logic LτB. The nine fragments are listed in Table 5.1, which indicates that true, negation,
and conjunction are common to all fragments, while the proposition init is needed only for the three past-sensitive
bisimilarities. We now show that each such fragment induces the intended bisimilarity, in the sense that two
processes are bisimilar iff they satisfy the same set of formulas in the corresponding fragment.

The proof technique that we use is inspired by the one employed in [2] to demonstrate that Hennessy-Milner
logic characterizes the strong bisimilarity for forward-only processes of [112]. To prove that any two bisimilar
processes P1 and P2 satisfy the same formulas of the considered fragment, we assume that P1 |= φ for an arbitrary
formula φ and then we show that P2 |= φ too by induction on the depth of φ, where the depth of φ ∈ L – intended
as an upper bound to the depth of the syntax tree of the formula – is defined by induction on the syntactical
structure of φ as follows:
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depth(true) = depth(init) = 0
depth(¬φ′) = 1 + depth(φ′)

depth(φ1 ∧ φ2) = 1 + max(depth(φ1), depth(φ2))
depth(〈a〉φ′) = depth(〈a†〉φ′) = 1 + depth(φ′)

depth(〈〈τ〉〉φ′) = depth(〈〈a〉〉φ′) = depth(〈〈τ †〉〉φ′) = depth(〈〈a†〉〉φ′) = 1 + depth(φ′)
As for the reverse implication, we show that the relation B formed by all pairs of processes (P1, P2) that satisfy
the same formulas of the considered fragment is a bisimulation. More specifically, starting from (P1, P2) ∈ B we
assume by contradiction that, whenever P1 has a strong/weak a-transition to/from P ′1, then there is no P ′2 such
that P2 has a strong/weak a-transition to/from P ′2 with (P ′1, P

′
2) ∈ B, i.e., satisfying the same formulas as P ′1.

This entails that, for every P2,i forward/backward reachable from P2 via a strong/weak a-transition, by definition
of B there exists some formula φi such that P ′1 |= φi and P ′2,i 6|= φi, which leads to a formula with a strong/weak
forward/backward modality on a followed by

∧
i φi that is satisfied by P1 but not by P2, thereby contradicting

(P1, P2) ∈ B.

Theorem 5.1. Let P1, P2 ∈ P and B ∈ {FB,FB:ps,RB,FRB}. Then P1 ∼B P2 iff ∀φ ∈ LB. P1 |= φ⇐⇒ P2 |= φ.

Proof. We consider each of the four strong bisimilarities in turn:

• Let B = FB. The proof is divided into two parts:

– Assuming that P1 ∼FB P2 and P1 |= φ for an arbitrary formula φ ∈ LFB, we prove that P2 |= φ too
by proceeding by induction on k = depth(φ):

∗ If k = 0 then φ must be true, which is trivially satisfied by P2 too.
∗ If k ≥ 1 there are three cases:

· If φ is ¬φ′ then from P1 |= ¬φ′ we derive that P1 6|= φ′. If it were P2 |= φ′ then by the induction
hypothesis it would hold that P1 |= φ′, which is not the case. Therefore P2 6|= φ′ and hence
P2 |= ¬φ′ too.

· If φ is φ1∧φ2 then from P1 |= φ1∧φ2 we derive that P1 |= φ1 and P1 |= φ2. From the induction
hypothesis it follows that P2 |= φ1 and P2 |= φ2 and hence P2 |= φ1 ∧ φ2 too.

· If φ is 〈a〉φ′ then from P1 |= 〈a〉φ′ we derive that there exists P1
θ1−→ P ′1 such that act(θ1) = a

and P ′1 |= φ′. From P1 ∼FB P2 it then follows that there exists P2
θ2−→ P ′2 such that act(θ2) = a

and P ′1 ∼FB P ′2. By applying the induction hypothesis we derive that P ′2 |= φ′ and hence
P2 |= 〈a〉φ′ too.

– Assuming that P1 and P2 satisfy the same formulas in LFB, we prove that the symmetric relation
B = {(Q1, Q2) ∈ P× P | Q1 and Q2 satisfy the same formulas in LFB} is a forward bisimulation.
Given (Q1, Q2) ∈ B such that Q1

θ1−→Q′1, suppose by contradiction that there is no Q′2 satisfying the
same formulas as Q′1 such that Q2

θ2−→Q′2 and act(θ1) = act(θ2), i.e., (Q′1, Q
′
2) ∈ B for no Q′2 act(θ1)-

reachable from Q2. Since Q2 has finitely many outgoing transitions, the set of processes that Q2 can
reach by performing an act(θ1)-transition is finite, say {Q′2,1, . . . , Q′2,n} with n ≥ 0. Since none of the
processes in the set satisfies the same formulas as Q′1, for each 1 ≤ i ≤ n there exists φi ∈ LFB such
that Q′1 |= φi but Q′2,i 6|= φi.

We can then construct the formula 〈act(θ1)〉
n∧
i=1

φi that is satisfied by Q1 but not by Q2; if n = 0 then it
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is sufficient to take 〈act(θ1)〉true. This formula violates (Q1, Q2) ∈ B, hence there must exist at least one
Q′2 satisfying the same formulas as Q′1 such that Q2

θ2−→Q′2 and act(θ1) = act(θ2), so that (Q′1, Q
′
2) ∈ B.

• Let B = FB:ps. The proof is divided into two parts:

– Assuming that P1 ∼FB:ps P2 and P1 |= φ for an arbitrary formula φ ∈ LFB:ps, we prove that P2 |= φ too
by proceeding by induction on k = depth(φ):

∗ If k = 0 then either φ = true or φ = init. In the former case, true is trivially satisfied by P2 too. In
the latter case, since from P1 |= init it follows that initial(P1) and from P1 ∼FB:ps P2 it follows that
initial(P1)⇐⇒ initial(P2), we derive that initial(P2) and hence P2 |= init too.

∗ If k ≥ 1 then we proceed like in the case B = FB.
– Assuming that P1 and P2 satisfy the same formulas in LFB:ps, we prove that the symmetric relation
B = {(Q1, Q2) ∈ P × P | Q1 and Q2 satisfy the same formulas in LFB:ps} is a past-sensitive forward
bisimulation.
Given (Q1, Q2) ∈ B, first of all we observe that Q1 |= init ⇐⇒ Q2 |= init and hence initial(Q1) ⇐⇒
initial(Q2). If Q1

θ1−→Q′1 then we proceed like in the case B = FB.

• Let B = RB. The proof is divided into two parts:

– Assuming that P1 ∼RB P2 and P1 |= φ for an arbitrary formula φ ∈ LRB, we prove that P2 |= φ too
by proceeding by induction on k = depth(φ):

∗ If k = 0 then we proceed like in the case B = FB.
∗ If k ≥ 1 there are three cases:

· If φ is ¬φ′ then we proceed like in the case B = FB.
· If φ is φ1 ∧ φ2 then we proceed like in the case B = FB.

· If φ is 〈a†〉φ′ then from P1 |= 〈a†〉φ′ we derive that there exists P ′1
θ1−→ P1 such that act(θ1) = a

and P ′1 |= φ′. From P1 ∼RB P2 it then follows that there exists P ′2
θ2−→ P2 such that act(θ2) = a

and P ′1 ∼RB P ′2. By applying the induction hypothesis we derive that P ′2 |= φ′ and hence
P2 |= 〈a†〉φ′ too.

– Assuming that P1 and P2 satisfy the same formulas in LRB, we prove that the symmetric relation
B = {(Q1, Q2) ∈ P× P | Q1 and Q2 satisfy the same formulas in LRB} is a reverse bisimulation.
Given (Q1, Q2) ∈ B such that Q′1

θ1−→Q1, suppose by contradiction that there is no Q′2 satisfying the
same formulas as Q′1 such that Q′2

θ2−→Q2 and act(θ1) = act(θ2), i.e., (Q′1, Q
′
2) ∈ B for no Q′2 act(θ1)-

reaching Q2. Since Q2 has finitely many incoming transitions, the set of processes that can reach Q2 by
performing an act(θ1)-transition is finite, say {Q′2,1, . . . , Q′2,n} with n ≥ 0. Since none of the processes
in the set satisfies the same formulas as Q′1, for each 1 ≤ i ≤ n there exists φi ∈ LRB such that Q′1 |= φi
but Q′2,i 6|= φi.

We can then construct the formula 〈act(θ1)†〉
n∧
i=1

φi that is satisfied by Q1 but not by Q2; if n = 0

then it is sufficient to take 〈act(θ1)†〉true. This formula violates (Q1, Q2) ∈ B, hence there must exist
at least one Q′2 satisfying the same formulas as Q′1 such that Q′2

θ2−→Q2 and act(θ1) = act(θ2), so that
(Q′1, Q

′
2) ∈ B.
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• Let B = FRB. The proof is divided into two parts:

– Assuming that P1 ∼FRB P2 and P1 |= φ for an arbitrary formula φ ∈ LFRB, we prove that P2 |= φ too
by proceeding by induction on k = depth(φ):

∗ If k = 0 then we proceed like in the case B = FB.
∗ If k ≥ 1 there are four cases:

· If φ is ¬φ′ then we proceed like in the case B = FB.
· If φ is φ1 ∧ φ2 then we proceed like in the case B = FB.
· If φ is 〈a〉φ′ then we proceed like in the case B = FB.
· If φ is 〈a†〉φ′ then we proceed like in the case B = RB.

– Assuming that P1 and P2 satisfy the same formulas in LFRB, we prove that the symmetric relation B =
{(Q1, Q2) ∈ P× P | Q1 and Q2 satisfy the same formulas in LFRB} is a forward-reverse bisimulation.
Given (Q1, Q2) ∈ B:

∗ If Q1
θ1−→Q′1 then we proceed like in the case B = FB.

∗ If Q′1
θ1−→Q1 then we proceed like in the case B = RB.

Theorem 5.2. Let P1, P2 ∈ P and B ∈ {FB,FB:ps,RB,FRB,FRB:ps}. Then P1 ≈B P2 iff ∀φ ∈ LτB. P1 |= φ⇐⇒
P2 |= φ.

Proof. We consider each of the five weak bisimilarities in turn:

• Let B = FB. The proof is divided into two parts:

– Assuming that P1 ≈FB P2 and P1 |= φ for an arbitrary formula φ ∈ LτFB, we prove that P2 |= φ too
by proceeding by induction on k = depth(φ):

∗ If k = 0 then φ must be true, which is trivially satisfied by P2 too.
∗ If k ≥ 1 there are four cases:

· If φ is ¬φ′ then from P1 |= ¬φ′ we derive that P1 6|= φ′. If it were P2 |= φ′ then by the induction
hypothesis it would hold that P1 |= φ′, which is not the case. Therefore P2 6|= φ′ and hence
P2 |= ¬φ′ too.

· If φ is φ1∧φ2 then from P1 |= φ1∧φ2 we derive that P1 |= φ1 and P1 |= φ2. From the induction
hypothesis it follows that P2 |= φ1 and P2 |= φ2 and hence P2 |= φ1 ∧ φ2 too.

· If φ is 〈〈τ〉〉φ′ then from P1 |= 〈〈τ〉〉φ′ we derive that there exists P1 ==⇒ P ′1 such that P ′1 |= φ′.
From P1 ≈FB P2 and Proposition 3.3 it then follows that there exists P2 ==⇒ P ′2 such that
P ′1 ≈FB P ′2. By applying the induction hypothesis we derive that P ′2 |= φ′ and hence P2 |= 〈〈τ〉〉φ′
too.

· If φ is 〈〈a〉〉φ′ then from P1 |= 〈〈a〉〉φ′ we derive that there exists P1 ==⇒ θ1−→==⇒ P ′1 such that
act(θ1) = a and P ′1 |= φ′. From P1 ≈FB P2 and Proposition 3.3 it then follows that there exists
P2 ==⇒ θ2−→==⇒ P ′2 such that act(θ2) = a and P ′1 ≈FB P ′2. By applying the induction hypothesis
we derive that P ′2 |= φ′ and hence P2 |= 〈〈a〉〉φ′ too.
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– Assuming that P1 and P2 satisfy the same formulas in LτFB, we prove that the symmetric relation
B = {(Q1, Q2) ∈ P× P | Q1 and Q2 satisfy the same formulas in LτFB} is a weak forward bisimulation.
Given (Q1, Q2) ∈ B such that Q1

θ1−→Q′1, there are two cases:

∗ If act(θ1) = τ suppose by contradiction that there is no Q′2 satisfying the same formulas as Q′1
such that Q2 ==⇒Q′2, i.e., (Q′1, Q

′
2) ∈ B for no Q′2 τ∗-reachable from Q2. Since Q2 and the finitely

many processes τ∗-reachable from it have finitely many outgoing transitions, the set of processes
that Q2 can reach by performing a possibly empty sequence of finitely many τ -transitions is finite,
say {Q′2,1, . . . , Q′2,n} with n ≥ 0. Since none of the processes in the set satisfies the same formulas
as Q′1, for each 1 ≤ i ≤ n there exists φi ∈ LτFB such that Q′1 |= φi but Q′2,i 6|= φi.

We can then construct the formula 〈〈τ〉〉
n∧
i=1

φi that is satisfied by Q1 but not by Q2; if n = 0 then

it is sufficient to take 〈〈τ〉〉true. This formula violates (Q1, Q2) ∈ B, hence there must exist at least
one Q′2 satisfying the same formulas as Q′1 such that Q2 ==⇒Q′2, so that (Q′1, Q

′
2) ∈ B.

∗ If act(θ1) 6= τ suppose by contradiction that there is no Q′2 satisfying the same formulas as Q′1 such
that Q2 ==⇒ θ2−→==⇒Q′2 and act(θ1) = act(θ2), i.e., (Q′1, Q

′
2) ∈ B for no Q′2 τ∗act(θ1)τ∗-reachable

from Q2. Since Q2 and the finitely many processes τ∗act(θ1)τ∗-reachable from it have finitely many
outgoing transitions, the set of processes that Q2 can reach by performing an act(θ1)-transition
preceded and followed by a possibly empty sequence of finitely many τ -transitions is finite, say
{Q′2,1, . . . , Q′2,n} with n ≥ 0. Since none of the processes in the set satisfies the same formulas
as Q′1, for each 1 ≤ i ≤ n there exists φi ∈ LτFB such that Q′1 |= φi but Q′2,i 6|= φi.

We can then construct the formula 〈〈act(θ1〉〉
n∧
i=1

φi that is satisfied byQ1 but not byQ2; if n = 0 then

it is sufficient to take 〈〈act(θ1〉〉true. This formula violates (Q1, Q2) ∈ B, hence there must exist at
least one Q′2 satisfying the same formulas as Q′1 such that Q2 ==⇒ θ2−→==⇒Q′2 and act(θ1) = act(θ2),
so that (Q′1, Q

′
2) ∈ B.

• Let B = FB:ps. The proof is divided into two parts:

– Assuming that P1 ≈FB:ps P2 and P1 |= φ for an arbitrary formula φ ∈ LτFB:ps, we prove that P2 |= φ too
by proceeding by induction on k = depth(φ):

∗ If k = 0 then either φ = true or φ = init. In the former case, true is trivially satisfied by P2 too. In
the latter case, since from P1 |= init it follows that initial(P1) and from P1 ≈FB:ps P2 it follows that
initial(P1)⇐⇒ initial(P2), we derive that initial(P2) and hence P2 |= init too.

∗ If k ≥ 1 then we proceed like in the case B = FB.

– Assuming that P1 and P2 satisfy the same formulas in LτFB:ps, we prove that the symmetric relation
B = {(Q1, Q2) ∈ P×P | Q1 and Q2 satisfy the same formulas in LτFB:ps} is a weak past-sensitive forward
bisimulation.
Given (Q1, Q2) ∈ B, first of all we observe that Q1 |= init ⇐⇒ Q2 |= init and hence initial(Q1) ⇐⇒
initial(Q2). If Q1

θ1−→Q′1 then we proceed like in the case B = FB.
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• Let B = RB. The proof is divided into two parts:

– Assuming that P1 ≈RB P2 and P1 |= φ for an arbitrary formula φ ∈ LτRB, we prove that P2 |= φ too
by proceeding by induction on k = depth(φ):

∗ If k = 0 then we proceed like in the case B = FB.
∗ If k ≥ 1 there are four cases:

· If φ is ¬φ′ then we proceed like in the case B = FB.
· If φ is φ1 ∧ φ2 then we proceed like in the case B = FB.
· If φ is 〈〈τ †〉〉φ′ then from P1 |= 〈〈τ †〉〉φ′ we derive that there exists P ′1 ==⇒ P1 such that P ′1 |= φ′.
From P1 ≈RB P2 and Proposition 3.4 it then follows that there exists P ′2 ==⇒ P2 such that
P ′1 ≈RB P ′2. By applying the induction hypothesis we derive that P ′2 |= φ′ and hence P2 |=
〈〈τ †〉〉φ′ too.

· If φ is 〈〈a†〉〉φ′ then from P1 |= 〈〈a†〉〉φ′ we derive that there exists P ′1 ==⇒ θ1−→==⇒ P1 such that
act(θ1) = a and P ′1 |= φ′. From P1 ≈RB P2 and Proposition 3.4 it then follows that there exists
P ′2 ==⇒ θ2−→==⇒ P2 such that act(θ1) = act(θ2) and P ′1 ≈RB P ′2. By applying the induction
hypothesis we derive that P ′2 |= φ′ and hence P2 |= 〈〈a†〉〉φ′ too.

– Assuming that P1 and P2 satisfy the same formulas in LτRB, we prove that the symmetric relation
B = {(Q1, Q2) ∈ P× P | Q1 and Q2 satisfy the same formulas in LτRB} is a weak reverse bisimulation.
Given (Q1, Q2) ∈ B such that Q′1

θ1−→Q1, there are two cases:

∗ If act(θ1) = τ suppose by contradiction that there is no Q′2 satisfying the same formulas as Q′1
such that Q′2 ==⇒Q2, i.e., (Q′1, Q

′
2) ∈ B for no Q′2 τ∗-reaching Q2. Since Q2 and the finitely

many processes τ∗-reaching it have finitely many incoming transitions, the set of processes that
can reach Q2 by performing a possibly empty sequence of finitely many τ -transitions is finite, say
{Q′2,1, . . . , Q′2,n} with n ≥ 0. Since none of the processes in the set satisfies the same formulas
as Q′1, for each 1 ≤ i ≤ n there exists φi ∈ LτRB such that Q′1 |= φi but Q′2,i 6|= φi.

We can then construct the formula 〈〈τ †〉〉
n∧
i=1

φi that is satisfied by Q1 but not by Q2; if n = 0 then

it is sufficient to take 〈〈τ †〉〉true. This formula violates (Q1, Q2) ∈ B, hence there must exist at least
one Q′2 satisfying the same formulas as Q′1 such that Q′2 ==⇒Q2, so that (Q′1, Q

′
2) ∈ B.

∗ If act(θ1) 6= τ suppose by contradiction that there is no Q′2 satisfying the same formulas as Q′1 such
that Q′2 ==⇒ θ2−→==⇒Q2 and act(θ1) = act(θ2), i.e., (Q′1, Q

′
2) ∈ B for no Q′2 τ∗act(θ1)τ∗-reaching Q2.

Since Q2 and the finitely many processes τ∗act(θ1)τ∗-reaching it have finitely many incoming tran-
sitions, the set of processes that can reach Q2 by performing an act(θ1)-transition preceded and
followed by a possibly empty sequence of finitely many τ -transitions is finite, say {Q′2,1, . . . , Q′2,n}
with n ≥ 0. Since none of the processes in the set satisfies the same formulas as Q′1, for each
1 ≤ i ≤ n there exists φi ∈ LτRB such that Q′1 |= φi but Q′2,i 6|= φi.

We can then construct the formula 〈〈act(θ1)†〉〉
n∧
i=1

φi that is satisfied by Q1 but not by Q2;

if n = 0 then it is sufficient to take 〈〈act(θ1)†〉〉true. This formula violates (Q1, Q2) ∈ B, hence
there must exist at least one Q′2 satisfying the same formulas as Q′1 such that Q′2 ==⇒ θ2−→==⇒Q2

and act(θ1) = act(θ2), so that (Q′1, Q
′
2) ∈ B.
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• Let B = FRB. The proof is divided into two parts:

– Assuming that P1 ≈FRB P2 and P1 |= φ for an arbitrary formula φ ∈ LτFRB, we prove that P2 |= φ too
by proceeding by induction on k = depth(φ):

∗ If k = 0 then we proceed like in the case B = FB.
∗ If k ≥ 1 there are six cases:

· If φ is ¬φ′ then we proceed like in the case B = FB.
· If φ is φ1 ∧ φ2 then we proceed like in the case B = FB.
· If φ is 〈〈τ〉〉φ′ then we proceed like in the case B = FB by using Proposition 3.5.
· If φ is 〈〈a〉〉φ′ then we proceed like in the case B = FB by using Proposition 3.5.
· If φ is 〈〈τ †〉〉φ′ then we proceed like in the case B = RB by using Proposition 3.5.
· If φ is 〈〈a†〉〉φ′ then we proceed like in the case B = RB by using Proposition 3.5.

– Assuming that P1 and P2 satisfy the same formulas in LτFRB, we prove that the symmetric relation
B = {(Q1, Q2) ∈ P × P | Q1 and Q2 satisfy the same formulas in LτFRB} is a weak forward-reverse
bisimulation.
Given (Q1, Q2) ∈ B:

∗ If Q1
θ1−→Q′1 then we proceed like in the case B = FB.

∗ If Q′1
θ1−→Q1 then we proceed like in the case B = RB.

• Let B = FRB:ps. The proof is divided into two parts:

– Assuming that P1 ≈FRB:ps P2 and P1 |= φ for an arbitrary formula φ ∈ LτFRB:ps, we prove that P2 |= φ
too by proceeding by induction on k = depth(φ):

∗ If k = 0 then we proceed like in the case B = FB:ps.
∗ If k ≥ 1 then we proceed like in the case B = FRB.

– Assuming that P1 and P2 satisfy the same formulas in LτFRB:ps, we prove that the symmetric relation
B = {(Q1, Q2) ∈ P × P | Q1 and Q2 satisfy the same formulas in LτFRB:ps} is a weak past-sensitive
forward-reverse bisimulation.
Given (Q1, Q2) ∈ B, first of all we observe that Q1 |= init ⇐⇒ Q2 |= init and hence initial(Q1) ⇐⇒
initial(Q2). Then we proceed like in the case B = FRB.
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We conclude with the following remarks:

• The fragments that characterize the four forward bisimilarities ∼FB, ∼FB:ps, ≈FB, ≈FB:ps are essentially
identical to the Hennessy-Milner logic – first two bisimilarities – and its weak variant – last two bisimilarities.
The only difference is the possible presence of proposition init, which is necessary to distinguish between initial
and non-initial processes in the past-sensitive cases.

• The fragments that characterize the two reverse bisimilarities ∼RB and ≈RB over sequential processes need
only true and the backward modalities 〈a†〉 – first bisimilarity – or 〈〈τ †〉〉 and 〈〈a†〉〉 – second bisimilarity – due
to the forthcoming Theorems 7.1 and 7.2 showing that reverse bisimulation semantics coincides with reverse
trace semantics over those processes. As for the counterexample about concurrent processes preceding those
two theorems, a distinguishing formula with respect to ∼RB is 〈c†〉¬(〈a†〉true ∧ 〈b†〉true ∧ 〈c†〉true).

• The fragments that characterize the three forward-reverse bisimilarities ∼FRB, ≈FRB, ≈FRB:ps are akin to
the logic LBF introduced in [57] to characterize weak back-and-forth bisimilarity and branching bisimilarity.
A crucial distinction between our three fragments and LBF is that the former are interpreted over states while
LBF is interpreted over computation paths. Moreover, as already mentioned, defining a strong variant of LBF

would yield a logic that characterizes the strong bisimilarity of [112], whereas in our setting forward-only
bisimilarities are different from forward-reverse ones and hence different logics are needed.

• According to the logical characterizations of branching bisimilarity in [58], the forthcoming Theorem 7.3,
which shows that branching bisimilarity and weak forward-reverse bisimilarity coincide over initial sequential
processes, opens the way to two further logical characterizations of ≈FRB over those processes:

– The first additional characterization replaces the two backward modalities with an until operator
φ1〈〈a〉〉φ2. This is satisfied by a process P iff either a = τ and P satisfies φ2, or there exists
P ==⇒ P̄

θ−→ P ′ such that every process along P ==⇒ P̄ satisfies φ1, act(θ) = a, and P ′ satisfies φ2.

– The second additional characterization is given by the temporal logic CTL∗ without the next operator,
thanks to a revisitation of the stuttering equivalence of [46] and the bridge between Kripke structures
(in which states are decorated with propositions) and labeled transition systems (in which transitions
are decorated with actions) established in [58].

As for the first counterexample about concurrent processes preceding the forthcoming Theorem 7.3,
a distinguishing formula with respect to ≈FRB is 〈〈a〉〉〈〈b〉〉(〈〈a†〉〉true ∧ 〈〈b†〉〉true).
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Chapter 6

Sound and Complete Axiomatizations

In this chapter, whose contents have appeared in [27, 25, 29], we start by recalling some notions about deduction
systems (Section 6.1) as well as observation functions and process encodings for deriving expansion laws of parallel
composition (Section 6.2). Then we develop sound and complete axiomatizations for the two forward bisimulation
congruences ∼FB:ps and ≈FB:ps (Section 6.3) and, after providing process encodings based on backward ready
sets (Section 6.4), for the two reverse bisimulation congruences ∼RB and ≈RB (Section 6.5) and the two forward-
reverse bisimulation congruences ∼FRB and ≈FRB:ps (Section 6.6). These axiomatizations (see the forthcoming
Tables 6.1, 6.2, 6.4, 6.5, 6.6, 6.7) elucidate the fundamental equational laws characterizing the aforementioned
bisimilarities and can also be exploited as bisimilarity-preserving rewriting rules for manipulating processes.

6.1 Deduction Systems

The deduction systems that we will consider are sets comprising the general axioms and inference rules below
for = on P, each enriched with a set A of additional bisimilarity-specific axioms. They correspond to the
fact that ∼FB:ps, ≈FB:ps, ∼RB, ≈RB, ∼FRB, ≈FRB:ps are equivalence relations (Propositions 3.1, 4.1, 3.6, 4.2)
as well as congruences with respect to all PRPC operators (Theorems 4.1 and 4.2):

• Reflexivity: P = P .

• Symmetry:
P1 = P2

P2 = P1
.

• Transitivity:
P1 = P2 P2 = P3

P1 = P3
.

• .-substitutivity:
P1 = P2 initial(P1) ∧ initial(P2)

a . P1 = a . P2
,

P1 = P2

a†. P1 = a†. P2

.

• xq-substitutivity:
P1 = P2

P1 xρq = P2 xρq
.

• +-substitutivity:
P1 = P2 initial(P ) ∨ (initial(P1) ∧ initial(P2))

P1 + P = P2 + P P + P1 = P + P2
.
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• ‖-substitutivity:
P1 = P2 P1 ‖L P, P2 ‖L P, P ‖L P1, P ‖L P2 ∈ P

P1 ‖L P = P2 ‖L P P ‖L P1 = P ‖L P2
.

The deducibility relation will be denoted by `. Given ' ∈ {∼FB:ps,≈FB:ps,∼RB,≈RB,∼FRB,≈FRB:ps},
the deduction system enriched with A' is sound (resp. complete) for ' iff for all P1, P2 ∈ P it holds that
if A' ` P1 = P2 then P1 ' P2 (resp. if P1 ' P2 then A' ` P1 = P2). To be precise, we should say ground
complete due to the absence of variables within processes.

Some of the proofs related to completeness will proceed by induction on the size of a process, intended as an
upper bound to the depth of the proved labeled transition system starting from the initial process obtained from
the original one by eliminating all action decorations. It is defined by induction on the syntactical structure of
P ∈ P as follows:

size(0) = 0
size(a . P ′) = size(a†. P ′) = 1 + size(P ′)

size(P ′ xρq) = size(P ′)
size(P1 + P2) = max(size(P1), size(P2))
size(P1 ‖L P2) = size(P1) + size(P2)

6.2 Expansion Laws via Observation Functions and Process Encodings

Expansion laws are among the most important bisimilarity-specific axioms. They are useful to relate sequential
specifications of systems with their concurrent implementations [112]. In the interleaving setting they can be
obtained quite naturally, whereas this is not the case under true concurrency.

More precisely, the usual technique for axiomatizing bisimilarity consists of introducing normal forms, in which
only action prefix and alternative composition occur, along with expansion laws, through which occurrences of
parallel composition are progressively eliminated. Although this originated in the interleaving setting for forward-
only calculi [88] to identify processes such as a . 0 ‖∅ b . 0 and a . b . 0 + b . a . 0, it was later exploited also in the truly
concurrent spectrum [77, 66] to distinguish processes like the aforementioned two. This requires an extension of
the process calculus syntax to add suitable discriminating information within action prefixes. For example:

• Causal bisimilarity [55, 56] (corresponding to history-preserving bisimilarity [129]): every action is enriched
with the set of its causing actions, each of which is expressed as a numeric backward pointer, so that
the former process is expanded to <a, ∅> .<b, ∅> . 0 + <b, ∅> .<a, ∅> . 0 while the latter process becomes
<a, ∅> .<b, {1}> . 0 +<b, ∅> .<a, {1}> . 0.

• Location bisimilarity [43] (corresponding to local history-preserving bisimilarity [48]): every action is
enriched with the name of the location in which it is executed, so that the former process is ex-
panded to <a, la> .<b, lb> . 0 +<b, lb> .<a, la> . 0 while the latter process becomes <a, la> .<b, lalb> . 0 +
<b, lb> .<a, lbla> . 0.

• Pomset bisimilarity [40]: instead of a single action, a prefix may contain a partially ordered multiset of
actions that are either independent of each other or causally related, so that the former process is expanded
to a . b . 0 + b . a . 0 + (a ‖ b) . 0 while the latter process is left unchanged.

Thanks to the proved operational semantics in Table 2.1, by following the proved trees approach of [59]
we can uniformly derive expansion laws for the two interleaving bisimulation congruences ∼FB:ps and ≈FB:ps
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and the four truly concurrent bisimulation congruences ∼RB, ≈RB, ∼FRB, ≈FRB:ps. The first step consists of
introducing six observation functions `F, `F,w, `R, `R,w, `FR, `FR,w that respectively transform the proof terms
labeling proved transitions into suitable observations according to ∼FB:ps, ≈FB:ps, ∼RB, ≈RB, ∼FRB, ≈FRB:ps.
In the interleaving case proof terms are simply reduced to the actions they contain, while in the truly concurrent
case they are transformed into actions extended with discriminating information as exemplified above.

In addition to a specific proof term θ, as shown in [59] each such function, say `, may depend on other possible
parameters in the proved labeled transition system generated by the semantic rules in Table 2.1. Moreover, it must
preserve actions, i.e., if `(θ1) = `(θ2) then act(θ1) = act(θ2). Based on the corresponding `, from each of the six
aforementioned congruences we can thus derive a bisimilarity in which, whenever (P1, P2) ∈ B, the strong forward
clause requires that:

for each P1
`(θ1)−−−→ P ′1 there exists P2

`(θ2)−−−→ P ′2 such that `(θ1) = `(θ2) and (P ′1, P
′
2) ∈ B

while the strong backward clause requires that:

for each P ′1
`(θ1)−−−→ P1 there exists P ′2

`(θ2)−−−→ P2 such that `(θ1) = `(θ2) and (P ′1, P
′
2) ∈ B

and similarly for the weak clauses. We indicate with ∼FB:ps:`F , ≈FB:ps:`F,w , ∼RB:`R , ≈RB:`R,w , ∼FRB:`FR
,

≈FRB:ps:`FR,w
the six resulting bisimilarities.

The second step – left implicit in [59] – consists of lifting ` to processes so as to encode observations within action
prefixes of new processes in which only action prefix and alternative composition occur. For P ∈ Pseq the idea is
to proceed inductively as follows where σ ∈ Θ∗seq for Θseq = {.a, xqρ, .+,+. | a ∈ A, ρ : A → A such that ρ(τ) = τ}:

`σ(0) = 0
`σ(a . P ′) = `(σa) . `σ.a(P ′)
`σ(a†. P ′) = `(σa)†. `σ.a(P ′)
`σ(P ′ xρq) = `σxqρ(P ′)

`σ(P1 + P2) = `σ .+(P1) + `σ+.(P2)
Every sequential process P will thus be encoded as `ε(P ), so for example a . b . 0 + b . a . 0 will become:

`.+(a . b . 0) + `+.(b . a . 0) = `(.+a) . `.+.a(b . 0) + `(+. b) . `+. .b(a . 0) = `(.+a) . `(.+.ab) . 0 + `(+. b) . `(+. .ba) . 0
Then, given two initial sequential processes encoded as follows due to the commutativity and associativity of

alternative composition (where any summation over an empty index set is 0 and every θi is of the form σiai):
P1 =

∑
i∈I1

`(θ1,i) . P1,i and P2 =
∑
i∈I2

`(θ2,i) . P2,i

the idea is to encode their parallel composition through the following expansion law (where 0 ‖L 0 yields 0):
P1 ‖L P2 =

∑
i∈I1,act(θ1,i)/∈L

`(ULθ1,i) . (P1,i ‖L P2) +
∑

i∈I2,act(θ2,i)/∈L
`(TLθ2,i) . (P1 ‖L P2,i) +∑

i∈I1,act(θ1,i)∈L

∑
j∈I2,act(θ2,j)=act(θ1,i)

`(〈θ1,i,θ2,j〉L) . (P1,i ‖L P2,j)

For instance, a . 0 ‖∅ b . 0, represented as `(a) . 0 ‖∅ `(b) . 0, will be expanded as follows:
`(a) . 0 ‖∅ `(b) . 0 = `(U∅a) . (0 ‖∅ `(b) . 0) + `(T∅b) . (`(a) . 0 ‖∅ 0) = `(U∅a) . `(T∅b) . 0 + `(T∅b) . `(U∅a) . 0

where, compared to the encoding of a . b . 0 + b . a . 0, in general `(.+a) 6= `(U∅a) 6= `(+. .ba) and `(.+.ab) 6= `(T∅b) 6=
`(+. b). The expansion laws for the cases in which the two sequential processes are not both initial – which
are specific to reversible processes and hence not addressed in [59] – can be derived similarly. We will see that
care must be taken when both processes are non-initial because for example a†. 0 ‖∅ b†. 0 cannot be expanded to
`(U∅a)†. `(T∅b)†. 0 + `(T∅b)†. `(U∅a)†. 0 as the latter is not even well-formed due to the presence of executed actions
on both sides of +.

In the subsequent sections we will investigate how to define the six observation functions in such a way that
the six bisimilarities ∼FB:ps:`F , ≈FB:ps:`F,w , ∼RB:`R , ≈RB:`R,w , ∼FRB:`FR

, ≈FRB:ps:`FR,w
respectively coincide with
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the six congruences ∼FB:ps, ≈FB:ps, ∼RB, ≈RB, ∼FRB, ≈FRB:ps. As far as true concurrency is concerned, we point
out that the observation functions developed in [59] for causal semantics and location semantics were inspired by
additional information already present in the labels of the original semantics, i.e., backward pointers sets [55] and
localities [43] respectively. In our case, instead, the original semantics in Table 2.1 features labels that contain
only actions (and localities in the case of parallel composition), hence for reverse and forward-reverse congruences
we have to find out the additional information necessary to discriminate, e.g., the processes associated with the
three bottom states in Figure 1.1.

6.3 Axiomatizations of Forward Bisimulation Congruences

Strong and weak forward bisimilarities respectively coincide with the strong and weak bisimilarities over forward-
only processes of [112] and hence comply with the interleaving view of concurrency. Therefore, we can exploit the
same observation function for interleaving semantics used in [59], which we express as `F(θ) = `F,w(θ) = act(θ)
and immediately implies that ∼FB:ps:`F and ≈FB:ps:`F,w respectively coincide with ∼FB:ps and ≈FB:ps. Moreover,
no additional information has to be inserted into action prefixes, i.e., the lifting to processes of the observation
function is the identity over processes.

The axioms for ∼FB:ps are presented in Section 6.3.1, while the additional ones for ≈FB:ps are discussed in
Section 6.3.2.

6.3.1 Axiomatization of ∼FB:ps

The set AF of axioms for ∼FB:ps is shown in Table 6.1 (where-clauses ensure P-membership). Axioms AF,1 to AF,4

express associativity, commutativity, neutral element, and idempotency of alternative composition, while axioms
AF,5 to AF,8 represent the application of renaming and its distributivity with respect to alternative composition.
These axioms basically coincide with those for forward-only processes [88].

The subsequent axioms are specific to our reversible setting. Axioms AF,9 and AF,10 together establish that the
presence of the past cannot be ignored, but the specific past can be neglected when moving only forward. Likewise,
axiom AF,11 states that a previously non-selected alternative process can be discarded when moving only forward;
note that it does not subsume axioms AF,3 and AF,4 because P has to be non-initial in AF,11.

Since due to axioms AF,9 and AF,10 we only need to remember whether some action has been executed in the
past, axiom AF,12 is the only expansion law needed for ∼FB:ps. Notation [a†.] stands for the possible presence of
an executed action prefix, with a† being present at the beginning of the expansion iff at least one of a†1 and a†2
is present at the beginning of P1 and P2 respectively. In P1 and P2, as well as on the righthand side of the
expansion, summations are allowed by axioms AF,1 and AF,2 and represent 0 when their index sets are empty
(so that AF ` 0 ‖L 0 = 0 + 0 + 0 = 0 due to axiom AF,3, substitutivity with respect to alternative composition, and
transitivity).

Following [88], to show the soundness and ground completeness of AF for ∼FB:ps we introduce a suitable normal
form to which every process can be reduced. The only operators that can occur in such a normal form are action
prefix and alternative composition, hence all processes in normal form are sequential and renaming free.

Definition 6.1. We say that P ∈ P is in forward normal form, written F-nf, iff it is equal to [a†.]
∑

i∈I ai . Pi
where the executed action prefix a†._ is optional, I is a finite index set (with the summation being 0 when I = ∅),
and each Pi is initial and in F-nf.

Lemma 6.1. For all (initial) P ∈ P there exists (an initial) Q ∈ P in F-nf such that AF ` P = Q.
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(AF,1) (P +Q) +R = P + (Q+R) where at least two among P , Q, R are initial
(AF,2) P +Q = Q+ P where initial(P ) ∨ initial(Q)
(AF,3) P + 0 = P
(AF,4) P + P = P where initial(P )
(AF,5) 0 xρq = 0
(AF,6) (a . P ) xρq = ρ(a) . (P xρq) where initial(P )
(AF,7) (a†. P ) xρq = ρ(a)†. (P xρq)
(AF,8) (P +Q) xρq = (P xρq) + (Q xρq) where initial(P ) ∨ initial(Q)
(AF,9) a†. P = b†. P if initial(P )
(AF,10) a†. P = P if ¬initial(P )
(AF,11) P +Q = P if ¬initial(P ), where initial(Q)

(AF,12) P1 ‖L P2 = [a†.]

( ∑
i∈I1,a1,i /∈L

a1,i . (P1,i ‖L P ′
2) +∑

i∈I2,a2,i /∈L
a2,i . (P

′
1 ‖L P2,i) +∑

i∈I1,a1,i∈L

∑
j∈I2,a2,j=a1,i

a1,i . (P1,i ‖L P2,j)

)
with Pk = [a†k.]P

′
k, P

′
k =

∑
i∈Ik

ak,i . Pk,i, in F-nf for k ∈ {1, 2} and a† being present iff so is a†1 or a†2

Table 6.1: Axioms characterizing ∼FB:ps

Proof. We proceed by induction on the syntactical structure of P ∈ P:

• If P is 0 then the result follows by taking Q equal to 0 due to reflexivity.

• If P is a . P ′ where P ′ is initial, then by the induction hypothesis there exists Q′ initial and in F-nf such that
AF ` P ′ = Q′. The result follows by taking Q equal to a .Q′ – which is in F-nf because Q′ is initial and in
F-nf – due to substitutivity with respect to action prefix.

• If P is a†. P ′ then by the induction hypothesis there exists Q′ in F-nf such that AF ` P ′ = Q′. There are
two cases:

– If P ′ and Q′ are both initial, then the result follows by taking Q equal to a†. Q′ – which is in F-nf
because Q′ is initial and in F-nf – due to substitutivity with respect to executed action prefix.

– Let P ′ and Q′ be both non-initial. Since Q′ is in F-nf and hence features a single executed action prefix
at the beginning, i.e., Q′ is b†. Q′′ with Q′′ initial and in F-nf, the result follows by taking Q equal
to Q′ by virtue of AF ` a†. P ′ = a†. Q′ due to substitutivity with respect to executed action prefix,
AF ` a†. Q′ = Q′ due to axiom AF,10, and transitivity.

• If P is P ′ xρq then by the induction hypothesis there exists Q′ in F-nf – say Q′ = [a†.]
∑

i∈I ai . Qi – such
that AF ` P ′ = Q′, hence AF ` P ′ xρq = Q′ xρq due to substitutivity with respect to renaming. The result
follows after possibly repeated applications of axioms AF,5 to AF,8 to Q′ xρq due to transitivity.
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• If P is P1 + P2 then by the induction hypothesis there exist Q1 and Q2 in F-nf such that AF ` P1 = Q1 and
AF ` P2 = Q2, hence AF ` P1 + P2 = Q1 +Q2 due to substitutivity with respect to alternative composition.
There are three cases:

– If P1 and P2 are both initial, then Q1 and Q2 are both initial too and hence the result follows by taking
Q equal to Q1 +Q2, up to an application of axiom AF,3 in the case that Q1 +Q2 is not in F-nf because
Q1 and Q2 are not different from 0 (possibly preceded by an application of axiom AF,2 to move the 0
subprocess to the right of +) and transitivity.

– If only P2 is initial, then only Q2 is initial too and hence the result follows by taking Q equal to Q1

by virtue of AF ` Q1 +Q2 = Q1 due to axiom AF,11 and transitivity.
– If only P1 is initial, then only Q1 is initial too and hence the result follows by taking Q equal to Q2

by virtue of AF ` Q1 + Q2 = Q2 + Q1 due to axiom AF,2, AF ` Q2 + Q1 = Q2 due to axiom AF,11,
and transitivity.

• If P is P1 ‖L P2 then by the induction hypothesis there exist Q1 and Q2 in F-nf – say Q1 = [a†1.]Q
′
1

with Q′1 =
∑

i∈I1 a1,i . Q1,i and Q2 = [a†2.]Q
′
2 with Q′2 =

∑
i∈I2 a2,i . Q2,i – such that AF ` P1 = Q1 and

AF ` P2 = Q2, hence AF ` P1 ‖L P2 = Q1 ‖LQ2 due to substitutivity with respect to parallel composi-
tion. As a consequence AF ` P1 ‖L P2 = [a†.](

∑
i∈I1,a1,i /∈L a1,i . (Q1,i ‖LQ′2) +

∑
i∈I2,a2,i /∈L a2,i . (Q

′
1 ‖LQ2,i) +∑

i∈I1,a1,i∈L
∑

j∈I2,a2,j=a1,i a1,i .(Q1,i ‖LQ2,j)) due to axiom AF,12 and transitivity. We recall that Q′1, Q′2,
and every Q1,i and Q2,i are all initial and in F-nf. Moreover, thanks to axiom AF,9 we can assume that either
a1, a2 /∈ L or a1 = a2 ∈ L so as to ensure that Q1 ‖LQ2 ∈ P.
We now prove that, if O1, O2 ∈ P are (initial and) in F-nf and such that O1 ‖LO2 ∈ P, then there exists O ∈ P
(initial and) in F-nf such that AF ` O1 ‖LO2 = O, from which the result will follow due to substitutivity
with respect to action prefix, alternative composition, and executed action prefix if any. Since the parallel
processes that we will encounter are not subprocesses of O1 ‖LO2, we proceed by induction on size(O1 ‖LO2):

– If size(O1 ‖LO2) = 0 then O1 ‖LO2 is 0 ‖L 0 where AF ` 0 ‖L 0 = 0 + 0 + 0 due to axiom AF,12.
The result follows by taking O equal to 0 due to axiom AF,3 applied twice, substitutivity with respect
to alternative composition, and transitivity.

– If size(O1 ‖LO2) > 0 then O1 = [b†1.]O
′
1 with O′1 =

∑
i∈J1 b1,i . O1,i and O2 = [b†2.]O

′
2 with

O′2 =
∑

i∈J2 b2,i . O2,i, where at least one of the following holds: b†1 present, J1 6= ∅, b†2 present,
J2 6= ∅. Thus AF ` O1 ‖LO2 = [b†.]

∑
i∈J1,b1,i /∈L b1,i . (O1,i ‖LO′2) +

∑
i∈J2,b2,i /∈L b2,i . (O

′
1 ‖LO2,i) +∑

i∈J1,b1,i∈L
∑

j∈J2,b2,j=b1,i b1,i . (O1,i ‖LO2,j) due to axiom AF,12. The result follows by applying the
induction hypothesis to every O1,i ‖LO′2, O′1 ‖LO2,i, O1,i ‖LO2,j due to substitutivity with respect to
action prefix, alternative composition, and executed action prefix if any, with possible applications of
axiom AF,3 (each possibly preceded by an application of axiom AF,2 to move the 0 subprocess to the
right of +).

Theorem 6.1. Let P1, P2 ∈ P. Then P1 ∼FB:ps P2 iff AF ` P1 = P2.

Proof. Soundness, i.e., AF ` P1 = P2 =⇒ P1 ∼FB:ps P2, is a straightforward consequence of the general axioms and
inference rules behind ` (see Section 6.1) together with ∼FB:ps being an equivalence relation (see Proposition 4.1)
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and a congruence (see Theorem 4.1), plus the fact that the lefthand side process of each additional axiom in
Table 6.1 is ∼FB:ps-equivalent to the righthand side process of the same axiom.
Let us address ground completeness, i.e., P1 ∼FB:ps P2 =⇒ AF ` P1 = P2. We suppose that P1 and P2 are both
in F-nf and proceed by induction on the syntactical structure of P1:

• If P1 is 0 then from P1 ∼FB:ps P2 and P2 in F-nf we derive that P2 can only be 0, from which the result
follows by reflexivity.

• If P1 is [a†1.]
∑

i∈I1 a1,i . P1,i with a
†
1 present or I1 6= ∅, then from P1 ∼FB:ps P2 and P2 in F-nf we derive that

P2 can only be [a†2.]
∑

i∈I2 a2,i . P2,i with a
†
2 present iff a†1 present and I2 6= ∅ iff I1 6= ∅. We recall that every

P1,i and every P2,i is initial and in F-nf.
Since P1 ∼FB:ps P2, for each i1 ∈ I1 there exists i2 ∈ I2 such that a1,i1 = a2,i2 and P1,i1 ∼FB:ps P2,i2 , and vice
versa. From the induction hypothesis we obtain that AF ` P1,i1 = P2,i2 . It then follows that:

– AF ` a1,i1 . P1,i1 = a2,i2 . P2,i2 due to substitutivity with respect to action prefix.

– AF `
∑

i∈I1 a1,i . P1,i =
∑

i∈I2 a2,i . P2,i due to substitutivity with respect to alternative composition as
well as axiom AF,4 and transitivity in the presence of identical summands on the same side that are
absent on the other side (possibly preceded by applications of axioms AF,1 and AF,2 to move identical
summands next to each other).

– AF ` [a†1.]
∑

i∈I1 a1,i . P1,i = [a†1.]
∑

i∈I2 a2,i . P2,i due to substitutivity with respect to executed action
prefix.

– AF ` [a†1.]
∑

i∈I1 a1,i . P1,i = [a†2.]
∑

i∈I2 a2,i . P2,i due to axiom AF,9 and transitivity if a2 6= a1.

If P1 and P2 are not both in F-nf, thanks to Lemma 6.1 we can find Q1 and Q2 in F-nf, each of which is initial
iff so is its corresponding original process, such that AF ` P1 = Q1 and AF ` P2 = Q2, hence AF ` Q2 = P2 by
symmetry. Due to soundness, we get P1 ∼FB:ps Q1, hence Q1 ∼FB:ps P1 as ∼FB:ps is symmetric, and P2 ∼FB:ps Q2.
Since P1 ∼FB:ps P2, we also get Q1 ∼FB:ps Q2 as ∼FB:ps is transitive. By virtue of what has been shown above,
from Q1 ∼FB:ps Q2 with Q1 and Q2 in F-nf it follows that AF ` Q1 = Q2 and hence AF ` P1 = P2 by transitivity.

6.3.2 Axiomatization of ≈FB:ps

To equationally characterize ≈FB:ps, in addition to the axioms in Table 6.1 we have to consider the τ -laws in
Table 6.2. Axioms AτF,1 to AτF,3 coincide with those for the weak bisimulation congruence over forward-only
processes of [112]. A variant of AτF,1 with a being decorated on both sides, i.e., axiom AτF,4, is also needed for
achieving ground completeness in our reversible setting. We denote by AτF the set of axioms in Tables 6.1 and 6.2.

Note that a†. τ †. P = a†. P can instead be derived from axiom AF,9 or AF,10 depending on whether P is
initial or not (τ †. P = a†. P ) and axiom AF,10 applied only to the lefthand side, along with transitivity. Likewise,
P ′ + τ . P = τ †. P ′ where P ′ is not initial and P + τ †. P ′ = τ †. P ′ where P ′ may not be initial, as well as
a†. (P ′ + τ .Q) + a .Q = a†. (P ′ + τ .Q), a†. (P + τ †. Q′) + a .Q = a†. (P + τ †. Q′), and a . (P + τ .Q) + a†. Q′ =
a†. (P + τ †. Q′), where P ′ and Q′ may not be initial, can be derived by exploiting axiom AF,11 too.
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(AτF,1) a . τ . P = a . P where initial(P )

(AτF,2) P + τ . P = τ . P where initial(P )

(AτF,3) a . (P + τ .Q) + a .Q = a . (P + τ .Q) where initial(P ) ∧ initial(Q)

(AτF,4) a†. τ . P = a†. P where initial(P )

Table 6.2: Additional τ -axioms for ≈FB:ps

Lemma 6.2. For all (initial) P ∈ P there exists (an initial) Q ∈ P in F-nf such that AτF ` P = Q.

Proof. See the proof of Lemma 6.1, as in the considered normal form τ -actions do not play a role different from
the one of observable actions. In particular, unexecuted τ -actions are not abstracted away unless they are inside
non-selected alternative subprocesses.

In addition to the forward normal form of Definition 6.1, we use a function that extracts the forward behavior
from a process by eliminating executed actions and non-selected alternative subprocesses. Function to_forward :
P→ Pinit is defined by induction on the syntactical structure of P ∈ P as follows:

to_forward(P ) = P if initial(P )
to_forward(a†. P ′) = to_forward(P ′)
to_forward(P ′ xρq) = to_forward(P ′) xρq if ¬initial(P ′)

to_forward(P1 + P2) = to_forward(P1) if ¬initial(P1) ∧ initial(P2)
to_forward(P1 + P2) = to_forward(P2) if ¬initial(P2) ∧ initial(P1)
to_forward(P1 ‖L P2) = to_forward(P1) ‖L to_forward(P2) if ¬initial(P1) ∨ ¬initial(P2)

The resulting initial process preserves the forward behavior of the original process in the following sense.

Proposition 6.1. Let P, P ′, P ′′, Q ∈ P and θ′, θ′′ ∈ Θ. Then:

1. to_forward(P ) = P when initial(P ) while to_forward(P ) ∼FB P when ¬initial(P ).

2. to_forward(P )
θ′−→ P ′ iff P

θ′′−→ P ′′ with act(θ′) = act(θ′′) and P ′ ∼FB:ps P
′′.

3. If P ≈FB:ps Q then to_forward(P ) ≈FB:ps to_forward(Q) when P and Q are initial or cannot execute
τ -actions, otherwise to_forward(P ) ≈FB to_forward(Q).

Proof. The first property is a straightforward consequence of the definition of to_forward and the fact that ∼FB

considers only the forward behavior of processes, as to_forward(P ) is obtained from P by removing all decorated
(i.e., executed) actions as well as all non-selected alternative subprocesses, which are all the parts of P from which
an outgoing transition cannot be generated. Note that to_forward(P ) ∼FB:ps P does not hold when P is not initial
because to_forward(P ) is initial.
The second property is a consequence of the first one, with P ′ (resp. θ′) not coinciding with P ′′ (resp. θ′′) when
P is not initial because in that case P ′′ contains decorated actions along with possible non-selected alternative
subprocesses that cannot be present in P ′. However P ′ ∼FB:ps P

′′ (in lieu of P ′ ∼FB P ′′ only) because both P ′

and P ′′ are not initial.
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As for the third property, we consider the following two cases:

• If both P and Q are initial, then to_forward(P ) = P ≈FB:ps Q = to_forward(Q).

• If both P and Q are not initial, then to_forward(P ) 6= P and to_forward(Q) 6= Q.
Suppose that to_forward(P )

θ′−→ P ′. Then, due to the second property, P θ′′−→ P ′′ with act(θ′) = act(θ′′) and
P ′ ∼FB:ps P

′′, hence P ′ ≈FB:ps P
′′ because ∼FB:ps is contained in ≈FB:ps. There are two subcases:

– If act(θ′′) = τ then from P ≈FB:ps Q it follows that Q==⇒Q′′ with P ′′ ≈FB:ps Q
′′. By repeatedly

applying the second property along Q==⇒Q′′ we get to_forward(Q) ==⇒Q′ with Q′ ≈FB Q′′ (instead
of Q′ ≈FB:ps Q

′′) as Q′′ is not initial while Q′ may be initial (this is the case when no τ is performed by
to_forward(Q)). Since ≈FB:ps is contained in ≈FB, the result stems from P ′ ≈FB P ′′ ≈FB Q′′ ≈FB Q′

as ≈FB is symmetric and transitive.

– If act(θ′′) 6= τ then from P ≈FB:ps Q it follows that Q==⇒ θ−→==⇒Q′′ with act(θ′′) = act(θ)
and P ′′ ≈FB:ps Q′′. By repeatedly applying the second property along Q==⇒ θ−→==⇒Q′′ we get

to_forward(Q) ==⇒ θ′′′−→==⇒Q′ with act(θ′′′) = act(θ) and Q′ ≈FB:ps Q
′′ (as neither Q′ nor Q′′ is initial).

The result stems from P ′ ≈FB:ps P
′′ ≈FB:ps Q

′′ ≈FB:ps Q
′ as ≈FB:ps is symmetric and transitive.

Furthermore, following the approach used for the weak bisimulation congruence over forward-only processes
of [112], we introduce a saturated forward normal form where, for every transition sequence in which a transition
labeled with a certain action is preceded or followed by finitely many τ -transitions, a direct transition labeled with
that action is present too. Unlike [112], where both the transition sequence and the direct transition have the same
target process, here two distinct ≈FB:ps-equivalent target processes P ′ (for the transition sequence) and P ′′ (for the
direct transition) come into play due to the presence of decorated actions within processes.

Definition 6.2. We say that P ∈ P is in saturated forward normal form, written sat-F-nf, iff it is equal to
[b†.]

∑
i∈I ai . Pi where the executed action prefix b†._ is optional, I is a finite index set (with the summation being 0

when I = ∅), each Pi is initial and in sat-F-nf, and if P ==⇒ θ′−→==⇒ P ′ then P θ′′−→ P ′′ with act(θ′) = act(θ′′) and
P ′ ≈FB:ps P

′′.

This leads to the so-called saturation lemma below, which is instrumental to reduce in sat-F-nf every process
in F-nf. Unlike [112], it features to_forward(P ′) in place of P ′ in the final part of its statement otherwise we would
have the unexecuted action act(θ) followed by the non-initial process P ′, which does not yield a well-formed process.

Lemma 6.3. Let P, P ′ ∈ P and θ ∈ Θ. If P is initial and P ==⇒ θ−→==⇒ P ′, then AτF ` P = P +
act(θ) . to_forward(P ′).

Proof. Suppose that the initial process P ∈ P is in F-nf. Should this not be the case, thanks to Lemma 6.2
we could find Q initial and in F-nf such that AτF ` P = Q, hence proving the result for Q would entail the validity
of the result for P by substitutivity. In particular:

• If P ==⇒ θ−→==⇒ P ′ then Q==⇒ θ′−→==⇒Q′ with act(θ) = act(θ′) and P ′ ≈FB:ps Q
′ due to AτF ` P = Q

implying P ≈FB:psQ by soundness (forthcoming Theorem 6.2) and the fact that Q cannot idle when act(θ)=τ
because P and Q are both initial and hence P ′ and Q′ must be both non-initial as P ′ ≈FB:ps Q

′.
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• AτF ` to_forward(P ′) = to_forward(Q′) because, observing that to_forward(Q′) is in F-nf given that so
is Q, 0-summands and replicated summands possibly occurring in to_forward(P ′) can be eliminated via
axioms AF,3 and AF,4, respectively, as well as renamings and parallel compositions possibly occurring in
to_forward(P ′) can be eliminated via axioms AF,5 to AF,8 and AF,12, respectively, and Q is a F-nf for P so
thatQ′ cannot abstract from unexecuted τ -actions unless they are inside non-selected alternative subprocesses
(which by the way can occur neither in to_forward(P ′) nor in to_forward(Q′) as they are both initial).

We thus proceed by induction on the syntactical structure of the initial process P in F-nf such that
P ==⇒ θ−→==⇒ P ′ (note that P cannot be 0 and cannot feature any executed action at the beginning), where
in the following any summation is meant to disappear when the corresponding finite index set I is empty:

• If P is
∑

i∈I ai . Pi + act(θ) . P̄ and P ′ is
∑

i∈I ai . Pi + act(θ)†. P̄ – i.e., there are no τ -transitions preceding

or following the act(θ)-transition in P ==⇒ θ−→==⇒ P ′ – where we note that P̄ is initial and in F-nf because
so is P , then AτF ` P = P + act(θ) . P̄ by axiom AF,4 applied to act(θ) . P̄ and substitutivity inside P , with
P̄ = to_forward(P ′).

• If P is
∑

i∈I ai . Pi + act(θ) . Q and
∑

i∈I ai . Pi + act(θ)†. Q==⇒ θ′−→==⇒ P ′ with act(θ′) = τ – i.e., no

τ -transition precedes but at least one τ -transition follows the act(θ)-transition in P ==⇒ θ−→==⇒ P ′ – then:

– Since
∑

i∈I ai . Pi + act(θ)†. Q==⇒ θ′−→==⇒ P ′ comes from Q==⇒ θ′′−→==⇒Q′ with act(θ′′) = τ ,
to_forward(P ′) = to_forward(Q′), and Q initial and in F-nf, by the induction hypothesis AτF ` Q =
Q+ τ . to_forward(P ′).

– AτF ` P = P + act(θ) . to_forward(P ′) because:

∗ AτF ` P = P + act(θ) . Q by axiom AF,4 applied to act(θ) . Q and substitutivity inside P .
∗ AτF ` P = P + act(θ) . (Q+ τ . to_forward(P ′)) by substitutivity and transitivity.
∗ AτF ` P = P+act(θ) . (Q+τ . to_forward(P ′))+act(θ) . to_forward(P ′) by axiom AτF,3, substitutivity,

and transitivity.
∗ AτF ` P = P + act(θ) . Q+ act(θ) . to_forward(P ′) by substitutivity and transitivity.
∗ AτF ` P = P + act(θ) . to_forward(P ′) by axiom AF,4 as P contains act(θ) . Q as summand, substi-

tutivity, and transitivity.

• If P is
∑

i∈I ai . Pi + τ .Q and
∑

i∈I ai . Pi + τ †. Q==⇒ θ−→==⇒ P ′ – i.e., at least one τ -transition precedes

the act(θ)-transition in P ==⇒ θ−→==⇒ P ′ – then:

– Since
∑

i∈I ai . Pi + τ †. Q==⇒ θ−→==⇒ P ′ comes from Q==⇒ θ′−→==⇒Q′ with act(θ) = act(θ′),
to_forward(P ′) = to_forward(Q′), and Q initial and in F-nf, by the induction hypothesis AτF ` Q =
Q+ act(θ) . to_forward(P ′).

– AτF ` P = P + act(θ) . to_forward(P ′) because:

∗ AτF ` P = P + τ .Q by axiom AF,4 applied to τ .Q and substitutivity inside P .
∗ AτF ` P = P + τ .Q+Q by axiom AτF,2, symmetry, substitutivity, and transitivity.
∗ AτF ` P = P + τ .Q+Q+ act(θ) . to_forward(P ′) by substitutivity and transitivity.
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∗ AτF ` P = P + τ .Q+ act(θ) . to_forward(P ′) by symmetry, axiom AτF,2, substitutivity, and transi-
tivity.

∗ AτF ` P = P+act(θ) . to_forward(P ′) by axiom AF,4 as P contains τ .Q as summand, substitutivity,
and transitivity.

Lemma 6.4. For all (initial) P ∈ P in F-nf there exists (an initial) Q ∈ P in sat-F-nf such that AτF ` P = Q.

Proof. We proceed by induction on the syntactical structure of P ∈ P in F-nf:

• If P is 0 then the result follows by taking Q equal to 0 due to reflexivity.

• If P is
∑

i∈I ai . Pi with I 6= ∅, then from the induction hypothesis it follows that for all i ∈ I there exists
Qi in sat-F-nf such that AτF ` Pi = Qi, hence AτF ` P =

∑
i∈I ai . Qi by substitutivity with respect to action

prefix and alternative composition.
Suppose that

∑
i∈I ai . Qi ==⇒ θ′−→==⇒Q′ and – to avoid trivial cases – there is no Q′′ such that∑

i∈I ai . Qi
θ′′−→Q′′ with act(θ′) = act(θ′′) and Q′ ≈FB:ps Q

′′. Since
∑

i∈I ai . Qi is initial, from Lemma 6.3
we get AτF `

∑
i∈I ai . Qi =

∑
i∈I ai . Qi + act(θ′) . to_forward(Q′), hence AτF ` P =

∑
i∈I ai . Qi +

act(θ′) . to_forward(Q′) by transitivity, where each Qi and to_forward(Q′) are initial and in sat-F-nf.
From

∑
i∈I ai . Qi ==⇒ θ′−→==⇒Q′ it follows that

∑
i∈I ai . Qi + act(θ′) . to_forward(Q′) ==⇒ θ′′′−→==⇒Q′′′ with

act(θ′′′) = act(θ′) and Q′′′ ≈FB:ps Q
′. Moreover

∑
i∈I ai . Qi + act(θ′) . to_forward(Q′)

θ′′′′−→
∑

i∈I ai . Qi +
act(θ′)†. to_forward(Q′) with act(θ′′′′) = act(θ′), hence act(θ′′′) = act(θ′′′′). From the fact that Q′ and
act(θ′)†. to_forward(Q′) are both non-initial and Proposition 6.1 we get Q′ ≈FB:ps act(θ′)†. to_forward(Q′),
at which point we exploit the soundness of axiom AF,11 (forthcoming Theorem 6.2) on the righthand side
and the fact that ≈FB:ps is transitive to obtain that Q′′′ ≈FB:ps

∑
i∈I ai . Qi + act(θ′)†. to_forward(Q′).

• If P is b†. P̂ then from the induction hypothesis it follows that there exists Q̂ in sat-F-nf such that AτF ` P̂ = Q̂,
hence AτF ` P = b†. Q̂ by substitutivity with respect to executed action prefix.
Suppose that b†. Q̂==⇒ θ′−→==⇒Q′ and – to avoid trivial cases – there is no Q′′ such that b†. Q̂ θ′′−→Q′′

with act(θ′) = act(θ′′) and Q′ ≈FB:ps Q′′. Since Q̂ is initial, from Lemma 6.3 and substitutivity with
respect to executed action prefix we get AτF ` b†. Q̂ = b†. (Q̂ + act(θ′) . to_forward(Q′)), hence AτF ` P =
b†. (Q̂+ act(θ′) . to_forward(Q′)) by transitivity, where Q̂ and to_forward(Q′) are initial and in sat-F-nf.
From b†. Q̂==⇒ θ′−→==⇒Q′ it follows that b†. (Q̂+ act(θ′) . to_forward(Q′)) ==⇒ θ′′′−→==⇒Q′′′ with act(θ′′′) =

act(θ′) and Q′′′ ≈FB:ps Q
′. Moreover b†. (Q̂ + act(θ′) . to_forward(Q′))

θ′′′′−→ b†. (Q̂ + act(θ′)†. to_forward(Q′))
with act(θ′′′′) = act(θ′), hence act(θ′′′) = act(θ′′′′). From the fact that Q′ and act(θ′)†. to_forward(Q′) are
both non-initial and Proposition 6.1 we get Q′ ≈FB:ps act(θ′)†. to_forward(Q′), at which point we exploit
the soundness of axioms AF,11 and AF,10 (forthcoming Theorem 6.2) on the righthand side and the fact that
≈FB:ps is transitive to obtain that Q′′′ ≈FB:ps b

†. (Q̂+ act(θ′)†. to_forward(Q′)).
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Theorem 6.2. Let P1, P2 ∈ P. Then P1 ≈FB:ps P2 iff AτF ` P1 = P2.

Proof. Soundness, i.e., AτF ` P1 = P2 =⇒ P1 ≈FB:ps P2, is a straightforward consequence of the general axioms and
inference rules behind ` (see Section 6.1) together with ≈FB:ps being an equivalence relation (see Proposition 4.2)
and a congruence (see Theorem 4.2), plus the fact that the lefthand side process of each additional axiom in
Tables 6.1 (recall that ∼FB:ps is included in ≈FB:ps) and 6.2 is ≈FB:ps-equivalent to the righthand side process of
the same axiom.
Let us address ground completeness, i.e., P1 ≈FB:ps P2 =⇒ AτF ` P1 = P2. We suppose that P1 and P2 are both
in sat-F-nf. Given that some of the processes that we will encounter are not subprocesses of P1 or P2 due to the
application of axiom AτF,1 or AτF,4, we proceed by induction on k = size(P1) + size(P2):

• If k = 0 then from P1 ≈FB:ps P2 and P1 and P2 in sat-F-nf we derive that P1 and P2 are both equal to 0,
from which the result follows by reflexivity.

• Let k ≥ 2 with P1 being
∑

i∈I1 a1,i . P1,i and P2 being
∑

i∈I2 a2,i . P2,i, where I1 6= ∅ 6= I2 and every
P1,i and every P2,i is initial and in sat-F-nf. Since P1 ≈FB:ps P2, whenever for some a1,i1 = a we have
P1

θ1−→ a†. P1,i1 +
∑

i∈I1\{i1} a1,i . P1,i with act(θ1) = a, then for some a2,i2 = a we have P2
θ2−→ a†. P2,i2 +∑

i∈I2\{i2} a2,i . P2,i with act(θ2) = a as P2 is in sat-F-nf, where a†. P1,i1 +
∑

i∈I1\{i1} a1,i . P1,i ≈FB:ps

a†. P2,i2 +
∑

i∈I2\{i2} a2,i . P2,i, and vice versa. Since to_forward(a†. P1,i1 +
∑

i∈I1\{i1} a1,i . P1,i) = P1,i1

and to_forward(a†. P2,i2 +
∑

i∈I2\{i2} a2,i . P2,i) = P2,i2 , from a†. P1,i1 +
∑

i∈I1\{i1} a1,i . P1,i ≈FB:ps a
†. P2,i2 +∑

i∈I2\{i2} a2,i . P2,i and Proposition 6.1(3) two cases arise:

– If P1,i1 ≈FB:ps P2,i2 then from the induction hypothesis we obtain AτF ` P1,i1 = P2,i2 , hence AτF `
a1,i1 . P1,i1 = a2,i2 . P2,i2 by substitutivity with respect to action prefix.

– If P1,i1 ≈FB P2,i2 but P1,i1 6≈FB:ps P2,i2 – as is the case, e.g., when a1,i1 . P1,i1 is a . τ . 0 and a2,i2 . P2,i2 is
a . 0 – then P1,i1 can execute τ -actions (thus reaching non-initial processes) to which P2,i2 can respond
only by idling (thus remaining in an initial process), or vice versa. If the considered summand of P1 is
a1,i1 . τ . P

′
1,i1

, we exploit the soundness of axiom AτF,1 to obtain a1,i1 . τ . P
′
1,i1
≈FB:ps a1,i1 . P

′′
1,i1

where
P ′′1,i1 is a subprocess of P ′1,i1 that is initial, in sat-F-nf, and not executing τ -actions, so that P ′′1,i1 ≈FB:ps

P2,i2 and we can then proceed like in the previous case by additionally applying axiom AτF,1.
More generally, the considered summand of P1 may be of the form a1,i1 . (τ . P

′
1,i1

+ . . . ), but then P ′1,i1 ,
after executing possible τ -actions, must offer all the alternative observable actions enabled by P2,i2 and
only those actions, otherwise P1,i1 ≈FB P2,i2 cannot hold given that P2,i2 can only idle whenever P1,i1

executes a τ -action. As a consequence, for every subprocess alternative to τ . P ′1,i1 :

∗ If it starts with a τ -action, then for the same reason it must offer all the alternative observable
actions enabled by P2,i2 and only those actions, hence it must be ≈FB:ps-equivalent to τ . P ′1,i1 and
can be absorbed by τ . P ′1,i1 by exploiting the soundness of axiom AF,4.

∗ If it starts with an observable action, then that action must be enabled by P2,i2 in order for
P1,i1 ≈FB P2,i2 to hold and the considered subprocess can be absorbed within τ . P ′1,i1 as follows
by exploiting the soundness of axioms AF,4 and AτF,2:

· τ . P ′1,i1 is expanded to P ′1,i1 + τ . P ′1,i1 via axiom AτF,2, with its application being repeated
in the case that P ′1,i1 starts with a τ -action and so on, until the considered subprocess appears
in the expansion.
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· The original occurrence of the considered subprocess and the new one inside the expansion are
merged into a single one via axiom AF,4.

· The resulting process is contracted back to τ . P ′1,i1 via as many applications of axiom AτF,2.

The result finally follows by substitutivity with respect to alternative composition and, in the presence of
identical summands on the same side, axiom AF,4 possibly preceded by applications of axioms AF,1 and AF,2

to move identical summands next to each other.

• Let k ≥ 2 with P1 being a†1. P
′
1 and P2 being a†2. P

′
2, where P ′1 and P ′2 are both initial and in sat-F-nf. Since

to_forward(P1) = P ′1 and to_forward(P2) = P ′2, from P1 ≈FB:ps P2 and Proposition 6.1(3) two cases arise:

– If P ′1 ≈FB:ps P
′
2 then from the induction hypothesis we obtain AτF ` P ′1 = P ′2, hence AτF ` a†. P ′1 = a†. P ′2

by substitutivity with respect to executed action prefix. Thanks to axiom AF,9 we derive AτF ` a
†
1. P

′
1 =

a†. P ′1 and AτF ` a†. P ′2 = a†2. P
′
2, from which AτF ` a

†
1. P

′
1 = a†2. P

′
2 follows by transitivity.

– If P ′1 ≈FB P ′2 but P ′1 6≈FB:ps P
′
2 – as is the case, e.g., when a†1. P

′
1 is a†1. τ . 0 and a†2. P

′
2 is a†2. 0 – then

P ′1 can execute τ -actions (thus reaching non-initial processes) to which P ′2 can respond only by idling
(thus remaining in an initial process), or vice versa. If P1 is a†1. τ . P

′′
1 , we exploit the soundness of

axiom AτF,4 to obtain P1 ≈FB:ps a
†
1. P

′′′
1 where P ′′′1 is a subprocess of P ′′1 that is initial, in sat-F-nf,

and not executing τ -actions, so that P ′′′1 ≈FB:ps P
′
2 and we can then proceed like in the previous case

by additionally applying axiom AτF,4.
More generally, the considered summand of P1 may be of the form a†1,i1 . (τ . P

′
1,i1

+ . . . ), but then every
subprocess alternative to τ . P ′1,i1 can be suitably absorbed as shown earlier.

• Note that the case in which P1 is
∑

i∈I1 a1,i . P1,i with I1 possibly empty and P2 is a†2. P
′
2, or vice versa, cannot

occur because the former is initial while the latter is not. Likewise, the case in which P1 is
∑

i∈I1 a1,i . P1,i with
I1 6= ∅ and P2 is 0, or vice versa, cannot occur either because the former has at least one outgoing transition
while the latter has not (should the former process be able to execute only sequences of τ -transitions, after
which non-initial processes are reached, the latter process could respond only by idling thus remaining in an
initial process). In other words, both cases would contradict P1 ≈FB:ps P2.

If P1 and P2 are not both in sat-F-nf, thanks to Lemmas 6.2 and 6.4 we can find Q1 and Q2 in sat-F-nf, each
of which is initial iff so is its corresponding original process, such that AτF ` P1 = Q1 and AτF ` P2 = Q2, hence
AτF ` Q2 = P2 by symmetry. Due to soundness, we get P1 ≈FB:ps Q1, hence Q1 ≈FB:ps P1 as ≈FB:ps is symmetric,
and P2 ≈FB:ps Q2. Since P1 ≈FB:ps P2, we also get Q1 ≈FB:ps Q2 as ≈FB:ps is transitive. By virtue of what
has been shown above, from Q1 ≈FB:ps Q2 with Q1 and Q2 in sat-F-nf it follows that AτF ` Q1 = Q2 and hence
AτF ` P1 = P2 by transitivity.
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(Actbrs,f)
initial(U)

<a,i> .U a,i−−→brs<a
†,i> .U

(Actbrs,p)
U

θ,k−−→brs U
′

<a†,i> .U .aθ,k−−−→brs<a
†,i> .U ′

(Chobrs,l)
U1

θ,i−−→brs U
′
1 initial(U2)

U1 + U2
.+θ,i−−−→brs U

′
1 + U2

(Chobrs,r)
U2

θ,i−−→brs U
′
2 initial(U1)

U1 + U2
+. θ,i−−−→brs U1 + U ′2

Table 6.3: Proved operational semantic rules for Pbrs (i,k ∈ 2A)

6.4 Process Encodings Based on Backward Ready Sets

Since reverse and forward-reverse bisimilarities are truly concurrent, before developing their axiomatizations –
in particular their expansion laws – we have to provide process encodings that insert suitable additional discrim-
inating information into action prefixes. We show that this information is the same for both semantics and is
constituted by backward ready sets. Precisely, for every proved transition P θ−→ P ′ we let `R(θ)P ′ = `FR(θ)P ′ =
<act(θ), brs(P ′)> , `brs(θ)P ′ and `R,w(θ)P ′ = `FR,w(θ)P ′ = <act(θ), brsw(P ′)> , `brs,w(θ)P ′ , where in the afore-
mentioned observation functions we have indicated their primary argument θ in parentheses and their secondary
argument P ′ as a subscript. The intuition behind resorting to backward ready sets comes from Figure 1.1, where
the reverse- and forward-reverse-inequivalent processes associated with the three bottom states have three different
backward ready sets: {b, a}, {b}, {a}.

By virtue of Proposition 3.2(2), the distinguishing power of ∼RB and ∼FRB does not change if, in the related
definitions of bisimulation, we additionally require that brs(P1) = brs(P2) for all (P1, P2) ∈ B. Likewise, thanks
to Proposition 3.7(2), the discriminating power of ≈RB and ≈FRB:ps does not vary if, in the related definitions of
bisimulation, we additionally require that brsw(P1) = brsw(P2) for all (P1, P2) ∈ B. Thus, it is immediate to realize
that∼RB:`brs , ∼FRB:`brs , ≈RB:`brs,w , ≈FRB:ps:`brs,w (see page 41) respectively coincide with∼RB, ∼FRB, ≈RB, ≈FRB:ps.

The former four bisimilarities also apply to the encoding target Pbrs, i.e., the set of renaming-free processes
obtained from Pseq by extending every action prefix with a subset of A. The syntax of Pbrs is defined as follows
where i ∈ 2A:

U ::= 0 | <a,i> .U | <a†,i> .U | U + U
The proved operational semantic rules for Pbrs shown in Table 6.3 generate the proved labeled transition system
(Pbrs,Θbrs × 2A,−→brs) where Θbrs is a variant of Θ in which only the operators of Pbrs are considered. With
respect to those in Table 2.1, the rules in Table 6.3 additionally label the produced transitions with the action
sets occurring in the action prefixes inside the source processes. Given a symmetric relation B over Pbrs and
(U1, U2) ∈ B, the forward clause of ∼FRB:`brs can be rephrased as:

for each U1
θ1,i−−→brs U

′
1 there exists U2

θ2,i−−→brs U
′
2 such that act(θ1) = act(θ2) and (U ′1, U

′
2) ∈ B

while the backward clauses of ∼RB:`brs and ∼FRB:`brs can be rephrased as:

for each U ′1
θ1,i−−→brs U1 there exists U ′2

θ2,i−−→brs U2 such that act(θ1) = act(θ2) and (U ′1, U
′
2) ∈ B

and similarly for the weak clauses of ≈RB:`brs,w and ≈FRB:ps:`brs,w in which ==⇒brs is used to represent a possibly
empty sequence of finitely many τ -brs-transitions.

Following the proved trees approach described in Section 6.2, we have to lift `brs/`brs,w so as to encode P into
Pbrs. The objective is to extend each action prefix with the strong/weak backward ready set of the reached process.
For processes in Pseq it is just a matter of extending any action prefix with a singleton containing the action itself
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or, in the weak case, the action itself if different from τ , the closest preceding observable action otherwise. In
contrast, backward ready sets may contain several actions when handling processes not in Pseq. To account for
this, the lifting of `brs/`brs,w has to make use of a secondary argument, which we call environment process and will
be written as a subscript of the lifting function by analogy with the secondary argument of the observation function.

The environment process is progressively updated as prefixes are turned into pairs so as to represent the process
reached so far, i.e., the process yielding the backward ready set. The environment process E for P embodies P ,
in the sense that it is initially P and then its forward behavior is updated upon each action prefix extension by
decorating the action as executed, where the action is located within E by a proof term. To correctly handle
the extension of prefixes containing already executed actions like a†. P ′, (part of) E has to be brought back by
replacing a†. P ′ inside E with the process to_initial(a†. P ′) obtained from a†. P ′ by removing all †-decorations
(see page 26 for the definition of function to_initial : P→ Pinit).

In Sections 6.4.1 and 6.4.2 we respectively provide the liftings of `brs and `brs,w.

6.4.1 Process Encoding Based on Strong Backward Ready Sets for ∼RB and ∼FRB

In Definitions 6.3 and 6.4 we develop the lifting of `brs and denote by P̃ the result of its application to P .
We recall that `brs(θ)P ′ = <act(θ), brs(P ′)> for P θ−→ P ′ and we let `brs(θ)

†
P ′ = <act(θ)†, brs(P ′)>. We further

recall that Θseq = {.a, xqρ, .+,+. | a ∈ A, ρ : A → A such that ρ(τ) = τ}.

Definition 6.3. The `brs-encoding of P ∈ P is P̃ = `εbrs(P )P where `σbrs : P× P→ Pbrs for σ ∈ Θ∗seq is defined by
induction on the syntactical structure of its primary argument P which is a subprocess of its secondary argument E:

`σbrs(0)E = 0
`σbrs(a . P

′)E = `brs(σa)upd(E,σa) . `
σ.a
brs(P ′)upd(E,σa)

`σbrs(a
†. P ′)E = `brs(σa)†

upd(Ë,σa)
. `σ.abrs(P ′)E

`σbrs(P
′ xρq)E = `

σxqρ
brs (P ′)E

`σbrs(P1 + P2)E = `σ .+brs(P1)E + `σ+.
brs(P2)E

`σbrs(P1 ‖L P2)E = e`σbrs(P̃1, P̃2, L)E
with function e`σbrs being defined later on, Ë being obtained from E by replacing a†. P ′ with to_initial(a†. P ′), and
function upd : P×Θ→ P being defined by induction on the syntactical structure of its first argument E as follows:

upd(0, θ) = 0

upd(a .E′, θ) =

{
a†. E′ if θ = a
a .E′ otherwise

upd(a†. E′, θ) =

{
a†. upd(E′, θ′) if θ = .aθ

′

a†. E′ otherwise

upd(E′ xρq, θ) =

{
upd(E′, θ′) xρq if θ = xqρθ′

E′ xρq otherwise

upd(E1 + E2, θ) =


upd(E1, θ

′) + E2 if θ = .+θ′

E1 + upd(E2, θ
′) if θ = +. θ′

E1 + E2 otherwise

upd(E1 ‖LE2, θ) =


upd(E1, θ

′) ‖LE2 if θ = ULθ′

E1 ‖L upd(E2, θ
′) if θ = TLθ′

upd(E1, θ1) ‖L upd(E2, θ2) if θ = 〈θ1, θ2〉L
E1 ‖LE2 otherwise
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Example 6.1. Let us encode some sequential processes (for them function e`σbrs does not come into play):

• Let P be the initial sequential process a . b . 0 + b . a . 0. Then:
P̃ = `εbrs(P )P = `.+brs(a . b . 0)a . b . 0+b . a . 0 + `+.brs(b . a . 0)a . b . 0+b . a . 0

= `brs(.+a)a†. b . 0+b . a . 0 . `
.+.a
brs (b . 0)a†. b . 0+b . a . 0 +

`brs(+. b)a . b . 0+b†. a . 0 . `
+. .b
brs (a . 0)a . b . 0+b†. a . 0

= <a, {a}> . `brs(.+.ab)a†. b†. 0+b . a . 0 . `
.+.a.b
brs (0)a†. b†. 0+b . a . 0 +

<b, {b}> . `brs(+. .ba)a . b . 0+b†. a†. 0 . `
+. .b.a
brs (0)a . b . 0+b†. a†. 0

= <a, {a}> .<b, {b}> . 0 +<b, {b}> .<a, {a}> . 0

• Let Q be the non-initial sequential process a†. b†. 0. Then:
Q̃ = `εbrs(Q)Q = `brs(a)†

a†. b . 0
. `.abrs(b

†. 0)a†. b†. 0

= <a†, {a}> . `brs(.ab)
†
a†. b†. 0

. `.a.bbrs (0)a†. b†. 0
= <a†, {a}> .<b†, {b}> . 0

Note that Definition 6.3 yields a . b . 0 as Q̈ after the second = (before it, Q is a subprocess of the environment
Q) and a†. b . 0 as Q̈ after the third = (before it, b†. 0 is a subprocess of the environment Q).

• Let R be the sequential process with renaming (a . b . 0) xρq where xρq = xa 7→ c, b 7→ dq. Then:
R̃ = `εbrs(R)R = `

xqρ
brs(a . b . 0)R

= `brs(xqρa)(a†. b . 0) xρq . `
xqρ.a
brs (b . 0)(a†. b . 0) xρq

= <c, {c}> . `brs(xqρ.ab)(a†. b†. 0) xρq . `
xqρ.a.b
brs (0)(a†. b†. 0) xρq

= <c, {c}> .<d, {d}> . 0
Note that the presence of xqρ inside the primary argument of the occurrences of `brs – i.e., the argument
of act – and the presence of xρq inside the secondary argument of the occurrences of `brs – i.e., the argument
of brs – determine the renaming of all actions in both components of both extended prefixes.

While for sequential processes the backward ready set added to every action prefix is a singleton containing
the action itself, this is no longer the case when dealing with processes of the form P1 ‖L P2. We thus complete
the encoding by providing the definition of e`σbrs. When P1 and P2 are not both initial, in the expansion we have
to reconstruct all possible alternative action sequencings that have not been undertaken – which yield as many
initial subprocesses – because under the forward-reverse semantics each of them could be selected after a rollback.
In the subcase in which both P1 and P2 are non-initial and their executed actions are not in L – e.g., a†. 0 ‖∅ b†. 0
– care must be taken because executed actions cannot appear on both sides of an alternative composition – e.g.,
the expansion cannot be of the form a†. b†. 0 + b†. a†. 0 in that not well-formed. To overcome this, based on a total
order ≤† over Θ induced by the trace of actions executed so far, the expansion builds the corresponding sequencing
of already executed actions plus all the aforementioned unexecuted action sequencings – e.g., something of the
form a†. b†. 0 + b . a . 0 or b†. a†. 0 + a . b . 0 depending on whether U∅a ≤†T∅b or T∅b ≤† U∅a respectively.

Definition 6.4. Let P1, P2 ∈ P, L ⊆ A\{τ}, E1, E2, E ∈ P be such that P1 ‖L P2, E1 ‖LE2 ∈ P, P1 is a subprocess
of E1, P2 is a subprocess of E2, and E1 ‖LE2 is a subprocess of E. Then e`σbrs : Pbrs×Pbrs× 2A\{τ}×P→ Pbrs for
σ ∈ Θ∗seq is inductively defined as follows, where square brackets enclose optional subprocesses as already done in
Section 6.3 and every summation over an empty index set is taken to be 0 (and for simplicity is omitted within a
choice unless all alternative subprocesses inside that choice are 0, in which case the whole choice boils down to 0):
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• If P̃1 and P̃2 are both initial, say P̃k =
∑

i∈Ik `brs(θk,i)upd(Pk,θk,i) . P̃k,i for k ∈ {1, 2}, let e`
σ
brs(P̃1, P̃2, L)E =∑

i∈I1,act(θ1,i)/∈L
`brs(σULθ1,i)upd(E,σULθ1,i) . e`

σ
brs(P̃1,i, P̃2, L)upd(E,σULθ1,i) +∑

i∈I2,act(θ2,i)/∈L
`brs(σTLθ2,i)upd(E,σTLθ2,i) . e`

σ
brs(P̃1, P̃2,i, L)upd(E,σTLθ2,i) +∑

i∈I1,act(θ1,i)∈L

∑
j∈I2,act(θ2,j)=act(θ1,i)

`brs(σ〈θ1,i,θ2,j〉L)upd(E,σ〈θ1,i,θ2,j〉L) . e`
σ
brs(P̃1,i, P̃2,j , L))upd(E,σ〈θ1,i,θ2,j〉L)

where each of the three summation-shaped subprocesses to the right of = is an initial process.

• If P̃1 is not initial while P̃2 is initial, say P̃1 = `brs(θ1)†upd(to_initial(P1),θ1) . P̃
′
1 [+ P̃ ′′1 ] where act(θ1) /∈ L and

the optional P̃ ′′1 is initial, say P̃ ′′1 =
∑

i∈I1 `brs(θ1,i)upd(P ′′1 ,θ1,i)
. P̃ ′′1,i, and P̃2 =

∑
i∈I2 `brs(θ2,i)upd(P2,θ2,i) . P̃2,i,

for Ë obtained from E by replacing P1 with to_initial(P1) let e`σbrs(P̃1, P̃2, L)E =

`brs(σULθ1)†upd(Ë,σULθ1) . e`
σ
brs(P̃

′
1, P̃2, L)E +

[
∑

i∈I1,act(θ1,i)/∈L
`brs(σULθ1,i)upd(Ë,σULθ1,i) . e`

σ
brs(P̃

′′
1,i, P̃2, L)upd(Ë,σUθ1,i) +]∑

i∈I2,act(θ2,i)/∈L
`brs(σTLθ2,i)upd(Ë,σTLθ2,i) . e`

σ
brs(to_initial(P̃1), P̃2,i, L)upd(Ë,σTLθ2,i) +

[
∑

i∈I1,act(θ1,i)∈L

∑
j∈I2,act(θ2,j)=act(θ1,i)

`brs(σ〈θ1,i,θ2,j〉L)upd(Ë,σ〈θ1,i,θ2,j〉L) . e`
σ
brs(P̃

′′
1,i, P̃2,j , L))upd(Ë,σ〈θ1,i,θ2,j〉L)]

where each of the last three summation-shaped subprocesses on the right is an initial process needed by the
forward-reverse semantics, with the presence of the first one and the third one depending on the presence
of P̃ ′′1 .

• The case in which P̃1 is initial while P̃2 is not initial is like the previous one.

• If P̃1 and P̃2 are both non-initial, say P̃k = `brs(θk)
†
upd(to_initial(Pk),θk) . P̃

′
k [+ P̃ ′′k ] where the optional P̃ ′′k is

initial, say P̃ ′′k =
∑

i∈Ik `brs(θk,i)upd(P ′′k ,θk,i)
. P̃ ′′k,i, for k ∈ {1, 2}, for Ë obtained from E by replacing each Pk

with to_initial(Pk) there are three subcases:

– If act(θ1) /∈ L ∧ (act(θ2) ∈ L ∨ σULθ1 ≤† σTLθ2), let e`σbrs(P̃1, P̃2, L)E =

`brs(σULθ1)†upd(Ë,σULθ1) . e`
σ
brs(P̃

′
1, P̃2, L)E +

[`brs(σTLθ2)upd(Ë,σTLθ2) . e`
σ
brs(to_initial(P̃1), to_initial(P̃ ′2), L)upd(Ë,σTLθ2) +]

[
∑

i∈I1,act(θ1,i)/∈L
`brs(σULθ1,i)upd(Ë,σULθ1,i) . e`

σ
brs(P̃

′′
1,i, to_initial(P̃2), L)upd(Ë,σULθ1,i) +]

[
∑

i∈I2,act(θ2,i)/∈L
`brs(σTLθ2,i)upd(Ë,σTLθ2,i) . e`

σ
brs(to_initial(P̃1), P̃ ′′2,i, L)upd(Ë,σTLθ2,i) +]

[
∑

i∈I1,act(θ1,i)∈L

∑
j∈I2,act(θ2,j)=act(θ1,i)

`brs(σ〈θ1,i,θ2,j〉L)upd(Ë,σ〈θ1,i,θ2,j〉L) . e`
σ
brs(P̃

′′
1,i, P̃

′′
2,j , L))upd(Ë,σ〈θ1,i,θ2,j〉L)]

where each of the last four subprocesses on the right is an initial process needed by the forward-reverse
semantics, with the first one being present only if act(θ2) /∈ L and the presence of the subsequent three
respectively depending on the presence of P̃ ′′1 , P̃

′′
2 , or both.

– The subcase act(θ2) /∈ L ∧ (act(θ1) ∈ L ∨ σTLθ2 ≤† σULθ1) is like the previous one.
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– If act(θ1) = act(θ2) ∈ L, let e`σbrs(P̃1, P̃2, L)E =

`brs(σ〈θ1,θ2〉L)†upd(Ë,σ〈θ1,θ2〉L) . e`
σ
brs(P̃

′
1, P̃

′
2, L)E +

[
∑

i∈I1,act(θ1,i)/∈L
`brs(σULθ1,i)upd(Ë,σULθ1,i) . e`

σ
brs(P̃

′′
1,i, to_initial(P̃2), L)upd(Ë,σULθ1,i) +]

[
∑

i∈I2,act(θ2,i)/∈L
`brs(σTLθ2,i)upd(Ë,σTLθ2,i) . e`

σ
brs(to_initial(P̃1), P̃ ′′2,i, L)upd(Ë,σTLθ2,i) +]

[
∑

i∈I1,act(θ1,i)∈L

∑
j∈I2,act(θ2,j)=act(θ1,i)

`brs(σ〈θ1,i,θ2,j〉L)upd(Ë,σ〈θ1,i,θ2,j〉L) . e`
σ
brs(P̃

′′
1,i, P̃

′′
2,j , L))upd(Ë,σ〈θ1,i,θ2,j〉L)]

where each of the last three summation-shaped subprocesses on the right is an initial process needed by
the forward-reverse semantics, with their presence respectively depending on the presence of P̃ ′′1 , P̃

′′
2 ,

or both.

Example 6.2. Let P be P1 ‖∅ P2, where P1 and P2 are the initial sequential processes a . 0 and b . 0 respectively,
so that P̃1 = `brs(a)a†. 0 . 0̃ and P̃2 = `brs(b)b†. 0 . 0̃. Then:

P̃ = `εbrs(P )P = e`εbrs(P̃1, P̃2, ∅)P
= `brs(U∅a)a†. 0 ‖∅ b . 0 . e`

ε
brs(0̃, P̃2, ∅)a†. 0 ‖∅ b . 0 +

`brs(T∅b)a . 0 ‖∅ b†. 0 . e`
ε
brs(P̃1, 0̃, ∅)a . 0 ‖∅ b†. 0

= <a, {a}> . `brs(T∅b)a†. 0 ‖∅ b†. 0 . e`
ε
brs(0̃, 0̃, ∅)a†. 0 ‖∅ b†. 0 +

<b, {b}> . `brs(U∅a)a†. 0 ‖∅ b†. 0 . e`
ε
brs(0̃, 0̃, ∅)a†. 0 ‖∅ b†. 0

= <a, {a}> .<b, {a, b}> . 0 +<b, {b}> .<a, {a, b}> . 0
which is different from the encoding of a . b . 0 + b . a . 0 shown in Example 6.1, unless a = b as in that case
the backward ready set {a, b} collapses to a singleton (indeed a . 0 ‖∅ a . 0 ∼FRB a . a . 0 + a . a . 0 ∼FRB a . a . 0).
If instead P1 is the non-initial sequential process a†. 0 while P2 is the initial sequential process b . 0, so that
P̃1 = `brs(a)†

a†. 0
. 0̃ and P̃2 = `brs(b)b†. 0 . 0̃, then:

P̃ = `εbrs(P )P = e`εbrs(P̃1, P̃2, ∅)P
= `brs(U∅a)†

a†. 0 ‖∅ b . 0
. e`εbrs(0̃, P̃2, ∅)P +

`brs(T∅b)a . 0 ‖∅ b†. 0 . e`
ε
brs(`brs(a)a†. 0 . 0̃, 0̃, ∅)a . 0 ‖∅ b†. 0

= <a†, {a}> . `brs(T∅b)a†. 0 ‖∅ b†. 0 . e`
ε
brs(0̃, 0̃, ∅)a†. 0 ‖∅ b†. 0 +

<b, {b}> . `brs(U∅a)a†. 0 ‖∅ b†. 0 . e`
ε
brs(0̃, 0̃, ∅)a†. 0 ‖∅ b†. 0

= <a†, {a}> .<b, {a, b}> . 0 +<b, {b}> .<a, {a, b}> . 0
which is different from the encoding of a†. b . 0 + b . a . 0 unless a = b.
If finally P1 is the non-initial sequential process a†. 0 and P2 is the non-initial sequential process b†. 0, so that
P̃1 = `brs(a)†

a†. 0
. 0̃ and P̃2 = `brs(b)

†
b†. 0

. 0̃, then for U∅a ≤†T∅b:
P̃ = `εbrs(P )P = e`εbrs(P̃1, P̃2, ∅)P

= `brs(U∅a)†
a†. 0 ‖∅ b . 0

. e`εbrs(0̃, P̃2, ∅)P +

`brs(T∅b)a . 0 ‖∅ b†. 0 . e`
ε
brs(`brs(a)a†. 0 . 0̃, 0̃, ∅)a . 0 ‖∅ b†. 0

= <a†, {a}> . `brs(T∅b)
†
a†. 0 ‖∅ b†. 0

. e`εbrs(0̃, 0̃, ∅)a†. 0 ‖∅ b†. 0 +

<b, {b}> . `brs(U∅a)a†. 0 ‖∅ b†. 0 . e`
ε
brs(0̃, 0̃, ∅)a†. 0 ‖∅ b†. 0

= <a†, {a}> .<b†, {a, b}> . 0 +<b, {b}> .<a, {a, b}> . 0
which is different from the encoding of a†. b†. 0 + b . a . 0 unless a = b.
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We now investigate the correctness of the `brs-encoding. We start by showing that the encoding is compositional
with respect to all the operators of Pbrs and preserves initiality and – to a large extent – backward ready sets.

Lemma 6.5. Let a ∈ A and P, P1, P2 ∈ P be such that a . P, P1 + P2 ∈ P. Then:

1. ã . P = <a, {a}> . P̃ .

2. ã†. P = <a†, {a}> . P̃ .

3. P̃1 + P2 = P̃1 + P̃2.

Proof. From Definition 6.3 it follows that:

1. ã . P = `brs(a)a†. P . `
.a
brs(P )a†. P = <a, brs(a†. P )> . `εbrs(P )P = <a, {a}> . P̃ because P is the immediate

subprocess of a . P and, once the environment a†. P reduces to P , the symbol .a is no longer necessary in the
superscript. The fact that brs(a†. P ) = {a} stems from the initiality of P (otherwise a . P /∈ P).

2. ã†. P = `brs(a)†
a†. to_initial(P )

. `.abrs(P )a†. P = <a†, brs(a†. to_initial(P ))> . `εbrs(P )P = <a†, {a}> . P̃ because
P is the immediate subprocess of a†. P and, once the environment a†. P reduces to P , the symbol .a is no
longer necessary in the superscript. The fact that brs(a†. to_initial(P )) = {a} stems from the initiality of
to_initial(P ).

3. P̃1 + P2 = `.+brs(P1)P1+P2 + `+.brs(P2)P1+P2 = `εbrs(P1)P1 + `εbrs(P2)P2 = P̃1 + P̃2 because P1 and P2 are the
immediate subprocesses of P1 + P2 and, once the environment P1 + P2 reduces to P1 (resp. P2), the symbol
.+ (resp. +. ) is no longer necessary in the superscript.

Proposition 6.2. Let P ∈ P. Then:

1. initial(P̃ ) iff initial(P ).

2. brs(P̃ ) = brs(P ) if P has no subprocesses of the form Q1 ‖L′ Q2 such that: Q1 and Q2 are non-initial,
the last executed action b†1 in Q̃1 is different from the last executed action b†2 in Q̃2, and b1, b2 /∈ L′.

Proof. After recalling that for non-initial sequential processes like Q̃1 and Q̃2 it makes sense to talk about their
last executed action, we proceed by induction on the syntactical structure of P ∈ P to prove both properties
simultaneously:

• If P is 0 then P̃ = 0 by Definition 6.3. They are both initial and brs(P̃ ) = brs(P ) = ∅.

• If P is a . P ′ then P̃ = <a, {a}> . P̃ ′ by Lemma 6.5(1). They are both initial and brs(P̃ ) = brs(P ) = ∅.

• If P is a†. P ′ then P̃ = <a†, {a}> . P̃ ′ by Lemma 6.5(2), where initial(P̃ ′) iff initial(P ′) and brs(P̃ ′) = brs(P ′)
by the induction hypothesis. P and P̃ are both non-initial. Moreover brs(P̃ ) = brs(P ) because the two sets
are equal to {a} when P ′ and P̃ ′ are both initial, while they are equal to brs(P ′) when P ′ and P̃ ′ are both
non-initial.



6.4 Process Encodings Based on Backward Ready Sets 58

• If P is P ′ xρq then P̃ is obtained from P̃ ′ by renaming all of its actions and backward ready sets according
to ρ, where initial(P̃ ′) iff initial(P ′) and brs(P̃ ′) = brs(P ′) by the induction hypothesis. Then initial(P̃ ) iff
initial(P ) and brs(P̃ ) = ρ(brs(P̃ ′)) = ρ(brs(P ′)) = brs(P ).

• If P is P1 + P2 then P̃ = P̃1 + P̃2 by Lemma 6.5(3), where initial(P̃k) iff initial(Pk) and brs(P̃k) = brs(Pk)
for k ∈ {1, 2} by the induction hypothesis. Then initial(P̃ ) iff initial(P ). Moreover brs(P̃ ) = brs(P ) because
the two sets are equal to ∅ when P1, P2, P̃1, P̃2 are all initial, brs(P1) when P1 and P̃1 are non-initial while
P2 and P̃2 are initial, or brs(P2) when P1 and P̃1 are initial while P2 and P̃2 are non-initial.

• If P is P1 ‖L P2 then P̃ = e`εbrs(P̃1, P̃2, L)P by Definition 6.3, where initial(P̃k) iff initial(Pk) and brs(P̃k) =
brs(Pk) for k ∈ {1, 2} by the induction hypothesis. There are two cases:

– If P1 and P2 are both initial – hence P is initial – then so are P̃1 and P̃2 – hence P̃ is initial
by Definition 6.4 – and vice versa. In this case brs(P̃ ) = brs(P ) = ∅.

– If P1 and P2 are not both initial – hence P is non-initial – then so are P̃1 and P̃2 – hence P̃ is non-initial
by Definition 6.4 – and vice versa. As far as backward ready set preservation is concerned, there are
three subcases:

∗ If only P1 and P̃1 are non-initial, say P̃1 = <a†1, {a1}> . P̃ ′1 [+ P̃ ′′1 ] where a1 /∈ L and the optional
P̃ ′′1 is initial, then brs(P̃1) = brs(P1) = brs(a†1. P

′
1) and brs(P̃2) = brs(P2) = ∅. Therefore brs(P̃ ) =

brs(P̃1) = brs(P1) = brs(P ) as P2 and P̃2 are initial.
∗ The subcase in which only P2 and P̃2 are non-initial is like the previous one.
∗ Let P1, P2, P̃1, P̃2 be all non-initial, say P̃k = <a†k, {ak}> . P̃

′
k [+ P̃ ′′k ], where the optional P̃ ′′k is

initial, for k ∈ {1, 2}. Since by hypothesis it is not the case that the last executed action b†1 in P̃1

is different from the last executed action b†2 in P̃2 and b1, b2 /∈ L – and the same is true for all
possible subprocesses of P1 and P2 of the form Q1 ‖L′ Q2 with Q1 and Q2 non-initial – it holds
that brs(P̃k) = brs(Pk) = {bk} for k ∈ {1, 2}. Recalling that brs(P1 ‖L P2) = (brs(P1) ∩ L) ∪
(brs(P2) ∩L) ∪ (brs(P1) ∩ brs(P2) ∩L), there are four further subcases (for the last two think, e.g.,
of a†. b†1. 0 ‖{b1} b

†
1. b
†
2. 0):

· If b1, b2 /∈ L then from the aforementioned hypothesis it follows that b1 = b2 , b and hence
brs(P̃ ) = brs(P ) = (brs(P1) ∩ L) ∪ (brs(P2) ∩ L) ∪ ∅ = {b}.

· If b1, b2 ∈ L then from P ∈ P it follows that b1 = b2 , b and hence brs(P̃ ) = brs(P ) =
∅ ∪ ∅ ∪ (brs(P1) ∩ brs(P2) ∩ L) = {b}.

· If b1 ∈ L and b2 /∈ L, then from P ∈ P it follows that brs(P̃ ) = brs(P ) = ∅ ∪ (brs(P2) ∩ L) ∪ ∅
= {b2}.

· If b1 /∈ L and b2 ∈ L, then from P ∈ P it follows that brs(P̃ ) = brs(P ) = (brs(P1) ∩ L) ∪ ∅ ∪ ∅
= {b1}.

As an example, for P given by a†. 0 ‖∅ b†. 0 we have that P̃ = <a†, {a}> .<b†, {a, b}> . 0 +
<b, {b}> .<a, {a, b}> . 0 when the last executed actions satisfy U∅a ≤† T∅b (see the final part of Example 6.2),
hence brs(P ) = {a, b} 6= {b} = brs(P̃ ) for a 6= b. However, in P̃ the backward ready set {a, b} occurs next to the
last executed action b†, hence it will label the related transition in −→brs (see Table 6.3). Indeed, the `brs-encoding
is correct in the following sense.
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Theorem 6.3. Let P, P ′ ∈ P, θ ∈ Θ, and θ̄ ∈ Θbrs. Then P
θ−→ P ′ iff P̃

θ̄,brs(P ′)−−−−−→brs P̃
′ with act(θ) = act(θ̄).

Proof. We proceed by induction on the number n ∈ N≥1 of applications of operational semantic rules that are
necessary to derive the considered transitions:

• If n = 1 then P is a .Q, with initial(Q), and P̃ = <a, {a}> . Q̃ by Lemma 6.5(1). According to the rules
Actf in Table 2.1 and Actbrs,f in Table 6.3, their only outgoing transitions are respectively P a−→ a†. Q and

P̃
a,{a}−−−→brs<a

†, {a}> . Q̃, with {a} = brs(a†. Q) as initial(Q) and <a†, {a}> . Q̃ = ã†. Q by Lemma 6.5(2).

• If n > 1 there are four cases:

– Let P be a†. Q. If P
.aθ′−−→ a†. Q′ then Q

θ′−→Q′ by rule Actp in Table 2.1. By the in-

duction hypothesis this is equivalent to Q̃
θ̄′,brs(Q′)−−−−−−→brs Q̃

′ with act(θ′) = act(θ̄′), which implies

<a†, {a}> . Q̃ .aθ̄′,brs(a†. Q′)−−−−−−−−−→brs<a
†, {a}> . Q̃′ by rule Actbrs,p in Table 6.3 – as brs(a†. Q′) = brs(Q′)

due to ¬initial(Q′) – with <a†, {a}> . Q̃ = P̃ and <a†, {a}> . Q̃′ = ã†. Q′ by Lemma 6.5(2).

The proof starting from P̃
.aθ̄′,brs(a†. Q′)−−−−−−−−−→brs ã†. Q′ is similar.

– Let P be Q xρq. If P
xqρθ′−−→Q′ xρq then Q θ′−→Q′ by rule Ren in Table 2.1. By the induction hypothesis

this is equivalent to Q̃
θ̄′,brs(Q′)−−−−−−→brs Q̃

′ with act(θ′) = act(θ̄′), which implies P̃
¯̄θ′,brs(Q′ xρq)−−−−−−−−→brs Q̃′ xρq with

¯̄θ′ obtained from θ̄′ by changing the action at its end according to ρ so that act(xqρθ′) = act(¯̄θ′), because
P̃ (resp. Q̃′ xρq) is obtained from Q̃ (resp. Q̃′) by renaming all of its actions and backward ready sets
according to ρ and brs(Q′ xρq) = ρ(brs(Q′)).

The proof starting from P̃
¯̄θ′,brs(Q′ xρq)−−−−−−−−→brs Q̃′ xρq is similar.

– Let P be P1 + P2. There are two subcases:

∗ If P .+θ′−→ P ′1 + P2 with initial(P2), then P1
θ′−→ P ′1 by rule Chol in Table 2.1. By the induc-

tion hypothesis this is equivalent to P̃1
θ̄′,brs(P ′1)
−−−−−−→brs P̃

′
1 with act(θ′) = act(θ̄′), which implies

P̃1 + P̃2
.+θ̄′,brs(P ′1+P2)
−−−−−−−−−→brs P̃

′
1 + P̃2 by rule Chobrs,l in Table 6.3 – as brs(P ′1 + P2) = brs(P ′1)

due to initial(P2) – with P̃1 + P̃2 = P̃ and P̃ ′1 + P̃2 = P̃ ′1 + P2 by Lemma 6.5(3).

The proof starting from P̃
.+θ̄′,brs(P ′1+P2)
−−−−−−−−−→brs P̃

′
1 + P2 is similar.

∗ The subcase in which P +. θ′−→ P1 + P ′2 with initial(P1) is like the previous one.

– Let P be P1 ‖L P2. There are three subcases:

∗ If P
ULθ′−−−→ P ′1 ‖L P2 with act(θ′) /∈ L, then P1

θ′−→ P ′1 by rule Parl in Table 2.1. By the induction

hypothesis this is equivalent to P̃1
θ̄′,brs(P ′1)
−−−−−−→brs P̃

′
1 with act(θ′) = act(θ̄′). By Definition 6.4 this

implies that P̃ , after a possible sequence of executed actions, has a maximal initial subprocess

with a summand of the form<act(ULθ̄′), brs(P ′1 ‖L P2)> . ˜P ′1 ‖L P2, hence P̃
¯̄θ′,brs(P ′1 ‖L P2)
−−−−−−−−−→brs

˜P ′1 ‖L P2

for a suitable ¯̄θ′ ∈ Θbrs such that act(θ̄′) = act(¯̄θ′).

The proof starting from P̃
¯̄θ′,brs(P ′1 ‖L P2)
−−−−−−−−−→brs

˜P ′1 ‖L P2 is similar.
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∗ The subcase in which P
TLθ′−−−→ P1 ‖L P ′2 with act(θ′) /∈ L is like the previous one.

∗ If P
〈θ1,θ2〉L−−−−−→ P ′1 ‖L P ′2 with act(θ1) = act(θ2) ∈ L, then Pk

θk−→ P ′k for k ∈ {1, 2} by rule Syn

in Table 2.1. By the induction hypothesis this is equivalent to P̃k
θ̄k,brs(P ′k)
−−−−−−→brs P̃

′
k with act(θk) =

act(θ̄k). By Definition 6.4 this implies that P̃ , after a possible sequence of executed actions, has a
maximal initial subprocess with a summand of the form <act(〈θ̄1, θ̄2〉L), brs(P ′1 ‖L P ′2)> . ˜P ′1 ‖L P ′2,

hence P̃
¯̄θ,brs(P ′1 ‖L P ′2)
−−−−−−−−−→brs

˜P ′1 ‖L P ′2 for a suitable ¯̄θ ∈ Θbrs such that act(θ̄k) = act(¯̄θ) for k ∈ {1, 2}.

The proof starting from P̃
¯̄θ,brs(P ′1 ‖L P ′2)
−−−−−−−−−→brs

˜P ′1 ‖L P ′2 is similar.

Corollary 6.1. Let P1, P2 ∈ P and B ∈ {RB,FRB}. Then P1 ∼B P2 iff P̃1 ∼B:`brs P̃2.

Proof. The proof is divided into two parts:

• Suppose that P1 ∼B P2 and let B be a ∼B-bisimulation containing the pair (P1, P2). The result follows by
proving that B′ = {(Q̃1, Q̃2) | (Q1, Q2) ∈ B} is a ∼B:`brs-bisimulation. Let (Q̃1, Q̃2) ∈ B′ so that (Q1, Q2) ∈ B:

– If B = FRB and Q̃1
θ̄1,brs(Q′1)
−−−−−−→brs Q̃

′
1, then Q1

θ1−→Q′1 with act(θ̄1) = act(θ1) due to Theorem 6.3. From
(Q1, Q2) ∈ B it follows that there exists Q2

θ2−→Q′2 such that act(θ1) = act(θ2) and (Q′1, Q
′
2) ∈ B. Thus

Q̃2
θ̄2,brs(Q′2)
−−−−−−→brs Q̃

′
2 with act(θ2) = act(θ̄2) due to Theorem 6.3 – so act(θ̄1) = act(θ̄2) – and (Q′1, Q

′
2) ∈ B

implying brs(Q′1) = brs(Q′2) due to Proposition 3.2(2) and (Q̃′1, Q̃
′
2) ∈ B′.

– If Q̃′1
θ̄1,brs(Q1)−−−−−−→brs Q̃1 the proof is like the previous one where Proposition 3.2(2) yields brs(Q1) = brs(Q2).

• Suppose that P̃1 ∼B:`brs P̃2 and let B be a ∼B:`brs-bisimulation containing the pair (P̃1, P̃2). The result
follows by proving that B′ = {(Q1, Q2) | (Q̃1, Q̃2) ∈ B} is a ∼B-bisimulation. Let (Q1, Q2) ∈ B′ so that
(Q̃1, Q̃2) ∈ B:

– If B = FRB and Q1
θ1−→Q′1, then Q̃1

θ̄1,brs(Q′1)
−−−−−−→brs Q̃

′
1 with act(θ1) = act(θ̄1) due to Theorem 6.3. From

(Q̃1, Q̃2) ∈ B it follows that there exists Q̃2
θ̄2,brs(Q′2)
−−−−−−→brs Q̃

′
2 such that act(θ̄1) = act(θ̄2), brs(Q′1) =

brs(Q′2), and (Q̃′1, Q̃
′
2) ∈ B. Thus Q2

θ2−→Q′2 with act(θ̄2) = act(θ2) due to Theorem 6.3 – so act(θ1) =

act(θ2) – and (Q̃′1, Q̃
′
2) ∈ B implying (Q′1, Q

′
2) ∈ B′.

– If Q′1
θ1−→Q1 the proof is like the previous one.

We conclude by showing a form of compositionality of ∼RB:`brs and ∼FRB:`brs with respect to all the operators
of P.
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Theorem 6.4. Let ∼ ∈ {∼RB:`brs ,∼FRB:`brs} and P1, P2 ∈ P. If P̃1 ∼ P̃2 then:

• For all a ∈ A:
– ã . P1 ∼ ã . P2 provided that initial(P1) ∧ initial(P2).

– ã†. P1 ∼ ã†. P2.

• For all ρ : A → A such that ρ(τ) = τ :

– P̃1 xρq ∼ P̃2 xρq.

• For all P ∈ P:
– P̃1 + P ∼ P̃2 + P and P̃ + P1 ∼ P̃ + P2 provided that initial(P ) ∨ (initial(P1) ∧ initial(P2)).

• For all P ∈ P and L ⊆ A \ {τ}:

– P̃1 ‖L P ∼ P̃2 ‖L P and P̃ ‖L P1 ∼ P̃ ‖L P2 provided that P1 ‖L P, P2 ‖L P, P ‖L P1, P ‖L P2 ∈ P.

Proof. Similar to the proof of Theorem 4.1 by exploiting Lemma 6.5.

6.4.2 Process Encoding Based on Weak Backward Ready Sets for ≈RB and ≈FRB:ps

Definitions 6.3 and 6.4 have precisely the same structure in the case of `brs,w, whose lifting applied to P we denote
by P̂ . We recall that `brs,w(θ)P ′ = <act(θ), brsw(P ′)> for P θ−→ P ′ and we let `brs,w(θ)†P ′ = <act(θ)†, brsw(P ′)>.
Due to the use of brsw(P ′) in place of brs(P ′), the main difference between P̂ and P̃ has to do with action sets
accompanying unobservable actions inside extended prefixes.

Example 6.3. Let a 6= τ 6= b:

• τ̃ . 0 = `brs(τ)τ†. 0 . 0 = <τ, {τ}> . 0
τ̂ . 0 = `brs,w(τ)τ†. 0 . 0 = <τ, ∅> . 0

• τ̃ . τ . 0 = `brs(τ)τ†. τ . 0 . `brs(τ)τ†. τ†. 0 . 0 = <τ, {τ}> .<τ, {τ}> . 0
τ̂ . τ . 0 = `brs,w(τ)τ†. τ . 0 . `brs,w(τ)τ†. τ†. 0 . 0 = <τ, ∅> .<τ, ∅> . 0 — equal to <τ, ∅> . τ̂ . 0

• ã . τ . 0 = `brs(a)a†. τ . 0 . `brs(τ)a†. τ†. 0 . 0 = <a, {a}> .<τ, {τ}> . 0
â . τ . 0 = `brs,w(a)a†. τ . 0 . `brs,w(τ)a†. τ†. 0 . 0 = <a, {a}> .<τ, {a}> . 0

• τ̃ †. τ . 0 = `brs(τ)†
τ†. τ . 0

. `brs(τ)τ†. τ†. 0 . 0 = <τ †, {τ}> .<τ, {τ}> . 0

τ̂ †. τ . 0 = `brs,w(τ)†
τ†. τ . 0

. `brs,w(τ)τ†. τ†. 0 . 0 = <τ †, ∅> .<τ, ∅> . 0 — equal to <τ †, ∅> . τ̂ . 0

• ˜a†. τ †. τ . 0 = `brs(a)†
a†. τ . τ . 0

. `brs(τ)†
a†. τ†. τ . 0

. `brs(τ)a†. τ†. τ†. 0 . 0 = <a†, {a}> .<τ †, {τ}> .<τ, {τ}> . 0
̂a†. τ †. τ . 0 = `brs,w(a)†

a†. τ . τ . 0
. `brs,w(τ)†

a†. τ†. τ . 0
. `brs,w(τ)a†. τ†. τ†. 0 . 0 = <a†, {a}> .<τ †, {a}> .<τ, {a}> . 0

• ˜(a†. b†. b . 0) xb 7→ τq = `xqb7→τbrs (a†. b†. b . 0)(a†. b†. b . 0) xb 7→τq = <a†, {a}> .<τ †, {τ}> .<τ, {τ}> . 0
̂(a†. b†. b . 0) xb 7→ τq = `xqb7→τbrs,w(a†. b†. b . 0)(a†. b†. b . 0) xb 7→τq = <a†, {a}> .<τ †, {a}> .<τ, {a}> . 0
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The properties of the `brs,w-encoding are similar to those of the `brs-encoding apart from its compositionality
with respect to action prefix in Pbrs, which gets looser as illustrated by the previous examples.

Lemma 6.6. Let a ∈ A and P, P1, P2 ∈ P be such that a . P, P1 + P2 ∈ P. Then:

1. â . P = <a, ∅> . P̂ if a = τ , while â . P = <a, {a}> .UP with UP being obtained from P̂ by adding a to the
second component of each possible extended τ -prefix at the beginning of P̂ if a 6= τ .

2. â†. P = <a†, ∅> . P̂ if a = τ , while â†. P = <a†, {a}> .UP with UP being obtained from P̂ by adding a to the
second component of each possible extended τ †- and τ -prefix at the beginning of P̂ if a 6= τ .

3. P̂1 + P2 = P̂1 + P̂2.

Proof. From the version of Definition 6.3 for `brs,w it follows that:

1. â . P = `brs,w(a)a†. P . `
.a
brs,w(P )a†. P = <a, brsw(a†. P )> . `.abrs,w(P )a†. P . There are two cases:

• If a = τ then brsw(a†. P ) = ∅ due to the initiality of P (otherwise a . P /∈ P). Moreover `.abrs,w(P )a†. P
coincides with `εbrs,w(P )P – where the symbol .a is no longer necessary in the superscript once the
environment a†. P reduces to P – i.e., P̂ , because brsw(a†. P ) = ∅.

• If a 6= τ then brsw(a†. P ) = {a} due to the initiality of P (otherwise a . P /∈ P). Moreover `.abrs,w(P )a†. P
is obtained from `εbrs,w(P )P – where the symbol .a is no longer necessary in the superscript once the
environment a†. P reduces to P – i.e., P̂ , provided that a is added to the second component of each
possible extended τ -prefix at the beginning of P̂ .

2. â†. P = `brs,w(a)†
a†. to_initial(P )

. `.abrs,w(P )a†. P = <a†, brsw(a†. to_initial(P ))> . `.abrs,w(P )a†. P . There are two
cases:

• If a = τ then brsw(a†. to_initial(P )) = ∅ due to the initiality of to_initial(P ). Moreover `.abrs,w(P )a†. P
coincides with `εbrs,w(P )P – where the symbol .a is no longer necessary in the superscript once the
environment a†. P reduces to P – i.e., P̂ , because brsw(a†. to_initial(P )) = ∅.

• If a 6= τ then brsw(a†. to_initial(P )) = {a} due to the initiality of to_initial(P ). Moreover `.abrs,w(P )a†. P
is obtained from `εbrs,w(P )P – where the symbol .a is no longer necessary in the superscript once the
environment a†. P reduces to P – i.e., P̂ , provided that a is added to the second component of each
possible extended τ †- and τ -prefix at the beginning of P̂ .

3. P̂1 + P2 = `.+brs,w(P1)P1+P2 + `+.brs,w(P2)P1+P2 = `εbrs,w(P1)P1 + `εbrs,w(P2)P2 = P̂1 + P̂2 because P1 and P2 are
the immediate subprocesses of P1 + P2 and, once the environment P1 + P2 reduces to P1 (resp. P2), the
symbol .+ (resp. +. ) is no longer necessary in the superscript.
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Proposition 6.3. Let P ∈ P. Then:

1. initial(P̂ ) iff initial(P ).

2. brsw(P̂ ) = brsw(P ) if P has no subprocesses of the form Q1 ‖L′ Q2 such that: Q1 and Q2 are non-initial,
the last executed observable action b†1 in Q̂1 is different from the last executed observable action b†2 in Q̂2, and
b1, b2 /∈ L′.

Proof. After recalling that for non-initial sequential processes like Q̂1 and Q̂2 it makes sense to talk about their
last executed observable action (if any, i.e, if it is not the case that all executed actions are τ †), we proceed by
induction on the syntactical structure of P ∈ P to prove both properties simultaneously:

• If P is 0 then P̂ = 0 by the version of Definition 6.3 for `brs,w. They are both initial and brsw(P̂ ) =
brsw(P ) = ∅.

• If P is a . P ′ then P̂ is of the form established by Lemma 6.6(1). They are both initial and brsw(P̂ ) =
brsw(P ) = ∅.

• If P is a†. P ′ then P̂ is of the form established by Lemma 6.6(2), where initial(P̂ ′) iff initial(P ′) and brsw(P̂ ′) =
brsw(P ′) by the induction hypothesis. P and P̂ are both non-initial. Moreover brsw(P̂ ) = brsw(P ) because
the two sets are equal to ∅ – if a = τ – or {a} – if a 6= τ – when P ′ and P̂ ′ are both initial, while they are
equal to brsw(P ′) when P ′ and P̂ ′ are both non-initial.

• If P is P ′ xρq then P̂ is obtained from P̂ ′ by renaming all of its actions and backward ready sets according
to ρ, provided that the second component of each possible extended prefix whose first component is observable
and renamed τ by ρ, as well as the second component of each possible subsequent extended prefix whose
first component is named τ , is changed to the second component of the closest preceding extended prefix
whose first component is an action neither named τ nor renamed τ by ρ (or ∅ if there is no such a preceding
prefix), where initial(P̂ ′) iff initial(P ′) and brsw(P̂ ′) = brsw(P ′) by the induction hypothesis. Then initial(P̂ )

iff initial(P ). Moreover brsw(P̂ ) = ρ(brsw(ρ†τ (P̂ ′))) = ρ(brsw(ρ†τ (P ′))) = brsw(P ).

• If P is P1+P2 then P̂ = P̂1+P̂2 by Lemma 6.6(3), where initial(P̂k) iff initial(Pk) and brsw(P̂k) = brsw(Pk) for
k ∈ {1, 2} by the induction hypothesis. Then initial(P̂ ) iff initial(P ). Moreover brsw(P̂ ) = brsw(P ) because
the two sets are equal to ∅ when P1, P2, P̂1, P̂2 are all initial, brsw(P1) when P1 and P̂1 are non-initial while
P2 and P̂2 are initial, or brsw(P2) when P1 and P̂1 are initial while P2 and P̂2 are non-initial.

• If P is P1 ‖L P2 then P̂ = e`εbrs,w(P̂1, P̂2, L)P by the version of Definition 6.3 for `brs,w, where initial(P̂k) iff
initial(Pk) and brsw(P̂k) = brsw(Pk) for k ∈ {1, 2} by the induction hypothesis. There are two cases:

– If P1 and P2 are both initial – hence P is initial – then so are P̂1 and P̂2 – hence P̂ is initial by the
version of Definition 6.4 for `brs,w – and vice versa. In this case brsw(P̂ ) = brsw(P ) = ∅.

– If P1 and P2 are not both initial – hence P is non-initial – then so are P̂1 and P̂2 – hence P̂ is non-
initial by the version of Definition 6.4 for `brs,w – and vice versa. As far as weak backward ready set
preservation is concerned, there are three subcases:
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∗ If only P1 and P̂1 are non-initial, say P̂1 = <a†1,i1> . P̂
′
1 [+ P̂ ′′1 ] where a1 /∈ L, i1 is ∅ or {a1}

depending on whether a1 = τ or not, and the optional P̂ ′′1 is initial, then brsw(P̂1) = brsw(P1) =

brsw(a†1. P
′
1) and brsw(P̂2) = brsw(P2) = ∅. Therefore brsw(P̂ ) = brsw(P̂1) = brsw(P1) = brsw(P )

as P2 and P̂2 are initial.
∗ The subcase in which only P2 and P̂2 are non-initial is like the previous one.
∗ Let P1, P2, P̂1, P̂2 be all non-initial, say P̂k = <a†k,ik> . P̂

′
k [+ P̂ ′′k ], where ik is ∅ or {ak} depending

on whether ak = τ or not and the optional P̂ ′′k is initial, for k ∈ {1, 2}. There are four further
subcases:

· If all executed actions in P̂1 and in P̂2 are τ †, then brsw(P̂ ) = brsw(P ) = ∅.
· If all executed actions in P̂1 are τ † while this is not the case for P̂2, whose last executed
observable action is b†2, then brsw(P̂ ) = brsw(P ) = {b2}.

· If all executed actions in P̂2 are τ † while this is not the case for P̂1, whose last executed
observable action is b†1, then brsw(P̂ ) = brsw(P ) = {b1}.

· Assume that not all executed actions in P̂1 and in P̂2 are τ †. Since by hypothesis it is not
the case that the last executed observable action b†1 in P̂1 is different from the last executed
observable action b†2 in P̂2 and b1, b2 /∈ L – and the same is true for all possible subprocesses
of P1 and P2 of the form Q1 ‖L′ Q2 with Q1 and Q2 non-initial – it holds that brsw(P̂k) =
brsw(Pk) = {bk} for k ∈ {1, 2}. Recalling that brsw(P1 ‖L P2) = (brsw(P1)∩L)∪ (brsw(P2)∩L)
∪ (brsw(P1) ∩ brsw(P2) ∩ L), there are four more subcases (for the last two think, e.g., of
τ †. a†. τ †. b†1. τ

†. 0 ‖{b1} τ †. b
†
1. τ
†. b†2. τ

†. 0):
. If b1, b2 /∈ L then from the aforementioned hypothesis it follows that b1 = b2 , b and hence
brsw(P̂ ) = brsw(P ) = (brsw(P1) ∩ L) ∪ (brsw(P2) ∩ L) ∪ ∅ = {b}.

. If b1, b2 ∈ L then from P ∈ P it follows that b1 = b2 , b and hence brsw(P̂ ) = brsw(P ) =
∅ ∪ ∅ ∪ (brsw(P1) ∩ brsw(P2) ∩ L) = {b}.

. If b1 ∈ L and b2 /∈ L, then from P ∈ P it follows that brsw(P̂ ) = brsw(P ) = ∅∪(brsw(P2)∩L)
∪ ∅ = {b2}.

. If b1 /∈ L and b2 ∈ L, then from P ∈ P it follows that brsw(P̂ ) = brsw(P ) = (brsw(P1)∩L)∪
∅ ∪ ∅ = {b1}.

Theorem 6.5. Let P, P ′ ∈ P, θ ∈ Θ, and θ̄ ∈ Θbrs. Then P
θ−→ P ′ iff P̂

θ̄,brsw(P ′)−−−−−−→brs P̂
′ with act(θ) = act(θ̄).

Proof. We proceed by induction on the number n ∈ N≥1 of applications of operational semantic rules that are
necessary to derive the considered transitions:

• If n = 1 then P is a .Q, with initial(Q), and P̂ = <a,i> .UQ by Lemma 6.6(1), with i = ∅ and UQ = Q̂

or i = {a} and UQ being obtained from Q̂ by adding a to the second component of each possible extended
τ -prefix at the beginning of Q̂ depending on whether a = τ or not. According to the rules Actf

in Table 2.1 and Actbrs,f in Table 6.3, their only outgoing transitions are respectively P
a−→ a†. Q and

P̂
a,i−−→brs<a

†,i> .UQ, with i = brsw(a†. Q) as initial(Q) and <a†,i> .UQ = â†. Q by Lemma 6.6(2) where
– in the case that a 6= τ – there cannot be extended τ †-prefixes at the beginning of Q̂ due to initial(Q).
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• If n > 1 there are four cases:

– Let P be a†. Q. If P .aθ′−−→ a†. Q′ then Q θ′−→Q′ by rule Actp in Table 2.1. By the induction hypothesis

this is equivalent to Q̂
θ̄′,brsw(Q′)−−−−−−−→brs Q̂

′ with act(θ′) = act(θ̄′), which implies UQ
θ̄′,k−−→brs UQ′ with k =

brsw(Q′) and UQ = Q̂ (resp. UQ′ = Q̂′) or k = {a} and UQ (resp. UQ′) being obtained from Q̂ (resp. Q̂′)
by adding a to the second component of each possible extended τ †- and τ -prefix at the beginning of
Q̂ (resp. Q̂′) depending on whether act(θ̄′) 6= τ ∨ brsw(Q′) 6= ∅ ∨ a = τ or not. This in turn implies

<a†,i> .UQ
.aθ̄′,brsw(a†. Q′)−−−−−−−−−−→brs<a

†,i> .UQ′ by rule Actbrs,p in Table 6.3 – as brsw(a†. Q′) = k – with
i = ∅ or i = {a} depending on whether a = τ or not, hence <a†,i> .UQ = P̂ and <a†,i> .UQ′ =

â†. Q′ by Lemma 6.6(2).

The proof starting from P̂
.aθ̄′,brsw(a†. Q′)−−−−−−−−−−→brs â†. Q′ is similar.

– Let P be Q xρq. If P
xqρθ′−−→Q′ xρq then Q θ′−→Q′ by rule Ren in Table 2.1. By the induction hypothesis

this is equivalent to Q̂
θ̄′,brsw(Q′)−−−−−−−→brs Q̂

′ with act(θ′) = act(θ̄′), which implies P̂
¯̄θ′,brs(Q′ xρq)−−−−−−−−→brs Q̂′ xρq

with ¯̄θ′ obtained from θ̄′ by changing the action at its end according to ρ so that act(xqρθ′) = act(¯̄θ′),
because P̂ (resp. Q̂′ xρq) is obtained from Q̂ (resp. Q̂′) by renaming all of its actions and backward
ready sets according to ρ, provided that the second component of each possible extended prefix whose
first component is observable and renamed τ by ρ, as well as the second component of each possible
subsequent extended prefix whose first component is named τ , is changed to the second component of
the closest preceding extended prefix whose first component is an action neither named τ nor renamed
τ by ρ (or ∅ if there is no such a preceding prefix), and brsw(Q′ xρq) = ρ(brsw(ρ†τ (Q′))).

The proof starting from P̂
¯̄θ′,brsw(Q′ xρq)−−−−−−−−−→brs Q̂′ xρq is similar.

– Let P be P1 + P2. There are two subcases:

∗ If P .+θ′−→ P ′1 + P2 with initial(P2), then P1
θ′−→ P ′1 by rule Chol in Table 2.1. By the induc-

tion hypothesis this is equivalent to P̂1
θ̄′,brsw(P ′1)
−−−−−−−→brs P̂

′
1 with act(θ′) = act(θ̄′), which implies

P̂1 + P̂2
.+θ̄′,brsw(P ′1+P2)
−−−−−−−−−−→brs P̂

′
1 + P̂2 by rule Chobrs,l in Table 6.3 – as brsw(P ′1 + P2) = brsw(P ′1)

due to initial(P2) – with P̂1 + P̂2 = P̂ and P̂ ′1 + P̂2 = P̂ ′1 + P2 by Lemma 6.6(3).

The proof starting from P̂
.+θ̄′,brsw(P ′1+P2)
−−−−−−−−−−→brs P̂

′
1 + P2 is similar.

∗ The subcase in which P +. θ′−→ P1 + P ′2 with initial(P1) is like the previous one.

– Let P be P1 ‖L P2. There are three subcases:

∗ If P
ULθ′−−−→ P ′1 ‖L P2 with act(θ′) /∈ L, then P1

θ′−→ P ′1 by rule Parl in Table 2.1. By the induc-

tion hypothesis this is equivalent to P̂1
θ̄′,brsw(P ′1)
−−−−−−−→brs P̂

′
1 with act(θ′) = act(θ̄′). By the version of

Definition 6.4 for `brs,w this implies that P̂ , after a possible sequence of executed actions, has a max-
imal initial subprocess with a summand of the form <act(ULθ̄′), brsw(P ′1 ‖L P2)> . ̂P ′1 ‖L P2, hence

P̂
¯̄θ′,brsw(P ′1 ‖L P2)
−−−−−−−−−−→brs

̂P ′1 ‖L P2 for a suitable ¯̄θ′ ∈ Θbrs such that act(θ̄′) = act(¯̄θ′).

The proof starting from P̂
¯̄θ′,brsw(P ′1 ‖L P2)
−−−−−−−−−−→brs

̂P ′1 ‖L P2 is similar.
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∗ The subcase in which P
TLθ′−−−→ P1 ‖L P ′2 with act(θ′) /∈ L is like the previous one.

∗ If P
〈θ1,θ2〉L−−−−−→ P ′1 ‖L P ′2 with act(θ1) = act(θ2) ∈ L, then Pk

θk−→ P ′k for k ∈ {1, 2} by rule Syn in Ta-

ble 2.1. By the induction hypothesis this is equivalent to P̂k
θ̄k,brsw(P ′k)
−−−−−−−→brs P̂

′
k with act(θk) = act(θ̄k).

By the version of Definition 6.4 for `brs,w this implies that P̂ , after a possible se-
quence of executed actions, has a maximal initial subprocess with a summand of the form

<act(〈θ̄1, θ̄2〉L), brsw(P ′1 ‖L P ′2)> . ̂P ′1 ‖L P ′2, hence P̂
¯̄θ,brsw(P ′1 ‖L P ′2)
−−−−−−−−−−→brs

̂P ′1 ‖L P ′2 for a suitable
¯̄θ ∈ Θbrs

such that act(θ̄k) = act(¯̄θ) for k ∈ {1, 2}.

The proof starting from P̂
¯̄θ,brsw(P ′1 ‖L P ′2)
−−−−−−−−−−→brs

̂P ′1 ‖L P ′2 is similar.

Corollary 6.2. Let P1, P2 ∈ P and B ∈ {RB,FRB:ps}. Then P1 ≈B P2 iff P̂1 ≈B:`brs,w P̂2.

Proof. The proof is divided into two parts:

• Suppose that P1 ≈B P2 and let B be a ≈B-bisimulation containing the pair (P1, P2). The result follows
by proving that B′ = {(Q̂1, Q̂2) | (Q1, Q2) ∈ B} is a ≈B:`brs,w -bisimulation. Let (Q̂1, Q̂2) ∈ B′ so that
(Q1, Q2) ∈ B:

– If B = FRB:ps and Q̂1
θ̄1,brsw(Q′1)
−−−−−−−→brs Q̂

′
1, then Q1

θ1−→Q′1 with act(θ̄1) = act(θ1) due to Theorem 6.5.
There are two cases:

∗ If act(θ1) = τ then from (Q1, Q2) ∈ B it follows that there exists Q2 ==⇒Q′2 such that (Q′1, Q
′
2) ∈ B.

Thus Q̂2 ==⇒brs Q̂
′
2 due to Theorem 6.5 with (Q′1, Q

′
2) ∈ B implying (Q̂′1, Q̂

′
2) ∈ B′.

∗ If act(θ1) 6= τ then from (Q1, Q2) ∈ B it follows that there exists Q2 ==⇒ Q̄2
θ2−→ Q̄′2 ==⇒Q′2 such that

act(θ1) = act(θ2) and (Q′1, Q
′
2) ∈ B. Thus Q̂2 ==⇒brs

̂̄Q2

θ̄2,brsw(Q̄′2)
−−−−−−−→brs

̂̄Q′2 ==⇒brs Q̂
′
2 with act(θ2) =

act(θ̄2) due to Theorem 6.5 – so act(θ̄1) = act(θ̄2) – brsw(Q̄′2) = brsw(Q′2) as Q̄′2 ==⇒Q′2, and
(Q′1, Q

′
2) ∈ B implying brsw(Q′1) = brsw(Q′2) due to Proposition 3.7(2) and (Q̂′1, Q̂

′
2) ∈ B′.

– If Q̂′1
θ̄1,brsw(Q1)−−−−−−−→brs Q̂1 the proof is like the previous one where Proposition 3.7(2) yields brsw(Q1) =

brsw(Q2).

• Suppose that P̂1 ≈B:`brs,w P̂2 and let B be a ≈B:`brs,w -bisimulation containing the pair (P̂1, P̂2). The result
follows by proving that B′ = {(Q1, Q2) | (Q̂1, Q̂2) ∈ B} is a ≈B-bisimulation. Let (Q1, Q2) ∈ B′ so that
(Q̂1, Q̂2) ∈ B:

– If B = FRB:ps and Q1
θ1−→Q′1, then Q̂1

θ̄1,brsw(Q′1)
−−−−−−−→brs Q̂

′
1 with act(θ1) = act(θ̄1) due to Theorem 6.5.

There are two cases:

∗ If act(θ̄1) = τ then from (Q̂1, Q̂2)∈B it follows that there exists Q̂2 ==⇒brs Q̂
′
2 such that (Q̂′1, Q̂

′
2)∈B.

Thus Q2 ==⇒Q′2 due to Theorem 6.5 with (Q̂′1, Q̂
′
2) ∈ B implying (Q′1, Q

′
2) ∈ B′.
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∗ If act(θ̄1) 6= τ then from (Q̂1, Q̂2) ∈ B it follows that there exists Q̂2 ==⇒brs
̂̄Q2

θ̄2,brsw(Q̄′2)
−−−−−−−→brŝ̄Q′2 ==⇒brs Q̂

′
2 such that act(θ̄1) = act(θ̄2), brsw(Q′1) = brsw(Q̄′2) – so brsw(Q′1) = brsw(Q′2) aŝ̄Q′2 ==⇒brs Q̂
′
2 – and (Q̂′1, Q̂

′
2) ∈ B. Thus Q2 ==⇒ Q̄2

θ2−→ Q̄′2 ==⇒Q′2 with act(θ̄2) = act(θ2) due to
Theorem 6.5 – so act(θ1) = act(θ2) – and (Q̂′1, Q̂

′
2) ∈ B implying (Q′1, Q

′
2) ∈ B′.

– If Q′1
θ1−→Q1 the proof is like the previous one.

Theorem 6.6. Let ≈ ∈ {≈RB:`brs,w ,≈FRB:ps:`brs,w} and P1, P2 ∈ P. If P̂1 ≈ P̂2 then:

• For all a ∈ A:

– â . P1 ≈ â . P2 provided that initial(P1) ∧ initial(P2).

– â†. P1 ≈ â†. P2.

• For all ρ : A → A such that ρ(τ) = τ :

– P̂1 xρq ≈ P̂2 xρq.

• For all P ∈ P:

– P̂1 + P ≈ P̂2 + P and P̂ + P1 ≈ P̂ + P2 provided that initial(P ) ∨ (initial(P1) ∧ initial(P2)).

• For all P ∈ P and L ⊆ A \ {τ}:

– P̂1 ‖L P ≈ P̂2 ‖L P and P̂ ‖L P1 ≈ P̂ ‖L P2 provided that P1 ‖L P, P2 ‖L P, P ‖L P1, P ‖L P2 ∈ P.

Proof. Similar to the proof of Theorem 4.2 by exploiting Lemma 6.6.

6.5 Axiomatizations of Reverse Bisimulation Congruences

The axioms via Pbrs for ∼RB are presented in Section 6.5.1, while those for ≈RB are discussed in Section 6.5.2.

6.5.1 Axiomatization of ∼RB

The set AR of `brs-based axioms for ∼RB is shown in Table 6.4 (remember that where-clauses ensure P-membership).
Axioms AR,1 to AR,4, already encountered in Table 6.1 without encoding, express associativity and commutativity
of alternative composition as well as the application of renaming to the terminated process and executed actions.

The subsequent axioms are specific to our reversible setting. Axiom AR,5 establishes that the future can be
completely canceled when moving only backward; note that this axiom implies ˜(a . P ) xρq = P̃ xρq thus making

˜(a . P ) xρq = ˜ρ(a) . (P xρq) unnecessary. Likewise, axiom AR,6 states that a previously non-selected alternative
process can be discarded when moving only backward; note that this axiom subsumes both P̃ + 0 = P̃ and
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(AR,1) ˜(P +Q) +R = ˜P + (Q+R) where at least two among P , Q, R are initial
(AR,2) P̃ +Q = Q̃+ P where initial(P ) ∨ initial(Q)

(AR,3) 0̃ xρq = 0̃

(AR,4) ˜(a†. P ) xρq = ˜ρ(a)†. (P xρq)

(AR,5) ã . P = P̃ where initial(P )

(AR,6) P̃ +Q = P̃ if initial(Q)

(AR,7) ˜P1 ‖L P2 = e`εbrs,R(P̃1, P̃2, L)P1 ‖L P2
with Pk in R-nf for k ∈ {1, 2}

Table 6.4: Axioms characterizing ∼RB via the `brs-encoding into Pbrs processes

P̃ + P = P̃ , i.e., neutral element and idempotency of alternative composition, and implies ˜(P +Q) xρq = P̃ xρq

thus making ˜(P +Q) xρq = ˜(P xρq) + (Q xρq) unnecessary. Axiom AR,7 concisely expresses via e`brs,R – a variant
of e`brs that will be introduced shortly – the expansion laws for ∼RB where, for k ∈ {1, 2}, Pk is a +-free and
renaming-free sequential process possibly featuring only executed actions (see the forthcoming Theorem 7.1).

Definition 6.5. We say that P ∈ P is in reverse normal form, written R-nf, iff it is equal to 0 or a†. P ′ where
P ′ is in R-nf. This extends to Pbrs in the expected way.

In order for R-nf to effectively support the proof of ground completeness of the axiomatization, we need to in-
troduce a simplification of the `brs-encoding of parallel composition. For example, the `brs-encoding of a†. 0 ‖∅ b†. 0
is <a†, {a}> .<b†, {a, b}> . 0 +<b, {b}> .<a, {a, b}> . 0 under U∅a ≤†T∅b. This can be turned into R-nf by consid-
ering its subprocess <a†, {a}> .<b†, {a, b}> . 0, which however would not be the `brs-encoding of any process in P
if a 6= b. When moving only backward we can adapt Definition 6.4 by letting e`σbrs,R(P̃1, P̃2, L)E be equal to the
only summand of e`σbrs(P̃1, P̃2, L)E that contains executed actions (or 0 when there is no such summand), i.e.:

• 0 if P̃1 and P̃2 are both initial.

• `brs(σULθ1)†upd(Ë,σULθ1) . e`
σ
brs,R(P̃ ′1, P̃2, L)E if P̃1 is not initial while P̃2 is initial, or P̃1 and P̃2 are both

non-initial and act(θ1) /∈ L ∧ (act(θ2) ∈ L ∨ σULθ1 ≤† σTLθ2).

• `brs(σTLθ2)†upd(Ë,σTLθ2) . e`
σ
brs,R(P̃1, P̃

′
2, L)E if P̃1 is initial while P̃2 is not initial, or P̃1 and P̃2 are both

non-initial and act(θ2) /∈ L ∧ (act(θ1) ∈ L ∨ σTLθ2 ≤† σULθ1).

• `brs(σ〈θ1,θ2〉L)†upd(Ë,σ〈θ1,θ2〉L) . e`
σ
brs,R(P̃ ′1, P̃

′
2, L)E if P̃1 and P̃2 are both non-initial and act(θ1) = act(θ2) ∈ L.

Let Pnoxq be the set of renaming-free processes of P. Moreover, let `brs be the `brs-version of ` for Pbrs, in which
for every equation in the general axioms and inference rules of Section 6.1 the `brs-encoding of the processes on both
sides is considered instead of the plain processes in P. The following lemma, which guarantees transformability
into R-nf, would not hold if “Q̃ in R-nf” were replaced by “Q in R-nf”. This can be seen by taking P equal to
a†. 0 ‖∅ b†. 0 with a 6= b, as the `brs-encoding of no process Q in R-nf (hence sequential) would contain in one of its
extended prefixes a backward ready set like {a, b} that is not a singleton.
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Lemma 6.7. For all (initial) P ∈ P there exists (an initial) Q ∈ Pnoxq such that AR `brs P̃ = Q̃ with Q̃ in R-nf
(= 0̃).

Proof. We proceed by induction on the syntactical structure of P ∈ P:

• If P is 0 then the result follows by taking Q equal to 0 due to AR `brs 0̃ = 0̃ by reflexivity.

• If P is a . P ′ where P ′ is initial, then by the induction hypothesis there exists Q′ ∈ Pnoxq initial and with Q̃′

in R-nf such that AR `brs P̃
′ = Q̃′. The result follows by taking Q equal to Q′ due to AR `brs ã . P ′ = ã . Q′

by substitutivity with respect to action prefix, AR `brs ã . Q′ = Q̃′ by axiom AR,5, and transitivity.

• If P is a†. P ′ then by the induction hypothesis there exists Q′ ∈ Pnoxq with Q̃′ in R-nf such that AR `brs

P̃ ′ = Q̃′. The result follows by taking Q equal to a†. Q′ – where ã†. Q′ is in R-nf because so is Q̃′ – due to
AR `brs ã†. P ′ = ã†. Q′ by substitutivity with respect to executed action prefix.

• If P is P ′ xρq then by the induction hypothesis there exists Q′ ∈ Pnoxq with Q̃′ in R-nf – which is a possibly
empty sequence of executed extended prefixes terminated by 0 – such that AR `brs P̃

′ = Q̃′, hence AR `brs

P̃ ′ xρq = Q̃′ xρq by substitutivity with respect to renaming, where Q̃′ xρq is in R-nf because it is obtained
from Q̃′ by renaming all of its actions and backward ready sets according to ρ. The result follows by
substitutivity with respect to executed action prefix and transitivity after possibly repeated applications of
axiom AR,4 and a final application of axiom AR,3 to Q̃′ xρq aimed at achieving AR `brs P̃ ′ xρq = Q̃ with
Q ∈ Pnoxq in addition to Q̃ in R-nf.

• If P is P1 +P2 then by the induction hypothesis there exist Q1, Q2 ∈ Pnoxq with Q̃1 and Q̃2 in R-nf such that
AR `brs P̃1 = Q̃1 and AR `brs P̃2 = Q̃2, hence AR `brs P̃1 + P2 = Q̃1 +Q2 by substitutivity with respect to
alternative composition. There are three cases:

– If P1 and P2 are both initial, then Q1 and Q2 are both initial too and hence the result follows by taking
Q equal to Q1 due to AR `brs Q̃1 +Q2 = Q̃1 – by axiom AR,6 – and transitivity.

– If only P2 is initial, then only Q2 is initial too and hence the result follows by taking Q equal to Q1

for the same reason as the previous case.

– If only P1 is initial, then only Q1 is initial too and hence the result follows by taking Q equal to Q2 due
to AR `brs Q̃1 +Q2 = Q̃2 +Q1 by axiom AR,2, AR `brs Q̃2 +Q1 = Q̃2 by axiom AR,6, and transitivity.

• If P is P1 ‖L P2 then by the induction hypothesis there exist Q1, Q2 ∈ Pnoxq with Q̃1 and Q̃2 in R-nf such that
AR `brs P̃1 = Q̃1 and AR `brs P̃2 = Q̃2, hence AR `brs

˜P1 ‖L P2 = ˜Q1 ‖LQ2 by substitutivity with respect to
parallel composition. As a consequence AR `brs

˜P1 ‖L P2 = e`εbrs,R(Q̃1, Q̃2, L)Q1 ‖LQ2
by axiom AR,7 and tran-

sitivity. Note that Q1 ‖LQ2 ∈ Pnoxq because so are Q1 and Q2 and ˜Q1 ‖LQ2, i.e., e`εbrs,R(Q̃1, Q̃2, L)Q1 ‖LQ2
,

is in R-nf by the simplified version of Definition 6.4.
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Theorem 6.7. Let P1, P2 ∈ P. Then P̃1 ∼RB:`brs P̃2 iff AR `brs P̃1 = P̃2.

Proof. Soundness, i.e., AR `brs P̃1 = P̃2 =⇒ P̃1 ∼RB:`brs P̃2, is a straightforward consequence of the axioms and
inference rules behind `brs (see Section 6.1 where for each equation side its `brs-encoding is considered) together
with ∼RB:`brs being an equivalence relation and a congruence (see Theorem 6.4), plus the fact that the lefthand side
process of each additional axiom in Table 6.4 is ∼RB:`brs-equivalent to the righthand side process of the same axiom.
Let us address ground completeness, i.e., P̃1 ∼RB:`brs P̃2 =⇒ AR `brs P̃1 = P̃2. We suppose that P̃1 and P̃2 are
both in R-nf and proceed by induction on the syntactical structure of P̃1:

• If P̃1 is 0̃ then from P̃1 ∼RB:`brs P̃2 and P̃2 in R-nf we derive that P̃2 can only be 0̃, from which the result
follows by reflexivity.

• If P̃1 is ã†1. P ′1 then from P̃1 ∼RB:`brs P̃2 and P̃2 in R-nf we derive that P̃2 can only be ã†2. P ′2. We recall that
P̃ ′1 and P̃ ′1 are both in R-nf.
From P̃1 ∼RB:`brs P̃2 and P̃1 and P̃2 both in R-nf and different from 0̃ it follows that P̃1 and P̃2 consist of
the same sequence of executed actions, hence in particular a1 = a2 and P̃ ′1 ∼RB:`brs P̃

′
2. From the induction

hypothesis we obtain AR `brs P̃
′
1 = P̃ ′2, hence AR `brs ã

†
1. P

′
1 = ã†2. P

′
2 by substitutivity with respect to

executed action prefix.

If P̃1 and P̃2 are not both in R-nf, thanks to Lemma 6.7 we can find Q1, Q2 ∈ Pnoxq, each of which is initial iff
so is its corresponding process, with Q̃1 and Q̃2 in R-nf such that AR `brs P̃1 = Q̃1 and AR `brs P̃2 = Q̃2, hence
AR `brs Q̃2 = P̃2 by symmetry. Due to soundness, we get P̃1 ∼RB:`brs Q̃1, hence Q̃1 ∼RB:`brs P̃1 as ∼RB:`brs is
symmetric, and P̃2 ∼RB:`brs Q̃2. Since P̃1 ∼RB:`brs P̃2, we also get Q̃1 ∼RB:`brs Q̃2 as ∼RB:`brs is transitive. By
virtue of what has been shown above, from Q̃1 ∼RB:`brs Q̃2 with Q̃1 and Q̃2 in R-nf it follows that AR `brs Q̃1 = Q̃2

and hence AR `brs P̃1 = P̃2 by transitivity.

Corollary 6.3. Let P1, P2 ∈ P. Then P1 ∼RB P2 iff AR `brs P̃1 = P̃2.

Proof. It stems from P1 ∼RB P2 iff P̃1 ∼RB:`brs P̃2 as established by Corollary 6.1.

6.5.2 Axiomatization of ≈RB

The set AτR of `brs,w-based axioms for ≈RB is shown in Table 6.5. The first seven axioms have the same shape
as those in Table 6.4, with the difference that the `brs,w-encoding is considered in lieu of the one based on `brs

(again in the simplified form for parallel composition motivated after Definition 6.5).
The additional axiom, i.e., axiom AτR,8, which is specific to our reversible setting, expresses the abstraction

capability of ≈RB. It is worth noting that it represents the reverse counterpart of the only τ -law that, over
forward-only processes, is valid for weak bisimilarity but not for weak bisimulation congruence [112].

Let `brs,w be the `brs,w-version of ` for Pbrs, in which for every equation in the general axioms and inference
rules of Section 6.1 the `brs,w-encoding of the processes on both sides is considered instead of the plain processes
in P. We point out that transformability into R-nf is enough to prove ground completeness, i.e., resorting to
saturation like in Section 6.3.2 is not needed, because no choice occurs when moving only backward.
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(AτR,1) ̂(P +Q) +R = ̂P + (Q+R) where at least two among P , Q, R are initial
(AτR,2) P̂ +Q = Q̂+ P where initial(P ) ∨ initial(Q)

(AτR,3) 0̂ xρq = 0̂

(AτR,4) ̂(a†. P ) xρq = ̂ρ(a)†. (P xρq)

(AτR,5) â . P = P̂ where initial(P )

(AτR,6) P̂ +Q = P̂ if initial(Q)

(AτR,7) ̂P1 ‖L P2 = e`εbrs,w,R(P̂1, P̂2, L)P1 ‖L P2
with Pk in R-nf for k ∈ {1, 2}

(AτR,8) τ̂ †. P = P̂

Table 6.5: Axioms characterizing ≈RB via the `brs,w-encoding into Pbrs processes

Lemma 6.8. For all (initial) P ∈ P there exists (an initial) Q ∈ Pnoxq such that AτR `brs,w P̂ = Q̂ with Q̂ in R-nf
(= 0̂).

Proof. Since in the considered normal form τ -actions do not play a role different from the one of observable actions,
we proceed like in the proof of Lemma 6.7 apart from the renaming case in which, when obtaining Q̂′ xρq from Q̂′

by renaming all of its actions and backward ready sets according to ρ, the second component of each possible
extended prefix whose first component is observable and renamed τ by ρ, as well as the second component of each
possible subsequent extended prefix whose first component is named τ , is changed to the second component of the
closest preceding extended prefix whose first component is an action neither named τ nor renamed τ by ρ (or ∅ if
there is no such a preceding prefix).

Theorem 6.8. Let P1, P2 ∈ P. Then P̂1 ≈RB:`brs,w P̂2 iff AτR `brs,w P̂1 = P̂2.

Proof. Soundness, i.e., AτR `brs,w P̂1 = P̂2 =⇒ P̂1 ≈RB:`brs,w P̂2, is a straightforward consequence of the axioms
and inference rules behind `brs,w (see Section 6.1 where for each equation side its `brs,w-encoding is considered)
together with ≈RB:`brs,w being an equivalence relation and a congruence (see Theorem 6.6), plus the fact that the
lefthand side process of each additional axiom in Table 6.5 is ≈RB:`brs,w -equivalent to the righthand side process of
the same axiom.
Let us address ground completeness, i.e., P̂1 ≈RB:`brs,w P̂2 =⇒ AτR `brs,w P̂1 = P̂2. We suppose that P̂1 and P̂2

are both in R-nf. Given that we cannot proceed by induction on the syntactical structure of P̂1 or size(P̂1)
alone because, in the case that P̂1 is 0̂ or equivalently size(P̂1) = 0, from P̂1 ≈RB:`brs,w P̂2 and P̂1 and P̂2 in R-nf
we cannot conclude that P̂2 is 0̂ or equivalently size(P̂2) = 0 too, we proceed by induction on k = size(P̂1)+size(P̂2):

• If k = 0 then from P̂1 ≈RB:`brs,w P̂2 and P̂1 and P̂2 in R-nf we derive that both P̂1 and P̂2 can only be 0̂,
from which the result follows by reflexivity.

• If k > 0 there are three cases:

– If P̂1 is â†1 . P ′1 and P̂2 is 0̂, then a1 = τ and P̂ ′1 ≈RB:`brs,w P̂2 otherwise P̂1 ≈RB:`brs,w P̂2 could not hold.

From the induction hypothesis we obtain AτRB `brs,w P̂ ′1 = P̂2, hence AτRB `brs,w â†1 . P
′
1 = P̂2 due to
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AτRB `brs,w â†1 . P
′
1 = â†1 . P2 by substitutivity with respect to executed action prefix, AτRB `brs,w â†1 . P2 =

P̂2 by axiom AτR,8, and transitivity.

– If P̂1 is 0̂ and P̂2 is â†2 . P ′2, then we proceed like in the previous case.

– If P̂1 is â†1 . P ′1 and P̂2 is â†2 . P ′2, there are three subcases:

∗ If a1 6= τ 6= a2 then a1 = a2 and P̂ ′1 ≈RB:`brs,w P̂ ′2 otherwise P̂1 ≈RB:`brs,w P̂2 could not hold.

From the induction hypothesis we obtain AτRB `brs,w P̂ ′1 = P̂ ′2, hence AτRB `brs,w â†1 . P
′
1 = â†2 . P

′
2 by

substitutivity with respect to executed action prefix.

∗ If a1 = τ then AτRB `brs,w â†1 . P
′
1 = P̂ ′1 by axiom AτR,8, hence â†1 . P ′1 ≈RB:`brs,w P̂ ′1 by sound-

ness, which implies P̂ ′1 ≈RB:`brs,w â†1 . P
′
1 as ≈RB:`brs,w is symmetric and then P̂ ′1 ≈RB:`brs,w â†2. P

′
2

as â†1 . P ′1 ≈RB:`brs,w â†2. P
′
2 and ≈RB:`brs,w is transitive. From the induction hypothesis we obtain

AτRB `brs,w P̂ ′1 = â†2 . P
′
2, hence AτRB `brs,w â†1 . P

′
1 = â†2 . P

′
2 due to AτRB `brs,w â†1 . P

′
1 =

̂
a†1 . a

†
2 . P

′
2 by

substitutivity with respect to executed action prefix, AτRB `brs,w
̂

a†1 . a
†
2 . P

′
2 = â†2 . P

′
2 by axiom AτR,8,

and transitivity.
∗ If a2 = τ then we proceed like in the previous subcase.

If P̂1 and P̂2 are not both in R-nf, thanks to Lemma 6.8 we can find Q1, Q2 ∈ Pnoxq, each of which is initial iff
so is its corresponding process, with Q̂1 and Q̂2 in R-nf such that AτR `brs,w P̂1 = Q̂1 and AτR `brs,w P̂2 = Q̂2,
hence AτR `brs,w Q̂2 = P̂2 by symmetry. Due to soundness, we get P̂1 ≈RB:`brs,w Q̂1, hence Q̂1 ≈RB:`brs,w P̂1 as
≈RB:`brs,w is symmetric, and P̂2 ≈RB:`brs,w Q̂2. Since P̂1 ≈RB:`brs,w P̂2, we also get Q̂1 ≈RB:`brs,w Q̂2 as ≈RB:`brs,w is
transitive. By virtue of what has been shown above, from Q̂1 ≈RB:`brs,w Q̂2 with Q̂1 and Q̂2 in R-nf it follows that
AτR `brs,w Q̂1 = Q̂2 and hence AR `brs,w P̂1 = P̂2 by transitivity.

Corollary 6.4. Let P1, P2 ∈ P. Then P1 ≈RB P2 iff AτR `brs,w P̂1 = P̂2.

Proof. It stems from P1 ≈RB P2 iff P̂1 ≈RB:`brs,w P̂2 as established by Corollary 6.2.

6.6 Axiomatizations of Forward-Reverse Bisimulation Congruences

The axioms via Pbrs for ∼FRB are presented in Section 6.6.1, while those for ≈FRB:ps are discussed in Section 6.6.2.

6.6.1 Axiomatization of ∼FRB

The set AFR of `brs-based axioms for ∼FRB is shown in Table 6.6. Axioms AFR,1 to AFR,3 and axioms AFR,5

to AFR,8, already encountered in Table 6.1 without encoding, express associativity, commutativity, and neutral
element of alternative composition as well as the application of renaming and its distributivity with respect to
alternative composition.
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(AFR,1) ˜(P +Q) +R = ˜P + (Q+R) where at least two among P , Q, R are initial
(AFR,2) P̃ +Q = Q̃+ P where initial(P ) ∨ initial(Q)

(AFR,3) P̃ + 0 = P̃

(AFR,4) P̃ +Q = P̃ if initial(Q) ∧ to_initial(P ) = Q

(AFR,5) 0̃ xρq = 0̃

(AFR,6) ˜(a . P ) xρq = ˜ρ(a) . (P xρq) where initial(P )

(AFR,7) ˜(a†. P ) xρq = ˜ρ(a)†. (P xρq)

(AFR,8) ˜(P +Q) xρq = ˜(P xρq) + (Q xρq) where initial(P ) ∨ initial(Q)

(AFR,9) ˜P1 ‖L P2 = e`εbrs(P̃1, P̃2, L)P1 ‖L P2
with Pk in FR-nf for k ∈ {1, 2}

Table 6.6: Axioms characterizing ∼FRB via the `brs-encoding into Pbrs processes

The other axioms are specific to our reversible setting. Axiom AFR,4 is an extended variant of idempotency
appeared for the first time in [106] – with P and Q coinciding like in axiom AF,4 of Table 6.1 when they are
both initial – where function to_initial (see page 26) brings a process back to its initial version by removing †
from all executed actions. Note that, unlike Tables 6.1 and 6.4, there are no axioms allowing to abstract from the
past (i.e., executed actions), the future (i.e., unexecuted actions), or previously non-selected alternative processes.
Axiom AFR,9 concisely expresses via e`brs the expansion laws for ∼FRB where, for k ∈ {1, 2}, Pk is the renaming-free
sequential process [a†k . P

′
k +]

∑
i∈Ik ak,i . Pk,i.

Definition 6.6. We say that P ∈ P is in forward-reverse normal form, written FR-nf, iff it is equal to
[a†. P ′+]

∑
i∈I ai . Pi where a

†. P ′ is optional, P ′ is in FR-nf, I is a finite index set (with the summation being
0 – or disappearing in the presence of a†. P ′ – when I = ∅), and each Pi is initial and in FR-nf. This extends
to Pbrs in the expected way.

Lemma 6.9. For all (initial) P ∈ P there exists (an initial) Q ∈ Pnoxq such that AFR `brs P̃ = Q̃ with Q̃ in FR-nf.

Proof. We proceed by induction on the syntactical structure of P ∈ P:

• If P is 0 then the result follows by taking Q equal to 0 due to AFR `brs 0̃ = 0̃ by reflexivity.

• If P is a . P ′ where P ′ is initial, then by the induction hypothesis there exists Q′ ∈ Pnoxq initial and with
Q̃′ in FR-nf such that AFR `brs P̃

′ = Q̃′. The result follows by taking Q equal to a .Q′ – which is initial
because so is Q′ and such that ã . Q′ is in FR-nf because so is the initial Q̃′ – due to AFR `brs ã . P ′ = ã . Q′

by substitutivity with respect to action prefix.

• If P is a†. P ′ then by the induction hypothesis there exists Q′ ∈ Pnoxq with Q̃′ in FR-nf such that AFR `brs

P̃ ′ = Q̃′. The result follows by taking Q equal to a†. Q′ – where ã†. Q′ is in FR-nf because so is Q̃′ – due to
AFR `brs ã†. P ′ = ã†. Q′ by substitutivity with respect to executed action prefix.

• If P is P ′ xρq then by the induction hypothesis there exists Q′ ∈ Pnoxq with Q̃′ in FR-nf – say
[<a†, {a}> .U +]

∑
i∈I <ai, {ai}> .Ui – such that AFR `brs P̃

′ = Q̃′, hence AFR `brs P̃ ′ xρq = Q̃′ xρq by
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substitutivity with respect to renaming, where Q̃′ xρq is in FR-nf because it is obtained from Q̃′ by renaming
all of its actions and backward ready sets according to ρ. The result follows by substitutivity with respect
to action prefix and alternative composition as well as transitivity after possibly repeated applications of
axioms AFR,5 to AFR,8 to Q̃′ xρq aimed at achieving AFR `brs P̃ ′ xρq = Q̃ with Q ∈ Pnoxq in addition to Q̃
in FR-nf.

• If P is P1 + P2 then by the induction hypothesis there exist Q1, Q2 ∈ Pnoxq with Q̃1 and Q̃2 in FR-nf such
that AFR `brs P̃1 = Q̃1 and AFR `brs P̃2 = Q̃2, hence AFR `brs P̃1 + P2 = Q̃1 +Q2 by substitutivity with
respect to alternative composition. There are three cases:

– If P1 and P2 are both initial, then Q1 and Q2 are both initial too and hence the result follows by taking
Q equal to Q1 +Q2 – which is in Pnoxq because so are Q1 and Q2 – up to an application of axiom AFR,3

in the case that Q̃1 +Q2 is not in FR-nf because Q1 and Q2 are not different from 0 (possibly preceded
by an application of axiom AFR,2 to move the 0 subprocess to the right of +) and transitivity.

– If only P2 is initial, then only Q2 is initial too and hence the result follows by taking Q equal to Q1 +Q2

– which is in Pnoxq because so are Q1 and Q2 – up to an application of axiom AFR,3 in the case that
Q̃1 +Q2 is not in FR-nf (because Q2 is not different from 0) and transitivity.

– If only P1 is initial, then only Q1 is initial too and hence the result follows by taking Q equal to Q2 +Q1

– which is in Pnoxq because so are Q2 and Q1 – due to AFR `brs Q̃1 +Q2 = Q̃2 +Q1 – by axiom AFR,2 –
and transitivity, up to an application of axiom AFR,3 in the case that Q2 +Q1 is not in FR-nf (because
Q1 is not different from 0) and transitivity.

• If P is P1 ‖L P2 then by the induction hypothesis there exist Q1, Q2 ∈ Pnoxq with Q̃1 and Q̃2 in FR-nf such that
AFR `brs P̃1 = Q̃1 and AFR `brs P̃2 = Q̃2, hence AFR `brs

˜P1 ‖L P2 = ˜Q1 ‖LQ2 by substitutivity with respect
to parallel composition. As a consequence AFR `brs

˜P1 ‖L P2 = e`εbrs(Q̃1, Q̃2, L)Q1 ‖LQ2
by axiom AFR,9 and

transitivity. Note that Q1 ‖LQ2 ∈ Pnoxq because so are Q1 and Q2 and ˜Q1 ‖LQ2, i.e., e`εbrs(Q̃1, Q̃2, L)Q1 ‖LQ2
,

is in FR-nf by Definition 6.4.

Theorem 6.9. Let P1, P2 ∈ P. Then P̃1 ∼FRB:`brs P̃2 iff AFR `brs P̃1 = P̃2.

Proof. Soundness, i.e., AFR `brs P̃1 = P̃2 =⇒ P̃1 ∼FRB:`brs P̃2, is a straightforward consequence of the axioms and
inference rules behind `brs (see Section 6.1 where for each equation side its `brs-encoding is considered) together
with ∼FRB:`brs being an equivalence relation and a congruence (see Theorem 6.4), plus the fact that the lefthand
side process of each additional axiom in Table 6.6 is ∼FRB:`brs-equivalent to the righthand side process of the
same axiom.
Let us address ground completeness, i.e., P̃1 ∼FRB:`brs P̃2 =⇒ AFR `brs P̃1 = P̃2. We suppose that P̃1 and P̃2 are
both in FR-nf and proceed by induction on the syntactical structure of P̃1:

• If P̃1 is 0̃ then from P̃1 ∼FRB:`brs P̃2 and P̃2 in FR-nf we derive that P̃2 can only be 0̃, from which the result
follows by reflexivity.
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• If P̃1 is [ã†1 . P
′
1 +]

∑
i∈I1

˜a1,i . P1,i with ã
†
1 . P

′
1 present or I1 6= ∅, then from P̃1 ∼FRB:`brs P̃2 and P̃2 in FR-nf

we derive that P̃2 can only be [ã†2 . P
′
2 +]

∑
i∈I2

˜a2,i . P2,i with ã
†
2 . P

′
2 present iff ã†1 . P

′
1 present and – if they

are absent – I2 6= ∅ 6= I1. We recall that P̃ ′1, P̃ ′2, every P̃1,i, and every P̃2,i are all in FR-nf.

In the presence of ã†1 . P ′1 and ã†2 . P
′
2, it is not necessarily the case that I2 6= ∅ iff I1 6= ∅. However, if for

example I1 = ∅ and I2 6= ∅, then in order for P̃1 ∼FRB:`brs P̃2 it must be the case that to_initial(ã†2 . P ′2) =∑
i∈I2

˜a2,i . P2,i, in which case AFR `brs P̃2 = ã†2 . P
′
2 by axiom AFR,4. Therefore we can suppose that I2 6= ∅

iff I1 6= ∅ when examining the two main summands of P̃1 and P̃2.

If ã†1 . P ′1 and ã†2 . P ′2 are present, from the fact that they are the only summands in P̃1 and P̃2 that can move
it follows that a1 = a2 and P̃ ′1 ∼FRB:`brs P̃

′
2, otherwise P̃1 ∼FRB:`brs P̃2 could not hold. From the induction

hypothesis we obtain AFR `brs P̃
′
1 = P̃ ′2 and hence AFR `brs ã

†
1 . P

′
1 = ã†2 . P

′
2 by substitutivity with respect to

executed action prefix.
If I1 6= ∅ 6= I2, when going back to to_initial(P̃1) and to_initial(P̃2) also

∑
i∈I1

˜a1,i . P1,i and
∑

i∈I2
˜a2,i . P2,i

can move. Suppose that to_initial(ã†1 . P
′
1) 6=

∑
i∈I1

˜a1,i . P1,i and to_initial(ã†2 . P
′
2) 6=

∑
i∈I2

˜a2,i . P2,i so
as not to fall back into the previous case. Since P̃1 ∼FRB:`brs P̃2, for each i1 ∈ I1 there exists i2 ∈ I2

such that a1,i1 = a2,i2 and P̃1,i1 ∼FRB:`brs P̃2,i2 , and vice versa. From the induction hypothesis we obtain
AFR `brs P̃1,i1 = P̃2,i2 . It then follows that AFR `brs

˜a1,i1 . P1,i1 = ˜a2,i2 . P2,i2 by substitutivity with respect to
action prefix, hence AFR `brs

∑
i∈I1

˜a1,i . P1,i =
∑

i∈I2
˜a2,i . P2,i by substitutivity with respect to alternative

composition and, in the presence of identical summands on the same side that are absent on the other side,
axiom AFR,4 (possibly preceded by applications of axioms AFR,1 and AFR,2 to move identical summands next
to each other) and transitivity.

When ã†1 . P ′1 and ã†2 . P ′2 are present and I1 6= ∅ 6= I2, the result stems from substitutivity with respect to
alternative composition.

If P̃1 and P̃2 are not both in FR-nf, thanks to Lemma 6.9 we can find Q1, Q2 ∈ Pnoxq, each of which is initial iff
so is its corresponding process, with Q̃1 and Q̃2 in FR-nf such that AFR `brs P̃1 = Q̃1 and AFR `brs P̃2 = Q̃2,
hence AFR `brs Q̃2 = P̃2 by symmetry. Due to soundness, we get P̃1 ∼FRB:`brs Q̃1, hence Q̃1 ∼FRB:`brs P̃1 as
∼FRB:`brs is symmetric, and P̃2 ∼FRB:`brs Q̃2. Since P̃1 ∼FRB:`brs P̃2, we also get Q̃1 ∼FRB:`brs Q̃2 as ∼FRB:`brs is
transitive. By virtue of what has been shown above, from Q̃1 ∼FRB:`brs Q̃2 with Q̃1 and Q̃2 in FR-nf it follows
that AFR `brs Q̃1 = Q̃2 and hence AFR `brs P̃1 = P̃2 by transitivity.

Corollary 6.5. Let P1, P2 ∈ P. Then P1 ∼FRB P2 iff AFR `brs P̃1 = P̃2.

Proof. It stems from P1 ∼FRB P2 iff P̃1 ∼FRB:`brs P̃2 as established by Corollary 6.1.
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(AτFR,1) ̂(P +Q) +R = ̂P + (Q+R) where at least two among P , Q, R are initial
(AτFR,2) P̂ +Q = Q̂+ P where initial(P ) ∨ initial(Q)

(AτFR,3) P̂ + 0 = P̂

(AτFR,4) P̂ +Q = P̂ if initial(Q) ∧ to_initial(P ) = Q

(AτFR,5) 0̂ xρq = 0̂

(AτFR,6) ̂(a . P ) xρq = ̂ρ(a) . (P xρq) where initial(P )

(AτFR,7) ̂(a†. P ) xρq = ̂ρ(a)†. (P xρq)

(AτFR,8) ̂(P +Q) xρq = ̂(P xρq) + (Q xρq) where initial(P ) ∨ initial(Q)

(AτFR,9) ̂P1 ‖L P2 = e`εbrs,w(P̂1, P̂2, L)P1 ‖L P2
with Pk in FR-nf for k ∈ {1, 2}

(AτFR,10) ̂a . (τ . (P +Q) + P ) = ̂a . (P +Q) where initial(P ) ∧ initial(Q)

(AτFR,11) ̂a†. (τ . (P +Q) + P ′) = ̂a†. (P ′ +Q) if to_initial(P ′) = P , where initial(P ) ∧ initial(Q)

(AτFR,12) ̂a†. (τ †. (P ′ +Q) + P ) = ̂a†. (P ′ +Q) if to_initial(P ′) = P , where initial(P )

Table 6.7: Axioms characterizing ≈FRB:ps via the `brs,w-encoding into Pbrs processes

6.6.2 Axiomatization of ≈FRB:ps

The set AτFR of `brs,w-based axioms for ≈FRB:ps is shown in Table 6.7. The first nine axioms have the same shape
as those in Table 6.6, with the difference that the `brs,w-encoding is considered in lieu of the one based on `brs.

The three additional axioms, i.e., axioms AτFR,10 to AτFR,12, which are specific to our reversible setting, expresses
the abstraction capability of ≈FRB. The first one is the only τ -law of branching bisimilarity over forward-only
processes [80] (see the forthcoming Theorem 7.3), while the other two are necessary in our setting to achieve
ground completeness.

Lemma 6.10. For all (initial) P ∈ P there exists (an initial) Q ∈ Pnoxq such that AτFR `brs,w P̂ = Q̂ with Q̂ in
FR-nf.

Proof. Since in the considered normal form τ -actions do not play a role different from the one of observable actions,
we proceed like in the proof of Lemma 6.9 apart from the renaming case in which, when obtaining Q̂′ xρq from Q̂′

by renaming all of its actions and backward ready sets according to ρ, the second component of each possible
extended prefix whose first component is observable and renamed τ by ρ, as well as the second component of each
possible subsequent extended prefix whose first component is named τ , is changed to the second component of the
closest preceding extended prefix whose first component is an action neither named τ nor renamed τ by ρ (or ∅ if
there is no such a preceding prefix).

The saturation technique used in Section 6.3.2 to prove ground completeness for ≈FB:ps turns out to be unsound
for ≈FRB:ps like in the case of branching bisimilarity over forward-only processes [75]. In particular, a normal form
based on saturation cannot be set up for ≈FRB:ps. On the one hand, the backward version of:

if P ==⇒ θ′−→==⇒ P ′ then P θ′′−→ P ′′ with act(θ′) = act(θ′′) and P ′ ≈FRB:ps P
′′

which is:
if P ′==⇒ θ′−→==⇒ P then P ′′ θ

′′
−→ P with act(θ′) = act(θ′′) and P ′ ≈FRB:ps P

′′
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can be satisfied only when P ′ and P ′′ coincide in the case that P has only one incoming transition, e.g., P ∈ Pseq.
On the other hand, not even the forward version of saturation works for ≈FRB:ps because it preserves neither past
sensitivity in a forward-reverse framework nor forward-reverse semantics in general:

• Consider P given by τ . (a . τ . 0 + b . 0) + a . 0 + b . 0 along with its two transitions:
P ==⇒ .+.+.τ .+a−−−−−→==⇒ τ †. (a†. τ †. 0 + b . 0) + a . 0 + b . 0 , P ′

P
.++. a−−−→ τ . (a . τ . 0 + b . 0) + a†. 0 + b . 0 , P ′′

Then P ′ 6≈FRB:ps P
′′. Indeed, if P ′ undoes τ with P ′′ idling and then undoes a thus reaching the non-initial

process τ †. (a . τ . 0 + b . 0) + a . 0 + b . 0, then P ′′ can only respond by undoing a thus reaching the initial
process P .

• Consider Q given by τ . a . (τ . 0 + b . 0) + a . 0 + b . 0 along with its two transitions:
Q ==⇒ .+.+.τa−−−−→==⇒ τ †. a†. (τ †. 0 + b . 0) + a . 0 + b . 0 , Q′

Q
.++. a−−−→ τ . a . (τ . 0 + b . 0) + a†. 0 + b . 0 , Q′′

Then Q′ 6≈FRB:ps Q
′′. Indeed, if Q′ undoes τ thus reaching τ †. a†. (τ . 0 + b . 0) + a . 0 + b . 0 with Q′′ staying

idle, then in the forward direction the newly reached process can perform b whereas Q′′ cannot.

We thus proceed by recasting in our reversible setting a preliminary result for the completeness of the ax-
iomatization of branching bisimulation congruence over forward-only processes provided in [1]. This yields two
lemmas, where the former is about equivalent initial processes that are then proven to be equal when prefixed by
an unexecuted action, while the latter has to do with equivalent arbitrary processes that are then proven to be
equal when prefixed by an executed action. The proof of the former lemma and part of the latter lemma is inspired
by the proof of the aforementioned result. In addition to these two lemmas, in the proof of ground completeness
we exploit ≈FRB:c:`brs,w , which is an alternative characterization of ≈FRB:ps:`brs,w inspired by Definition 4.4 and
Theorem 4.3.

Lemma 6.11. Let P1, P2 ∈ P be initial and a ∈ A. If P̂1 ≈FRB:`brs,w P̂2 then AτFR `brs,w â . P1 = â . P2.

Proof. We suppose that P̂1 and P̂2 are both in FR-nf. Given that we cannot proceed by induction on the syn-
tactical structure of P̂1 or size(P̂1) alone because (i) in the case that P̂1 is 0̂ or equivalently size(P̂1) = 0 from
P̂1 ≈FRB:`brs,w P̂2 and P̂1 and P̂2 in FR-nf we cannot conclude that P̂2 is 0̂ or equivalently size(P̂2) = 0 too
and (ii) in other cases we work with P̂1 itself instead of one of its subprocesses, we proceed by induction on
k = size(P̂1) + size(P̂2):

• If k = 0 then from P̂1 ≈FRB:`brs,w P̂2 and P̂1 and P̂2 in FR-nf we derive that P̂1 and P̂2 are both equal to 0̂,
from which the result follows by reflexivity and substitutivity with respect to action prefix.

• If k > 0 then P̂1 is
∑

i∈I1
̂a1,i . P1,i and P̂2 is

∑
i∈I2

̂a2,i . P2,i, where every P̂1,i and every P̂2,i is initial and in
FR-nf (from P̂1 ≈FRB:`brs,w P̂2 it follows that when either index set is empty, i.e., either process is 0̂, all the
actions of the other process – whose index set cannot be empty – must be τ). Let us consider the following
two conditions:

1. There exists i ∈ I1 such that a1,i = τ and P̂1,i ≈FRB:`brs,w P̂2.

2. There exists i ∈ I2 such that a2,i = τ and P̂2,i ≈FRB:`brs,w P̂1.



6.6 Axiomatizations of Forward-Reverse Bisimulation Congruences 78

There are three cases:

– Suppose that neither condition 1 nor condition 2 holds. From P̂1 ≈FRB:`brs,w P̂2 it follows that,

whenever P1
θ1,i−−→brs

̂b†. P1,i1 +
∑

i∈I1\{i1}
̂a1,i . P1,i with act(θ1) = a1,i1 = b, then P̂2

θ2,i−−→brs
̂b†. P2,i2 +∑

i∈I2\{i2}
̂a2,i . P2,i with act(θ2) = a2,i2 = b, where ̂b†. P1,i1 +

∑
i∈I1\{i1}

̂a1,i . P1,i ≈FRB:`brs,w
̂b†. P2,i2 +∑

i∈I2\{i2}
̂a2,i . P2,i, and vice versa. Note that P2 (resp. P1) cannot idle when b = τ because condition 1

(resp. 2) does not hold.
Every pair of≈FRB:`brs,w -equivalent reached processes is composed of two non-initial processes whose only
incoming transitions are identically labeled and respectively depart from the two ≈FRB:`brs,w -equivalent

initial processes P̂1 and P̂2, hence P̂1,i1 = to_forward( ̂b†. P1,i1 +
∑

i∈I1\{i1}
̂a1,i . P1,i) ≈FRB:`brs,w

to_forward( ̂b†. P2,i2 +
∑

i∈I2\{i2}
̂a2,i . P2,i) = P̂2,i2 . From the induction hypothesis it follows that

AτFR `brs,w
̂a1,i1 . P1,i1 = ̂a2,i2 . P2,i2 , hence AτFR `brs,w P̂1 = P̂2 by substitutivity with respect to al-

ternative composition and, in the presence of identical summands on the same side that are absent on
the other side, axiom AτFR,4 (possibly preceded by applications of axioms AτFR,1 and AτFR,2 to move identi-
cal summands next to each other) and transitivity. Therefore AτFR `brs,w â . P1 = â . P2 by substitutivity
with respect to action prefix.

– Suppose that both condition 1 and condition 2 hold. Then there exist i1 ∈ I1 and i2 ∈ I2 such that
a1,i1 = τ = a2,i2 and P̂1,i1 ≈FRB:`brs,w P̂2 ≈FRB:`brs,w P̂1 ≈FRB:`brs,w P̂2,i2 , hence P̂1,i1 ≈FRB:`brs,w P̂2,i2 ,
where we have exploited the fact that ≈FRB:`brs,w is symmetric and transitive. Since the considered
chain of equalities can be rewritten as P̂1 ≈FRB:`brs,w P̂2,i2 ≈FRB:`brs,w P̂1,i1 ≈FRB:`brs,w P̂2 by virtue of
the same two properties of ≈FRB:`brs,w , from the induction hypothesis it follows that AτFR `brs,w â . P1 =

â . P2,i2 , AτFR `brs,w â . P2,i2 = â . P1,i1 , and AτFR `brs,w â . P1,i1 = â . P2, hence AτFR `brs,w â . P1 = â . P2

by transitivity.

– Suppose that only one of the two conditions holds, say condition 1. For every summand τ̂ . P1,i of P̂1

such that P̂1,i ≈FRB:`brs,w P̂2 it holds that AτFR `brs,w τ̂ . P1,i = τ̂ . P2 by the induction hypothesis, hence
AτFR `brs,w P̂12 = τ̂ . P2, where P̂12 is the summation of all those summands of P̂1, by substitutivity with
respect to alternative composition and, in the presence of identical summands on the righthand side
that are absent on the lefthand side, axiom AτFR,4 (possibly preceded by applications of axioms AτFR,1

and AτFR,2 to move identical summands next to each other) and transitivity. Indicating with P̂ ′1
the summation of all the other summands of P̂1 – for each of which a1,i 6= τ or P̂1,i 6≈FRB:`brs,w P̂2

– we obtain AτFR `brs,w P̂1 = ̂τ . P2 + P ′1 by substitutivity with respect to alternative composition as P̂1

is given by ̂P12 + P ′1.
Since P̂1 ≈FRB:`brs,w P̂2, condition 1 does not hold over P̂ ′1, and condition 2 does not hold (over P̂2), simi-
lar to the first case for each summand ̂a1,i1 . P1,i1 of P̂ ′1 there must exist a summand ̂a2,i2 . P2,i2 of P̂2 such
that a1,i1 = a2,i2 and P̂1,i1 ≈FRB:`brs,w P̂2,i2 , and vice versa, hence AτFR `brs,w

̂a1,i1 . P1,i1 = ̂a2,i2 . P2,i2 by
the induction hypothesis, from which it follows that AτFR `brs,w P̂ ′1 = P̂21 , where P̂21 is the summation
of all the summands of P̂2 matching a summand of P̂ ′1, by substitutivity with respect to alternative com-
position and, in the presence of identical summands on the same side that are absent on the other side,
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axiom AτFR,4 (possibly preceded by applications of axioms AτFR,1 and AτFR,2 to move identical summands
next to each other) and transitivity. Indicating with P̂ ′2 the summation of all the other summands
of P̂2 – none of which ≈FRB:`brs,w -matches a summand of P̂ ′1 – we obtain AτFR `brs,w P̂2 = P̂ ′1 + P ′2

by substitutivity with respect to alternative composition as P̂2 is given by ̂P21 + P ′2.
In conclusion AτFR `brs,w â . P1 = ̂a . (τ . P2 + P ′1) by substitutivity with respect to action prefix,
AτFR `brs,w

̂a . (τ . P2 + P ′1) = ̂a . (τ . (P ′1 + P ′2) + P ′1) by substitutivity with respect to action prefix
and alternative composition, AτFR `brs,w

̂a . (τ . (P ′1 + P ′2) + P ′1) = ̂a . (P ′1 + P ′2) by axiom AτFR,10, and

AτFR `brs,w
̂a . (P ′1 + P ′2) = â . P2 by substitutivity with respect to action prefix, hence AτFR `brs,w

â . P1 = â . P2 by transitivity.
[Example: P1 , τ . (b . 0 + c . 0 + d . 0) + d . 0 and P2 , b . 0 + c . 0 + d . 0.]

If P̂1 and P̂2 are not both in FR-nf, thanks to Lemma 6.10 we can find Q1, Q2 ∈ Pnoxq with Q̂1 and Q̂2 initial and
in FR-nf such that AτFR `brs,w P̂1 = Q̂1 and AτFR `brs,w P̂2 = Q̂2, hence AτFR `brs,w Q̂2 = P̂2 by symmetry, from
which we obtain AτFR `brs,w â . P1 = â . Q1 and AτFR `brs,w â . Q2 = â . P2 by substitutivity with respect to action
prefix. Due to the soundness of AτFR (which will be demonstrated at the beginning of the proof of Theorem 6.10
in a way that is independent from this lemma), we get P̂1 ≈FRB:`brs,w Q̂1, hence Q̂1 ≈FRB:`brs,w P̂1 as ≈FRB:`brs,w

is symmetric, and P̂2 ≈FRB:`brs,w Q̂2. Since P̂1 ≈FRB:`brs,w P̂2, we also get Q̂1 ≈FRB:`brs,w Q̂2 as ≈FRB:`brs,w is
transitive. By virtue of what has been shown above, from Q̂1 ≈FRB:`brs,w Q̂2 with Q̂1 and Q̂2 initial and in FR-nf
it follows that AτFR `brs,w â . Q1 = â . Q2 and hence AτFR `brs,w â . P1 = â . P2 by transitivity.

Lemma 6.12. Let P1, P2 ∈ P and a ∈ A. If P̂1 ≈FRB:`brs,w P̂2 then AτFR `brs,w â†. P1 = â†. P2.

Proof. We suppose that P̂1 and P̂2 are both in FR-nf. Given that we cannot proceed by induction on the syn-
tactical structure of P̂1 or size(P̂1) alone because (i) in the case that P̂1 is 0̂ or equivalently size(P̂1) = 0 from
P̂1 ≈FRB:`brs,w P̂2 and P̂1 and P̂2 in FR-nf we cannot conclude that P̂2 is 0̂ or equivalently size(P̂2) = 0 too
and (ii) in other cases we work with P̂1 itself instead of one of its subprocesses, we proceed by induction on
k = size(P̂1) + size(P̂2):

• If k = 0 then from P̂1 ≈FRB:`brs,w P̂2 and P̂1 and P̂2 in FR-nf we derive that P̂1 and P̂2 are both equal to 0̂,
from which the result follows by reflexivity and substitutivity with respect to executed action prefix.

• Let k > 0 with P̂1 being
∑

i∈I1
̂a1,i . P1,i and P̂2 being

∑
i∈I2

̂a2,i . P2,i, where every P̂1,i and every P̂2,i is
initial and in FR-nf. The proof is similar to the one of the corresponding case in the proof of Lemma 6.11,
with the use of a† in place of a and the final application of axiom AτFR,11 in lieu of axiom AτFR,10.

• Let k > 0 with P̂1 being â†1. P ′1 +
∑

i∈I1
̂a1,i . P1,i and P̂2 being â†2. P ′2 +

∑
i∈I2

̂a2,i . P2,i, where P̂ ′1 and P̂ ′2 are
in FR-nf and every P̂1,i and every P̂2,i is initial and in FR-nf. There are two cases:

– Suppose that for k ∈ {1, 2} either Ik = ∅, or to_initial(â†k. P ′k) =
∑

i∈Ik
̂ak,i . Pk,i so that P̂k ≈FRB:`brs,w

â†k. P
′
k. There are two subcases:
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∗ If a1 = a2 then from P̂1 ≈FRB:`brs,w P̂2 it follows that P̂ ′1 ≈FRB:`brs,w P̂ ′2. Therefore AτFR `brs,w

â†1. P
′
1 = â†2. P

′
2 by the induction hypothesis, hence AτFR `brs,w P̂1 = P̂2 if I1 = ∅ = I2 or by

axiom AτFR,4 and transitivity in the case that I1 6= ∅ or I2 6= ∅. As a consequence AτFR `brs,w

â†. P1 = â†. P2 by substitutivity with respect to executed action prefix.
∗ If a1 6= a2 then from P̂1 ≈FRB:`brs,w P̂2 it follows that either action is τ , say a1, while the other

action is observable, as well as P̂ ′1 ≈FRB:`brs,w P̂2. Therefore AτFR `brs,w τ̂ †. P ′1 = τ̂ †. P2 by the

induction hypothesis, hence AτFR `brs,w P̂1 = τ̂ †. P2 if I1 = ∅ or by axiom AτFR,4 and transitivity in

the case that I1 6= ∅. As a consequence AτFR `brs,w â†. P1 = ̂a†. τ †. P2 by substitutivity with respect
to executed action prefix, hence AτFR `brs,w â†. P1 = â†. P2 by axiom AτFR,12 and transitivity.

– Suppose that for k ∈ {1, 2} it holds that Ik 6= ∅ and to_initial(â†k. P
′
k) 6=

∑
i∈Ik

̂ak,i . Pk,i. Observing

that only â†1. P ′1 and â†2. P
′
2 can move and, after going back to to_initial(P̂1) and to_initial(P̂2), also∑

i∈I1
̂a1,i . P1,i and

∑
i∈I2

̂a2,i . P2,i can move, there are two subcases:

∗ If every τ -summand of to_initial(P̂1) has a ≈FRB:`brs,w -matching τ -summand of to_initial(P̂2)

and vice versa, then from P̂1 ≈FRB:`brs,w P̂2 it follows that a1 = a2, P̂ ′1 ≈FRB:ps:`brs,w P̂ ′2, and∑
i∈I1

̂a1,i . P1,i ≈FRB:ps:`brs,w

∑
i∈I2

̂a2,i . P2,i. Thus AτFR `brs,w â†1. P
′
1 = â†2. P

′
2 by the induction hy-

pothesis and AτFR `brs,w
∑

i∈I1
̂a1,i . P1,i =

∑
i∈I2

̂a2,i . P2,i by the ground completeness of AτFR over
initial processes (which will be demonstrated in the proof of Theorem 6.10 in a way that is inde-
pendent from this lemma). As a consequence AτFR `brs,w P̂1 = P̂2 by substitutivity with respect to
alternative composition, hence AτFR `brs,w â†. P1 = â†. P2 by substitutivity with respect to executed
action prefix.

∗ Otherwise any other τ -summand of to_initial(P̂1) must be such that its continuation is ≈FRB:`brs,w -
equivalent to to_initial(P̂2) and vice versa, where the summation of all such τ -summands is
≈FRB:`brs,w -equivalent to a single one. Such a single τ -summand can occur in either process and each
of the other summands in that process must be ≈FRB:ps:`brs,w -equivalent to one of the summands of
the other process. There are two further subcases:

· If a1 = τ and a2 6= τ , so that P̂ ′1 ≈FRB:`brs,w P̂2, then AτFR `brs,w τ̂ †. P ′1 = τ̂ †. P2 by the induc-

tion hypothesis. Therefore AτFR `brs,w τ̂ †. P ′1 +
∑

i∈I1
̂a1,i . P1,i = τ̂ †. P2 +

∑
i∈I1

̂a1,i . P1,i, i.e.,

AτFR `brs,w P̂1 = τ̂ †. P2 +
∑

i∈I1
̂a1,i . P1,i, by substitutivity with respect to alternative compo-

sition, hence AτFR `brs,w â†. P1 = ̂a†. (τ †. P2 +
∑

i∈I1 a1,i . P1,i) by substitutivity with respect to
executed action prefix.
Indicating with P̂ ′′2 the summation of the initial summands of P̂2 that are not ≈FRB:ps:`brs,w -

equivalent to any of the initial summands of P̂1, we have that AτFR `brs,w P̂2 = â†2. P
′
2 +

P̂ ′′2 +
∑

i∈I1
̂a1,i . P1,i by substitutivity with respect to alternative composition and the ground

completeness of AτFR over initial processes (which will be demonstrated in the proof of
Theorem 6.10 in a way that is independent from this lemma). Therefore AτFR `brs,w

â†. P1 =
̂

a†. (τ †. (a†2. P
′
2 + P ′′2 +

∑
i∈I1 a1,i . P1,i) +

∑
i∈I1 a1,i . P1,i) by substitutivity with
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respect to executed action prefix and alternative composition, hence AτFR `brs,w â†. P1 =
̂

a†. (a†2. P
′
2 + P ′′2 +

∑
i∈I1 a1,i . P1,i), i.e., AτFR `brs,w â†. P1 = â†. P2, by axiom AτFR,12

and transitivity.
If a1 6= τ and a2 = τ , then we proceed similarly.
[Example: P1 , τ †. (b†. 0 + c . 0 + d . 0) + d . 0 and P2 , b†. 0 + c . 0 + d . 0.]

· If a1 = a2, so that P̂ ′1 ≈FRB:`brs,w P̂ ′2, and the aforementioned single τ -summand occurs

in to_initial(P̂1), then AτFR `brs,w â†1. P
′
1 = â†2. P

′
2 by the induction hypothesis. Since the

occurrence of that τ -summand in
∑

i∈I1
̂a1,i . P1,i implies

∑
i∈I1

̂a1,i . P1,i ≈FRB:ps:`brs,w

̂
τ . (to_initial(a†2. P

′
2) +

∑
i∈I2 a2,i . P2,i), we have that AτFR `brs,w

∑
i∈I1

̂a1,i . P1,i =

̂
τ . (to_initial(a†2. P

′
2) +

∑
i∈I2 a2,i . P2,i) by the ground completeness of AτFR over initial

processes (which will be demonstrated in the proof of Theorem 6.10 in a way that

is independent from this lemma). Thus AτFR `brs,w â†1. P
′
1 +

∑
i∈I1

̂a1,i . P1,i = â†2. P
′
2

+
̂

τ . (to_initial(a†2. P
′
2) +

∑
i∈I2 a2,i . P2,i), i.e., AτFR `brs,w P̂1 = â†2. P

′
2 +

̂
τ . (to_initial(a†2. P

′
2) +

∑
i∈I2 a2,i . P2,i), by substitutivity with respect to alternative com-

position, hence AτFR `brs,w â†. P1 =
̂

a†. (a†2. P
′
2 + τ . (to_initial(a†2. P

′
2) +

∑
i∈I2 a2,i . P2,i)) by

substitutivity with respect to executed action prefix. As a consequence AτFR `brs,w â†. P1 =
̂

a†. (a†2. P
′
2 +

∑
i∈I2 a2,i . P2,i), i.e., AτFR `brs,w â†. P1 = â†. P2, by axiom AτFR,11 and transitivity.

If the aforementioned single τ -summand occurs in to_initial(P̂2), then we proceed similarly.
[Example: P1 , d†. 0 + τ . (d . 0 + b . 0 + c . 0) and P2 , d†. 0 + b . 0 + c . 0.]

• Let k > 0 with P̂1 being â†1. P ′1 +
∑

i∈I1
̂a1,i . P1,i and P̂2 being

∑
i∈I2

̂a2,i . P2,i, where P̂ ′1 is in FR-nf and every
P̂1,i and every P̂2,i is initial and in FR-nf. From P̂1 ≈FRB:`brs,w P̂2 it follows that a1 = τ , P̂ ′1 ≈FRB:`brs,w P̂2,
and each of the initial summands of P̂1 must be ≈FRB:ps:`brs,w -equivalent to one of the initial summands of P̂2.

Therefore AτFR `brs,w τ̂ †. P ′1 = τ̂ †. P2 by the induction hypothesis, hence AτFR `brs,w τ̂ †. P ′1 +
∑

i∈I1
̂a1,i . P1,i =

τ̂ †. P2 +
∑

i∈I1
̂a1,i . P1,i, i.e., AτFR `brs,w P̂1 = τ̂ †. P2 +

∑
i∈I1

̂a1,i . P1,i, by substitutivity with respect to

alternative composition, from which it follows that AτFR `brs,w â†. P1 = ̂a†. (τ †. P2 +
∑

i∈I1 a1,i . P1,i) by sub-
stitutivity with respect to executed action prefix.
Indicating with P̂ ′′2 the summation of the initial summands of P̂2 that are not ≈FRB:ps:`brs,w -equivalent to
any of the initial summands of P̂1, we have that AτFR `brs,w P̂2 = P̂ ′′2 +

∑
i∈I1

̂a1,i . P1,i by substitutivity
with respect to alternative composition and the ground completeness of AτFR over initial processes (which
will be demonstrated in the proof of Theorem 6.10 in a way that is independent from this lemma). There-
fore AτFR `brs,w â†. P1 = ̂a†. (τ †. (P ′′2 +

∑
i∈I1 a1,i . P1,i) +

∑
i∈I1 a1,i . P1,i) by substitutivity with respect to

executed action prefix and alternative composition, hence AτFR `brs,w â†. P1 = ̂a†. (P ′′2 +
∑

i∈I1 a1,i . P1,i), i.e.,

AτFR `brs,w â†. P1 = â†. P2, by axiom AτFR,12 and transitivity.

If P̂1 is
∑

i∈I1
̂a1,i . P1,i and P̂2 is â†2. P ′2 +

∑
i∈I2

̂a2,i . P2,i, then we proceed similarly.
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[Example: P1 , τ †. (b . 0 + c . 0 + d . 0) + d . 0 and P2 , b . 0 + c . 0 + d . 0.]

If P̂1 and P̂2 are not both in FR-nf, thanks to Lemma 6.10 we can find Q1, Q2 ∈ Pnoxq, each of which is initial iff so is
its corresponding process, with Q̂1 and Q̂2 in FR-nf such that AτFR `brs,w P̂1 = Q̂1 and AτFR `brs,w P̂2 = Q̂2, hence
AτFR `brs,w Q̂2 = P̂2 by symmetry, from which we obtain AτFR `brs,w â†. P1 = â†. Q1 and AτFR `brs,w â†. Q2 = â†. P2

by substitutivity with respect to executed action prefix. Due to the soundness of AτFR (which will be demonstrated at
the beginning of the proof of Theorem 6.10 in a way that is independent from this lemma), we get P̂1 ≈FRB:`brs,w Q̂1,
hence Q̂1 ≈FRB:`brs,w P̂1 as ≈FRB:`brs,w is symmetric, and P̂2 ≈FRB:`brs,w Q̂2. Since P̂1 ≈FRB:`brs,w P̂2, we also get
Q̂1 ≈FRB:`brs,w Q̂2 as ≈FRB:`brs,w is transitive. By virtue of what has been shown above, from Q̂1 ≈FRB:`brs,w Q̂2

with Q̂1 and Q̂2 in FR-nf it follows that AτFR `brs,w â†. Q1 = â†. Q2 and hence AτFR `brs,w â†. P1 = â†. P2

by transitivity.

Theorem 6.10. Let P1, P2 ∈ P. Then P̂1 ≈FRB:ps:`brs,w P̂2 iff AτFR `brs,w P̂1 = P̂2.

Proof. Soundness, i.e., AτFR `brs,w P̂1 = P̂2 =⇒ P̂1 ≈FRB:ps:`brs,w P̂2, is a straightforward consequence of the axioms
and inference rules behind `brs,w (see Section 6.1 where for each equation side its `brs,w-encoding is considered)
together with ≈FRB:ps:`brs,w being an equivalence relation and a congruence (see Theorem 6.6), plus the fact that
the lefthand side process of each additional axiom in Table 6.7 is ≈FRB:ps:`brs,w -equivalent to the righthand side
process of the same axiom.
Let us address ground completeness, i.e., P̂1 ≈FRB:ps:`brs,w P̂2 =⇒ AτFR `brs,w P̂1 = P̂2. We suppose that P̂1 and P̂2

are both in FR-nf and recall that initial(P̂1)⇐⇒ initial(P̂2). There are three cases based on P̂1:

• If P̂1 is 0̂ then from P̂1 ≈FRB:ps:`brs,w P̂2 and P̂2 in FR-nf we derive that P̂2 can only be 0̂, from which the
result follows by reflexivity.

• If P̂1 is
∑

i∈I1
̂a1,i . P1,i with I1 6= ∅, then from P̂1 ≈FRB:ps:`brs,w P̂2 and P̂2 in FR-nf we derive that P̂2 is∑

i∈I2
̂a2,i . P2,i with I2 6= ∅. We recall that every P̂1,i and every P̂2,i is initial and in FR-nf.

Since P̂1 ≈FRB:ps:`brs,w P̂2 iff P̂1 ≈FRB:c:`brs,w P̂2 (see Definition 4.4 and Theorem 4.3), from the

fact that P̂1 and P̂2 are initial it follows that, whenever P̂1
θ1,i−−→brs

̂a†. P1,i1 +
∑

i∈I1\{i1}
̂a1,i . P1,i with

act(θ1) = a1,i1 = a, then P̂2
θ2,i−−→brs

̂a†. P2,i2 +
∑

i∈I2\{i2}
̂a2,i . P2,i with act(θ2) = a2,i2 = a, where

̂a†. P1,i1 +
∑

i∈I1\{i1}
̂a1,i . P1,i ≈FRB:`brs,w

̂a†. P2,i2 +
∑

i∈I2\{i2}
̂a2,i . P2,i, and vice versa. Every pair of

≈FRB:`brs,w -equivalent reached processes is composed of two non-initial processes whose only incoming tran-
sitions are identically labeled and respectively depart from the two ≈FRB:ps:`brs,w -equivalent initial processes

P̂1 and P̂2, hence P̂1,i1 = to_forward( ̂a†. P1,i1 +
∑

i∈I1\{i1}
̂a1,i . P1,i) ≈FRB:`brs,w to_forward( ̂a†. P2,i2 +∑

i∈I2\{i2}
̂a2,i . P2,i) = P̂2,i2 . Since P̂1,i1 and P̂2,i2 are initial, AτFR `brs,w

̂a1,i1 . P1,i1 = ̂a2,i2 . P2,i2 by
Lemma 6.11. Therefore AτFR `brs,w P̂1 = P̂2 by substitutivity with respect to alternative composition and, in
the presence of identical summands on the same side that are absent on the other side, axiom AτFR,4 (possibly
preceded by applications of axioms AτFR,1 and AτFR,2 to move identical summands next to each other) and
transitivity.
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• If P̂1 is â†1. P ′1 +
∑

i∈I1
̂a1,i . P1,i then from P̂1 ≈FRB:ps:`brs,w P̂2 and P̂2 in FR-nf we derive that P̂2 is â†2. P ′2 +∑

i∈I2
̂a2,i . P2,i. We recall that P̂ ′1, P̂ ′2, every P̂1,i, and every P̂2,i are all in FR-nf. There are two subcases:

– Suppose that either I1 = ∅, or to_initial(â†1. P
′
1) =

∑
i∈I1

̂a1,i . P1,i so that P̂1 ≈FRB:ps:`brs,w â†1. P
′
1.

Then either I2 = ∅, or to_initial(â†2. P
′
2) =

∑
i∈I2

̂a2,i . P2,i so that P̂2 ≈FRB:ps:`brs,w â†2. P
′
2, oth-

erwise P̂1 ≈FRB:ps:`brs,w P̂2 could not hold. Since P̂1 ≈FRB:ps:`brs,w P̂2 iff P̂1 ≈FRB:c:`brs,w P̂2

(see Definition 4.4 and Theorem 4.3), from the fact that P̂1 and P̂2 are not initial it follows

that to_initial(P̂1) ≈FRB:c:`brs,w to_initial(P̂2), i.e., to_initial(â†1. P ′1) ≈FRB:ps:`brs,w to_initial(â†2. P
′
2).

Thus a1 = a2 and to_initial(P̂ ′1) ≈FRB:ps:`brs,w to_initial(P̂ ′2), so that P̂ ′1 ≈FRB:`brs,w P̂ ′2, otherwise

P̂1 ≈FRB:ps:`brs,w P̂2 could not hold. As a consequence AτFR `brs,w â†1. P
′
1 = â†2. P

′
2 by Lemma 6.12, hence

AτFR `brs,w P̂1 = P̂2 if I1 = ∅ = I2 or by axiom AτFR,4 and transitivity in the case that I1 6= ∅ or I2 6= ∅.

– Let I1 6= ∅ and to_initial(â†1. P
′
1) 6=

∑
i∈I1

̂a1,i . P1,i. Then I2 6= ∅ and to_initial(â†2. P
′
2) 6=∑

i∈I2
̂a2,i . P2,i, otherwise P̂1 ≈FRB:ps:`brs,w P̂2 could not hold. Observing that only â†1. P ′1 and â†2. P ′2 can

move and, after going back to to_initial(P̂1) and to_initial(P̂2), also
∑

i∈I1
̂a1,i . P1,i and

∑
i∈I2

̂a2,i . P2,i

can move but it holds that to_initial(â†1. P ′1) 6=
∑

i∈I1
̂a1,i . P1,i and to_initial(â†2. P

′
2) 6=

∑
i∈I2

̂a2,i . P2,i,
from P̂1 ≈FRB:ps:`brs,w P̂2 it follows that a1 = a2, P̂ ′1 ≈FRB:ps:`brs,w P̂ ′2, and

∑
i∈I1

̂a1,i . P1,i ≈FRB:ps:`brs,w∑
i∈I2

̂a2,i . P2,i. Therefore AτFR `brs,w â†1. P
′
1 = â†2. P

′
2 by Lemma 6.12 and AτFR `brs,w

∑
i∈I1

̂a1,i . P1,i =∑
i∈I2

̂a2,i . P2,i by completeness over initial processes (already proven in the previous two cases), hence

AτFR `brs,w â†1. P
′
1 +
∑

i∈I1
̂a1,i . P1,i = â†2. P

′
2 +
∑

i∈I2
̂a2,i . P2,i, i.e., AτFR `brs,w P̂1 = P̂2, by substitutivity

with respect to alternative composition.

If P̂1 and P̂2 are not both in FR-nf, thanks to Lemma 6.10 we can find Q1, Q2 ∈ Pnoxq, each of which is initial iff
so is its corresponding process, with Q̂1 and Q̂2 in FR-nf such that AτFR `brs,w P̂1 = Q̂1 and AτFR `brs,w P̂2 = Q̂2,
hence AτFR `brs,w Q̂2 = P̂2 by symmetry. Due to soundness, we get P̂1 ≈FRB:ps:`brs,w Q̂1, hence Q̂1 ≈FRB:ps:`brs,w P̂1

as ≈FRB:ps:`brs,w is symmetric, and P̂2 ≈FRB:ps:`brs,w Q̂2. Since P̂1 ≈FRB:ps:`brs,w P̂2, we also get Q̂1 ≈FRB:ps:`brs,w Q̂2

as ≈FRB:ps:`brs,w is transitive. By virtue of what has been shown above, from Q̂1 ≈FRB:ps:`brs,w Q̂2 with Q̂1 and Q̂2

in FR-nf it follows that AτFR `brs,w Q̂1 = Q̂2 and hence AFR `brs,w P̂1 = P̂2 by transitivity.

Corollary 6.6. Let P1, P2 ∈ P. Then P1 ≈FRB:ps P2 iff AτFR `brs,w P̂1 = P̂2.

Proof. It stems from P1 ≈FRB:ps P2 iff P̂1 ≈FRB:ps:`brs,w P̂2 as established by Corollary 6.2.
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Chapter 7

Relationships with Other Equivalences

In this chapter, whose contents have appeared in [26, 28, 29], we study the relationships of the previously defined
bisimilarities with other equivalences so as to find alternative characterizations. We first address sequential pro-
cesses, for which strong and weak reverse bisimilarities coincide with strong and weak reverse trace equivalences [45]
and weak forward-reverse bisimilarity coincides with branching bisimilarity [80] (Section 7.1). Then we focus
on concurrent processes, for which we establish a connection between strong forward-reverse bisimilarity and
hereditary history-preserving bisimilarity [16] (Section 7.2).

7.1 Sequential Processes

On the one hand, it is easy to see that strong and weak forward bisimilarities coincide with the strong and weak
bisimilarities of [112], because all these equivalences consider only the standard direction of computation and, as
witnessed by Examples 2.1 and 3.1, no observable distinctions are introduced along that direction by decorated
actions inside processes. On the other hand, we show that, over sequential processes, strong and weak reverse
bisimilarities coincide with reverse variants of strong and weak trace equivalences [45] (Section 7.1.1), while weak
forward-reverse bisimilarity coincides with branching bisimilarity [80] and its forward-reverse variant (Section 7.1.2).

7.1.1 Reverse Bisimilarities and Reverse Trace Equivalences

Two processes are related by trace equivalence if both perform the same sequences of actions [45]. This is a linear-
time semantics because it completely abstracts from branching points as opposed to bisimilarity. Strong and weak
reverse bisimilarities can be characterized in terms of reverse variants of strong and weak trace equivalences, which
are obtained by defining for each P ∈ P its strong and weak reverse trace sets as follows:

tracer(P ) = {an . . . a1 ∈ A∗ | n ∈ N, ∀i = 1, . . . , n− 1. (Pi
θi−→ Pi+1 ∧ act(θi) = ai), Pn = P}

tracer,w(P ) = {an . . . a1 ∈ (A \ {τ})∗ | n ∈ N,∀i = 1, . . . , n− 1. (Pi ==⇒ θi−→==⇒ Pi+1 ∧ act(θi) = ai), Pn = P}
where ∗ applied to a set denotes the set of all finite sequences of elements of that set, including the empty sequence ε.

Definition 7.1. We say that P1, P2 ∈ P are reverse trace equivalent, written P1 ∼RT P2, iff tracer(P1) = tracer(P2).

Definition 7.2. We say that P1, P2 ∈ P are weakly reverse trace equivalent, written P1 ≈RT P2, iff tracer,w(P1) =
tracer,w(P2).
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Reverse bisimilarities coincide with reverse trace equivalences only over sequential processes. For example,
(a†. c†. 0 ‖∅ c†. 0) ‖{c}(b†. c†. 0 ‖∅ c†. 0) ∼RT (a†. d†. 0 ‖{d} b†. d†. 0 ‖{d} c†. d†. 0) xd 7→ cq because both processes pos-
sess the same reverse trace set {ε, c, ca, cb, cc, cab, cac, cba, cbc, cca, ccb, cabc, cacb, cbac, cbca, ccab, ccba} with the
first c in every reverse trace of the second process stemming from the renaming of d. In contrast,
(a†. c†. 0 ‖∅ c†. 0) ‖{c}(b†. c†. 0 ‖∅ c†. 0) 6∼RB (a†. d†. 0 ‖{d} b†. d†. 0 ‖{d} c†. d†. 0) xd 7→ cq when the involved actions are
pairwise different. The reason is that (a†. d†. 0 ‖{d} b†. d†. 0 ‖{d} c†. d†. 0) xd 7→ cq has a single incoming transi-
tion – labeled with c stemming from the renaming of the three-way synchronization on d – whose source process
(a†. d . 0 ‖{d} b†. d . 0 ‖{d} c†. d . 0) xd 7→ cq in turn has three incoming transitions respectively labeled with a, b, and c,
whereas (a†. c†. 0 ‖∅ c†. 0) ‖{c}(b†. c†. 0 ‖∅ c†. 0) has four incoming transitions – corresponding to the four two-way syn-
chronizations on c – such that only the source process (a†. c . 0 ‖∅ c†. 0) ‖{c}(b†. c . 0 ‖∅ c†. 0) in turn has three incoming
transitions respectively labeled with a, b, and c, whilst the source process (a†. c†. 0 ‖∅ c . 0) ‖{c}(b†. c†. 0 ‖∅ c . 0) has
only one incoming transition – labeled with c – and the two source processes (a†. c . 0 ‖∅ c†. 0) ‖{c}(b†. c†. 0 ‖∅ c . 0) and
(a†. c†. 0 ‖∅ c . 0) ‖{c}(b†. c . 0 ‖∅ c†. 0) have only two incoming transitions each – respectively labeled with a and c and
with b and c. Once it has been reached after undoing the last performed c, which corresponds to the first c in every
nonempty reverse trace, none of the last three processes can thus match (a†. d . 0 ‖{d} b†. d . 0 ‖{d} c†. d . 0) xd 7→ cq
in the reverse bisimulation game.

Theorem 7.1. Let P1, P2 ∈ Pseq. Then P1 ∼RB P2 iff P1 ∼RT P2.

Proof. The proof is divided into two parts:

• Assuming that P1 ∼RB P2, which implies that the length n of the longest reverse traces of P1 and P2

must be the same, we prove that tracer(P1) = tracer(P2) by proceeding by induction on n ∈ N (due to
Proposition 2.1(1) the longest reverse trace is unique in both sets; it must be the same because P1 ∼RB P2):

– If n = 0 then P1 and P2 are initial and their longest reverse trace is ε. Therefore tracer(P1) = {ε} =
tracer(P2).

– Let n > 0 with the longest reverse trace being an . . . a1 ∈ A∗. From P1 ∼RB P2 and Proposition 2.1(1)

it follows that there exist P ′1
θ1−→ P1 and P ′2

θ2−→ P2, with P ′1 and P ′2 unique, such that act(θ1) = act(θ2) =
an and P ′1 ∼RB P ′2, hence tracer(P

′
1) = tracer(P

′
2) by the induction hypothesis with an−1 . . . a1 being

the longest reverse trace in both sets. Therefore tracer(P1) = tracer(P
′
1) ∪ {an . . . a1} = tracer(P

′
2) ∪

{an . . . a1} = tracer(P2).

• Assuming that P1 ∼RT P2, we prove that the symmetric relation B = {(Q1, Q2) ∈ Pseq × Pseq | tracer(Q1) =
tracer(Q2)} is a reverse bisimulation.
Given (Q1, Q2) ∈ B such that tracer(Q1) 6= {ε} 6= tracer(Q2), from tracer(Q1) = tracer(Q2) and Proposi-
tion 2.1(1) it follows that there exist Q′1

θ1−→Q1 and Q′2
θ2−→Q2 with Q′1 and Q′2 unique and act(θ1) = act(θ2),

where Q1 and Q2 have the same unique longest reverse trace σ starting with act(θ1) and act(θ2) respectively.
Therefore tracer(Q

′
1) = tracer(Q1) \ {σ} = tracer(Q2) \ {σ} = tracer(Q

′
2) so that (Q′1, Q

′
2) ∈ B.
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Corollary 7.1. Let P1, P2 ∈ P. If P1 ∼RB P2 then P1 ∼RT P2.

Proof. See the first part of the proof of Theorem 7.1, where:

• The longest reverse traces of P1 and P2 may be more than one as P1 and P2 are not necessarily sequential.

• When n > 0, from P1 ∼RB P2 it follows that, for each of the longest reverse traces an . . . a1 ∈ A∗ of
P1 and P2, there exist P ′1

θ1−→ P1 and P ′2
θ2−→ P2 such that act(θ1) = act(θ2) = an and P ′1 ∼RB P ′2, hence

tracer(P
′
1) = tracer(P

′
2) by the induction hypothesis with an−1 . . . a1 being one of the longest reverse traces

in both sets. Therefore tracer(P1) ⊇ tracer(P
′
1) ∪ {an . . . a1} = tracer(P

′
2) ∪ {an . . . a1} ⊆ tracer(P2).

Theorem 7.2. Let P1, P2 ∈ Pseq. Then P1 ≈RB P2 iff P1 ≈RT P2.

Proof. The proof is divided into two parts:

• Assuming that P1 ≈RB P2, which implies that the length n of the longest weak reverse traces of P1 and P2

must be the same, we prove that tracer,w(P1) = tracer,w(P2) by proceeding by induction on n ∈ N (due to
Proposition 2.1(1) the longest weak reverse trace is unique in both sets; it must be the same because
P1 ≈RB P2):

– If n = 0 then either P1 and P2 are initial, or due to Proposition 3.4 and Proposition 2.1(1) there exist
P ′1 ==⇒ P1 and P ′2 ==⇒ P2, with P ′1 and P ′2 unique and initial (at most one of P1 and P2 stays idle and
thus coincides with P ′1 or P ′2 respectively), such that P ′1 ≈RB P ′2. In both cases tracer,w(P1) = {ε} =
tracer,w(P2).

– Let n > 0 with the longest weak reverse trace being an . . . a1 ∈ (A \ {τ})∗. From P1 ≈RB P2, Propo-
sition 3.4, and Proposition 2.1(1) it follows that there exist P ′1 ==⇒ θ1−→==⇒ P1 and P ′2 ==⇒ θ2−→==⇒ P2,
with P ′1 and P ′2 unique, such that act(θ1) = act(θ2) = an and P ′1 ≈RB P ′2, hence tracer,w(P ′1) =
tracer,w(P ′2) by the induction hypothesis with an−1 . . . a1 being the longest weak reverse trace in both
sets. Therefore tracer,w(P1) = tracer,w(P ′1) ∪ {an . . . a1} = tracer,w(P ′2) ∪ {an . . . a1} = tracer,w(P2).

• Assuming that P1 ≈RT P2, we prove that the symmetric relation B = {(Q1, Q2) ∈ Pseq×Pseq | tracer,w(Q1) =
tracer,w(Q2)} is a weak reverse bisimulation.
Given (Q1, Q2) ∈ B, there are two cases:

– If tracer,w(Q1) = {ε} = tracer,w(Q2) then from Proposition 3.4 and Proposition 2.1(1) it follows that
there exist Q′1 ==⇒Q1 and Q′2 ==⇒Q2 with Q′1 and Q′2 unique. Therefore tracer,w(Q′1) = tracer,w(Q1) =
tracer,w(Q2) = tracer,w(Q′2) so that (Q′1, Q

′
2) ∈ B.

– If tracer,w(Q1) 6= {ε} 6= tracer,w(Q2) then from tracer,w(Q1) = tracer,w(Q2), Proposition 3.4, and Propo-
sition 2.1(1) it follows that there exist Q′1 ==⇒ θ1−→==⇒Q1 and Q′2 ==⇒ θ2−→==⇒Q2 with Q′1 and Q′2
unique and act(θ1) = act(θ2), where Q1 and Q2 have the same unique longest weak reverse trace
σ starting with act(θ1) and act(θ2) respectively. Therefore tracer,w(Q′1) = tracer,w(Q1) \ {σ} =
tracer,w(Q2) \ {σ} = tracer,w(Q′2) so that (Q′1, Q

′
2) ∈ B.
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Corollary 7.2. Let P1, P2 ∈ P. If P1 ≈RB P2 then P1 ≈RT P2.

Proof. See the first part of the proof of Theorem 7.2, where:

• The longest weak reverse traces of P1 and P2 may be more than one as P1 and P2 are not necessarily
sequential.

• When n > 0, from P1 ≈RB P2 it follows that, for each of the longest weak reverse traces an . . . a1 ∈ (A\{τ})∗

of P1 and P2, there exist P ′1 ==⇒ θ1−→==⇒ P1 and P ′2 ==⇒ θ2−→==⇒ P2 such that act(θ1) = act(θ2) = an and
P ′1 ≈RB P ′2, hence tracer,w(P ′1) = tracer,w(P ′2) by the induction hypothesis with an−1 . . . a1 being one of the
longest weak reverse traces in both sets. Therefore tracer,w(P1) ⊇ tracer,w(P ′1) ∪ {an . . . a1} = tracer,w(P ′2) ∪
{an . . . a1} ⊆ tracer,w(P2).

7.1.2 Weak Forward-Reverse Bisimilarity and Branching Bisimilarity

Weak forward-reverse bisimilarity can be characterized in terms of branching bisimilarity [80]. Unlike the weak
bisimilarity of [112], branching bisimilarity preserves the branching structure of processes even when abstracting
from τ -actions, as can be seen from condition (P1, P̄2) ∈ B in the definition below.

Definition 7.3. We say that P1, P2 ∈ P are branching bisimilar, written P1 ≈BB P2, iff (P1, P2) ∈ B for some
branching bisimulation B. A symmetric relation B over P is a branching bisimulation iff, whenever (P1, P2) ∈ B,
then for each P1

θ1−→ P ′1 it holds that:

• either act(θ1) = τ and (P ′1, P2) ∈ B;

• or there exists P2 ==⇒ P̄2
θ2−→ P ′2 such that act(θ1) = act(θ2), (P1, P̄2) ∈ B, and (P ′1, P

′
2) ∈ B.

Branching bisimilarity is already known to have some relationships with reversibility. More precisely, in [57]
strong and weak back-and-forth bisimilarities have been introduced over labeled transition systems and respectively
shown to coincide with the strong bisimilarity of [112] and branching bisimilarity. However, in [57] strong and weak
back-and-forth bisimilarities have been defined over computation paths rather than states, so that any backward
computation is constrained to follow the same path as the corresponding forward computation even in the presence
of concurrency, which is consistent with an interleaving view of parallel composition. This is quite different from
our forward-reverse bisimilarity over states inspired by [121], which accounts for the fact that when going backward
the order in which independent actions are undone may be different from the order in which they were executed
in the forward direction, thus leading to a truly concurrent view of parallel composition.

To show the relationship between our weak forward-reverse bisimilarity and branching bisimilarity, we follow
the same proof strategy adopted in [57] for weak back-and-forth bisimilarity. Thus, we need first of all an alter-
native definition of our weak forward-reverse bisimulation that is closer to the way in which weak back-and-forth
bisimulation is defined, i.e., finite transition sequences have to be employed on both sides of the weak bisimulation
game. This is provided by Proposition 3.5.
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Secondly, as a sanity check we prove that, like branching bisimilarity, our weak forward-reverse bisimilarity
satisfies the stuttering property [80]. This means that, given a sequence of finitely many τ -transitions, if the source
process of the first transition and the target process of the last transition are equivalent to each other, then all the
intermediate processes are equivalent to them too – see P2 ==⇒ P̄2 in Definition 7.3 when P1 and P2 as well as P1

and P̄2 are related by the maximal branching bisimulation ≈BB and hence so are P2 and P̄2. In other words, while
traversing the considered sequence of τ -transitions, we remain in the same equivalence class of processes, not only in
the forward direction but also in the backward direction as we are talking about weak forward-reverse bisimilarity.

Proposition 7.1. Let n ∈ N>0, Pi ∈ P for all 0 ≤ i ≤ n, and Pi
θi−→ Pi+1 with act(θi) = τ for all 0 ≤ i ≤ n− 1.

If P0 ≈FRB Pn then Pi ≈FRB P0 for all 0 ≤ i ≤ n.

Proof. Consider the reflexive and symmetric relation B = ∪i∈NBi over P where:

• B0 = ≈FRB.

• Bi = Bi−1 ∪ {(P, P ′), (P ′, P ) ∈ P × P | ∃P ′′ ∈ P. (P, P ′′) ∈ Bi−1 ∧ P ==⇒ P ′
θ−→ P ′′ ∧ act(θ) = τ} for all

i ∈ N>0.

We start by proving that B satisfies the stuttering property, i.e., given n ∈ N>0, Pi ∈ P for all 0 ≤ i ≤ n, and
Pi

θi−→ Pi+1 with act(θi) = τ for all 0 ≤ i ≤ n− 1, if (P0, Pn) ∈ B then (Pi, P0) ∈ B for all 0 ≤ i ≤ n. We proceed
by induction on n:

• If n = 1 then the considered computation is simply P0
θ0−→ P1 with act(θ0) = τ and (P0, P1) ∈ B, hence

trivially (Pi, P0) ∈ B for all 0 ≤ i ≤ 1 as B is reflexive – so that (P0, P0) ∈ B – and symmetric – so that
(P1, P0) ∈ B.

• Let n > 1. Since (P0, Pn) ∈ B, there must exist m ∈ N such that (P0, Pn) ∈ Bm. Let us consider the
smallest such m. Then (P0, Pn−1) ∈ Bm+1 by definition of Bm+1, hence (P0, Pn−1) ∈ B. From the induction
hypothesis it follows that (Pi, P0) ∈ B for all 0 ≤ i ≤ n − 1, hence (Pi, P0) ∈ B for all 0 ≤ i ≤ n because
(P0, Pn) ∈ B and B is symmetric – so that (Pn, P0) ∈ B.

We now prove that every symmetric relation Bi is a weak forward-reverse bisimulation. We proceed by induction
on i ∈ N:

• If i = 0 then Bi is the maximal weak forward-reverse bisimulation.

• Let i ≥ 1 and suppose that Bi−1 is a weak forward-reverse bisimulation. Given (P, P ′) ∈ Bi, assume that
P

θ−→Q (resp. Q θ−→ P ). There are two cases:

– If (P, P ′) ∈ Bi−1 then by the induction hypothesis there exists P ′==⇒Q′ (resp.Q′==⇒ P ′) if act(θ) = τ or
P ′==⇒ θ′−→==⇒Q′ (resp.Q′==⇒ θ′−→==⇒ P ′) with act(θ) = act(θ′) if act(θ) 6= τ , such that (Q,Q′) ∈ Bi−1

and hence (Q,Q′) ∈ Bi as Bi−1 ⊆ Bi by definition of Bi.
– If instead (P, P ′) /∈Bi−1 then from (P, P ′)∈Bi it follows that there exists P ′′∈P such that (P, P ′′)∈Bi−1,
P ==⇒ P ′

θ′′−→ P ′′, and act(θ′′) = τ . There are two subcases:



7.1 Sequential Processes 90

∗ In the forward subcase, i.e., P θ−→Q, there are two further subcases:

· If (Q,P ′′) ∈ Bi−1 and act(θ) = τ , then from P ′
θ′′−→ P ′′ with act(θ′′) = τ it follows that P ′==⇒ P ′′

with (Q,P ′′) ∈ Bi−1 and hence (Q,P ′′) ∈ Bi as Bi−1 ⊆ Bi.
· Otherwise from (P, P ′′) ∈ Bi−1 and the induction hypothesis it follows that there exists
P ′′==⇒ θ′′′−→==⇒ P ′′′ such that act(θ) = act(θ′′′) and (Q,P ′′′) ∈ Bi−1, so that P ′==⇒ θ′′′−→==⇒ P ′′′

with (Q,P ′′′) ∈ Bi−1 and hence (Q,P ′′′) ∈ Bi as Bi−1 ⊆ Bi.

∗ In the backward subcase, i.e., Q θ−→ P , it suffices to note that from P ==⇒ P ′ it follows that
Q

θ−→==⇒ P ′.

Since B is the union of countably many weak forward-reverse bisimulations among which there is ≈FRB, it holds
that B ⊆ ≈FRB. On the other hand, ≈FRB ⊆ B by definition of B0. In conclusion B = ≈FRB – i.e., no relation Bi
for i ∈ N>0 adds further pairs with respect to B0 – and hence ≈FRB satisfies the stuttering property because so
does B.

The stuttering property does not hold for ≈FRB:ps when P0 is initial, because in that case a τ -action would
be decorated inside P1 and hence P1 6≈FRB:ps P0. Therefore ≈FRB:ps satisfies the stuttering property only over
non-initial processes.

Thirdly, we prove that ≈FRB satisfies the cross property [57]. This means that, whenever two processes can
perform a sequence of finitely many τ -transitions such that each of the two target processes is ≈FRB-equivalent to
the source process of the other sequence, then the two target processes are ≈FRB-equivalent to each other as well.
Unlike [57], we do not require the two source processes to be reachable from two ≈FRB-equivalent processes.

Lemma 7.1. For all P ′1, P
′′
1 ∈ P such that P ′1 ==⇒ P ′′1 and for all P ′2, P

′′
2 ∈ P such that P ′2 ==⇒ P ′′2 , if P

′
1 ≈FRB P ′′2

and P ′′1 ≈FRB P ′2 then P ′′1 ≈FRB P ′′2 .

Proof. Consider the symmetric relation B = ≈FRB ∪ {(P ′′1 , P ′′2 ), (P ′′2 , P
′′
1 ) ∈ P × P | ∃P ′1, P ′2 ∈ P. P ′1 ==⇒ P ′′1 ∧

P ′2 ==⇒ P ′′2 ∧ P ′1 ≈FRB P ′′2 ∧ P ′′1 ≈FRB P ′2}. The result follows by proving that B is a weak forward-reverse
bisimulation, because this implies that P ′′1 ≈FRB P ′′2 for every additional pair – i.e., B satisfies the cross property
– as well as B =≈FRB – hence ≈FRB satisfies the cross property too.
Let (P ′′1 , P

′′
2 ) ∈ B \ ≈FRB to avoid trivial cases. Then there exist P ′1, P ′2 ∈ P such that P ′1 ==⇒ P ′′1 , P ′2 ==⇒ P ′′2 ,

P ′1 ≈FRB P ′′2 , and P ′′1 ≈FRB P ′2. There are two cases:

• In the forward case, assume that P ′′1
θ1−→ P ′′′1 , from which we derive P ′1 ==⇒ P ′′1

θ1−→ P ′′′1 . Since P ′1 ≈FRB P ′′2 ,
from Proposition 3.5 it follows that there exists P ′′2 ==⇒ P ′′′2 if act(θ1) = τ or P ′′2 ==⇒ θ2−→==⇒ P ′′′2 with
act(θ1) = act(θ2) if act(θ1) 6= τ , such that P ′′′1 ≈FRB P ′′′2 and hence (P ′′′1 , P

′′′
2 ) ∈ B.

When starting from P ′′2
θ2−→ P ′′′2 , we exploit P ′2 ==⇒ P ′′2 and P ′′1 ≈FRB P ′2 instead.

• In the backward case, assume that P ′′′1
θ1−→ P ′′1 . From P ′′1 ≈FRB P ′2 it follows that there exists P ′′′2 ==⇒ P ′2

if act(θ1) = τ , so that P ′′′2 ==⇒ P ′′2 as P ′2 ==⇒ P ′′2 , or P ′′′2 ==⇒ θ2−→==⇒ P ′2 with act(θ1) = act(θ2) if act(θ1) 6= τ ,
so that P ′′′2 ==⇒ θ2−→==⇒ P ′′2 as P ′2 ==⇒ P ′′2 , such that P ′′′1 ≈FRB P ′′′2 and hence (P ′′′1 , P

′′′
2 ) ∈ B.

When starting from P ′′′2
θ2−→ P ′′2 , we exploit P ′1 ≈FRB P ′′2 and P ′1 ==⇒ P ′′1 instead.
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We are now in a position of proving that ≈FRB coincides with ≈BB. This holds only over initial processes
though. For instance, a†1. b . P ≈BB a†2. b . P but a†1. b . P 6≈FRB a†2. b . P when a1 6= a2. Moreover, consistent
with the aforementioned interleaving view under which weak back-and-forth bisimilarity has been shown to
coincide with branching bisimilarity in [57], our result holds only over sequential processes. As an example,
a . 0 ‖∅ b . 0 ≈BB a . b . 0+b . a . 0 as shown by the branching bisimilarity arising from the symmetric closure of relation
{(a . 0 ‖∅ b . 0, a . b . 0 + b . a . 0), (a†. 0 ‖∅ b . 0, a†. b . 0 + b . a . 0), (a . 0 ‖∅ b†. 0, a . b . 0 + b†. a . 0), (a†. 0 ‖∅ b†. 0, a†. b†. 0 +
b . a . 0), (a†. 0 ‖∅ b†. 0, a . b . 0 + b†. a†. 0)}. In contrast, a . 0 ‖∅ b . 0 6≈FRB a . b . 0 + b . a . 0 when a 6= b. The reason
is that a†. 0 ‖∅ b†. 0 has two differently labeled incoming transitions while a†. b†. 0 + b . a . 0 and a . b . 0 + b†. a†. 0
have only one incoming transition each, hence a†. 0 ‖∅ b . 0 6≈FRB a†. b . 0 + b . a . 0 and a . 0 ‖∅ b†. 0 6≈FRB a . b . 0 +
b†. a . 0 as their identically labeled outgoing transitions reach inequivalent processes, which in turn implies that
a . 0 ‖∅ b . 0 6≈FRB a . b . 0 + b . a . 0 as their identically labeled outgoing transitions reach inequivalent processes
(see Figure 1.1).

As another example, a . (τ . 0 + b . 0) ≈FRB ((a . (τ . 0 + b . 0) + a . c . 0) ‖{c}(τ . 0 + c . 0)) xc 7→ bq. This can be
seen by playing the weak forward-reverse bisimulation game with the subprocesses of the latter process that do not
occur in the former. If the latter process performs the rightmost a thus evolving to ((a . (τ . 0 + b . 0) + a†. c . 0) ‖{c}
(τ . 0 + c . 0)) xc 7→ bq, where only either τ or the synchronization on c then changed to b can be performed, the
former responds with a thus becoming a†. (τ . 0 + b . 0), with the two reached processes being ≈FRB-equivalent.
If instead the latter process performs τ and then the rightmost a thus evolving to ((a . (τ . 0 + b . 0) + a†. c . 0) ‖{c}
(τ †. 0 + c . 0)) xc 7→ bq, where no further action can be performed, the former responds by staying idle and then
with a followed by τ thus becoming a†. (τ †. 0 + b . 0), with the two reached processes being ≈FRB-equivalent even
if the former can undo a and τ in any order whereas the latter can undo a only after undoing τ . In contrast,
a . (τ . 0 + b . 0) 6≈BB ((a . (τ . 0 + b . 0) + a . c . 0) ‖{c}(τ . 0 + c . 0)) xc 7→ bq. The reason is that ((a . (τ . 0 + b . 0) +

a†. c . 0) ‖{c}(τ †. 0 + c . 0)) xc 7→ bq, reached after performing τ and then the rightmost a, cannot be matched by
a†. (τ . 0 + b . 0), reached after staying idle and then performing a (recall that in the ≈BB-response a cannot be
followed by τ – it could be if the equivalence class did not change [80]), because the latter can perform b whereas
the former cannot. Summing up, ≈FRB and ≈BB turn out to be incomparable over non-sequential processes.

Theorem 7.3. Let P1, P2 ∈ Pseq ∩ Pinit. Then P1 ≈FRB P2 iff P1 ≈BB P2.

Proof. The proof is divided into two parts:

• Suppose that P1 ≈FRB P2 and let B be a weak forward-reverse bisimulation such that (P1, P2) ∈ B. Assume
that B only contains all the pairs of ≈FRB-equivalent processes reachable from P1 and P2, so that Lemma 7.1
is applicable to B. We show that B is a branching bisimulation too, from which P1 ≈BB P2 will follow.
Given (Q1, Q2) ∈ B, with Q1 and Q2 respectively reachable from P1 and P2, suppose that Q1

θ1−→Q′1. There
are two cases:

– If act(θ1) = τ then from (Q1, Q2) ∈ B it follows that there exists Q2 ==⇒Q′2 such that (Q′1, Q
′
2) ∈ B.

This means that we have a sequence of n ≥ 0 transitions of the form Q2,i
θ2,i−→Q2,i+1 with act(θ2,i) = τ

for all 0 ≤ i ≤ n− 1, where Q2,0 is Q2 while Q2,n is Q′2 so that (Q′1, Q2,n) ∈ B as (Q′1, Q
′
2) ∈ B.

If n = 0 then we are done because Q′2 is Q2 and hence (Q′1, Q2) ∈ B as (Q′1, Q
′
2) ∈ B, otherwise from Q2,n

we go back to Q2,n−1 via Q2,n−1
θ2,n−1−−−−→Q2,n with act(θ2,n−1) = τ . Recalling that (Q′1, Q2,n) ∈ B,
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if Q′1 can respond by staying idle, so that (Q′1, Q2,n−1) ∈ B, and n = 1, then we are done because
Q2,n−1 is Q2 and hence (Q′1, Q2) ∈ B as (Q′1, Q2,n−1) ∈ B, otherwise we go further back to Q2,n−2 via

Q2,n−2
θ2,n−2−−−−→Q2,n−1 with act(θ2,n−2) = τ and consider Q2,n−2 ==⇒Q2,n. If Q′1 can respond by staying

idle, so that (Q′1, Q2,n−2) ∈ B, and n = 2, then by virtue of Proposition 3.5 we are done because Q2,n−2

is Q2 and hence (Q′1, Q2) ∈ B as (Q′1, Q2,n−2) ∈ B, otherwise we keep going backward.
By repeating this procedure, since (Q′1, Q2,n) ∈ B either we get to (Q′1, Q2,n−n) ∈ B and we are done be-
cause this implies that (Q′1, Q2) ∈ B, or for some 0 < m ≤ n such that (Q′1, Q2,m) ∈ B the incoming tran-

sitionQ2,m−1
θ2,m−1−−−−→Q2,m with act(θ2,m−1) = τ is matched by Q̄1 ==⇒Q1

θ1−→Q′1 with (Q̄1, Q2,m−1) ∈ B,
where by virtue of Proposition 2.1(1) Q1

θ1−→Q′1 is the only incoming transition of Q′1 as we are con-
sidering sequential processes. In the latter case, since Q̄1 ==⇒Q1, Q2 ==⇒Q2,m−1, (Q̄1, Q2,m−1) ∈ B,
(Q1, Q2) ∈ B, all these processes are reachable from P1 and P2, and B is the restriction of ≈FRB to the set
of processes reachable from P1 and P2, from Lemma 7.1 we derive that (Q1, Q2,m−1) ∈ B. Consequently
Q2 ==⇒Q2,m−1

θ2,m−1−−−−→Q2,m with act(θ1) = act(θ2,m−1), (Q1, Q2,m−1) ∈ B, and (Q′1, Q2,m) ∈ B.

– If act(θ1) 6= τ then from (Q1, Q2) ∈ B it follows that there exists Q2 ==⇒ Q̄2
θ2−→ Q̄′2 ==⇒Q′2 such that

act(θ1) = act(θ2) and (Q′1, Q
′
2) ∈ B.

From (Q′1, Q
′
2) ∈ B, Q̄′2 ==⇒Q′2, and Proposition 3.5 it follows that there exists Q̄′1 ==⇒Q′1 such that

(Q̄′1, Q̄
′
2) ∈ B. Since Q′1 already has an incoming act(θ1)-transition from Q1 and every non-initial

sequential process has exactly one incoming transition due to Proposition 2.1(1), we derive that Q̄′1 is Q′1
due to act(θ1) 6= τ and hence (Q′1, Q̄

′
2) ∈ B.

From (Q′1, Q̄
′
2) ∈ B and Q̄2

θ2−→ Q̄′2 it follows that there exists Q̄1 ==⇒Q1
θ1−→Q′1 such that (Q̄1, Q̄2) ∈ B.

Since Q̄1 ==⇒Q1, Q2 ==⇒ Q̄2, (Q̄1, Q̄2) ∈ B, (Q1, Q2) ∈ B, all these processes are reachable from P1

and P2, and B is the restriction of ≈FRB to the set of processes reachable from P1 and P2, from
Lemma 7.1 we derive that (Q1, Q̄2) ∈ B.
Consequently Q2 ==⇒ Q̄2

θ2−→ Q̄′2 with act(θ1) = act(θ2), (Q1, Q̄2) ∈ B, and (Q′1, Q̄
′
2) ∈ B.

• Suppose that P1 ≈BB P2 and let B be a branching bisimulation such that (P1, P2) ∈ B. Assume that B
only contains all the pairs of ≈BB-equivalent processes reachable from P1 and P2. We show that B is a weak
forward-reverse bisimulation too, from which P1 ≈FRB P2 will follow.
Given (Q1, Q2) ∈ B, with Q1 and Q2 respectively reachable from P1 and P2, there are two cases:

– In the forward case, assume that Q1
θ1−→Q′1. From (Q1, Q2) ∈ B it follows that either act(θ1) = τ

and (Q′1, Q2) ∈ B, hence Q2 ==⇒Q2 with (Q′1, Q2) ∈ B, or there exists Q2 ==⇒ Q̄2
θ2−→Q′2 such that

act(θ1) = act(θ2), (Q1, Q̄2) ∈ B, and (Q′1, Q
′
2) ∈ B, henceQ2 ==⇒Q′2 if act(θ1) = τ orQ2 ==⇒ θ2−→==⇒Q′2

with act(θ1) = act(θ2) if act(θ1) 6= τ , where (Q′1, Q
′
2) ∈ B.

– In the backward case – in which (Q1, Q2) 6= (P1, P2) as P1 and P2 are both initial – assume that
Q′1

θ1−→Q1. There are two subcases:

∗ If Q′1 is P1 then from (Q1, Q2) ∈ B it follows that either act(θ1) = τ and (Q′1, Q2) ∈ B, where Q2

is P2 and Q2 ==⇒Q2, or there exists Q′2 ==⇒ Q̄2
θ2−→Q2 such that act(θ1) = act(θ2), (Q′1, Q̄2) ∈ B,

and (Q′1, Q
′
2) ∈ B, where Q′2 is P2 – due to Proposition 2.1(1) – and Q′2 ==⇒Q2 if act(θ1) = τ or

Q′2 ==⇒ θ2−→==⇒Q2 if act(θ1) 6= τ .
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∗ If Q′1 is not P1 then from (Q1, Q2) ∈ B it follows that P1 reaches Q′1 with a sequence of transitions
that are B-compatible with those with which P2 reaches some Q′2 such that (Q′1, Q

′
2) ∈ B as the

pairs in B contains all the processes reachable from P1 and P2. Therefore either act(θ1) = τ

and (Q1, Q
′
2) ∈ B, where Q′2 is Q2 and Q2 ==⇒Q2, or there exists Q′2 ==⇒ Q̄2

θ2−→Q2 such that
act(θ1) = act(θ2) and (Q′1, Q̄2) ∈ B in addition to (Q′1, Q

′
2) ∈ B and (Q1, Q2) ∈ B, where Q′2 ==⇒Q2

if act(θ1) = τ or Q′2 ==⇒ θ2−→==⇒Q2 if act(θ1) 6= τ .

We conclude by studying the relationship between ≈FRB and the following forward-reverse variant of branching
bisimilarity, which is inspired by the back-and-forth branching bisimilarity mentioned in [57].

Definition 7.4. We say that P1, P2 ∈ P are forward-reverse branching bisimilar, written P1 ≈FRBB P2, iff
(P1, P2) ∈ B for some forward-reverse branching bisimulation B. A symmetric relation B over P is a forward-
reverse branching bisimulation iff, whenever (P1, P2) ∈ B, then:

• For each P1
θ1−→ P ′1 it holds that:

– either act(θ1) = τ and (P ′1, P2) ∈ B;

– or there exists P2 ==⇒ P̄2
θ2−→ P ′2 such that act(θ1) = act(θ2), (P1, P̄2) ∈ B, and (P ′1, P

′
2) ∈ B.

• For each P ′1
θ1−→ P1 it holds that:

– either act(θ1) = τ and (P ′1, P2) ∈ B;

– or there exists P ′2
θ2−→ P̄2 ==⇒ P2 such that act(θ1) = act(θ2), (P1, P̄2) ∈ B, and (P ′1, P

′
2) ∈ B.

Similar to [57], where branching bisimilarity has been shown to coincide with back-and-forth branching bisimi-
larity defined over computation paths, here we prove that ≈FRB coincides with ≈FRBB. Our result holds only over
sequential processes. For example, a . (τ . 0 + b . 0) and ((a . (τ . 0 + b . 0) + a . c . 0) ‖{c}(τ . 0 + c . 0)) xc 7→ bq, which
we have already examined right before Theorem 7.3, are identified by ≈FRB but told apart by ≈FRBB. Unlike
Theorem 7.3, there is no limitation to initial processes though.

Theorem 7.4. Let P1, P2 ∈ Pseq. Then P1 ≈FRB P2 iff P1 ≈FRBB P2.

Proof. The proof is divided into two parts:

• Suppose that P1 ≈FRB P2 and let B be a weak forward-reverse bisimulation such that (P1, P2) ∈ B. Assume
that B only contains all the pairs of ≈FRB-equivalent processes reachable from P1 and P2 or reaching them,
so that Lemma 7.1 is applicable to B. We show that B is a forward-reverse branching bisimulation too, from
which P1 ≈FRBB P2 will follow.
Given (Q1, Q2) ∈ B, with Q1 and Q2 respectively reachable from P1 and P2 or reaching them, suppose that
Q1

θ1−→Q′1. There are two cases:

– If Q1
θ1−→Q′1 then we proceed like in the first part of the proof of Theorem 7.3, where B is the restriction

of ≈FRB to the set of processes reachable from P1 and P2 or reaching them.
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– If Q′1
θ1−→Q1 there are two cases:

∗ If act(θ1) = τ then from (Q1, Q2) ∈ B it follows that there exists Q′2 ==⇒Q2 such that (Q′1, Q
′
2) ∈ B.

This means that we have a sequence of n≥0 transitions of the form Q2,i
θ2,i−→Q2,i+1 with act(θ2,i)=τ

for all 0 ≤ i ≤ n− 1, where Q2,0 is Q′2 while Q2,n is Q2 so that (Q1, Q2,n) ∈ B as (Q1, Q2) ∈ B.
If n = 0 then we are done because Q′2 is Q2 and hence (Q′1, Q2) ∈ B as (Q′1, Q

′
2) ∈ B, otherwise from

Q2,n we go back to Q2,n−1 via Q2,n−1
θ2,n−1−−−−→Q2,n with act(θ2,n−1)=τ . Recalling that (Q1, Q2,n)∈B,

if Q1 can respond by staying idle, so that (Q1, Q2,n−1) ∈ B, and n = 1, then we are done because
Q2,n−1 is Q′2 so that (Q1, Q

′
2) ∈ B as (Q1, Q2,n−1) ∈ B and hence (Q′1, Q2) ∈ B as (Q′1, Q

′
2) ∈ B,

(Q′2, Q1) ∈ B, (Q1, Q2) ∈ B, and B is transitive due to the pairs it contains, otherwise we go further

back to Q2,n−2 via Q2,n−2
θ2,n−2−−−−→Q2,n−1 with act(θ2,n−2) = τ and consider Q2,n−2 ==⇒Q2,n. If Q1

can respond by staying idle, so that (Q1, Q2,n−2) ∈ B, and n = 2, then by virtue of Proposition 3.5
we are done because Q2,n−2 is Q′2 so that (Q1, Q

′
2) ∈ B as (Q1, Q2,n−2) ∈ B and hence (Q′1, Q2) ∈ B

as (Q′1, Q
′
2) ∈ B, (Q′2, Q1) ∈ B, (Q1, Q2) ∈ B, and B is transitive due to the pairs it contains,

otherwise we keep going backward.
By repeating this procedure, since (Q1, Q2,n) ∈ B either we get to (Q1, Q2,n−n) ∈ B and we are
done because this implies that (Q′1, Q2) ∈ B, or for some 0 < m ≤ n such that (Q1, Q2,m) ∈ B the

incoming transition Q2,m−1
θ2,m−1−−−−→Q2,m with act(θ2,m−1) = τ is matched by Q̄1 ==⇒Q′1

θ1−→Q1 with
(Q̄1, Q2,m−1) ∈ B, where by virtue of Proposition 2.1(1) Q′1

θ1−→Q1 is the only incoming transition
of Q1 as we are considering sequential processes. In the latter case, since Q̄1 ==⇒Q′1, Q′2 ==⇒Q2,m−1,
(Q̄1, Q2,m−1) ∈ B, (Q′1, Q

′
2) ∈ B, all these processes are reachable from P1 and P2 or reach them,

and B is the restriction of ≈FRB to the set of processes reachable from P1 and P2 or reaching them,

from Lemma 7.1 we derive that (Q′1, Q2,m−1) ∈ B. Consequently Q2,m−1
θ2,m−1−−−−→Q2,m ==⇒Q2 with

act(θ1) = act(θ2,m−1), (Q1, Q2,m) ∈ B, and (Q′1, Q2,m−1) ∈ B.

∗ If act(θ1) 6= τ then from (Q1, Q2) ∈ B it follows that there exists Q′2 ==⇒ Q̄′2
θ2−→ Q̄2 ==⇒Q2 such

that act(θ1) = act(θ2) and (Q′1, Q
′
2) ∈ B.

From (Q1, Q2) ∈ B, Q̄2 ==⇒Q2, and Proposition 3.5 it follows that there exists Q̄1 ==⇒Q1 such that
(Q̄1, Q̄2) ∈ B. Since Q1 already has an incoming act(θ1)-transition from Q′1 and every non-initial
sequential process has exactly one incoming transition due to Proposition 2.1(1), we derive that Q̄1

is Q1 due to act(θ1) 6= τ and hence (Q1, Q̄2) ∈ B.
From (Q1, Q̄2) ∈ B and Q̄′2

θ2−→ Q̄2 it follows that there exists Q̄′1 ==⇒Q′1
θ1−→Q1 such that (Q̄′1, Q̄

′
2) ∈

B.
Since Q̄′1 ==⇒Q′1, Q′2 ==⇒ Q̄′2, (Q̄′1, Q̄

′
2) ∈ B, (Q′1, Q

′
2) ∈ B, all these processes are reachable from P1

and P2 or reach them, and B is the restriction of ≈FRB to the set of processes reachable from P1

and P2 or reaching them, from Lemma 7.1 we derive that (Q′1, Q̄
′
2) ∈ B.

Consequently Q̄′2
θ2−→ Q̄2 ==⇒Q2 with act(θ1) = act(θ2), (Q1, Q̄2) ∈ B, and (Q′1, Q̄

′
2) ∈ B.

• Suppose that P1 ≈FRBB P2 and let B be a forward-reverse branching bisimulation such that (P1, P2) ∈ B.
We show that B is a weak forward-reverse bisimulation too, from which P1 ≈FRB P2 will follow.
Given (Q1, Q2) ∈ B, there are two cases:
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– If Q1
θ1−→Q′1 there are two subcases:

∗ If act(θ1) = τ and (Q′1, Q2) ∈ B, then Q2 ==⇒Q2 with (Q′1, Q2) ∈ B.

∗ If there exists Q2 ==⇒ Q̄2
θ2−→Q′2 such that act(θ1) = act(θ2), (Q1, Q̄2) ∈ B, and (Q′1, Q

′
2) ∈ B,

then Q2 ==⇒Q′2 if act(θ1) = τ or Q2 ==⇒ θ2−→==⇒Q′2 with act(θ1) = act(θ2) if act(θ1) 6= τ , where
(Q′1, Q

′
2) ∈ B.

– If Q′1
θ1−→Q1 there are two subcases:

∗ If act(θ1) = τ and (Q′1, Q2) ∈ B, then Q2 ==⇒Q2 with (Q′1, Q2) ∈ B.

∗ If there exists Q′2
θ2−→ Q̄2 ==⇒Q2 such that act(θ1) = act(θ2), (Q1, Q̄2) ∈ B, and (Q′1, Q

′
2) ∈ B,

then Q′2 ==⇒Q2 if act(θ1) = τ or Q′2 ==⇒ θ2−→==⇒Q2 with act(θ1) = act(θ2) if act(θ1) 6= τ , where
(Q′1, Q

′
2) ∈ B.

Corollary 7.3. Let P1, P2 ∈ P. If P1 ≈FRBB P2 then P1 ≈FRB P2.

Proof. See the second part of the proof of Theorem 7.4.

7.2 True Concurrency

In the spectrum of truly concurrent bisimilarities [77, 66, 123], there are two equivalences that are particularly
important: history-preserving bisimilarity [129] and hereditary history-preserving bisimilarity [16]. They are the
coarsest equivalence and the finest equivalence, respectively, that are preserved under action refinement and are
capable of respecting causality, branching, and their interplay while abstracting from choices between identical
alternatives [77]. Moreover, hereditary history-preserving bisimilarity can be obtained as a special case of a
categorical definition of bisimilarity over concurrency models [96]. Logical characterizations of both equivalences
have been provided in [124, 14], whereas an axiomatization for hereditary history-preserving bisimilarity has been
developed over forward-only processes in [71]. Furthermore, history-preserving bisimilarity is known to coincide
with causal bisimilarity [55, 56], hence the latter offers a characterization and an axiomatization [59] for the former.

Several characterizations have been provided also for hereditary history-preserving bisimilarity, all of which
rely on forward-reverse bisimilarity. Those in [16, 122, 123, 9] hold under assumptions that essentially revolve
around the absence of autoconcurrency, i.e., identically labeled transitions not in conflict with each other that
depart from the same process – e.g., a . 0 ‖∅ a . 0 – or arrive at the same process – e.g., a†. 0 ‖∅ a†. 0. In contrast,
the one in [10] does not make any restrictive assumption, but introduces a complex identification mechanism.
We show that hereditary history-preserving bisimilarity corresponds to forward-reverse bisimilarity extended with
a simple clause that checks backward ready multisets for equality (Section 7.2.1). In this way, the former equivalence
inherits a variant of the sound and complete axiomatization in Table 6.6, where backward ready sets are replaced
by backward ready multisets, whilst the latter inherits the logical characterizations of the former.
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7.2.1 Strong Forward-Reverse Bisimilarity and Hereditary History-Preserving Bisimilarity

Let us recall hereditary history-preserving bisimilarity over stable configuration structures [78]. These are truly
concurrent models originated from event structures [142] that resemble labeled transition systems; a configuration
is a finite set of non-conflicting events that is downward-closed with respect to a causality relation over events.
The bisimulation game compares configuration transitions, both outgoing and incoming. The equivalence relies
on ternary bisimulation relations, where the third component is a labeling- and causality-preserving bijection from
the set of events executed so far in the first structure to the set of events executed so far in the second structure.
In the following two definitions taken from [77], Pfin(E) denotes the set of finite subsets of set E while f � X
denotes the restriction of function f to set X.

Definition 7.5. A configuration structure is a quadruple C = (E , C,A, l) where:

• E is a set of events.

• C ⊆Pfin(E) is a set of configurations.

• l :
⋃
X∈C X → A is a labeling function.

C is said to be stable iff it is:

• Rooted: ∅ ∈ C.

• Connected: ∀X ∈ C \ {∅}.∃e ∈ X.X \ {e} ∈ C.

• Closed under bounded unions and intersections: ∀X,Y, Z ∈ C. X ∪ Y ⊆ Z =⇒ X ∪ Y,X ∩ Y ∈ C.

The causality relation over X ∈ C is defined by letting e1 ≤X e2 for e1, e2 ∈ X iff e2 ∈ Y implies e1 ∈ Y for all
Y ∈ C such that Y ⊆ X; we write e1 <X e2 when e1 ≤X e2 and e1 6= e2. Two events e1, e2 ∈ X are concurrent
in X iff e1 6<X e2 and e2 6<X e1. We write X a−→CX

′ for X,X ′ ∈ C and a ∈ A iff X ⊆ X ′, X ′ \X = {e}, and
l(e) = a.

Definition 7.6. We say that two stable configuration structures Ci = (Ei, Ci,A, li), i ∈ {1, 2}, are hereditary
history-preserving bisimilar, written C1 ∼HHPB C2, iff there exists a hereditary history-preserving bisimulation
between C1 and C2, i.e., a relation B ⊆ C1 × C2 ×P(E1 × E2) such that:

• (∅, ∅, ∅) ∈ B.

• Whenever (X1, X2, f) ∈ B, then:

– f ⊆ E1 × E2 is a bijection from X1 to X2 that preserves:

∗ Labeling: l1(e) = l2(f(e)) for all e ∈ X1.
∗ Causality: e ≤X1 e

′ ⇐⇒ f(e) ≤X2 f(e′) for all e, e′ ∈ X1.

– For each X1
a−→C1 X

′
1 there exist X2

a−→C2 X
′
2 and f ′ ⊆ E1×E2 such that (X ′1, X

′
2, f
′)∈B and f ′ �X1 = f ,

and vice versa.

– For each X ′1
a−→C1 X1 there exist X ′2

a−→C2 X2 and f ′ ⊆ E1×E2 such that (X ′1, X
′
2, f
′)∈B and f �X ′1 = f ′,

and vice versa.



7.2 True Concurrency 97

Given a configuration X, its backward ready multiset is defined as brm(X) = {| a ∈ A | X ′ a−→CX |} where
{| and |} are multiset delimiters.

Definition 7.7. We say that two stable configuration structures Ci = (Ei, Ci,A, li), i ∈ {1, 2}, are brm-forward-
reverse bisimilar, written C1 ∼FRB:brm C2, iff there exists a brm-forward-reverse bisimulation between C1 and C2,
i.e., a relation B ⊆ C1 × C2 such that:

• (∅, ∅) ∈ B.

• Whenever (X1, X2) ∈ B, then:

– For each X1
a−→C1 X

′
1 there exists X2

a−→C2 X
′
2 such that (X ′1, X

′
2) ∈ B, and vice versa.

– For each X ′1
a−→C1 X1 there exists X ′2

a−→C2 X2 such that (X ′1, X
′
2) ∈ B, and vice versa.

– brm(X1) = brm(X2).

Suppose that a = b in Figure 1.1. Then the labeled transition system on the left is an example of autocon-
currency and can be viewed as the graph underlying a stable configuration structure in which the initial state is
configuration ∅, the two intermediate states are respectively configurations {U∅a} and {T∅a}, and the final state
is configuration {U∅a,T∅a}, where we have used proof terms to denote events. In contrast, the labeled transition
system on the right is an example of autoconflict in which each of the two branches is an example of autocausation.
It can be viewed as the graph underlying a stable configuration structure in which the initial state is configura-
tion ∅, the two intermediate states are respectively configurations {.+a} and {+. a}, and the two final states are
respectively configurations {.+a, .+.aa} and {+. a,+. .aa}.

These two configuration structures are told apart by ∼HHPB because .+a (resp. +. a) causally precedes .+.aa (resp.
+. .aa) while U∅a and T∅a are concurrent, hence in the final configurations no causality-preserving bijection would
relate the former two events to the latter two events. The two structures are identified by ∼FRB, but ∼FRB:brm

distinguishes them because brm({U∅a,T∅a}) = {| a, a |} whereas brm({.+a, .+.aa}) = brm({+. a,+. .aa}) = {| a |}.
The theorem below holds under the assumption that the considered configuration structures come from

processes each in the form of a net of automata – i.e., parallel composition of several sequential subprocesses
– in which every conflict is local – i.e., its effect is local to one sequential subprocess.

Theorem 7.5. Let Ci = (Ei, Ci,A, li), i ∈ {1, 2}, be two stable configuration structures. Then C1 ∼HHPB C2 iff
C1 ∼FRB:brm C2.

Proof. The proof is divided into two parts:

• Suppose that C1 ∼HHPB C2 due to some hereditary history-preserving bisimulation B. Then C1 ∼FRB:brm C2

follows by proving that B′ = {(X1, X2) | (X1, X2, f) ∈ B} is a brm-forward-reverse bisimulation. Observ-
ing that the starting clause and the clauses for outgoing and incoming transitions matching of ∼FRB:brm

(see Definition 7.7) are a simplification of those of ∼HHPB (see Definition 7.6), given (X1, X2) ∈ B′, i.e.,
(X1, X2, f) ∈ B, we just have to show that brm(X1) = brm(X2).
Suppose that this is not the case, say X1 has fewer incoming a-transitions than X2. Without loss of general-
ity, we can assume that X1 has one incoming a-transition while X2 has two. Then there is a diamond closing
into X2, i.e., there exist three configurations Y2, X ′2, and X ′′2 and two a-labeled events e′2 and e′′2 such that

Y2
l2(e′2)
−−−→C2 X

′
2, Y2

l2(e′′2 )
−−−→C2 X

′′
2 , X ′2

l2(e′′2 )
−−−→C2 X2, and X ′′2

l2(e′2)
−−−→C2 X2, where e′2 and e′′2 are concurrent in X2,

i.e., e′2 6<X2 e
′′
2 and e′′2 6<X2 e

′
2.
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Due to (X1, X2, f) ∈ B, on X1 side there exist two configurations Y1 and X ′1 and two a-labeled events e′1
and e′′1 such that Y1

l1(e′1)
−−−→C1 X

′
1

l1(e′′1 )
−−−→C1 X1 where e′1 ≤X1 e′′1. Since B is a hereditary history-preserving

bisimulation, f should relate e′1 and e′′1 with e′2 and e′′2 in a causality-preserving way, but this is not possible
because f(e′1) 6≤X2 f(e′′1).

• Suppose that C1 ∼FRB:brm C2 due to some brm-forward-reverse bisimulation B. Then, given (X1, X2) ∈ B,
the existence in C1 of a sequence of transitions X1,n

l1(e1,n)
−−−−→C1 X1,n−1 . . . X1,1

l1(e1,1)
−−−−→C1 X1 implies the exis-

tence in C2 of a sequence of transitionsX2,n
l2(e2,n)
−−−−→C2 X2,n−1 . . . X2,1

l2(e2,1)
−−−−→C2 X2 such that l1(e1,h) = l2(e2,h)

and (X1,h, X2,h) ∈ B for all h = 1, . . . , n, and vice versa. Note that n = 0 when X1 and X2 are both empty;
moreover e1,h 6= e1,k and e2,h 6= e2,k for all h 6= k because in each transition the source configuration and
the target configuration differ by one event, which is the executed event (see Definition 7.5).
Thus C1 ∼HHPB C2 follows by proving that B′ = {(X1, X2, {(e1,h, e2,h) | h ∈ H}) | (X1, X2) ∈ B ∧

Xi,|H|
li(ei,|H|)−−−−−→Ci Xi,|H|−1 . . . Xi,1

li(ei,1)
−−−−→Ci Xi for i ∈ {1, 2}∧l1(e1,h) = l2(e2,h) for all h ∈ H∧(X1,h, X2,h) ∈ B

for all h ∈ H ∧X1,|H| = X2,|H| = ∅} is a hereditary history-preserving bisimulation.
Let (X1, X2, {(e1,h, e2,h) | h ∈ H}) ∈ B′, so that (X1, X2) ∈ B:
– (∅, ∅, ∅) ∈ B′ because (∅, ∅) ∈ B.
– Let us show that f = {(e1,h, e2,h) | h ∈ H} is a bijection from X1 to X2 that preserves labeling and

causality. Since we already know that in the domain (resp. codomain) of f the events are all different
from each other, the domain of f and its codomain have the same cardinality, and events corresponding
via f have the same label, we focus on causality by assuming that |H| ≥ 2 so as to avoid trivial cases.
We proceed by contradiction, so we suppose that there exist e, e′ ∈ X1 such that e ≤X1 e′ but
f(e) 6≤X2 f(e′). From e ≤X1 e

′ it follows that there exist Y1, Y
′

1 ∈ C1 such that Y1, Y
′

1 ⊆ X1, e ∈ Y1,

e, e′ ∈ Y ′1 , and Y1
l1(e′)−−−→C1 Y

′
1 . Since C1 ∼FRB:brm C2 with C1 and C2 enjoying connectedness, there exists

a pair (Y1, Y2) ∈ B such that Y2
l2(f(e′))−−−−−→C2 Y

′
2 and (Y ′1 , Y

′
2) ∈ B, where Y2, Y

′
2 ⊆ X2. From f(e) 6≤X2 f(e′)

it follows that there are two cases:

∗ If f(e′) ≤X2 f(e) then there exists Y ′2
l2(f(e))−−−−−→C2 Ŷ2, but this transition cannot be mimicked by Y ′1

because e is already in Y ′1 , thereby contradicting (Y ′1 , Y
′

2) ∈ B.

∗ If f(e) and f(e′) are concurrent in X2, then there exists Ŷ2
l2(f(e))−−−−−→C2 Y

′
2 . Since (Y ′1 , Y

′
2) ∈ B, their

backward ready multisets must coincide, hence there should be Ŷ1
l1(e)−−−→C1 Y

′
1 , but this is not possible

because e ≤X1 e
′.

– If X1
a−→C1 X

′
1 where a is the label of some event e1, then X2

a−→C2 X
′
2 where a is the label of some

event e2 and (X ′1, X
′
2) ∈ B; note that e1 /∈ X1 and e2 /∈ X2. Therefore (X ′1, X

′
2, {(e1,h, e2,h) | h ∈ H}

∪ {(e1, e2)}) ∈ B′.
If we start from X2

a−→C2 X
′
2, then we reason in the same way.

– If X ′1
a−→C1 X1 where a is the label of some event e1, then X ′2

a−→C2 X2 where a is the label of some
event e2 and (X ′1, X

′
2) ∈ B; note that e1 /∈ X ′1 and e2 /∈ X ′2. Therefore {(e1,h, e2,h) | h ∈ H} � X ′1 =

{(e1,h, e2,h) | h ∈ H} \ {(e1, e2)} and hence (X ′1, X
′
2, {(e1,h, e2,h) | h ∈ H} \ {(e1, e2)}) ∈ B′.

If we start from X ′2
a−→C2 X2, then we reason in the same way.
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Chapter 8

Noninterference Analysis of Nondeterministic
Reversible Systems

In this chapter, whose contents have appeared in [61, 65], we start addressing information flow analysis of reversible
systems by using some of the notions and results of the first part of the thesis. Noninterference was introduced
in [82] to reason about the way in which illegitimate information flows can occur in multi-level security systems due
to covert channels from high-level agents to low-level ones. Noninterference guarantees that low-level agents cannot
infer from their observations what high-level ones are doing. Regardless of its specific definition, noninterference is
closely tied to the notion of behavioral equivalence [76], because the idea is to compare the system behavior with
high-level actions being prevented and the system behavior with the same actions being hidden.

After the classification of noninterference security properties in a process algebraic framework proposed in [67],
the literature concentrated on weak bisimilarity [112] given its abstraction capability and polynomial-time decid-
ability. Here we claim that it is worth studying noninterference by making use of branching bisimilarity [80], which
by the way can be decided more efficiently [85, 95]. A clear motivation for switching from weak to branching
bisimilarity is provided by reversible systems. As demonstrated in Section 7.1.2, branching bisimilarity coincides
with weak forward-reverse bisimilarity over sequential processes. Moreover, in the reversible framework of [57], in
which backward moves are constrained to take place along the same path followed in the forward direction even in
the presence of concurrency – thus preserving not only causality but also history – branching bisimilarity was shown
to coincide with weak back-and-forth bisimilarity. These results allow us to search for covert channels in reversible
systems via a standard process calculus, in which there is no need of decorations for executed actions, along with an
efficiently verifiable equivalence, at the price of losing the truly concurrent nature of forward-reverse bisimilarity.

This chapter is organized as follows. In Section 8.1 we recall background definitions and results for several
bisimulation equivalences as well as a selection of information-flow security properties based on weak bisimilarity
that we formalize through a suitable process calculus. In Section 8.2 we introduce a database management system
authentication example. In Section 8.3, after recasting the same information-flow security properties in terms
of branching bisimilarity, we present some results about the preservation of those properties under branching
bisimilarity and their compositionality with respect to the operators of the considered language, then we study the
relationships among all the previously discussed properties and summarize them in a new taxonomy. In Section 8.4
we recall the notion of back-and-forth bisimilarity and its relationship in the weak case with branching bisimilarity,
which allows us to apply our taxonomy to reversible systems. In Section 8.5 we add reversibility to the database
management system authentication example to illustrate the need of branching-bisimilarity-based noninterference.
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8.1 Background Definitions and Results

In this section we recall the labeled transition system model of [97] (Section 8.1.1) together with strong and weak
bisimilarities [112] and branching bisimilarity [80] (Section 8.1.2). Then we introduce a basic process language
inspired by [112, 45] (Section 8.1.3) through which we recall the definitions of weak-bisimulation-based information-
flow security properties of [67, 69] (Section 8.1.4).

8.1.1 Labeled Transition Systems

To represent the behavior of a nondeterministic process, we use a labeled transition system [97]. This is a state-
transition graph whose transitions are labeled with actions taken from a set A including the unobservable action τ .

Definition 8.1. A labeled transition system (LTS) is a triple (S,A,−→) where S is an at most countable set
of states, A is a countable set of actions, and −→ ⊆ S ×A× S is the transition relation.

A transition (s, a, s′) is written s a−→ s′, where s is the source state, a is the transition label, and s′ is the target
state, in which case we say that s′ is reachable from s via that a-transition. We say that s′ is reachable from s,
written s′ ∈ reach(s), iff s′ = s or there exists a sequence of finitely many transitions such that the target state of
each of them coincides with the source state of the subsequent one, with the source of the first one being s and
the target of the last one being s′.

8.1.2 Nondeterministic Bisimulation Equivalences

Bisimilarity [117, 112] identifies processes that are able to mimic each other’s behavior stepwise, i.e., having the same
branching structure. In the strong case, τ is treated like all the other actions.

Definition 8.2. Let (S,A,−→) be an LTS. We say that s1, s2 ∈ S are strongly bisimilar, written s1 ∼ s2, iff
(s1, s2) ∈ B for some strong bisimulation B. A symmetric relation B over S is a strong bisimulation iff, whenever
(s1, s2) ∈ B, then:

• For each s1
a−→ s′1 there exists s2

a−→ s′2 such that (s′1, s
′
2) ∈ B.

Weak bisimilarity [112] is additionally capable of abstracting from unobservable actions. Let s τ∗
==⇒ s′ mean

that s′ ∈ reach(s) and, when s′ 6= s, there exists a finite sequence of transitions from s to s′ each of which is labeled
with τ . Moreover let â

==⇒ stand for τ∗
==⇒ if a = τ or τ∗

==⇒ a−→ τ∗
==⇒ if a 6= τ .

Definition 8.3. Let (S,A,−→) be an LTS. We say that s1, s2 ∈ S are weakly bisimilar, written s1 ≈w s2, iff
(s1, s2) ∈ B for some weak bisimulation B. A symmetric relation B over S is a weak bisimulation iff, whenever
(s1, s2) ∈ B, then:

• For each s1
a−→a s

′
1 there exists s2

â
==⇒ s′2 such that (s′1, s

′
2) ∈ B.

Branching bisimilarity [80] is finer than weak bisimilarity as it preserves the branching structure of processes
even when abstracting from τ -actions – see condition (s1, s̄2) ∈ B in the definition below.

Definition 8.4. Let (S,A,−→) be an LTS. We say that s1, s2 ∈ S are branching bisimilar, written s1 ≈b s2, iff
(s1, s2) ∈ B for some branching bisimulation B. A symmetric relation B over S is a branching bisimulation iff,
whenever (s1, s2) ∈ B, then:
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s1

τ ba

a

s2

τ b

a

Figure 8.1: States related by ≈w but distinguished by ≈b

• For each s1
a−→ s′1:

– either a = τ and (s′1, s2) ∈ B;

– or there exists s2
τ∗

==⇒ s̄2
a−→ s′2 such that (s1, s̄2) ∈ B and (s′1, s

′
2) ∈ B.

An example that highlights the higher distinguishing power of branching bisimilarity is given in Figure 8.1,
where every LTS is depicted as a directed graph in which vertices represent states and action-labeled edges represent
transitions. The initial states s1 and s2 of the two LTSs are weakly bisimilar but not branching bisimilar. The
only transition that distinguishes s1 from s2 is the a-transition of s1, which can be mimicked by s2 according to
weak bisimilarity by performing its τ -transition followed by its a-transition. However, s2 cannot respond in the
same way according to branching bisimilarity because the state reached after the τ -transition should be branching
bisimilar to s1, which is not the case due to the b-transition departing from s1.

8.1.3 A Nondeterministic Process Calculus with High and Low Actions

We now introduce a basic process calculus to formalize the security properties of interest. To address two security
levels, we partition the set A \ {τ} of observable actions into AH ∪ AL, with AH ∩ AL = ∅, where AH is the
set of high-level actions, ranged over by h, and AL is the set of low-level actions, ranged over by l. Note that
τ /∈ AH ∪ AL.

The set Pnd of process terms is obtained by considering typical operators from CCS [112] and CSP [45]. In
addition to action prefix, nondeterministic choice, and parallel composition – taken from CSP so as not to turn
synchronizations among high-level actions into τ as would happen with the CCS parallel composition – we include
restriction and hiding, as they are necessary to formalize noninterference properties, and recursion. The syntax
for Pnd is:

P ::= 0 | a . P | P + P | P ‖L P | P \ L | P /L | K
where:

• 0 is the terminated process.

• a ._, for a ∈ A, is the action prefix operator describing a process that can initially perform action a.

• _ + _ is the alternative composition operator expressing a nondeterministic choice between two processes
based on their initially executable actions.

• _ ‖L_, for L ⊆ A\{τ}, is the parallel composition operator allowing two processes to proceed independently
on any action not in L and forcing them to synchronize on every action in L.
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Prefix a . P
a−→ P

Choice
P1

a−→ P ′1

P1 + P2
a−→ P ′1

P2
a−→ P ′2

P1 + P2
a−→ P ′2

Parallel
P1

a−→ P ′1 a /∈ L
P1 ‖L P2

a−→ P ′1 ‖L P2

P2
a−→ P ′2 a /∈ L

P1 ‖L P2
a−→ P1 ‖L P ′2

Synch
P1

a−→ P ′1 P2
a−→ P ′2 a ∈ L

P1 ‖L P2
a−→ P ′1 ‖L P ′2

Restriction P
a−→ P ′ a /∈ L

P \ L a−→ P ′ \ L

Hiding P
a−→ P ′ a ∈ L

P /L
τ−→ P ′ /L

P
a−→ P ′ a /∈ L

P /L
a−→ P ′ /L

Constant K , P P
a−→ P ′

K
a−→ P ′

Table 8.1: Operational semantic rules for purely nondeterministic processes

• _\L, for L ⊆ A\{τ}, is the restriction operator, which prevents the execution of all actions belonging to L.

• _ /L, for L ⊆ A \ {τ}, is the hiding operator, which turns all the executed actions belonging to L into
the unobservable action τ .

• K is a process constant equipped with a defining equation of the form K , P , where every constant possibly
occurring in P – including K itself thus allowing for recursion – must be in the scope of an action prefix.

The operational semantic rules for the process language are shown in Table 8.1 and produce the LTS (Pnd,A,−→)
where −→ ⊆ Pnd ×A× Pnd, to which the bisimulation equivalences defined in Section 8.1.2 are applicable.

8.1.4 Nondeterministic Information-Flow Security Properties Based on Weak Bisimilarity

The intuition behind noninterference in a two-level security system is that, whenever a group of agents at the high
security level performs some actions, the effect of those actions should not be visible by any agent at the low security
level. Below is a representative selection of weak-bisimulation-based noninterference properties – Nondeterministic
Non-Interference (NNI) and Non-Deducibility on Composition (NDC) – whose definitions and relationships are
recalled from [67] and, as far as P_BNDC is concerned, from [69].

Definition 8.5. Let P ∈ Pnd:

• P ∈ BSNNI≈w ⇐⇒ P \ AH ≈w P /AH.

• P ∈ BNDC≈w ⇐⇒ for all Q ∈ Pnd such that each of its actions belongs to AH and for all L ⊆ AH,
P \ AH ≈w ((P ‖LQ) /L) \ AH.
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• P ∈ SBSNNI≈w ⇐⇒ for all P ′ ∈ reach(P ), P ′ ∈ BSNNI≈w .

• P ∈ P_BNDC≈w
⇐⇒ for all P ′ ∈ reach(P ), P ′ ∈ BNDC≈w .

• P ∈ SBNDC≈w ⇐⇒ for all P ′, P ′′ ∈ reach(P ) such that P ′ h−→ P ′′, P ′ \ AH ≈w P ′′ \ AH.

Theorem 8.1. SBNDC≈w ( SBSNNI≈w = P_BNDC≈w
( BNDC≈w ( BSNNI≈w .

Bisimulation-based Strong Nondeterministic Non-Interference (BSNNI) has been one of the first and most
intuitive proposals. Basically, it is satisfied by any process P that behaves the same when its high-level actions
are prevented (as modeled by P \ AH) or when they are considered as hidden, unobservable actions (as modeled
by P /AH). The equivalence between these two low-level views of P states that a low-level agent cannot infer the
high-level behavior of the system. For instance, a low-level agent that observes the execution of l in l . 0 + h . l . 0
cannot infer anything about the execution of h. Indeed, (l . 0 + h . l . 0) \ {h} ≈w (l . 0 + h . l . 0) / {h} because the
former process behaves as l . 0, the latter process behaves as l . 0 + τ . l . 0, and l . 0 ≈w l . 0 + τ . l . 0.

BSNNI is not powerful enough to detect information leakages that derive from the behavior of a high-level
agent interacting with the system. For instance, l . 0 + h1 . h2 . l . 0 is BSNNI for the same reason discussed above.
However, a high-level agent like h1 . 0 enables h1 and then disables h2, thus yielding the low-level view of the system
l . 0 + τ . 0, which is clearly distinguishable from l . 0 as only in the former a low-level agent may not observe l.
To avoid such a limitation, the most obvious solution consists of checking explicitly the interaction on any action
set L ⊆ AH between the system and every possible high-level agent Q. The resulting property is Bisimulation-
based Non-Deducibility on Composition (BNDC), which features a universal quantification over Q containing only
high-level actions.

To circumvent the verification problems related to such a quantifier, several properties have been proposed that
are stronger than BNDC. They all express some persistency conditions, stating that the security checks have to
be extended to all the processes reachable from a secure one. Three of the most representative ones among such
properties are the variant of BSNNI that requires every reachable process to satisfy BSNNI itself, called Strong
BSNNI (SBSNNI), the variant of BNDC that requires every reachable process to satisfy BNDC itself, called
Persistent BNDC (P_BNDC), and Strong BNDC (SBNDC), which requires the low-level view of every reachable
process to be the same before and after the execution of any high-level action, meaning that the execution of
high-level actions must be completely transparent to low-level agents.

8.2 Use Case: DBMS Authentication – Weak Bisimilarity

Consider a multi-threaded system supporting the execution of concurrent transactions operating on a healthcare
database, where only authorized users can write their data. Depending on a policy governed by the database
management system (DBMS), such data can be shared with a dedicated module feeding the training set of a
machine learning (ML) facility, which is responsible for building a trained model for data analysis purposes.

On the one hand, different authentication mechanisms can be employed to identify users and ensure data
authenticity for each transaction. We address a simple password-based mechanism (pwd), a more sophisticated
two-factor authentication system (2fa), and a scheme based on single sign on (sso) [39].

On the other hand, for security reasons related to sharing sensitive data with the ML module [3], only data
transmitted through highly secure mechanisms, i.e., 2fa and sso, can be used to feed the training set. In any
case, for privacy issues, users must not be aware of whether their data are actually chosen to train the ML model
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Figure 8.2: LTS underlying the DBMS authentication mechanism Auth

or not [12]. Hence, to avoid that the use of highly secure authentication implicitly reveals the involvement of the
ML module, the DBMS internally decides not to consider certain transactions for the training set.

For the sake of simplicity, we concentrate on the authentication policy followed by the DBMS whenever handling
a write transaction. Therefore, we abstract away from the description of the ML module and of the database access
operations. In particular, we consider the following process, whose LTS is depicted in Figure 8.2:

Auth , lpwd .Auth +
(h . lsso .Auth + h . l2fa .Auth) +
τ . (τ . lsso .Auth + τ . l2fa .Auth)

Actions l? express that the transaction is conducted under the authentication method represented by ?. We treat
them as low-level actions because they represent interactions between the users and the DBMS. Action h represents
an interaction between the DBMS and the ML module, which is deemed to be high level as the activities of the
ML module must be transparent to the users.

The first summand of Auth specifies that the DBMS is ready to offer the password-based mechanism, in which
case the transaction data will not be passed to the ML module. The second summand models the communica-
tion with the ML module so that the transaction data – which must be protected through one of the two highly
secure authentication mechanisms – will be included in the training set. Note that in this case the choice of the
specific authentication method offered by the DBMS is nondeterministic and does not include the password-based
mechanism. The third summand specifies that the DBMS decides internally, through the first τ -action, that the
transaction data will not be passed to the ML module, even if the authentication method (chosen nondeterministi-
cally) is highly secure. Hence, in this case no interaction with the ML module is needed. The aim of this summand
is to mimic the behavior of the second summand, thus acting as an obfuscation mechanism that shall not allow any
user to detect the potential involvement of the ML module by simply observing the used authentication method.

Formally, the success of this obfuscation is guaranteed if the interaction with the ML module does not interfere
with the low-level view of the system observed by any user, which can be verified as a noninterference property.
More specifically, the ML module represents the high-level portion of the system that is expected not to interfere
with the low-level behavior of any user interacting with the DBMS, thus justifying the use of the high-level action h
modeling the interaction between such a module and the DBMS.
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Figure 8.3: LTSs of the low-level views Auth \ AH (left) and Auth /AH (right)

As far as ≈w-based noninterference is concerned, Auth does not leak any information from the high level to
the low level. More precisely, the system is SBSNNI≈w , and hence also BNDC≈w and BSNNI≈w by virtue of
Theorem 8.1. Indeed, by observing Figure 8.3 – where the h-actions are forbidden on the left while they are
transformed into the colored τ -actions on the right – it is easy to see that Auth is BSNNI≈w , i.e., Auth \ AH ≈w

Auth /AH. The weak bisimulation relating the two low-level views of Auth is given by the following partition
of the disjoint union of the two state spaces: {{s1, r1}, {s2, r2}, {s3, r3, r

′
3}, {s4, r4, r

′
4}}. Since the only high-level

action is enabled at the initial state of Auth, it follows that Auth is SBSNNI≈w as well.

8.3 Nondeterministic Information-Flow Security Properties Based on
Branching Bisimilarity

While the literature on behavioral-equivalence-based noninterference mainly concentrates on weak bisimulation
semantics, here we address information-flow security properties relying on branching bisimilarity.

Definition 8.6. BSNNI≈b
, BNDC≈b

, SBSNNI≈b
, P_BNDC≈b

, SBNDC≈b
are obtained from the corresponding

properties in Definition 8.5 by replacing the weak bisimilarity check (≈w) with the branching bisimilarity one (≈b).

In this section we first study their preservation and compositionality characteristics so as to assess their use-
fulness (Section 8.3.1) and then we investigate the inclusion relationships among them and with the corresponding
properties based on weak bisimilarity (Section 8.3.2).

8.3.1 Preservation and Compositionality

Similar to the weak bisimilarity case [67], all the ≈b-based noninterference properties turn out to be preserved
by ≈b. This means that, whenever a process P1 is secure under any of such properties, then every other branching
bisimilar process P2 is secure too according to the same property. This is very useful for automated property
verification, as it allows one to work with the process with the smallest state space among the equivalent ones.
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The preservation result of Theorem 8.2 immediately follows from the lemma below, which ensures that ≈b is
a congruence with respect to all the operators occurring in the aforementioned noninterference properties. These
operators were not considered in the congruence results of [80, 75].

Lemma 8.1. Let P1, P2 ∈ Pnd. If P1 ≈b P2 then:

1. P1 ‖L P ≈b P2 ‖L P and P ‖L P1 ≈b P ‖L P2 for all L ⊆ A \ {τ} and P ∈ Pnd.

2. P1 \ L ≈b P2 \ L for all L ⊆ A \ {τ}.

3. P1 /L ≈b P2 /L for all L ⊆ A \ {τ}.

Proof. Let B be a branching bisimulation witnessing P1 ≈b P2:

1. The symmetric relation B′ = {(Q1 ‖LQ,Q2 ‖LQ) | (Q1, Q2) ∈ B ∧ Q ∈ Pnd} and its variant B′′ in which Q
occurs to the left of parallel composition in each pair are branching bisimulations too. Let us focus on B′.
Given (Q1 ‖LQ,Q2 ‖LQ) ∈ B′, so that (Q1, Q2) ∈ B, there are three cases based on the operational semantic
rules in Table 8.1:

• If Q1 ‖LQ
a−→Q′1 ‖LQ with Q1

a−→Q′1 and a /∈ L, then either a = τ and (Q′1, Q2) ∈ B, or there exists
Q2

τ∗
==⇒ Q̄2

a−→Q′2 such that (Q1, Q̄2) ∈ B and (Q′1, Q
′
2) ∈ B. Since synchronization does not apply to τ

and a /∈ L, in the former subcaseQ2 ‖LQ is allowed to stay idle with (Q′1 ‖LQ,Q2 ‖LQ) ∈ B′, while in the
latter subcaseQ2 ‖LQ

τ∗
==⇒ Q̄2 ‖LQ

a−→Q′2 ‖LQ with (Q1 ‖LQ, Q̄2 ‖LQ)∈B′ and (Q′1 ‖LQ,Q′2 ‖LQ)∈B′.
• The case Q1 ‖LQ

a−→Q1 ‖LQ′ with Q
a−→Q′ and a /∈ L is trivial.

• If Q1 ‖LQ
a−→Q′1 ‖LQ′ with Q1

a−→Q′1, Q
a−→Q′, and a ∈ L, then there exists Q2

τ∗
==⇒ Q̄2

a−→Q′2 such
that (Q1, Q̄2) ∈ B and (Q′1, Q

′
2) ∈ B. Since synchronization does not apply to τ and a ∈ L, we have

that Q2 ‖LQ
τ∗

==⇒ Q̄2 ‖LQ
a−→Q′2 ‖LQ′ with (Q1 ‖LQ, Q̄2 ‖LQ) ∈ B′ and (Q′1 ‖LQ′, Q′2 ‖LQ′) ∈ B′.

2. The symmetric relation B′ = {(Q1 \ L,Q2 \ L) | (Q1, Q2) ∈ B} is a branching bisimulation too. Given
(Q1 \ L,Q2 \ L) ∈ B′, so that (Q1, Q2) ∈ B, there are two cases based on the operational semantic rules in
Table 8.1:

• If Q1 \ L
τ−→Q′1 \ L with Q1

τ−→Q′1, then either (Q′1, Q2) ∈ B, or there exists Q2
τ∗

==⇒ Q̄2
τ−→Q′2 such

that (Q1, Q̄2) ∈ B and (Q′1, Q
′
2) ∈ B. Since the restriction operator does not apply to τ , in the

former subcase Q2 \ L is allowed to stay idle with (Q′1 \ L,Q2 \ L) ∈ B′, while in the latter subcase
Q2 \ L

τ∗
==⇒ Q̄2 \ L

τ−→Q′2 \ L with (Q1 \ L, Q̄2 \ L) ∈ B′ and (Q′1 \ L,Q′2 \ L) ∈ B′.

• If Q1 \ L
a−→Q′1 \ L with Q1

a−→Q′1 and a /∈ L ∪ {τ}, then there exists Q2
τ∗

==⇒ Q̄2
a−→Q′2 such that

(Q1, Q̄2) ∈ B and (Q′1, Q
′
2) ∈ B. Since the restriction operator does not apply to τ and a /∈ L, we have

that Q2 \ L
τ∗

==⇒ Q̄2 \ L
a−→Q′2 \ L with (Q1 \ L, Q̄2 \ L) ∈ B′ and (Q′1 \ L,Q′2 \ L) ∈ B′.

3. The symmetric relation B′ = {(Q1 /L,Q2 /L) | (Q1, Q2) ∈ B} is a branching bisimulation too. Given
(Q1 /L,Q2 /L) ∈ B′, so that (Q1, Q2) ∈ B, there are two cases based on the operational semantic rules in
Table 8.1:
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• If Q1 /L
τ−→Q′1 /L with Q1

τ−→Q′1, then either (Q′1, Q2) ∈ B, or there exists Q2
τ∗

==⇒ Q̄2
τ−→Q′2 such

that (Q1, Q̄2) ∈ B and (Q′1, Q
′
2) ∈ B. Since the hiding operator does not apply to τ , in the for-

mer subcase Q2 /L is allowed to stay idle with (Q′1 /L,Q2 /L) ∈ B′, while in the latter subcase
Q2 /L

τ∗
==⇒ Q̄2 /L

τ−→Q′2 /L with (Q1 /L, Q̄2 /L) ∈ B′ and (Q′1 /L,Q
′
2 /L) ∈ B′.

• If Q1 /L
a−→Q′1 /L with Q1

b−→Q′1 and b ∈ L ∧ a = τ or b /∈ L ∪ {τ} ∧ a = b, then there exists
Q2

τ∗
==⇒ Q̄2

b−→Q′2 such that (Q1, Q̄2) ∈ B and (Q′1, Q
′
2) ∈ B. Since the hiding operator does not apply

to τ , we have that Q2 /L
τ∗

==⇒ Q̄2 /L
a−→Q′2 /L with (Q1 /L, Q̄2 /L) ∈ B′ and (Q′1 /L,Q

′
2 /L) ∈ B′.

Theorem 8.2. Let P1, P2 ∈ Pnd and P ∈ {BSNNI≈b
,BNDC≈b

,SBSNNI≈b
,P_BNDC≈b

, SBNDC≈b
}. If P1 ≈b P2

then P1 ∈ P ⇐⇒ P2 ∈ P.

Proof. A straightforward consequence of the definition of the various properties, i.e., Definition 8.6, and Lemma 8.1.

As far as modular verification is concerned, like in the weak bisimilarity case [67] only the local properties
SBSNNI≈b

, P_BNDC≈b
, and SBNDC≈b

are compositional, i.e., are preserved by some operators of the calculus
in certain circumstances. Unlike the compositionality results presented in [67], ours are related not only to parallel
composition and restriction, but also to action prefix and hiding. Moreover, compositionality with respect to
parallel composition is limited, for SBSNNI≈b

and P_BNDC≈b
, to the case in which synchronization can take

place only among low-level actions, i.e., L ⊆ AL, while in the case of SBSNNI≈w it holds for every L ⊆ A\{τ}. A
limitation to low-level actions applies to action prefix and hiding as well, whilst this is not the case for restriction.
Another analogy with the weak bisimilarity case [67] is that none of the considered noninterference properties is
compositional with respect to alternative composition. For instance, let us consider processes P1 = l . 0 and P2 =
h . 0. Both processes are BSNNI≈b

, as l . 0\{h} ≈b l . 0 / {h} and h . 0\{h} ≈b h . 0 / {h}, but P1 +P2 /∈ BSNNI≈b
,

because (l . 0 + h . 0) \ {h} ≈b l . 0 6≈b l . 0 + τ . 0 ≈b (l . 0 + h . 0) / {h}. It is easy to check that P1 +P2 /∈ P also for
P ∈ {BNDC≈b

, SBSNNI≈b
,P_BNDC≈b

, SBNDC≈b
}.

To establish compositionality, we first prove some ancillary results about parallel composition, restriction, and
hiding under SBSNNI≈b

and SBNDC≈b
.

Lemma 8.2. Let P1, P2, P ∈ Pnd. Then:

1. If P1, P2 ∈ SBSNNI≈b
and L ⊆ AL, then (Q1 ‖LQ2)\AH ≈b (R1 ‖LR2) /AH for all Q1, R1 ∈ reach(P1) and

Q2, R2 ∈ reach(P2) such that Q1 ‖LQ2, R1 ‖LR2 ∈ reach(P1 ‖L P2), Q1 \ AH ≈b R1 /AH, and Q2 \ AH ≈b

R2 /AH.

2. If P ∈ SBSNNI≈b
and L ⊆ A \ {τ}, then (Q/AH) \ L ≈b (R \ L) /AH for all Q,R ∈ reach(P ) such that

Q/AH ≈b R \ AH.

3. If P1, P2 ∈ SBNDC≈b
and L ⊆ A\ {τ}, then (Q1 ‖LQ2) \AH ≈b (R1 ‖LR2) \AH for all Q1, R1 ∈ reach(P1)

and Q2, R2 ∈ reach(P2) such that Q1 ‖LQ2, R1 ‖LR2 ∈ reach(P1 ‖L P2), Q1 \AH ≈b R1 \AH and Q2 \AH ≈b

R2 \ AH.
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Proof. Let B be a symmetric relation containing all the pairs of processes that have to be shown to be ≈b-equivalent
according to the considered result:

1. Starting from (Q1 ‖LQ2)\AH and (R1 ‖LR2) /AH related by B, so that Q1\AH ≈b R1 /AH and Q2\AH ≈b

R2 /AH, there are twelve cases based on the operational semantic rules in Table 8.1. In the first five cases,
it is (Q1 ‖LQ2) \ AH to move first:

• If (Q1 ‖LQ2)\AH
l−→ (Q′1 ‖LQ2)\AH with Q1

l−→Q′1 and l /∈ L, then Q1 \AH
l−→Q′1 \AH as l /∈ AH.

From Q1 \ AH ≈b R1 /AH it follows that there exists R1 /AH
τ∗

==⇒ R̄1 /AH
l−→R′1 /AH such that

Q1 \ AH ≈b R̄1 /AH and Q′1 \ AH ≈b R′1 /AH. Since synchronization does not apply to τ and
l /∈ L, we have that (R1 ‖LR2) /AH

τ∗
==⇒ (R̄1 ‖LR2) /AH

l−→ (R′1 ‖LR2) /AH with ((Q1 ‖LQ2) \ AH,
(R̄1 ‖LR2) /AH) ∈ B and ((Q′1 ‖LQ2) \ AH, (R′1 ‖LR2) /AH) ∈ B.

• If (Q1 ‖LQ2) \ AH
l−→ (Q1 ‖LQ′2) \ AH with Q2

l−→Q′2 and l /∈ L, then the proof is similar to the one
of the previous case.

• If (Q1 ‖LQ2)\AH
l−→ (Q′1 ‖LQ′2)\AH with Qi

l−→Q′i for i ∈ {1, 2} and l ∈ L, then Qi\AH
l−→Q′i\AH

as l /∈ AH. From Qi \AH ≈b Ri /AH it follows that there exists Ri /AH
τ∗

==⇒ R̄i /AH
l−→R′i /AH such

that Qi \ AH ≈b R̄i /AH and Q′i \ AH ≈b R′i /AH. Since synchronization does not apply to τ and
l ∈ L, we have that (R1 ‖LR2) /AH

τ∗
==⇒ (R̄1 ‖L R̄2) /AH

l−→ (R′1 ‖LR′2) /AH with ((Q1 ‖LQ2) \ AH,
(R̄1 ‖L R̄2) /AH) ∈ B and ((Q′1 ‖LQ′2) \ AH, (R′1 ‖LR′2) /AH) ∈ B.

• If (Q1 ‖LQ2) \ AH
τ−→ (Q′1 ‖LQ2) \ AH with Q1

τ−→Q′1, then Q1 \ AH
τ−→Q′1 \ AH as τ /∈ AH. From

Q1 \ AH ≈b R1 /AH it follows that either Q′1 \ AH ≈b R1 /AH, or there exists
R1 /AH

τ∗
==⇒ R̄1 /AH

τ−→R′1 /AH such that Q1 \ AH ≈b R̄1 /AH and Q′1 \ AH ≈b R′1 /AH.
Since synchronization does not apply to τ , in the former subcase (R1 ‖LR2) /AH is al-
lowed to stay idle with ((Q′1 ‖LQ2) \ AH, (R1 ‖LR2) /AH) ∈ B, while in the latter subcase
(R1 ‖LR2) /AH

τ∗
==⇒ (R̄1 ‖LR2) /AH

τ−→ (R′1 ‖LR2) /AH with ((Q1 ‖LQ2) \ AH, (R̄1 ‖LR2) /AH) ∈ B
and ((Q′1 ‖LQ2) \ AH, (R′1 ‖LR2) /AH) ∈ B.

• If (Q1 ‖LQ2) \ AH
τ−→ (Q1 ‖LQ′2) \ AH with Q2

τ−→Q′2, then the proof is similar to the one of the
previous case.

In the other seven cases, instead, it is (R1 ‖LR2) /AH to move first:

• If (R1 ‖LR2) /AH
l−→ (R′1 ‖LR2) /AH with R1

l−→R′1 and l /∈ L, then R1 /AH
l−→R′1 /AH as l /∈ AH.

From R1 /AH ≈b Q1 \ AH it follows that there exists Q1 \ AH
τ∗

==⇒ Q̄1 \ AH
l−→Q′1 \ AH such that

R1 /AH ≈b Q̄1 \ AH and R′1 /AH ≈b Q′1 \ AH. Since synchronization does not apply to τ and
l /∈ L, we have that (Q1 ‖LQ2) \ AH

τ∗
==⇒ (Q̄1 ‖LQ2) \ AH

l−→ (Q′1 ‖LQ2) \ AH with ((R1 ‖LR2)/AH,
(Q̄1 ‖LQ2) \ AH) ∈ B and ((R′1 ‖LR2)/AH, (Q′1 ‖LQ2) \ AH) ∈ B.

• If (R1 ‖LR2) /AH
l−→ (R1 ‖LR′2) /AH with R2

l−→R′2 and l /∈ L, then the proof is similar to the one
of the previous case.
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• If (R1 ‖LR2) /AH
l−→ (R′1 ‖LR′2) /AH with Ri

l−→R′i for i ∈ {1, 2} and l ∈ L, then Ri /AH
l−→R′i /AH

as l /∈ AH. From Ri /AH ≈b Qi \ AH it follows that there exists Qi \ AH
τ∗

==⇒ Q̄i \ AH
l−→Q′i \ AH

with Ri /AH ≈b Q̄i \ AH and R′i /AH ≈b Q′i \ AH. Since synchronization does not apply to τ and
l ∈ L, we have that (Q1 ‖LQ2) \ AH

τ∗
==⇒ (Q̄1 ‖L Q̄2) \ AH

l−→ (Q′1 ‖LQ′2) \ AH with ((R1 ‖LR2)/AH,
(Q̄1 ‖L Q̄2) \ AH) ∈ B and ((R′1 ‖LR′2)/AH, (Q′1 ‖LQ′2) \ AH) ∈ B.

• If (R1 ‖LR2) /AH
τ−→ (R′1 ‖LR2) /AH with R1

τ−→R′1, then R1 /AH
τ−→R′1 /AH as τ /∈ AH. From

R1 /AH ≈b Q1 \ AH it follows that either R′1 /AH ≈b Q1 \ AH, or there exists Q1 \ AH
τ∗

==⇒ Q̄1 \ AH
τ−→Q′1 \ AH such that R1 /AH ≈b Q̄1 \ AH and R′1 /AH ≈b Q′1 \ AH. Since synchronization does

not apply to τ , in the former subcase (Q1 ‖LQ2) \ AH is allowed to stay idle with ((R′1 ‖LR2)/AH,
(Q1 ‖LQ2)\AH)∈B, while in the latter subcase (Q1 ‖LQ2)\AH

τ∗
==⇒ (Q̄1 ‖LQ2)\AH

τ−→ (Q′1 ‖LQ2)\AH
with ((R1 ‖LR2)/AH, (Q̄1 ‖LQ2) \ AH) ∈ B and ((R′1 ‖LR2)/AH, (Q′1 ‖LQ2) \ AH) ∈ B.

• If (R1 ‖LR2) /AH
τ−→ (R1 ‖LR′2) /AH with R2

τ−→R′2, then the proof is similar to the one of the
previous case.

• If (R1 ‖LR2) /AH
τ−→ (R′1 ‖LR2) /AH with R1

h−→R′1 and h /∈ L, thenR1 /AH
τ−→R′1 /AH as h ∈ AH.

The rest of the proof is like the one of the fourth case.

• If (R1 ‖LR2) /AH
τ−→ (R1 ‖LR′2) /AH with R2

h−→R′2 and h /∈ L, then the proof is similar to the one
of the previous case.

2. Starting from (Q/AH) \ L and (R \ L) /AH related by B, so that Q/AH ≈b R \ AH, there are six cases
based on the operational semantic rules in Table 8.1. In the first three cases, it is (Q/AH) \L to move first:

• If (Q/AH) \ L l−→ (Q′ /AH) \ L with Q l−→Q′ and l /∈ L, then Q/AH
l−→Q′ /AH as l /∈ AH. From

Q/AH ≈b R \ AH it follows that there exists R \ AH
τ∗

==⇒ R̄ \ AH
l−→R′ \ AH such that Q/AH ≈b

R̄ \ AH and Q′ /AH ≈b R
′ \ AH. Since the restriction and hiding operators do not apply to τ and l,

we have that (R \L) /AH
τ∗

==⇒ (R̄ \L) /AH
l−→ (R′ \L) /AH with ((Q/AH) \L, (R̄ \L) /AH) ∈ B and

((Q′ /AH) \ L, (R′ \ L) /AH) ∈ B.
• If (Q/AH) \L τ−→ (Q′ /AH) \L with Q τ−→Q′, then Q/AH

τ−→Q′ /AH as τ /∈ AH. From Q/AH ≈b

R\AH it follows that either Q′ /AH ≈b R\AH, or there exists R\AH
τ∗

==⇒ R̄\AH
τ−→R′\AH such that

Q/AH ≈b R̄\AH and Q′ /AH ≈b R
′\AH. Since the restriction and hiding operators do not apply to τ ,

in the former subcase (R\L) /AH is allowed to stay idle with ((Q′ /AH)\L, (R\L) /AH) ∈ B, while in
the latter subcase (R\L) /AH

τ∗
==⇒ (R̄\L) /AH

τ−→ (R′ \L) /AH with ((Q/AH)\L, (R̄\L) /AH) ∈ B
and ((Q′ /AH) \ L, (R′ \ L) /AH) ∈ B.

• If (Q/AH) \ L τ−→ (Q′ /AH) \ L with Q h−→Q′, then Q/AH
τ−→Q′ /AH as h ∈ AH. The rest of the

proof is similar to the one of the previous case.

In the other three cases, instead, it is (R \ L) /AH to move first:

• If (R \ L) /AH
l−→ (R′ \ L) /AH with R

l−→R′ and l /∈ L, then R \ AH
l−→R′ \ AH as l /∈ AH.

From R \ AH ≈b Q/AH it follows that there exists Q/AH
τ∗

==⇒ Q̄ /AH
l−→Q′ /AH such that R \ AH
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≈b Q̄ /AH and R′ \ AH ≈b Q′ /AH. Since the restriction operator does not apply to τ and l,
we have that (Q/AH) \L τ∗

==⇒ (Q̄ /AH) \L l−→ (Q′ /AH) \L with ((R \L) /AH, (Q̄ /AH) \L) ∈ B and
((R′ \ L) /AH, (Q′ /AH) \ L) ∈ B.

• If (R \L) /AH
τ−→ (R′ \L) /AH with R τ−→R′, then R \AH

τ−→R′ \AH as τ /∈ AH. From R \AH ≈b

Q/AH it follows that either R′ \ AH ≈b Q/AH, or there exists Q/AH
τ∗

==⇒ Q̄ /AH
τ−→Q′ /AH such

that R \AH ≈b Q̄ /AH and R′ \AH ≈b Q
′ /AH. Since the restriction operator does not apply to τ , in

the former subcase (Q/AH) \ L is allowed to stay idle with ((R′ \ L) /AH, (Q/AH) \ L) ∈ B, while in
the latter subcase (Q/AH)\L τ∗

==⇒ (Q̄ /AH)\L τ−→ (Q′ /AH)\L with ((R\L) /AH, (Q̄ /AH)\L) ∈ B
and ((R′ \ L) /AH, (Q′ /AH) \ L) ∈ B.

• If (R \ L) /AH
τ−→ (R′ \ L) /AH with R h−→R′ and h /∈ L, then R/AH

τ−→R′ /AH as h ∈ AH (note
that R \AH cannot perform h). From R/AH ≈b R \AH – as P ∈ SBSNNI≈b

and R ∈ reach(P ) – and
R\AH ≈b Q/AH it follows that eitherR′ /AH ≈b Q/AH and henceR′\AH ≈b Q/AH – asR′ /AH ≈b

R′\AH due to P ∈ SBSNNI≈b
and R′ ∈ reach(P ) – or there exists Q/AH

τ∗
==⇒ Q̄ /AH

τ−→Q′ /AH such
that R/AH ≈b Q̄ /AH and R′ /AH ≈b Q

′ /AH and hence R\AH ≈b Q̄ /AH and R′ \AH ≈b Q
′ /AH.

Since the restriction operator does not apply to τ , in the former subcase (Q/AH) \L is allowed to stay
idle with ((R′ \ L) /AH, (Q/AH) \ L) ∈ B, while in the latter subcase (Q/AH) \ L τ∗

==⇒ (Q̄ /AH) \ L
τ−→ (Q′ /AH) \ L with ((R \ L) /AH, (Q̄ /AH) \ L) ∈ B and ((R′ \ L) /AH, (Q′ /AH) \ L) ∈ B.

3. Starting from (Q1 ‖LQ2)\AH and (R1 ‖LR2)\AH related by B, so that Q1\AH ≈b R1\AH and Q2\AH ≈b

R2 \ AH, there are five cases based on the operational semantic rules in Table 8.1:

• If (Q1 ‖LQ2)\AH
l−→ (Q′1 ‖LQ2)\AH with Q1

l−→Q′1 and l /∈ L, then Q1 \AH
l−→Q′1 \AH as l /∈ AH.

From Q1 \ AH ≈b R1 \ AH it follows that there exists R1 \ AH
τ∗

==⇒ R̄1 \ AH
l−→R′1 \ AH such that

Q1 \ AH ≈b R̄1 \ AH and Q′1 \ AH ≈b R
′
1 \ AH. Since synchronization does not apply to τ and l /∈ L,

we have that (R1 ‖LR2) \ AH
τ∗

==⇒ (R̄1 ‖LR2) \ AH
l−→ (R′1 ‖LR2) \ AH with ((Q1 ‖LQ2) \ AH,

(R̄1 ‖LR2) \ AH) ∈ B and ((Q′1 ‖LQ2) \ AH, (R′1 ‖LR2) \ AH) ∈ B.

• If (Q1 ‖LQ2) \ AH
l−→ (Q1 ‖LQ′2) \ AH with Q2

l−→Q′2 and l /∈ L, then the proof is similar to the one
of the previous case.

• If (Q1 ‖LQ2)\AH
l−→ (Q′1 ‖LQ′2)\AH with Qi

l−→Q′i for i ∈ {1, 2} and l ∈ L, then Qi\AH
l−→Q′i\AH

as l /∈ AH. From Qi\AH ≈b Ri\AH it follows that there exists Ri\AH
τ∗

==⇒ R̄i\AH
l−→R′i\AH such that

Qi\AH ≈b R̄i\AH andQ′i\AH ≈b R
′
i\AH. Since synchronization does not apply to τ and l ∈ L, we have

that (R1 ‖LR2)\AH
τ∗

==⇒ (R̄1 ‖L R̄2)\AH
l−→ (R′1 ‖LR′2)\AH with ((Q1 ‖LQ2)\AH, (R̄1 ‖L R̄2)\AH) ∈ B

and ((Q′1 ‖LQ′2) \ AH, (R′1 ‖LR′2) \ AH) ∈ B.
• If (Q1‖LQ2)\AH

τ−→ (Q′1‖LQ2)\AH with Q1
τ−→Q′1, then Q1\AH

τ−→Q′1\AH as τ /∈AH. From Q1\AH
≈b R1 \AH it follows that either Q′1 \AH ≈b R1 \AH, or there exists R1 \AH

τ∗
==⇒ R̄1 \AH

τ−→R′1 \AH
such that Q1\AH ≈b R̄1\AH and Q′1\AH ≈b R

′
1\AH. Since synchronization does not apply to τ , in the

former subcase (R1 ‖LR2)\AH is allowed to stay idle with ((Q′1 ‖LQ2)\AH, (R1 ‖LR2)\AH) ∈ B, while
in the latter subcase (R1 ‖LR2) \ AH

τ∗
==⇒ (R̄1 ‖LR2) \ AH

τ−→ (R′1 ‖LR2) \ AH with ((Q1 ‖LQ2) \ AH,
(R̄1 ‖LR2) \ AH) ∈ B and ((Q′1 ‖LQ2) \ AH, (R′1 ‖LR2) \ AH) ∈ B.
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• If (Q1 ‖LQ2) \ AH
τ−→ (Q1 ‖LQ′2) \ AH with Q2

τ−→Q′2, then the proof is similar to the one of the
previous case.

Theorem 8.3. Let P, P1, P2 ∈ Pnd and P ∈ {SBSNNI≈b
,P_BNDC≈b

, SBNDC≈b
}. Then:

1. P ∈ P =⇒ a . P ∈ P for all a ∈ AL ∪ {τ}.

2. P1, P2 ∈ P =⇒ P1 ‖L P2 ∈ P for all L ⊆ AL if P ∈ {SBSNNI≈b
,P_BNDC≈b

} or for all L ⊆ A \ {τ}
if P = SBNDC≈b

.

3. P ∈ P =⇒ P \ L ∈ P for all L ⊆ A \ {τ}.

4. P ∈ P =⇒ P /L ∈ P for all L ⊆ AL.

Proof. We first prove the four results for SBSNNI≈b
, from which it will follow that they hold for P_BNDC≈b

too
by virtue of the forthcoming Theorem 8.4:

1. Given an arbitrary P ∈ SBSNNI≈b
and an arbitrary a ∈ AL ∪ {τ}, from P \ AH ≈b P /AH we derive

that a . (P \ AH) ≈b a . (P /AH) because ≈b is a congruence with respect to action prefix [80], from which
it follows that (a . P ) \ AH ≈b (a . P ) /AH, i.e., a . P ∈ BrSNNI≈b

, because a /∈ AH. To conclude the proof,
it suffices to observe that all the processes reachable from a . P after performing a are processes reachable
from P , which are known to be BSNNI≈b

.

2. Given two arbitrary P1, P2 ∈ SBSNNI≈b
and an arbitrary L ⊆ AL, the result follows from Lemma 8.2(1)

by taking Q1 identical to R1 and Q2 identical to R2.

3. Given an arbitrary P ∈ SBSNNI≈b
and an arbitrary L ⊆ A \ {τ}, the result follows from Lemma 8.2(2)

by taking Q identical to R – which will be denoted by P ′ – because:

• (P ′ \ L) \ AH ≈b (P ′ \ AH) \ L as the order in which restriction sets are considered is unimportant.

• (P ′ \ AH) \ L ≈b (P ′ /AH) \ L because P ′ \ AH ≈b P
′ /AH – as P ∈ SBSNNI≈b

and P ′ ∈ reach(P ) –
and ≈b is a congruence with respect to the restriction operator due to Lemma 8.1(2).

• (P ′ /AH) \ L ≈b (P ′ \ L) /AH as shown in Lemma 8.2(2).

• From the transitivity of ≈b we obtain that (P ′ \ L) \ AH ≈b (P ′ \ L) /AH.

4. Given an arbitrary P ∈ SBSNNI≈b
and an arbitrary L ⊆ AL, for every P ′ ∈ reach(P ) it holds that

P ′\AH ≈b P
′ /AH, from which we derive that (P ′\AH) /L ≈b (P ′/AH) /L because ≈b is a congruence with

respect to the hiding operator due to Lemma 8.1(3). Since L∩AH = ∅, we have that (P ′\AH) /L is isomorphic
to (P ′ /L) \ AH and (P ′ /AH) /L is isomorphic to (P ′ /L) /AH, hence (P ′ /L) \ AH ≈b (P ′ /L) /AH, i.e.,
P ′ /L is BSNNI≈b

.
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We then prove the four results for SBNDC≈b
:

1. Given an arbitrary P ∈ SBNDC≈b
and an arbitrary a ∈ AL ∪ {τ}, it trivially holds that a . P ∈ SBNDC≈b

because a is not high and all the processes reachable from a . P after performing a are processes reachable
from P , which is known to be SBNDC≈b

.

2. Given two arbitrary P1, P2 ∈ SBNDC≈b
and an arbitrary L ⊆ A\{τ}, the result follows from Lemma 8.2(3)

as can be seen by observing that whenever P ′1 ‖L P ′2
h−→ P ′′1 ‖L P ′′2 for P ′1 ‖L P ′2 ∈ reach(P1 ‖L P2):

• If P ′1
h−→ P ′′1 , P ′′2 = P ′2 (hence P ′2 \ AH ≈b P

′′
2 \ AH), and h /∈ L, then from P1 ∈ SBNDC≈b

it follows
that P ′1 \ AH ≈b P

′′
1 \ AH, which in turn entails that (P ′1 ‖L P ′2) \ AH ≈b (P ′′1 ‖L P ′′2 ) \ AH because ≈b

is a congruence with respect to the parallel composition operator due to Lemma 8.1(1) and restriction
distributes over parallel composition.

• If P ′2
h−→ P ′′2 , P ′′1 = P ′1, and h /∈ L, then we reason like in the previous case.

• If P ′1
h−→ P ′′1 , P ′2

h−→ P ′′2 , and h ∈ L, then from P1, P2 ∈ SBNDC≈b
it follows that P ′1 \ AH ≈b P

′′
1 \ AH

and P ′2 \ AH ≈b P
′′
2 \ AH, which in turn entail that (P ′1 ‖L P ′2) \ AH ≈b (P ′′1 ‖L P ′′2 ) \ AH because ≈b

is a congruence with respect to the parallel composition operator due to Lemma 8.1(1) and restriction
distributes over parallel composition.

3. Given an arbitrary P ∈ SBNDC≈b
and an arbitrary L ⊆ A \ {τ}, for every P ′ ∈ reach(P ) and for every P ′′

such that P ′ h−→ P ′′ it holds that P ′\AH ≈b P
′′\AH, from which we derive that (P ′\AH)\L ≈b (P ′′\AH)\L

because ≈b is a congruence with respect to the restriction operator due to Lemma 8.1(2). Since (P ′ \AH)\L
is isomorphic to (P ′ \L)\AH and (P ′′ \AH)\L is isomorphic to (P ′′ \L)\AH, we have that (P ′ \L)\AH ≈b

(P ′′ \ L) \ AH.

4. Given an arbitrary P ∈ SBNDC≈b
and an arbitrary L ⊆ AL, for every P ′ ∈ reach(P ) and for every P ′′ such

that P ′ h−→ P ′′ it holds that P ′ \AH ≈b P
′′ \AH, from which we derive that (P ′ \AH) /L ≈b (P ′′ \AH) /L

because ≈b is a congruence with respect to the hiding operator due to Lemma 8.1(3). Since L ∩ AH = ∅,
we have that (P ′ \ AH) /L is isomorphic to (P ′ /L) \ AH and (P ′′ \ AH) /L is isomorphic to (P ′′ /L) \ AH,
hence (P ′ /L) \ AH ≈b (P ′′ /L) \ AH.

As far as parallel composition is concerned, the compositionality of SBSNNI≈b
holds only for all L ⊆ AL.

As an example, both P1 = h . 0 + l1 . 0 + τ . 0 and P2 = h . 0 + l2 . 0 + τ . 0 are SBSNNI≈b
, but P1 ‖{h} P2 is

not because the transition (P1 ‖{h} P2) /AH
τ−→ (0 ‖{h} 0) /AH arising from the synchronization between the two

h-actions cannot be matched by (P1 ‖{h} P2) \ AH in the branching bisimulation game. Indeed, the only two

possibilities are (P1 ‖{h} P2)\AH
τ∗

==⇒ (P1 ‖{h} P2)\AH
τ−→ (0 ‖{h} P2)\AH

τ−→ (0 ‖{h} 0)\AH and (P1 ‖{h} P2)\AH
τ∗

==⇒ (P1 ‖{h} P2) \ AH
τ−→ (P1 ‖{h} 0) \ AH

τ−→ (0 ‖{h} 0) \ AH but neither (0 ‖{h} P2) \ AH nor (P1 ‖{h} 0) \ AH is
≈b-equivalent to (P1 ‖{h} P2) \ AH when l1 6= l2. Note that (P1 ‖{h} P2) /AH ≈w (P1 ‖{h} P2) \ AH because

(P1 ‖{h} P2) /AH
τ−→ (0 ‖{h} 0) /AH is matched by (P1 ‖{h} P2) \ AH

τ∗
==⇒ (0 ‖{h} 0) \ AH. However, it is not only

a matter of the higher discriminating power of ≈b with respect to ≈w. If we used the CCS parallel composition
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operator [112], which turns the synchronization of two actions into τ thus combining communication with hiding,
then the parallel composition of P1 and P2 with restriction on AH would be able to respond, in the branching
bisimulation game, with a single τ -transition reaching the parallel composition of 0 and 0 with restriction on AH.

8.3.2 Taxonomy of Security Properties

The relationships among the various ≈b-based noninterference properties turn out to follow the same pattern as
those relying on ≈w shown in Theorem 8.1.

Part of the proof of the forthcoming Theorem 8.4 exploits the notion of branching bisimulation up to ≈b of [75]
that we recall below, where ≈b B≈b stands for the composition of the three mentioned relations. Note that B is
no longer required to be a symmetric relation thus avoiding redundant information in it.

Definition 8.7. A relation B over Pnd is a branching bisimulation up to ≈b iff, whenever (P1, P2) ∈ B, then:

• For each P1
τ∗

==⇒ P̄1
a−→ P ′1 with P1 ≈b P̄1:

– either a = τ and P̄1 ≈b P
′
1;

– or there exists P2
τ∗

==⇒ P̄2
a−→ P ′2 such that P̄1 ≈bB≈b P̄2 and P ′1 ≈bB≈b P

′
2;

and vice versa.

In the case that a = τ and P̄1 ≈b P
′
1, it holds that P ′1 ≈b P̄1 ≈b P1 B P2 ≈b P2, i.e., P ′1 ≈bB≈b P2, because ≈b is

reflexive, symmetric, and transitive.

Proposition 8.1. Let P1, P2 ∈ Pnd and B be a branching bisimulation up to ≈b. If (P1, P2) ∈ B then P1 ≈b P2.

Before presenting the taxonomy of the noninterference properties based on ≈b, we prove some further ancillary
results about parallel composition, restriction, and hiding under SBSNNI≈b

and SBNDC≈b
.

Lemma 8.3. Let P, P1, P2 ∈ Pnd. Then:

1. If P ∈ SBNDC≈b
, P ′ ∈ reach(P ), and P ′ /AH

τ∗
==⇒ P ′′ /AH, then P ′ \ AH

τ∗
==⇒ P̂ ′′ \ AH with P ′′ \ AH ≈b

P̂ ′′ \ AH.

2. If P1, P2 ∈ SBNDC≈b
and P1 \ AH ≈b P2 \ AH, then P1 /AH ≈b P2 /AH.

3. If P2 ∈ SBSNNI≈b
and L ⊆ AH, then P ′1\AH ≈b ((P ′2 ‖LQ) /L)\AH for all Q ∈ P having only actions in AH

and for all P ′1 ∈ reach(P1) and P ′2 ∈ reach(P2) such that P ′1 \ AH ≈b P
′
2 /AH.

Proof. Let us prove the three results:

1. We proceed by induction on the number n ∈ N of τ -transitions along P ′ /AH
τ∗

==⇒ P ′′ /AH:

• If n = 0 then P ′ /AH stays idle and P ′′ /AH is P ′ /AH. Likewise, P ′ \ AH can stay idle, i.e.,
P ′ \ AH

τ∗
==⇒ P ′ \ AH, with P ′ \ AH ≈b P

′ \ AH as ≈b is reflexive.
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• Let n > 0 and P ′0 /AH
τ−→ P ′1 /AH

τ−→ . . .
τ−→ P ′n−1 /AH

τ−→ P ′n /AH where P ′0 is P ′ and P ′n is P ′′.

From the induction hypothesis it follows that P ′ \ AH
τ∗

==⇒ P̂ ′n−1 \ AH with P ′n−1 \ AH ≈b P̂
′
n−1 \ AH.

As far as the n-th τ -transition P ′n−1 /AH
τ−→ P ′n /AH is concerned, there are two cases depending on

whether it is originated from P ′n−1
τ−→ P ′n or P ′n−1

h−→ P ′n:

– If P ′n−1
τ−→ P ′n then P ′n−1 \ AH

τ−→ P ′n \ AH. Since P ′n−1 \ AH ≈b P̂
′
n−1 \ AH:

∗ either P ′n\AH ≈b P̂
′
n−1\AH, in which case P̂ ′n−1\AH stays idle and hence P ′\AH

τ∗
==⇒ P̂ ′n−1\AH

with P ′′ \ AH ≈b P̂
′
n−1 \ AH;

∗ or there exists P̂ ′n−1 \ AH
τ∗

==⇒ P̄n−1 \ AH
τ−→ P̂ ′n \ AH such that P ′n−1 \ AH ≈b P̄n−1 \ AH and

P ′n \ AH ≈b P̂
′
n \ AH, hence P ′ \ AH

τ∗
==⇒ P̂ ′n \ AH with P ′′ \ AH ≈b P̂

′
n \ AH.

– If P ′n−1
h−→ P ′n then from P ∈ SBNDC≈b

it follows that P ′n−1 \ AH ≈b P
′
n \ AH. Since P ′n−1 \ AH

≈b P̂ ′n−1 \ AH and ≈b is symmetric and transitive, we obtain P ′n \ AH ≈b P̂ ′n−1 \ AH with

P ′ \ AH
τ∗

==⇒ P̂ ′n−1 \ AH.

2. Let B be a symmetric relation containing all the pairs of processes that have to be shown to be ≈b-equivalent
according to the considered result. Starting from (P1 /AH, P2 /AH) ∈ B, so that P1 \AH ≈b P2 \AH, there
are three cases based on the operational semantic rules in Table 8.1:

• If P1 /AH
τ−→ P ′1 /AH with P1

h−→ P ′1, then P1 \AH ≈b P
′
1 \AH as h ∈ AH and P1 ∈ SBNDC≈b

. Since
P ′1\AH ≈b P2\AH, as P1\AH ≈b P2\AH and ≈b is symmetric and transitive, with P ′1, P2 ∈ SBNDC≈b

,
we have that P2 /AH is allowed to stay idle with (P ′1 /AH, P2 /AH) ∈ B.

• If P1 /AH
l−→ P ′1 /AH with P1

l−→ P ′1, then P1\AH
l−→ P ′1\AH as l /∈ AH. From P1\AH ≈b P2\AH it

follows that there exists P2 \AH
τ∗

==⇒ P̄2 \AH
l−→ P ′2 \AH such that P1 \AH ≈b P̄2 \AH and P ′1 \AH ≈b

P ′2 \ AH. Thus P2 /AH
τ∗

==⇒ P̄2 /AH
l−→ P ′2 /AH as l, τ /∈ AH. Since P1 \ AH ≈b P̄2 \ AH with P1, P̄2 ∈

SBNDC≈b
and P ′1 \ AH ≈b P ′2 \ AH with P ′1, P

′
2 ∈ SBNDC≈b

, we have that (P1 /AH, P̄2 /AH) ∈ B
and (P ′1 /AH, P ′2 /AH) ∈ B.

• If P1 /AH
τ−→ P ′1 /AH with P1

τ−→ P ′1, then P1 \ AH
τ−→ P ′1 \ AH as τ /∈ AH. There are two subcases:

– If P ′1 \ AH ≈b P2 \ AH then P2 \ AH is allowed to stay idle with (P ′1 /AH, P2 /AH) ∈ B because
P ′1 \ AH ≈b P2 \ AH and P ′1, P2 ∈ SBNDC≈b

.
– If P ′1 \ AH 6≈b P2 \ AH then the proof is like the one of the previous case with τ−→ used in place

of l−→.

3. Let B be a symmetric relation containing all the pairs of processes that have to be shown to be ≈b-equivalent
according to the considered result. Starting from P ′1 \ AH and ((P ′2 ‖LQ) /L) \ AH related by B, so that
P ′1 \AH ≈b P

′
2 /AH, there are six cases based on the operational semantic rules in Table 8.1. In the first two

cases, it is P ′1 \ AH to move first:

• Let P ′1 \ AH
l−→ P ′′1 \ AH. We observe that from P ′2 ∈ reach(P2) and P2 ∈ SBSNNI≈b

it follows that
P ′2\AH ≈b P

′
2 /AH, so that P ′1\AH ≈b P

′
2 /AH ≈b P

′
2\AH, i.e., P ′1\AH ≈b P

′
2\AH, as ≈b is symmetric
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and transitive. As a consequence, since l 6= τ there exists P ′2 \ AH
τ∗

==⇒ P̄ ′2 \ AH
l−→ P ′′2 \ AH such that

P ′1 \ AH ≈b P̄ ′2 \ AH and P ′′1 \ AH ≈b P ′′2 \ AH. Thus ((P ′2 ‖LQ) /L) \ AH
τ∗

==⇒ ((P̄ ′2 ‖LQ) /L) \ AH
l−→ ((P ′′2 ‖LQ) /L) \ AH with (P ′1 \ AH, ((P̄ ′2 ‖LQ) /L) \ AH) ∈ B – because P ′1 ∈ reach(P1), P̄ ′2 ∈

reach(P2), and P ′1 \ AH ≈b P̄
′
2 /AH as P2 ∈ SBSNNI≈b

– and (P ′′1 \ AH, ((P ′′2 ‖LQ) /L) \ AH) ∈ B –
because P ′′1 ∈ reach(P1), P ′′2 ∈ reach(P2), and P ′′1 \ AH ≈b P

′′
2 /AH as P2 ∈ SBSNNI≈b

.

• If P ′1 \ AH
τ−→ P ′′1 \ AH there are two subcases:

– If P ′′1 \AH ≈b P
′
2 /AH then (P ′2 ‖LQ) /L)\AH is allowed to stay idle with (P ′′1 \AH, ((P ′2 ‖LQ) /L)

\ AH) ∈ B because P ′′1 ∈ reach(P1) and P ′2 ∈ reach(P2).
– If P ′′1 \ AH 6≈b P

′
2 /AH then the proof is like the one of the previous case with τ−→ used in place

of l−→.

In the other four cases, instead, it is ((P ′2 ‖LQ) /L) \ AH to move first:

• Let ((P ′2 ‖LQ) /L)\AH
l−→ ((P ′′2 ‖LQ) /L)\AH with P ′2

l−→ P ′′2 so that P ′2\AH
l−→ P ′′2 \AH as l /∈ AH.

We observe that from P ′2 ∈ reach(P2) and P2 ∈ SBSNNI≈b
it follows that P ′2 \ AH ≈b P

′
2 /AH, so that

P ′2 \ AH ≈b P
′
2 /AH ≈b P

′
1 \ AH, i.e., P ′2 \ AH ≈b P

′
1 \ AH, as ≈b is symmetric and transitive. As a

consequence, since l 6= τ there exists P ′1 \ AH
τ∗

==⇒ P̄ ′1 \ AH
l−→ P ′′1 \ AH such that P ′2 \ AH ≈b P̄

′
1 \ AH

and P ′′2 \ AH ≈b P ′′1 \ AH. Thus (((P ′2 ‖LQ) /L) \ AH, P̄ ′1 \ AH) ∈ B – because P̄ ′1 ∈ reach(P1),
P ′2 ∈ reach(P2), and P̄ ′1 \AH ≈b P

′
2 /AH as P2 ∈ SBSNNI≈b

– and (((P ′′2 ‖LQ) /L) \AH, P ′′1 \AH) ∈ B
– because P ′′1 ∈ reach(P1), P ′′2 ∈ reach(P2), and P ′′1 \ AH ≈b P

′′
2 /AH as P2 ∈ SBSNNI≈b

.

• If ((P ′2 ‖LQ) /L)\AH
τ−→ ((P ′′2 ‖LQ) /L)\AH with P ′2

τ−→ P ′′2 so that P ′2 \AH
τ−→ P ′′2 \AH as τ /∈ AH,

there are two subcases:

– If P ′′2 \AH ≈b P
′
1 \AH then P ′1 \AH is allowed to stay idle with (((P ′′2 ‖LQ) /L)\AH, P ′1 \AH) ∈ B

because P ′1 ∈ reach(P1), P ′′2 ∈ reach(P2), and P ′1 \ AH ≈b P
′′
2 /AH as P2 ∈ SBSNNI≈b

.
– If P ′′2 \ AH 6≈b P

′
1 \ AH then the proof is like the one of the previous case with τ−→ used in place

of l−→.

• If ((P ′2 ‖LQ) /L) \ AH
τ−→ ((P ′2 ‖LQ′) /L) \ AH with Q

τ−→Q′, then trivially (((P ′2 ‖LQ′) /L) \ AH,
P ′1 \ AH) ∈ B.

• Let ((P ′2 ‖LQ) /L) \ AH
τ−→ ((P ′′2 ‖LQ′ /L) \ AH) with P ′2

h−→ P ′′2 – so that P ′2 /AH
τ−→ P ′′2 /AH as

h ∈ AH – and Q
h−→Q′ for h ∈ L. We observe that from P ′2, P

′′
2 ∈ reach(P2) and P2 ∈ SBSNNI≈b

it follows that P ′2 \ AH ≈b P ′2 /AH and P ′′2 \ AH ≈b P ′′2 /AH, so that P ′2 \ AH
τ−→ P ′′2 \ AH and

P ′2 \ AH ≈b P
′
2 /AH ≈b P

′
1 \ AH, i.e., P ′2 \ AH ≈b P

′
1 \ AH, as ≈b is symmetric and transitive. There

are two subcases:

– If P ′′2 \AH ≈b P
′
1 \AH then P ′1 \AH is allowed to stay idle with (((P ′′2 ‖LQ′) /L)\AH, P ′1 \AH) ∈ B

because P ′1 ∈ reach(P1), P ′′2 ∈ reach(P2), and P ′1 \ AH ≈b P
′′
2 /AH as P2 ∈ SBSNNI≈b

.

– If P ′′2 \AH 6≈b P
′
1\AH then there exists P ′1\AH

τ∗
==⇒ P̄ ′1\AH

τ−→ P ′′1 \AH such that P ′2\AH ≈b P̄
′
1\AH

and P ′′2 \AH ≈b P
′′
1 \AH. Thus (((P ′2 ‖LQ) /L)\AH, P̄ ′1 \AH) ∈ B – because P̄ ′1 ∈ reach(P1), P ′2 ∈

reach(P2), and P̄ ′1 \AH ≈b P
′
2 /AH as P2 ∈ SBSNNI≈b

– and (((P ′′2 ‖LQ′) /L) \AH, P ′′1 \AH) ∈ B
– because P ′′1 ∈ reach(P1), P ′′2 ∈ reach(P2), and P ′′1 \ AH ≈b P

′′
2 /AH as P2 ∈ SBSNNI≈b

.
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Theorem 8.4. SBNDC≈b
( SBSNNI≈b

= P_BNDC≈b
( BNDC≈b

( BSNNI≈b
.

Proof. Let us examine each relationship separately:

• SBNDC≈b
( SBSNNI≈b

. Given P ∈ SBNDC≈b
, the result follows by proving that the relation B = {(P ′\AH,

P ′ /AH) | P ′ ∈ reach(P )} is a branching bisimulation up to ≈b. Starting from (P ′ \AH, P ′ /AH) ∈ B, there
are three cases based on the operational semantic rules in Table 8.1. In the first case, it is P ′ \ AH to
move first:

– If P ′ \ AH
τ∗

==⇒ P̄ ′ \ AH
a−→ P ′′ \ AH with a ∈ AL ∪ {τ}, then P ′ /AH

τ∗
==⇒ P̄ ′ /AH

a−→ P ′′ /AH as
a, τ /∈ AH, with (P̄ ′ \ AH, P̄ ′ /AH) ∈ B and (P ′′ \ AH, P ′′ /AH) ∈ B as P̄ ′, P ′′ ∈ reach(P ). Thus
P̄ ′ \ AH ≈b P̄

′ \ AH B P̄ ′ /AH ≈b P̄
′ /AH and P ′′ \ AH ≈b P

′′ \ AH B P ′′ /AH ≈b P
′′ /AH.

In the other two cases, instead, it is P ′ /AH to move first (note that possible τ -transitions along τ∗
==⇒ arising

from high actions in P ′ can no longer be executed when responding from P ′ \ AH, but for them we exploit
P ∈ SBNDC≈b

and Lemma 8.3(1)):

– Let P ′ /AH
τ∗

==⇒ P̄ ′ /AH
a−→ P ′′ /AH with a ∈ AL∪{τ}. From P ′ /AH

τ∗
==⇒ P̄ ′ /AH and Lemma 8.3(1)

it follows that P ′ \AH
τ∗

==⇒ P̂ ′ \AH with P̄ ′ \AH ≈b P̂
′ \AH. From P̄ ′ /AH

a−→ P ′′ /AH it follows that
P̄ ′ \ AH

a−→ P ′′ \ AH as a /∈ AH. Since P̄ ′ \ AH ≈b P̂
′ \ AH there are two cases:

∗ If a = τ and P ′′ \ AH ≈b P̂
′ \ AH, then P̄ ′ \ AH ≈b P

′′ \ AH as ≈b is symmetric and transitive.
From P̄ ′, P ′′ ∈ SBNDC≈b

and Lemma 8.3(2) it follows that P̄ ′ /AH ≈b P
′′ /AH. Thus P ′ \ AH is

allowed to stay idle.

∗ Otherwise there exists P̂ ′ \ AH
τ∗

==⇒ P̂ ′′ \ AH
a−→ P̂ ′′′ \ AH such that P̄ ′ \ AH ≈b P̂ ′′ \ AH and

P ′′ \AH ≈b P̂
′′′ \AH. From P ′ \AH

τ∗
==⇒ P̂ ′ \AH it follows that P ′ \AH

τ∗
==⇒ P̂ ′′ \AH

a−→ P̂ ′′′ \AH
with P̂ ′′ \AH ≈b P̄

′ \AH B P̄ ′ /AH ≈b P̄
′ /AH and P̂ ′′′ \AH ≈b P

′′ \AH B P ′′ /AH ≈b P
′′ /AH.

– Let P ′ /AH
τ∗

==⇒ P̄ ′ /AH
τ−→ P ′′ /AH with P̄ ′ h−→ P ′′. From P̄ ′ ∈ reach(P ) and P ∈ SBNDC≈b

it follows
that P̄ ′ \AH ≈b P

′′ \AH, hence P̄ ′ /AH ≈b P
′′ /AH by virtue of Lemma 8.3(2) as P̄ ′, P ′′ ∈ SBNDC≈b

.
Thus P ′ \ AH is allowed to stay idle.

• SBSNNI≈b
= P_BNDC≈b

. SBSNNI≈b
⊆ P_BNDC≈b

follows from Lemma 8.3(3) by taking P ′1 identical
to P ′2 and both reachable from P ∈ SBSNNI≈b

.
On the other hand, if P ∈ P_BNDC≈b

then P ′ ∈ BNDC≈b
for every P ′ ∈ reach(P ). Since BNDC≈b

(
BSNNI≈b

as will be shown in the last case of the proof of this theorem, P ′ ∈ BSNNI≈b
for every P ′ ∈ reach(P ),

i.e., P ∈ SBSNNI≈b
.

• SBSNNI≈b
( BNDC≈b

. If P ∈ SBSNNI≈b
= P_BNDC≈b

then it immediately follows that P ∈ BNDC≈b
.

• BNDC≈b
( BSNNI≈b

. If P ∈ BNDC≈b
, i.e., P \ AH ≈b (P ‖LQ) /L) \ AH for all Q ∈ Pnd such that each

of its actions belongs to AH and for all L ⊆ AH, then we can consider in particular Q̂ capable of stepwise
mimicking the high-level behavior of P , in the sense that Q̂ is able to synchronize with all the high-level
actions executed by P and its reachable processes, along with L̂ = AH. As a consequence (P ‖L̂ Q̂) / L̂) \AH
is isomorphic to P /AH, hence P \ AH ≈b P /AH, i.e., P ∈ BSNNI≈b

, as ≈b is transitive.
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All the inclusions in the previous theorem are strict as shown by the following counterexamples:

• The process τ . l . 0+l . l . 0+h . l . 0 is SBSNNI≈b
(resp. P_BNDC≈b

) because (τ . l . 0+l . l . 0+h . l . 0)\{h} ≈b

(τ . l . 0 + l . l . 0 + h . l . 0) / {h} and action h is enabled only at the beginning so every reachable process is
BSNNI≈b

(resp. BNDC≈b
). It is not SBNDC≈b

because the low-level view of the process reached after
action h, i.e., (l . 0) \ {h}, is not ≈b-equivalent to (τ . l . 0 + l . l . 0 + h . l . 0) \ {h}.

• The process l . 0 + l . l . 0 + l . h . l . 0 is BNDC≈b
because, whether there are synchronizations with high-level

actions or not, the overall process can always perform either an l-action or a sequence of two l-actions. It is
not SBSNNI≈b

(resp. P_BNDC≈b
) because the reachable process h . l . 0 is not BSNNI≈b

(resp. BNDC≈b
).

• The process l . 0+h . h . l . 0 is BSNNI≈b
as (l . 0+h . h . l . 0)\{h} ≈b (l . 0+h . h . l . 0) / {h}. It is not BNDC≈b

due to (((l . 0 + h . h . l . 0) ‖{h}(h . 0)) / {h}) \ {h} 6≈b (l . 0 + h . h . l . 0) \ {h} because the former behaves as
l . 0 + τ . 0 while the latter behaves as l . 0.

We further observe that each of the ≈b-based noninterference properties implies the corresponding ≈w-based
one, due to the fact that ≈b is finer than ≈w.

Theorem 8.5. The following inclusions hold:

1. BSNNI≈b
( BSNNI≈w .

2. BNDC≈b
( BNDC≈w .

3. SBSNNI≈b
( SBSNNI≈w .

4. P_BNDC≈b
( P_BNDC≈w

.

5. SBNDC≈b
( SBNDC≈w .

All the inclusions above are strict by virtue of the following result; for an example of P1 and P2 below, see Figure 8.1.

Theorem 8.6. Let P1, P2 ∈ Pnd be such that P1 ≈w P2 but P1 6≈b P2. If no high-level actions occur in P1 and P2,
then Q ∈ {P1 + h . P2, P2 + h . P1} is such that:

1. Q ∈ BSNNI≈w but Q /∈ BSNNI≈b
.

2. Q ∈ BNDC≈w but Q /∈ BNDC≈b
.

3. Q ∈ SBSNNI≈w but Q /∈ SBSNNI≈b
.

4. Q ∈ P_BNDC≈w
but Q /∈ P_BNDC≈b

.

5. Q ∈ SBNDC≈w but Q /∈ SBNDC≈b
.

Proof. Let Q be P1 + h . P2 (the proof is similar for Q equal to P2 + h . P1) and observe that no high-level actions
occur in every process reachable from Q except Q itself:
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1. Since the only high-level action occurring in Q is h, in the proof of Q ∈ BSNNI≈w the only interesting case
is the transition Q/AH

τ−→ P2 /AH, to which Q \ AH responds by staying idle because P2 /AH ≈w P2 ≈w

P1 ≈w Q \ AH, i.e., P2 /AH ≈w Q \ AH as ≈w is symmetric and transitive.
On the other hand, Q /∈ BSNNI≈b

because P2 6≈b P1 in the same situation as before.

2. Since Q ∈ BSNNI≈w by the previous result and no high-level actions occur in every process reachable from Q
other than Q, it holds that Q ∈ SBSNNI≈w and hence Q ∈ BNDC≈w by virtue of Theorem 8.1.
On the other hand, from Q /∈ BSNNI≈b

by the previous result it follows that Q /∈ BNDC≈b
by virtue of

Theorem 8.4.

3. We already know from the proof of the previous result that Q ∈ SBSNNI≈w .
On the other hand, from Q /∈ BSNNI≈b

by the first result it follows that Q /∈ SBSNNI≈b
by virtue of

Theorem 8.4.

4. An immediate consequence of P_BNDC≈w = SBSNNI≈w (Theorem 8.1) and P_BNDC≈b
= SBSNNI≈b

(Theorem 8.4).

5. Since the only high-level action occurring in Q is h, in the proof of Q ∈ SBNDC≈w the only interesting case
is the transition Q h−→ P2, for which it holds that Q \AH ≈w P1 ≈w P2 ≈w P2 \AH, i.e., Q \AH ≈w P2 \AH
as ≈pw is transitive.
On the other hand, Q /∈ SBNDC≈b

because P1 6≈b P2 in the same situation as before.

An alternative strategy to explore the differences between ≈w and ≈b with respect to BSNNI≈w/BSNNI≈b

and SBSNNI≈w/SBSNNI≈b
consists of considering the two τ -laws P + τ . P = τ . P and a . (P + τ .Q) + a .Q =

a . (P + τ .Q) for ≈w [112]. The strategy is inspired by the initial remarks in [80], where it is noted that the
two aforementioned laws are responsible for the lack of distinguishing power of ≈w over τ -branching processes.
For each law the strategy is based on constructing a pair of new processes from the ones equated by the law, such
that they are weakly bisimilar but not branching bisimilar. Then we build a new process R such that R \AH and
R/AH are isomorphic to the two constructed processes.

Proposition 8.2. From P + τ . P = τ . P it is possible to construct a process R ∈ Pnd such that R ∈ BSNNI≈w

but P /∈ BSNNI≈b
and P ∈ SBSNNI≈w but P /∈ SBSNNI≈b

.

Proof. In the considered τ -law let us instantiate P as τ . l1 . 0 + τ . l2 . 0 and then add + l3 . 0 to both sides of the
law thus obtaining (τ . l1 . 0 + τ . l2 . 0) + τ . (τ . l1 . 0 + τ . l2 . 0) + l3 . 0 = τ . (τ . l1 . 0 + τ . l2 . 0) + l3 . 0, which are
related by weak bisimilarity but not by branching bisimilarity. Now let us define process R as (h . l1 . 0+h . l2 . 0)+
τ . (τ . l1 . 0 + τ . l2 . 0) + l3 . 0, for which it holds that R/AH and R \AH are isomorphic to the two sides of the law,
respectively. By construction it immediately follows that R is BSNNI≈w but not BSNNI≈b

.
Since the only high-level action is performed by R itself, which is BSNNI≈w , for every other process R′ reachable
from R it holds that R′ \ AH is isomorphic to R′ /AH, hence R ∈ SBSNNI≈w but P /∈ SBSNNI≈b

.
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BSNNI≈w

BNDC≈w

SBSNNI≈w

P_BNDC≈w

SBNDC≈w

BSNNI≈b

BNDC≈b

SBSNNI≈b

P_BNDC≈b

SBNDC≈b

Figure 8.4: Taxonomy of security properties based on weak and branching bisimilarities

Proposition 8.3. From a . (P + τ .Q) + a .Q = a . (P + τ .Q) it is possible to construct a process R ∈ Pnd such
that R ∈ BSNNI≈w but P /∈ BSNNI≈b

and P ∈ SBSNNI≈w but P /∈ SBSNNI≈b
.

Proof. In the considered τ -law let us instantiate a as τ , P as l1 . 0, and Q as l2 . 0, then add + l3 . 0 to both sides of
the law thus obtaining τ . (l1 . 0 + τ . l2 . 0) + τ . l2 . 0 + l3 . 0 = τ . (l1 . 0 + τ . l2 . 0) + l3 . 0, which are related by weak
bisimilarity but not by branching bisimilarity. Now let us define process R as τ . (l1 . 0 + τ . l2 . 0) + h . l2 . 0 + l3 . 0,
for which it holds that R/AH and R\AH are isomorphic to the two sides of the law, respectively. By construction
it immediately follows that R is BSNNI≈w but not BSNNI≈b

.
Since the only high-level action is performed by R itself, which is BSNNI≈w , for every other process R′ reachable
from R it holds that R′ \ AH is isomorphic to R′ /AH, hence R ∈ SBSNNI≈w but R /∈ SBSNNI≈b

.

The diagram in Figure 8.4 summarizes the inclusions among the various noninterference properties based on
the results in Theorems 8.1, 8.4, and 8.5, where P → Q means that P is strictly included in Q. The arrows missing
in the diagram, witnessing incomparability, are justified by the following counterexamples:

• SBNDC≈w vs. SBSNNI≈b
. The process τ . l . 0+l . l . 0+h . l . 0 is BSNNI≈b

as (τ . l . 0+l . l . 0+h . l . 0)\{h} ≈b

τ . l . 0 + l . l . 0 ≈b τ . l . 0 + l . l . 0 + τ . l . 0 ≈b (τ . l . 0 + l . l . 0 + h . l . 0) / {h}. It is also SBSNNI≈b
because

every reachable process does not enable further high-level actions. However, it is not SBNDC≈w because
after executing the high-level action h it can perform a single l-action, while the original process with the
restriction on high-level actions can go along a path where it can perform two l-actions. On the other hand,
the process Q mentioned in Theorem 8.6 is SBNDC≈w but neither BSNNI≈b

nor SBSNNI≈b
.

• SBSNNI≈w vs. BNDC≈b
. The process l . h . l . 0+ l . 0+ l . l . 0 is BSNNI≈b

as (l . h . l . 0+ l . 0+ l . l . 0)\{h} ≈b

l . 0 + l . 0 + l . l . 0 ≈b l . τ . l . 0 + l . 0 + l . l . 0 ≈b (l . h . l . 0 + l . 0 + l . l . 0) / {h}. In particular, the subprocesses
l . l . 0 and l . τ . l . 0 are equated by virtue of the other τ -law of weak bisimilarity, i.e., a . τ . P = a . P , which
is a special case of the only τ -law of branching bisimilarity. The same process is BNDC≈b

too as it includes
only one high-level action, hence the only possible high-level strategy coincides with the check conducted by
BSNNI≈b

. However, it is not SBSNNI≈w because of the reachable process h . l . 0, which is not BSNNI≈w .
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On the other hand, the process Q mentioned in Theorem 8.6 is SBSNNI≈w but not BSNNI≈b
and, therefore,

not even BNDC≈b
.

• BNDC≈w vs. BSNNI≈b
. The process l . 0 + h1 . h2 . l . 0 is not BNDC≈w as discussed in Section 8.1.4, but

it is BSNNI≈b
as (l . 0 + h1 . h2 . l . 0) \ {h1, h2} ≈b l . 0 ≈b l . 0 + τ . τ . l . 0 ≈b (l . 0 + h1 . h2 . l . 0) / {h1, h2}.

In contrast, the process Q mentioned in Theorem 8.6 is both BSNNI≈w and BNDC≈w , but not BSNNI≈b
.

It is worth noting that the strongest property based on weak bisimilarity (SBNDC≈w) and the weakest property
based on branching bisimilarity (BSNNI≈b

) are incomparable too. The former is a very restrictive property because
it requires a local check every time a high-level action is performed, while the latter requires a check only on the
initial state. On the other hand, as shown in Theorem 8.6, it is very easy to construct processes that are secure
under properties based on ≈w but not on ≈, due to the minimal number of high-level actions in Q.

8.4 Reversibility via Weak Back-and-Forth Bisimilarity

As done in the first part of the thesis, following [57] an LTS (S,A,−→) represents a reversible process if each of
its transitions is seen as bidirectional. When going backward, it is of paramount importance to respect causality,
i.e., the last performed transition must be the first one to be undone. In [57] a strong and a weak bisimulation
equivalences were defined that enforce not only causality, but also history preservation. This means that, when
going backward, a process can only backtrack, i.e., it can only move along the path representing the history that
brought the process to the current state, even in the presence of concurrency. To accomplish this, the equivalences
were defined over computations, not over states, and the notion of transition was suitably revised.

Definition 8.8. A sequence ξ = s0
a1−→ s1

a2−→ s2 . . . sn−1
an−→ sn is a path of length n from state s0. We let

first(ξ) = s0 and last(ξ) = sn; the empty path is indicated with ε. We denote by path(s) the set of paths from s.

Definition 8.9. A pair ρ = (s, ξ) is called a run from state s iff ξ ∈ path(s), in which case we let path(ρ) = ξ,
first(ρ) = first(ξ) = s, and last(ρ) = last(ξ), with first(ρ) = last(ρ) = s when ξ = ε. We denote by run(s) the set of
runs from state s. Given ρ = (s, ξ) ∈ run(s) and ρ′ = (s′, ξ′) ∈ run(s′), their composition ρρ′ = (s, ξξ′) ∈ run(s)
is defined iff last(ρ) = first(ρ′) = s′. We write ρ a−→ ρ′ iff there exists ρ̄ = (s̄, s̄

a−→ s′) with s̄ = last(ρ) such that
ρ′ = ρρ̄; note that first(ρ) = first(ρ′).

In the two bisimulation equivalences of [57], for the LTS at hand the set U of runs is considered in lieu of S. Using
runs instead of just paths is convenient in the case of an empty path so as to know the state under examination.
Given a pair of runs (ρ1, ρ2), in the two definitions below recalled from [57] the forward clauses consider outgoing
transitions whereas the backward clauses consider incoming transitions.

Definition 8.10. Let (S,A,−→) be an LTS. We say that s1, s2 ∈ S are strongly back-and-forth bisimilar, written
s1 ∼bf s2, iff ((s1, ε), (s2, ε)) ∈ B for some strong back-and-forth bisimulation B. A symmetric relation B over U
is a strong back-and-forth bisimulation iff, whenever (ρ1, ρ2) ∈ B, then:

• For each ρ1
a−→ ρ′1 there exists ρ2

a−→ ρ′2 such that (ρ′1, ρ
′
2) ∈ B.

• For each ρ′1
a−→ ρ1 there exists ρ′2

a−→ ρ2 such that (ρ′1, ρ
′
2) ∈ B.
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Definition 8.11. Let (S,A,−→) be an LTS. We say that s1, s2 ∈ S are weakly back-and-forth bisimilar, written
s1 ≈bf s2, iff ((s1, ε), (s2, ε)) ∈ B for some weak back-and-forth bisimulation B. A symmetric relation B over U
is a weak back-and-forth bisimulation iff, whenever (ρ1, ρ2) ∈ B, then:

• For each ρ1
a−→ ρ′1 there exists ρ2

â
==⇒ ρ′2 such that (ρ′1, ρ

′
2) ∈ B.

• For each ρ′1
a−→ ρ1 there exists ρ′2

â
==⇒ ρ2 such that (ρ′1, ρ

′
2) ∈ B.

In [57] it was shown that strong back-and-forth bisimilarity coincides with strong bisimilarity. Surpris-
ingly, weak back-and-forth bisimilarity does not coincide with weak bisimilarity. Instead, it coincides with
branching bisimilarity. For example, in Figure 8.1 it holds that s1 6≈bf s2 because in the forward direction
(s1, ε)

a−→ (s1, s1
a−→ s′1) is matched by (s2, ε)

τ−→ (s2, s2
τ−→ s′2)

a−→ (s2, s2
τ−→ s′2

a−→ s′′2), but then in the back-
ward direction (s2, s2

τ−→ s′2)
a−→ (s2, s2

τ−→ s′2
a−→ s′′2) is not matched by (s1, ε)

a−→ (s1, s1
a−→ s′1) because (s1, ε)

has an outgoing b-transition whilst (s2, s2
τ−→ s′2) has not.

Theorem 8.7. Let (S,A,−→) be an LTS and s1, s2 ∈ S. Then:

• s1 ∼bf s2 iff s1 ∼ s2.

• s1 ≈bf s2 iff s1 ≈b s2.

Therefore the properties BSNNI≈b
, BNDC≈b

, SBSNNI≈b
, P_BNDC≈b

, SBNDC≈b
do not change if ≈b is

replaced by ≈bf . This allows us to study noninterference properties for reversible systems by using the polynomial-
time decidable ≈b in a standard process calculus like the one of Section 8.1.3, without having to resort to truly
concurrent equivalences such as the weak forward-reverse bisimilarity studied in the first part of the thesis or
a weak variant of hereditary history-preserving bisimilarity (see Section 7.2.1) in a calculus relying on external
memories like in [53] or executed action decorations like in [121, 35] or the first part of the thesis.

8.5 Use Case: DBMS Authentication – Branching Bisimilarity

The example provided in Section 8.2 is useful to illustrate the limitations of weak bisimilarity when investigating
potential covert channels in reversible systems. In particular, it turns out that Auth \AH 6≈b Auth /AH, i.e., Auth
is not BSNNI≈b

, and hence not even BNDC≈b
, SBSNNI≈b

, SBNDC≈b
by virtue of Theorem 8.4. As can be seen

in Figure 8.3, the reason is that, if Auth /AH performs the leftmost τ -action and hence moves to state r′3, from
which the only executable action is lsso, then according to the definition of branching bisimilarity Auth \ AH can:

• either stay idle, but from that state Auth \ AH can then perform actions other than lsso that cannot be
matched on the side of Auth /AH;

• or perform two τ -actions thereby reaching state s3, but the last traversed state, i.e., s2, is not branching
bisimilar to the initial state of Auth /AH.

In a standard model of execution, where the computation can proceed only forward, the distinguishing power of
branching bisimilarity may be considered too severe, as no practical covert channel actually occurs and the system
can be deemed noninterfering as shown in Section 8.2. Indeed, a low-level user has no possibility of distinguishing
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the internal move performed by Auth /AH that leads to lsso .Auth from the sequence of internal moves performed
by Auth \ AH that lead to lsso .Auth as well. This motivates the fact that, historically, weak bisimilarity has been
preferred in the setting of noninterference.

Now we know that, if we replace the branching bisimulation semantics with the weak back-and-forth bisimu-
lation semantics, nothing changes about the outcome of noninterference verification. Assuming that the DBMS
allows transactions to be reversed, it is instructive to discuss why BSNNI≈b

is not satisfied by following the
formalization of the weak back-and-forth bisimulation semantics provided in Section 8.4.

After Auth /AH performs the run (r1, (r1
τ−→ r′3

lsso−→ r1)), process Auth \ AH can respond by performing the
run (s1, (s1

τ−→ s2
τ−→ s3

lsso−→ s1)). If either process goes back by undoing lsso, then the other one can undo lsso
as well and the states r′3 and s3 are reached. However, if Auth \ AH goes further back by undoing s2

τ−→ s3 too,
then Auth /AH can:

• either undo r1
τ−→ r′3, but in this case r1 enables action lpwd while s2 does not;

• or stay idle, but in this case r′3 enables only lsso, while s2 can go along the path s2
τ−→ s4

l2fa−→ s1 as well.

This line of reasoning immediately allows us to reveal a potential covert channel under reversible computing.
In fact, let us assume that the transaction modeled by Auth is not only executed forward, but also enables backward
computations triggered, e.g., whenever debugging mode is activated [60]. This may happen in response to some
user-level malfunctioning, which may be due, for instance, to the authentication operation or to the transaction
execution. As formally shown above, if the action lsso performed at r′3 after the high-level interaction is undone
along with the latter, then the system enables again the execution of the action lpwd. This is motivated in our
example by the fact that, by virtue of the transaction rollback, any kind of authentication becomes admissible
again. On the other hand, this is not possible after undoing the action lsso performed at state s3, because in such
a case the internal decision of the DBMS of adopting a highly secure mechanism is not reversed. In other words,
by reversing the computation the low-level user can become aware of the fact that the transaction data are feeding
the training set or not.

In the literature, there are several reverse debuggers working in this way like, e.g., UndoDB [60], a Linux-based
interactive time-travel debugger that can handle multiple threads and their backward execution. For instance,
it is integrated within the DBMS SAP HANA (https://undo.io/resources/type/case-studies/) in order to
reduce time-to-resolution of software failures. In our example, by virtue of the observations conducted above, if the
system is executed backward just after performing lsso, a low-level user can decide whether a high-level action had
occurred before or not, thus revealing a covert channel. Such a covert channel is completely concealed during the
forward execution of the system and is detected only when the system is executed backward. In general, this may
happen when the reverse debugger is activated by virtue of some unexpected event (e.g., segmentation fault, stack
overflow, memory corruption) caused intentionally or not, as a consequence of which some undesired information
flow emerges toward low-level users.

https://undo.io/resources/type/case-studies/


Chapter 9

Noninterference Analysis of Probabilistic
Reversible Systems

In this chapter, whose contents have appeared in [62, 64], we extend the approach of the previous chapter to address
noninterference properties in a framework featuring nondeterminism, probabilities, and reversibility. The starting
point for our study is given by the probabilistic variants of BSNNI, BNDC, and SBNDC developed in [7] over a
probabilistic process calculus based on a combination of the generative and reactive probabilistic models of [79]. In
addition to probabilistic choice, in [7] other operators such as parallel composition and hiding are decorated with
a probabilistic parameter, so that the selection among all the actions executable by a process is fully probabilistic.
Moreover, the behavioral equivalence considered in [7] is akin to the weak probabilistic bisimilarity of [13], which
is known to coincide with probabilistic branching bisimilarity over fully probabilistic processes.

Here we move to a more expressive setting combining nondeterminism and probabilities through the strictly
alternating model of [86]. In this model, states are divided into nondeterministic and probabilistic, while transitions
are divided into action transitions – each labeled with an action and going from a nondeterministic state to a
probabilistic one – and probabilistic transitions – each labeled with a probability and going from a probabilistic
state to a nondeterministic one. A more flexible variant, called the non-strictly alternating model [120], allows for
action transitions also between two nondeterministic states. An alternative model is the non-alternating one given
by Segala simple probabilistic automata [133], where every transition is labeled with an action and goes from a
state to a probability distribution over states. Both the alternating model and the non-alternating one – whose
relationships have been studied in [135] – encompass nondeterministic models, generative models, and reactive
models as special cases. Due to the fundamental role played by branching bisimulation semantics in reversible
systems, we adopt the alternating model because of the probabilistic branching bisimulation congruence developed
for it in [8] along with equational and logical characterizations and a polynomial-time decision procedure. In the
non-alternating model, for which branching bisimilarity has been just defined in [134], weak variants of bisimulation
semantics require – to achieve transitivity – that a single transition be matched by a convex combination of
several transitions – corresponding to the use of randomized schedulers – which causes such equivalences to be less
manageable although they can be decided in polynomial time [138].

Following [86] we build a process calculus that, unlike the one in [7], supports nondeterminism and decorates
with probabilistic parameters only probabilistic choices. As for behavioral equivalences, we introduce a weak
probabilistic bisimilarity inspired by the one in [120] and adapt the probabilistic branching bisimilarity of the
non-strictly alternating model in [8]. By using these two equivalences we recast the noninterference properties
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of [67, 69] for irreversible systems and the noninterference properties of the previous chapter for reversible systems,
respectively, to study their preservation and compositionality aspects as well as to provide a taxonomy similar to
the one in the previous chapter. Unlike [7], the resulting noninterference properties are lighter as they do not need
additional universal quantifications over probabilistic parameters. Furthermore, reversibility comes into play by
extending one of the results of [57] to the strictly alternating model; we show that a probabilistic variant of weak
back-and-forth bisimilarity coincides with our adaptation of the probabilistic branching bisimilarity of [8]. Finally,
we point out that for proving some results we have to resort to the bisimulation-up-to technique [131] and therefore
introduce probabilistic variants of up-to weak [112] and branching [75] bisimulations.

This chapter is organized as follows. In Section 9.1 we recall the strictly alternating model of [86] along with
various definitions of strong and weak bisimilarities for it – with weak ones inspired by [120, 8] – and a process
calculus interpreted on it. In Section 9.2 we recast in this probabilistic framework the aforementioned selection
of noninterference properties, study their preservation and compositionality characteristics, develop their taxon-
omy, and relate it to the nondeterministic taxonomy. In Section 9.3 we establish a connection with reversibility
by introducing a weak probabilistic back-and-forth bisimilarity and proving that it coincides with probabilistic
branching bisimilarity. Finally, in Section 9.4 we present an example of a lottery implemented through a prob-
abilistic smart contract to show the adequacy of our approach when dealing with information flows in systems
featuring nondeterminism and probabilities, both in the irreversible case and in the reversible one.

9.1 Background Definitions and Results

In this section we recall the strict alternating model of [86] (Section 9.1.1) along with strong and weak probabilistic
bisimilarities [120] and probabilistic branching bisimilarity [8] (Section 9.1.2). Then we introduce a probabilistic
process language inspired by [86] (Section 9.1.3) through which we will express bisimulation-based information-flow
security properties accounting for nondeterminism and probabilities.

9.1.1 Probabilistic Labeled Transition Systems

To represent the behavior of a process featuring nondeterminism and probabilities, we use a probabilistic labeled
transition system. This is a variant of a labeled transition system [97] whose transitions are labeled with actions or
probabilities. Since we adopt the strictly alternating model of [86], we distinguish between nondeterministic and
probabilistic states. The transitions of the former are labeled only with actions, while the transitions of the latter
are labeled only with probabilities. Every action transition leads from a nondeterministic state to a probabilistic
one, while every probabilistic transition leads from a probabilistic state to a nondeterministic one. In the following,
we denote by Sn (resp. Sp) the set of nondeterministic (resp. probabilistic) states. We recall that the action set A
contains the unobservable action τ .

Definition 9.1. A probabilistic labeled transition system (PLTS) is a triple (S,A,−→) where S = Sn ∪ Sp with
Sn ∩ Sp = ∅ is an at most countable set of states, A is a countable set of actions, and −→ = −→a ∪ −→p is the
transition relation, with −→a ⊆ Sn × A × Sp being the action transition relation whilst −→p ⊆ Sp × R]0,1] × Sn

being the probabilistic transition relation satisfying
∑

(s,p,s′)∈−→p
p ∈ {0, 1} for all s ∈ Sp.

An action transition (s, a, s′) is written s
a−→a s

′ while a probabilistic transition (s, p, s′) is written s
p−→p s

′,
where s is the source state and s′ is the target state. We say that s′ is reachable from s, written s′ ∈ reach(s), iff
s′ = s or there exists a sequence of finitely many transitions such that the target state of each of them coincides
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with the source state of the subsequent one, with the source of the first one being s and the target of the last one
being s′.

9.1.2 Probabilistic Bisimulation Equivalences

Bisimilarity [117, 112] identifies processes that are able to mimic each other’s behavior stepwise, i.e., having the same
branching structure. In the strictly alternating model, this extends to probabilistic behavior [86]. Let π(s, C) =∑

s
p−→p s′,s′∈C

p be the cumulative probability with which state s reaches a state in C; note that π(s, C) = 0 when
s is not a probabilistic state or C is not a set of nondeterministic states.

Definition 9.2. Let (S,A,−→) be a PLTS. We say that s1, s2 ∈ S are strongly probabilistic bisimilar, written
s1 ∼p s2, iff (s1, s2) ∈ B for some strong probabilistic bisimulation B. An equivalence relation B ⊆ (Sn × Sn) ∪
(Sp × Sp) is a strong probabilistic bisimulation iff, whenever (s1, s2) ∈ B, then:

• For each s1
a−→a s

′
1 there exists s2

a−→a s
′
2 such that (s′1, s

′
2) ∈ B.

• π(s1, C) = π(s2, C) for all equivalence classes C ∈ Sn/B.

In [120] a strong probabilistic bisimilarity more liberal than the one in [86] allows a nondeterministic state
and a probabilistic state to be identified when the latter concentrates all of its probabilistic mass in reaching the
former. Think, e.g., of a probabilistic state whose outgoing transitions all reach the same nondeterministic state.
To this purpose the following function is introduced in [120]:

prob(s, s′) =


p if s ∈ Sp ∧

∑
s
p′−→p s′

p′ = p > 0

1 if s ∈ Sn ∧ s′ = s

0 otherwise
and is then lifted to a set C of states by letting prob(s, C) =

∑
s′∈C prob(s, s′).

Definition 9.3. Let (S,A,−→) be a PLTS. We say that s1, s2 ∈ S are strongly mix-probabilistic bisimilar, written
s1 ∼pm s2, iff (s1, s2) ∈ B for some strong mix-probabilistic bisimulation B. An equivalence relation B over S is a
strong mix-probabilistic bisimulation iff, whenever (s1, s2) ∈ B, then:

• If s1, s2 ∈ Sn, for each s1
a−→a s

′
1 there exists s2

a−→a s
′
2 such that (s′1, s

′
2) ∈ B.

• prob(s1, C) = prob(s2, C) for all equivalence classes C ∈ S/B.

Weak bisimilarity [112] is additionally capable of abstracting from unobservable actions. In a probabilistic
setting, it is also desirable to be able to abstract from probabilistic transitions in certain circumstances. Let
s==⇒ s′ mean that s′ ∈ reach(s) and, when s′ 6= s, there exists a finite sequence of transitions from s to s′ in which
τ -transitions and probabilistic transitions alternate. Moreover let a

==⇒ stand for ==⇒ a−→a ==⇒ and â
==⇒ stand

for ==⇒ if a = τ or a
==⇒ if a 6= τ . The weak probabilistic bisimilarity below is inspired by the one in [120]. The

constraint s1, s2 ∈ Sn occurring in the first clause of Definition 9.3 is no longer necessary due to the use of ==⇒.

Definition 9.4. Let (S,A,−→) be a PLTS. We say that s1, s2 ∈ S are weakly probabilistic bisimilar, written
s1 ≈pw s2, iff (s1, s2) ∈ B for some weak probabilistic bisimulation B. An equivalence relation B over S is a weak
probabilistic bisimulation iff, whenever (s1, s2) ∈ B, then:
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Figure 9.1: States related by ≈pw but distinguished by ≈pb

• For each s1
a−→a s

′
1 there exists s2

â
==⇒ s′2 such that (s′1, s

′
2) ∈ B.

• prob(s1, C) = prob(s2, C) for all equivalence classes C ∈ S/B.

Branching bisimilarity [80] is finer than weak bisimilarity as it preserves the branching structure of processes
even when abstracting from τ -actions – see condition (s1, s̄2) ∈ B in the definition below. The probabilistic
branching bisimilarity that follows is inspired by the one in [8].

Definition 9.5. Let (S,A,−→) be a PLTS. We say that s1, s2 ∈ S are probabilistic branching bisimilar, written
s1 ≈pb s2, iff (s1, s2) ∈ B for some probabilistic branching bisimulation B. An equivalence relation B over S is a
probabilistic branching bisimulation iff, whenever (s1, s2) ∈ B, then:

• For each s1
a−→a s

′
1:

– either a = τ and (s′1, s2) ∈ B;
– or there exists s2 ==⇒ s̄2

a−→a s
′
2 such that (s1, s̄2) ∈ B and (s′1, s

′
2) ∈ B.

• prob(s1, C) = prob(s2, C) for all equivalence classes C ∈ S/B.

An example that highlights the higher distinguishing power of probabilistic branching bisimilarity is given
in Figure 9.1, where every PLTS is depicted as a directed graph in which vertices represent states and action-
or probability-labeled edges represent transitions. The initial states s1 and s2 of the two PLTSs are weakly
probabilistic bisimilar but not probabilistic branching bisimilar. On the one hand, each of the two states reachable
from s1 with probability 0.5 and the state reachable from s2 with probability 1 are all weakly probabilistic bisimilar
and hence the cumulative probability to reach them is the same from both initial states. On the other hand, the
two states reachable from s1 are not probabilistic branching bisimilar, because if the one on the right performs a
then the one on the left cannot respond by performing τ , 1, and a because the state executing a no longer enables b.
Thus, with respect to probabilistic branching bisimilarity, s1 reaches with probability 0.5 two different equivalence
classes, while s2 reaches with probability 1 only one of them.
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Prefix a . P
a−→a P

Choice N1
a−→a P1

N1 +N2
a−→a P1

N2
a−→a P2

N1 +N2
a−→a P2

Parallel N1
a−→a P1 a /∈ L

N1 ‖LN2
a−→a P1 ‖L[1]N2

N2
a−→a P2 a /∈ L

N1 ‖LN2
a−→a [1]N1 ‖L P2

Synch N1
a−→a P1 N2

a−→a P2 a ∈ L
N1 ‖LN2

a−→a P1 ‖L P2

Restriction N
a−→a P a /∈ L

N \ L a−→a P \ L

Hiding N
a−→a P a ∈ L

N /L
τ−→a P /L

N
a−→a P a /∈ L

N /L
a−→a P /L

Constant NK , N N
a−→a P

NK
a−→a P

Table 9.1: Operational semantic rules for nondeterministic processes (action transitions)

9.1.3 A Probabilistic Process Calculus with High and Low Actions

We now introduce a probabilistic process calculus to formalize the security properties of interest. To address two
security levels, like in the previous chapter we partition the set A \ {τ} of observable actions into AH ∪ AL, with
AH ∩ AL = ∅, where AH is the set of high-level actions, ranged over by h, and AL is the set of low-level actions,
ranged over by l. Note that τ /∈ AH ∪ AL.

The overall set of process terms is given by Ppr = Pn∪Pp and ranged over by E. The set Pn of nondeterministic
process terms, ranged over by N , is obtained by considering typical operators from CCS [112] and CSP [45].
The set Pp of probabilistic process terms, ranged over by P , is obtained by taking a probabilistic choice operator
similar to the one of [86]. In addition to action prefix, choice, and parallel composition – taken from CSP so as
not to turn synchronizations among high-level actions into τ as would happen with the CCS parallel composition
– we include restriction and hiding, as they are necessary to formalize noninterference properties, and recursion.
The syntax for Ppr is:

N ::= 0 | a . P | N +N | N ‖LN | N \ L | N /L | NK
P ::=

⊕
i∈I [pi]Ni | P ‖L P | P \ L | P /L | PK

where:

• 0 is the terminated process.

• a ._, for a ∈ A, is the action prefix operator describing a process that can initially perform action a.

• _ + _ is the alternative composition operator expressing a nondeterministic choice between two processes
based on their initially executable actions.
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ProbChoice
j ∈ I⊕

i∈I [pi]Ni
pj−→pNj

ProbSync
P1

p1−→pN1 P2
p2−→pN2

P1 ‖L P2
p1·p2−→pN1 ‖LN2

ProbRestriction
P

p−→pN

P \ L p−→pN \ L

ProbHiding
P

p−→pN

P /L
p−→pN /L

ProbConstant
PK , P P

p−→pN

PK
p−→pN

Table 9.2: Operational semantic rules for probabilistic processes (probabilistic transitions)

•
⊕

i∈I [pi]_, for I finite and not empty, is the generalized probabilistic composition operator expressing a
probabilistic choice among finitely many processes each with probability pi ∈ R]0,1] and such that

∑
i∈I pi = 1.

We will use [p1]N1⊕ [p2]N2 as a shorthand for
⊕

i∈{1,2}[pi]Ni and a .N as a shorthand for a . [1]N especially
when N is 0.

• _ ‖L_, for L ⊆ A\{τ}, is the parallel composition operator allowing two processes to proceed independently
on any action not in L and forcing them to synchronize on every action in L as well as on probabilities (which
are multiplied) [86].

• _\L, for L ⊆ A\{τ}, is the restriction operator, which prevents the execution of all actions belonging to L.

• _ /L, for L ⊆ A \ {τ}, is the hiding operator, which turns all the executed actions belonging to L into
the unobservable action τ .

• NK (resp. PK ) is a process constant equipped with a defining equation of the form NK , N (resp. PK , P ),
where every constant possibly occurring in N (resp. P ) – including NK (resp. PK ) itself thus allowing for
recursion – must be in the scope of an action prefix.

The operational semantic rules for the process language are shown in Tables 9.1 and 9.2 for nondeterministic
and probabilistic processes respectively. Together they produce the PLTS (Ppr,A,−→) where −→ = −→a ∪ −→p,
to which the bisimulation equivalences defined in Section 9.1.2 are applicable. While −→a ⊆ Pn × A × Pp is a
relation, −→p ⊆ Pp ×R]0,1] × Pn is deemed to be a multirelation [86]; e.g., from [p1]N ⊕ [p2]N there must be two
transitions to N even when p1 = p2 otherwise the probabilities labeling the transitions departing from the source
process would not sum up to 1. Note that in the Parallel rules the nondeterministic subprocess that does not
move has to be prefixed by [1] to make it probabilistic within the overall target process [86]; after all, [1]N ∼pm N .
We let [1]N ∈ reach(E) whenever N ∈ reach(E).
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9.2 Probabilistic Information-Flow Security Properties

In this section, after recasting the definitions of noninterference properties of the previous chapter by taking as
behavioral equivalence the weak or branching bisimilarity of Section 9.1.2, we investigate their preservation and
compositionality characteristics (Section 9.2.1), we show the inclusion relationships between the ones based on
≈pw and the ones based on ≈pb (Section 9.2.2), and we relate the resulting probabilistic taxonomy with the
nondeterministic one (Section 9.2.3).

Definition 9.6. Let E ∈ Ppr and ≈ ∈ {≈pw,≈pb}:

• E ∈ BSNNI≈ ⇐⇒ E \ AH ≈ E /AH.

• E ∈ BNDC≈ ⇐⇒ for all F ∈ Ppr such that each of its actions belongs to AH and for all L ⊆ AH,
E \ AH ≈ ((E ‖L F ) /L) \ AH when E,F ∈ Pn or E,F ∈ Pp.

• E ∈ SBSNNI≈ ⇐⇒ for all E′ ∈ reach(E), E′ ∈ BSNNI≈ .

• E ∈ P_BNDC≈ ⇐⇒ for all E′ ∈ reach(E), E′ ∈ BNDC≈ .

• E ∈ SBNDC≈ ⇐⇒ for all E′, E′′ ∈ reach(E) such that E′ h−→aE
′′, E′ \ AH ≈ E′′ \ AH.

To see the different distinguishing power of these probabilistic noninterference properties, we can adapt the
examples of Section 8.1.4. For instance, in this probabilistic setting, a low-level agent that observes the execution
of l in E = l . 0 + l . ([0.5]h . [1]l1 . 0 ⊕ [0.5]h . [1]l2 . 0) + l . ([0.5]l1 . 0 ⊕ [0.5]l2 . 0) cannot infer anything about the
execution of h. Indeed, after the execution of l, what the low-level agent observes is either a terminal state, reached
with probability 1, or the execution of either l1 or l2, both with probability 0.5. Formally, E\{h} ≈ E / {h} because
l . 0+l . ([0.5]0⊕[0.5]0)+l . ([0.5]l1 . 0⊕[0.5]l2 . 0) ≈ l . 0+l . ([0.5]τ . [1]l1 . 0⊕[0.5]τ . [1]l2 . 0)+l . ([0.5]l1 . 0⊕[0.5]l2 . 0),
hence E is BSNNI≈ .

On the other hand, in F = l . 0 + l . ([0.5]h1 . [1]l1 . 0 ⊕ [0.5]h2 . [1]l2 . 0) + l . ([0.5]l1 . 0 ⊕ [0.5]l2 . 0), which is
BSNNI≈ for the same reason discussed above, a high-level agent could decide to enable only h1, thus turning
the low-level view of the system into l . 0 + l . ([0.5]τ . [1]l1 . 0 ⊕ [0.5]0) + l . ([0.5]l1 . 0 ⊕ [0.5]l2 . 0), which is clearly
distinguishable from l . 0 + l . ([0.5]0 ⊕ [0.5]0) + l . ([0.5]l1 . 0 ⊕ [0.5]l2 . 0), as in the former there is a case in which
the low-level agent can observe l1 but not l2 after the execution of l. In other words, F is not BNDC≈ .

9.2.1 Preservation and Compositionality

All the probabilistic noninterference properties of Definition 9.6 turn out to be preserved by the bisimilarity
employed in their definition. This means that if a process E1 is secure under any of such properties, then every
other equivalent process E2 is secure too according to the same property. This is very useful for automated property
verification, as it allows us to work with the process with the smallest state space among the equivalent ones.

The preservation result of Theorem 9.1 immediately follows from Lemma 9.2 below, which ensures that ≈pw and
≈pb are congruences with respect to all the operators occurring in the aforementioned noninterference properties.
Congruence with respect to action prefix is also addressed as it will be exploited in the proof of the composi-
tionality result of Theorem 9.2. Similar congruence properties have been proven in [8] for ≈pb in the non-strictly
alternating model.
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The congruence lemma is preceded by the following lemma about the relationship between parallel composition
of processes and product of probabilities.

Lemma 9.1. Let E1 ‖LE2, E
′
1 ‖LE′2 ∈ Ppr. Then prob(E1 ‖LE2, E

′
1 ‖LE′2) = prob(E1, E

′
1) · prob(E2, E

′
2).

Proof. There are two cases:

• If G1 and G2 are both nondeterministic, then prob(G1, G
′
1) · prob(G2, G

′
2) = 1 if G1 = G′1 and G2 = G′2

while prob(G1, G
′
1) · prob(G2, G

′
2) = 0 otherwise. From this fact it follows that prob(G1 ‖LG2, G

′
1 ‖LG′2) = 1

if G1 ‖LG2 = G′1 ‖LG′2, i.e., G1 = G′1 and G2 = G′2, while prob(G1 ‖LG2, G
′
1 ‖LG′2) = 0 otherwise.

• If G1 and G2 are both probabilistic, then prob(G1, G
′
1) =

∑
G1

p−→pG′1
p and prob(G2, G

′
2) =

∑
G2

q−→pG′2
q and

hence prob(G1, G
′
1) · prob(G2, G

′
2) =

∑
G1

p−→pG′1
p ·
∑

G2
q−→pG′2

q =
∑

G1
p−→pG′1

∑
G2

q−→pG′2
p · q by distribu-

tivity, which is equal to prob(G1 ‖LG2, G
′
1 ‖LG′2) according to the operational semantic rules in Table 9.2.

Lemma 9.2. Let E1, E2 ∈ Ppr and ≈ ∈ {≈pw,≈pb}. If E1 ≈ E2 then:

1. a .E1 ≈ a .E2 for all a ∈ A, when E1, E2 ∈ Pp.

2. E1‖LE ≈ E2‖LE and E‖LE1 ≈ E‖LE2 for all L⊆A\{τ} and E∈Ppr, when E1, E2, E∈Pn or E1, E2, E∈Pp.

3. E1 \ L ≈ E2 \ L for all L ⊆ A \ {τ}.

4. E1 /L ≈ E2 /L for all L ⊆ A \ {τ}.

Proof. We first prove the four results for the ≈pw-based properties. Let B be a weak probabilistic bisimulation
witnessing E1 ≈pw E2:

1. The equivalence relation B′ = (B∪{(a . F1, a . F2) | (F1, F2) ∈ B∧F1, F2 ∈ Pp})+ is a weak probabilistic bisim-
ulation too. The result immediately follows from the fact that, given (a . F1, a . F2) ∈ B′ with (F1, F2) ∈ B,
a . F1

a−→a F1 is matched by a . F2 ==⇒ a . F2
a−→a F2 ==⇒ F2 with (F1, F2) ∈ B′ as well as prob(a . F1, C̄) =

prob(a . F2, C̄) = 1 for C̄ = [a . F1]B′ while prob(a . F1, C
′) = prob(a . F2, C

′) = 0 for any other C ′ ∈ Ppr/B′.

2. The equivalence relation B′=IPpr∪{(F1‖LF, F2‖LF ) | (F1, F2)∈B∧(F1‖LF, F2‖LF ∈Pn∨F1‖LF, F2‖LF ∈Pp)}
∪ {(F1 ‖L[1]F, F2 ‖L F ) | (F1, F2) ∈ B ∧ F1 ∈ Pp ∧ F2 ‖L F ∈ Pn} ∪ {(F1 ‖L F, F2 ‖L[1]F ) | (F1, F2) ∈ B ∧
F2 ∈ Pp ∧F1 ‖L F ∈ Pn} and its variant B′′ in which F occurs to the left of parallel composition in each pair
are weak probabilistic bisimulations too. Let us focus on B′. Given (F1 ‖L F, F2 ‖L F ) ∈ B′ with (F1, F2) ∈ B,
there are three cases for action transitions based on the operational semantic rules in Table 9.1:

• If F1 ‖L F
a−→a F

′
1 ‖L[1]F with F1

a−→a F
′
1 and a /∈ L, then there exists F2

â
==⇒ F ′2 such that (F ′1, F

′
2) ∈ B.

Note that the action transition from F1 ‖L F implies that F1 ‖L F ∈ Pn, i.e., F1, F ∈ Pn, hence F2 ‖L F ∈
Pn too. Since synchronization does not apply to τ and a /∈ L, we have that F2 ‖L F

â
==⇒ F ′2 ‖L F with

(F ′1 ‖L[1]F, F ′2 ‖L F ) ∈ B′ if F2 stays idle, while F2 ‖L F
â

==⇒ F ′2 ‖L[1]F with (F ′1 ‖L[1]F, F ′2 ‖L[1]F ) ∈ B′
if F2 moves, in which case the right subprocess alternates between F and [1]F thus allowing the prob-
abilistic transitions along F2

â
==⇒ F ′2 to synchronize with the only one of [1]F .
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• The case F1 ‖L F
a−→a [1]F1 ‖L F ′ with F

a−→a F
′ and a /∈ L is trivial.

• If F1 ‖L F
a−→a F

′
1 ‖L F ′ with F1

a−→a F
′
1, F

a−→a F
′, and a ∈ L, then there exists F2 ==⇒ a−→a ==⇒ F ′2

such that (F ′1, F
′
2) ∈ B. Since synchronization does not apply to τ and a ∈ L, we have that

F2 ‖L F ==⇒ a−→a ==⇒ F ′2 ‖L F ′ with (F ′1 ‖L F ′, F ′2 ‖L F ′) ∈ B′, where the right subprocess alternates
between F and [1]F before performing a or between F ′ and [1]F ′ after performing a thus allowing
the probabilistic transitions along F2 ==⇒ a−→a ==⇒ F ′2 to synchronize with the only one of [1]F before
performing a or the only one of [1]F ′ after performing a.

As for probabilities, to avoid trivial cases let F1, F2, F ∈ Pp and consider an equivalence class C ′ =
C ‖L F ′ = {H ‖L F ′ | H ∈ C} for some C ∈ Ppr/B with F ′ ∈ Pn. By virtue of Lemma 9.1 we
obtain prob(Fk ‖L F,C ′) =

∑
H ‖L F ′∈C′ prob(Fk ‖L F,H ‖L F

′) =
∑

H ‖L F ′∈C′ prob(Fk, H) · prob(F, F ′) =∑
H∈C prob(Fk, H) ·prob(F, F ′) = (

∑
H∈C prob(Fk, H)) ·prob(F, F ′) = prob(Fk, C) ·prob(F, F ′) for k ∈ {1, 2}.

From (F1, F2) ∈ B it follows that prob(F1, C) = prob(F2, C), hence prob(F1 ‖L F,C ′) = prob(F2 ‖L F,C ′).

3. The equivalence relation B′ = IPpr ∪ {(F1 \ L,F2 \ L) | (F1, F2) ∈ B} is a weak probabilistic bisimulation
too. Given (F1 \ L,F2 \ L) ∈ B′ with (F1, F2) ∈ B, there are two cases for action transitions based on the
operational semantic rules in Table 9.1:

• If F1 \ L
τ−→a F

′
1 \ L with F1

τ−→a F
′
1, then there exists F2 ==⇒ F ′2 such that (F ′1, F

′
2) ∈ B. Since the

restriction operator does not apply to τ and probabilistic transitions, we have that F2 \ L==⇒ F ′2 \ L
with (F ′1 \ L,F ′2 \ L) ∈ B′.

• If F1 \ L
a−→a F

′
1 \ L with F1

a−→a F
′
1 and a /∈ L ∪ {τ}, then there exists F2 ==⇒ a−→a ==⇒ F ′2 such that

(F ′1, F
′
2) ∈ B. Since the restriction operator does not apply to τ and probabilistic transitions and a /∈ L,

we have that F2 \ L==⇒ a−→a ==⇒ F ′2 \ L with (F ′1 \ L,F ′2 \ L) ∈ B′.

As for probabilities, to avoid trivial cases consider an equivalence class C ′ = C \ L = {F \ L | F ∈ C} for
some C ∈ Ppr/B. From (F1, F2) ∈ B it follows that prob(F1, C) = prob(F2, C). Since the restriction operator
does not apply to probabilistic transitions, we have that prob(F1 \ L,C ′) = prob(F1, C) = prob(F2, C) =
prob(F2 \ L,C ′).

4. The equivalence relation B′ = IPpr ∪ {(F1 /L, F2 /L) | (F1, F2) ∈ B} is a weak probabilistic bisimulation
too. Given (F1 /L, F2 /L) ∈ B′ with (F1, F2) ∈ B, there are two cases for action transitions based on the
operational semantic rules in Table 9.1:

• If F1 /L
τ−→a F

′
1 /L with F1

τ−→a F
′
1, then there exists F2 ==⇒ F ′2 such that (F ′1, F

′
2) ∈ B. Since the

hiding operator does not apply to τ and probabilistic transitions, we have that F2 /L==⇒ F ′2 /L with
(F ′1 /L, F

′
2 /L) ∈ B′.

• If F1 /L
a−→a F

′
1 /L with F1

b−→a F
′
1 and b ∈ L∧a = τ or b /∈ L∪{τ}∧a = b, then there exists F2

b̂
==⇒ F ′2

such that (F ′1, F
′
2) ∈ B. Since the hiding operator does not apply to τ and probabilistic transitions,

we have that F2 /L
â

==⇒ F ′2 /L with (F ′1 /L, F
′
2 /L) ∈ B′.

As for probabilities, to avoid trivial cases consider an equivalence class C ′ = C /L = {F /L | F ∈ C} for
some C ∈ Ppr/B. From (F1, F2) ∈ B it follows that prob(F1, C) = prob(F2, C). Since the hiding operator
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does not apply to probabilistic transitions, we have that prob(F1 /L,C
′) = prob(F1, C) = prob(F2, C) =

prob(F2 /L,C
′).

We then prove the four results for the ≈pb-based properties. Let B be a probabilistic branching bisimulation
witnessing E1 ≈pb E2. We show that the equivalence relations B′ considered for the ≈pw-based properties are
probabilistic branching bisimulations too:

1. The result immediately follows from the fact that, given (a . F1, a . F2) ∈ B′ with (F1, F2) ∈ B, a . F1
a−→a F1

is matched by a . F2 ==⇒ a . F2
a−→a F2 with (a . F1, a . F2) ∈ B′ and (F1, F2) ∈ B′ as well as prob(a . F1, C̄) =

prob(a . F2, C̄) = 1 for C̄ = [a . F1]B′ while prob(a . F1, C
′) = prob(a . F2, C

′) = 0 for any other C ′ ∈ Ppr/B′.

2. Given (F1 ‖L F, F2 ‖L F ) ∈ B′ with (F1, F2) ∈ B, there are three cases for action transitions based on the
operational semantic rules in Table 9.1:

• If F1 ‖L F
a−→a F

′
1 ‖L[1]F with F1

a−→a F
′
1 and a /∈ L, then either a = τ and (F ′1, F2) ∈ B, or there exists

F2 ==⇒ F̄2
a−→a F

′
2 such that (F1, F̄2) ∈ B and (F ′1, F

′
2) ∈ B. Note that the action transition from F1 ‖L F

implies that F1 ‖L F ∈ Pn, i.e., F1, F ∈ Pn, hence F2 ‖L F ∈ Pn too. Since synchronization does not ap-
ply to τ and a /∈ L, in the former subcase F2 ‖L F is allowed to stay idle with (F ′1 ‖L[1]F, F2 ‖L F ) ∈ B′,
while in the latter subcase F2 ‖L F ==⇒ F̄2 ‖L F

a−→a F
′
2 ‖L[1]F with (F1 ‖L F, F̄2 ‖L F ) ∈ B′ and

(F ′1 ‖L[1]F, F ′2 ‖L[1]F ) ∈ B′, in which subcase the right subprocess alternates between F and [1]F before
a is performed thus allowing the probabilistic transitions along F2 ==⇒ F̄2 to synchronize with the only
one of [1]F .

• The case F1 ‖L F
a−→a [1]F1 ‖L F ′ with F

a−→a F
′ and a /∈ L is trivial.

• If F1 ‖L F
a−→a F

′
1 ‖L F ′ with F1

a−→a F
′
1, F

a−→a F
′, and a ∈ L, then there exists F2 ==⇒ F̄2

a−→a F
′
2 such

that (F1, F̄2) ∈ B and (F ′1, F
′
2) ∈ B. Since synchronization does not apply to τ and a ∈ L, we have

that F2 ‖L F ==⇒ F̄2 ‖L F
a−→a F

′
2 ‖L F ′ with (F1 ‖L F, F̄2 ‖L F ) ∈ B′ and (F ′1 ‖L F ′, F ′2 ‖L F ′) ∈ B′, where

the right subprocess alternates between F and [1]F before performing a thus allowing the probabilistic
transitions along F2 ==⇒ F̄2 to synchronize with the only one of [1]F .

As for probabilities, we reason like in the proof of the corresponding result for ≈pw.

3. Given (F1\L,F2\L) ∈ B′ with (F1, F2) ∈ B, there are two cases for action transitions based on the operational
semantic rules in Table 9.1:

• If F1 \ L
τ−→a F

′
1 \ L with F1

τ−→a F
′
1, then either (F ′1, F2) ∈ B, or there exists F2 ==⇒ F̄2

τ−→a F
′
2 such

that (F1, F̄2) ∈ B and (F ′1, F
′
2) ∈ B. Since the restriction operator does not apply to τ and probabilistic

transitions, in the former subcase F2 \ L is allowed to stay idle with (F ′1 \ L,F2 \ L) ∈ B′, while in the
latter subcase F2 \ L==⇒ F̄2 \ L

τ−→a F
′
2 \ L with (F1 \ L, F̄2 \ L) ∈ B′ and (F ′1 \ L,F ′2 \ L) ∈ B′.

• If F1 \ L
a−→a F

′
1 \ L with F1

a−→a F
′
1 and a /∈ L ∪ {τ}, then there exists F2 ==⇒ F̄2

a−→a F
′
2 such that

(F1, F̄2) ∈ B and (F ′1, F
′
2) ∈ B. Since the restriction operator does not apply to τ and probabilistic

transitions and a /∈ L, we have that F2 \ L==⇒ F̄2 \ L
a−→a F

′
2 \ L with (F1 \ L, F̄2 \ L) ∈ B′ and

(F ′1 \ L,F ′2 \ L) ∈ B′.

As for probabilities, we reason like in the proof of the corresponding result for ≈pw.
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4. Given (F1 /L, F2 /L) ∈ B′ with (F1, F2) ∈ B, there are two cases for action transitions based on the opera-
tional semantic rules in Table 9.1:

• If F1 /L
τ−→a F

′
1 /L with F1

τ−→a F
′
1, then either (F ′1, F2) ∈ B, or there exists F2 ==⇒ F̄2

τ−→a F
′
2 such

that (F1, F̄2) ∈ B and (F ′1, F
′
2) ∈ B. Since the hiding operator does not apply to τ and probabilistic

transitions, in the former subcase F2 /L is allowed to stay idle with (F ′1 /L, F2 /L) ∈ B′, while in the
latter subcase F2 /L==⇒ F̄2 /L

τ−→a F
′
2 /L with (F1 /L, F̄2 /L) ∈ B′ and (F ′1 /L, F

′
2 /L) ∈ B′.

• If F1 /L
a−→a F

′
1 /L with F1

b−→a F
′
1 and b ∈ L ∧ a = τ or b /∈ L ∪ {τ} ∧ a = b, then there exists

F2 ==⇒ F̄2
b−→a F

′
2 such that (F1, F̄2) ∈ B and (F ′1, F

′
2) ∈ B. Since the hiding operator does not apply to

τ and probabilistic transitions, we have that F2 /L==⇒ F̄2 /L
a−→a F

′
2 /L with (F1 /L, F̄2 /L) ∈ B′ and

(F ′1 /L, F
′
2 /L) ∈ B′.

As for probabilities, we reason like in the proof of the corresponding result for ≈pw.

Theorem 9.1. Let E1, E2 ∈ Ppr, ≈∈ {≈pw,≈pb}, and P ∈ {BSNNI≈ ,BNDC≈ , SBSNNI≈ ,P_BNDC≈ , SBNDC≈}.
If E1 ≈ E2 then E1 ∈ P ⇐⇒ E2 ∈ P.

Proof. A straightforward consequence of the definition of the various properties, i.e., Definition 9.6, and Lemma 9.2.

As far as modular verification is concerned, like in the nondeterministic setting of the previous chapter only
the local properties SBSNNI≈ , P_BNDC≈ , and SBNDC≈ are compositional, i.e., are preserved by some operators
of the calculus in certain circumstances. Moreover, similar to the previous chapter, compositionality with respect
to parallel composition is limited, for SBSNNI≈pb

and P_BNDC≈pb
, to the case in which synchronizations can

take place only among low-level actions, i.e., L ⊆ AL. A limitation to low-level actions applies to action prefix
and hiding as well, whilst this is not the case for restriction. Another analogy with the nondeterministic setting
of the previous chapter is that none of the considered noninterference properties is compositional with respect to
alternative composition, as can be noted by examining E1 + E2 where E1 = l . [1]0 and E2 = h . [1]0 (see after
Theorem 8.2). Moreover, compositionality also fails for probabilistic composition, for which it is sufficient to
consider [p]E1 ⊕ [1− p]E2.

To establish compositionality, we first prove some ancillary results about parallel composition, restriction, and
hiding under SBSNNI and SBNDC similar to those in the previous chapter.

Lemma 9.3. Let E1, E2 ∈ Pn or E1, E2 ∈ Pp, E ∈ Ppr, and ≈ ∈ {≈pw,≈pb}. Then:

1. If E1, E2 ∈ SBSNNI≈ and L ⊆ A\{τ} for ≈pw or L ⊆ AL for ≈pb, then (F1 ‖L F2) \AH ≈ (G1 ‖LG2) /AH
for all F1, G1 ∈ reach(E1) and F2, G2 ∈ reach(E2) such that F1 ‖L F2, G1 ‖LG2 ∈ reach(E1 ‖LE2), F1 \AH ≈
G1 /AH, and F2 \ AH ≈ G2 /AH.

2. If E ∈ SBSNNI≈ and L ⊆ A \ {τ}, then (F /AH) \ L ≈ (G \ L) /AH for all F,G ∈ reach(E) such that
F /AH ≈ G \ AH.

3. If E1, E2 ∈ SBNDC≈ and L ⊆ A\{τ}, then (F1 ‖L F2)\AH ≈ (G1 ‖LG2)\AH for all F1, G1 ∈ reach(E1) and
F2, G2 ∈ reach(E2) such that F1 ‖L F2, G1 ‖LG2 ∈ reach(E1 ‖LE2), F1\AH ≈ G1\AH and F2\AH ≈ G2\AH.
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Proof. We first prove the three results for the ≈pw-based properties. Let B be an equivalence relation containing
all the pairs of processes that have to be shown to be ≈pw-equivalent according to the considered result:

1. Starting from (F1 ‖L F2)\AH and (G1 ‖LG2) /AH related by B, so that F1\AH ≈pw G1 /AH and F2\AH ≈pw

G2 /AH, there are thirteen cases for action transitions based on the operational semantic rules in Table 9.1.
In the first five cases, it is (F1 ‖L F2) \ AH to move first:

• If (F1 ‖L F2) \ AH
l−→a (F ′1 ‖L[1]F2) \ AH with F1

l−→a F
′
1 and l /∈ L, then F1 \ AH

l−→a F
′
1 \ AH

as l /∈ AH. From F1 \ AH ≈pw G1 /AH it follows that there exists G1 /AH==⇒ l−→a ==⇒G′1 /AH
such that F ′1 \ AH ≈pw G′1 /AH. Since synchronization does not apply to τ and l /∈ L, we have
that (G1 ‖LG2) /AH==⇒ l−→a ==⇒ (G′1 ‖L[1]G2) /AH with ((F ′1 ‖L[1]F2) \ AH, (G′1 ‖L[1]G2) /AH) ∈ B,
where the right subprocess alternates between G2 and [1]G2 thus allowing the probabilistic transitions
along G1 /AH==⇒ l−→a ==⇒G′1 /AH to synchronize with the only one of [1]G2.

• If (F1 ‖L F2)\AH
l−→a ([1]F1 ‖L F ′2)\AH with F2

l−→a F
′
2 and l /∈ L, then the proof is similar to the one

of the previous case.

• If (F1 ‖L F2)\AH
l−→a (F ′1 ‖L F ′2)\AH with Fi

l−→a F
′
i for i ∈ {1, 2} and l ∈ L, then Fi\AH

l−→a F
′
i \AH

as l /∈ AH. From Fi \ AH ≈pw Gi /AH it follows that there exists Gi /AH==⇒ l−→a ==⇒G′i /AH such
that F ′i \ AH ≈pw G′i /AH. Since synchronization does not apply to τ and l ∈ L, we have that
(G1 ‖LG2) /AH==⇒ l−→a ==⇒ (G′1 ‖LG′2) /AH with ((F ′1 ‖L F ′2)\AH, (G′1 ‖LG′2) /AH) ∈ B, where sub-
process i alternates between Gi and [1]Gi before performing l or between G′i and [1]G′i after performing l
thus allowing the probabilistic transitions along Gj /AH==⇒ l−→a ==⇒G′j /AH for j 6= i to synchronize
with the only one of [1]Gi before performing a or the only one of [1]G′i after performing a.

• If (F1 ‖L F2) \AH
τ−→a (F ′1 ‖L[1]F2) \AH with F1

τ−→a F
′
1, then F1 \AH

τ−→a F
′
1 \AH as τ /∈ AH. From

F1 \AH ≈pw G1 /AH it follows that there exists G1 /AH==⇒G′1 /AH such that F ′1 \AH ≈pw G′1 /AH.
Since synchronization does not apply to τ , we have that (G1 ‖LG2) /AH==⇒ (G′1 ‖L[1]G2) /AH with
((F ′1 ‖L[1]F2)\AH, (G′1 ‖L[1]G2) /AH) ∈ B, where the right subprocess alternates between G2 and [1]G2

thus allowing the probabilistic transitions along G1 /AH==⇒G′1 /AH to synchronize with the only one
of [1]G2.

• If (F1 ‖L F2) \ AH
τ−→a ([1]F1 ‖L F ′2) \ AH with F2

τ−→a F
′
2, then the proof is similar to the one of the

previous case.

In the other eight cases, instead, it is (G1 ‖LG2) /AH to move first:

• If (G1 ‖LG2) /AH
l−→a (G′1 ‖L[1]G2) /AH with G1

l−→aG
′
1 and l /∈ L, then G1 /AH

l−→aG
′
1 /AH as

l /∈ AH. From G1 /AH ≈pw F1 \ AH it follows that there exists F1 \ AH==⇒ l−→a ==⇒ F ′1 \ AH
such that G′1 /AH ≈pw F ′1 \ AH. Since synchronization does not apply to τ and l /∈ L, we have
that (F1 ‖L F2) \ AH==⇒ l−→a ==⇒ (F ′1 ‖L[1]F2) \ AH with ((G′1 ‖L[1]G2)/AH, (F ′1 ‖L[1]F2) \ AH) ∈ B,
where the right subprocess alternates between F2 and [1]F2 thus allowing the probabilistic transitions
along F1 \ AH==⇒ l−→a ==⇒ F ′1 \ AH to synchronize with the only one of [1]F2.
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• If (G1 ‖LG2) /AH
l−→a ([1]G1 ‖LG′2) /AH with G2

l−→aG
′
2 and l /∈ L, then the proof is similar to the

one of the previous case.

• If (G1 ‖LG2) /AH
l−→a (G′1 ‖LG′2) /AH with Gi

l−→aG
′
i for i ∈ {1, 2} and l ∈ L, then Gi /AH

l−→aG
′
i /AH as l /∈ AH. From Gi /AH ≈pw Fi \ AH it follows that there exists Fi \ AH

==⇒ l−→a ==⇒ F ′i\AH such thatG′i /AH≈pwF
′
i\AH. Since synchronization does not apply to τ and l∈L,

we have that (F1 ‖L F2) \AH==⇒ l−→a ==⇒ (F ′1 ‖L F ′2) \AH with ((G′1 ‖LG′2)/AH, (F ′1 ‖L F ′2) \AH) ∈ B,
where subprocess i alternates between Fi and [1]Fi before performing l or between F ′i and [1]F ′i after
performing l thus allowing the probabilistic transitions along Fj \AH==⇒ l−→a ==⇒ F ′j \AH for j 6= i to
synchronize with the only one of [1]Fi before performing a or the only one of [1]F ′i after performing a.

• If (G1 ‖LG2) /AH
τ−→a (G′1 ‖L[1]G2) /AH with G1

τ−→aG
′
1, then G1 /AH

τ−→aG
′
1 /AH as τ /∈ AH.

From G1 /AH ≈pw F1 \ AH it follows that there exists F1 \ AH==⇒ F ′1 \ AH such that G′1 /AH ≈pw

F ′1 \AH. Since synchronization does not apply to τ , we have that (F1 ‖L F2)\AH==⇒ (F ′1 ‖L[1]F2)\AH
with ((G′1 ‖L[1]G2)/AH, (F ′1 ‖L[1]F2) \ AH) ∈ B, where the right subprocess alternates between F2 and
[1]F2 thus allowing the probabilistic transitions along F1 \AH==⇒ F ′1 \AH to synchronize with the only
one of [1]F2.

• If (G1 ‖LG2) /AH
τ−→a (G1 ‖LG′2) /AH with G2

τ−→aG
′
2, then the proof is similar to the one of the

previous case.

• If (G1 ‖LG2) /AH
τ−→a (G′1 ‖L[1]G2) /AH with G1

h−→aG
′
1 and h /∈ L, then G1 /AH

τ−→aG
′
1 /AH as

h ∈ AH. The rest of the proof is like the one of the fourth case.

• If (G1 ‖LG2) /AH
τ−→a ([1]G1 ‖LG′2) /AH with G2

h−→aG
′
2 and h /∈ L, then the proof is similar to the

one of the previous case.

• If (G1 ‖LG2) /AH
τ−→a (G′1 ‖LG′2) /AH with Gi

h−→aG
′
i for i ∈ {1, 2} and h ∈ L, then Gi /AH

τ−→aG
′
i /AH as h ∈ AH. From Gi /AH ≈pw Fi \ AH it follows that there exists Fi \ AH==⇒ F ′i \ AH

such that G′i /AH ≈pw F ′i \ AH. Since synchronization does not apply to τ and h ∈ L, we have that
(F1 ‖L F2) \ AH==⇒ (F ′1 ‖L F ′2) \ AH with ((G′1 ‖LG′2) /AH, (F ′1 ‖L F ′2) \ AH) ∈ B, where subprocess i
alternates between Fi and [1]Fi thus allowing the probabilistic transitions along Fj \ AH==⇒ F ′j \ AH
for j 6= i to synchronize with the only one of [1]Fi.

As for probabilities, to avoid trivial cases let F1, F2, G1, G2 ∈ Pp and consider an equivalence class C ∈ Ppr/B
that involves nondeterministic processes reachable from E1 ‖LE2, specifically C = {(H1,i ‖LH2,i) \ AH,
(H1,j ‖LH2,j) /AH | Hk,h ∈ reach(Ek) ∧H1,h ‖LH2,h ∈ reach(E1 ‖LE2) ∧Hk,i \ AH ≈pw Hk,j /AH}. Since
the restriction and hiding operators do not apply to probabilistic transitions, we have that:

prob((F1 ‖L F2) \ AH, C) = prob((F1 \ AH) ‖L(F2 \ AH), C)
prob((G1 ‖LG2) /AH, C) = prob((G1 /AH) ‖L(G2 /AH), C)

and hence by virtue of Lemma 9.1:
prob((F1 \ AH) ‖L(F2 \ AH), C) = prob(F1 \ AH, C1) · prob(F2 \ AH, C2)
prob((G1 /AH) ‖L(G2 /AH), C) = prob(G1 /AH, C1) · prob(G2 /AH, C2)

where:
C1 = {H1,h \ AH | (H1,h ‖LH2,h) \ AH ∈ C} ∪ {H1,h /AH | (H1,h ‖LH2,h) /AH ∈ C}
C2 = {H2,h \ AH | (H1,h ‖LH2,h) \ AH ∈ C} ∪ {H2,h /AH | (H1,h ‖LH2,h) /AH ∈ C}

Since Fk \ AH ≈pw Gk /AH and Ck is the union of some ≈pw-equivalence classes for k ∈ {1, 2}, we have
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that:
prob(F1 \ AH, C1) = prob(G1 /AH, C1)
prob(F2 \ AH, C2) = prob(G2 /AH, C2)

2. Starting from (F /AH) \ L and (G \ L) /AH related by B, so that F /AH ≈pw G \ AH, there are six cases
for action transitions based on the operational semantic rules in Table 9.1. In the first three cases, it is
(F /AH) \ L to move first:

• If (F /AH)\L l−→a (F ′ /AH)\L with F l−→a F
′ and l /∈ L, then F /AH

l−→a F
′ /AH as l /∈ AH. From

F /AH ≈pw G \ AH it follows that there exists G \ AH==⇒ l−→a ==⇒G′ \ AH such that F ′ /AH ≈pw

G′ \ AH. Since the restriction and hiding operators do not apply to τ , l, and probabilistic transitions,
we have that (G \ L) /AH==⇒ l−→a ==⇒ (G′ \ L) /AH with ((F ′ /AH) \ L, (G′ \ L) /AH) ∈ B.

• If (F /AH) \ L τ−→a (F ′ /AH) \ L with F
τ−→a F

′, then F /AH
τ−→a F

′ /AH as τ /∈ AH. From
F /AH ≈pw G \ AH it follows that there exists G \ AH==⇒G′ \ AH such that F ′ /AH ≈pw G′ \ AH.
Since the restriction and hiding operators do not apply to τ and probabilistic transitions, we have that
(G \ L) /AH==⇒ (G′ \ L) /AH with ((F ′ /AH) \ L, (G′ \ L) /AH) ∈ B.

• If (F /AH) \L τ−→a (F ′ /AH) \L with F h−→a F
′, then F /AH

τ−→a F
′ /AH as h ∈ AH. The rest of the

proof is like the one of the previous case.

In the other three cases, instead, it is (G \ L) /AH to move first:

• If (G \L) /AH
l−→a (G′ \L) /AH with G l−→aG

′ and l /∈ L, then G \AH
l−→aG

′ \AH as l /∈ AH. From
G \ AH ≈pw F /AH it follows that there exists F /AH==⇒ l−→a ==⇒ F ′ /AH such that G′ \ AH ≈pw

F ′ /AH. Since the restriction operator does not apply to τ , l, and probabilistic transitions, we have
that (F /AH) \ L==⇒ l−→a ==⇒ (F ′ /AH) \ L with ((G′ \ L) /AH, (F ′ /AH) \ L) ∈ B.

• If (G \ L) /AH
τ−→a (G′ \ L) /AH with G τ−→aG

′, then G \ AH
τ−→aG

′ \ AH as τ /∈ AH. From G \ AH
≈pw F /AH it follows that there exists F /AH==⇒ F ′ /AH such that G′ \ AH ≈pw F ′ /AH. Since
the restriction operator does not apply to τ and probabilistic transitions, we have that (F /AH) \ L
==⇒ (F ′ /AH) \ L with ((G′ \ L) /AH, (F ′ /AH) \ L) ∈ B.

• If (G\L) /AH
τ−→a (G′ \L) /AH with G h−→aG

′ and h /∈ L, then G/AH
τ−→aG

′ /AH as h ∈ AH (note
that G\AH cannot perform h). From G/AH ≈pw G\AH – as E ∈ SBSNNI≈pw and G ∈ reach(E) – and
G \AH ≈pw F /AH it follows that there exists F /AH==⇒ F ′ /AH such that G′ /AH ≈pw F ′ /AH and
hence G′ \AH ≈pw F ′ /AH – as G′ /AH ≈pw G′ \AH due to E ∈ SBSNNI≈pw and G′ ∈ reach(E). Since
the restriction operator does not apply to τ and probabilistic transitions, we have that (F /AH) \ L
==⇒ (F ′ /AH) \ L with ((G′ \ L) /AH, (F ′ /AH) \ L) ∈ B.

As for probabilities, to avoid trivial cases let F,G ∈ Pp and consider an equivalence class C ∈ Ppr/B
that involves nondeterministic processes reachable from E, specifically C = {(Hi /AH) \ L, (Hj \ L) /AH |
Hh ∈ reach(E) ∧ Hi \ AH ≈pw Hj /AH}. Since the restriction and hiding operators do not apply to
probabilistic transitions, we have that:

prob((F /AH) \ L,C) = prob(F \ AH, C̄)
prob((G \ L) /AH, C) = prob(G/AH, C̄)
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where:
C̄ = {Hi \ AH | (Hi /AH) \ L ∈ C} ∪ {Hj /AH | (Hj \ L) /AH ∈ C}

Since F \ AH ≈pw G/AH and C̄ is the union of some ≈pw-equivalence classes, we have that:
prob(F \ AH, C̄) = prob(G/AH, C̄)

3. Starting from (F1 ‖L F2)\AH and (G1 ‖LG2)\AH related by B, so that F1\AH ≈pw G1\AH and F2\AH ≈pw

G2 \ AH, there are five cases for action transitions based on the operational semantic rules in Table 9.1:

• If (F1 ‖L F2) \ AH
l−→a (F ′1 ‖L[1]F2) \ AH with F1

l−→a F
′
1 and l /∈ L, then F1 \ AH

l−→a

F ′1 \ AH as l /∈ AH. From F1 \ AH ≈pw G1 \ AH it follows that there exists G1 \ AH
==⇒ l−→a ==⇒G′1 \ AH such that F ′1 \ AH ≈pw G′1 \ AH. Since synchronization does not apply to τ
and l /∈ L, we have that (G1 ‖LG2) \ AH==⇒ l−→a ==⇒ (G′1 ‖L[1]G2) \ AH with ((F ′1 ‖L[1]F2) \ AH,
(G′1 ‖L[1]G2) \ AH) ∈ B, where the right subprocess alternates between G2 and [1]G2 thus allowing the
probabilistic transitions along G1 \AH==⇒ l−→a ==⇒G′1 \AH to synchronize with the only one of [1]G2.

• If (F1 ‖L F2)\AH
l−→a ([1]F1 ‖L F ′2)\AH with F2

l−→a F
′
2 and l /∈ L, then the proof is similar to the one

of the previous case.

• If (F1 ‖L F2)\AH
l−→a (F ′1 ‖L F ′2)\AH with Fi

l−→a F
′
i for i ∈ {1, 2} and l ∈ L, then Fi\AH

l−→a F
′
i \AH

as l /∈ AH. From Fi\AH ≈pw Gi\AH it follows that there exists Gi\AH==⇒ l−→a ==⇒G′i\AH such that
F ′i \AH ≈pw G′i\AH. Since synchronization does not apply to τ and l ∈ L, we have that (G1 ‖LG2)\AH
==⇒ l−→a ==⇒ (G′1 ‖LG′2)\AH with ((F ′1 ‖L F ′2)\AH, (G′1 ‖LG′2)\AH) ∈ B, where subprocess i alternates
between Gi and [1]Gi before performing l or between G′i and [1]G′i after performing l thus allowing the
probabilistic transitions along Gj \AH==⇒ l−→a ==⇒G′j \AH for j 6= i to synchronize with the only one
of [1]Gi before performing a or the only one of [1]G′i after performing a.

• If (F1 ‖L F2) \AH
τ−→a (F ′1 ‖L[1]F2) \AH with F1

τ−→a F
′
1, then F1 \AH

τ−→a F
′
1 \AH as τ /∈ AH. From

F1 \AH ≈pw G1 \AH it follows that there exists G1 \AH==⇒G′1 \AH such that F ′1 \AH ≈pw G′1 \AH.
Since synchronization does not apply to τ , we have that (G1 ‖LG2) \ AH==⇒ (G′1 ‖LG2) \ AH with
((F ′1 ‖L[1]F2)\AH, (G′1 ‖L[1]G2)\AH) ∈ B, where the right subprocess alternates between G2 and [1]G2

thus allowing the probabilistic transitions along G1 \AH==⇒G′1 \AH to synchronize with the only one
of [1]G2.

• If (F1 ‖L F2) \ AH
τ−→a ([1]F1 ‖L F ′2) \ AH with F2

τ−→a F
′
2, then the proof is similar to the one of the

previous case.

As for probabilities, to avoid trivial cases let F1, F2, G1, G2 ∈ Pp and consider an equivalence
class C ∈ Ppr/B that involves nondeterministic processes reachable from E1 ‖LE2, specifically
C = {(H1,i ‖LH2,i) \ AH | Hk,h ∈ reach(Ek) ∧H1,h ‖LH2,h ∈ reach(E1 ‖LE2) ∧Hk,i \ AH ≈pw Hk,j \ AH}.
Since the restriction operator does not apply to probabilistic transitions, we have that:

prob((F1 ‖L F2) \ AH, C) = prob((F1 \ AH) ‖L(F2 \ AH), C)
prob((G1 ‖LG2) \ AH, C) = prob((G1 \ AH) ‖L(G2 \ AH), C)

and hence by virtue of Lemma 9.1 we have that:
prob((F1 \ AH) ‖L(F2 \ AH), C) = prob(F1 \ AH, C1) · prob(F2 \ AH, C2)
prob((G1 \ AH) ‖L(G2 \ AH), C) = prob(G1 \ AH, C1) · prob(G2 \ AH, C2)
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where:
C1 = {H1,h \ AH | (H1,h ‖LH2,h) \ AH ∈ C}
C2 = {H2,h \ AH | (H1,h ‖LH2,h) \ AH ∈ C}

Since Fk \ AH ≈pw Gk \ AH and Ck is the union of some ≈pw-equivalence classes for k ∈ {1, 2}, we have
that:

prob(F1 \ AH, C1) = prob(G1 \ AH, C1)
prob(F2 \ AH, C2) = prob(G2 \ AH, C2)

We then prove the three results for the ≈pb-based properties. Let B be an equivalence relation containing all the
pairs of processes that have to be shown to be ≈pb-equivalent according to the considered result:

1. Starting from (F1 ‖L F2)\AH and (G1 ‖LG2) /AH related by B, so that F1\AH ≈pb G1 /AH and F2\AH ≈pb

G2 /AH, there are twelve cases for action transitions based on the operational semantic rules in Table 9.1.
In the first five cases, it is (F1 ‖L F2) \ AH to move first:

• If (F1 ‖L F2) \ AH
l−→a (F ′1 ‖L[1]F2) \ AH with F1

l−→a F
′
1 and l /∈ L, then F1 \ AH

l−→a F
′
1 \ AH as

l /∈ AH. From F1 \AH ≈pb G1 /AH it follows that there exists G1 /AH==⇒ Ḡ1 /AH
l−→aG

′
1 /AH such

that F1 \ AH ≈pb Ḡ1 /AH and F ′1 \ AH ≈pb G
′
1 /AH. Since synchronization does not apply to τ and

l /∈ L, we have that (G1 ‖LG2) /AH==⇒ (Ḡ1 ‖LG2) /AH
l−→a (G′1 ‖L[1]G2) /AH with ((F1 ‖L F2)\AH,

(Ḡ1 ‖LG2) /AH) ∈ B and ((F ′1 ‖L[1]F2) \ AH, (G′1 ‖L[1]G2) /AH) ∈ B, where the right subprocess
alternates between G2 and [1]G2 thus allowing the probabilistic transitions along G1 /AH==⇒ Ḡ1 /AH
to synchronize with the only one of [1]G2.

• If (F1 ‖L F2)\AH
l−→a ([1]F1 ‖L F ′2)\AH with F2

l−→a F
′
2 and l /∈ L, then the proof is similar to the one

of the previous case.

• If (F1 ‖L F2)\AH
l−→a (F ′1 ‖L F ′2)\AH with Fi

l−→a F
′
i for i ∈ {1, 2} and l ∈ L, then Fi\AH

l−→a F
′
i \AH

as l /∈ AH. From Fi \ AH ≈pb Gi /AH it follows that there exists Gi /AH==⇒ Ḡi /AH
l−→aG

′
i /AH

such that Fi \AH ≈pb Ḡi /AH and F ′i \AH ≈pb G
′
i /AH. Since synchronization does not apply to τ and

l ∈ L, we have that (G1 ‖LG2) /AH==⇒ (Ḡ1 ‖L Ḡ2) /AH
l−→a (G′1 ‖LG′2) /AH with ((F1 ‖L F2) \ AH,

(Ḡ1 ‖L Ḡ2) /AH) ∈ B and ((F ′1 ‖L F ′2) \ AH, (G′1 ‖LG′2) /AH) ∈ B, where subprocess i alternates
between Gi and [1]Gi thus allowing the probabilistic transitions along Gj /AH==⇒ Ḡj /AH for j 6= i
to synchronize with the only one of [1]Gi.

• If (F1 ‖L F2) \ AH
τ−→a (F ′1 ‖L[1]F2) \ AH with F1

τ−→a F
′
1, then F1 \ AH

τ−→a F
′
1 \ AH as τ /∈ AH.

From F1 \ AH ≈pb G1 /AH it follows that either F ′1 \ AH ≈pb G1 /AH, or there ex-
ists G1 /AH==⇒ Ḡ1 /AH

τ−→aG
′
1 /AH such that F1 \ AH ≈pb Ḡ1 /AH and F ′1 \ AH ≈pb

G′1 /AH. Since synchronization does not apply to τ , in the former subcase (G1 ‖LG2) /AH is
allowed to stay idle with ((F ′1 ‖L[1]F2) \ AH, (G1 ‖LG2) /AH) ∈ B, while in the latter subcase
(G1 ‖LG2) /AH==⇒ (Ḡ1 ‖LG2) /AH

τ−→a (G′1 ‖L[1]G2) /AH with ((F1 ‖L F2)\AH, (Ḡ1 ‖LG2)/AH)∈B
and ((F ′1 ‖L[1]F2) \ AH, (G′1 ‖L[1]G2) /AH) ∈ B, where the right subprocess alternates between G2 and
[1]G2 thus allowing the probabilistic transitions along G1 /AH==⇒ Ḡ1 /AH to synchronize with the
only one of [1]G2.

• If (F1 ‖L F2) \ AH
τ−→a ([1]F1 ‖L F ′2) \ AH with F2

τ−→a F
′
2, then the proof is similar to the one of the

previous case.
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In the other seven cases, instead, it is (G1 ‖LG2) /AH to move first:

• If (G1 ‖LG2) /AH
l−→a (G′1 ‖L[1]G2) /AH with G1

l−→aG
′
1 and l /∈ L, then G1 /AH

l−→aG
′
1 /AH as

l /∈ AH. From G1 /AH ≈pb F1 \AH it follows that there exists F1 \AH==⇒ F̄1 \AH
l−→a F

′
1 \AH such

that G1 /AH ≈pb F̄1 \ AH and G′1 /AH ≈pb F
′
1 \ AH. Since synchronization does not apply to τ and

l /∈ L, we have that (F1 ‖L F2) \ AH==⇒ (F̄1 ‖L F2) \ AH
l−→a (F ′1 ‖L[1]F2) \ AH with ((G1 ‖LG2)/AH,

(F̄1 ‖L F2) \ AH) ∈ B and ((G′1 ‖L[1]G2)/AH, (F ′1 ‖L[1]F2) \ AH) ∈ B, where the right subprocess alter-
nates between F2 and [1]F2 thus allowing the probabilistic transitions along F1 \ AH==⇒ F̄1 \ AH to
synchronize with the only one of [1]F2.

• If (G1 ‖LG2) /AH
l−→a ([1]G1 ‖LG′2) /AH with G2

l−→aG
′
2 and l /∈ L, then the proof is similar to the

one of the previous case.

• If (G1 ‖LG2) /AH
l−→a (G′1 ‖LG′2) /AH with Gi

l−→aG
′
i for i ∈ {1, 2} and l ∈ L, then Gi /AH

l−→aG
′
i /AH as l /∈ AH. From Gi /AH ≈pb Fi \ AH it follows that there exists Fi \ AH==⇒ F̄i \ AH

l−→a F
′
i \ AH such that Gi /AH ≈pb F̄i \ AH and G′i /AH ≈pb F

′
i \ AH. Since synchronization does

not apply to τ and l ∈ L, we have that (F1 ‖L F2) \ AH==⇒ (F̄1 ‖L F̄2) \ AH
l−→a (F ′1 ‖L F ′2) \ AH with

((G1 ‖LG2)/AH, (F̄1 ‖L F̄2) \ AH) ∈ B and ((G′1 ‖LG′2) /AH, (F ′1 ‖L F ′2) \ AH) ∈ B, where subprocess i
alternates between Fi and [1]Fi thus allowing the probabilistic transitions along Fj \ AH==⇒ F̄j \ AH
for j 6= i to synchronize with the only one of [1]Fi.

• If (G1 ‖LG2) /AH
τ−→a (G′1 ‖L[1]G2) /AH with G1

τ−→aG
′
1, then G1 /AH

τ−→aG
′
1 /AH as τ /∈ AH.

From G1 /AH ≈pb F1\AH it follows that either G′1 /AH ≈pb F1\AH, or there exists F1\AH==⇒ F̄1\AH
τ−→a F

′
1 \ AH such that G1 /AH ≈pb F̄1 \ AH and G′1 /AH ≈pb F ′1 \ AH. Since synchro-

nization does not apply to τ , in the former subcase (F1 ‖L F2) \ AH is allowed to stay idle
with ((G′1 ‖L[1]G2)/AH, (F1 ‖L F2) \ AH) ∈ B, while in the latter subcase (F1 ‖L F2) \ AH==⇒
(F̄1 ‖L F2)\AH

τ−→a (F ′1 ‖L[1]F2)\AH with ((G1 ‖LG2)/AH, (F̄1 ‖L F2)\AH) ∈ B and ((G′1 ‖L[1]G2)/AH,
(F ′1 ‖L[1]F2) \ AH) ∈ B, where the right subprocess alternates between F2 and [1]F2 thus allowing the
probabilistic transitions along F1 \ AH==⇒ F̄1 \ AH to synchronize with the only one of [1]F2.

• If (G1 ‖LG2) /AH
τ−→a ([1]G1 ‖LG′2) /AH with G2

τ−→aG
′
2, then the proof is similar to the one of the

previous case.

• If (G1 ‖LG2) /AH
τ−→a (G′1 ‖L[1]G2) /AH with G1

h−→aG
′
1 and h /∈ L, then G1 /AH

τ−→aG
′
1 /AH as

h ∈ AH. The rest of the proof is like the one of the fourth case.

• If (G1 ‖LG2) /AH
τ−→a ([1]G1 ‖LG′2) /AH with G2

h−→aG
′
2 and h /∈ L, then the proof is similar to the

one of the previous case.

As for probabilities, we reason like in the proof of the corresponding result for ≈pw.

2. Starting from (F /AH) \ L and (G \ L) /AH related by B, so that F /AH ≈pb G \ AH, there are six cases
for action transitions based on the operational semantic rules in Table 9.1. In the first three cases, it is
(F /AH) \ L to move first:

• If (F /AH) \ L l−→a (F ′ /AH) \ L with F
l−→a F

′ and l /∈ L, then F /AH
l−→a F

′ /AH as l /∈ AH.
From F /AH ≈pb G \ AH it follows that there exists G \ AH==⇒ Ḡ \ AH

l−→aG
′ \ AH such that
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F /AH ≈pb Ḡ \ AH and F ′ /AH ≈pb G
′ \ AH. Since the restriction and hiding operators do not apply

to τ , l, and probabilistic transitions, we have that (G\L) /AH==⇒ (Ḡ\L) /AH
l−→a (G′ \L) /AH with

((F /AH) \ L, (Ḡ \ L) /AH) ∈ B and ((F ′ /AH) \ L, (G′ \ L) /AH) ∈ B.
• If (F /AH) \ L τ−→a (F ′ /AH) \ L with F

τ−→a F
′, then F /AH

τ−→a F
′ /AH as τ /∈ AH. From

F /AH ≈pb G \ AH it follows that either F ′ /AH ≈pb G \ AH, or there exists G \ AH==⇒ Ḡ \ AH
τ−→aG

′ \ AH such that F /AH ≈pb Ḡ \ AH and F ′ /AH ≈pb G′ \ AH. Since the restric-
tion and hiding operators do not apply to τ and probabilistic transitions, in the former subcase
(G \ L) /AH is allowed to stay idle with ((F ′ /AH) \ L, (G \ L) /AH) ∈ B, while in the latter sub-
case (G \ L) /AH==⇒ (Ḡ \ L) /AH

τ−→a (G′ \ L) /AH with ((F /AH) \ L, (Ḡ \ L) /AH) ∈ B and
((F ′ /AH) \ L, (G′ \ L) /AH) ∈ B.

• If (F /AH) \L τ−→a (F ′ /AH) \L with F h−→a F
′, then F /AH

τ−→a F
′ /AH as h ∈ AH. The rest of the

proof is like the one of the previous case.

In the other three cases, instead, it is (G \ L) /AH to move first:

• If (G \L) /AH
l−→a (G′ \L) /AH with G l−→aG

′ and l /∈ L, then G \AH
l−→aG

′ \AH as l /∈ AH. From
G \ AH ≈pb F /AH it follows that there exists F /AH==⇒ F̄ /AH

l−→a F
′ /AH such that G \ AH ≈pb

F̄ /AH and G′ \AH ≈pb F
′ /AH. Since the restriction operator does not apply to τ , l, and probabilistic

transitions, we have that (F /AH)\L==⇒ (F̄ /AH)\L l−→a (F ′ /AH)\L with ((G\L) /AH, (F̄ /AH)\L)
∈ B and ((G′ \ L) /AH, (F ′ /AH) \ L) ∈ B.

• If (G\L) /AH
τ−→a (G′\L) /AH with G τ−→aG

′, then G\AH
τ−→aG

′\AH as τ /∈ AH. From G\AH ≈pb

F /AH it follows that either G′ \ AH ≈pb F /AH, or there exists F /AH==⇒ F̄ /AH
τ−→a F

′ /AH
such that G \ AH ≈pb F̄ /AH and G′ \ AH ≈pb F ′ /AH. Since the restriction operator does not
apply to τ and probabilistic transitions, in the former subcase (F /AH) \L is allowed to stay idle with
((G′\L)/AH, (F/AH)\L)∈B, while in the latter subcase (F /AH)\L==⇒ (F̄ /AH)\L τ−→a (F ′ /AH)\L
with ((G \ L) /AH, (F̄ /AH) \ L) ∈ B and ((G′ \ L) /AH, (F ′ /AH) \ L) ∈ B.

• If (G \ L) /AH
τ−→a (G′ \ L) /AH with G

h−→aG
′ and h /∈ L, then G/AH

τ−→aG
′ /AH as h ∈ AH

(note that G \ AH cannot perform h). From G/AH ≈pb G \ AH – as E ∈ SBSNNI≈pb
and G ∈

reach(E) – and G \ AH ≈pb F /AH it follows that either G′ /AH ≈pb F /AH and hence G′ \ AH ≈pb

F /AH – as G′ /AH ≈pb G′ \ AH due to E ∈ SBSNNI≈pb
and G′ ∈ reach(E) – or there exists

F /AH==⇒ F̄ /AH
τ−→a F

′ /AH such that G/AH ≈pb F̄ /AH and G′ /AH ≈pb F ′ /AH and hence
G \ AH ≈pb F̄ /AH and G′ \ AH ≈pb F

′ /AH. Since the restriction operator does not apply to τ and
probabilistic transitions, in the former subcase (F /AH) \L is allowed to stay idle with ((G′ \L) /AH,
(F /AH) \ L) ∈ B, while in the latter subcase (F /AH) \ L==⇒ (F̄ /AH) \ L τ−→a (F ′ /AH) \ L with
((G \ L) /AH, (F̄ /AH) \ L) ∈ B and ((G′ \ L) /AH, (F ′ /AH) \ L) ∈ B.

As for probabilities, we reason like in the proof of the corresponding result for ≈pw.

3. Starting from (F1 ‖L F2)\AH and (G1 ‖LG2)\AH related by B, so that F1\AH ≈pb G1\AH and F2\AH ≈pb

G2 \ AH, there are five cases for action transitions based on the operational semantic rules in Table 9.1:
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• If (F1 ‖L F2) \ AH
l−→a (F ′1 ‖L[1]F2) \ AH with F1

l−→a F
′
1 and l /∈ L, then F1 \ AH

l−→a F
′
1 \ AH as

l /∈ AH. From F1 \AH ≈pb G1 \AH it follows that there exists G1 \AH==⇒ Ḡ1 \AH
l−→aG

′
1 \AH such

that F1 \ AH ≈pb Ḡ1 \ AH and F ′1 \ AH ≈pb G
′
1 \ AH. Since synchronization does not apply to τ and

l /∈ L, we have that (G1 ‖LG2) \AH==⇒ (Ḡ1 ‖LG2) \AH
l−→a (G′1 ‖L[1]G2) \AH with ((F1 ‖L F2) \AH,

(Ḡ1 ‖LG2) \ AH) ∈ B and ((F ′1 ‖L[1]F2) \ AH, (G′1 ‖L[1]G2) \ AH) ∈ B, where the right subprocess
alternates between G2 and [1]G2 thus allowing the probabilistic transitions along G1 \AH==⇒ Ḡ1 \AH
to synchronize with the only one of [1]G2.

• If (F1 ‖L F2)\AH
l−→a ([1]F1 ‖L F ′2)\AH with F2

l−→a F
′
2 and l /∈ L, then the proof is similar to the one

of the previous case.

• If (F1 ‖L F2)\AH
l−→a (F ′1 ‖L F ′2)\AH with Fi

l−→a F
′
i for i ∈ {1, 2} and l ∈ L, then Fi\AH

l−→a F
′
i \AH

as l /∈ AH. From Fi \ AH ≈pb Gi \ AH it follows that there exists Gi \ AH==⇒ Ḡi \ AH
l−→aG

′
i \ AH

such that Fi \AH ≈pb Ḡi \AH and F ′i \AH ≈pb G
′
i \AH. Since synchronization does not apply to τ and

l ∈ L, we have that (G1 ‖LG2) \ AH==⇒ (Ḡ1 ‖L Ḡ2) \ AH
l−→a (G′1 ‖LG′2) \ AH with ((F1 ‖L F2) \ AH,

(Ḡ1 ‖L Ḡ2)\AH) ∈ B and ((F ′1 ‖L F ′2)\AH, (G′1 ‖LG′2)\AH) ∈ B, where subprocess i alternates between
Gi and [1]Gi thus allowing the probabilistic transitions alongGj\AH==⇒ Ḡi\AH for j 6= i to synchronize
with the only one of [1]Gi.

• If (F1 ‖L F2) \ AH
τ−→a (F ′1 ‖L[1]F2) \ AH with F1

τ−→a F
′
1, then F1 \ AH

τ−→a F
′
1 \ AH as τ /∈ AH.

From F1 \ AH ≈pb G1 \ AH it follows that either F ′1 \ AH ≈pb G1 \ AH, or there exists G1 \ AH
==⇒ Ḡ1 \ AH

τ−→aG
′
1 \ AH such that F1 \ AH ≈pb Ḡ1 \ AH and F ′1 \ AH ≈pb G′1 \ AH. Since

synchronization does not apply to τ , in the former subcase (G1 ‖LG2) \ AH is allowed to stay
idle with ((F ′1 ‖L[1]F2) \ AH, (G1 ‖LG2) \ AH) ∈ B, while in the latter subcase (G1 ‖LG2) \ AH
==⇒ (Ḡ1 ‖LG2) \ AH

τ−→a (G′1 ‖L[1]G2) \ AH with ((F1 ‖L F2) \ AH, (Ḡ1 ‖LG2) \ AH) ∈ B and
((F ′1 ‖L[1]F2) \ AH, (G′1 ‖L[1]G2) \ AH) ∈ B, where the right subprocess alternates between G2 and
[1]G2 thus allowing the probabilistic transitions along G1 \ AH==⇒ Ḡ1 \ AH to synchronize with the
only one of [1]G2.

• If (F1 ‖L F2) \ AH
τ−→a ([1]F1 ‖L F ′2) \ AH with F2

τ−→a F
′
2, then the proof is similar to the one of the

previous case.

As for probabilities, we reason like in the proof of the corresponding result for ≈pw.

Theorem 9.2. Let E1, E2 ∈ Pn or E1, E2 ∈ Pp, E ∈ Ppr, ≈ ∈ {≈pw,≈pb}, and P ∈ {SBSNNI≈ ,P_BNDC≈ ,
SBNDC≈}. Then:

1. E ∈ P =⇒ a .E ∈ P for all a ∈ AL ∪ {τ}, when E ∈ Pp.

2. E1, E2 ∈ P =⇒ E1 ‖LE2 ∈ P for all L ⊆ AL if P ∈ {SBSNNI≈pb
,P_BNDC≈pb

} or for all L ⊆ A \ {τ}
if P ∈ {SBSNNI≈pw ,P_BNDC≈pw

,SBNDC≈pw , SBNDC≈pb
}.

3. E ∈ P =⇒ E \ L ∈ P for all L ⊆ A \ {τ}.

4. E ∈ P =⇒ E /L ∈ P for all L ⊆ AL.
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Proof. We first prove the four results for SBSNNI≈ , from which it will follow that they hold for P_BNDC≈ too
by virtue of the forthcoming Theorem 9.3:

1. Given an arbitrary E ∈ Pp∩SBSNNI≈ and an arbitrary a ∈ AL∪{τ}, from E \AH ≈ E /AH we derive that
a . (E\AH) ≈ a . (E /AH) because ≈ is a congruence with respect to action prefix by virtue of Lemma 9.2(1),
from which it follows that (a .E) \ AH ≈ (a .E) /AH, i.e., a .E ∈ BSNNI≈ , because a /∈ AH. To conclude
the proof, it suffices to observe that all the processes reachable from a .E after performing a are processes
reachable from E, which are known to be BSNNI≈ .

2. Given two arbitrary E1, E2 ∈ Pn or E1, E2 ∈ Pp such that E1, E2 ∈ SBSNNI≈ and an arbitrary L ⊆ AL, the
result follows from Lemma 9.3(1) by taking F1 identical to G1 and F2 identical to G2.

3. Given an arbitrary E ∈ SBSNNI≈ and an arbitrary L ⊆ A \ {τ}, the result follows from Lemma 9.3(2)
by taking F identical to G – which will be denoted by E′ – because:

• (E′ \ L) \ AH ≈ (E′ \ AH) \ L as the order in which restriction sets are considered is unimportant.

• (E′ \AH) \L ≈ (E′ /AH) \L because E′ \AH ≈ E′ /AH – as E ∈ SBSNNI≈ and E′ ∈ reach(E) – and
≈ is a congruence with respect to the restriction operator due to Lemma 9.2(3).

• (E′ /AH) \ L ≈ (E′ \ L) /AH as shown in Lemma 9.3(2).

• From the transitivity of ≈ we obtain that (E′ \ L) \ AH ≈ (E′ \ L) /AH.

4. Given an arbitrary E ∈ SBSNNI≈ and an arbitrary L ⊆ AL, for every E′ ∈ reach(E)
it holds that E′ \ AH ≈ E′ /AH, from which we derive that (E′ \ AH) /L ≈ (E′/AH) /L because ≈
is a congruence with respect to the hiding operator due to Lemma 9.2(4). Since L ∩ AH = ∅, we have
that (E′ \ AH) /L is isomorphic to (E′ /L) \ AH and (E′ /AH) /L is isomorphic to (E′ /L) /AH, hence
(E′ /L) \ AH ≈ (E′ /L) /AH, i.e., E′ /L is BSNNI≈ .

We then prove the four results for SBNDC≈ :

1. Given an arbitrary E ∈ Pp∩SBNDC≈ and an arbitrary a ∈ AL∪{τ}, it trivially holds that a .E ∈ SBNDC≈
because a is not high and all the processes reachable from a .E after performing a are processes reachable
from E, which is known to be SBNDC≈ .

2. Given two arbitrary E1, E2 ∈ Pn or E1, E2 ∈ Pp such that E1, E2 ∈ SBNDC≈ and an arbitrary L ⊆ A\ {τ},
the result follows from Lemma 9.3(3) as can be seen by observing that whenever E′1 ‖LE′2

h−→aE
′′
1 ‖LE′′2 for

E′1 ‖LE′2 ∈ reach(E1 ‖LE2):

• If E′1
h−→aE

′′
1 , E′′2 = E′2 (hence E′2 \ AH ≈ E′′2 \ AH), and h /∈ L, then from E1 ∈ SBNDC≈ it follows

that E′1 \ AH ≈ E′′1 \ AH, which in turn entails that (E′1 ‖LE′2) \ AH ≈ (E′′1 ‖LE′′2 ) \ AH because ≈
is a congruence with respect to the parallel composition operator due to Lemma 9.2(2) and restriction
distributes over parallel composition.

• If E′2
h−→aE

′′
2 , E′′1 = E′1, and h /∈ L, then we reason like in the previous case.
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• If E′1
h−→aE

′′
1 , E′2

h−→aE
′′
2 , and h ∈ L, then from E1, E2 ∈ SBNDC≈ it follows that E′1 \AH ≈ E′′1 \AH

and E′2 \ AH ≈ E′′2 \ AH, which in turn entail that (E′1 ‖LE′2) \ AH ≈ (E′′1 ‖LE′′2 ) \ AH because ≈ is
a congruence with respect to the parallel composition operator due to Lemma 9.2(2) and restriction
distributes over parallel composition.

3. Given an arbitrary E ∈ SBNDC≈ and an arbitrary L ⊆ A \ {τ}, for every E′ ∈ reach(E) and for every E′′

such that E′ h−→aE
′′ it holds that E′\AH ≈ E′′\AH, from which we derive that (E′\AH)\L ≈ (E′′\AH)\L

because ≈ is a congruence with respect to the restriction operator due to Lemma 9.2(3). Since (E′ \AH) \L
is isomorphic to (E′ \L)\AH and (E′′ \AH)\L is isomorphic to (E′′ \L)\AH, we have that (E′ \L)\AH ≈
(E′′ \ L) \ AH.

4. Given an arbitrary E ∈ SBNDC≈ and an arbitrary L ⊆ AL, for every E′ ∈ reach(E) and for every E′′ such
that E′ h−→aE

′′ it holds that E′ \ AH ≈ E′′ \ AH, from which we derive that (E′ \ AH) /L ≈ (E′′ \ AH) /L
because ≈ is a congruence with respect to the hiding operator due to Lemma 9.2(4). Since L ∩ AH = ∅, we
have that (E′ \ AH) /L is isomorphic to (E′ /L) \ AH and (E′′ \ AH) /L is isomorphic to (E′′ /L) \ AH,
hence (E′ /L) \ AH ≈ (E′′ /L) \ AH.

As far as parallel composition is concerned, the compositionality of SBSNNI≈pb
holds only for all L ⊆ AL.

For instance, both E1 = h . 0 + l1 . 0 + τ . 0 and E2 = h . 0 + l2 . 0 + τ . 0 are SBSNNI≈pb
, but E1 ‖{h}E2

is not because the transition (E1 ‖{h}E2) /AH
τ−→a ([1]0 ‖{h}[1]0) /AH arising from the synchronization be-

tween the two h-actions cannot be matched by (E1 ‖{h}E2) \ AH in the probabilistic branching bisimula-
tion game. As a matter of fact, the only two possibilities are (E1 ‖{h}E2) \ AH==⇒ (E1 ‖{h}E2) \ AH

τ−→a

([1]0 ‖{h}[1]E2) \ AH
1−→p (0 ‖{h}E2) \ AH

τ−→a ([1]0 ‖{h}[1]0) \ AH and (E1 ‖{h}E2) \ AH==⇒ (E1 ‖{h}E2) \ AH
τ−→a ([1]E1 ‖{h}[1]0) \ AH

1−→p (E1 ‖{h} 0) \ AH
τ−→a ([1]0 ‖{h}[1]0) \ AH but neither ([1]0 ‖{h}[1]E2) \ AH

nor ([1]E1 ‖{h}[1]0) \ AH is ≈pb-equivalent to (E1 ‖{h}E2) \ AH when l1 6= l2. Note that
(E1 ‖{h}E2)/AH ≈pw (E1 ‖{h}E2) \ AH because (E1 ‖{h}E2)/AH

τ−→a ([1]0 ‖{h}[1]0) /AH is matched by
(E1 ‖{h}E2) \ AH==⇒ ([1]0 ‖{h}[1]0) \ AH. Similar to the previous chapter, it is not only a matter of the higher
discriminating power of ≈pb with respect to ≈pw. If we used the CCS parallel composition operator [112], which
turns the synchronization of two actions into τ thus combining communication with hiding, then the parallel com-
position of E1 and E2 with restriction on AH would be able to respond, in the probabilistic branching bisimulation
game, with a single τ -transition reaching the parallel composition of [1]0 and [1]0 with restriction on AH.

9.2.2 Taxonomy of Security Properties

Similar to the nondeterministic setting of the previous chapter, the noninterference properties in Definition 9.6
turn out to be increasingly finer. This holds both for those based on ≈pw and for those based on ≈pb.

Part of the proof of the forthcoming Theorem 9.3 relies on the bisimulation-up-to technique [131] and requires
introducing probabilistic variants of up-to weak [112] and branching [75] bisimulations. In doing so in our quan-
titative setting, we have to take into account some technicalities mentioned in [44, 91, 79]. In particular, given
≈ ∈ {≈pw,≈pb} and a related bisimulation B, we cannot consider the relation composition ≈B≈ like in the fully
nondeterministic case as it may not be transitive and this would not make it possible to work with equivalence
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classes for the probabilistic part. Rather we have to consider (B ∪ B−1 ∪ ≈)+ =
⋃∞
n=1(B ∪ B−1 ∪ ≈)n to ensure

transitivity in addition to reflexivity and symmetry, where B−1 is the inverse of B and B is no longer required to
be an equivalence relation thus avoiding redundant information in it. We remind that (B ∪ B−1 ∪ ≈)n for n > 1
is the composition of relations (B ∪ B−1 ∪ ≈)n−1 and B ∪ B−1 ∪ ≈.

Definition 9.7. A relation B over Ppr is a weak probabilistic bisimulation up to ≈pw iff, whenever (E1, E2) ∈ B,
then:

• For each E1
a

==⇒E′1 there exists E2
â

==⇒E′2 such that (E′1, E
′
2) ∈ (B ∪ B−1 ∪ ≈pw)+, and vice versa.

• prob(E1, C) = prob(E2, C) for all equivalence classes C ∈ Ppr/(B ∪ B−1 ∪ ≈pw)+.

Definition 9.8. A relation B over Ppr is a probabilistic branching bisimulation up to≈pb iff, whenever (E1,E2)∈B,
then:

• For each E1 ==⇒ Ē1
a−→aE

′
1 with E1 ≈pb Ē1:

– either a = τ and Ē1 ≈pb E
′
1;

– or there exists E2 ==⇒ Ē2
a−→aE

′
2 such that (Ē1, Ē2)∈(B∪B−1∪≈pb)+ and (E′1, E

′
2)∈(B∪B−1∪≈pb)+;

and vice versa.

• prob(E1, C) = prob(E2, C) for all equivalence classes C ∈ Ppr/(B ∪ B−1 ∪ ≈pb)+.

In the second definition, in the case that a = τ and Ē1 ≈pb E
′
1 it holds that E′1 ≈pb Ē1 ≈pb E1 B E2, i.e.,

(E′1, E2) ∈ (B ∪B−1 ∪ ≈pb)+, because ≈pb is symmetric. We now prove that the two previous notions are correct,
i.e., they imply the respective bisimilarities.

Proposition 9.1. Let E1, E2 ∈ Ppr and B be a weak probabilistic bisimulation up to ≈pw. If (E1, E2) ∈ B then
E1 ≈pw E2.

Proof. It suffices to prove that the equivalence relation (B′ ∪ ≈pw)+ is a weak probabilistic bisimulation, where
B′ = B∪B−1. Given (E1, E2)∈(B′ ∪ ≈pw)+ and considering the smallest n∈N>0 for which (E1, E2)∈(B′ ∪ ≈pw)n,
we proceed by induction on n:

• If n = 1 then there are two cases:

– Let (E1, E2) ∈ B′. If E1
a−→aE

′
1, hence E1

a
==⇒E′1, then from the fact that B′ is a weak probabilistic

bisimulation up to ≈pw it follows that there exists E2
â

==⇒E′2 such that (E′1, E
′
2) ∈ (B′∪ ≈pw)+. More-

over, since B′ is a weak probabilistic bisimulation up to ≈pw, we have that prob(E1, C) = prob(E2, C)
for all C ∈ Ppr/(B′ ∪ ≈pw)+.

– Let E1 ≈pw E2. If E1
a−→aE

′
1 then there exists E2

â
==⇒E′2 such that E′1 ≈pw E′2, hence (E′1, E

′
2) ∈

(B′ ∪ ≈pw)+ because ≈pw⊆ (B′ ∪ ≈pw)+. Moreover, since ≈pw⊆ (B′ ∪ ≈pw)+ implies that every
equivalence class of (B′ ∪ ≈pw)+ is the union of some equivalence classes of ≈pw, we have that
prob(E1, C) = prob(E2, C) for all C ∈ Ppr/(B′ ∪ ≈pw)+.
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• If n > 1 then from (E1, E2) ∈ (B′ ∪ ≈pw)n and the minimality of n it follows that there exists E ∈ Ppr such
that (E1, E) ∈ (B′ ∪ ≈pw)n−1 and (E,E2) ∈ (B′ ∪ ≈pw). If E1

a−→aE
′
1 then by the induction hypothesis

applied to (E1, E) ∈ (B′ ∪ ≈pw)n−1 there exists E â
==⇒E′ such that (E′1, E

′) ∈ (B′ ∪ ≈pw)+. Therefore
by the induction hypothesis applied to (E,E2) ∈ (B′ ∪ ≈pw) there exists E2

â
==⇒E′2 such that (E′, E′2) ∈

(B′ ∪ ≈pw)+, where (E′1, E
′
2) ∈ (B′ ∪ ≈pw)+ by transitivity. Moreover, from the induction hypothesis applied

to (E1, E) ∈ (B′ ∪ ≈pw)n−1 and (E,E2) ∈ (B′ ∪ ≈pw) it follows that prob(E1, C) = prob(E,C) = prob(E2, C)
for all C ∈ Ppr/(B′ ∪ ≈pw)+.

Proposition 9.2. Let E1, E2 ∈ Ppr and B be a probabilistic branching bisimulation up to ≈pb. If (E1, E2) ∈ B
then E1 ≈pb E2.

Proof. It suffices to prove that the equivalence relation (B′ ∪ ≈pb)+ is a probabilistic branching bisimulation, where
B′ = B∪B−1. Given (E1, E2) ∈ (B′ ∪ ≈pb)+ and considering the smallest n ∈ N>0 for which (E1, E2) ∈ (B′ ∪ ≈pb)n,
we proceed by induction on n:

• If n = 1 then there are two cases:

– Let (E1, E2) ∈ B′. If E1
a−→aE

′
1, hence E1 ==⇒E1

a−→aE
′
1, then from the fact that B′ is a probabilistic

branching bisimulation up to ≈pb it follows that there are two subcases:

∗ If a = τ and E1 ≈pb E
′
1, hence (E′1, E1) ∈ (B′ ∪ ≈pb)+ by symmetry, from (E1, E2) ∈ (B′ ∪ ≈pb)+

it follows that (E′1, E2) ∈ (B′ ∪ ≈pb)+ by transitivity.
∗ If there exists E2 ==⇒ Ē2

a−→aE
′
2 such that (E1, Ē2) ∈ (B′ ∪ ≈pb)+ and (E′1, E

′
2) ∈ (B′ ∪ ≈pb)+,

then we are done.

Moreover, since B′ is a probabilistic branching bisimulation up to ≈pb, we have that prob(E1, C) =
prob(E2, C) for all C ∈ Ppr/(B′ ∪ ≈pb)+.

– Let E1 ≈pb E2. If E1
a−→aE

′
1 then there are two subcases:

∗ If a = τ and E′1 ≈pb E2, then (E′1, E2) ∈ (B′ ∪ ≈pb)+ because ≈pb⊆ (B′ ∪ ≈pb)+.
∗ If there exists E2 ==⇒ Ē2

a−→aE
′
2 such that E1 ≈pb Ē2 and E′1 ≈pb E

′
2, then (E1, Ē2) ∈ (B′ ∪ ≈pb)+

and (E′1, E
′
2) ∈ (B′ ∪ ≈pb)+ because ≈pb⊆ (B′ ∪ ≈pb)+.

Moreover, since ≈pb⊆ (B′ ∪ ≈pb)+ implies that every equivalence class of (B′ ∪ ≈pb)+ is the union of
some equivalence classes of ≈pb, we have that prob(E1, C) = prob(E2, C) for all C ∈ Ppr/(B′ ∪ ≈pb)+.

• If n > 1 then from (E1, E2) ∈ (B′ ∪ ≈pb)n and the minimality of n it follows that there exists E ∈ Ppr such
that (E1, E) ∈ (B′ ∪ ≈pb)n−1 and (E,E2) ∈ (B′ ∪ ≈pb). If E1

a−→aE
′
1 then by the induction hypothesis

applied to (E1, E) ∈ (B′ ∪ ≈pb)n−1 there are two cases:

– If a = τ and (E′1, E) ∈ (B′ ∪ ≈pb)+, then from (E,E2)∈(B′ ∪ ≈pb) it follows that (E′1, E2)∈(B′ ∪ ≈pb)+

by transitivity.

– If there exists E==⇒ Ē
a−→aE

′ such that (E1, Ē) ∈ (B′ ∪ ≈pb)+ and (E′1, E
′) ∈ (B′ ∪ ≈pb)+, then by

the induction hypothesis applied to (E,E2) ∈ (B′ ∪ ≈pb) there are two subcases:
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∗ If a = τ and (E′, E2) ∈ (B′ ∪ ≈pb)+, then from (E′1, E
′) ∈ (B′ ∪ ≈pb)+ it follows that (E′1, E2) ∈

(B′ ∪ ≈pb)+ by transitivity.
∗ If there exists E2 ==⇒ Ē2

a−→aE
′
2 such that (Ē, Ē2) ∈ (B′ ∪ ≈pb)+ and (E′, E′2) ∈ (B′ ∪ ≈pb)+, then

from (E1, Ē) ∈ (B′ ∪ ≈pb)+ and (E′1, E
′) ∈ (B′ ∪ ≈pb)+ it follows that (E1, Ē2) ∈ (B′ ∪ ≈pb)+ and

(E′1, E
′
2) ∈ (B′ ∪ ≈pb)+ by transitivity.

Moreover, from the induction hypothesis applied to (E1, E) ∈ (B′ ∪ ≈pb)n−1 and (E,E2) ∈ (B′ ∪ ≈pb)
it follows that prob(E1, C) = prob(E,C) = prob(E2, C) for all C ∈ Ppr /(B′ ∪ ≈pb)+.

Before presenting the taxonomy, we prove some further ancillary results about parallel composition, restriction,
and hiding under SBSNNI≈ and SBNDC≈ .

Lemma 9.4. Let E,E1, E2 ∈ Ppr and ≈ ∈ {≈pw,≈pb}. Then:

1. If E ∈ SBNDC≈, E′ ∈ reach(E), and E′ /AH==⇒E′′ /AH, then E′ \ AH==⇒ Ê′′ \ AH with E′′ \ AH ≈
Ê′′ \ AH.

2. If E1, E2 ∈ SBNDC≈ and E1 \ AH ≈ E2 \ AH, then E1 /AH ≈ E2 /AH.

3. If E2 ∈ SBSNNI≈ and L ⊆ AH, then E′1 \ AH ≈ ((E′2 ‖L F ) /L) \ AH for all F ∈ Ppr having only actions
in AH and for all E′1 ∈ reach(E1) and E′2 ∈ reach(E2) such that E′1 \ AH ≈ E′2 /AH, when E′2, F ∈ Pn or
E′2, F ∈ Pp.

Proof. We first prove the three results for the ≈pw-based properties:

1. We proceed by induction on the number n ∈ N of τ - and probabilistic transitions along E′ /AH==⇒E′′ /AH:

• If n = 0 then E′ /AH stays idle and E′′ /AH is E′ /AH. Likewise, E′ \ AH can stay idle, i.e.,
E′ \ AH==⇒E′ \ AH, with E′ \ AH ≈pw E′ \ AH as ≈pw is reflexive.

• Let n > 0 and E′0 /AH==⇒E′n−1 /AH
τ−→aE

′
n /AH or E′0 /AH==⇒E′n−1 /AH

p−→pE
′
n /AH where

E′0 is E′ and E′n is E′′. From the induction hypothesis it follows that E′ \ AH==⇒ Ê′n−1 \ AH with
E′n−1\AH ≈pw Ê′n−1\AH. As far as the n-th transition is concerned, which is E′n−1 /AH

τ−→aE
′
n /AH or

E′n−1 /AH
p−→pE

′
n /AH, there are three cases depending on whether it is originated from E′n−1

τ−→aE
′
n,

E′n−1
h−→aE

′
n, or E′n−1

p−→pE
′
n:

– If E′n−1
τ−→aE

′
n then E′n−1 \ AH

τ−→aE
′
n \ AH. Since E′n−1 \ AH ≈pw Ê′n−1 \ AH, there exists

Ê′n−1 \ AH==⇒ Ê′n \ AH such that E′n \ AH ≈pw Ê′n \ AH. Therefore E′ \ AH==⇒ Ê′n \ AH with
E′′ \ AH ≈pw Ê′n \ AH.

– If E′n−1
h−→aE

′
n then from E ∈ SBNDC≈pw it follows that E′n−1\AH ≈pw E′n\AH. Since E′n−1\AH

≈pw Ê′n−1 \AH and ≈pw is symmetric and transitive, we obtain E′n \AH ≈pw Ê′n−1 \AH. Therefore
E′ \ AH==⇒ Ê′n−1 \ AH with E′′ \ AH ≈pw Ê′n−1 \ AH.
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– If E′n−1
p−→pE

′
n then from the fact that E′n−1 \AH ≈pw Ê′n−1 \AH it follows that prob(E′n−1 \AH,

C) = prob(Ê′n−1 \ AH, C) for all C ∈ Ppr/ ≈pw and hence there exists Ê′n−1 \ AH
q−→p Ê

′
n \ AH

for some q ∈ R]0,1] such that Ê′n \ AH ∈ [E′n \ AH]≈pw . Therefore E′ \ AH==⇒ Ê′n \ AH with
E′′ \ AH ≈pw Ê′n \ AH.

2. Let B be an equivalence relation containing all the pairs of processes that have to be shown to be ≈pw-
equivalent according to the considered result. Starting from (E1 /AH, E2 /AH) ∈ B, so that E1 \ AH ≈pw

E2 \ AH, there are three cases for action transitions based on the operational semantic rules in Table 9.1:

• If E1 /AH
τ−→aE

′
1 /AH with E1

h−→aE
′
1, then E1 \AH ≈pw E′1 \AH as h ∈ AH and E1 ∈ SBNDC≈pw .

Since E′1 \ AH ≈pw E2 \ AH, as E1 \ AH ≈pw E2 \ AH and ≈pw is symmetric and transitive, with
E′1, E2 ∈ SBNDC≈pw , we have that E2 /AH is allowed to stay idle with (E′1 /AH, E2 /AH) ∈ B.

• If E1 /AH
l−→aE

′
1 /AH with E1

l−→aE
′
1, then E1 \ AH

l−→aE
′
1 \ AH as l /∈ AH. From E1 \ AH ≈pw

E2 \ AH it follows that there exists E2 \ AH
l̂

==⇒E′2 \ AH such that E′1 \ AH ≈pw E′2 \ AH. Thus

E2 /AH
l̂

==⇒E′2 /AH as l, τ /∈ AH. Since E′1 \ AH ≈pw E′2 \ AH with E′1, E
′
2 ∈ SBNDC≈pw , we have

that (E′1 /AH, E′2 /AH) ∈ B.
• If E1 /AH

τ−→aE
′
1 /AH with E1

τ−→aE
′
1, then the proof is like the one of the previous case.

As for probabilities, since the hiding and restriction operators do not apply to probabilistic transitions,
from E1 \ AH ≈pw E2 \ AH it follows that prob(E1 /AH, C) = prob(E1 \ AH, C) = prob(E2 \ AH, C) =
prob(E2 /AH, C) for all C ∈ Ppr/B.

3. Let B be an equivalence relation containing all the pairs of processes that have to be shown to be ≈pw-
equivalent according to the considered result. Starting from E′1 \ AH and ((E′2 ‖L F ) /L) \ AH related by B,
so that E′1 \ AH ≈pw E′2 /AH, there are six cases for action transitions based on the operational semantic
rules in Table 9.1. In the first two cases, it is E′1 \ AH to move first:

• Let E′1 \ AH
l−→aE

′′
1 \ AH. We observe that from E′2 ∈ reach(E2) and E2 ∈ SBSNNI≈pw it follows

that E′2 \ AH ≈pw E′2 /AH, so that E′1 \ AH ≈pw E′2 /AH ≈pw E′2 \ AH, i.e., E′1 \ AH ≈pw E′2 \ AH,
as ≈pw is symmetric and transitive. As a consequence, since l 6= τ there exists E′2 \ AH

l
==⇒E′′2 \ AH

such that E′′1 \ AH ≈pw E′′2 \ AH. Thus ((E′2 ‖L F ) /L) \ AH
l

==⇒ ((E′′2 ‖L F ) /L) \ AH with (E′′1 \ AH,
((E′′2 ‖L F ) /L) \ AH) ∈ B because E′′1 ∈ reach(E1), E′′2 ∈ reach(E2), and E′′1 \ AH ≈pw E′′2 /AH
as E2 ∈ SBSNNI≈pw , where the right subprocess alternates between F and [1]F thus allowing the

probabilistic transitions along E′2 \ AH
l

==⇒E′′2 \ AH to synchronize with the only one of [1]F .

• Let E′1 \AH
τ−→aE

′′
1 \AH. The proof is like the one of the previous case with ==⇒ used in place of l

==⇒.

In the other four cases, instead, it is ((E′2 ‖L F ) /L) \ AH to move first:

• Let ((E′2 ‖L F ) /L) \ AH
l−→a ((E′′2 ‖L[1]F ) /L) \ AH with E′2

l−→aE
′′
2 so that E′2 \ AH

l−→aE
′′
2 \ AH

as l /∈ AH. We observe that from E′2 ∈ reach(E2) and E2 ∈ SBSNNI≈pw it follows that E′2 \ AH ≈pw

E′2 /AH, so that E′2 \ AH ≈pw E′2 /AH ≈pw E′1 \ AH, i.e., E′2 \ AH ≈pw E′1 \ AH, as ≈pw is symmetric
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and transitive. As a consequence, since l 6= τ there exists E′1 \AH
l

==⇒E′′1 \AH such that E′′2 \AH ≈pw

E′′1 \ AH. Thus (((E′′2 ‖L[1]F ) /L) \ AH, E′′1 \ AH) ∈ B because E′′1 ∈ reach(E1), E′′2 ∈ reach(E2), and
E′′1 \ AH ≈pw E′′2 /AH as E2 ∈ SBSNNI≈pw .

• Let ((E′2 ‖L F ) /L) \ AH
τ−→a ((E′′2 ‖L[1]F ) /L) \ AH with E′2

τ−→aE
′′
2 so that E′2 \ AH

τ−→aE
′′
2 \ AH as

τ /∈ AH. The proof is like the one of the previous case with ==⇒ used in place of l
==⇒.

• If ((E′2 ‖L F ) /L) \ AH
τ−→a (([1]E′2 ‖L F ′) /L) \ AH with F

τ−→a F
′, then trivially ((([1]E′2 ‖L F ′) /L)

\ AH, E′1 \ AH) ∈ B as [1]E′2 ≈pw E′2 and hence [1]E′2 /AH ≈pw E′2 /AH by Lemma 9.2(4).

• Let ((E′2 ‖L F ) /L) \AH
τ−→a ((E′′2 ‖L F ′) /L) \AH with E′2

h−→aE
′′
2 – so that E′2 /AH

τ−→aE
′′
2 /AH as

h ∈ AH – and F h−→a F
′ for h ∈ L. We observe that from E′2, E

′′
2 ∈ reach(E2) and E2 ∈ SBSNNI≈pw

it follows that E′2 \ AH ≈pw E′2 /AH and E′′2 \ AH ≈pw E′′2 /AH, so that E′2 \ AH==⇒E′′2 \ AH as
E′2 /AH

τ−→aE
′′
2 /AH and E′2 \ AH ≈pw E′2 /AH ≈pw E′1 \ AH, i.e., E′2 \ AH ≈pw E′1 \ AH, as ≈pw is

symmetric and transitive. As a consequence there exists E′1 \ AH==⇒E′′1 \ AH such that E′′2 \ AH ≈pw

E′′1 \ AH. Thus (((E′′2 ‖L F ′) /L) \ AH, E′′1 \ AH) ∈ B because E′′1 ∈ reach(E1), E′′2 ∈ reach(E2), and
E′′1 \ AH ≈pw E′′2 /AH as E2 ∈ SBSNNI≈pw .

As for probabilities, to avoid trivial cases let E′1, E
′
2, F ∈ Pp and consider an equivalence class

C ∈ Ppr/B that involves nondeterministic processes reachable from E′1 \ AH and ((E′2 ‖L F ) /L) \ AH,
specifically C = {G1,i \ AH, ((G2,j ‖LHj) /L) \ AH | Hj ∈ Ppr having only actions in AH ∧ Gk,h ∈
reach(Ek)∧G1,i \AH ≈pw G2,j /AH}. If we focus on a single probabilistic transition of E′2, say E′2

p−→pE
′′
2 ,

then ((E′2 ‖L F ) /L) \ AH
p·qj−→p ((E′′2 ‖L Fj) /L) \ AH for all F

qj−→p Fj . From
∑

j∈J qj = 1 it follows that
prob(((E′2 ‖L F ) /L) \ AH, {((E′′2 ‖L Fj) /L) \ AH | j ∈ J}) = p, where all processes ((E′′2 ‖L Fj) /L) \ AH
belong to the same equivalence class of B because each Fj has only actions in AH. Since the restriction and
hiding operators do not apply to probabilistic transitions, we have that:

prob(E′1 \ AH, C) = prob(E′1 \ AH, C̄)
prob(((E′2 ‖L F ) /L) \ AH, C) = prob(E′2 /AH, C̄)

where:
C̄ = {G1,i \ AH ∈ C} ∪ {G2,j /AH | ((G2,j ‖LHj) /L) \ AH ∈ C}

Since E′1 \ AH ≈pw E′2 /AH and C̄ is the union of some ≈pw-equivalence classes, we have that:
prob(E′1 \ AH, C̄) = prob(E′2 /AH, C̄)

We then prove the three results for the ≈pb-based properties:

1. We proceed by induction on the number n ∈ N of τ - and probabilistic transitions along E′ /AH==⇒E′′ /AH:

• If n = 0 then the proof is like the one of the corresponding result for ≈pw.

• Let n > 0 and E′0 /AH==⇒E′n−1 /AH
τ−→aE

′
n /AH or E′0 /AH==⇒E′n−1 /AH

p−→pE
′
n /AH where

E′0 is E′ and E′n is E′′. From the induction hypothesis it follows that E′ \ AH==⇒ Ê′n−1 \ AH with
E′n−1 \ AH ≈pb Ê

′
n−1 \ AH. The rest of the proof is like the one of the corresponding result for ≈pw

with the following difference:

– If E′n−1
τ−→aE

′
n then E′n−1 \ AH

τ−→aE
′
n \ AH. Since E′n−1 \ AH ≈pb Ê

′
n−1 \ AH:
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∗ either E′n \ AH ≈pb Ê
′
n−1 \ AH, in which case Ê′n−1 \ AH stays idle and hence E′ \ AH==⇒

Ê′n−1 \ AH with E′′ \ AH ≈pb Ê
′
n−1 \ AH;

∗ or there exists Ê′n−1 \ AH==⇒ Ēn−1 \ AH
τ−→a Ê

′
n \ AH such that E′n−1 \ AH ≈pb Ēn−1 \ AH

and E′n \ AH ≈pb Ê
′
n \ AH, hence E′ \ AH==⇒ Ê′n \ AH with E′′ \ AH ≈pb Ê

′
n \ AH.

2. Let B be an equivalence relation containing all the pairs of processes that have to be shown to be ≈pb-
equivalent according to the considered result. Starting from (E1 /AH, E2 /AH) ∈ B, so that E1 \ AH ≈pb

E2 \ AH, there are three cases for action transitions based on the operational semantic rules in Table 9.1:

• If E1 /AH
τ−→aE

′
1 /AH with E1

h−→aE
′
1, then the proof is like the one of the corresponding result

for ≈pw.

• If E1 /AH
l−→aE

′
1 /AH with E1

l−→aE
′
1, then E1 \ AH

l−→aE
′
1 \ AH as l /∈ AH. From E1 \ AH ≈pb

E2 \AH it follows that there exists E2 \AH==⇒ Ē2 \AH
l−→aE

′
2 \AH such that E1 \AH ≈pb Ē2 \AH

and E′1 \ AH ≈pb E
′
2 \ AH. Thus E2 /AH==⇒ Ē2 /AH

l−→aE
′
2 /AH as l, τ /∈ AH. Since E1 \ AH ≈pb

Ē2 \ AH with E1, Ē2 ∈ SBNDC≈pb
and E′1 \ AH ≈pb E

′
2 \ AH with E′1, E′2 ∈ SBNDC≈pb

, we have that
(E1 /AH, Ē2 /AH) ∈ B and (E′1 /AH, E′2 /AH) ∈ B.

• If E1 /AH
τ−→aE

′
1 /AH with E1

τ−→aE
′
1, then E1\AH

τ−→aE
′
1\AH as τ /∈ AH. There are two subcases:

– If E′1 \ AH ≈pb E2 \ AH then E2 \ AH is allowed to stay idle with (E′1 /AH, E2 /AH) ∈ B because
E′1 \ AH ≈pb E2 \ AH and E′1, E2 ∈ SBNDC≈pb

.

– If E′1 \ AH 6≈pb E2 \ AH then the proof is like the one of the previous case with τ−→a used in place
of l−→a.

As for probabilities, we reason like in the proof of the corresponding result for ≈pw.

3. Let B be an equivalence relation containing all the pairs of processes that have to be shown to be ≈pb-
equivalent according to the considered result. Starting from E′1 \ AH and ((E′2 ‖L F ) /L) \ AH related by B,
so that E′1 \ AH ≈pb E

′
2 /AH, there are six cases for action transitions based on the operational semantic

rules in Table 9.1. In the first two cases, it is E′1 \ AH to move first:

• Let E′1 \ AH
l−→aE

′′
1 \ AH. We observe that from E′2 ∈ reach(E2) and E2 ∈ SBSNNI≈pb

it follows that
E′2\AH ≈pb E

′
2 /AH, so that E′1\AH ≈pb E

′
2 /AH ≈pb E

′
2\AH, i.e., E′1\AH ≈pb E

′
2\AH, as≈pb is sym-

metric and transitive. As a consequence, since l 6= τ there exists E′2 \AH==⇒ Ē′2 \AH
l−→aE

′′
2 \AH such

that E′1\AH ≈pb Ē
′
2\AH and E′′1 \AH ≈pb E

′′
2 \AH. Thus ((E′2 ‖L F ) /L)\AH==⇒ ((Ē′2 ‖L F ) /L)\AH

l−→a ((E′′2 ‖L F ) /L) \ AH with (E′1 \ AH, ((Ē′2 ‖L F ) /L) \ AH) ∈ B – because E′1 ∈ reach(E1),
Ē′2 ∈ reach(E2), and E′1\AH ≈pb Ē

′
2 /AH as E2 ∈ SBSNNI≈pb

– and (E′′1 \AH, ((E′′2 ‖L F ) /L)\AH) ∈ B
– because E′′1 ∈ reach(E1), E′′2 ∈ reach(E2), and E′′1 \ AH ≈pb E

′′
2 /AH as E2 ∈ SBSNNI≈pb

– where
the right subprocess alternates between F and [1]F thus allowing the probabilistic transitions along
E′2 \ AH==⇒ Ē′2 \ AH to synchronize with the only one of [1]F .
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• If E′1 \ AH
τ−→aE

′′
1 \ AH there are two subcases:

– If E′′1 \ AH ≈pb E′2 /AH then (E′2 ‖L F ) /L) \ AH is allowed to stay idle with (E′′1 \ AH,
((E′2 ‖L F ) /L) \ AH) ∈ B because E′′1 ∈ reach(E1) and E′2 ∈ reach(E2).

– If E′′1 \ AH 6≈pb E
′
2 /AH then the proof is like the one of the previous case with τ−→a used in place

of l−→a.

In the other four cases, instead, it is ((E′2 ‖L F ) /L) \ AH to move first:

• Let ((E′2 ‖L F ) /L) \ AH
l−→a ((E′′2 ‖L[1]F ) /L) \ AH with E′2

l−→aE
′′
2 so that E′2 \ AH

l−→aE
′′
2 \ AH

as l /∈ AH. We observe that from E′2 ∈ reach(E2) and E2 ∈ SBSNNI≈pb
it follows that E′2 \ AH ≈pb

E′2 /AH, so that E′2 \ AH ≈pb E
′
2 /AH ≈pb E

′
1 \ AH, i.e., E′2 \ AH ≈pb E

′
1 \ AH, as ≈pb is symmetric

and transitive. As a consequence, since l 6= τ there exists E′1 \ AH==⇒ Ē′1 \ AH
l−→aE

′′
1 \ AH such

that E′2 \ AH ≈pb Ē′1 \ AH and E′′2 \ AH ≈pb E′′1 \ AH. Thus (((E′2 ‖L F ) /L) \ AH, Ē′1 \ AH) ∈ B
– because Ē′1 ∈ reach(E1), E′2 ∈ reach(E2), and Ē′1 \ AH ≈pb E′2 /AH as E2 ∈ SBSNNI≈pb

– and
(((E′′2 ‖L[1]F ) /L) \ AH, E′′1 \ AH) ∈ B – because E′′1 ∈ reach(E1), E′′2 ∈ reach(E2), and E′′1 \ AH ≈pb

E′′2 /AH as E2 ∈ SBSNNI≈pb
.

• If ((E′2 ‖L F ) /L) \ AH
τ−→a ((E′′2 ‖L[1]F ) /L) \ AH with E′2

τ−→aE
′′
2 so that E′2 \ AH

τ−→aE
′′
2 \ AH as

τ /∈ AH, there are two subcases:

– If E′′2 \AH ≈pb E
′
1\AH then E′1\AH is allowed to stay idle with (((E′′2 ‖L[1]F ) /L)\AH, E′1\AH) ∈ B

because E′1 ∈ reach(E1), E′′2 ∈ reach(E2), and E′1 \ AH ≈pb E
′′
2 /AH as E2 ∈ SBSNNI≈pb

.

– If E′′2 \AH 6≈pb E
′
1 \AH then the proof is like the one of the previous case with τ−→a used in place

of l−→a.

• If ((E′2 ‖L F ) /L) \ AH
τ−→a (([1]E′2 ‖L F ′) /L) \ AH with F

τ−→a F
′, then trivially ((([1]E′2 ‖L F ′) /L)

\ AH, E′1 \ AH) ∈ B as [1]E′2 ≈pb E
′
2 and hence [1]E′2 /AH ≈pb E

′
2 /AH by Lemma 9.2(4).

• Let ((E′2 ‖L F ) /L) \AH
τ−→a ((E′′2 ‖L F ′) /L) \AH with E′2

h−→aE
′′
2 – so that E′2 /AH

τ−→aE
′′
2 /AH as

h ∈ AH – and F
h−→ F ′ for h ∈ L. We observe that from E′2, E

′′
2 ∈ reach(E2) and E2 ∈ SBSNNI≈pb

it follows that E′2 \ AH ≈pb E
′
2 /AH and E′′2 \ AH ≈pb E

′′
2 /AH, so that E′2 \ AH

τ−→aE
′′
2 \ AH and

E′2 \ AH ≈pb E
′
2 /AH ≈pb E

′
1 \ AH, i.e., E′2 \ AH ≈pb E

′
1 \ AH, as ≈pb is symmetric and transitive.

There are two subcases:

– If E′′2 \AH ≈pb E
′
1\AH then E′1\AH is allowed to stay idle with (((E′′2 ‖L F ′) /L)\AH, E′1\AH) ∈ B

because E′1 ∈ reach(E1), E′′2 ∈ reach(E2), and E′1 \ AH ≈pb E
′′
2 /AH as E2 ∈ SBSNNI≈pb

.

– If E′′2 \ AH 6≈pb E
′
1 \ AH then there exists E′1 \ AH==⇒ Ē′1 \ AH

τ−→aE
′′
1 \ AH such that E′2 \ AH

≈pb Ē
′
1 \AH and E′′2 \AH ≈pb E

′′
1 \AH. Thus (((E′2 ‖L F ) /L) \AH, Ē′1 \AH) ∈ B – because Ē′1 ∈

reach(E1), E′2 ∈ reach(E2), and Ē′1 \ AH ≈pb E
′
2 /AH as E2 ∈ SBSNNI≈pb

– and (((E′′2 ‖L F ′) /L)
\ AH, E′′1 \ AH) ∈ B – because E′′1 ∈ reach(E1), E′′2 ∈ reach(E2), and E′′1 \ AH ≈pb E′′2 /AH as
E2 ∈ SBSNNI≈pb

.

As for probabilities, we reason like in the proof of the corresponding result for ≈pw.
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Theorem 9.3. Let ≈ ∈ {≈pw,≈pb}. Then:
SBNDC≈ ( SBSNNI≈ = P_BNDC≈ ( BNDC≈ ( BSNNI≈

Proof. We first prove the results for the ≈pw-based properties. Let us examine each relationship separately:

• SBNDC≈pw ( SBSNNI≈pw . Given E ∈ SBNDC≈pw , the result follows by proving that the relation
B = {(E′ \ AH, E′ /AH) | E′ ∈ reach(E)} is a weak probabilistic bisimulation up to ≈pw. Starting from
(E′ \ AH, E′ /AH) ∈ B, there are three cases for action transitions based on the operational semantic rules
in Table 9.1. In the first case, it is E′ \ AH to move first:

– If E′ \ AH
a

==⇒E′′ \ AH with a ∈ AL ∪ {τ}, then E′ /AH
â

==⇒E′′ /AH as a, τ /∈ AH, with (E′′ \ AH,
E′′ /AH) ∈ B as E′′ ∈ reach(E). Thus (E′′ \ AH, E′′ /AH) ∈ (B ∪ B−1 ∪ ≈pw)+.

In the other two cases, instead, it is E′ /AH to move first (note that possible τ -transitions along ==⇒ arising
from high actions in E′ can no longer be executed when responding from E′ \ AH, but for them we exploit
E ∈ SBNDC≈pw and Lemma 9.4(1)):

– If E′ /AH
a

==⇒E′′ /AH with a ∈ AL ∪ {τ}, then there exist two processes Ē′, Ē′′ ∈ reach(E′) such
that E′ /AH==⇒ Ē′/AH

a−→a Ē
′′ /AH==⇒E′′ /AH. From E′ /AH==⇒ Ē′ /AH and Lemma 9.4(1)

it follows that E′ \ AH==⇒ Ê′ \ AH with Ē′ \ AH ≈pw Ê′ \ AH. From Ē′ /AH
a−→a Ē

′′ /AH it fol-
lows that Ē′ \ AH

a−→a Ē
′′ \ AH as a /∈ AH, hence Ê′ \ AH

â
==⇒ Ê′′ \ AH with Ē′′ \ AH ≈pw Ê′′ \ AH as

Ē′\AH ≈pw Ê′\AH. From Ē′′ /AH==⇒E′′/AH and Lemma 9.4(1) it follows that Ē′′\AH==⇒ Ê′′′\AH
with E′′ \ AH ≈pw Ê′′′ \ AH, hence Ê′′ \ AH==⇒ Ê′′′′ \ AH with Ê′′′ \ AH ≈pw Ê′′′′ \ AH as Ē′′ \ AH
≈pw Ê′′\AH. Note that E′′\AH ≈pw Ê′′′′\AH as ≈pw is transitive. Summing up, we have that E′\AH
â

==⇒ Ê′′′′\AH with E′′ /AH B−1E′′\AH ≈pw Ê′′′′\AH, as E′′ ∈ reach(E), and hence (E′′ /AH, Ê′′′′\AH)
∈ (B ∪ B−1∪ ≈pw)+.

– If E′ /AH
τ

==⇒E′′ /AH stems from Ē′
h−→a Ē

′′ for some Ē′, Ē′′ ∈ reach(E′), then from Lemma 9.4(1) it
follows that E′ \AH==⇒ Ê′′ \AH with E′′ \AH ≈pw Ê′′ \AH. Since E′′ /AH B−1E′′ \AH ≈pw Ê′′ \AH
as E′′ ∈ reach(E), we have that (E′′ /AH, Ê′′ \ AH) ∈ (B ∪ B−1∪ ≈pw)+.

As for probabilities, since the restriction and hiding operators do not apply to probabilistic transitions,
we have that prob(E′ \ AH, C) = prob(E′ /AH, C) for all C ∈ Ppr/(B ∪ B−1∪ ≈pw)+.

• SBSNNI≈pw = P_BNDC≈pw . SBSNNI≈pw ⊆ P_BNDC≈pw
follows from Lemma 9.4(3) by taking E′1 identical

to E′2 and both reachable from E ∈ SBSNNI≈pw .
On the other hand, if E ∈ P_BNDC≈pw

then E′ ∈ BNDC≈pw for every E′ ∈ reach(E). Since BNDC≈pw (
BSNNI≈pw as will be shown in the last case of the proof of this part of the theorem, E′ ∈ BSNNI≈pw for
every E′ ∈ reach(E), i.e., E ∈ SBSNNI≈pw .

• SBSNNI≈pw ( BNDC≈pw . If E ∈ SBSNNI≈pw = P_BNDC≈pw
then it immediately follows that E ∈

BNDC≈pw .

• BNDC≈pw ( BSNNI≈pw . If E ∈ BNDC≈pw , i.e., E \ AH ≈pw (E ‖L F ) /L) \ AH for all F ∈ Ppr such that
each of its actions belongs to AH – and E,F ∈ Pn or E,F ∈ Pp – and for all L ⊆ AH, then we can consider



9.2 Probabilistic Information-Flow Security Properties 154

in particular F̂ capable of stepwise mimicking the high-level behavior of E, in the sense that F̂ is able to
synchronize with all the high-level actions executed by E and its reachable processes, along with L̂ = AH. As
a consequence (E ‖L̂ F̂ ) / L̂)\AH is isomorphic to E /AH, hence E \AH ≈pw (E ‖L̂ F̂ ) / L̂)\AH ≈pw E /AH,
i.e., E ∈ BSNNI≈pw , as ≈pw is transitive.

We then prove the results for the ≈pb-based properties. Let us examine each relationship separately:

• SBNDC≈pb
( SBSNNI≈pb

. Given E ∈ SBNDC≈pb
, the result follows by proving that the relation B =

{(E′ \ AH, E′ /AH) | E′ ∈ reach(E)} is a probabilistic branching bisimulation up to ≈pb. Starting from
(E′ \ AH, E′ /AH) ∈ B, there are three cases for action transitions based on the operational semantic rules
in Table 9.1. In the first case, it is E′ \ AH to move first:

– If E′ \ AH==⇒ Ē′ \ AH
a−→aE

′′ \ AH with a ∈ AL ∪ {τ}, then E′ /AH==⇒ Ē′ /AH
a−→aE

′′ /AH as
a, τ /∈ AH, with (Ē′ \ AH, Ē′ /AH) ∈ B and (E′′ \ AH, E′′ /AH) ∈ B as Ē′, E′′ ∈ reach(E). Thus
(Ē′ \ AH, Ē′ /AH) ∈ (B ∪ B−1 ∪ ≈pb)+ and (E′′ \ AH, E′′ /AH) ∈ (B ∪ B−1 ∪ ≈pb)+.

In the other two cases, instead, it is E′ /AH to move first (note that possible τ -transitions along ==⇒ arising
from high actions in E′ can no longer be executed when responding from E′ \ AH, but for them we exploit
E ∈ SBNDC≈pb

and Lemma 9.4(1)):

– Let E′ /AH==⇒ Ē′ /AH
a−→aE

′′ /AH with a ∈ AL∪{τ}. From E′ /AH==⇒ Ē′ /AH and Lemma 9.4(1)
it follows that E′ \ AH==⇒ Ê′ \ AH with Ē′ \ AH ≈pb Ê

′ \ AH. From Ē′ /AH
a−→aE

′′ /AH it follows
that Ē′ \ AH

a−→aE
′′ \ AH as a /∈ AH. Since Ē′ \ AH ≈pb Ê

′ \ AH there are two subcases:

∗ If a = τ and E′′ \ AH ≈pb Ê
′ \ AH, then Ē′ \AH ≈pb E

′′ \ AH as ≈pb is symmetric and transitive.
From Ē′, E′′ ∈ SBNDC≈pb

and Lemma 9.4(2) it follows that Ē′ /AH ≈pb E
′′ /AH. Thus E′ \ AH

is allowed to stay idle.
∗ Otherwise there exists Ê′ \ AH==⇒ Ê′′ \ AH

a−→a Ê
′′′ \ AH such that Ē′ \ AH ≈pb Ê

′′ \ AH and
E′′ \ AH ≈pb Ê′′′ \ AH. Summing up, we have that E′ \ AH==⇒ Ê′′ \ AH

a−→a Ê
′′′ \ AH with

Ē′ /AH B−1 Ē′ \ AH ≈pb Ê
′′ \ AH and E′′ /AH B−1E′′ \ AH ≈pb Ê

′′′ \ AH, as Ē′, E′′ ∈ reach(E),
and hence (Ē′ /AH, Ê′′ \ AH) ∈ (B ∪ B−1 ∪ ≈pb)+ and (E′′ /AH, Ê′′′ \ AH) ∈ (B ∪ B−1 ∪ ≈pb)+.

– Let E′ /AH==⇒ Ē′ /AH
τ−→aE

′′ /AH with Ē′
h−→aE

′′. From Ē′ ∈ reach(E) and E ∈ SBNDC≈pb

it follows that Ē′ \ AH ≈pb E′′ \ AH, hence Ē′ /AH ≈pb E′′ /AH by virtue of Lemma 9.4(2)
as Ē′, E′′ ∈ SBNDC≈pb

. Thus E′ \ AH is allowed to stay idle.

As for probabilities, the proof is like the one of the corresponding result for ≈pw.

• SBSNNI≈pb
= P_BNDC≈pb

. The proof is like the one of the corresponding result for ≈pw.

• SBSNNI≈pb
( BNDC≈pb

. The proof is like the one of the corresponding result for ≈pw.

• BNDC≈pb
( BSNNI≈pb

. The proof is like the one of the corresponding result for ≈pw.
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All the inclusions in the previous theorem are strict as shown by the same counterexamples as those after
Theorem 8.4 suitably extended with occurrences of [1].

We further observe that each of the ≈pb-based noninterference properties implies the corresponding ≈pw-based
one, due to the fact that ≈pb is finer than ≈pw.

Theorem 9.4. The following inclusions hold:

1. BSNNI≈pb
( BSNNI≈pw .

2. BNDC≈pb
( BNDC≈pw .

3. SBSNNI≈pb
( SBSNNI≈pw .

4. P_BNDC≈pb
( P_BNDC≈pw

.

5. SBNDC≈pb
( SBNDC≈pw .

All the inclusions above are strict by virtue of the following result; for an example of E1 and E2 below, see Figure 9.1
with both systems extended with an identical action transition at the beginning.

Theorem 9.5. Let E1, E2 ∈ Pn be such that E1 ≈pw E2 but E1 6≈pb E2. If no high-level actions occur in E1

and E2, then F ∈ {E1 + h . [1]E2, E2 + h . [1]E1} is such that:

1. F ∈ BSNNI≈pw but F /∈ BSNNI≈pb
.

2. F ∈ BNDC≈pw but F /∈ BNDC≈pb
.

3. F ∈ SBSNNI≈pw but F /∈ SBSNNI≈pb
.

4. F ∈ P_BNDC≈pw
but F /∈ P_BNDC≈pb

.

5. F ∈ SBNDC≈pw but F /∈ SBNDC≈pb
.

Proof. Let F be E1 + h . [1]E2 (the proof is similar for F equal to E2 + h . [1]E1) and observe that no high-level
actions occur in every process reachable from F except F itself:

1. Since the only high-level action occurring in F is h, in the proof of F ∈ BSNNI≈pw the only interesting case is
the transition F /AH

τ−→a ([1]E2) /AH, to which F \AH responds by staying idle because ([1]E2) /AH ≈pw

[1]E2 ≈pw E2 ≈pw E1 ≈pw F \ AH, i.e., ([1]E2) /AH ≈pw F \ AH as ≈pw is symmetric and transitive.
On the other hand, F /∈ BSNNI≈pb

because E2 6≈pb E1 in the same situation as before.

2. Since F ∈ BSNNI≈pw by the previous result and no high-level actions occur in every process reachable from F
other than F , it holds that F ∈ SBSNNI≈pw and hence F ∈ BNDC≈pw by virtue of Theorem 9.3.
On the other hand, from F /∈ BSNNI≈pb

by the previous result it follows that F /∈ BNDC≈pb
by virtue of

Theorem 9.3.

3. We already know from the proof of the previous result that F ∈ SBSNNI≈pw .
On the other hand, from F /∈ BSNNI≈pb

by the first result it follows that F /∈ SBSNNI≈pb
by virtue of

Theorem 9.3.
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BSNNI≈pw

BNDC≈pw

SBSNNI≈pw

P_BNDC≈pw

SBNDC≈pw

BSNNI≈pb

BNDC≈pb

SBSNNI≈pb

P_BNDC≈pb

SBNDC≈pb

Figure 9.2: Taxonomy of security properties based on probabilistic weak and branching bisimilarities

4. An immediate consequence of P_BNDC≈pw = SBSNNI≈pw and P_BNDC≈pb
= SBSNNI≈pb

as established
by Theorem 9.3.

5. Since the only high-level action occurring in F is h, in the proof of F ∈ SBNDC≈pw the only interesting case

is the transition F h−→a [1]E2, for which it holds that F \ AH ≈pw E1 ≈pw E2 ≈pw [1]E2 ≈pw ([1]E2) \ AH,
i.e., F \ AH ≈pw ([1]E2) \ AH as ≈pw is transitive.
On the other hand, F /∈ SBNDC≈pb

because E1 6≈pb E2 in the same situation as before.

The diagram in Figure 9.2 summarizes the inclusions among the various noninterference properties based on
the results in Theorems 9.3 and 9.4, where P → Q means that P is strictly included in Q. These inclusions follow
the same pattern as the nondeterministic setting in Figure 8.4. The arrows missing in the diagram, witnessing
incomparability, are justified by the same counterexamples as those after Proposition 8.3 suitably extended with
occurrences of [1]. As an additional counterexample, for BNDC≈pw vs. BSNNI≈pb

we have that the process
l . 0 + l . ([0.5]h1 . l1 . 0 ⊕ [0.5]h2 . l2 . 0) + l . ([0.5]l1 . 0 ⊕ [0.5]l2 . 0) is BSNNI≈pb

but not BNDC≈pw as discussed in
Section 9.2, while the process F mentioned in Theorem 9.5 is both BSNNI≈pw and BNDC≈pw but not BSNNI≈pb

.
Like in the nondeterministic setting of the previous chapter, the strongest property based on weak probabilistic

bisimilarity (SBNDC≈pw) and the weakest property based on probabilistic branching bisimilarity (BSNNI≈pb
) are

incomparable too. The former is a very restrictive property because it requires a local check every time a high-level
action is performed, while the latter requires a check only on the initial state. On the other hand, as shown in
Theorem 9.5, it is very easy to construct processes that are secure under properties based on ≈pw but not on ≈pb,
due to the minimal number of high-level actions in F .

9.2.3 Relating Nondeterministic and Probabilistic Taxonomies

Let us compare our probabilistic taxonomy with the nondeterministic one of the previous chapter. In the following,
we assume that ≈w denotes the weak nondeterministic bisimilarity of [112] and ≈b denotes the nondeterministic
branching bisimilarity of [80], which we have used in the previous chapter. These can also be obtained from the
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corresponding definitions in Section 9.1.2 by restricting to nondeterministic states and ignoring the clause involving
the prob function. Since we are considering probabilistic choices as internal, given a process E ∈ Ppr we can obtain
its nondeterministic variant, denoted by nd(E), by replacing every occurrence of

⊕
i∈I [pi]Ni with

∑
i∈I τ .Ni.

The next proposition states that if two processes are equivalent according to any of the weak bisimilari-
ties in Section 9.1.2, then their nondeterministic variants are equivalent according to the corresponding non-
deterministic weak bisimilarity. The inverse does not hold: e.g., processes E1 = [0.5]a1 . 0 ⊕ [0.5]a2 . 0 and
E2 = [0.8]a1 . 0 ⊕ [0.2]a2 . 0 are such that E1 6≈pw E2 and E1 6≈pb E2, but their nondeterministic counterparts
coincide as both of them are equal to τ . a1 . 0 + τ . a2 . 0.

Proposition 9.3. Let E1, E2 ∈ Ppr. Then:

1. E1 ≈pw E2 =⇒ nd(E1) ≈w nd(E2).

2. E1 ≈pb E2 =⇒ nd(E1) ≈b nd(E2).

Proof. Let us denote by â
==⇒a the variant of â

==⇒ in which there are no probabilistic transitions and by τ∗
==⇒a

a possibly empty sequence of τ -transitions:

1. We need to prove that the symmetric relation B = {(nd(E1),nd(E2)) | E1 ≈pw E2} is a weak bisimulation.
We start by observing that from E1 ≈pw E2 it follows that for each E1

a−→aE
′
1 there exists E2

â
==⇒E′2 such

that E′1 ≈pw E′2. Since nd(E1) and nd(E2) are obtained by replacing each probabilistic transition with a
τ -transition, for each nd(E1)

a−→a nd(E′1) there exists nd(E2)
â

==⇒a nd(E′2) such that (nd(E′1),nd(E′2)) ∈ B.

2. We need to prove that the symmetric relation B = {nd(E1),nd(E2)) | E1 ≈pb E2} is a branching bisimulation.
We start by observing that from E1 ≈pb E2 it follows that for each E1

a−→aE
′
1 either a = τ and E′1 ≈pb E2, or

there exists E2 ==⇒ Ē2
a−→aE

′
2 such that E1 ≈pb Ē2 and E′1 ≈pb E

′
2. Since nd(E1) and nd(E2) are obtained

by replacing each probabilistic transition with a τ -transition, for each nd(E1)
a−→a nd(E′1) either a = τ and

(nd(E′1),nd(E2)) ∈ B, or there exists nd(E2)
τ∗

==⇒a nd(Ē2)
a−→a nd(E′2) such that (nd(E1),nd(Ē2)) ∈ B and

(nd(E′1),nd(E′2)) ∈ B.

An immediate consequence is that if a process is secure under any of the probabilistic noninterference properties
of Section 9.2, then its nondeterministic variant is secure under the corresponding nondeterministic property.
The taxonomy of Figure 9.2 thus extends to the left the one in Figure 8.4, as each of the properties of Section 9.2
is finer than its nondeterministic counterpart.

Corollary 9.1. Let Ppr ∈ {BSNNI≈pr ,BNDC≈pr , SBSNNI≈pr ,P_BNDC≈pr
,SBNDC≈pr} and Pnd ∈ {BSNNI≈nd

,
BNDC≈nd

, SBSNNI≈nd
,P_BNDC≈nd

, SBNDC≈nd
} for ≈pr∈ {≈pw,≈pb} and ≈nd∈ {≈w,≈b}, where Pnd is meant

to be the nondeterministic variant of Ppr. Then E ∈ Ppr =⇒ nd(E) ∈ Pnd for all E ∈ Ppr.

Proof. The result directly follows from Proposition 9.3.
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9.3 Reversibility via Weak Probabilistic Back-and-Forth Bisimilarity

As recalled in the previous chapter, weak back-and-forth bisimilarity coincides with branching bisimilarity over
nodeterministic processes [57]. In this section we extend that result so that probabilistic branching bisimilarity can
be employed in the noninterference analysis of reversible processes featuring nondeterminism and probabilities.

A PLTS (S,A,−→) represents a reversible process if each of its transitions is seen as bidirectional. When
going backward, it is of paramount importance to respect causality, i.e., the last performed transition must be the
first one to be undone. Following [57] we set up an equivalence that enforces not only causality but also history
preservation. This means that, when going backward, a process can only move along the path representing the
history that brought the process to the current state even in the presence of concurrency. To accomplish this, the
equivalence has to be defined over computations, not over states, and the notion of transition has to be suitably
revised. We start by adapting the notation of the nondeterministic setting of [57] to our strictly alternating
probabilistic setting. We use ` for a label in A ∪ R]0,1[.

Definition 9.9. A sequence ξ = (s0, `1, s1)(s1, `2, s2) . . . (sn−1, `n, sn) ∈ −→ ∗ is a path of length n from state s0.
We let first(ξ) = s0 and last(ξ) = sn; the empty path is indicated with ε. We denote by path(s) the set of paths
from s.

Definition 9.10. A pair ρ = (s, ξ) is called a run from state s iff ξ ∈ path(s), in which case we let path(ρ) = ξ,
first(ρ) = first(ξ) = s, and last(ρ) = last(ξ), with first(ρ) = last(ρ) = s when ξ = ε. We denote by run(s) the set of
runs from state s. Given ρ = (s, ξ) ∈ run(s) and ρ′ = (s′, ξ′) ∈ run(s′), their composition ρρ′ = (s, ξξ′) ∈ run(s)

is defined iff last(ρ) = first(ρ′) = s′. We write ρ `−→ ρ′ iff there exists ρ̄ = (s̄, (s̄, `, s′)) with s̄ = last(ρ) such that
ρ′ = ρρ̄; note that first(ρ) = first(ρ′). Moreover prob is lifted in the expected way.

In the considered PLTS we work with the set U of runs in lieu of S. Following [57], given a run ρ, we distinguish
between outgoing and incoming action transitions of ρ during the weak bisimulation game. Like in [32], this does not
apply to probabilistic transitions, which are thus considered only in the forward direction. If the labels of incoming
probabilistic transitions were taken into account, then the nondeterministic state a . 0 and the probabilistic state
[p]a . 0⊕ [1− p]a . 0 would be told apart, because a . 0 in the former state has no incoming probabilistic transitions
while a . 0 in the latter state is reached with cumulative probability 1. Unlike [32], where action execution and
quantitative aspects are integrated in a single transition relation, even a simpler clause requiring for any two related
runs that they both have incoming probabilistic transitions or neither has – regardless of cumulative probabilities
– would distinguish the two states exemplified before.

Definition 9.11. Let (S,A,−→) be a PLTS. We say that s1, s2 ∈ S are weakly probabilistic back-and-forth
bisimilar, written s1 ≈pbf s2, iff ((s1, ε), (s2, ε)) ∈ B for some weak probabilistic back-and-forth bisimulation B. An
equivalence relation B over U is a weak probabilistic back-and-forth bisimulation iff, whenever (ρ1, ρ2) ∈ B, then:

• For each ρ1
a−→a ρ

′
1 there exists ρ2

â
==⇒ ρ′2 such that (ρ′1, ρ

′
2) ∈ B.

• For each ρ′1
a−→a ρ1 there exists ρ′2

â
==⇒ ρ2 such that (ρ′1, ρ

′
2) ∈ B.

• prob(ρ1, C) = prob(ρ2, C) for all equivalence classes C ∈ U/B.

We show that weak probabilistic back-and-forth bisimilarity over runs coincides with ≈pb, the forward-only
probabilistic branching bisimilarity over states. We proceed by adopting the proof strategy followed in [57] to show
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that their weak back-and-forth bisimilarity over runs coincides with the forward-only branching bisimilarity over
states of [80]. Therefore we start by proving that ≈pbf satisfies the cross property. This means that, whenever
two runs of two ≈pbf -equivalent states can perform a sequence of finitely many τ -transitions, alternating with
probabilistic transitions, such that each of the two target runs ends in a nondeterministic state and is ≈pbf -
equivalent to the source run of the other sequence, then the two target runs are ≈pbf -equivalent to each other
as well.

Lemma 9.5. Let s1, s2 ∈ S with s1 ≈pbf s2. For all ρ′1, ρ
′′
1 ∈ run(s1) such that ρ′1 ==⇒ ρ′′1 with last(ρ′′1) ∈ Sn and

for all ρ′2, ρ
′′
2 ∈ run(s2) such that ρ′2 ==⇒ ρ′′2 with last(ρ′′2) ∈ Sn, if ρ′1 ≈pbf ρ

′′
2 and ρ′′1 ≈pbf ρ

′
2 then ρ′′1 ≈pbf ρ

′′
2.

Proof. Given s1, s2 ∈ S with s1 ≈pbf s2, consider the transitive closure B+ of the reflexive and symmetric relation
B = ≈pbf ∪ {(ρ′′1, ρ′′2), (ρ′′2, ρ

′′
1) ∈ (run(s1) × run(s2)) ∪ (run(s2) × run(s1)) | last(ρ′′1), last(ρ′′2) ∈ Sn ∧ ∃ρ′1 ∈ run(s1),

ρ′2 ∈ run(s2). ρ′1 ==⇒ ρ′′1 ∧ ρ′2 ==⇒ ρ′′2 ∧ ρ′1 ≈pbf ρ
′′
2 ∧ ρ′′1 ≈pbf ρ

′
2}. The result will follow by proving that B+ is a

weak probabilistic back-and-forth bisimulation, because this implies that ρ′′1 ≈pbf ρ
′′
2 for every additional pair – i.e.,

B+ satisfies the cross property – as well as B+ = ≈pbf – hence ≈pbf satisfies the cross property too.
Let (ρ′′1, ρ

′′
2) ∈ B \ ≈pbf to avoid trivial cases. Then last(ρ′′1), last(ρ′′2) ∈ Sn and there exist ρ′1 ∈ run(s1) and

ρ′2 ∈ run(s2) such that ρ′1 ==⇒ ρ′′1, ρ′2 ==⇒ ρ′′2, ρ′1 ≈pbf ρ
′′
2, and ρ′′1 ≈pbf ρ

′
2. There are two cases for action transitions:

• In the forward case, assume that ρ′′1
a−→a ρ

′′′
1 , from which we derive ρ′1 ==⇒ ρ′′1

a−→a ρ
′′′
1 . From ρ′1 ≈pbf ρ

′′
2

it follows that there exists ρ′′2 ==⇒ ρ′′′2 if a = τ or ρ′′2 ==⇒ a−→a ==⇒ ρ′′′2 if a 6= τ , such that ρ′′′1 ≈pbf ρ
′′′
2 and

hence (ρ′′′1 , ρ
′′′
2 ) ∈ B.

When starting from ρ′′2
a−→a ρ

′′′
2 , we exploit ρ′2 ==⇒ ρ′′2 and ρ′′1 ≈pbf ρ

′
2 instead.

• In the backward case, assume that ρ′′′1
a−→a ρ

′′
1. From ρ′′1 ≈pbf ρ

′
2 it follows that there exists ρ′′′2 ==⇒ ρ′2

if a = τ , so that ρ′′′2 ==⇒ ρ′′2, or ρ′′′2 ==⇒ a−→a ==⇒ ρ′2 if a 6= τ , so that ρ′′′2 ==⇒ a−→a ==⇒ ρ′′2, such that ρ′′′1 ≈pbf ρ
′′′
2

and hence (ρ′′′1 , ρ
′′′
2 ) ∈ B.

When starting from ρ′′′2
a−→a ρ

′′
2, we exploit ρ′1 ≈pbf ρ

′′
2 and ρ′1 ==⇒ ρ′′1 instead.

As for probabilities, from last(ρ′′1), last(ρ′′2) ∈ Sn it follows that prob(ρ′′1, C̄) = 1 = prob(ρ′′2, C̄) when C̄ is the
equivalence class with respect to B+ that contains ρ′′1 and ρ′′2, while prob(ρ′′1, C) = 0 = prob(ρ′′2, C) for any other
equivalence class C.

Theorem 9.6. Let s1, s2 ∈ S. Then s1 ≈pbf s2 ⇐⇒ s1 ≈pb s2.

Proof. The proof is divided into two parts:

• Suppose that s1 ≈pbf s2 and let B be a weak probabilistic back-and-forth bisimulation over U such that
((s1, ε), (s2, ε)) ∈ B. Assume that B only contains all the pairs of ≈pbf -equivalent runs from s1 and s2, so
that Lemma 9.5 is applicable to B. We show that B′ = {(last(ρ1), last(ρ2)) | (ρ1, ρ2) ∈ B} is a probabilistic
branching bisimulation over the states in S reachable from s1 and s2, from which s1 ≈pb s2 will follow. Note
that B′ is an equivalence relation because so is B.
Given (last(ρ1), last(ρ2)) ∈ B′, by definition of B′ we have that (ρ1, ρ2) ∈ B. Let rk = last(ρk) for k ∈ {1, 2},
so that (r1, r2) ∈ B′. Suppose that r1

a−→a r
′
1, i.e., ρ1

a−→a ρ
′
1 where last(ρ′1) = r′1. There are two cases:
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– If a = τ then from (ρ1, ρ2) ∈ B it follows that there exists ρ2 ==⇒ ρ′2 such that (ρ′1, ρ
′
2) ∈ B. This

means that we have a sequence of n ≥ 0 transitions of the form ρ2,i
τ−→a ρ2,i+1 or ρ2,i

pi−→p ρ2,i+1 for all
0 ≤ i ≤ n− 1 – with τ -transitions and probabilistic transitions alternating – where ρ2,0 is ρ2 while ρ2,n

is ρ′2 so that (ρ′1, ρ2,n) ∈ B as (ρ′1, ρ
′
2) ∈ B.

If n = 0 then we are done because ρ′2 is ρ2 and hence (ρ′1, ρ2) ∈ B as (ρ′1, ρ
′
2) ∈ B – thus (r′1, r2) ∈ B′

– otherwise from ρ2,n we go back to ρ2,n−1 via ρ2,n−1
τ−→a ρ2,n or ρ2,n−1

pn−1−→p ρ2,n. Recalling that
(ρ′1, ρ2,n) ∈ B, if it is a τ -transition and ρ′1 can respond by staying idle, so that (ρ′1, ρ2,n−1) ∈ B, or it is
a probabilistic transition with (ρ′1, ρ2,n−1) ∈ B, and n = 1, then we are done because ρ2,n−1 is ρ2 and
hence (ρ′1, ρ2) ∈ B as (ρ′1, ρ2,n−1) ∈ B – thus (r′1, r2) ∈ B′ – otherwise we go further back to ρ2,n−2 via
ρ2,n−2

τ−→a ρ2,n−1 or ρ2,n−2
pn−2−→p ρ2,n−1. If it is a τ -transition and ρ′1 can respond by staying idle, so

that (ρ′1, ρ2,n−2) ∈ B, or it is a probabilistic transition with (ρ′1, ρ2,n−2) ∈ B, and n = 2, then we are
done because ρ2,n−2 is ρ2 and hence (ρ′1, ρ2) ∈ B as (ρ′1, ρ2,n−2) ∈ B – thus (r′1, r2) ∈ B′ – otherwise we
keep going backward.
By repeating this procedure, since (ρ′1, ρ2,n) ∈ B either we get to (ρ′1, ρ2,n−n) ∈ B and we are done be-
cause this implies that (ρ′1, ρ2) ∈ B – thus (r′1, r2) ∈ B′ – or for some 0 < m ≤ n such that (ρ′1, ρ2,m) ∈ B
the incoming transition ρ2,m−1

τ−→a ρ2,m is matched by ρ̄1 ==⇒ ρ1
τ−→a ρ

′
1 with (ρ̄1, ρ2,m−1) ∈ B. In the

latter case, since last(ρ1), last(ρ2,m−1) ∈ Sn, ρ̄1 ==⇒ ρ1, ρ2 ==⇒ ρ2,m−1, (ρ̄1, ρ2,m−1) ∈ B, and (ρ1, ρ2) ∈ B,
from Lemma 9.5 we derive that (ρ1, ρ2,m−1) ∈ B. Consequently ρ2 ==⇒ ρ2,m−1

τ−→a ρ2,m with
(ρ1, ρ2,m−1) ∈ B and (ρ′1, ρ2,m) ∈ B, thus r2 ==⇒ last(ρ2,m−1)

τ−→a last(ρ2,m) with (r1, last(ρ2,m−1)) ∈ B′
and (r′1, last(ρ2,m)) ∈ B′.

– If a 6= τ then from (ρ1, ρ2) ∈ B it follows that there exists ρ2 ==⇒ ρ̄2
a−→a ρ̄

′
2 ==⇒ ρ′2 such that (ρ′1, ρ

′
2) ∈ B.

From (ρ′1, ρ
′
2) ∈ B and ρ̄′2 ==⇒ ρ′2 it follows that there exists ρ̄′1 ==⇒ ρ′1 such that (ρ̄′1, ρ̄

′
2) ∈ B. Since

ρ1
a−→a ρ

′
1 and hence the last transition in ρ′1 is labeled with a, we derive that ρ̄′1 is ρ′1 and hence

(ρ′1, ρ̄
′
2) ∈ B.

From (ρ′1, ρ̄
′
2) ∈ B and ρ̄2

a−→a ρ̄
′
2 it follows that there exists ρ̄1 ==⇒ ρ1

a−→a ρ
′
1 such that (ρ̄1, ρ̄2) ∈ B.

Since last(ρ1), last(ρ̄2) ∈ Sn, ρ̄1 ==⇒ ρ1, ρ2 ==⇒ ρ̄2, (ρ̄1, ρ̄2) ∈ B, and (ρ1, ρ2) ∈ B, from Lemma 9.5
we derive that (ρ1, ρ̄2) ∈ B.
Consequently ρ2 ==⇒ ρ̄2

a−→a ρ̄
′
2 with (ρ1, ρ̄2) ∈ B and (ρ′1, ρ̄

′
2) ∈ B, thus r2 ==⇒ last(ρ̄2)

a−→a last(ρ̄′2)
with (r1, last(ρ̄2)) ∈ B′ and (r′1, last(ρ̄

′
2)) ∈ B′.

As for probabilities, given ρ ∈ run(s1) ∪ run(s2), the equivalence class C ′ρ with respect to B′ is of the form
[last(ρ)]B′ = {last(ρ′) | (last(ρ), last(ρ′)) ∈ B′} = last({ρ′ | (ρ, ρ′) ∈ B}) = last([ρ]B), i.e., C ′ρ = last(Cρ)
for some equivalence class Cρ with respect to B, provided that function last is lifted from runs to sets of
runs. Therefore prob(r1, C

′
ρ) = prob(ρ1, Cρ) = prob(ρ2, Cρ) = prob(r2, C

′
ρ) for all equivalence classes C ′ρ with

respect to B′ such that C ′ρ = last(Cρ) for some equivalence class Cρ with respect to B.

• Suppose that s1 ≈pb s2 and let B be a probabilistic branching bisimulation over S such that (s1, s2) ∈ B.
Assume that B only contains all the pairs of ≈pb-equivalent states reachable from s1 and s2. We show that
the reflexive and transitive closure B′∗ of B′ = {(ρ1, ρ2), (ρ2, ρ1) ∈ (run(s1)× run(s2))∪ (run(s2)× run(s1)) |
(last(ρ1), last(ρ2)) ∈ B} is a weak probabilistic back-and-forth bisimulation over the runs in U from s1 and s2,
from which (s1, ε) ≈pbf (s2, ε), i.e., s1 ≈pbf s2, will follow.
Given (ρ1, ρ2) ∈ B′, by definition of B′ we have that (last(ρ1), last(ρ2)) ∈ B. Let rk = last(ρk) for k ∈ {1, 2},
so that (r1, r2) ∈ B. There are two cases for action transitions:
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– If ρ1
a−→a ρ

′
1, i.e., r1

a−→a r
′
1 where r′1 = last(ρ′1), then either a = τ and (r′1, r

′
2) ∈ B where r′2 = r2,

or there exists r2 ==⇒ r̄2
a−→a r

′
2 such that (r1, r̄2) ∈ B and (r′1, r

′
2) ∈ B. In both cases ρ2

â
==⇒ ρ′2 where

last(ρ′2) = r′2, so that (ρ′1, ρ
′
2) ∈ B′.

– If ρ′1
a−→a ρ1, i.e., r′1

a−→a r1 where r′1 = last(ρ′1), there are two subcases:

∗ If ρ′1 is (s1, ε), i.e., r′1
a−→a r1 is s1

a−→a r1 and last(ρ′1) = s1, then from (s1, s2) ∈ B it follows that
either a = τ and (r1, r2) ∈ B where r2 = s2, or there exists s2 ==⇒ r̄2

a−→a r2 such that (s1, r̄2) ∈ B
and (r1, r2) ∈ B. In both cases ρ′2

â
==⇒ ρ2 where last(ρ′2) = s2, so that (ρ′1, ρ

′
2) ∈ B′.

∗ If ρ′1 is not (s1, ε) then from (s1, s2) ∈ B it follows that s1 reaches r′1 with a sequence of moves that
are B-compatible with those with which s2 reaches some r′2 such that (r′1, r

′
2) ∈ B as B only contains

all the states reachable from s1 and s2. Therefore either a = τ and (r1, r
′
2) ∈ B where r′2 = r2, or

there exists r′2 ==⇒ r̄2
a−→a r2 such that (r′1, r̄2) ∈ B and (r1, r2) ∈ B. In both cases ρ′2

â
==⇒ ρ2 where

last(ρ′2) = r′2, so that (ρ′1, ρ
′
2) ∈ B′.

As for probabilities, given ρ ∈ run(s1) ∪ run(s2), the equivalence class C ′ρ with respect to B′∗ is of the form
[ρ]B′∗ = {ρ′ ∈ run(s1) ∪ run(s2) | last(ρ′) ∈ [last(ρ)]B}, i.e., C ′ρ corresponds to some equivalence class Cρ
with respect to B. Therefore prob(ρ1, C

′
ρ) = prob(last(ρ1), Cρ) = prob(last(ρ2), Cρ) = prob(ρ2, C

′
ρ) for all

equivalence classes C ′ρ with respect to B′∗.

Therefore the properties BSNNI≈pb
, BNDC≈pb

, SBSNNI≈pb
, P_BNDC≈pb

, SBNDC≈pb
do not change if ≈pb

is replaced by ≈pbf . This allows us to study noninterference properties for reversible systems featuring nondeter-
minism and probabilities by using ≈pb in a standard probabilistic process calculus like the one of Section 9.1.3.

9.4 Use Case: Probabilistic Smart Contract Lottery

Probabilistic modeling [11] and verification [136, 99] of smart contracts for blockchain-based, decentralized sys-
tems enable an in-depth analysis of potential vulnerabilities. This is even more important if we consider that
probabilistic smart contracts for financial and gaming applications [51, 128, 118] have recently emerged in modern
systems. In fact, subtle effects may be hidden in the implementation of randomness or in the inherent behavior of
smart contracts.

As an example, in this section we employ our noninterference theory to analyze two vulnerabilities of a lottery
implemented with a probabilistic smart contract [51] based on a public blockchain like, e.g., Ethereum. The first
vulnerability can only be revealed by considering the probabilistic behavior of the smart contract, while the second
one is intended to motivate the need to exploit the greater expressive power of branching bisimulation semantics
over weak bisimulation semantics.

In the lottery, initially anyone can buy a ticket by invoking a dedicated smart contract function that allows one
to pay a predefined amount for the ticket. When the lottery is closed, anyone can invoke another smart contract
function, call it draw(), in which a random number x, between 1 and the number of sold tickets, is drawn and the
entire amount of money is paid to the owner of ticket x.

The first critical issue that we consider is the randomization procedure of function draw(), which is not natively
available to smart contract programmers. A widely adopted approach consists of using the timestamp of the
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block including the transaction of the draw() invocation as the seed for random number generation. However, this
approach is vulnerable in the presence of a malicious miner – who is also a lottery participant and hence buys
a ticket – succeeding in mining the aforementioned block by choosing a timestamp that allows the miner to win
the lottery.

Since both honest users and the malicious miner employ the same functionalities of the smart contract, we
consider the invocations of smart contract functions as publicly observable low-level actions. To distinguish the
interactions of the malicious miner from those of honest users, such actions are guarded by a high-level action h
whenever they refer to the malicious miner. In this way, by looking at the public behavior of the smart con-
tract, a low-level observer can detect whether or not the functioning of the lottery can be compromised by the
malicious miner.

For simplicity, we assume that there are only two users buying one ticket each, where the malicious miner is
the user buying ticket 1 whilst the honest user buys ticket 2. This scenario can be modeled in our probabilistic
framework as follows where we omit [1]-prefixes:

Lottery , τ . draw . ([0.5]winner1 .notif 1 . 0 ⊕ [0.5]winner2 .notif 2 . 0) +
h . draw . ([1− ε]winner1 .notif 1 . 0 ⊕ [ε]winner2 .notif 2 . 0)

The invocation of function draw() shall lead to the probabilistic extraction of the ticket (action draw), the deter-
mination of the winner (actions winneri), and the notification of the winner (actions notifi). The initial nondeter-
ministic choice between action τ and the only high-level action h models in the latter case the situation in which
this procedure, instead of being fair, is guided by the malicious miner who is able to pilot the extraction at will
(ε > 0 is considered to be negligible).

As far as nondeterministic noninterference analysis is concerned, process Lottery does not leak any information.
More precisely, its nondeterministic variant satisfies all the security properties, for both nondeterministic weak
bisimilarity and branching bisimilarity. The reason is that if we abstract away from probabilities, the behavior of the
malicious miner (h-branch) is indistinguishable from the behavior of the honest user (τ -branch). However, Lottery
is not BSNNI≈ for ≈∈ {≈pw,≈pb}, hence both bisimilarities can be used to capture the aforementioned interference
in the probabilistic setting. Indeed, the version of Lottery with high-level actions hidden – which includes both
the branch with fair extraction and the branch with unfair extraction – and the version of Lottery with high-level
actions restricted – which includes only the fair branch – cannot be ≈-equivalent, because [0.5]N1 ⊕ [0.5]N2 6≈
[1− ε]N1 ⊕ [ε]N2 for any pair of ≈pr-inequivalent nondeterministic processes N1 and N2 when ε 6= 0.5.

Assuming that the seed for random number generation cannot be manipulated, the second critical issue that
we consider has to do with another vulnerability that emerges because of the peculiarities of the mining procedure.
In fact, if the malicious miner realizes that he is going to lose the lottery and succeeds in mining the block, he can
simply ignore the transaction related to the lottery extraction and force its rollback. We model such a behavior in
the following way:

Lottery ′ , draw . ([0.5]winner1 .notif 1 . (τ . (success . 0 + τ . failure . 0))⊕
[0.5]winner2 .notif 2 . (τ . (success . 0 + τ . failure . 0) +

h . (τ . (success . 0 + τ . failure . 0) +
failure . 0)))

With respect to the previous scenario, the malicious miner cannot affect the probabilistic behavior of the smart
contract, i.e., the extraction procedure. However, he can try to interfere if the outcome of the extraction makes
him lose, i.e., it is different from ticket 1.

On the one hand, consider the branch after action notif 1, which models the block mining procedure. The
first τ -action expresses that the honest user is picked as a miner. The subsequent choice is between the successful
mining (action success) and an event not depending on the miner (action τ) that causes the failure of the mining
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(action failure). Notice that there might be several causes for this failure, such as a wrong transaction in the
block, a fork in the blockchain, and so on. On the other hand, in the branch after action notif 2, the malicious
miner may decide to participate actively in the mining procedure, as can be seen from the choice between the
action τ , leading to the same behavior surveyed above, and the high-level action h. In the latter case, the race
between the malicious miner and the honest user is solved nondeterministically through a choice between action τ
and action failure. The former leads to the behavior of the honest user, while the latter represents the behavior of
the malicious miner, who decides to cause the immediate failure of the mining operation.

Formally, process Lottery ′ is SBNDC≈pw . Indeed, observing that we have only one occurrence of the high-level
action h, it holds that the subprocess N1 = τ . (success . 0 + τ . failure . 0) – denoting the low-level view before
executing h – is weakly probabilistic bisimilar to the subprocess N2 = τ . (success . 0 + τ . failure . 0) + failure . 0 –
denoting the low-level view after executing h. However, Lottery ′ is not BSNNI≈pb

as can be seen by comparing the
only part – which is after action notif 2 – in which Lottery ′ \ {h} and Lottery ′ / {h} differ, i.e., N1 and N1 + τ .N2

respectively. In fact, N1 is not probabilistic branching bisimilar to N1 + τ .N2. This is because N1 6≈pb N2, while
they are equated by ≈pw. In essence, N1 cannot respond in accordance with ≈pb when N2 immediately executes
action failure.

Intuitively, by applying back-and-forth reasoning to N2 – which comes after action h – undoing the rightmost
action failure reveals that the failure has been forced by the malicious miner, while undoing the leftmost action
failure reveals that the failure has been the consequence of a choice involving also the action success. This
is sufficient to expose the behavior of the malicious miner, which would not be detected by analyzing only the
forward computations though. To conclude, the noninterference analysis based on the strongest≈pw-based property
of Figure 9.2 fails to reveal the covert channel caused by the malicious miner, while the weakest ≈pb-based property
of Figure 9.2 can detect it.
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Chapter 10

Noninterference Analysis of Stochastically
Timed Reversible Systems

In this chapter, whose contents have appeared in [63], we extend the approach of the two previous chapters to a
stochastically timed setting, so as to address noninterference properties in a framework featuring nondeterminism,
time, and reversibility. More precisely, we move to a setting combining nondeterminism and stochastic time
through the interactive Markov chain model of [90], in which transitions are divided into action transitions, each
labeled with an action, and rate transitions, each labeled with a positive real number called rate that expresses an
exponentially distributed time lapse. The reason for choosing this model in which time passing is orthogonal to
action execution, with respect to a model in which action execution and time passing are integrated [83, 92, 93,
47, 127, 30, 23, 21] (see [24] for encodings between integrated-time and orthogonal-time calculi), is that the former
naturally supports the definition of behavioral equivalences abstracting from unobservable actions [90], which are
necessary for noninterference analysis, whereas this is not the case in the latter [22], which was employed in [5]
for stochastic variants of BSNNI and SBNDC and in [94] for a stochastic variant of P_BNDC.

Following [90] we build a process calculus featuring action prefix separated from rate prefix. As for behavioral
equivalences, we adopt the weak Markovian bisimilarity of [90] and introduce a Markovian branching bisimilarity.
By using these two equivalences we recast the noninterference properties of [67, 69] for irreversible systems and
the noninterference properties of the two previous chapters for reversible systems, respectively, to study their
preservation and compositionality aspects as well as to provide a taxonomy similar to those in the two previous
chapters. Reversibility comes into play by extending one of the results of [57] to the interactive Markov chain model;
we show that a Markovian variant of weak back-and-forth bisimilarity coincides with our Markovian branching
bisimilarity. Like in the previous chapter, for proving some results we have to resort to the bisimulation-up-to
technique [131] and therefore introduce Markovian variants of up-to weak [112] and branching [75] bisimulations.

This chapter is organized as follows. In Section 10.1 we recall the interactive Markov chain model along
with the definitions of strong and weak bisimilarities for it given in [90], a new notion of branching bisimilarity,
and a process calculus interpreted on this model. In Section 10.2 we recast in this Markovian framework the
aforementioned selection of noninterfence properties, study their preservation and compositionality characteristics,
develop their taxonomy, and relate it to the nondeterministic and probabilistic taxonomies. In Section 10.3 we
establish a connection with reversibility by introducing a weak Markovian back-and-forth bisimilarity and proving
that it coincides with Markovian branching bisimilarity. Finally, in Section 10.4 we extend the DBMS example
of Sections 8.2 and 8.5 with time-related information and obfuscation and permission mechanisms to show the
adequacy of our approach to handle information flows in systems featuring nondeterminism and stochastic time.
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10.1 Background Definitions and Results

In this section we recall the interactive Markov chain model of [90] (Section 10.1.1) along with its strong and weak
Markovian bisimilarities and define a novel Markovian branching bisimilarity (Section 10.1.2). Then we introduce
a Markovian process language inspired by [90] (Section 10.1.3) through which we will express bisimulation-based
information-flow security properties accounting for nondeterminism and stochastic time.

10.1.1 Markovian Labeled Transition Systems

To represent the behavior of a process featuring nondeterminism and stochastic time, we use a Markovian la-
beled transition system. This is a variant of a labeled transition system [97] where, according to the interactive
Markov chain model of [90], transitions are labeled with actions or positive real numbers called rates expressing
exponentially distributed delays. We recall that the action set A contains the unobservable action τ .

Definition 10.1. A Markovian labeled transition system (MLTS) is a triple (S,A,−→) where S is an at most
countable set of states, A is a countable set of actions, and −→ = −→a ∪ −→r is the transition relation, with
−→a ⊆ S×A×S being the action transition relation whilst −→r ⊆ S×R>0×S being the rate transition relation.

An action transition (s, a, s′) is written s a−→a s
′ while a rate transition (s, λ, s′) is written s λ−→r s

′, where s is
the source state and s′ is the target state. We say that s′ is reachable from s, written s′ ∈ reach(s), iff s′ = s or
there exists a sequence of finitely many transitions such that the target state of each of them coincides with the
source state of the subsequent one, with the source of the first one being s and the target of the last one being s′.

The label of a rate transition is the inverse of the average duration of the corresponding exponentially distributed
delay, which enjoys the memoryless property : the residual duration after the execution starts is still exponentially
distributed with the same rate. If the outgoing rate transitions of state s are s λi−→r si for 1 ≤ i ≤ n, then the race
policy applies. This means that the average sojourn time in s is given by the minimum of the n exponentially
distributed delays – which is exponentially distributed with rate

∑
1≤i≤n λi – and the execution probability of

transition j is given by λj/
∑

1≤i≤n λi. As for the interplay between action transitions and rate transitions,
like in [90] we assume maximal progress, i.e., τ -transitions take precedence over rate transitions.

10.1.2 Markovian Bisimulation Equivalences

Bisimilarity [117, 112] identifies processes that are able to mimic each other’s behavior stepwise, i.e., having the
same branching structure. In the interactive Markov chain model, this extends to stochastic behavior [90]. Let
rate(s, C) =

∑
s

λ−→r s′,s′∈C
λ be the cumulative rate with which state s reaches a state in C. Due to maximal

progress, cumulative rates are compared only in states with no outgoing τ -transitions, denoted 6τ−→a.

Definition 10.2. Let (S,A,−→) be an MLTS. We say that s1, s2 ∈ S are strongly Markovian bisimilar, written
s1 ∼m s2, iff (s1, s2) ∈ B for some strong Markovian bisimulation B. An equivalence relation B over S is a strong
Markovian bisimulation iff, whenever (s1, s2) ∈ B, then:

• For each s1
a−→a s

′
1 there exists s2

a−→a s
′
2 such that (s′1, s

′
2) ∈ B.

• If s1 6
τ−→a then rate(s1, C) = rate(s2, C) for all equivalence classes C ∈ S/B.
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Weak bisimilarity [112] is additionally capable of abstracting from unobservable actions. Let s τ∗
==⇒a s

′ mean
that s′ ∈ reach(s) and, when s′ 6= s, there exists a finite sequence of transitions from s to s′ each of which is labeled
with τ . Moreover let â

==⇒a stand for τ∗
==⇒a if a = τ or τ∗

==⇒a
a−→a

τ∗
==⇒a if a 6= τ . The Markovian adaptation below

is taken from [90]. Unlike [112], due to its second clause it is sensitive to divergence, i.e., cycles of τ -transitions.

Definition 10.3. Let (S,A,−→) be an MLTS. We say that s1, s2 ∈ S are weakly Markovian bisimilar, written
s1 ≈mw s2, iff (s1, s2) ∈ B for some weak Markovian bisimulation B. An equivalence relation B over S is a weak
Markovian bisimulation iff, whenever (s1, s2) ∈ B, then:

• For each s1
a−→a s

′
1 there exists s2

â
==⇒a s

′
2 such that (s′1, s

′
2) ∈ B.

• If s1 6
τ−→a then there exists s2

τ∗
==⇒a s̄2 such that s̄2 6

τ−→a, (s1, s̄2) ∈ B, and rate(s1, C) = rate(s̄2, C) for all
equivalence classes C ∈ S/B.

Branching bisimilarity [80] is finer than weak bisimilarity as it preserves the branching structure of processes
even when abstracting from τ -actions – see condition (s1, s̄2) ∈ B in the definition below. We adapt it to the
Markovian setting as follows.

Definition 10.4. Let (S,A,−→) be an MLTS. We say that s1, s2 ∈ S are Markovian branching bisimilar, written
s1 ≈mb s2, iff (s1, s2) ∈ B for some Markovian branching bisimulation B. An equivalence relation B over S is a
Markovian branching bisimulation iff, whenever (s1, s2) ∈ B, then:

• For each s1
a−→a s

′
1:

– either a = τ and (s′1, s2) ∈ B;

– or there exists s2
τ∗

==⇒a s̄2
a−→a s

′
2 such that (s1, s̄2) ∈ B and (s′1, s

′
2) ∈ B.

• If s1 6
τ−→a then there exists s2

τ∗
==⇒a s̄2 such that s̄2 6

τ−→a, (s1, s̄2) ∈ B, and rate(s1, C) = rate(s̄2, C) for all
equivalence classes C ∈ S/B.

In [90] it is argued that the weak bisimilarity of Definition 10.3 is already very close to branching bisimilarity,
because maximal progress forces a check given by condition (s1, s̄2) ∈ B on the branching structure of the considered
processes. We show that our novel Definition 10.4, which sticks to the original one of [80], is more discriminating.
Consider Figure 10.1, where every MLTS is depicted as a directed graph in which vertices represent states and
action- or rate-labeled edges represent transitions. The initial states s1 and s2 of the two MLTSs are weakly
Markovian bisimilar but not Markovian branching bisimilar. On the one hand, each of the two states reachable
from s1 with rate 3.4 and the state reachable from s2 with rate 6.8 after a τ -transition are all weakly Markovian
bisimilar and hence the cumulative rate to reach them is the same from both initial states. On the other hand,
the two states reachable from s1 are not Markovian branching bisimilar, because if the one on the right performs a
then the one on the left cannot respond by performing τ followed by a because the state reached after τ no longer
enables b. Thus, with respect to Markovian branching bisimilarity, s1 reaches with rate 3.4 two different equivalence
classes, while s2 reaches with rate 6.8 only one of them.
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s1
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s2 τ
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Figure 10.1: States related by ≈mw but distinguished by ≈mb

10.1.3 A Markovian Process Calculus with High and Low Actions

We now introduce a Markovian process calculus to formalize the security properties of interest. To address two
security levels, like in the two previous chapters we partition the set A \ {τ} of observable actions into AH ∪ AL,
with AH ∩ AL = ∅, where AH is the set of high-level actions, ranged over by h, and AL is the set of low-level
actions, ranged over by l. Note that τ /∈ AH ∪ AL.

The set Pmk of process terms is obtained by considering typical operators from CCS [112] and CSP [45] together
with rate prefix from [90]. In addition to prefix, choice, and parallel composition – taken from CSP so as not to
turn synchronizations among high-level actions into τ as would happen with the CCS parallel composition –
we include restriction and hiding, as they are necessary to formalize noninterference properties, and recursion.
The syntax for Pmk is:

P ::= 0 | a . P | (λ) . P | P + P | P ‖L P | P \ L | P /L | K
where:

• 0 is the terminated process.

• a ._, for a ∈ A, is the action prefix operator describing a process that can initially perform action a.

• (λ) ._, for λ ∈ R>0, is the rate prefix operator describing a process that can initially let an exponentially
distributed delay pass with average duration 1/λ.

• _+_ is the alternative composition operator expressing a choice between two processes, which is nondeter-
ministic in case of actions, probabilistic in case of rates according to the race policy, or subject to maximal
progress otherwise.

• _ ‖L_, for L ⊆ A\{τ}, is the parallel composition operator allowing two processes to proceed independently
on any action not in L as well as on rates thanks to the memoryless property of exponential distributions [90]
and forcing them to synchronize on every action in L.

• _\L, for L ⊆ A\{τ}, is the restriction operator, which prevents the execution of all actions belonging to L.

• _ /L, for L ⊆ A \ {τ}, is the hiding operator, which turns all the executed actions belonging to L into
the unobservable action τ .
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Prefix a . P
a−→a P

Choice
P1

a−→a P
′
1

P1 + P2
a−→a P

′
1

P2
a−→a P

′
2

P1 + P2
a−→a P

′
2

Parallel
P1

a−→a P
′
1 a /∈ L

P1 ‖L P2
a−→a P

′
1 ‖L P2

P2
a−→a P

′
2 a /∈ L

P1 ‖L P2
a−→a P1 ‖L P ′2

Synch
P1

a−→a P
′
1 P2

a−→a P
′
2 a ∈ L

P1 ‖L P2
a−→a P

′
1 ‖L P ′2

Restriction P
a−→a P

′ a /∈ L
P \ L a−→a P

′ \ L

Hiding P
a−→a P

′ a ∈ L
P /L

τ−→a P
′ /L

P
a−→a P

′ a /∈ L
P /L

a−→a P
′ /L

Constant K , P P
a−→a P

′

K
a−→a P

′

Table 10.1: Operational semantic rules for action transitions

• K is a process constant equipped with a defining equation of the form K , P , where every constant possibly
occurring in P – including K itself thus allowing for recursion – must be in the scope of an action prefix.

The operational semantic rules for the process language are shown in Tables 10.1 and 10.2 for action and
rate transitions respectively. Together they produce the MLTS (Pmk,A,−→) where −→ = −→a ∪ −→r,
to which the bisimulation equivalences defined in Section 10.1.2 are applicable. While −→a ⊆ Pmk × A × Pmk

is a relation, −→r ⊆ Pmk×R>0×Pmk is deemed to be a multirelation [90]; e.g., from (λ1) . P + (λ2) . P there must
be two rate transitions to P even when λ1 = λ2 otherwise the average sojourn time in the source process would
be altered.

10.2 Markovian Information-Flow Security Properties

In this section, after recasting the definitions of noninterference properties of the two previous chapters by taking
as behavioral equivalence the weak or branching bisimilarity of Section 10.1.2, we investigate their preservation
and compositionality characteristics (Section 10.2.1), we show the inclusion relationships between the ones based
on ≈mw and the ones based on ≈mb (Section 10.2.2), and we relate the resulting Markovian taxonomy with the
nondeterministic and probabilistic ones (Section 10.2.3).

Definition 10.5. Let P ∈ Pmk and ≈ ∈ {≈mw,≈mb}:

• P ∈ BSNNI≈ ⇐⇒ P \ AH ≈ P /AH.

• P ∈ BNDC≈ ⇐⇒ for all Q ∈ Pmk such that each of its prefixes belongs to AH and for all L ⊆ AH,
P \ AH ≈ ((P ‖LQ) /L) \ AH.
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RatePrefix (λ) . P
λ−→r P

RateChoice
P1

λ−→r P
′
1

P1 + P2
λ−→r P

′
1

P2
λ−→r P

′
2

P1 + P2
λ−→r P

′
2

RateParallel
P1

λ−→r P
′
1

P1 ‖L P2
λ−→r P

′
1 ‖L P2

P2
λ−→r P

′
2

P1 ‖L P2
λ−→r P1 ‖L P ′2

RateRestriction P
λ−→r P

′

P \ L λ−→r P
′ \ L

RateHiding P
λ−→r P

′

P /L
λ−→r P

′ /L

RateConstant K , P P
λ−→r P

′

K
λ−→r P

′

Table 10.2: Operational semantic rules for rate transitions

• P ∈ SBSNNI≈ ⇐⇒ for all P ′ ∈ reach(P ), P ′ ∈ BSNNI≈.

• P ∈ P_BNDC≈ ⇐⇒ for all P ′ ∈ reach(P ), P ′ ∈ BNDC≈ .

• P ∈ SBNDC≈ ⇐⇒ for all P ′, P ′′ ∈ reach(P ) such that P ′ h−→a P
′′, P ′ \ AH ≈ P ′′ \ AH.

To see the different distinguishing power of these Markovian noninterference properties, we can adapt the
examples of Section 8.1.4. For instance, in this Markovian setting, a low-level agent that observes the execution
of l in P = l . (2 · λ) . 0 + l . ((λ) . h . l1 . 0 + (λ) . h . l2 . 0) + l . ((λ) . l1 . 0 + (λ) . l2 . 0) cannot infer anything about the
execution of h. Indeed, after the execution of l, what the low-level agent observes is either a terminal state, reached
with rate 2·λ, or the execution of either l1 or l2, both with rate λ. Formally, P \ {h} ≈ P / {h} because l . (2·λ) . 0+
l . ((λ) . 0+(λ) . 0)+l . ((λ) . l1 . 0+(λ) . l2 . 0) ≈ l . (2·λ) . 0+l . ((λ) . τ . l1 . 0+(λ) . τ . l2 . 0)+l . ((λ) . l1 . 0+(λ) . l2 . 0),
hence P is BSNNI≈ .

On the other hand, in Q = l . (2 · λ) . 0 + l . ((λ) . h1 . l1 . 0 + (λ) . h2 . l2 . 0) + l . ((λ) . l1 . 0 + (λ) . l2 . 0), which is
BSNNI≈ for the same reason discussed above, a high-level agent could decide to enable only h1, thus turning the
low-level view of the system into l . (2 · λ) . 0 + l . ((λ) . τ . l1 . 0 + (λ) . 0) + l . ((λ) . l1 . 0 + (λ) . l2 . 0), which is clearly
distinguishable from l . (2 · λ) . 0 + l . ((λ) . 0 + (λ) . 0) + l . ((λ) . l1 . 0 + (λ) . l2 . 0), as in the former there is a case in
which the low-level agent can observe l1 but not l2 after the execution of l. In other words, Q is not BNDC≈ .

Note that in this Markovian setting the high-level agent Q cannot exhibit any rate prefix by definition, otherwise
no process would satisfy the BNDC property. To see why, consider the trivially safe process l . 0 and the high-level
agent (λ) . h . 0. The processes (l . 0) \ AH and ((l . 0 ‖L(λ) . h . 0) /L) \ AH are not equivalent, regardless of the
specific L ⊆ AH, because the former can only perform the low-level action l while the latter can also let time pass
before or after the execution of l.
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10.2.1 Preservation and Compositionality

All the Markovian noninterference properties of Definition 10.5 turn out to be preserved by the bisimilarity em-
ployed in their definition. This means that if a process P1 is secure under any of such properties, then every other
equivalent process P2 is secure too according to the same property. This is very useful for automated property
verification, as it allows us to work with the process with the smallest state space among the equivalent ones.

The preservation result of Theorem 10.1 immediately follows from Lemma 10.1 below, which ensures that
≈mw and ≈mb are congruences with respect to all the operators occurring in the aforementioned noninterference
properties. Congruence with respect to action and rate prefixes is also addressed as it will be exploited in the proof
of the compositionality result of Theorem 10.2. Some of the following congruence properties for ≈mw are already
known from [90].

Lemma 10.1. Let P1, P2 ∈ Pmk and ≈ ∈ {≈mw,≈mb}. If P1 ≈ P2 then:

1. a . P1 ≈ a . P2 for all a ∈ A.

2. (λ) . P1 ≈ (λ) . P2 for all λ ∈ R>0.

3. P1 ‖L P ≈ P2 ‖L P and P ‖L P1 ≈ P ‖L P2 for all L ⊆ A \ {τ} and P ∈ Pmk.

4. P1 \ L ≈ P2 \ L for all L ⊆ A \ {τ}.

5. P1 /L ≈ P2 /L for all L ⊆ A \ {τ}.

Proof. We first prove the five results for the ≈pw-based properties. The congruence of ≈mw with respect to action
prefix, rate prefix, parallel composition, and hiding has already been proven in [90], so we focus only on restriction.
Let B be a weak Markovian bisimulation witnessing P1 ≈mw P2:

1. The equivalence relation B′ = IPmk
∪ {(Q1 \ L,Q2 \ L) | (Q1, Q2) ∈ B} is a weak Markovian bisimulation

too. Given (Q1 \ L,Q2 \ L) ∈ B′ with (Q1, Q2) ∈ B, there are two cases for action transitions based on the
operational semantic rules in Table 10.1:

• If Q1 \ L
τ−→aQ

′
1 \ L with Q1

τ−→aQ
′
1, then there exists Q2

τ∗
==⇒aQ

′
2 such that (Q′1, Q

′
2) ∈ B. Since the

restriction operator does not apply to τ , we have that Q2 \ L
τ∗

==⇒aQ
′
2 \ L with (Q′1 \ L,Q′2 \ L) ∈ B′.

• If Q1 \ L
a−→aQ

′
1 \ L with Q1

a−→aQ
′
1 and a /∈ L ∪ {τ}, then there exists Q2

τ∗
==⇒a

a−→a
τ∗

==⇒aQ
′
2 such

that (Q′1, Q
′
2) ∈ B. Since the restriction operator does not apply to τ and a /∈ L, we have that

Q2 \ L
τ∗

==⇒a
a−→a

τ∗
==⇒aQ

′
2 \ L with (Q′1 \ L,Q′2 \ L) ∈ B′.

As for rates, to avoid trivial cases consider an equivalence class C ′ = C \ L = {Q \ L | Q ∈ C} for some
C ∈ Pmk/B. Suppose that Q1 \ L 6 τ−→a so that Q1 6 τ−→a too and hence from (Q1, Q2) ∈ B it follows
that there exists Q2

τ∗
==⇒a Q̄2 such that Q̄2 6 τ−→a, (Q1, Q̄2) ∈ B, and rate(Q1, C) = rate(Q̄2, C). Since the

restriction operator does not apply to τ and rate transitions, we have that Q2\L
τ∗

==⇒a Q̄2\L with Q̄2\L 6
τ−→a,

(Q1 \ L, Q̄2 \ L) ∈ B′, and rate(Q1 \ L,C ′) = rate(Q1, C) = rate(Q̄2, C) = rate(Q̄2 \ L,C ′).

We then prove the five results for the ≈mb-based properties. Let B be a Markovian branching bisimulation
witnessing P1 ≈mb P2:
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1. The equivalence relation B′ = (B ∪ {(a .Q1, a .Q2) | (Q1, Q2) ∈ B})+ is a Markovian branching bisimulation
too. The result immediately follows from the fact that, given (a .Q1, a .Q2) ∈ B′ with (Q1, Q2) ∈ B,
a .Q1

a−→aQ1 is matched by a .Q2
τ∗

==⇒a a .Q2
a−→aQ2 with (a .Q1, a .Q2) ∈ B′ and (Q1, Q2) ∈ B′ as well as,

in the case a 6= τ , a .Q1 6 τ−→a with a .Q2
τ∗

==⇒a a .Q2 6 τ−→a and rate(a .Q1, C
′) = rate(a .Q2, C

′) = 0 for all
C ′ ∈ Pmk/B′.

2. The equivalence relation B′ = (B ∪ {((λ) . Q1, (λ) . Q2) | (Q1, Q2) ∈ B})+ is a Markovian branching bisimula-
tion too. The result immediately follows from the fact that, given ((λ) . Q1, (λ) . Q2) ∈ B′ with (Q1, Q2) ∈ B,
both processes can only perform a λ-transition. Precisely, (λ) . Q1 6 τ−→a with (λ) . Q2

τ∗
==⇒a (λ) . Q2 6 τ−→a

and rate((λ) . Q1, C̄) = rate((λ) . Q2, C̄) = λ for C̄ = [Q1]B′ while rate((λ) . Q1, C
′) = rate((λ) . Q2, C

′) = 0
for any other C ′ ∈ Pmk/B′.

3. The equivalence relation B′ = IPmk
∪ {(Q1 ‖LQ,Q2 ‖LQ) | (Q1, Q2) ∈ B ∧ Q ∈ Pmk} and its variant B′′

in which Q occurs to the left of parallel composition in each pair are Markovian branching bisimulations
too. Let us focus on B′. Given (Q1 ‖LQ,Q2 ‖LQ) ∈ B′ with (Q1, Q2) ∈ B, there are three cases for action
transitions based on the operational semantic rules in Table 10.1:

• If Q1 ‖LQ
a−→aQ

′
1 ‖LQ with Q1

a−→aQ
′
1 and a /∈ L, then either a = τ and (Q′1, Q2) ∈ B, or there exists

Q2
τ∗

==⇒a Q̄2
a−→aQ

′
2 such that (Q1, Q̄2) ∈ B and (Q′1, Q

′
2) ∈ B. Since synchronization does not apply

to τ and a /∈ L, in the former subcase Q2 ‖LQ is allowed to stay idle with (Q′1 ‖LQ,Q2 ‖LQ) ∈ B′,
while in the latter subcase Q2 ‖LQ

τ∗
==⇒a Q̄2 ‖LQ

a−→aQ
′
2 ‖LQ with (Q1 ‖LQ, Q̄2 ‖LQ) ∈ B′ and

(Q′1 ‖LQ,Q′2 ‖LQ) ∈ B′.
• The case Q1 ‖LQ

a−→aQ1 ‖LQ′ with Q
a−→aQ

′ and a /∈ L is trivial.

• If Q1 ‖LQ
a−→aQ

′
1 ‖LQ′ with Q1

a−→aQ
′
1, Q

a−→aQ
′, and a ∈ L, then there exists Q2

τ∗
==⇒a Q̄2

a−→aQ
′
2

such that (Q1, Q̄2) ∈ B and (Q′1, Q
′
2) ∈ B. Since synchronization does not apply to τ and a ∈ L, we have

that Q2 ‖LQ
τ∗

==⇒a Q̄2 ‖LQ
a−→aQ

′
2 ‖LQ′ with (Q1 ‖LQ, Q̄2 ‖LQ) ∈ B′ and (Q′1 ‖LQ′, Q′2 ‖LQ′) ∈ B′.

As for rates, to avoid trivial cases consider an equivalence class C ′ = C ‖LQ′ = {R ‖LQ′ | R ∈ C} for some
C ∈ Pmk/B. Suppose that Q1 ‖LQ 6τ−→a so that Q1 6

τ−→a and Q 6τ−→a too and hence from (Q1, Q2) ∈ B it fol-
lows that there exists Q2

τ∗
==⇒a Q̄2 such that Q̄2 6

τ−→a, (Q1, Q̄2) ∈ B, and rate(Q1, C) = rate(Q̄2, C). Since syn-
chronization does not apply to τ and rate transitions, we have that Q2 ‖LQ

τ∗
==⇒a Q̄2 ‖LQ with Q̄2 ‖LQ 6τ−→a,

(Q1 ‖LQ, Q̄2 ‖LQ) ∈ B′, and rate(Q1 ‖LQ,C ′) = rate(Q1, C) = rate(Q̄2, C) = rate(Q̄2 ‖LQ,C ′)
if Q = Q′, rate(Q1 ‖LQ,C ′) = rate(Q, {Q′}) = rate(Q̄2 ‖LQ,C ′) if Q1, Q̄2 ∈ C, rate(Q1 ‖LQ,C ′) = 0 =
rate(Q̄2 ‖LQ,C ′) otherwise.

4. The equivalence relation B′ = IPmk
∪{(Q1 \L,Q2 \L) | (Q1, Q2) ∈ B} is a Markovian branching bisimulation

too. Given (Q1 \ L,Q2 \ L) ∈ B′ with (Q1, Q2) ∈ B, there are two cases for action transitions based on the
operational semantic rules in Table 10.1:

• If Q1 \ L
τ−→aQ

′
1 \ L with Q1

τ−→aQ
′
1, then either (Q′1, Q2) ∈ B, or there exists Q2

τ∗
==⇒a Q̄2

τ−→aQ
′
2

such that (Q1, Q̄2) ∈ B and (Q′1, Q
′
2) ∈ B. Since the restriction operator does not apply to τ , in the

former subcase Q2 \ L is allowed to stay idle with (Q′1 \ L,Q2 \ L) ∈ B′, while in the latter subcase
Q2 \ L

τ∗
==⇒a Q̄2 \ L

τ−→aQ
′
2 \ L with (Q1 \ L, Q̄2 \ L) ∈ B′ and (Q′1 \ L,Q′2 \ L) ∈ B′.
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• If Q1 \L
a−→aQ

′
1 \L with Q1

a−→aQ
′
1 and a /∈ L∪ {τ}, then there exists Q2

τ∗
==⇒a Q̄2

a−→aQ
′
2 such that

(Q1, Q̄2) ∈ B and (Q′1, Q
′
2) ∈ B. Since the restriction operator does not apply to τ and a /∈ L, we have

that Q2 \ L
τ∗

==⇒a Q̄2 \ L
a−→aQ

′
2 \ L with (Q1 \ L, Q̄2 \ L) ∈ B′ and (Q′1 \ L,Q′2 \ L) ∈ B′.

As for rates, we reason like in the proof of the corresponding result for ≈mw.

5. The equivalence relation B′ = IPmk
∪{(Q1 /L,Q2 /L) | (Q1, Q2) ∈ B} is a Markovian branching bisimulation

too. Given (Q1 /L,Q2 /L) ∈ B′ with (Q1, Q2) ∈ B, there are two cases for action transitions based on the
operational semantic rules in Table 10.1:

• If Q1 /L
τ−→aQ

′
1 /L with Q1

τ−→aQ
′
1, then either (Q′1, Q2) ∈ B, or there exists Q2

τ∗
==⇒a Q̄2

τ−→aQ
′
2

such that (Q1, Q̄2) ∈ B and (Q′1, Q
′
2) ∈ B. Since the hiding operator does not apply to τ , in the

former subcase Q2 /L is allowed to stay idle with (Q′1 /L,Q2 /L) ∈ B′, while in the latter subcase
Q2 /L

τ∗
==⇒a Q̄2 /L

τ−→aQ
′
2 /L with (Q1 /L, Q̄2 /L) ∈ B′ and (Q′1 /L,Q

′
2 /L) ∈ B′.

• If Q1 /L
a−→aQ

′
1 /L with Q1

b−→aQ
′
1 and b ∈ L ∧ a = τ or b /∈ L ∪ {τ} ∧ a = b, then there exists

Q2
τ∗

==⇒a Q̄2
b−→aQ

′
2 such that (Q1, Q̄2) ∈ B and (Q′1, Q

′
2) ∈ B. Since the hiding operator does not apply

to τ , we have that Q2 /L
τ∗

==⇒a Q̄2 /L
a−→aQ

′
2 /L with (Q1 /L, Q̄2 /L) ∈ B′ and (Q′1 /L,Q

′
2 /L) ∈ B′.

As for rates, to avoid trivial cases consider an equivalence class C ′ = C /L = {Q/L | Q ∈ C} for some
C ∈ Pmk/B. Suppose that Q1 /L 6 τ−→a so that Q1 6 τ−→a too and hence from (Q1, Q2) ∈ B it follows
that there exists Q2

τ∗
==⇒a Q̄2 such that Q̄2 6 τ−→a, (Q1, Q̄2) ∈ B, and rate(Q1, C) = rate(Q̄2, C). Since the

hiding operator does not apply to τ and rate transitions, we have that Q2 /L
τ∗

==⇒a Q̄2 /L with Q̄2 /L 6τ−→a,
(Q1 /L, Q̄2 /L) ∈ B′, and rate(Q1 /L,C

′) = rate(Q1, C) = rate(Q̄2, C) = rate(Q̄2 /L,C
′).

Theorem 10.1. Let P1, P2 ∈ P, ≈∈ {≈mw,≈mb}, and P ∈ {BSNNI≈ ,BNDC≈ ,SBSNNI≈ ,P_BNDC≈ ,SBNDC≈}.
If P1 ≈ P2 then P1 ∈ P ⇐⇒ P2 ∈ P.

Proof. A straightforward consequence of the definition of the various properties, i.e., Definition 10.5, and
Lemma 10.1.

As far as modular verification is concerned, like in the nondeterministic and probabilistic settings of the two
previous chapters only the local properties SBSNNI≈ , P_BNDC≈ , and SBNDC≈ are compositional, i.e., are
preserved by some operators of the calculus in certain circumstances. Moreover, similar to the two previous
chapters, compositionality with respect to parallel composition is limited, for SBSNNI≈mb

and P_BNDC≈mb
,

to the case in which synchronizations can take place only among low-level actions, i.e., L ⊆ AL. A limitation to
low-level actions applies to action prefix and hiding as well, whilst this is not the case for restriction. Another
analogy with the nondeterministic and probabilistic settings of the two previous chapters is that none of the
considered noninterference properties is compositional with respect to alternative composition, as can be noted by
examining P1 + P2 where P1 = l . 0 and P2 = h . 0 (see after Theorem 8.2).

To establish compositionality, we first prove some ancillary results about parallel composition, restriction, and
hiding under SBSNNI and SBNDC similar to those in the two previous chapters.
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Lemma 10.2. Let P1, P2, P ∈ Pmk and ≈ ∈ {≈mw,≈mb}. Then:

1. If P1, P2 ∈ SBSNNI≈ and L ⊆ A\{τ} for ≈mw or L ⊆ AL for ≈mb, then (Q1 ‖LQ2)\AH ≈ (R1 ‖LR2) /AH
for all Q1, R1 ∈ reach(P1) and Q2, R2 ∈ reach(P2) such that Q1 ‖LQ2, R1 ‖LR2 ∈ reach(P1 ‖L P2), Q1\AH ≈
R1 /AH, and Q2 \ AH ≈ R2 /AH.

2. If P ∈ SBSNNI≈ and L ⊆ A \ {τ}, then (Q/AH) \ L ≈ (R \ L) /AH for all Q,R ∈ reach(P ) such that
Q/AH ≈ R \ AH.

3. If P1, P2 ∈ SBNDC≈ and L ⊆ A \ {τ}, then (Q1 ‖LQ2) \ AH ≈ (R1 ‖LR2) \ AH for all Q1, R1 ∈ reach(P1)
and Q2, R2 ∈ reach(P2) such that Q1 ‖LQ2, R1 ‖LR2 ∈ reach(P1 ‖L P2), Q1 \ AH ≈ R1 \ AH and Q2 \ AH ≈
R2 \ AH.

Proof. We first prove the three results for the ≈mw-based properties. Let B be an equivalence relation containing
all the pairs of processes that have to be shown to be ≈mw-equivalent according to the considered result:

1. Starting from (Q1 ‖LQ2) \ AH and (R1 ‖LR2) /AH related by B, so that Q1 \ AH ≈mw R1 /AH and
Q2 \ AH ≈mw R2 /AH, there are thirteen cases for action transitions based on the operational semantic
rules in Table 10.1. In the first five cases, it is (Q1 ‖LQ2) \ AH to move first:

• If (Q1 ‖LQ2) \ AH
l−→a (Q′1 ‖LQ2) \ AH with Q1

l−→aQ
′
1 and l /∈ L, then Q1 \ AH

l−→aQ
′
1 \ AH

as l /∈ AH. From Q1 \ AH ≈mw R1 /AH it follows that there exists R1 /AH
τ∗

==⇒a
l−→a

τ∗
==⇒aR

′
1 /AH

such that Q′1 \ AH ≈mw R′1 /AH. Since synchronization does not apply to τ and l /∈ L, we have that
(Q1 ‖LQ2) /AH

τ∗
==⇒a

l−→a
τ∗

==⇒a (R′1 ‖LR2) /AH with ((Q′1 ‖LQ2) \ AH, (R′1 ‖LR2) /AH) ∈ B.

• If (Q1 ‖LQ2) \AH
l−→a (Q1 ‖LQ′2) \AH with Q2

l−→aQ
′
2 and l /∈ L, then the proof is similar to the one

of the previous case.

• If (Q1 ‖LQ2)\AH
l−→a (Q′1 ‖LQ′2)\AH withQi

l−→aQ
′
i for i ∈ {1, 2} and l ∈ L, thenQi\AH

l−→aQ
′
i\AH

as l /∈ AH. From Qi \AH ≈mw Ri /AH it follows that there exists Ri /AH
τ∗

==⇒a
l−→a

τ∗
==⇒aR

′
i /AH such

that Q′i \ AH ≈mw R′i /AH. Since synchronization does not apply to τ and l ∈ L, we have that
(R1 ‖LR2) /AH

τ∗
==⇒a

l−→a
τ∗

==⇒a (R′1 ‖LR′2) /AH with ((Q′1 ‖LQ′2) \ AH, (R′1 ‖LR′2) /AH) ∈ B.
• If (Q1 ‖LQ2) \AH

τ−→a (Q′1 ‖LQ2) \AH with Q1
τ−→aQ

′
1, then Q1 \AH

τ−→aQ
′
1 \AH as τ /∈ AH. From

Q1\AH ≈mw R1 /AH it follows that there exists R1 /AH
τ∗

==⇒aR
′
1 /AH such that Q′1\AH ≈mw R′1 /AH.

Since synchronization does not apply to τ , we have that (R1 ‖LR2) /AH
τ∗

==⇒a (R′1 ‖LR2) /AH with
((Q′1 ‖LQ2) \ AH, (R′1 ‖LR2) /AH) ∈ B.

• If (Q1 ‖LQ2) \ AH
τ−→a (Q1 ‖LQ′2) \ AH with Q2

τ−→aQ
′
2, then the proof is similar to the one of the

previous case.

In the other eight cases, instead, it is (R1 ‖LR2) /AH to move first:

• If (R1 ‖LR2) /AH
l−→a (R′1 ‖LR2) /AH with R1

l−→aR
′
1 and l /∈L, then R1 /AH

l−→aR
′
1 /AH as l /∈AH.

From R1 /AH ≈mw Q1 \ AH it follows that there exists Q1 \ AH
τ∗

==⇒a
l−→a

τ∗
==⇒aQ

′
1 \ AH such that

R′1 /AH ≈mw Q′1\AH. Since synchronization does not apply to τ and l /∈ L, we have that (Q1 ‖LQ2)\AH
τ∗

==⇒a
l−→a

τ∗
==⇒a (Q′1 ‖LQ2) \ AH with ((R′1 ‖LR2)/AH, (Q′1 ‖LQ2) \ AH) ∈ B.
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• If (R1 ‖LR2) /AH
l−→a (R1 ‖LR′2) /AH with R2

l−→aR
′
2 and l /∈ L, then the proof is similar to the one

of the previous case.

• If (R1 ‖LR2) /AH
l−→a (R′1 ‖LR′2) /AH with Ri

l−→aR
′
i for i ∈ {1, 2} and l ∈ L, then Ri /AH

l−→aR
′
i /AH as l /∈ AH. From Ri /AH ≈mw Qi \ AH it follows that there exists Qi \ AH

τ∗
==⇒a

l−→a
τ∗

==⇒aQ
′
i \ AH such that R′i /AH ≈mw Q′i \ AH. Since synchronization does not apply

to τ and l ∈ L, we have that (Q1 ‖LQ2) \ AH
τ∗

==⇒a
l−→a

τ∗
==⇒a (Q′1 ‖LQ′2) \ AH with ((R′1 ‖LR′2)/AH,

(Q′1 ‖LQ′2) \ AH) ∈ B.
• If (R1 ‖LR2) /AH

τ−→a (R′1 ‖LR2) /AH with R1
τ−→aR

′
1, then R1 /AH

τ−→aR
′
1 /AH as τ /∈ AH. From

R1 /AH ≈mw Q1\AH it follows that there exists Q1\AH
τ∗

==⇒aQ
′
1\AH such that R′1 /AH ≈mw Q′1\AH.

Since synchronization does not apply to τ , we have that (Q1 ‖LQ2) \ AH
τ∗

==⇒a (Q′1 ‖LQ2) \ AH with
((R′1 ‖LR2)/AH, (Q′1 ‖LQ2) \ AH) ∈ B.

• If (R1 ‖LR2) /AH
τ−→a (R1 ‖LR′2) /AH with R2

τ−→aR
′
2, then the proof is similar to the one of the

previous case.

• If (R1 ‖LR2) /AH
τ−→a (R′1 ‖LR2) /AH with R1

h−→aR
′
1 and h /∈ L, then R1 /AH

τ−→aR
′
1 /AH as

h ∈ AH. The rest of the proof is like the one of the fourth case.

• If (R1 ‖LR2) /AH
τ−→a (R1 ‖LR′2) /AH with R2

h−→aR
′
2 and h /∈ L, then the proof is similar to the one

of the previous case.

• If (R1 ‖LR2) /AH
τ−→a (R′1 ‖LR′2) /AH with Ri

h−→aR
′
i for i ∈ {1, 2} and h ∈ L, then Ri /AH

τ−→aR
′
i /AH as h ∈ AH. From Ri /AH ≈mw Qi \ AH it follows that there exists Qi \ AH

τ∗
==⇒aQ

′
i \ AH

such that R′i /AH ≈mw Q′i \ AH. Since synchronization does not apply to τ and h ∈ L, we have that
(Q1 ‖LQ2) \ AH

τ∗
==⇒a (Q′1 ‖LQ′2) \ AH with ((R′1 ‖LR′2) /AH, (Q′1 ‖LQ′2) \ AH) ∈ B.

As for rates, to avoid trivial cases consider an equivalence class C ∈ Pmk/B that involves processes reachable
from P1 ‖L P2, specifically C = {(S1,i ‖L S2,i) \ AH, (S1,j ‖L S2,j) /AH | Sk,h ∈ reach(Pk) ∧ S1,h ‖L S2,h ∈
reach(P1 ‖L P2) ∧ Sk,i \ AH ≈mw Sk,j /AH}. Suppose that (Q1 ‖LQ2) \ AH 6 τ−→a so that Qk \ AH 6 τ−→a

too and hence from Qk \ AH ≈mw Rk /AH it follows that there exists Rk /AH
τ∗

==⇒a R̄k /AH such that
R̄k /AH 6 τ−→a, Qk \ AH ≈mw R̄k /AH, and rate(Qk \ AH, C ′) = rate(R̄k /AH, C ′) for all C ′ ∈ Pmk/≈mw.
Since synchronization does not apply to τ , we have that (R1 ‖LR2) /AH

τ∗
==⇒a (R̄1 ‖L R̄2) /AH with

(R̄1 ‖L R̄2) /AH 6
τ−→a and ((Q1 ‖LQ2)\AH, (R̄1 ‖L R̄2) /AH) ∈ B. Since the restriction and hiding operators

do not apply to rate transitions, we have that:
rate((Q1 ‖LQ2) \ AH, C) = rate((Q1 \ AH) ‖L(Q2 \ AH), C)
rate((R̄1 ‖L R̄2) /AH, C) = rate((R̄1 /AH) ‖L(R̄2 /AH), C)

Based on which subprocess moves so that the overall process reaches C (which we assume to be reachable
in one move to avoid trivial cases in which cumulative rates are zero), we have that:

rate((Q1 \ AH) ‖L(Q2 \ AH), C) = rate(Q1 \ AH, C1)
rate((R̄1 /AH) ‖L(R̄2 /AH), C) = rate(R̄1 /AH, C1)

or:
rate((Q1 \ AH) ‖L(Q2 \ AH), C) = rate(Q2 \ AH, C2)
rate((R̄1 /AH) ‖L(R̄2 /AH), C) = rate(R̄2 /AH, C2)

where:
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C1 = {S1,h \ AH | (S1,h ‖L S2,h) \ AH ∈ C} ∪ {S1,h /AH | (S1,h ‖L S2,h) /AH ∈ C}
C2 = {S2,h \ AH | (S1,h ‖L S2,h) \ AH ∈ C} ∪ {S2,h /AH | (S1,h ‖L S2,h) /AH ∈ C}

Since Qk\AH ≈mw R̄k /AH and Ck is the union of some ≈mw-equivalence classes for k ∈ {1, 2}, we have that:
rate(Q1 \ AH, C1) = rate(R̄1 /AH, C1)
rate(Q2 \ AH, C2) = rate(R̄2 /AH, C2)

If we start from (R1 ‖LR2) /AH 6
τ−→a, then the proof is similar.

2. Starting from (Q/AH) \ L and (R \ L) /AH related by B, so that Q/AH ≈mw R \ AH, there are six cases
for action transitions based on the operational semantic rules in Table 10.1. In the first three cases, it is
(Q/AH) \ L to move first:

• If (Q/AH) \ L l−→a (Q′ /AH) \ L with Q
l−→aQ

′ and l /∈ L, then Q/AH
l−→aQ

′ /AH as l /∈ AH.
From Q/AH ≈mw R \ AH it follows that there exists Q \ AH

τ∗
==⇒a

l−→a
τ∗

==⇒aR
′ \ AH such that

Q′ /AH ≈mw R′ \AH. Since the restriction and hiding operators do not apply to τ and l, we have that
(R \ L) /AH

τ∗
==⇒a

l−→a
τ∗

==⇒a (R′ \ L) /AH with ((Q′ /AH) \ L, (R′ \ L) /AH) ∈ B.
• If (Q/AH) \ L τ−→a (Q′ /AH) \ L with Q

τ−→aQ
′, then Q/AH

τ−→aQ
′ /AH as τ /∈ AH. From

Q/AH ≈mw R \ AH it follows that there exists R \ AH
τ∗

==⇒aR
′ \ AH such that Q′ /AH ≈mw R′ \ AH.

Since the restriction and hiding operators do not apply to τ , we have that (R\L) /AH
τ∗

==⇒a (R′\L) /AH
with ((Q′ /AH) \ L, (R′ \ L) /AH) ∈ B.

• If (Q/AH)\L τ−→a (Q′ /AH)\L with Q h−→aQ
′, then Q/AH

τ−→aQ
′ /AH as h ∈ AH. The rest of the

proof is like the one of the previous case.

In the other three cases, instead, it is (R \ L) /AH to move first:

• If (R \ L) /AH
l−→a (R′ \ L) /AH with R

l−→aR
′ and l /∈ L, then R \ AH

l−→aR
′ \ AH as l /∈ AH.

From R \ AH ≈mw Q/AH it follows that there exists Q/AH
τ∗

==⇒a
l−→a

τ∗
==⇒aQ

′ /AH such that
R′ \ AH ≈mw Q′ /AH. Since the restriction operator does not apply to τ and l, we have that
(Q/AH) \ L τ∗

==⇒a
l−→a

τ∗
==⇒a (Q′ /AH) \ L with ((R′ \ L) /AH, (Q′ /AH) \ L) ∈ B.

• If (R \ L) /AH
τ−→a (R′ \ L) /AH with R

τ−→aR
′, then R \ AH

τ−→aR
′ \ AH as τ /∈ AH. From

R \ AH ≈mw Q/AH it follows that there exists Q/AH
τ∗

==⇒aQ
′ /AH such that R′ \ AH ≈mw

Q′ /AH. Since the restriction operator does not apply to τ , we have that (Q/AH) \ L
τ∗

==⇒a (Q′ /AH) \ L with ((R′ \ L) /AH, (Q′ /AH) \ L) ∈ B.

• If (R \ L) /AH
τ−→a (R′ \ L) /AH with R

h−→aR
′ and h /∈ L, then R/AH

τ−→aR
′ /AH as h ∈ AH

(note that R \ AH cannot perform h). From R/AH ≈mw R \ AH – as P ∈ SBSNNI≈mw and
R ∈ reach(P ) – and R \ AH ≈mw Q/AH it follows that there exists Q/AH

τ∗
==⇒aQ

′ /AH such that
R′ /AH ≈mw Q′ /AH and hence R′\AH ≈mw Q′ /AH – as R′ /AH ≈mw R′\AH due to P ∈ SBSNNI≈mw

and R′ ∈ reach(P ). Since the restriction operator does not apply to τ , we have that (Q/AH) \ L
τ∗

==⇒a (Q′ /AH) \ L with ((R′ \ L) /AH, (Q′ /AH) \ L) ∈ B.

As for rates, to avoid trivial cases consider an equivalence class C ∈ Pmk/B that involves processes reachable
from P , specifically C = {(Si /AH) \ L, (Sj \ L) /AH | Sh ∈ reach(P ) ∧ Si \ AH ≈mw Sj /AH}. Suppose
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that (Q/AH) \ L 6 τ−→a so that Q/AH 6 τ−→a too and hence from Q/AH ≈mw R \ AH ≈mw R/AH – as
P ∈ SBSNNI≈mw and R ∈ reach(P ) – it follows that there exists R/AH

τ∗
==⇒a R̄ /AH such that R̄ /AH 6

τ−→a,
Q/AH ≈mw R̄ /AH ≈mw R̄ \ AH, and rate(Q/AH, C) = rate(R̄ \ AH, C) for all C ∈ Pmk/ ≈mw. Since
the restriction and hiding operators do not apply to τ , we have that (R \ L) /AH

τ∗
==⇒a (R̄ \ L) /AH with

(R̄ \L) /AH 6
τ−→a – as R̄ /AH 6

τ−→a – and ((Q/AH) \L, (R̄ \L) /AH) ∈ B. Since the restriction and hiding
operators do not apply to rate transitions, we have that:

rate((Q/AH) \ L,C) = rate(Q \ AH, C̄)
rate((R̄ \ L) /AH, C) = rate(R̄ /AH, C̄)

where:
C̄ = {Si \ AH | (Si /AH) \ L ∈ C} ∪ {Sj /AH | (Sj \ L) /AH ∈ C}

Since Q \ AH ≈mw R̄ /AH and C̄ is the union of some ≈mw-equivalence classes, we have that:
rate(Q \ AH, C̄) = rate(R̄ /AH, C̄)

If we start from (R \ L) /AH 6
τ−→a, then the proof is similar.

3. Starting from (Q1 ‖LQ2) \ AH and (R1 ‖LR2) \ AH related by B, so that Q1 \ AH ≈mw R1 \ AH and
Q2 \ AH ≈mw R2 \ AH, there are five cases for action transitions based on the operational semantic rules in
Table 10.1:

• If (Q1 ‖LQ2) \ AH
l−→a (Q′1 ‖LQ2) \ AH with Q1

l−→aQ
′
1 and l /∈ L, then Q1 \ AH

l−→a

Q′1 \ AH as l /∈ AH. From Q1 \ AH ≈mw R1 \ AH it follows that there exists R1 \ AH
τ∗

==⇒a
l−→a

τ∗
==⇒aR

′
1 \ AH such that Q′1 \ AH ≈mw R′1 \ AH. Since synchronization does not apply

to τ and l /∈ L, we have that (R1 ‖LR2) \ AH
τ∗

==⇒a
l−→a

τ∗
==⇒a (R′1 ‖LR2) \ AH with ((Q′1 ‖LQ2) \ AH,

(R′1 ‖LR2) \ AH) ∈ B.

• If (Q1 ‖LQ2) \AH
l−→a (Q1 ‖LQ′2) \AH with Q2

l−→aQ
′
2 and l /∈ L, then the proof is similar to the one

of the previous case.

• If (Q1 ‖LQ2)\AH
l−→a (Q′1 ‖LQ′2)\AH withQi

l−→aQ
′
i for i ∈ {1, 2} and l ∈ L, thenQi\AH

l−→aQ
′
i\AH

as l /∈ AH. From Qi \ AH ≈mw Ri \ AH it follows that there exists Ri \ AH
τ∗

==⇒a
l−→a

τ∗
==⇒aR

′
i \ AH

such that Q′i \ AH ≈mw R′i \ AH. Since synchronization does not apply to τ and l ∈ L, we have that
(R1 ‖LR2) \ AH

τ∗
==⇒a

l−→a
τ∗

==⇒a (R′1 ‖LR′2) \ AH with ((Q′1 ‖LQ′2) \ AH, (R′1 ‖LR′2) \ AH) ∈ B.
• If (Q1 ‖LQ2) \AH

τ−→a (Q′1 ‖LQ2) \AH with Q1
τ−→aQ

′
1, then Q1 \AH

τ−→aQ
′
1 \AH as τ /∈ AH. From

Q1 \AH ≈mw R1 \AH it follows that there exists R1 \AH
τ∗

==⇒aR
′
1 \AH such that Q′1 \AH ≈mw R′1 \AH.

Since synchronization does not apply to τ , we have that (R1 ‖LR2) \ AH
τ∗

==⇒a (R′1 ‖LR2) \ AH with
((Q′1 ‖LQ2) \ AH, (R′1 ‖LR2) \ AH) ∈ B.

• If (Q1 ‖LQ2) \ AH
τ−→a (Q1 ‖LQ′2) \ AH with Q2

τ−→aQ
′
2, then the proof is similar to the one of the

previous case.

As for rates, to avoid trivial cases consider an equivalence class C ∈ Pmk/B that involves processes
reachable from P1 ‖L P2, specifically C = {(S1,i ‖L S2,i) \ AH | Sk,h ∈ reach(Pk) ∧ S1,h ‖L S2,h ∈
reach(P1 ‖L P2) ∧ Sk,i \ AH ≈mw Sk,j \ AH}. Suppose that (Q1 ‖LQ2) \ AH 6 τ−→a so that Qk \ AH 6 τ−→a

too and hence from Qk \ AH ≈mw Rk \ AH it follows that there exists Rk \ AH
τ∗

==⇒a R̄k \ AH such that
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R̄k \ AH 6τ−→a, Qk \ AH ≈mw R̄k \ AH, and rate(Qk \ AH, C ′) = rate(R̄k \ AH, C ′) for all C ′ ∈ Pmk/ ≈mw.
Since synchronization does not apply to τ , we have that (R1 ‖LR2) \ AH

τ∗
==⇒a (R̄1 ‖L R̄2) \ AH with

(R̄1 ‖L R̄2) \ AH 6τ−→a and ((Q1 ‖LQ2) \ AH, (R̄1 ‖L R̄2) \ AH) ∈ B. Since the restriction operator does not
apply to rate transitions, we have that:

rate((Q1 ‖LQ2) \ AH, C) = rate((Q1 \ AH) ‖L(Q2 \ AH), C)
rate((R̄1 ‖L R̄2) \ AH, C) = rate((R̄1 \ AH) ‖L(R̄2 \ AH), C)

Based on which subprocess moves so that the overall process reaches C (which we assume to be reachable
in one move to avoid trivial cases in which cumulative rates are zero), we have that:

rate((Q1 \ AH) ‖L(Q2 \ AH), C) = rate(Q1 \ AH, C1)
rate((R̄1 \ AH) ‖L(R̄2 \ AH), C) = rate(R̄1 \ AH, C1)

or:
rate((Q1 \ AH) ‖L(Q2 \ AH), C) = rate(Q2 \ AH, C2)
rate((R̄1 \ AH) ‖L(R̄2 \ AH), C) = rate(R̄2 \ AH, C2)

where:
C1 = {S1,h \ AH | (S1,h ‖L S2,h) \ AH ∈ C}
C2 = {S2,h \ AH | (S1,h ‖L S2,h) \ AH ∈ C}

Since Qk \AH ≈mw R̄k \AH and Ck is the union of some ≈mw-equivalence classes for k ∈ {1, 2}, we have that:
rate(Q1 \ AH, C1) = rate(R̄1 \ AH, C1)
rate(Q2 \ AH, C2) = rate(R̄2 \ AH, C2)

If we start from (R1 ‖LR2) \ AH 6
τ−→a, then the proof is similar.

We then prove the three results for the ≈mb-based properties. Let B be an equivalence relation containing all the
pairs of processes that have to be shown to be ≈mb-equivalent according to the considered result:

1. Starting from (Q1 ‖LQ2) \ AH and (R1 ‖LR2) /AH related by B, so that Q1 \ AH ≈mb R1 /AH and
Q2 \ AH ≈mb R2 /AH, there are twelve cases for action transitions based on the operational semantic
rules in Table 10.1. In the first five cases, it is (Q1 ‖LQ2) \ AH to move first:

• If (Q1 ‖LQ2) \ AH
l−→a (Q′1 ‖LQ2) \ AH with Q1

l−→aQ
′
1 and l /∈ L, then Q1 \ AH

l−→aQ
′
1 \ AH as

l /∈ AH. From Q1\AH ≈mb R1 /AH it follows that there exists R1 /AH
τ∗

==⇒a R̄1 /AH
l−→aR

′
1 /AH such

that Q1 \ AH ≈mb R̄1 /AH and Q′1 \ AH ≈mb R
′
1 /AH. Since synchronization does not apply to τ and

l /∈ L, we have that (R1 ‖LR2) /AH
τ∗

==⇒a (R̄1 ‖LR2) /AH
l−→a (R′1 ‖LR2) /AH with ((Q1 ‖LQ2) \ AH,

(R̄1 ‖LR2) /AH) ∈ B and ((Q′1 ‖LQ2) \ AH, (R′1 ‖LR2) /AH) ∈ B.

• If (Q1 ‖LQ2) \AH
l−→a (Q1 ‖LQ′2) \AH with Q2

l−→aQ
′
2 and l /∈ L, then the proof is similar to the one

of the previous case.

• If (Q1 ‖LQ2)\AH
l−→a (Q′1 ‖LQ′2)\AH withQi

l−→aQ
′
i for i ∈ {1, 2} and l ∈ L, thenQi\AH

l−→aQ
′
i\AH

as l /∈ AH. From Qi \ AH ≈mb Ri /AH it follows that there exists Ri /AH
τ∗

==⇒a R̄i /AH
l−→aR

′
i /AH

such that Qi\AH ≈mb R̄i /AH and Q′i\AH ≈mb R
′
i /AH. Since synchronization does not apply to τ and

l ∈ L, we have that (R1 ‖LR2) /AH
τ∗

==⇒a (R̄1 ‖L R̄2) /AH
l−→a (R′1 ‖LR′2) /AH with ((Q1 ‖LQ2) \ AH,

(R̄1 ‖L R̄2) /AH) ∈ B and ((Q′1 ‖LQ′2) \ AH, (R′1 ‖LR′2) /AH) ∈ B.
• If (Q1 ‖LQ2) \ AH

τ−→a (Q′1 ‖LQ2) \ AH with Q1
τ−→aQ

′
1, then Q1 \ AH

τ−→aQ
′
1 \ AH as τ /∈ AH.

From Q1 \ AH ≈mb R1 /AH it follows that either Q′1 \ AH ≈mb R1 /AH, or there ex-
ists R1 /AH

τ∗
==⇒a R̄1 /AH

τ−→aR
′
1 /AH such that Q1 \ AH ≈mb R̄1 /AH and Q′1 \ AH ≈mb
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R′1 /AH. Since synchronization does not apply to τ , in the former subcase (R1 ‖LR2) /AH is
allowed to stay idle with ((Q′1 ‖LQ2) \ AH, (R1 ‖LR2) /AH) ∈ B, while in the latter subcase
(R1 ‖LR2) /AH

τ∗
==⇒a (R̄1 ‖LR2) /AH

τ−→a (R′1 ‖LR2) /AH with ((Q1 ‖LQ2)\AH, (R̄1 ‖LR2) /AH) ∈ B
and ((Q′1 ‖LQ2) \ AH, (R′1 ‖LR2) /AH) ∈ B.

• If (Q1 ‖LQ2) \ AH
τ−→a (Q1 ‖LQ′2) \ AH with Q2

τ−→aQ
′
2, then the proof is similar to the one of the

previous case.

In the other seven cases, instead, it is (R1 ‖LR2) /AH to move first:

• If (R1 ‖LR2) /AH
l−→a (R′1 ‖LR2) /AH with R1

l−→aR
′
1 and l /∈ L, then R1 /AH

l−→aR
′
1 /AH

as l /∈ AH. From R1 /AH ≈mb Q1 \AH it follows that there exists Q1 \AH
τ∗

==⇒a Q̄1 \AH
l−→aQ

′
1 \AH

such that R1 /AH ≈mb Q̄1 \ AH and R′1 /AH ≈mb Q′1 \ AH. Since synchronization does not ap-
ply to τ and l /∈ L, we have that (Q1 ‖LQ2) \ AH

τ∗
==⇒a (Q̄1 ‖LQ2) \ AH

l−→a (Q′1 ‖LQ2) \ AH with
((R1 ‖LR2)/AH, (Q̄1 ‖LQ2) \ AH) ∈ B and ((R′1 ‖LR2)/AH, (Q′1 ‖LQ2) \ AH) ∈ B.

• If (R1 ‖LR2) /AH
l−→a (R1 ‖LR′2) /AH with R2

l−→aR
′
2 and l /∈ L, then the proof is similar to the one

of the previous case.

• If (R1 ‖LR2) /AH
l−→a (R′1 ‖LR′2) /AH with Ri

l−→aR
′
i for i ∈ {1, 2} and l ∈ L, then Ri /AH

l−→aR
′
i /AH as l /∈ AH. From Ri /AH ≈mb Qi \ AH it follows that there exists Qi \ AH

τ∗
==⇒a Q̄i \ AH

l−→aQ
′
i \ AH such that Ri /AH ≈mb Q̄i \ AH and R′i /AH ≈mb Q

′
i \ AH. Since synchronization does

not apply to τ and l ∈ L, we have that (Q1 ‖LQ2)\AH
τ∗

==⇒a (Q̄1 ‖L Q̄2)\AH
l−→a (Q′1 ‖LQ′2)\AH with

((R1 ‖LR2)/AH, (Q̄1 ‖L Q̄2) \ AH) ∈ B and ((R′1 ‖LR′2) /AH, (Q′1 ‖LQ′2) \ AH) ∈ B.
• If (R1 ‖LR2) /AH

τ−→a (R′1 ‖LR2) /AH with R1
τ−→aR

′
1, then R1 /AH

τ−→aR
′
1 /AH as τ /∈ AH. From

R1 /AH ≈mb Q1 \AH it follows that either R′1 /AH ≈mb Q1 \AH, or there exists Q1 \AH
τ∗

==⇒a Q̄1 \AH
τ−→aQ

′
1 \ AH such that R1 /AH ≈mb Q̄1 \ AH and R′1 /AH ≈mb Q′1 \ AH. Since synchroniza-

tion does not apply to τ , in the former subcase (Q1 ‖LQ2) \ AH is allowed to stay idle with
((R′1 ‖LR2)/AH, (Q1 ‖LQ2)\AH) ∈ B, while in the latter subcase (Q1 ‖LQ2)\AH

τ∗
==⇒a (Q̄1 ‖LQ2)\AH

τ−→a (Q′1 ‖LQ2) \ AH with ((R1 ‖LR2)/AH, (Q̄1 ‖LQ2) \ AH) ∈ B and ((R′1 ‖LR2)/AH,
(Q′1 ‖LQ2) \ AH) ∈ B.

• If (R1 ‖LR2) /AH
τ−→a (R1 ‖LR′2) /AH with R2

τ−→aR
′
2, then the proof is similar to the one of the

previous case.

• If (R1 ‖LR2) /AH
τ−→a (R′1 ‖LR2) /AH with R1

h−→aR
′
1 and h /∈ L, then R1 /AH

τ−→aR
′
1 /AH

as h ∈ AH. The rest of the proof is like the one of the fourth case.

• If (R1 ‖LR2) /AH
τ−→a (R1 ‖LR′2) /AH with R2

h−→aR
′
2 and h /∈ L, then the proof is similar to the one

of the previous case.

As for rates, we reason like in the proof of the corresponding result for ≈mw.

2. Starting from (Q/AH) \ L and (R \ L) /AH related by B, so that Q/AH ≈mb R \ AH, there are six cases
for action transitions based on the operational semantic rules in Table 10.1. In the first three cases, it is
(Q/AH) \ L to move first:



10.2 Markovian Information-Flow Security Properties 180

• If (Q/AH)\L l−→a (Q′ /AH)\L with Q l−→aQ
′ and l /∈ L, then Q/AH

l−→aQ
′ /AH as l /∈ AH. From

Q/AH ≈mb R \AH it follows that there exists R \AH
τ∗

==⇒a R̄ \AH
l−→aR

′ \AH such that Q/AH ≈mb

R̄ \ AH and Q′ /AH ≈mb R
′ \ AH. Since the restriction and hiding operators do not apply to τ and l,

we have that (R \ L) /AH
τ∗

==⇒a (R̄ \ L) /AH
l−→a (R′ \ L) /AH with ((Q/AH) \ L, (R̄ \ L) /AH) ∈ B

and ((Q′ /AH) \ L, (R′ \ L) /AH) ∈ B.
• If (Q/AH) \ L τ−→a (Q′ /AH) \ L with Q

τ−→aQ
′, then Q/AH

τ−→aQ
′ /AH as τ /∈ AH. From

Q/AH ≈mb R \ AH it follows that either Q′ /AH ≈mb R \ AH, or there exists R \ AH
τ∗

==⇒a R̄ \ AH
τ−→aR

′ \AH such that Q/AH ≈mb R̄ \AH and Q′ /AH ≈mb R
′ \AH. Since the restriction and hiding

operators do not apply to τ , in the former subcase (R\L) /AH is allowed to stay idle with ((Q′ /AH)\L,
(R \ L) /AH) ∈ B, while in the latter subcase (R \ L) /AH

τ∗
==⇒a (R̄ \ L) /AH

τ−→a (R′ \ L) /AH with
((Q/AH) \ L, (R̄ \ L) /AH) ∈ B and ((Q′ /AH) \ L, (R′ \ L) /AH) ∈ B.

• If (Q/AH)\L τ−→a (Q′ /AH)\L with Q h−→aQ
′, then Q/AH

τ−→aQ
′ /AH as h ∈ AH. The rest of the

proof is like the one of the previous case.

In the other three cases, instead, it is (R \ L) /AH to move first:

• If (R \ L) /AH
l−→a (R′ \ L) /AH with R

l−→aR
′ and l /∈ L, then R \ AH

l−→aR
′ \ AH as l /∈ AH.

From R \ AH ≈mb Q/AH it follows that there exists Q/AH
τ∗

==⇒a Q̄ /AH
l−→aQ

′ /AH such that
R \ AH ≈mb Q̄ /AH and R′ \ AH ≈mb Q′ /AH. Since the restriction operator does not apply to τ
and l, we have that (Q/AH) \L τ∗

==⇒a (Q̄ /AH) \L l−→a (Q′ /AH) \L with ((R \L) /AH, (Q̄ /AH) \L)
∈ B and ((R′ \ L) /AH, (Q′ /AH) \ L) ∈ B.

• If (R\L) /AH
τ−→a (R′\L) /AH with R τ−→aR

′, then R\AH
τ−→aR

′\AH as τ /∈ AH. From R\AH ≈mb

Q/AH it follows that either R′\AH ≈mb Q/AH, or there exists Q/AH
τ∗

==⇒a Q̄ /AH
τ−→aQ

′ /AH such
that R \AH ≈mb Q̄ /AH and R′ \AH ≈mb Q

′ /AH. Since the restriction operator does not apply to τ ,
in the former subcase (Q/AH)\L is allowed to stay idle with ((R′ \L) /AH, (Q/AH)\L) ∈ B, while in
the latter subcase (Q/AH)\L τ∗

==⇒a (Q̄ /AH)\L τ−→a (Q′ /AH)\L with ((R\L) /AH, (Q̄ /AH)\L) ∈ B
and ((R′ \ L) /AH, (Q′ /AH) \ L) ∈ B.

• If (R \ L) /AH
τ−→a (R′ \ L) /AH with R

h−→aR
′ and h /∈ L, then R/AH

τ−→aR
′ /AH as h ∈ AH

(note that R \ AH cannot perform h). From R/AH ≈mb R \ AH – as P ∈ SBSNNI≈mb
and R ∈

reach(P ) – and R \ AH ≈mb Q/AH it follows that either R′ /AH ≈mb Q/AH and hence R′ \ AH ≈mb

Q/AH – as R′ /AH ≈mb R′ \ AH due to P ∈ SBSNNI≈mb
and R′ ∈ reach(P ) – or there exists

Q/AH
τ∗

==⇒a Q̄ /AH
τ−→aQ

′ /AH such that R/AH ≈mb Q̄ /AH and R′ /AH ≈mb Q
′ /AH and hence

R\AH ≈mb Q̄ /AH and R′ \AH ≈mb Q
′ /AH. Since the restriction operator does not apply to τ , in the

former subcase (Q/AH) \ L is allowed to stay idle with ((R′ \ L) /AH, (Q/AH) \ L) ∈ B, while in the
latter subcase (Q/AH) \ L τ∗

==⇒a (Q̄ /AH) \ L τ−→a (Q′ /AH) \ L with ((R \ L) /AH, (Q̄ /AH) \ L) ∈ B
and ((R′ \ L) /AH, (Q′ /AH) \ L) ∈ B.

As for rates, we reason like in the proof of the corresponding result for ≈mw.
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3. Starting from (Q1 ‖LQ2) \ AH and (R1 ‖LR2) \ AH related by B, so that Q1 \ AH ≈mb R1 \ AH and
Q2 \ AH ≈mb R2 \ AH, there are five cases for action transitions based on the operational semantic rules in
Table 10.1:

• If (Q1 ‖LQ2) \ AH
l−→a (Q′1 ‖LQ2) \ AH with Q1

l−→aQ
′
1 and l /∈ L, then Q1 \ AH

l−→aQ
′
1 \ AH as

l /∈ AH. From Q1 \AH ≈mb R1 \AH it follows that there exists R1 \AH
τ∗

==⇒a R̄1 \AH
l−→aR

′
1 \AH such

that Q1 \ AH ≈mb R̄1 \ AH and Q′1 \ AH ≈mb R
′
1 \ AH. Since synchronization does not apply to τ and

l /∈ L, we have that (R1 ‖LR2) \AH
τ∗

==⇒a (R̄1 ‖LR2) \AH
l−→a (R′1 ‖LR2) \AH with ((Q1 ‖LQ2) \AH,

(R̄1 ‖LR2) \ AH) ∈ B and ((Q′1 ‖LQ2) \ AH, (R′1 ‖LR2) \ AH) ∈ B.

• If (Q1 ‖LQ2) \AH
l−→a (Q1 ‖LQ′2) \AH with Q2

l−→aQ
′
2 and l /∈ L, then the proof is similar to the one

of the previous case.

• If (Q1 ‖LQ2)\AH
l−→a (Q′1 ‖LQ′2)\AH withQi

l−→aQ
′
i for i ∈ {1, 2} and l ∈ L, thenQi\AH

l−→aQ
′
i\AH

as l /∈ AH. From Qi \ AH ≈mb Ri \ AH it follows that there exists Ri \ AH
τ∗

==⇒a R̄i \ AH
l−→aR

′
i \ AH

such that Qi\AH ≈mb R̄i\AH and Q′i\AH ≈mb R
′
i\AH. Since synchronization does not apply to τ and

l ∈ L, we have that (R1 ‖LR2) \AH
τ∗

==⇒a (R̄1 ‖L R̄2) \AH
l−→a (R′1 ‖LR′2) \AH with ((Q1 ‖LQ2) \AH,

(R̄1 ‖L R̄2) \ AH) ∈ B and ((Q′1 ‖LQ′2) \ AH, (R′1 ‖LR′2) \ AH) ∈ B.
• If (Q1 ‖LQ2) \ AH

τ−→a (Q′1 ‖LQ2) \ AH with Q1
τ−→aQ

′
1, then Q1 \ AH

τ−→aQ
′
1 \ AH as τ /∈ AH.

From Q1 \ AH ≈mb R1 \ AH it follows that either Q′1 \ AH ≈mb R1 \ AH, or there exists R1 \ AH
τ∗

==⇒a R̄1 \ AH
τ−→aR

′
1 \ AH such that Q1 \ AH ≈mb R̄1 \ AH and Q′1 \ AH ≈mb R′1 \ AH. Since

synchronization does not apply to τ , in the former subcase (R1 ‖LR2) \ AH is allowed to stay
idle with ((Q′1 ‖LQ2) \ AH, (R1 ‖LR2) \ AH) ∈ B, while in the latter subcase (R1 ‖LR2) \ AH
τ∗

==⇒a (R̄1 ‖LR2) \ AH
τ−→a (R′1 ‖LR2) \ AH with ((Q1 ‖LQ2) \ AH, (R̄1 ‖LR2) \ AH) ∈ B and

((Q′1 ‖LQ2) \ AH, (R′1 ‖LR2) \ AH) ∈ B.
• If (Q1 ‖LQ2) \ AH

τ−→a (Q1 ‖LQ′2) \ AH with Q2
τ−→aQ

′
2, then the proof is similar to the one of the

previous case.

As for rates, we reason like in the proof of the corresponding result for ≈mw.

Theorem 10.2. Let P, P1, P2 ∈ Pmk, ≈ ∈ {≈mw,≈mb}, and P ∈ {SBSNNI≈ ,P_BNDC≈ , SBNDC≈}. Then:

1. P ∈ P =⇒ a . P ∈ P for all a ∈ AL ∪ {τ}.

2. P ∈ P =⇒ (λ) . P ∈ P for all λ ∈ R>0.

3. P1, P2 ∈ P =⇒ P1 ‖L P2 ∈ P for all L ⊆ AL if P ∈ {SBSNNI≈mb
,P_BNDC≈mb

} or for all L ⊆ A \ {τ}
if P ∈ {SBSNNI≈mw ,P_BNDC≈mw

, SBNDC≈mw ,SBNDC≈mb
}.

4. P ∈ P =⇒ P \ L ∈ P for all L ⊆ A \ {τ}.

5. P ∈ P =⇒ P /L ∈ P for all L ⊆ AL.
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Proof. We first prove the five results for SBSNNI≈ , from which it will follow that they hold for P_BNDC≈ too
by virtue of the forthcoming Theorem 10.3:

1. Given an arbitrary P ∈ SBSNNI≈ and an arbitrary a ∈ AL ∪ {τ}, from P \ AH ≈ P /AH we derive that
a . (P \AH) ≈ a . (P /AH) because ≈ is a congruence with respect to action prefix by virtue of Lemma 10.1(1),
from which it follows that (a . P ) \ AH ≈ (a . P ) /AH, i.e., a . P ∈ BSNNI≈ , because a /∈ AH. To conclude
the proof, it suffices to observe that all the processes reachable from a . P after performing a are processes
reachable from P , which are known to be BSNNI≈ .

2. Given an arbitrary P ∈ SBSNNI≈ and an arbitrary λ ∈ R>0, from P \ AH ≈ P /AH we derive that
(λ) . (P \ AH) ≈ (λ) . (P /AH) because ≈ is a congruence with respect to rate prefix by virtue of
Lemma 10.1(2), from which it follows that ((λ) . P ) \ AH ≈ ((λ) . P ) /AH, i.e., (λ) . P ∈ BSNNI≈ ,
because the restriction and hiding operators do not apply to rates. To conclude the proof, it suffices to
observe that all the processes reachable from (λ) . P after a delay governed by λ has elapsed are processes
reachable from P , which are known to be BSNNI≈ .

3. Given two arbitrary P1, P2 ∈ Pmk such that P1, P2 ∈ SBSNNI≈ and an arbitrary L ⊆ AL, the result follows
from Lemma 10.2(1) by taking Q1 identical to R1 and Q2 identical to R2.

4. Given an arbitrary P ∈ SBSNNI≈ and an arbitrary L ⊆ A \ {τ}, the result follows from Lemma 10.2(2)
by taking Q identical to R – which will be denoted by P ′ – because:

• (P ′ \ L) \ AH ≈ (P ′ \ AH) \ L as the order in which restriction sets are considered is unimportant.

• (P ′ \AH) \L ≈ (P ′ /AH) \L because P ′ \AH ≈ P ′ /AH – as P ∈ SBSNNI≈ and P ′ ∈ reach(P ) – and
≈ is a congruence with respect to the restriction operator due to Lemma 10.1(4).

• (P ′ /AH) \ L ≈ (P ′ \ L) /AH as shown in Lemma 10.2(2).

• From the transitivity of ≈ we obtain that (P ′ \ L) \ AH ≈ (P ′ \ L) /AH.

5. Given an arbitrary P ∈ SBSNNI≈ and an arbitrary L ⊆ AL, for every P ′ ∈ reach(P )
it holds that P ′ \ AH ≈ P ′ /AH, from which we derive that (P ′ \ AH) /L ≈ (P ′/AH) /L because ≈ is
a congruence with respect to the hiding operator due to Lemma 10.1(5). Since L ∩ AH = ∅, we have
that (P ′ \ AH) /L is isomorphic to (P ′ /L) \ AH and (P ′ /AH) /L is isomorphic to (P ′ /L) /AH, hence
(P ′ /L) \ AH ≈ (P ′ /L) /AH, i.e., P ′ /L is BSNNI≈ .

We then prove the five results for SBNDC≈ :

1. Given an arbitrary P ∈ SBNDC≈ and an arbitrary a ∈ AL ∪ {τ}, it trivially holds that a . P ∈ SBNDC≈
because a is not high and all the processes reachable from a . P after performing a are processes reachable
from P , which is known to be SBNDC≈ .

2. Given an arbitrary P ∈ SBNDC≈ and an arbitrary λ ∈ R>0, it trivially holds that (λ) . P ∈ SBNDC≈ because
all the processes reachable from (λ) . P after a delay governed by λ has elapsed are processes reachable from P ,
which is known to be SBNDC≈ .
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3. Given two arbitrary P1, P2 ∈ Pmk such that P1, P2 ∈ SBNDC≈ and an arbitrary L ⊆ A \ {τ}, the result
follows from Lemma 10.2(3) as can be seen by observing that whenever P ′1 ‖L P ′2

h−→a P
′′
1 ‖L P ′′2 for P ′1 ‖L P ′2 ∈

reach(P1 ‖L P2):

• If P ′1
h−→a P

′′
1 , P ′′2 = P ′2 (hence P ′2 \ AH ≈ P ′′2 \ AH), and h /∈ L, then from P1 ∈ SBNDC≈ it follows

that P ′1 \ AH ≈ P ′′1 \ AH, which in turn entails that (P ′1 ‖L P ′2) \ AH ≈ (P ′′1 ‖L P ′′2 ) \ AH because ≈ is
a congruence with respect to the parallel composition operator due to Lemma 10.1(3) and restriction
distributes over parallel composition.

• If P ′2
h−→a P

′′
2 , P ′′1 = P ′1, and h /∈ L, then we reason like in the previous case.

• If P ′1
h−→a P

′′
1 , P ′2

h−→a P
′′
2 , and h ∈ L, then from P1, P2 ∈ SBNDC≈ it follows that P ′1 \ AH ≈ P ′′1 \ AH

and P ′2 \ AH ≈ P ′′2 \ AH, which in turn entail that (P ′1 ‖L P ′2) \ AH ≈ (P ′′1 ‖L P ′′2 ) \ AH because ≈ is
a congruence with respect to the parallel composition operator due to Lemma 10.1(3) and restriction
distributes over parallel composition.

4. Given an arbitrary P ∈ SBNDC≈ and an arbitrary L ⊆ A \ {τ}, for every P ′ ∈ reach(P ) and for every P ′′

such that P ′ h−→a P
′′ it holds that P ′\AH ≈ P ′′\AH, from which we derive that (P ′\AH)\L ≈ (P ′′\AH)\L

because ≈ is a congruence with respect to the restriction operator due to Lemma 10.1(4). Since (P ′ \AH)\L
is isomorphic to (P ′ \L)\AH and (P ′′ \AH)\L is isomorphic to (P ′′ \L)\AH, we have that (P ′ \L)\AH ≈
(P ′′ \ L) \ AH.

5. Given an arbitrary P ∈ SBNDC≈ and an arbitrary L ⊆ AL, for every P ′ ∈ reach(P ) and for every P ′′ such
that P ′ h−→a P

′′ it holds that P ′ \ AH ≈ P ′′ \ AH, from which we derive that (P ′ \ AH) /L ≈ (P ′′ \ AH) /L
because ≈ is a congruence with respect to the hiding operator due to Lemma 10.1(5). Since L ∩ AH = ∅,
we have that (P ′ \ AH) /L is isomorphic to (P ′ /L) \ AH and (P ′′ \ AH) /L is isomorphic to (P ′′ /L) \ AH,
hence (P ′ /L) \ AH ≈ (P ′′ /L) \ AH.

As far as parallel composition is concerned, the compositionality of SBSNNI≈mb
holds only for all L ⊆ AL.

For example, like in the nondeterministic setting (see after Theorem 8.3), both P1 = h . 0 + l1 . 0 + τ . 0 and
P2 = h . 0 + l2 . 0 + τ . 0 are SBSNNI≈mb

, but P1 ‖{h} P2 is not. Similar to the two previous chapters, it is not only a
matter of the higher discriminating power of ≈mb with respect to ≈mw, but also of the specific parallel composition
operator that we have adopted, which does not mix synchronization with hiding.

10.2.2 Taxonomy of Security Properties

Similar to the nondeterministic and probabilistic settings of the two previous chapters, the noninterference prop-
erties in Definition 10.5 turn out to be increasingly finer. This holds both for those based on ≈mw and for those
based on ≈mb.

Part of the proof of the forthcoming Theorem 10.3 relies on the bisimulation-up-to technique [131] and requires
introducing Markovian variants of up-to weak [112] and branching [75] bisimulations. Similar to the probabilistic
setting of the previous chapter, we have to take into account some technicalities mentioned in [44, 91, 79]. In
particular, given ≈∈ {≈mw,≈mb} and a related bisimulation B, we cannot consider the relation composition ≈B≈
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like in the fully nondeterministic case as it may not be transitive and this would not make it possible to work with
equivalence classes for the Markovian part. Rather we have to consider (B ∪ B−1 ∪ ≈)+ =

⋃∞
n=1(B ∪ B−1 ∪ ≈)n

to ensure transitivity in addition to reflexivity and symmetry, where B−1 is the inverse of B and B is no longer
required to be an equivalence relation thus avoiding redundant information in it. We remind that (B ∪ B−1 ∪ ≈)n

for n > 1 is the composition of relations (B ∪ B−1 ∪ ≈)n−1 and B ∪ B−1 ∪ ≈.

Definition 10.6. A relation B over Pmk is a weak Markovian bisimulation up to ≈mw iff, whenever (P1, P2) ∈ B,
then:

• For each P1
a

==⇒a P
′
1 there exists P2

â
==⇒a P

′
2 such that (P ′1, P

′
2) ∈ (B ∪ B−1 ∪ ≈mw)+, and vice versa.

• If P1 6
τ−→a then there exists P2

τ∗
==⇒a P̄2 such that P̄2 6

τ−→a, (P1, P̄2) ∈ (B ∪ B−1 ∪ ≈mw)+, and rate(P1, C) =
rate(P̄2, C) for all equivalence classes C ∈ Pmk/(B ∪ B−1 ∪ ≈mw)+, and vice versa.

Definition 10.7. A relation B over Pmk is a Markovian branching bisimulation up to≈mb iff, whenever (P1,P2)∈B,
then:

• For each P1
τ∗

==⇒a P̄1
a−→a P

′
1 with P1 ≈mb P̄1:

– either a = τ and P̄1 ≈mb P
′
1;

– or there exists P2
τ∗

==⇒a P̄2
a−→a P

′
2 such that (P̄1, P̄2)∈(B∪B−1∪≈mb)+ and (P ′1, P

′
2)∈(B∪B−1∪≈mb)+;

and vice versa.

• If P1 6
τ−→a then there exists P2

τ∗
==⇒a P̄2 such that P̄2 6

τ−→a, (P1, P̄2) ∈ (B ∪ B−1 ∪ ≈mb)+, and rate(P1, C) =
rate(P̄2, C) for all equivalence classes C ∈ Pmk/(B ∪ B−1 ∪ ≈mb)+, and vice versa.

It is worth noting that a weak Markovian bisimulation up to ≈mw is also present in [90], but its definition is
different from the first definition above. In the second definition, in the case that a = τ and P̄1 ≈mb P

′
1 it holds

that P ′1 ≈mb P̄1 ≈mb P1 B P2, i.e., (P ′1, P2) ∈ (B ∪ B−1 ∪ ≈mb)+, because ≈mb is symmetric. We now prove that
the two previous notions are correct, i.e., they imply the respective bisimilarities.

Proposition 10.1. Let P1, P2 ∈ Pmk and B be a weak Markovian bisimulation up to ≈mw. If (P1, P2) ∈ B then
P1 ≈mw P2.

Proof. It suffices to prove that the equivalence relation (B′ ∪ ≈mw)+ is a weak Markovian bisimulation, where
B′ = B∪B−1. Given (P1, P2)∈(B′ ∪ ≈mw)+ and considering the smallest n∈N>0 for which (P1, P2)∈(B′ ∪ ≈mw)n,
we proceed by induction on n:

• If n = 1 then there are two cases:

– Let (P1, P2) ∈ B′. If P1
a−→a P

′
1, hence P1

a
==⇒a P

′
1, then from the fact that B′ is a weak Markovian

bisimulation up to ≈mw it follows that there exists P2
â

==⇒a P
′
2 such that (P ′1, P

′
2) ∈ (B′∪ ≈mw)+.

Moreover, since B′ is a weak Markovian bisimulation up to ≈mw, we have that if P1 6 τ−→a then there
exists P2

τ∗
==⇒a P̄2 such that P̄2 6 τ−→a, (P1, P̄2) ∈ (B′ ∪ ≈mw)+, and rate(P1, C) = rate(P̄2, C) for all

C ∈ Pmk/(B′ ∪ ≈mw)+.
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– Let P1 ≈mw P2. If P1
a−→a P

′
1 then there exists P2

â
==⇒a P

′
2 such that P ′1 ≈mw P ′2, hence (P ′1, P

′
2) ∈

(B′ ∪ ≈mw)+ because ≈mw⊆ (B′ ∪ ≈mw)+. Moreover, since ≈mw⊆ (B′ ∪ ≈mw)+ implies that every
equivalence class of (B′ ∪ ≈mw)+ is the union of some equivalence classes of ≈mw, we have that if
P1 6

τ−→a then there exists P2
τ∗

==⇒a P̄2 such that P̄2 6
τ−→a, P1 ≈mw P̄2, hence (P1, P̄2) ∈ (B′ ∪ ≈mw)+, and

rate(P1, C) = rate(P̄2, C) for all C ∈ Pmk/(B′ ∪ ≈mw)+.

• If n > 1 then from (P1, P2) ∈ (B′ ∪ ≈mw)n and the minimality of n it follows that there exists P ∈ Pmk such
that (P1, P ) ∈ (B′ ∪ ≈mw)n−1 and (P, P2) ∈ (B′ ∪ ≈mw). If P1

a−→a P
′
1 then by the induction hypothesis

applied to (P1, P ) ∈ (B′ ∪ ≈mw)n−1 there exists P â
==⇒a P

′ such that (P ′1, P
′) ∈ (B′ ∪ ≈mw)+. Therefore

by the induction hypothesis applied to (P, P2) ∈ (B′ ∪ ≈mw) there exists P2
â

==⇒a P
′
2 such that (P ′, P ′2) ∈

(B′ ∪ ≈mw)+, where (P ′1, P
′
2) ∈ (B′ ∪ ≈mw)+ by transitivity. Moreover, by the induction hypothesis applied

to (P1, P ) ∈ (B′ ∪ ≈mw)n−1, if P1 6
τ−→a then there exists P τ∗

==⇒a P̄ such that P̄ 6τ−→a, (P1, P̄ ) ∈ (B′ ∪ ≈mw)+,
and rate(P1, C) = rate(P̄ , C) for all C ∈ Pmk/(B′ ∪ ≈mw)+. Therefore, by the induction hypothesis applied
to (P, P2) ∈ (B′ ∪ ≈mw), from P

τ∗
==⇒a P̄ with P̄ 6 τ−→a it follows that there exists P2

τ∗
==⇒a P̄2 such that

P̄2 6 τ−→a, (P̄ , P̄2) ∈ (B′ ∪ ≈mw)+, and rate(P̄ , C) = rate(P̄2, C) for all C ∈ Pmk/(B′ ∪ ≈mw)+. Thus
rate(P1, C) = rate(P̄2, C) for all C ∈ Pmk/(B′ ∪ ≈mw)+, where (P1, P̄2) ∈ (B′ ∪ ≈mw)+ by transitivity.

Proposition 10.2. Let P1, P2 ∈ Pmk and B be a Markovian branching bisimulation up to ≈mb. If (P1, P2) ∈ B
then P1 ≈mb P2.

Proof. It suffices to prove that the equivalence relation (B′ ∪ ≈mb)+ is a Markovian branching bisimulation, where
B′ = B∪B−1. Given (P1, P2) ∈ (B′ ∪ ≈mb)+ and considering the smallest n ∈ N>0 for which (P1, P2) ∈ (B′ ∪ ≈mb)n,
we proceed by induction on n:

• If n = 1 then there are two cases:

– Let (P1, P2) ∈ B′. If P1
a−→a P

′
1, hence P1

τ∗
==⇒a P1

a−→a P
′
1, then from the fact that B′ is a Markovian

branching bisimulation up to ≈mb it follows that there are two subcases:

∗ If a = τ and P1 ≈mb P
′
1, hence (P ′1, P1) ∈ (B′ ∪ ≈mb)+ by symmetry, from (P1, P2) ∈ (B′ ∪ ≈mb)+

it follows that (P ′1, P2) ∈ (B′ ∪ ≈mb)+ by transitivity.

∗ If there exists P2
τ∗

==⇒a P̄2
a−→a P

′
2 such that (P1, P̄2) ∈ (B′ ∪ ≈mb)+ and (P ′1, P

′
2) ∈ (B′ ∪ ≈mb)+,

then we are done.

Moreover, since B′ is a Markovian branching bisimulation up to ≈mb, we have that if P1 6 τ−→a then
there exists P2

τ∗
==⇒a P̄2 such that P̄2 6

τ−→a, (P1, P̄2) ∈ (B′ ∪ ≈mb)+, and rate(P1, C) = rate(P̄2, C) for all
C ∈ Pmk/(B′ ∪ ≈mb)+.

– Let P1 ≈mb P2. If P1
a−→a P

′
1 then there are two subcases:

∗ If a = τ and P ′1 ≈mb P2, then (P ′1, P2) ∈ (B′ ∪ ≈mb)+ because ≈mb⊆ (B′ ∪ ≈mb)+.

∗ If there exists P2
τ∗

==⇒a P̄2
a−→a P

′
2 such that P1 ≈mb P̄2 and P ′1 ≈mb P

′
2, then (P1, P̄2) ∈ (B′ ∪ ≈mb)+

and (P ′1, P
′
2) ∈ (B′ ∪ ≈mb)+ because ≈mb⊆ (B′ ∪ ≈mb)+.
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Moreover, since ≈mb⊆ (B′ ∪ ≈mb)+ implies that every equivalence class of (B′ ∪ ≈mb)+ is the union of
some equivalence classes of ≈mb, we have that if P1 6

τ−→a then there exists P2
τ∗

==⇒a P̄2 such that P̄2 6
τ−→a,

P1 ≈mb P̄2, hence (P1, P̄2) ∈ (B′ ∪ ≈mb)+, and rate(P1, C) = rate(P̄2, C) for all C ∈ Pmk/(B′ ∪ ≈mb)+.

• If n > 1 then from (P1, P2) ∈ (B′ ∪ ≈mb)n and the minimality of n it follows that there exists P ∈ Pmk

such that (P1, P ) ∈ (B′ ∪ ≈mb)n−1 and (P, P2) ∈ (B′ ∪ ≈mb). If P1
a−→a P

′
1 then by the induction hypothesis

applied to (P1, P ) ∈ (B′ ∪ ≈mb)n−1 there are two cases:

– If a = τ and (P ′1, P ) ∈ (B′ ∪ ≈mb)+, then from (P, P2)∈(B′ ∪ ≈mb) it follows that (P ′1, P2)∈(B′ ∪ ≈mb)+

by transitivity.

– If there exists P τ∗
==⇒a P̄

a−→a P
′ such that (P1, P̄ ) ∈ (B′ ∪ ≈mb)+ and (P ′1, P

′) ∈ (B′ ∪ ≈mb)+, then by
the induction hypothesis applied to (P, P2) ∈ (B′ ∪ ≈mb) there are two subcases:

∗ If a = τ and (P ′, P2) ∈ (B′ ∪ ≈mb)+, then from (P ′1, P
′) ∈ (B′ ∪ ≈mb)+ it follows that (P ′1, P2) ∈

(B′ ∪ ≈mb)+ by transitivity.

∗ If there exists P2
τ∗

==⇒a P̄2
a−→a P

′
2 such that (P̄ , P̄2) ∈ (B′ ∪ ≈mb)+ and (P ′, P ′2) ∈ (B′ ∪ ≈mb)+,

then from (P1, P̄ ) ∈ (B′ ∪ ≈mb)+ and (P ′1, P
′) ∈ (B′ ∪ ≈mb)+ it follows that (P1, P̄2) ∈ (B′ ∪ ≈mb)+

and (P ′1, P
′
2) ∈ (B′ ∪ ≈mb)+ by transitivity.

Moreover, by the induction hypothesis applied to (P1, P ) ∈ (B′ ∪ ≈mb)n−1, if P1 6 τ−→a then there exists
P

τ∗
==⇒a P̄ such that P̄ 6τ−→a, (P1, P̄ )∈(B′ ∪ ≈mb)+, and rate(P1, C) = rate(P̄ , C) for all C∈Pmk/(B′ ∪ ≈mb)+.

Therefore, by the induction hypothesis applied to (P, P2) ∈ (B′ ∪ ≈mb), from P
τ∗

==⇒a P̄ with P̄ 6τ−→a it follows
that there exists P2

τ∗
==⇒a P̄2 such that P̄2 6 τ−→a, (P̄ , P̄2) ∈ (B′ ∪ ≈mb)+, and rate(P̄ , C) = rate(P̄2, C) for

all C ∈ Pmk/(B′ ∪ ≈mb)+. Thus rate(P1, C) = rate(P̄2, C) for all C ∈ Pmk/(B′ ∪ ≈mb)+, where (P1, P̄2) ∈
(B′ ∪ ≈mb)+ by transitivity.

The combination of divergence, i.e., cycles of τ -transitions, and maximal progress poses a challenge in obtaining
a taxonomy similar to the ones of the nondeterministic and probabilistic settings. To see why, consider the recursive
process K , (λ) . 0 + h .K. This process is not BSNNI≈ because its low-level views K \ {h}, which is isomorphic
to (λ) . 0, and K / {h}, which is isomorphic to K ′ , (λ) . 0 + τ .K ′, are not ≈-equivalent as the former enables
a λ-transition while the latter, due to maximal progress, is forced to endlessly loop on the τ -transition without
ever allowing a delay governed by λ to elapse. Likewise, it can be shown that K is not BNDC≈ , SBSNNI≈ , or
P_BNDC≈ . However, it is SBNDC≈ due to the fact that the only high action h loops on K and hence to satisfy
SBNDC≈ we have to check whether K \ {h} ≈ K \ {h}, which is trivially true. Further issues arise from the
application of the hiding operator on high actions – which frequently occurs in information flow analysis – to cycles
comprising τ -transitions and high action transitions, as this yields divergence. In order to derive a taxonomy
aligned with the ones of the two previous chapters, we restrict ourselves to the set Pmk,nhc of processes whose
underlying MLTS has no cycles (i) involving high action transitions that are alternative to rate transitions or
(ii) composed only of τ -transitions and high action transitions with at least one of the latter.

Before presenting the taxonomy, we prove some further ancillary results about parallel composition, restriction,
and hiding under SBSNNI≈ and SBNDC≈ , where the limitation to Pmk,nhc is already needed.
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Lemma 10.3. Let P, P1, P2 ∈ Pmk and ≈ ∈ {≈mw,≈mb}. Then:

1. If P ∈ SBNDC≈ , P ′ ∈ reach(P ), and P ′ /AH
τ∗

==⇒a P
′′ /AH, then P ′ \ AH

τ∗
==⇒a P̂

′′ \ AH with P ′′ \ AH ≈
P̂ ′′ \ AH.

2. If P1, P2 ∈ SBNDC≈ ∩ Pmk,nhc and P1 \ AH ≈ P2 \ AH, then P1 /AH ≈ P2 /AH.

3. If P2 ∈ SBSNNI≈ and L ⊆ AH, then P ′1\AH ≈ ((P ′2 ‖LQ) /L)\AH for all Q∈Pmk having only prefixes in AH
and for all P ′1 ∈ reach(P1) and P ′2 ∈ reach(P2) such that P ′1 \ AH ≈ P ′2 /AH.

Proof. We first prove the three results for the ≈mw-based properties:

1. We proceed by induction on the number n ∈ N of τ -transitions along P ′ /AH
τ∗

==⇒a P
′′ /AH:

• If n = 0 then P ′ /AH stays idle and P ′′ /AH is P ′ /AH. Likewise, P ′ \ AH can stay idle, i.e.,
P ′ \ AH

τ∗
==⇒a P

′ \ AH, with P ′ \ AH ≈mw P ′ \ AH as ≈mw is reflexive.

• Let n > 0 and P ′0 /AH
τ−→a P

′
1 /AH

τ−→a . . .
τ−→a P

′
n−1 /AH

τ−→a P
′
n /AH where P ′0 is P ′ and P ′n is P ′′.

From the induction hypothesis it follows that P ′ \AH
τ∗

==⇒a P̂
′
n−1 \AH with P ′n−1 \AH ≈mw P̂ ′n−1 \AH.

As far as the n-th τ -transition P ′n−1 /AH
τ−→ P ′n /AH is concerned, there are two cases depending on

whether it is originated from P ′n−1
τ−→a P

′
n or P ′n−1

h−→a P
′
n:

– If P ′n−1
τ−→a P

′
n then P ′n−1 \ AH

τ−→a P
′
n \ AH. Since P ′n−1 \ AH ≈mw P̂ ′n−1 \ AH, there exists

P̂ ′n−1 \ AH
τ∗

==⇒a P̂
′
n \ AH such that P ′n \ AH ≈mw P̂ ′n \ AH. Therefore P ′ \ AH

τ∗
==⇒a P̂

′
n \ AH with

P ′′ \ AH ≈mw P̂ ′n \ AH.
– If P ′n−1

h−→a P
′
n then from P ∈ SBNDC≈mw it follows that P ′n−1\AH ≈mw P ′n\AH. Since P ′n−1\AH

≈mw P̂ ′n−1\AH and ≈mw is symmetric and transitive, we obtain P ′n\AH ≈mw P̂ ′n−1\AH. Therefore
P ′ \ AH

τ∗
==⇒a P̂

′
n−1 \ AH with P ′′ \ AH ≈mw P̂ ′n−1 \ AH.

2. Let B be an equivalence relation containing all the pairs of processes that have to be shown to be ≈mw-
equivalent according to the considered result. Starting from (P1 /AH, P2 /AH) ∈ B, so that P1 \ AH ≈mw

P2 \ AH, there are three cases for action transitions based on the operational semantic rules in Table 10.1:

• If P1 /AH
τ−→a P

′
1 /AH with P1

h−→a P
′
1, then P1 \ AH ≈mw P ′1 \ AH as h ∈ AH and P1 ∈ SBNDC≈mw .

Since P ′1 \ AH ≈mw P2 \ AH, as P1 \ AH ≈mw P2 \ AH and ≈mw is symmetric and transitive, with
P ′1, P2 ∈ SBNDC≈mw , we have that P2 /AH is allowed to stay idle with (P ′1 /AH, P2 /AH) ∈ B.

• If P1 /AH
l−→a P

′
1 /AH with P1

l−→a P
′
1, then P1 \ AH

l−→a P
′
1 \ AH as l /∈ AH. From P1 \ AH ≈mw

P2 \ AH it follows that there exists P2 \ AH
l̂

==⇒a P
′
2 \ AH such that P ′1 \ AH ≈mw P ′2 \ AH. Thus

P2 /AH
l̂

==⇒a P
′
2 /AH as l, τ /∈ AH. Since P ′1 \ AH ≈mw P ′2 \ AH with P ′1, P ′2 ∈ SBNDC≈mw , we have

that (P ′1 /AH, P ′2 /AH) ∈ B.
• If P1 /AH

τ−→a P
′
1 /AH with P1

τ−→a P
′
1, then the proof is like the one of the previous case.
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As for rates, suppose that P1 /AH 6 τ−→a so that P1 \ AH 6 τ−→a too and hence from P1 \ AH ≈mw P2 \ AH
it follows that there exists P2 \ AH

τ∗
==⇒a P̄2 \ AH such that P̄2 \ AH 6 τ−→a, P1 \ AH ≈mw P̄2 \ AH, and

rate(P1 \ AH, C) = rate(P̄2 \ AH, C) for all C ∈ Pmk/B. Since the hiding and restriction operators do
not apply to τ and rate transitions, it follows that P2 /AH

τ∗
==⇒a P̄2 /AH with P̄2 /AH 6 τ−→a (if P̄2 /AH

could perform τ due to P̄2
h−→a P̄

′
2, then P̄2 \ AH ≈mw P̄ ′2 \ AH as P̄2 ∈ SBNDC≈mw , hence it would just

be a matter of going ahead until one not enabling τ is encountered, which certainly happens because the
considered processes belong to Pmk,nhc), (P1 /AH, P̄2 /AH) ∈ B, and rate(P1 /AH, C) = rate(P1 \ AH, C) =
rate(P̄2 \ AH, C) = rate(P̄2 /AH, C) for all C ∈ Pmk/B.

3. Let B be an equivalence relation containing all the pairs of processes that have to be shown to be ≈mw-
equivalent according to the considered result. Starting from P ′1 \ AH and ((P ′2 ‖LQ) /L) \ AH related by B,
so that P ′1 \ AH ≈mw P ′2 /AH, there are six cases for action transitions based on the operational semantic
rules in Table 10.1. In the first two cases, it is P ′1 \ AH to move first:

• Let P ′1 \ AH
l−→a P

′′
1 \ AH. We observe that from P ′2 ∈ reach(P2) and P2 ∈ SBSNNI≈mw it follows that

P ′2 \ AH ≈mw P ′2 /AH, so that P ′1 \ AH ≈mw P ′2 /AH ≈mw P ′2 \ AH, i.e., P ′1 \ AH ≈mw P ′2 \ AH, as
≈mw is symmetric and transitive. As a consequence, since l 6= τ there exists P ′2 \ AH

l
==⇒a P

′′
2 \ AH

such that P ′′1 \ AH ≈mw P ′′2 \ AH. Thus ((P ′2 ‖LQ) /L) \ AH
l

==⇒a ((P ′′2 ‖LQ) /L) \ AH with (P ′′1 \ AH,
((P ′′2 ‖LQ) /L) \ AH) ∈ B because P ′′1 ∈ reach(P1), P ′′2 ∈ reach(P2), and P ′′1 \ AH ≈mw P ′′2 /AH as
P2 ∈ SBSNNI≈mw .

• Let P ′1 \ AH
τ−→a P

′′
1 \ AH. The proof is like the one of the previous case with τ∗

==⇒a used in place
of l

==⇒a.

In the other four cases, instead, it is ((P ′2 ‖LQ) /L) \ AH to move first:

• Let ((P ′2 ‖LQ) /L) \ AH
l−→a ((P ′′2 ‖LQ) /L) \ AH with P ′2

l−→a P
′′
2 so that P ′2 \ AH

l−→a P
′′
2 \ AH

as l /∈ AH. We observe that from P ′2 ∈ reach(P2) and P2 ∈ SBSNNI≈mw it follows that P ′2 \ AH ≈mw

P ′2 /AH, so that P ′2 \ AH ≈mw P ′2 /AH ≈mw P ′1 \ AH, i.e., P ′2 \ AH ≈mw P ′1 \ AH, as ≈mw is
symmetric and transitive. As a consequence, since l 6= τ there exists P ′1 \ AH

l
==⇒a P

′′
1 \ AH such

that P ′′2 \ AH ≈mw P ′′1 \ AH. Thus (((P ′′2 ‖LQ) /L) \ AH, P ′′1 \ AH) ∈ B because P ′′1 ∈ reach(P1),
P ′′2 ∈ reach(P2), and P ′′1 \ AH ≈mw P ′′2 /AH as P2 ∈ SBSNNI≈mw .

• Let ((P ′2 ‖LQ) /L) \ AH
τ−→a ((P ′′2 ‖LQ) /L) \ AH with P ′2

τ−→a P
′′
2 so that P ′2 \ AH

τ−→a P
′′
2 \ AH

as τ /∈ AH. The proof is like the one of the previous case with τ∗
==⇒a used in place of l

==⇒a.

• If ((P ′2 ‖LQ) /L) \ AH
τ−→a ((P ′2 ‖LQ′) /L) \ AH with Q τ−→aQ

′, then trivially (((P ′2 ‖LQ′) /L) \ AH,
P ′1 \ AH) ∈ B as P ′2 ≈mw P ′2 and hence P ′2 /AH ≈mw P ′2 /AH by Lemma 10.1(5).

• Let ((P ′2 ‖LQ) /L) \ AH
τ−→a ((P ′′2 ‖LQ′) /L) \ AH with P ′2

h−→a P
′′
2 – so that P ′2 /AH

τ−→a P
′′
2 /AH as

h ∈ AH – and Q h−→aQ
′ for h ∈ L. We observe that from P ′2, P

′′
2 ∈ reach(P2) and P2 ∈ SBSNNI≈mw

it follows that P ′2 \ AH ≈mw P ′2 /AH and P ′′2 \ AH ≈mw P ′′2 /AH, so that P ′2 \ AH
τ∗

==⇒a P
′′
2 \ AH as

P ′2 /AH
τ−→a P

′′
2 /AH and P ′2 \ AH ≈mw P ′2 /AH ≈mw P ′1 \ AH, i.e., P ′2 \ AH ≈mw P ′1 \ AH, as ≈mw is

symmetric and transitive. As a consequence there exists P ′1 \AH
τ∗

==⇒a P
′′
1 \AH such that P ′′2 \AH ≈mw
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P ′′1 \ AH. Thus (((P ′′2 ‖LQ′) /L) \ AH, P ′′1 \ AH) ∈ B because P ′′1 ∈ reach(P1), P ′′2 ∈ reach(P2), and
P ′′1 \ AH ≈mw P ′′2 /AH as P2 ∈ SBSNNI≈mw .

As for rates, to avoid trivial cases consider an equivalence class C ∈ Pmk/B that involves processes
reachable from P ′1 \ AH and ((P ′2 ‖LQ) /L) \ AH, specifically C = {R1,i \ AH, ((R2,j ‖L Sj) /L) \ AH |
Sj ∈ Pmk having only prefixes in AH ∧ Rk,h ∈ reach(Pk) ∧ R1,i \ AH ≈mw R2,j /AH}. If P ′1 \ AH 6 τ−→a

then from P ′1 \ AH ≈mw P ′2 /AH it follows that there exists P ′2 /AH
τ∗

==⇒a P̄
′
2 /AH such that P̄ ′2 /AH 6τ−→a,

P ′1 \ AH ≈mw P̄ ′2 /AH, and rate(P ′1 \ AH, C ′) = rate(P̄ ′2 /AH, C ′) for all C ′ ∈ Pmk/≈mw. Since synchroniza-
tion as well as the restriction and hiding operators do not apply to τ , we have that ((P ′2 ‖LQ) /L) \ AH
τ∗

==⇒a ((P̄ ′2 ‖LQ′) /L)\AH with ((P̄ ′2 ‖LQ′) /L)\AH 6
τ−→a and (P ′1 \AH, ((P̄ ′2 ‖LQ′) /L)\AH) ∈ B. Since the

restriction and hiding operators do not apply to rate transitions and Q cannot perform any rate transition,
we have that:

rate(P ′1 \ AH, C) = rate(P ′1 \ AH, C̄)
rate(((P̄ ′2 ‖LQ) /L) \ AH, C) = rate(P̄ ′2 /AH, C̄)

where:
C̄ = {R1,i \ AH ∈ C} ∪ {R2,j /AH | ((R2,j ‖L Sj) /L) \ AH ∈ C}

Since P ′1 \ AH ≈mw P̄ ′2 /AH and C̄ is the union of some ≈mw-equivalence classes, we have that:
rate(P ′1 \ AH, C̄) = rate(P̄ ′2 /AH, C̄)

If we start from ((P ′2 ‖LQ) /L) \ AH 6
τ−→a, then the proof is similar.

We then prove the three results for the ≈mb-based properties:

1. We proceed by induction on the number n ∈ N of τ -transitions along P ′ /AH
τ∗

==⇒a P
′′ /AH:

• If n = 0 then the proof is like the one of the corresponding result for ≈mw.

• Let n > 0 and P ′0 /AH
τ−→a P

′
1 /AH

τ−→a . . .
τ−→a P

′
n−1 /AH

τ−→a P
′
n /AH where P ′0 is P ′ and P ′n is P ′′.

From the induction hypothesis it follows that P ′ \AH
τ∗

==⇒a P̂
′
n−1 \AH with P ′n−1 \AH ≈mb P̂

′
n−1 \AH.

The rest of the proof is like the one of the corresponding result for ≈mw with the following difference:

– If P ′n−1
τ−→a P

′
n then P ′n−1 \ AH

τ−→a P
′
n \ AH. Since P ′n−1 \ AH ≈mb P̂

′
n−1 \ AH:

∗ either P ′n \ AH ≈mb P̂
′
n−1 \ AH, in which case P̂ ′n−1 \ AH stays idle and hence P ′ \ AH

τ∗
==⇒a

P̂ ′n−1 \ AH with P ′′ \ AH ≈mb P̂
′
n−1 \ AH;

∗ or there exists P̂ ′n−1 \ AH
τ∗

==⇒a P̄n−1 \ AH
τ−→a P̂

′
n \ AH such that P ′n−1 \ AH ≈mb P̄n−1 \ AH

and P ′n \ AH ≈mb P̂
′
n \ AH, hence P ′ \ AH

τ∗
==⇒a P̂

′
n \ AH with P ′′ \ AH ≈mb P̂

′
n \ AH.

2. Let B be an equivalence relation containing all the pairs of processes that have to be shown to be ≈mb-
equivalent according to the considered result. Starting from (P1 /AH, P2 /AH) ∈ B, so that P1 \ AH ≈mb

P2 \ AH, there are three cases for action transitions based on the operational semantic rules in Table 10.1:

• If P1 /AH
τ−→a P

′
1 /AH with P1

h−→a P
′
1, then the proof is like the one of the corresponding result

for ≈mw.
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• If P1 /AH
l−→a P

′
1 /AH with P1

l−→a P
′
1, then P1\AH

l−→a P
′
1\AH as l /∈ AH. From P1\AH ≈mb P2\AH

it follows that there exists P2 \ AH
τ∗

==⇒a P̄2 \ AH
l−→a P

′
2 \ AH such that P1 \ AH ≈mb P̄2 \ AH and

P ′1 \ AH ≈mb P ′2 \ AH. Thus P2 /AH
τ∗

==⇒a P̄2 /AH
l−→a P

′
2 /AH as l, τ /∈ AH. Since P1 \ AH ≈mb

P̄2 \ AH with P1, P̄2 ∈ SBNDC≈mb
and P ′1 \ AH ≈mb P

′
2 \ AH with P ′1, P ′2 ∈ SBNDC≈mb

, we have that
(P1 /AH, P̄2 /AH) ∈ B and (P ′1 /AH, P ′2 /AH) ∈ B.

• If P1 /AH
τ−→a P

′
1 /AH with P1

τ−→a P
′
1, then P1 \AH

τ−→a P
′
1 \AH as τ /∈ AH. There are two subcases:

– If P ′1 \ AH ≈mb P2 \ AH then P2 \ AH is allowed to stay idle with (P ′1 /AH, P2 /AH) ∈ B because
P ′1 \ AH ≈mb P2 \ AH and P ′1, P2 ∈ SBNDC≈mb

.
– If P ′1 \ AH 6≈mb P2 \ AH then the proof is like the one of the previous case with τ−→a used in place

of l−→a.

As for rates, we reason like in the proof of the corresponding result for ≈mw.

3. Let B be an equivalence relation containing all the pairs of processes that have to be shown to be ≈mb-
equivalent according to the considered result. Starting from P ′1 \ AH and ((P ′2 ‖LQ) /L) \ AH related by B,
so that P ′1 \ AH ≈mb P

′
2 /AH, there are six cases for action transitions based on the operational semantic

rules in Table 10.1. In the first two cases, it is P ′1 \ AH to move first:

• Let P ′1 \ AH
l−→a P

′′
1 \ AH. We observe that from P ′2 ∈ reach(P2) and P2 ∈ SBSNNI≈mb

it follows that
P ′2\AH ≈mb P

′
2 /AH, so that P ′1\AH ≈mb P

′
2 /AH ≈mb P

′
2\AH, i.e., P ′1\AH ≈mb P

′
2\AH, as≈mb is sym-

metric and transitive. As a consequence, since l 6= τ there exists P ′2\AH
τ∗

==⇒a P̄
′
2\AH

l−→a P
′′
2 \AH such

that P ′1\AH ≈mb P̄
′
2\AH and P ′′1 \AH ≈mb P

′′
2 \AH. Thus ((P ′2 ‖LQ) /L)\AH

τ∗
==⇒a ((P̄ ′2 ‖LQ) /L)\AH

l−→a ((P ′′2 ‖LQ) /L) \ AH with (P ′1 \ AH, ((P̄ ′2 ‖LQ) /L) \ AH) ∈ B – because P ′1 ∈ reach(P1),
P̄ ′2 ∈ reach(P2), and P ′1\AH ≈mb P̄

′
2 /AH as P2 ∈ SBSNNI≈mb

– and (P ′′1 \AH, ((P ′′2 ‖LQ) /L)\AH) ∈ B
– because P ′′1 ∈ reach(P1), P ′′2 ∈ reach(P2), and P ′′1 \ AH ≈mb P

′′
2 /AH as P2 ∈ SBSNNI≈mb

.

• If P ′1 \ AH
τ−→a P

′′
1 \ AH there are two subcases:

– If P ′′1 \ AH ≈mb P ′2 /AH then (P ′2 ‖LQ) /L) \ AH is allowed to stay idle with (P ′′1 \ AH,
((P ′2 ‖LQ) /L) \ AH) ∈ B because P ′′1 ∈ reach(P1) and P ′2 ∈ reach(P2).

– If P ′′1 \AH 6≈mb P
′
2 /AH then the proof is like the one of the previous case with τ−→a used in place

of l−→a.

In the other four cases, instead, it is ((P ′2 ‖LQ) /L) \ AH to move first:

• Let ((P ′2 ‖LQ) /L) \ AH
l−→a ((P ′′2 ‖LQ) /L) \ AH with P ′2

l−→a P
′′
2 so that P ′2 \ AH

l−→a P
′′
2 \ AH as

l /∈ AH. We observe that from P ′2 ∈ reach(P2) and P2 ∈ SBSNNI≈mb
it follows that P ′2\AH ≈mb P

′
2 /AH,

so that P ′2\AH ≈mb P
′
2 /AH ≈mb P

′
1\AH, i.e., P ′2\AH ≈mb P

′
1\AH, as ≈mb is symmetric and transitive.

As a consequence, since l 6= τ there exists P ′1 \ AH
τ∗

==⇒a P̄
′
1 \ AH

l−→a P
′′
1 \ AH such that P ′2 \ AH ≈mb

P̄ ′1 \AH and P ′′2 \AH ≈mb P
′′
1 \AH. Thus (((P ′2 ‖LQ) /L)\AH, P̄ ′1 \AH) ∈ B – because P̄ ′1 ∈ reach(P1),

P ′2 ∈ reach(P2), and P̄ ′1\AH ≈mb P
′
2 /AH as P2 ∈ SBSNNI≈mb

– and (((P ′′2 ‖LQ) /L)\AH, P ′′1 \AH) ∈ B
– because P ′′1 ∈ reach(P1), P ′′2 ∈ reach(P2), and P ′′1 \ AH ≈mb P

′′
2 /AH as P2 ∈ SBSNNI≈mb

.
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• If ((P ′2 ‖LQ) /L)\AH
τ−→a ((P ′′2 ‖LQ) /L)\AH with P ′2

τ−→a P
′′
2 so that P ′2\AH

τ−→a P
′′
2 \AH as τ /∈ AH,

there are two subcases:

– If P ′′2 \AH ≈mb P
′
1\AH then P ′1\AH is allowed to stay idle with (((P ′′2 ‖LQ) /L)\AH, P ′1\AH) ∈ B

because P ′1 ∈ reach(P1), P ′′2 ∈ reach(P2), and P ′1 \ AH ≈mb P
′′
2 /AH as P2 ∈ SBSNNI≈mb

.
– If P ′′2 \AH 6≈mb P

′
1 \AH then the proof is like the one of the previous case with τ−→a used in place

of l−→a.

• If ((P ′2 ‖LQ) /L) \ AH
τ−→a ((P ′2 ‖LQ′) /L) \ AH with Q τ−→aQ

′, then trivially (((P ′2 ‖LQ′) /L) \ AH,
P ′1 \ AH) ∈ B as P ′2 ≈mb P

′
2 and hence P ′2 /AH ≈mb P

′
2 /AH by Lemma 10.1(5).

• Let ((P ′2 ‖LQ) /L) \ AH
τ−→a ((P ′′2 ‖LQ′) /L) \ AH with P ′2

h−→a P
′′
2 – so that P ′2 /AH

τ−→a P
′′
2 /AH as

h ∈ AH – and Q h−→aQ
′ for h ∈ L. We observe that from P ′2, P

′′
2 ∈ reach(P2) and P2 ∈ SBSNNI≈mb

it follows that P ′2 \ AH ≈mb P
′
2 /AH and P ′′2 \ AH ≈mb P

′′
2 /AH, so that P ′2 \ AH

τ−→a P
′′
2 \ AH and

P ′2 \ AH ≈mb P
′
2 /AH ≈mb P

′
1 \ AH, i.e., P ′2 \ AH ≈mb P

′
1 \ AH, as ≈mb is symmetric and transitive.

There are two subcases:

– If P ′′2 \AH ≈mb P
′
1\AH then P ′1\AH is allowed to stay idle with (((P ′′2 ‖LQ′) /L)\AH, P ′1\AH) ∈ B

because P ′1 ∈ reach(P1), P ′′2 ∈ reach(P2), and P ′1 \ AH ≈mb P
′′
2 /AH as P2 ∈ SBSNNI≈mb

.

– If P ′′2 \ AH 6≈mb P
′
1 \ AH then there exists P ′1 \ AH

τ∗
==⇒a P̄

′
1 \ AH

τ−→a P
′′
1 \ AH such that P ′2 \ AH

≈mb P̄
′
1 \AH and P ′′2 \AH ≈mb P

′′
1 \AH. Thus (((P ′2 ‖LQ) /L) \AH, P̄ ′1 \AH) ∈ B – because P̄ ′1 ∈

reach(P1), P ′2 ∈ reach(P2), and P̄ ′1 \ AH ≈mb P
′
2 /AH as P2 ∈ SBSNNI≈mb

– and (((P ′′2 ‖LQ′) /L)
\ AH, P ′′1 \ AH) ∈ B – because P ′′1 ∈ reach(P1), P ′′2 ∈ reach(P2), and P ′′1 \ AH ≈mb P ′′2 /AH as
P2 ∈ SBSNNI≈mb

.

As for rates, we reason like in the proof of the corresponding result for ≈mw.

Theorem 10.3. Let ≈ ∈ {≈mw,≈mb}. Then over Pmk,nhc:
SBNDC≈ ( SBSNNI≈ = P_BNDC≈ ( BNDC≈ ( BSNNI≈

Proof. We first prove the results for the ≈mw-based properties. Let us examine each relationship separately:

• SBNDC≈mw ⊆ SBSNNI≈mw . Given P ∈ SBNDC≈mw , the result follows by proving that the relation B =
{(P ′ \ AH, P ′ /AH) | P ′ ∈ reach(P )} is a weak Markovian bisimulation up to ≈mw. Starting from (P ′ \ AH,
P ′ /AH) ∈ B, there are three cases for action transitions based on the operational semantic rules in Table 10.1.
In the first case, it is P ′ \ AH to move first:

– If P ′ \ AH
a

==⇒a P
′′ \ AH with a ∈ AL ∪ {τ}, then P ′ /AH

â
==⇒a P

′′ /AH as a, τ /∈ AH, with (P ′′ \ AH,
P ′′ /AH) ∈ B as P ′′ ∈ reach(P ). Thus (P ′′ \ AH, P ′′ /AH) ∈ (B ∪ B−1 ∪ ≈mw)+.

In the other two cases, instead, it is P ′ /AH to move first (note that possible τ -transitions along τ∗
==⇒a arising

from high actions in P ′ can no longer be executed when responding from P ′ \ AH, but for them we exploit
P ∈ SBNDC≈mw and Lemma 10.3(1)):
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– If P ′ /AH
a

==⇒a P
′′ /AH with a ∈ AL ∪ {τ}, then there exist two processes P̄ ′, P̄ ′′ ∈ reach(P ′) such

that P ′ /AH
τ∗

==⇒a P̄
′/AH

a−→a P̄
′′ /AH

τ∗
==⇒a P

′′ /AH. From P ′ /AH
τ∗

==⇒a P̄
′ /AH and Lemma 10.3(1)

it follows that P ′ \ AH
τ∗

==⇒a P̂
′ \ AH with P̄ ′ \ AH ≈mw P̂ ′ \ AH. From P̄ ′ /AH

a−→a P̄
′′ /AH it follows

that P̄ ′\AH
a−→a P̄

′′\AH as a /∈ AH, hence P̂ ′\AH
â

==⇒a P̂
′′\AH with P̄ ′′\AH ≈mw P̂ ′′\AH as P̄ ′\AH

≈mw P̂ ′ \ AH. From P̄ ′′ /AH
τ∗

==⇒a P
′′/AH and Lemma 10.3(1) it follows that P̄ ′′ \ AH

τ∗
==⇒a P̂

′′′ \ AH
with P ′′ \ AH ≈mw P̂ ′′′ \ AH, hence P̂ ′′ \ AH

τ∗
==⇒a P̂

′′′′ \ AH with P̂ ′′′ \ AH ≈mw P̂ ′′′′ \ AH as P̄ ′′ \ AH
≈mw P̂ ′′\AH. Note that P ′′\AH ≈mw P̂ ′′′′\AH as ≈mw is transitive. Summing up, we have that P ′\AH
â

==⇒a P̂
′′′′\AH with P ′′ /AH B P ′′\AH ≈mw P̂ ′′′′\AH, as P ′′ ∈ reach(P ), and hence (P ′′ /AH, P̂ ′′′′\AH)

∈ (B ∪ B−1∪ ≈mw)+.

– If P ′ /AH
τ

==⇒a P
′′ /AH stems from P̄ ′

h−→a P̄
′′ for some P̄ ′, P̄ ′′ ∈ reach(P ′), then from Lemma 10.3(1)

it follows that P ′\AH
τ∗

==⇒a P̂
′′\AH with P ′′\AH ≈mw P̂ ′′\AH. Since P ′′ /AH B−1 P ′′\AH ≈mw P̂ ′′\AH

as P ′′ ∈ reach(P ), we have that (P ′′ /AH, P̂ ′′ \ AH) ∈ (B ∪ B−1∪ ≈mw)+.

As for rates, suppose that P ′ \ AH 6τ−→a so that P ′ 6τ−→a too. There are two cases depending on whether P ′

performs a high action or not:

– If P ′ h−→a P
′′ then P ′ /AH

τ−→a P
′′ /AH. From Lemma 10.3(1) it follows that there exists P ′ \ AH

τ∗
==⇒a P̂

′ \ AH such that P ′′ /AH ≈mw P̂ ′ \ AH, but since P ′ \ AH 6 τ−→a it holds that P̂ ′ \ AH
must be P ′ \ AH and hence P ′′ /AH ≈mw P ′ \ AH. By repeatedly applying this procedure we will
reach a process P̄ ′ /AH 6 τ−→a, which is guaranteed by the fact that P ∈ Pmk,nhc. By Lemma 10.3(1)
we thus obtain that P̄ ′ /AH ≈mw P ′ \ AH and hence (P̄ ′ /AH, P ′ \ AH) ∈ (B ∪ B−1 ∪ ≈mw)+ with
rate(P̄ ′ /AH, C) = rate(P ′ \ AH, C) for all C ∈ Pmk/(B ∪ B−1 ∪ ≈mw)+.

– If P ′ cannot perform any high action, then P ′ /AH 6
τ−→a and, since the hiding and restriction operators

do not apply to rate transitions, we have that rate(P ′ \AH, C) = rate(P ′ /AH, C) for all C ∈ Pmk/(B∪
B−1 ∪ ≈mw)+.

If we start from P ′ /AH 6 τ−→a, then the proof is like the one of the second case as P ′ cannot perform any
high action.

• SBSNNI≈mw = P_BNDC≈mw . SBSNNI≈w ⊆ P_BNDC≈mw
follows from Lemma 10.3(3) by taking P ′1 iden-

tical to P ′2 and both reachable from P ∈ SBSNNI≈mw .
On the other hand, if P ∈ P_BNDC≈mw

then P ′ ∈ BNDC≈mw for every P ′ ∈ reach(P ). Since
BNDC≈mw ⊆ BSNNI≈mw as will be shown in the last case of the proof of this part of the theorem,
P ′ ∈ BSNNI≈mw for every P ′ ∈ reach(P ), i.e., P ∈ SBSNNI≈mw .

• SBSNNI≈mw ⊆ BNDC≈mw . If P ∈ SBSNNI≈mw = P_BNDC≈mw
then it immediately follows that P ∈

BNDC≈mw .

• BNDC≈mw ⊆ BSNNI≈mw . If P ∈ BNDC≈mw , i.e., P \AH ≈mw (P ‖LQ) /L)\AH for all Q ∈ Pmk,nhc such that
each of its prefixes belongs to AH and for all L ⊆ AH, then we can consider in particular Q̂ capable of stepwise
mimicking the high-level behavior of P , in the sense that Q̂ is able to synchronize with all the high-level
actions executed by P and its reachable processes, along with L̂ = AH. As a consequence (P ‖L̂ Q̂) / L̂) \AH
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is isomorphic to P /AH, hence P \ AH ≈mw (P ‖L̂ Q̂) / L̂) \ AH ≈mw P /AH, i.e., P ∈ BSNNI≈mw , as ≈mw

is transitive.

We then prove the results for the ≈mb-based properties. Let us examine each relationship separately:

• SBNDC≈mb
⊆ SBSNNI≈mb

. Given P ∈ SBNDC≈mb
, the result follows by proving that the relation B =

{(P ′ \ AH, P ′ /AH) | P ′ ∈ reach(P )} is a Markovian branching bisimulation up to ≈mb. Starting from
(P ′ \ AH, P ′ /AH) ∈ B, there are three cases for action transitions based on the operational semantic rules
in Table 10.1. In the first case, it is P ′ \ AH to move first:

– If P ′ \ AH
τ∗

==⇒a P̄
′ \ AH

a−→a P
′′ \ AH with a ∈ AL ∪ {τ}, then P ′ /AH

τ∗
==⇒a P̄

′ /AH
a−→a P

′′ /AH as
a, τ /∈ AH, with (P̄ ′ \ AH, P̄ ′ /AH) ∈ B and (P ′′ \ AH, P ′′ /AH) ∈ B as P̄ ′, P ′′ ∈ reach(P ). Thus
(P̄ ′ \ AH, P̄ ′ /AH) ∈ (B ∪ B−1 ∪ ≈mb)+ and (P ′′ \ AH, P ′′ /AH) ∈ (B ∪ B−1 ∪ ≈mb)+.

In the other two cases, instead, it is P ′ /AH to move first (note that possible τ -transitions along τ∗
==⇒a arising

from high actions in P ′ can no longer be executed when responding from P ′ \ AH, but for them we exploit
P ∈ SBNDC≈mb

and Lemma 10.3(1)):

– Let P ′ /AH
τ∗

==⇒a P̄
′ /AH

a−→a P
′′ /AH with a ∈ AL ∪ {τ}. From P ′ /AH

τ∗
==⇒a P̄

′ /AH and
Lemma 10.3(1) it follows that P ′ \ AH

τ∗
==⇒a P̂

′ \ AH with P̄ ′ \ AH ≈mb P̂ ′ \ AH. From
P̄ ′ /AH

a−→a P
′′ /AH it follows that P̄ ′ \AH

a−→a P
′′ \AH as a /∈ AH. Since P̄ ′ \AH ≈mb P̂

′ \AH there
are two subcases:

∗ If a = τ and P ′′ \AH ≈mb P̂
′ \AH, then P̄ ′ \AH ≈mb P

′′ \AH as ≈mb is symmetric and transitive.
From P̄ ′, P ′′ ∈ SBNDC≈mb

and Lemma 10.3(2) it follows that P̄ ′ /AH ≈mb P
′′ /AH. Thus P ′ \AH

is allowed to stay idle.

∗ Otherwise there exists P̂ ′ \ AH
τ∗

==⇒a P̂
′′ \ AH

a−→a P̂
′′′ \ AH such that P̄ ′ /AH ≈mb P̂

′′ \ AH and
P ′′ /AH ≈mb P̂ ′′′ \ AH. Summing up, we have that P ′ \ AH

τ∗
==⇒a P̂

′′ \ AH
a−→a P̂

′′′ \ AH with
P̄ ′ /AH B P̄ ′ \AH ≈mb P̂

′′ \AH and P ′′ /AH B P ′′ \AH ≈mb P̂
′′′ \AH, as P̄ ′, P ′′ ∈ reach(P ), and

hence (P̄ ′ /AH, P̂ ′′ \ AH) ∈ (B ∪ B−1 ∪ ≈mb)+ and (P ′′ /AH, P̂ ′′′ \ AH) ∈ (B ∪ B−1 ∪ ≈mb)+.

– Let P ′ /AH
τ∗

==⇒a P̄
′ /AH

τ−→a P
′′ /AH with P̄ ′

h−→a P
′′. From P̄ ′ ∈ reach(P ) and P ∈ SBNDC≈mb

it follows that P̄ ′ \ AH ≈mb P ′′ \ AH, hence P̄ ′ /AH ≈mb P ′′ /AH by virtue of Lemma 10.3(2)
as P̄ ′, P ′′ ∈ SBNDC≈mb

. Thus P ′ \ AH is allowed to stay idle.

As for rates, the proof is like the one of the corresponding result for ≈mw.

• SBSNNI≈mb
= P_BNDC≈mb

. The proof is like the one of the corresponding result for ≈mw.

• SBSNNI≈mb
⊆ BNDC≈mb

. The proof is like the one of the corresponding result for ≈mw.

• BNDC≈mb
⊆ BSNNI≈mb

. The proof is like the one of the corresponding result for ≈mw.

All the inclusions in the previous theorem are strict by virtue of the same counterexamples as those after
Theorem 8.4.



10.2 Markovian Information-Flow Security Properties 194

We further observe that each of the ≈mb-based noninterference properties implies the corresponding ≈mw-based
one, due to the fact that ≈mb is finer than ≈mw.

Theorem 10.4. The following inclusions hold:

1. BSNNI≈mb
( BSNNI≈mw .

2. BNDC≈mb
( BNDC≈mw .

3. SBSNNI≈mb
( SBSNNI≈mw .

4. P_BNDC≈mb
( P_BNDC≈mw

.

5. SBNDC≈mb
( SBNDC≈mw .

All the inclusions above are strict by virtue of the following result; for an example of P1 and P2 below,
see Figure 10.1.

Theorem 10.5. Let P1, P2 ∈ Pmk,nhc be such that P1 ≈mw P2 but P1 6≈mb P2. If no high-level actions occur in P1

and P2, then Q ∈ {P1 + h . P2, P2 + h . P1} is such that:

1. Q ∈ BSNNI≈mw but Q /∈ BSNNI≈mb
.

2. Q ∈ BNDC≈mw but Q /∈ BNDC≈mb
.

3. Q ∈ SBSNNI≈mw but Q /∈ SBSNNI≈mb
.

4. Q ∈ P_BNDC≈mw
but Q /∈ P_BNDC≈mb

.

5. Q ∈ SBNDC≈mw but Q /∈ SBNDC≈mb
.

Proof. Let Q be P1 + h . P2 (the proof is similar for Q equal to P2 + h . P1) and observe that no high-level actions
occur in every process reachable from Q except Q itself:

1. Since the only high-level action occurring in Q is h, in the proof of Q ∈ BSNNI≈mw the only interesting
case is the transition Q/AH

τ−→a P2 /AH, to which Q \ AH responds by staying idle because P2 /AH ≈mw

P2 ≈mw P1 ≈mw Q \ AH, i.e., P2 /AH ≈mw Q \ AH as ≈mw is symmetric and transitive.
On the other hand, Q /∈ BSNNI≈mb

because P2 6≈mb P1 in the same situation as before.

2. Since Q ∈ BSNNI≈mw by the previous result and no high-level actions occur in every process reachable
from Q other than Q, it holds that Q ∈ SBSNNI≈mw and hence Q ∈ BNDC≈mw by virtue of Theorem 10.3.
On the other hand, from Q /∈ BSNNI≈mb

by the previous result it follows that Q /∈ BNDC≈mb
by virtue of

Theorem 10.3.

3. We already know from the proof of the previous result that Q ∈ SBSNNI≈mw .
On the other hand, from Q /∈ BSNNI≈mb

by the first result it follows that Q /∈ SBSNNI≈mb
by virtue of

Theorem 10.3.

4. An immediate consequence of P_BNDC≈mw = SBSNNI≈mw and P_BNDC≈mb
= SBSNNI≈mb

as established
by Theorem 10.3.
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BSNNI≈mw

BNDC≈mw

SBSNNI≈mw

P_BNDC≈mw

SBNDC≈mw

BSNNI≈mb

BNDC≈mb

SBSNNI≈mb

P_BNDC≈mb

SBNDC≈mb

Figure 10.2: Taxonomy of security properties based on Markovian weak and branching bisimilarities

5. Since the only high-level action occurring in Q is h, in the proof of Q ∈ SBNDC≈mw the only interesting
case is the transition Q

h−→a P2, for which it holds that Q \ AH ≈mw P1 ≈mw P2 ≈mw P2 \ AH, i.e.,
Q \ AH ≈mw P2 \ AH as ≈mw is transitive.
On the other hand, Q /∈ SBNDC≈mb

because P1 6≈mb P2 in the same situation as before.

The diagram in Figure 10.2 summarizes the inclusions among the various noninterference properties based on
the results in Theorems 10.3 and 10.4, where P → Q means that P is strictly included in Q. These inclusions follow
the same pattern as the nondeterministic and probabilistic settings in Figures 8.4 and 9.2. The arrows missing in the
diagram, witnessing incomparability, are justified by the same counterexamples as those after Proposition 8.3. As
an additional counterexample, for BNDC≈mw vs. BSNNI≈mb

we have that the process l . (2·λ) . 0+l . ((λ) . h1 . l1 . 0+
(λ) . h2 . l2 . 0) + l . ((λ) . l1 . 0 + (λ) . l2 . 0) is BSNNI≈mb

but not BNDC≈mw as discussed in Section 10.2, while the
process Q mentioned in Theorem 10.5 is both BSNNI≈mw and BNDC≈mw but not BSNNI≈mb

.
Like in the nondeterministic and probabilistic settings of the two previous chapters, the strongest property

based on weak Markovian bisimilarity (SBNDC≈mw) and the weakest property based on Markovian branching
bisimilarity (BSNNI≈mb

) are incomparable too. The former is a very restrictive property because it requires a
local check every time a high-level action is performed, while the latter requires a check only on the initial state.
On the other hand, as shown in Theorem 10.5, it is very easy to construct processes that are secure under properties
based on ≈mw but not on ≈mb, due to the minimal number of high-level actions in Q.

10.2.3 Relating Nondeterministic, Probabilistic, and Markovian Taxonomies

Let us compare our Markovian taxonomy with the nondeterministic and probabilistic ones of the two previous
chapters. In the following, we assume that ≈w denotes the weak nondeterministic bisimilarity of [112] and ≈b

denotes the nondeterministic branching bisimilarity of [80], which we have used in Chapter 8. These can also be
obtained from the corresponding definitions in Section 10.1.2 by ignoring the clause involving the rate function.
Since we are abstracting from time, given a process P ∈ Pmk we can obtain its nondeterministic variant, denoted
by nd(P ), by replacing every occurrence of (λ) . P ′ with τ . P ′. However, to respect maximal progress, first we
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have to eliminate every subprocess starting with a rate prefix that is alternative to a subprocess starting with a
τ -prefix. To accomplish this transformation syntactically, we focus on the set Pmk,seq of sequential processes, i.e.,
without parallel composition; this is not too restrictive because, in the absence of recursion, parallel composition
can be eliminated by repeatedly applying a Markovian variant of the expansion law [90].

The next proposition states that if two sequential processes are equivalent according to any of the weak
bisimilarities in Section 10.1.2, then their nondeterministic variants are equivalent according to the corresponding
nondeterministic weak bisimilarity. The inverse does not hold; e.g., processes P1 = (1) . a . 0 and P2 = (2) . a . 0
are such that P1 6≈mw P2 and P1 6≈mb P2, but their nondeterministic counterparts coincide as both of them are
equal to τ . a . 0.

Proposition 10.3. Let P1, P2 ∈ Pmk,seq. Then:

• P1 ≈mw P2 =⇒ nd(P1) ≈w nd(P2).

• P1 ≈mb P2 =⇒ nd(P1) ≈b nd(P2).

Proof. We prove the two results separately:

• We need to prove that the symmetric relation B = {(nd(P1),nd(P2)) | P1 ≈mw P2} is a weak bisimulation.
We start by observing that from P1 ≈mw P2 it follows that for each P1

a−→a P
′
1 there exists P2

â
==⇒a P

′
2 such

that P ′1 ≈mw P ′2. Since nd(P1) and nd(P2) are obtained by eliminating every rate transition that is alternative
to a τ -transition and replacing each remaining rate transition with a τ -transition, for each nd(P1)

a−→a nd(P ′1)

there exists nd(P2)
â

==⇒a nd(P ′2) such that (nd(P ′1),nd(P ′2)) ∈ B.

• We need to prove that the symmetric relation B = {nd(P1),nd(P2)) | P1 ≈mb P2} is a branching bisimulation.
We start by observing that from P1 ≈mb P2 it follows that for each P1

a−→a P
′
1 either a = τ and P ′1 ≈mb P2, or

there exists P2
τ∗

==⇒a P̄2
a−→a P

′
2 such that P1 ≈mb P̄2 and P ′1 ≈mb P

′
2. Since nd(P1) and nd(P2) are obtained

by eliminating every rate transition that is alternative to a τ -transition and replacing each remaining rate
transition with a τ -transition, for each nd(P1)

a−→a nd(P ′1) either a = τ and (nd(P ′1),nd(P2)) ∈ B, or there
exists nd(P2)

τ∗
==⇒a nd(P̄2)

a−→a nd(P ′2) such that (nd(P1),nd(P̄2)) ∈ B and (nd(P ′1),nd(P ′2)) ∈ B.

An immediate consequence is that if a sequential process is secure under any of the Markovian noninterference
properties of Section 10.2, then its nondeterministic variant is secure under the corresponding nondeterministic
property. The taxonomy of Figure 10.2 thus extends to the left the one in Figure 8.4, as each of the properties of
Section 10.2 is finer than its nondeterministic counterpart.

Corollary 10.1. Let Pmk∈{BSNNI≈mk
,BNDC≈mk

,SBSNNI≈mk
,P_BNDC≈mk

, SBNDC≈mk
} and Pnd∈{BSNNI≈nd

,
BNDC≈nd

, SBSNNI≈nd
,P_BNDC≈nd

, SBNDC≈nd
} for ≈mk ∈ {≈mw,≈mb} and ≈nd ∈ {≈w,≈b}, where Pnd is

meant to be the nondeterministic variant of Pmk. Then P ∈ Pmk =⇒ nd(P ) ∈ Pnd for all P ∈ Pmk,seq.

Proof. The result directly follows from Proposition 10.1.
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We now compare our Markovian taxonomy with the probabilistic one of the previous chapter, which relies
on the weak probabilistic bisimilarity ≈pw of [120] and the probabilistic branching bisimilarity ≈pb of [8], also
obtainable from the corresponding definitions in Section 10.1.2 by replacing the clause involving the rate function
with the clause involving the prob function. We focus on the set Pmk,alt,seq of processes in which action prefixes and
rate prefixes alternate – to comply with the strictly alternating model of [86] adopted for probabilistic processes
– that are sequential – as rate transitions, as opposed to probabilistic ones, do not synchronize. Since we are
abstracting from time, given a process P ∈ Pmk,alt,seq we can obtain its probabilistic variant, denoted by pr(P ),
by replacing every occurrence of

∑
i∈I(λi) . Pi with

⊕
i∈I [pi]pr(Pi) where pi = λi/

∑
j∈I λj . It is worth noting that

over Pmk,alt,seq the weak bisimilarities ≈mw and ≈mb boil down to the strong bisimilarity ∼m of Definition 10.2.
This is due to the strict alternation between action prefixes and rate prefixes and the fact that the two weak
bisimilarities do not abstract from rate transitions (≈pw and ≈pb can abstract from probabilistic transitions).

The next proposition states that if two sequential alternating processes are equivalent according to any of the
weak bisimilarities in Section 10.1.2, then their probabilistic variants are equivalent according to the corresponding
probabilistic weak bisimilarity. The inverse does not hold; e.g., the probabilistic counterparts of the two inequivalent
processes (1) . a . 0 and (2) . a . 0 coincide as both of them are equal to [1]a . 0.

Proposition 10.4. Let P1, P2 ∈ Pmk,alt,seq. Then:

• P1 ≈mw P2 =⇒ pr(P1) ≈pw pr(P2).

• P1 ≈mb P2 =⇒ pr(P1) ≈pb pr(P2).

Proof. We prove the two results separately:

• We need to prove that the equivalence relation B = {(pr(P1), pr(P2)) | P1 ≈mw P2} is a weak probabilistic
bisimulation.
As for action transitions, we start by observing that from P1 ≈mw P2 it follows that for each P1

a−→a P
′
1

there exists P2
a−→a P

′
2 – due to the strict alternation – such that P ′1 ≈mw P ′2. Since pr(P1) and pr(P2) are

obtained by replacing each rate transition with a probabilistic one, for each pr(P1)
a−→a pr(P ′1) there exists

pr(P2)
a−→a pr(P ′2) such that (pr(P ′1), pr(P ′2)) ∈ B.

As for probabilities, for each P γ−→r P
′ there exists pr(P )

p−→p pr(P ′) with p = γ/
∑

P
δ−→rQ

δ. Due to the
strict alternation, from P1 ≈mw P2 it follows that

∑
P1

λ−→r P ′1,P
′
1∈C

λ =
∑

P2
µ−→r P ′2,P

′
2∈C

µ for each C ∈
Pmk/≈mw and hence

∑
P1

λ−→r P ′1
λ =

∑
P2

µ−→r P ′2
µ. Since every equivalence class C ′ ∈ Ppr,seq/B is of the form

[pr(Q)]B = {pr(Q′) | Q ≈mw Q′}, we have that
∑

pr(P1)
p−→p pr(P ′1),pr(P ′1)∈C′ p =

∑
pr(P2)

q−→p pr(P ′2),pr(P ′2)∈C′ q

where every p and every q is obtained from the corresponding rate ratios respectively involving λ and µ.

• We need to prove that the equivalence relation B = {(pr(P1), pr(P2)) | P1 ≈mb P2} is a probabilistic branching
bisimulation.
As for action transitions, we start by observing that from P1 ≈mb P2 it follows that for each P1

a−→a P
′
1

either a = τ and P ′1 ≈mb P2, or there exists P2
τ∗

==⇒a P2
a−→a P

′
2 – due to the strict alternation – such that

P ′1 ≈mb P
′
2. Since pr(P1) and pr(P2) are obtained by replacing each rate transition with a probabilistic one, for

each pr(P1)
a−→a pr(P ′1) either a = τ and (pr(P ′1), pr(P2)) ∈ B, or there exists pr(P2)

τ∗
==⇒a pr(P2)

a−→a pr(P ′2)
such that (pr(P ′1), pr(P ′2)) ∈ B.
As for probabilities, we reason like in the proof of the corresponding result for ≈pw.
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An immediate consequence is that if a sequential alternating process is secure under any of the Markovian non-
interference properties of Section 10.2, then its probabilistic variant is secure under the corresponding probabilistic
property. The taxonomy of Figure 10.2 thus extends to the left also the one in Figure 9.2, as each of the properties
of Section 10.2 is finer than its probabilistic counterpart.

Corollary 10.2. Let Pmk∈{BSNNI≈mk
,BNDC≈mk

, SBSNNI≈mk
,P_BNDC≈mk

,SBNDC≈mk
} and Ppr∈{BSNNI≈pr,

BNDC≈pr ,SBSNNI≈pr ,P_BNDC≈pr
, SBNDC≈pr} for ≈mk ∈ {≈mw,≈mb} and ≈pr ∈ {≈pw,≈pb}, where Ppr is

meant to be the probabilistic variant of Pmk. Then P ∈ Pmk =⇒ pr(P ) ∈ Ppr for all P ∈ Pmk,alt,seq.

Proof. The result directly follows from Proposition 10.2.

10.3 Reversibility via Weak Markovian Back-and-Forth Bisimilarity

As recalled in the two previous chapters, weak back-and-forth bisimilarity coincides with branching bisimilarity over
nodeterministic processes [57]. In this section we extend that result so that Markovian branching bisimilarity can
be employed in the noninterference analysis of reversible processes featuring nondeterminism and stochastic time.

An MLTS (S,A,−→) represents a reversible process if each of its transitions is seen as bidirectional. When
going backward, it is of paramount importance to respect causality, i.e., the last performed transition must be the
first one to be undone. Following [57] we set up an equivalence that enforces not only causality but also history
preservation. This means that, when going backward, a process can only move along the path representing the
history that brought the process to the current state even in the presence of concurrency. To accomplish this, the
equivalence has to be defined over computations, not over states, and the notion of transition has to be suitably
revised. We start by adapting the notation of the nondeterministic setting of [57] to our nondeterministic and
stochastically timed setting. We use ` for a label in A ∪ R>0.

Definition 10.8. A sequence ξ = (s0, `1, s1)(s1, `2, s2) . . . (sn−1, `n, sn) ∈ −→ ∗ is a path of length n from state s0.
We let first(ξ) = s0 and last(ξ) = sn; the empty path is indicated with ε. We denote by path(s) the set of paths
from s.

Definition 10.9. A pair ρ = (s, ξ) is called a run from state s iff ξ ∈ path(s), in which case we let path(ρ) = ξ,
first(ρ) = first(ξ) = s, last(ρ) = last(ξ), with first(ρ) = last(ρ) = s when ξ = ε. We denote by run(s) the set of
runs from state s. Given ρ = (s, ξ) ∈ run(s) and ρ′ = (s′, ξ′) ∈ run(s′), their composition ρρ′ = (s, ξξ′) ∈ run(s)

is defined iff last(ρ) = first(ρ′) = s′. We write ρ `−→ ρ′ iff there exists ρ′′ = (s̄, (s̄, `, s′)) with s̄ = last(ρ) such that
ρ′ = ρρ′′; note that first(ρ) = first(ρ′). Moreover rate is lifted in the expected way.

In the considered MLTS we work with the set U of runs in lieu of S. Following [57], given a run ρ, we distinguish
between outgoing and incoming action transitions of ρ during the weak bisimulation game. Like in [32], this does
not apply to rate transitions, in the sense that the cumulative rates of incoming rate transitions are not compared.
It this were not the case, states like (λ1) . (0\∅) + (λ2) . (0 / ∅) and (λ1 +λ2) . 0 – which are indistinguishable in the
forward direction – would be told apart because the incoming cumulative rate from the class formed by those two
states is λ1, λ2, or λ1 + λ2 depending on whether 0 \ ∅, 0 / ∅, or 0 is considered. When comparing the cumulative
rates of outgoing transitions, we slightly deviate from the corresponding clause in Definition 10.4 to set up a more
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symmetric clause inspired by an alternative characterization of ≈mw in [90] that is helpful to prove the forthcoming
Lemma 10.4.

Definition 10.10. Let (S,A,−→) be an MLTS. We say that s1, s2 ∈ S are weakly Markovian back-and-forth
bisimilar, written s1 ≈mbf s2, iff ((s1, ε), (s2, ε)) ∈ B for some weak Markovian back-and-forth bisimulation B. An
equivalence relation B over U is a weak Markovian back-and-forth bisimulation iff, whenever (ρ1, ρ2) ∈ B, then:

• For each ρ1
a−→a ρ

′
1 there exists ρ2

â
==⇒a ρ

′
2 such that (ρ′1, ρ

′
2) ∈ B.

• For each ρ′1
a−→a ρ1 there exists ρ′2

â
==⇒a ρ2 such that (ρ′1, ρ

′
2) ∈ B.

• For each ρ1
τ∗

==⇒a ρ
′
1 with ρ′1 6

τ−→a there exists ρ2
τ∗

==⇒a ρ
′
2 with ρ′2 6

τ−→a such that (ρ′1, ρ
′
2) ∈ B and rate(ρ′1, C) =

rate(ρ′2, C) for all equivalence classes C ∈ U/B.

• For each ρ′1
λ1−→r ρ1 with ρ′1 6

τ−→a there exists ρ′2
τ∗

==⇒a ρ̄
′
2
λ2−→r ρ̄2

τ∗
==⇒a ρ2 with ρ̄′2 6

τ−→a such that (ρ1, ρ̄2) ∈ B,
(ρ′1, ρ̄

′
2) ∈ B, and (ρ′1, ρ

′
2) ∈ B.

We show that weak Markovian back-and-forth bisimilarity over runs coincides with ≈mb, the forward-only
Markovian branching bisimilarity over states. Like in the previous chapter, we proceed by adopting the proof
strategy followed in [57] to show that their weak back-and-forth bisimilarity over runs coincides with the forward-
only branching bisimilarity over states of [80]. Therefore we start by proving that ≈mbf satisfies the cross property.
This means that, whenever two runs of two ≈mbf -equivalent states can perform a sequence of finitely many
τ -transitions such that each of the two target runs is ≈mbf -equivalent to the source run of the other sequence,
then the two target runs are ≈mbf -equivalent to each other as well.

Lemma 10.4. Let s1, s2 ∈ S with s1 ≈mbf s2. For all ρ′1, ρ
′′
1 ∈ run(s1) such that ρ′1

τ∗
==⇒a ρ

′′
1 and for all ρ′2, ρ

′′
2 ∈

run(s2) such that ρ′2
τ∗

==⇒a ρ
′′
2, if ρ

′
1 ≈mbf ρ

′′
2 and ρ′′1 ≈mbf ρ

′
2 then ρ′′1 ≈mbf ρ

′′
2.

Proof. Given s1, s2 ∈ S with s1 ≈mbf s2, consider the transitive closure B+ of the reflexive and symmetric relation
B = ≈mbf ∪{(ρ′′1, ρ′′2), (ρ′′2, ρ

′′
1) ∈ (run(s1)× run(s2))∪ (run(s2)× run(s1)) | ∃ρ′1 ∈ run(s1), ρ′2 ∈ run(s2). ρ′1

τ∗
==⇒a ρ

′′
1 ∧

ρ′2
τ∗

==⇒a ρ
′′
2 ∧ ρ′1 ≈mbf ρ

′′
2 ∧ ρ′′1 ≈mbf ρ

′
2}. The result will follow by proving that B+ is a weak Markovian back-

and-forth bisimulation, because this implies that ρ′′1 ≈mbf ρ
′′
2 for every additional pair – i.e., B+ satisfies the cross

property – as well as B+ = ≈mbf – hence ≈mbf satisfies the cross property too.
Let (ρ′′1, ρ

′′
2) ∈ B \≈mbf to avoid trivial cases. Then there exist ρ′1 ∈ run(s1) and ρ′2 ∈ run(s2) such that ρ′1

τ∗
==⇒a ρ

′′
1,

ρ′2
τ∗

==⇒a ρ
′′
2, ρ′1 ≈mbf ρ

′′
2, and ρ′′1 ≈mbf ρ

′
2. There are two cases for action transitions:

• In the forward case, assume that ρ′′1
a−→a ρ

′′′
1 , from which we derive ρ′1

τ∗
==⇒a ρ

′′
1

a−→a ρ
′′′
1 . From ρ′1 ≈mbf ρ

′′
2

it follows that there exists ρ′′2
τ∗

==⇒a ρ
′′′
2 if a = τ or ρ′′2

τ∗
==⇒a

a−→a
τ∗

==⇒a ρ
′′′
2 if a 6= τ , such that ρ′′′1 ≈mbf ρ

′′′
2 and

hence (ρ′′′1 , ρ
′′′
2 ) ∈ B.

When starting from ρ′′2
a−→a ρ

′′′
2 , we exploit ρ′2

τ∗
==⇒a ρ

′′
2 and ρ′′1 ≈mbf ρ

′
2 instead.

• In the backward case, assume that ρ′′′1
a−→a ρ

′′
1. From ρ′′1 ≈mbf ρ

′
2 it follows that there exists ρ′′′2

τ∗
==⇒a ρ

′
2

if a = τ , so that ρ′′′2
τ∗

==⇒a ρ
′′
2, or ρ′′′2

τ∗
==⇒a

a−→ τ∗
==⇒a ρ

′
2 if a 6= τ , so that ρ′′′2

τ∗
==⇒a

a−→a
τ∗

==⇒a ρ
′′
2, such that

ρ′′′1 ≈mbf ρ
′′′
2 and hence (ρ′′′1 , ρ

′′′
2 ) ∈ B.

When starting from ρ′′′2
a−→a ρ

′′
2, we exploit ρ′1 ≈mbf ρ

′′
2 and ρ′1

τ∗
==⇒a ρ

′′
1 instead.
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Likewise, there are two cases for rate transitions:

• In the forward case, assume that ρ′′1
τ∗

==⇒a ρ
′′′
1 with ρ′′′1 6τ−→a, from which we derive ρ′1

τ∗
==⇒a ρ

′′′
1 . From ρ′1 ≈mbf ρ

′′
2

it follows that there exists ρ′′2
τ∗

==⇒a ρ
′′′
2 with ρ′′′2 6 τ−→a such that ρ′′′1 ≈mbf ρ

′′′
2 and rate(ρ′′′1 , C) = rate(ρ′′′2 , C)

for all C ∈ U/≈mbf . Since every equivalence class C ′ ∈ U/B+ is the union of equivalence classes with respect
to ≈mbf , it holds that rate(ρ′′′1 , C ′) = rate(ρ′′′2 , C

′).
When starting from ρ′′2

τ∗
==⇒a ρ

′′′
2 with ρ′′′2 6τ−→a, we exploit ρ′2

τ∗
==⇒a ρ

′′
2 and ρ′′1 ≈mbf ρ

′
2 instead.

• In the backward case, assume that ρ′′′1
λ1−→r ρ

′′
1 with ρ′′′1 6 τ−→a. From ρ′′1 ≈mbf ρ

′
2 it follows that there exists

ρ′′′2
τ∗

==⇒a ρ̄
′′′
2

λ2−→r ρ̄
′
2

τ∗
==⇒a ρ

′
2 with ρ̄′′′2 6τ−→a, so ρ′′′2

τ∗
==⇒a ρ̄

′′′
2

λ2−→r ρ̄
′
2

τ∗
==⇒a ρ

′′
2 with ρ̄′′′2 6τ−→a, such that ρ′′1 ≈mbf ρ̄

′
2,

ρ′′′1 ≈mbf ρ̄
′′′
2 , and ρ′′′1 ≈mbf ρ

′′′
2 , hence (ρ′′1, ρ̄

′
2) ∈ B, (ρ′′′1 , ρ̄

′′′
2 ) ∈ B, and (ρ′′′1 , ρ

′′′
2 ) ∈ B.

When starting from ρ′′′2
λ2−→r ρ

′′
2 with ρ′′′2 6τ−→a, we exploit ρ′1 ≈mbf ρ

′′
2 and ρ′1

τ∗
==⇒a ρ

′′
1 instead.

Theorem 10.6. Let s1, s2 ∈ S. Then s1 ≈mbf s2 ⇐⇒ s1 ≈mb s2.

Proof. The proof is divided into two parts:

• Suppose that s1 ≈mbf s2 and let B be a weak Markovian back-and-forth bisimulation over U such that
((s1, ε), (s2, ε)) ∈ B. Assume that B only contains all the pairs of ≈mbf -equivalent runs from s1 and s2,
so that Lemma 10.4 is applicable to B. We show that B′ = {(last(ρ1), last(ρ2)) | (ρ1, ρ2) ∈ B} is a Markovian
branching bisimulation over the states in S reachable from s1 and s2, from which s1 ≈mb s2 will follow. Note
that B′ is an equivalence relation because so is B.
Given (last(ρ1), last(ρ2)) ∈ B′, by definition of B′ we have that (ρ1, ρ2) ∈ B. Let rk = last(ρk) for k ∈ {1, 2},
so that (r1, r2) ∈ B′. Suppose that r1

a−→a r
′
1, i.e., ρ1

a−→a ρ
′
1 where last(ρ′1) = r′1. There are two cases:

– If a = τ then from (ρ1, ρ2) ∈ B it follows that there exists ρ2
τ∗

==⇒a ρ
′
2 such that (ρ′1, ρ

′
2) ∈ B. This means

that we have a sequence of n ≥ 0 transitions of the form ρ2,i
τ−→a ρ2,i+1 for all 0 ≤ i ≤ n − 1 where

ρ2,0 is ρ2 while ρ2,n is ρ′2 so that (ρ′1, ρ2,n) ∈ B as (ρ′1, ρ
′
2) ∈ B.

If n = 0 then we are done because ρ′2 is ρ2 and hence (ρ′1, ρ2) ∈ B as (ρ′1, ρ
′
2) ∈ B – thus (r′1, r2) ∈ B′

– otherwise from ρ2,n we go back to ρ2,n−1 via ρ2,n−1
τ−→a ρ2,n. Recalling that (ρ′1, ρ2,n) ∈ B, if ρ′1 can

respond by staying idle, so that (ρ′1, ρ2,n−1) ∈ B, and n = 1, then we are done because ρ2,n−1 is ρ2 and
hence (ρ′1, ρ2) ∈ B as (ρ′1, ρ2,n−1) ∈ B – thus (r′1, r2) ∈ B′ – otherwise we go further back to ρ2,n−2 via
ρ2,n−2

τ−→a ρ2,n−1. If ρ′1 can respond by staying idle, so that (ρ′1, ρ2,n−2) ∈ B, and n = 2, then we are
done because ρ2,n−2 is ρ2 and hence (ρ′1, ρ2) ∈ B as (ρ′1, ρ2,n−2) ∈ B – thus (r′1, r2) ∈ B′ – otherwise we
keep going backward.
By repeating this procedure, since (ρ′1, ρ2,n) ∈ B either we get to (ρ′1, ρ2,n−n) ∈ B and we are done be-
cause this implies that (ρ′1, ρ2) ∈ B – thus (r′1, r2) ∈ B′ – or for some 0 < m ≤ n such that (ρ′1, ρ2,m) ∈ B
the incoming transition ρ2,m−1

τ−→a ρ2,m is matched by ρ̄1
τ∗

==⇒a ρ1
τ−→a ρ

′
1 with (ρ̄1, ρ2,m−1) ∈ B. In the

latter case, since ρ̄1
τ∗

==⇒a ρ1, ρ2
τ∗

==⇒a ρ2,m−1, (ρ̄1, ρ2,m−1) ∈ B, and (ρ1, ρ2) ∈ B, from Lemma 10.4 we de-
rive that (ρ1, ρ2,m−1)∈B. Consequently ρ2

τ∗
==⇒a ρ2,m−1

τ−→a ρ2,m with (ρ1, ρ2,m−1)∈B and (ρ′1, ρ2,m)∈B,
thus r2

τ∗
==⇒a last(ρ2,m−1)

τ−→a last(ρ2,m) with (r1, last(ρ2,m−1)) ∈ B′ and (r′1, last(ρ2,m)) ∈ B′.
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– If a 6= τ then from (ρ1, ρ2) ∈ B it follows that there exists ρ2
τ∗

==⇒a ρ̄2
a−→a ρ̄

′
2

τ∗
==⇒a ρ

′
2 such that

(ρ′1, ρ
′
2) ∈ B.

From (ρ′1, ρ
′
2) ∈ B and ρ̄′2

τ∗
==⇒a ρ

′
2 it follows that there exists ρ̄′1

τ∗
==⇒a ρ

′
1 such that (ρ̄′1, ρ̄

′
2) ∈ B.

Since ρ1
a−→a ρ

′
1 and hence the last transition in ρ′1 is labeled with a, we derive that ρ̄′1 is ρ′1 and

hence (ρ′1, ρ̄
′
2) ∈ B.

From (ρ′1, ρ̄
′
2) ∈ B and ρ̄2

a−→a ρ̄
′
2 it follows that there exists ρ̄1

τ∗
==⇒a ρ1

a−→a ρ
′
1 such that (ρ̄1, ρ̄2) ∈ B.

Since ρ̄1
τ∗

==⇒a ρ1, ρ2
τ∗

==⇒a ρ̄2, (ρ̄1, ρ̄2) ∈ B, and (ρ1, ρ2) ∈ B, from Lemma 10.4 we derive that (ρ1, ρ̄2) ∈ B.
Consequently ρ2

τ∗
==⇒a ρ̄2

a−→a ρ̄
′
2 with (ρ1, ρ̄2) ∈ B and (ρ′1, ρ̄

′
2) ∈ B, thus r2

τ∗
==⇒a last(ρ̄2)

a−→a last(ρ̄′2) with (r1, last(ρ̄2)) ∈ B′ and (r′1, last(ρ̄
′
2)) ∈ B′.

As for rates, given ρ ∈ run(s1) ∪ run(s2), the equivalence class C ′ρ with respect to B′ is of the form
[last(ρ)]B′ = {last(ρ′) | (last(ρ), last(ρ′)) ∈ B′} = last({ρ′ | (ρ, ρ′) ∈ B}) = last([ρ]B), i.e., C ′ρ = last(Cρ)
for some equivalence class Cρ with respect to B, provided that function last is lifted from runs to sets of runs.
Suppose that r1 6 τ−→a so that ρ1

τ∗
==⇒a ρ1 with ρ1 6 τ−→a. From (ρ1, ρ2) ∈ B it follows that there exists

ρ2
τ∗

==⇒a ρ
′
2 with ρ′2 6 τ−→a such that (ρ1, ρ

′
2) ∈ B and rate(ρ1, C) = rate(ρ′2, C) for all C ∈ U/B. Thus there

exists r2
τ∗

==⇒a r
′
2 with r′2 = last(ρ′2) and r′2 6 τ−→a such that (r1, r

′
2) ∈ B′ and rate(r1, C

′
ρ) = rate(ρ1, Cρ) =

rate(ρ′2, Cρ) = rate(r′2, C
′
ρ) for all equivalence classes C ′ρ with respect to B′ such that C ′ρ = last(Cρ) for some

equivalence class Cρ with respect to B.

• Suppose that s1 ≈mb s2 and let B be a Markovian branching bisimulation over S such that (s1, s2) ∈ B.
Assume that B only contains all the pairs of ≈mb-equivalent states reachable from s1 and s2. We show that
the reflexive and transitive closure B′∗ of B′ = {(ρ1, ρ2), (ρ2, ρ1) ∈ (run(s1)× run(s2))∪ (run(s2)× run(s1)) |
(last(ρ1), last(ρ2)) ∈ B} is a weak Markovian back-and-forth bisimulation over the runs in U from s1 and s2,
from which (s1, ε) ≈mbf (s2, ε), i.e., s1 ≈mbf s2, will follow.
Given (ρ1, ρ2) ∈ B′, by definition of B′ we have that (last(ρ1), last(ρ2)) ∈ B. Let rk = last(ρk) for k ∈ {1, 2},
so that (r1, r2) ∈ B. There are two cases for action transitions:

– If ρ1
a−→a ρ

′
1, i.e., r1

a−→a r
′
1 where r′1 = last(ρ′1), then either a = τ and (r′1, r

′
2) ∈ B where r′2 = r2, or

there exists r2
τ∗

==⇒a r̄2
a−→a r

′
2 such that (r1, r̄2) ∈ B and (r′1, r

′
2) ∈ B. In both cases ρ2

â
==⇒a ρ

′
2 where

last(ρ′2) = r′2, so that (ρ′1, ρ
′
2) ∈ B′.

– If ρ′1
a−→a ρ1, i.e., r′1

a−→a r1 where r′1 = last(ρ′1), there are two subcases:

∗ If ρ′1 is (s1, ε), i.e., r′1
a−→a r1 is s1

a−→a r1 and last(ρ′1) = s1, then from (s1, s2) ∈ B it follows that
either a = τ and (r1, r2) ∈ B where r2 = s2, or there exists s2

τ∗
==⇒a r̄2

a−→a r2 such that (s1, r̄2) ∈ B
and (r1, r2) ∈ B. In both cases ρ′2

â
==⇒a ρ2 where last(ρ′2) = s2, so that (ρ′1, ρ

′
2) ∈ B′.

∗ If ρ′1 is not (s1, ε) then from (s1, s2) ∈ B it follows that s1 reaches r′1 with a sequence of moves that
are B-compatible with those with which s2 reaches some r′2 such that (r′1, r

′
2) ∈ B as B only contains

all the states reachable from s1 and s2. Therefore either a = τ and (r1, r
′
2) ∈ B where r′2 = r2,

or there exists r′2
τ∗

==⇒a r̄2
a−→a r2 such that (r′1, r̄2) ∈ B and (r1, r2) ∈ B. In both cases ρ′2

â
==⇒a ρ2

where last(ρ′2) = r′2, so that (ρ′1, ρ
′
2) ∈ B′.
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Likewise, there are two cases for rate transitions:

– Given ρ ∈ run(s1) ∪ run(s2), the equivalence class C ′ρ with respect to B′∗ is of the form [ρ]B′∗ = {ρ′ ∈
run(s1) ∪ run(s2) | last(ρ′) ∈ [last(ρ)]B}, i.e., C ′ρ corresponds to some equivalence class Cρ with respect

to B. Suppose that ρ1
τ∗

==⇒a ρ
′
1 with ρ′1 6

τ−→a so that r1
τ∗

==⇒a r
′
1 with r′1 = last(ρ′1) 6τ−→a. From (r1, r2) ∈ B

it follows that there exists r2
τ∗

==⇒a r̄2 such that (r′1, r̄2) ∈ B and, since r′1 6
τ−→a, there exists r̄2

τ∗
==⇒a r

′
2

with r′2 6 τ−→a such that (r′1, r
′
2) ∈ B and rate(r′1, C) = rate(r′2, C) for all C ∈ S/B. Thus there exists

ρ2
τ∗

==⇒a ρ
′
2 with last(ρ′2) = r′2 and ρ′2 6

τ−→a such that (ρ′1, ρ
′
2) ∈ B and rate(ρ′1, C

′
ρ) = rate(last(ρ′1), Cρ) =

rate(last(ρ′2), Cρ) = rate(ρ′2, C
′
ρ) for all equivalence classes C ′ρ with respect to B′∗.

– If ρ′1
λ1−→r ρ1 with ρ′1 6

τ−→a, i.e., r′1
λ1−→r r1 where r′1 = last(ρ′1) 6τ−→a, there are two subcases:

∗ If ρ′1 is (s1, ε), i.e., r′1
λ1−→r r1 is s1

λ1−→r r1 and last(ρ′1) = s1, then from (s1, s2) ∈ B and s1 6 τ−→a

it follows that there exists s2
τ∗

==⇒a r̄
′
2 with r̄′2 6 τ−→a and r2 ∈ reach(r̄′2) such that (r′1, r̄

′
2) ∈ B,

which in turn implies that there exists r̄′2
λ2−→r r̄2 such that (r1, r̄2) ∈ B, hence (r2, r̄2) ∈ B as ≈mb is

symmetric and transitive. If r2 and r̄2 coincide then we are done because ρ′2
τ∗

==⇒a ρ̄
′
2
λ2−→r ρ2

τ∗
==⇒a ρ2,

where last(ρ′2) = s2 and last(ρ̄′2) = r̄′2, and (ρ′1, ρ̄
′
2) ∈ B′ and (ρ′1, ρ

′
2) ∈ B′. Otherwise, from

r2 ∈ reach(r̄2) and (r2, r̄2) ∈ B it follows that there must exists r̄2
τ∗

==⇒a r2 and hence we are
done because ρ′2

τ∗
==⇒a ρ̄

′
2
λ2−→r ρ̄2

τ∗
==⇒a ρ2, where last(ρ̄2) = r̄2, and (ρ1, ρ̄2) ∈ B′, (ρ′1, ρ̄

′
2) ∈ B′, and

(ρ′1, ρ
′
2) ∈ B′.

∗ If ρ′1 is not (s1, ε) then from (s1, s2) ∈ B it follows that s1 reaches r′1 with a sequence of moves
that are B-compatible with those with which s2 reaches some r′2 such that (r′1, r

′
2) ∈ B as B only

contains all the states reachable from s1 and s2. From (r′1, r
′
2) ∈ B and r′1 6

τ−→a it follows that there
exists r′2

τ∗
==⇒a r̄

′
2 with r̄′2 6

τ−→a and r2 ∈ reach(r̄′2) such that (r′1, r̄
′
2) ∈ B, at which points the proof

continues like the one of the previous subcase.

Therefore the properties BSNNI≈mb
, BNDC≈mb

, SBSNNI≈mb
, P_BNDC≈mb

, and SBNDC≈mb
do not change

if ≈mb is replaced by ≈mbf . This allows us to study noninterference properties for reversible systems featuring
nondeterminism and stochastic time by using ≈mb in a standard Markovian process calculus like the one of
Section 10.1.3.

10.4 Use Case: DBMS Obfuscation and Permission Mechanisms

In Sections 8.2 and 8.5 we have modeled the authentication mechanism of a database management system (DBMS)
in which the database can be used to feed a machine learning (ML) module for training purposes, where reversible
transactions are supported [60]. Due to privacy issues, DBMS users are not allowed to know which data are
actually chosen to train the ML module [12]. Hence, for analysis purposes, the interactions between users and the
DBMS are considered to be low level, while the interactions between the DBMS and the ML module are considered
to be high level. The aim of the noninterference analysis is thus to check whether users can infer the utilization
of their data in the ML dataset. In this section we present two novel examples for this scenario, which show
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(i) the nature of the interferences emerging in a stochastically timed setting and (ii) the greater expressive power
of branching bisimulation semantics in this setting.

Let lw be a low-level action expressing the execution of a write transaction and low be an analogous action that
includes also the additional application of an obfuscation mechanism over written data for privacy purposes [3].
We assume that only obfuscated data can feed the ML module. Given the high-level actions h and h′ denoting
interactions between the DBMS and the ML module, consider the following process:

DBMS , h . τ . (lw . 0 + low . h
′ . 0) +

τ . (τ . (lw . 0 + low . 0) + lw . 0)
The subprocess guarded by the high-level action h represents the behavior of the DBMS whenever the ML module
is activated through the h-based interaction. After an internal activity, the DBMS offers a choice between the
two available transaction mechanisms, by assuming that only in the second case the transaction data will feed the
ML module (through the h′-based interaction). The alternative subprocess guarded by a τ -action describes the
behavior of the DBMS whenever the ML module is not involved. Note that this subprocess replicates the behavior
above to simulate the presence of the ML module and, thus, makes it transparent from the viewpoint of users.
In addition, the subprocess immediately enables also action lw for efficiency reasons and because, in any case,
the transaction data will not feed the ML module.

Since the two low views τ . (lw . 0+low . τ . 0) and τ . (lw . 0+low . 0)+lw . 0 are both weakly bisimilar and branching
bisimilar, we immediately derive that all the noninterference properties of the nondeterministic taxonomy are
satisfied. In particular, note that DBMS \{h, h′} and DBMS / {h, h′} enable weakly/branching bisimilar behaviors
by virtue of the observation above. However, if we add to the model the time spent by the DBMS in the internal
activity before the choice about the possible obfuscation, we obtain:

DBMS stoch_timed , h . (λ1) . (lw . 0 + low . h
′ . 0) +

τ . ((λ2) . (lw . 0 + low . 0) + lw . 0)
where the rates λ1 and λ2 govern the delays discussed above for the ML module being involved or not respectively
(note that DBMS is the nondeterministic version of DBMS stoch_timed). In this enriched process, the equivalence
between the two low views (λ1) . (lw . 0+ low . τ . 0) and (λ2) . (lw . 0+ low . 0)+ lw . 0 does not hold for the Markovian
versions of the two bisimilarities. This means that no noninterference property of the Markovian taxonomy is
satisfied. Note that this negative result holds also in the case λ1 = λ2, because only in the second subprocess it is
possible to observe action lw with no delay.

Let us consider a more sophisticated variant of the system above, including an explicit permission mechanism
involving users. Let lno_auth be a low-level action expressing that users do not authorize the DBMS to feed the ML
module with the data of their transaction, lno_auth_o be a low-level action expressing that users do not authorize
the obfuscation of the data of their transaction, and lcommit be a low-level action expressing the execution of the
transaction. Then in the following process:

DBMS ′ , h . (lno_auth . lcommit . 0 + τ . (lno_auth_o . lcommit . 0 + τ . lcommit . h
′ . 0)) +

τ . ((lno_auth . lcommit . 0 + τ . (lno_auth_o . lcommit . 0 + τ . lcommit . 0)) +
τ . lcommit . 0)

the subprocess guarded by the high-level action h – call it P – expresses the behavior of the system whenever the
ML module is active. In particular, in such a case, once that no authorization has been forbidden, the committed
data are transferred to the training set (through the h′-based interaction). Now, consider the alternative subprocess
guarded by a τ -action and modeling the absence of the ML module – call it Q. This subprocess simulates the same
behavior as P in the absence of the ML module and, in addition, enables the branch τ . lcommit . 0 expressing the
immediate execution of the transaction, which does not require any authorization because the ML module is not
active. The two subprocesses P / {h′} and Q are weakly bisimilar but not branching bisimilar. In fact, P / {h′}
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cannot respond to the τ -action of Q leading to lcommit . 0 in a way that complies with the branching bisimulation
semantics.

From the back-and-forth perspective, consider executing the run τ . lcommit . 0 of Q and the run τ . τ . lcommit . τ . 0
of P / {h′}. By undoing the actions of the Q-run it is not possible to go back to a state enabling action lno_auth_o

before enabling action lno_auth. Instead, this is possible by undoing the other run. This is enough to distinguish
P / {h′} and Q in the setting of reversible transactions. Therefore, by following the same observations as the
previous example, it turns out that the weak-bisimilarity-based noninterference properties are satisfied, while
those based on branching bisimilarity are not. Finally, if we add the same rate λ just before the execution of any
action lcommit – thus yielding DBMS ′stoch_timed – the same considerations continue to hold, thereby confirming the
greater expressive power of the branching bisimulation semantics even in the Markovian setting.



Chapter 11

Conclusions

We conclude the thesis by summarizing our findings (Section 11.1) and indicating future work (Section 11.2).

11.1 Summary of Results

In the first part of the thesis, we have presented a fully fledged process algebraic theory of reversible concurrent
systems, which encompasses on the one hand interleaving and truly concurrent equivalences and on the other hand
branching-time and linear-time semantics.

We have started by defining a calculus including typical operators such as action prefix, nondeterministic
choice, parallel composition, and renaming/hiding. Although inspired by CCSK [121] and RCCS [53, 100], our
calculus PRPC is lighter because there are neither communication keys nor stack-based memories. This has been
achieved by generating a single transition relation that is deemed to be symmetric as in [57], so that it is sufficient
to decorate in the syntax all executed actions with the same symbol † like in [42]. The operational semantics is
proved in the sense of [59] so as to pave the way to uniform derivation of expansion laws for parallel composition
(Table 2.1). The labeled transition system turns out to be a tree in the case of sequential processes (Proposition 2.1).
In particular, the model underlying a . b . 0 + b . a . 0, which is the interleaving expansion of a . 0 ‖∅ b . 0, is no longer
diamond-shaped as it would be in a forward-only calculus (Figure 1.1).

The systematic study of ∼FB, ∼RB, ∼FRB, ≈FB, ≈RB, ≈FRB has revealed that forward-reverse bisimilarity
is strictly included in the intersection of forward bisimilarity and reverse bisimilarity, with the last two being
incomparable as the former can identify processes with a different past while the latter can identify processes
with a different future. In addition to necessary conditions based on forward ready sets and backward ready sets
(Propositions 3.2 and 3.7) and alternative definitions of the three weak bisimilarities (Propositions 3.3, 3.4, 3.5),
we have established that all the six bisimilarities are congruences with respect to the operators of PRPC apart
from ∼FRB, ≈FB, ≈FRB. These three are not compositional with respect to nondeterministic choice, but for them
we have found out the coarsest congruences ∼FRB:ps, ≈FB:ps, ≈FRB:ps by further requiring past sensitivity, i.e., by
imposing that an initial process and a non-initial one cannot be identified (Theorems 4.1 and 4.2). This construction
is different from the one used in [112] to build a weak bisimulation congruence on top of weak bisimilarity over
forward-only processes.

We have then investigated logical and equational characterizations. The modal logics for the nine bisimi-
larities are fragments (Table 5.1) of Hennessy-Milner logic [88] extended with a proposition for initiality, which
is needed by past-sensitive bisimilarities, and strong and weak backward modalities (Theorems 5.1 and 5.2).
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We have employed the proved trees approach of [59] to uniformly derive expansion laws of parallel composition
for the two interleaving bisimulation congruences ∼FB and ≈FB:ps and the four truly concurrent bisimulation con-
gruences ∼RB, ≈RB, ∼FRB:ps, ≈FRB:ps. In the interleaving case we have the usual associativity, commutativity,
idempotency, and neutral element axioms of nondeterministic choice as well as an expansion law that is a past-
sensitive variant of the forward-only one [112], with further specific axioms establishing that the presence of the
past cannot be ignored, but the specific past and previously non-selected alternatives can be neglected when mov-
ing only forward (Table 6.1); for the weak variant the τ -axioms are akin to the forward-only ones [112] (Table 6.2)
but the saturation normal form is more complex to express (Lemma 6.3). In the truly concurrent case we have
discovered that backward ready sets constitute the additional discriminating information to be inserted into action
prefixes via suitable encodings to derive correct expansion laws (Corollaries 6.1 and 6.2). In the reverse subcase the
specific axioms establish that, when moving only backward, the future can be completely canceled and previously
non-selected alternatives can be discarded (Table 6.4); for the weak variant the only τ -axiom is akin to the one
not valid in the forward-only setting for weak bisimulation congruence [112] (Table 6.5). In the forward-reverse
subcase we confirm a specific form of idempotency appeared in [106] (Table 6.6); for the weak variant the τ -axioms
are akin to the one of branching bisimilarity over forward-only processes [80] (Table 6.7).

As far as alternative characterizations are concerned, we have shown that strong and weak reverse bisimilarities
boil down to a linear-time semantics over sequential processes as they coincide with strong and weak reverse trace
equivalences [45] (Theorems 7.1 and 7.2), while the former are strictly finer than the latter in general (Corollaries 7.1
and 7.2). Then we have confirmed the connection between branching bisimilarity [80] and reversibility, established
in [57], through the notion of weak back-and-forth bisimilarity in a setting in which any backward computation
amounts to backtracking, i.e., it is constrained to follow the same path as the corresponding forward computation
even in the presence of concurrency. More precisely, weak forward-reverse bisimilarity coincides with branching
bisimilarity over sequential initial processes (Theorem 7.3), while they are incomparable in general. Furthermore,
weak forward-reverse bisimilarity coincides with forward-reverse branching bisimilarity over sequential processes
(Theorem 7.4), while the latter is strictly finer than the former in general (Corollary 7.3). Finally, we have
proven that hereditary history-preserving bisimilarity [16] corresponds to forward-reverse bisimilarity extended with
backward ready multisets equality, thus providing a simpler solution to a long-standing problem (Theorem 7.5).

In the second part of the thesis, we have developed a comprehensive information flow theory based on the
five noninterference properties BSNNI, BNDC, SBSNNI, P_BNDC, SBNDC for multi-level security systems of
different nature, where weak bisimilarity and branching bisimilarity – due to the aforementioned results involving
the latter – are respectively used as the common thread of the investigation for irreversible and reversible systems.

For purely nondeterministic systems, we have enriched the classical taxonomy of noninterference properties
based on weak bisimilarity [67, 69] by introducing branching-bisimilarity-based properties together with their
relationships (Figure 8.4), their preservation aspects (Theorem 8.2), and their compositionality characteristics
(Theorem 8.3); we have also recalled their connection with reversibility due to branching bisimilarity coinciding
with weak back-and-forth bisimilarity [57]. The adequacy of the resulting noninterference properties has been
illustrated on an authentication mechanism for a database management system.

For nondeterministic systems extended with probabilities according to the strictly alternating model of [86],
we have produced a taxonomy of noninterference properties based on a weak probabilistic bisimilarity inspired
by [120] and a probabilistic branching bisimilarity inspired by [8] (Figure 9.2) and shown their preservation aspects
(Theorem 9.1), their compositionality characteristics (Theorem 9.2), their relationships with the nondeterministic
taxonomy (Corollary 9.1), and their connection with reversibility due to probabilistic branching bisimilarity coin-
ciding with weak probabilistic back-and-forth bisimilarity (Theorem 9.6). These results extend the work of [7] about
probabilistic variants of BSNNI, BNDC, SBNDC for a combination of the generative and reactive probabilistic
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models of [79] and have required the introduction of a novel weak probabilistic bisimulation up to weak probabilis-
tic bisimililarity as well as a novel probabilistic branching bisimulation up to probabilistic branching bisimililarity
(Definitions 9.7 and 9.8). The adequacy of the resulting noninterference properties based on probabilistic branching
bisimilarity has been exemplified through a lottery relying on a probabilistic smart contract.

For nondeterministic systems extended with stochastic time according to the interactive Markov chain model
of [90], we have produced a taxonomy of noninterference properties based on weak Markovian bisimilarity [90] and
a novel Markovian branching bisimilarity (Figure 10.2) and shown their preservation aspects (Theorem 10.1), their
compositionality characteristics (Theorem 10.2), their relationships with the nondeterministic and probabilistic
taxonomies (Corollaries 10.1 and 10.2), and their connection with reversibility due to Markovian branching bisim-
ilarity coinciding with weak Markovian back-and-forth bisimilarity (Theorem 10.6). These results extend the work
of [5] about stochastic variants of BSNNI and SBNDC and the work of [94] about a stochastic variant of P_BNDC
– both conducted in process algebraic frameworks inspired by [93] where every action integrates its rate – and have
required the introduction of a novel weak Markovian bisimulation up to weak Markovian bisimililarity as well as
a novel Markovian branching bisimulation up to Markovian branching bisimilarity (Definitions 10.6 and 10.7).
The adequacy of the resulting noninterference properties based on Markovian branching bisimilarity has been
shown through obfuscation and permission mechanisms in a database management system for which also time-
related aspects have been modeled.

In all the three types of systems a number of ancillary results about SBSNNI and SBNDC have emerged as
general patterns for parallel composition, restriction, and hiding (Lemmas 8.2, 8.3, 9.3, 9.4, 10.2, 10.3).

11.2 Future Work

A useful extension to our calculus PRPC would be the inclusion of irreversible actions, as done for instance in [54],
because not all activities can be reverted in reality. Another addition would be recursion, which is usually neglected
in reversible process calculi because it leads to an infinite state space even in the very simple case of a process that
can repeatedly execute a single action.

As for bisimulation semantics, we plan to investigate further the relationships between backward-ready-multiset
forward-reverse bisimilarity and hereditary history-preserving bisimilarity, not only in terms of the class of processes
for which our result holds. While the latter inherits a variant of the sound and complete axiomatization in
Table 6.6, where backward ready sets are replaced by backward ready multisets, the former inherits the logical
characterizations of the latter [124, 14]. Since it is easy to find a modal logic characterizing the former, it is
interesting to compare all the involved logics; a preliminary study can be found in [28].

On the noninterference side, we are implementing our nondeterministic, probabilistic, and stochastically timed
taxonomies for irreversible and reversible multi-level security systems in CADP [72]. Furthermore, we are study-
ing the taxonomy for deterministically timed systems, in which action execution is separated from time passing
according to the model of [113, 114] governed by time determinism and time additivity.

A more general objective is to study connections with other forms of reversibility. For example, in [32] causal
reversibility and time reversibility have been jointly investigated in a stochastic process algebraic setting. In [31]
it has been shown a condition under which causal reversibility implies time reversibility [98], but it is not known
when the inverse implication holds.
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A different direction to pursue is the investigation of the relationships with reversible programming
languages [81], such as the time-reversible programming language Janus and reversible variants of Erlang.
Our theory may be exploited as a semantical underpinning or for program verification.

Finally, we would like to address quantum computing [115], given that unitary transformations are reversible.
It is worth mentioning that quantum extensions of process calculi and bisimulation semantics have recently
appeared [49, 50] that overcome some limitations of previous proposals.
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