
QAPL 2006

Component-Oriented Specification of
Performance Measures

Alessandro Aldini 1 Marco Bernardo 2

Università di Urbino “Carlo Bo”, Istituto STI, Italy

Abstract

Formal notations for system performance modeling need to be equipped with suit-
able notations for specifying performance measures. These companion notations
have been traditionally based on reward structures and, more recently, on temporal
logic. In this paper we propose a mixed approach, which aims at facilitating the
specification of performance measures by allowing the designer to express them in
a component-oriented way. The resulting Measure Specification Language MSL,
which is being integrated in Æmilia/TwoTowers, is interpreted both on action-
labeled continuous-time Markov chains and on stochastic process algebras. The
latter interpretation provides a compositional framework for performance-sensitive
model manipulations and emphasizes the increased expressiveness with respect to
traditional reward structures for modeling notations in which the concept of state
is implicit.

1 Introduction

The need for assessing the quantitative characteristics of a system during
the early stages of its design has fostered within the academic community
the development of formal methods integrating the traditionally addressed
functional aspects with the performance aspects. This has resulted in different
system modeling notations, with complementary strengths and weaknesses,
among which we mention stochastic process algebras (SPA: see, e.g., [14,13,7]
and the references therein) and stochastic Petri nets (SPN: see, e.g., [2] and
the references therein). Both SPAs and SPNs are equipped with precisely
defined semantics as well as analysis techniques, which – in the performance
evaluation case – require the solution of the underlying stochastic process in
the form of a continuous-time Markov chain (CTMC [19]).

1 Email: aldini@sti.uniurb.it
2 Email: bernardo@sti.uniurb.it

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Aldini, Bernardo

From the usability viewpoint, the modeling notations above force the sys-
tem designer to be familiar with their technicalities, some of which are not
so easy to learn. Moreover, such notations do not support a fully elucidated
component-oriented way of modeling systems, which is especially desirable
when dealing with complex systems made out of numerous interacting parts.

This usability issue has been recently tackled with the development of
Æmilia [8,5], an architectural description language based on EMPAgr [7] for
the textual and graphical representation of system families. Æmilia clearly
separates the specification of the system behavior from the specification of the
system topology, thus hiding many of the technicalities of the static operators
of SPA. This is achieved by dividing an Æmilia specification into two sections.
In the first section, the designer defines – through SPA equations in which
only the easier dynamic operators can occur – the behavior of the types of
components that form the system, together with their interactions with the
rest of the system. In the second section, the designer declares the instances
of the previously defined types of components that are present in the system,
as well as the way in which their interactions are attached to each other in
order to make the components communicate.

For performance evaluation purposes, the modeling notations mentioned
before have been endowed with companion notations for the specification of
the performance measures of interest. According to the classifications pro-
posed in [18,12], we have instant-of-time measures, expressing the gain/loss
received at a particular time instant, and interval-of-time (or cumulative) mea-
sures, expressing the overall gain/loss received over some time interval. Both
kinds of measures can refer to stationary or transient state. Most of the ap-
proaches that have appeared in the literature for expressing various kinds of
performance measures are based on the definition of reward structures [15] for
the CTMCs underlying the system models.

In the framework of modeling notations like SPA and SPN, the idea is
that the reward structures should not be defined at the level of the CTMC
states and transitions, but at the level of the system models and then au-
tomatically inherited by their underlying CTMCs. In the SPN case, the re-
wards can naturally be associated with the net markings and the net tran-
sitions/activities [9,17]. In the SPA case, the reward association is harder
because the modeling notation is action-based, hence the concept of state is
implicit. In [10,11] the CTMC states to which certain rewards have to be
attached are singled out by means of suitable modal logic formulas, whereas
in [7,6] the rewards are directly specified within the actions occurring in the
system specifications and are then transferred to the CTMC states and tran-
sitions during the CTMC construction. In [20], instead, temporal reward
formulas have been introduced, which are able to express accumulated atomic
rewards over sequences of CTMC states and allow performance measures to
be evaluated through techniques for computing long-run averages. Finally, a
different, non-reward-based approach relies on the branching-time temporal

2

Aldini, Bernardo

logic CSL [3], which is used to directly specify performance measures and to
reduce performance evaluation to model checking. Based on the observation
that the progress of time can be regarded as the earning of reward, a variant
of CSL called CRL has been subsequently proposed in [4], where rewards are
assumed to be already attached to the CTMC states.

The usability issue for the performance modeling notations obviously ex-
tends to the companion notations for expressing performance measures. In
particular, we observe that none of the proposals surveyed above allows the
designer to specify the performance measures in a component-oriented way,
which once again would be highly desirable.

From the designer viewpoint, even the use of a component-oriented mod-
eling notation like Æmilia may be insufficient if accompanied by an auxiliary
notation in which the specification of performance measures is not easy. This
was the outcome of a usability-related experiment conducted with some gradu-
ate and undergraduate students at the University of L’Aquila. Such students,
who are familiar with software engineering concepts and methodologies, but
not with formal methods like SPA, were previously exposed to SPA together
with the reward-based companion notation proposed in [6], then they were
exposed to Æmilia together with the same companion notation. At the end
of this process, on the modeling side the students felt more confident about
the correctness of the communications they wanted to establish – thanks to
the separation of concerns between behavior specification and topology speci-
fication – and found very beneficial the higher degree of parametricity (hence
the increased potential for specification reuse). On the other hand, they still
complained about the difficulties with a notation to specify performance mea-
sures that forced them to reason in terms of states and transitions rather than
components. Most importantly, they perceived the definition of the measures
as a task for performance experts, because for them it was not trivial at all to
decide which kinds and values of rewards to use in order to derive even simple
indicators like system throughput or resource utilization.

Although the difficulty with choosing adequate values for the rewards is
an intrinsic limitation of the reward-based approach to the specification of
performance measures, in this paper we claim that a remarkable improvement
of the usability of such an approach can be obtained by combining ideas from
action-based methods and logic-based methods in a component-oriented fla-
vor. More specifically, we shall propose a Measure Specification Language
(MSL) that builds on a simple first-order logic by means of which the re-
wards are attached to the states and the transitions of the CTMCs underlying
component-oriented system models, like e.g. Æmilia specifications. On the
one hand, such an integrated approach relying on both rewards and logical
constructs turns out to be more expressive than classical reward-based meth-
ods when using modeling notations like SPA in which the concept of state is
implicit. On the other hand, component-orientation is achieved within MSL
by means of a mechanism to define measures that are parameterized with re-

3

Aldini, Bernardo

spect to the activities that individual components or specific parts of their
behavior can carry out. Another contribution of this paper is to provide
an interpretation for the core logic of MSL based on SPA, which allows for
performance-sensitive compositional reasoning.

The rest of the paper is organized as follows. In Sect. 2 we recall some back-
ground about component-oriented system modeling, action-labeled CTMCs,
and reward structures. In Sect. 3 we present MSL by defining its core logic
together with its CTMC interpretation. In Sect. 4 we present the measure
definition mechanism associated with MSL. In Sect. 5 we provide the SPA-
based interpretation for the core logic of MSL. Finally, in Sect. 6 we conclude
by reporting some perspectives on future work.

2 Setting the Context

The formal approach to the specification of performance measures we present
in this paper is conceived for component-oriented system models whose un-
derlying stochastic processes are action-labeled CTMCs.

2.1 Component-Oriented System Models

Following the guidelines proposed in [1], the formal model of a component-
oriented system should comprise at least two parts: the description of the
individual system component types and the description of the overall system
topology.

The description of a system component type should be provided by speci-
fying at least its name, its (data-related and performance-related) parameters,
its behavior, and its interactions. The behavior should express all the alter-
native sequences of activities that the component type can carry out 3 , while
the interactions are those activities occurring in the behavior that are used by
the component type to communicate with the rest of the system. The interac-
tions can be annotated with qualifiers expressing their attributes concerning
e.g. the direction (input vs. output) or the form (point-to-point, broadcast,
client-server, etc.) of the communication they can be involved in.

The description of the system topology should be provided by declaring
the instances of component types that form the system, together with the
specification of the way in which their interactions should be attached to each
other in order to make the components communicate. If the interactions are
annotated with qualifiers, the attachments should be consistent with them.
The description of the topology should then be completed by the possible in-
dication of component interactions that act as interfaces for the overall system,
which is useful to support hierarchical modeling.

3 This general framework allows for both branching-time and linear-time models and in-
cludes different formalisms like process algebras and Petri nets.

4

Aldini, Bernardo

In the following we consider as an illustrative example a queueing system
M/M/2 with arrival rate λ ∈ RI >0, no buffer, and service rates µ1, µ2 ∈
RI >0 [16]. This system represents a service center equipped with two servers
processing requests at rate µ1 and µ2, respectively. Service is provided to
an unbounded population of customers, which arrive at the service center
according to a Poisson process of rate λ. Whenever both servers are idle, an
incoming customer has the same probability to be served by the two servers.

The overall system thus comprises two component types: the arrival pro-
cess and the server. In the framework of the architectural description language
Æmilia [8] such component types would be modeled as follows:

ARCHI_TYPE QS_M_M_2(rate lambda, rate mu1, rate mu2)

ARCHI_ELEM_TYPES

ELEM_TYPE Arrivals_Type(rate arrival_rate)

BEHAVIOR

Arrivals(void) =

<arrive, arrival_rate> . Arrivals()

INPUT INTERACTIONS void

OUTPUT INTERACTIONS OR arrive

ELEM_TYPE Server_Type(rate service_rate)

BEHAVIOR

Server_Idle(void) =

<arrive, _> . Server_Busy();

Server_Busy(void) =

<serve, service_rate> . Server_Idle()

INPUT INTERACTIONS UNI arrive

OUTPUT INTERACTIONS void

The system topology comprises one instance of Arrivals Type and two
instances of Server Type, suitably connected to each other as modeled below
in Æmilia:

ARCHI_TOPOLOGY

ARCHI_ELEM_INSTANCES

Arr : Arrivals_Type(lambda);

S1 : Server_Type(mu1);

S2 : Server_Type(mu2);

ARCHI_INTERACTIONS

void

ARCHI_ATTACHMENTS

FROM Arr.arrive TO S1.arrive;

FROM Arr.arrive TO S2.arrive

END

5

Aldini, Bernardo

2.2 ACTMCs and Reward Structures

For performance evaluation purposes, we assume that from the considered
component-oriented system models it is possible to extract finite-state, finitely-
branching, action-labeled CTMCs.

Definition 2.1 A finite action-labeled CTMC (ACTMC) is a quadruple

M = (S,Act , −−−→M, s0)

where S is a finite set of states, s0 ∈ S is the initial state, Act is a non-empty
set of activities, and −−−→M ⊆ S × (Act × RI >0) × S is a finite transition
relation.

Each state of an ACTMC obtained from a component-oriented system
model is actually a global state representing a system configuration that can
be viewed as a vector of local states, which are the current behaviors of the in-
dividual components. Each transition corresponds instead to either an activity
performed by a single component in isolation, or a set of attached interactions
executed simultaneously by several communicating components. As an exam-
ple, Fig. 1 shows the ACTMC underlying the queueing system modeled with
Æmilia in Sect. 2.1.

arrive,λ/2

arrive,λ/2

arrive,λ

arrive,λ

S1.serve,µ1

µ2S2.serve,

S2.serve,µ2

S1.serve,µ1

Arr.Arrivals
S1.Server_Idle
S2.Server_Idle

S2.Server_Idle
S1.Server_Busy
Arr.Arrivals

S2.Server_Busy
S1.Server_Busy
Arr.Arrivals

S2.Server_Busy
S1.Server_Idle
Arr.Arrivals

Fig. 1. ACTMC model of the queueing system example

As far as the analysis of ACTMC-based, component-oriented models is
concerned, the typical approach to performance measure specification relies
on reward structures [15]. This requires associating real numbers with system
behaviors and activities, which are then transferred to the proper states (rate
rewards) and transitions (instantaneous rewards) of the ACTMC, respectively.

A rate reward expresses the rate at which a gain (or a loss, if the number
is negative) is accumulated while sojourning in the related state. By contrast,
an instantaneous reward specifies the instantaneous gain (or loss) implied by
the execution of the related transition.

The instant-of-time value of a performance measure specified through a re-
ward structure is computed for an ACTMCM = (S,Act , −−−→M, s0) through
the following equation:

∑
s∈S

Rr(s) · π(s) +
∑

(s,a,λ,s′)∈−−−→M

Ri(s, a, λ, s′) · φ(s, a, λ, s′)(1)

6

Aldini, Bernardo

where:

• Rr(s) is the rate reward associated with s.

• π(s) is the probability of being in s at the considered instant of time.

• Ri(s, a, λ, s′) is the instantaneous reward associated with the transition
(s, a, λ, s′).

• φ(s, a, λ, s′) is the frequency of the transition (s, a, λ, s′) at the considered
instant of time, which is given by π(s) · λ.

Suppose e.g. that, in the queueing system example, we are interested in
computing throughput and utilization. The system throughput is defined as
the mean number of customers that are served per time unit. In order to
compute it, we should set:

Rr(s) =

µ1 if s = (Arr.Arrivals, S1.Server Busy, S2.Server Idle)

µ2 if s = (Arr.Arrivals, S1.Server Idle, S2.Server Busy)

µ1 + µ2 if s = (Arr.Arrivals, S1.Server Busy, S2.Server Busy)

0 if s = (Arr.Arrivals, S1.Server Idle, S2.Server Idle)

Equivalently, we may set Ri(, a, ,) = 1 for a ∈ {S1.serve, S2.serve} and
Ri(, a, ,) = 0 for a ∈ {arrive}.

The system utilization, instead, is defined as the percentage of time during
which at least one server is busy. In order to compute it, we should set
Rr(s) = 1 if s contains as local state at least one between S1.Server Busy and
S2.Server Busy, Rr(s) = 0 otherwise.

3 MSL: Core Logic and ACTMC Interpretation

MSL is based on a core logic for associating rewards with the ACTMCs un-
derlying component-oriented system models. The core logic is in turn based
on a set of first-order predicates, which we shall interpret on an ACTMC
M = (S,Act , −−−→M, s0), that can be in the scope of quantifications with
respect to an activity set A ⊆ Act .

In order to achieve a satisfactory degree of expressiveness, at least four
formula schemas are needed in the core logic. On the one hand, the designer
has to be allowed to decide whether state rewards or transition rewards are
needed to define a certain performance measure. On the other hand, in an
action-based setting the designer has to be allowed to decide whether all the
activities in a given set contribute to the value of a certain performance mea-
sure, or only one of them does. The combination of the two sets of two options
results in four possibilities that are made available to the designer.

Definition 3.1 The core logic of MSL is a first-order logic composed of the
following four formula schemas:

7

Aldini, Bernardo

(i) ∀a ∈ A(is trans(s, a, λ, s′) ⇒ eq(partial contrib(s, a, λ, s′), rew(a, λ))) ⇒
eq(state rew(s), sum partial contrib(s, A))

(ii) ∀a ∈ A(is trans(s, a, λ, s′) ⇒ eq(trans rew(s, a, λ, s′), rew(a, λ)))

(iii) ∃a ∈ A(is trans(s, a, λ, s′)) ⇒
eq(state rew(s), choose state rew(s, A, cf))

(iv) ∃a ∈ A(is trans(s, a, λ, s′)) ⇒
eq(trans rew(choose trans(s, A, cf)), choose trans rew(s, A, cf))

Because of their initial quantification, we call universal the first two formula
schemas and existential the last two formula schemas. Intuitively, the first
universal formula schema establishes that all the transitions labeled with an
activity a ∈ A that depart from the current state of M provide a contribution
of value rew(a, λ) to the rate at which the reward is gained while staying in
that state. Since several contributing transitions may depart from the current
state, we assume that all their partial contributions have to be summed up
(partial contribution additivity assumption). The second universal formula
schema establishes that all the transitions labeled with an activity a ∈ A gain
an instantaneous reward of value rew(a, λ) whenever they are executed.

In the queueing system example, the system throughput can be specified
through a formula of type (i) where:

A = {S1.serve, S2.serve}, rew(S1.serve,) = µ1, rew(S2.serve,) = µ2

The throughput of S1 alone can still be specified through a formula of type (i)
where:

A = {S1.serve}, rew(S1.serve,) = µ1

Finally, the system throughput can alternatively be specified through a for-
mula of type (ii) where:

A = {S1.serve, S2.serve}, rew(S1.serve,) = rew(S2.serve,) = 1

The first existential formula schema establishes that the current state of
M gains a contribution to the rate at which the reward is accumulated while
staying there if it can execute at least one transition labeled with an activity
a ∈ A. The value of such a contribution will have to be selected by applying a
choice function cf to the rewards rew(a, λ) associated with all the transitions
labeled with an activity a ∈ A that depart from the current state. By choice
function we mean a function that simply returns one of its arguments, like e.g.
max and min. The second existential formula schema establishes that only one
of the transitions labeled with an activity a ∈ A that depart from the current
state ofM gains an instantaneous reward upon execution. Such a transition is
selected by means of a choice function cf , which takes into account the rewards
rew(a, λ) of the activities a ∈ A labeling the transitions that depart from the
current state multiplied by the frequencies of the transitions themselves.

In the queueing system example, the system utilization can be specified
through a formula of type (iii) where:

A = {S1.serve, S2.serve}, rew(S1.serve,) = rew(S2.serve,) = 1, cf = min

8

Aldini, Bernardo

The utilization of S1 alone can still be specified through a formula of type (iii)
where:

A = {S1.serve}, rew(S1.serve,) = 1, cf = min

Finally, the actual arrival rate can be specified through a formula of type (iv)
where:

A = {arrive}, rew(arrive,) = 1, cf = min

In order to formalize the semantics of the core logic of MSL, we now provide
the following ACTMC-based interpretation of the syntactical predicates and
functions occurring in Def. 3.1:

• is trans ⊆ S × Act × RI >0 × S such that:

is trans(s, a, λ, s′) =

1 if (s, a, λ, s′) ∈ −−−→M

0 otherwise

• eq ⊆ RI × RI such that:

eq(x, y) =

1 if x = y

0 otherwise

• rew : A × RI >0 → RI such that rew(a, λ) is the reward contribution given
by activity a ∈ A when labeling a transition with rate λ ∈ RI >0.

• state rew : S → RI such that state rew(s) is the rate at which the reward
is gained while staying in state s.

• trans rew : −−−→M −→o RI such that trans rew(s, a, λ, s′) is the instanta-
neous reward that the transition (s, a, λ, s′) gains whenever it is executed.

• partial contrib : −−−→M −→o RI such that partial contrib(s, a, λ, s′) is the
partial contribution given by the transition (s, a, λ, s′) to the rate at which
the state reward is gained at s.

• sum partial contrib : S × {A} → RI such that:

sum partial contrib(s, A) =
∑
a∈A

∑
(s,a,λ,s′)∈−−−→M

partial contrib(s, a, λ, s′)

where the sum is 0 whenever no transition labeled with a ∈ A can be
executed by s.

• choose state rew : S × {A} × CF → RI such that:

choose state rew(s, A, cf) =

cf {| rew(a, λ) | a ∈ A ∧ ∃s′ ∈ S. is trans(s, a, λ, s′) |}
where CF = {f : 2RI → RI | f(∅) = 0 ∧ ∀n ∈ NI >0. f({x1, . . . , xn}) ∈
{x1, . . . , xn}} is the set of the choice functions.

• choose trans : S × {A} × CF −→o −−−→M such that:

choose trans(s, A, cf) = (s, a, λ, s′)

9

Aldini, Bernardo

iff:
rew(a, λ) · φ(s, a, λ, s′) =

cf {| rew(b, µ) · φ(z, b, µ, z′) | b ∈ A ∧ is trans(z, b, µ, z′) |}
• choose trans rew : S × {A} × CF −→o RI such that:

choose trans rew(s, A, cf) = rew(a, λ)
iff:

choose trans(s, A, cf) = (s, a, λ, s′)

for some s′ ∈ S.

In the light of the above ACTMC interpretation of the core logic of MSL,
we observe that equation (1) is reformulated as follows with respect to an
activity set A and a choice function cf :

∑
s∈S

URr(s, A) · π(s) +
∑
a∈A

∑
(s,a,λ,s′)∈−−−→M

URi(s, a, λ, s′) · φ(s, a, λ, s′) +

∑
s∈S

ERr(s, A, cf) · π(s) +
∑
s∈S

ERi(s, A, cf) · φ(s, A, cf)
(2)

Each reward element of equation (2) maps to a corresponding MSL formula
schema of Def. 3.1 as follows:

(i) URr(s, A) is the universal state reward with respect to A that is accumu-
lated while staying in s, which is given by sum partial contrib(s, A).

(ii) URi(s, a, λ, s′) is the universal transition reward that is gained when ex-
ecuting the transition (s, a, λ, s′) such that a ∈ A, which is given by
trans rew(s, a, λ, s′).

(iii) ERr(s, A, cf) is the existential state reward with respect to A and cf that
is accumulated while staying in s, which is given by
choose state rew(s, A, cf).

(iv) ERi(s, A, cf) is the existential transition reward with respect to A and cf
that is gained when executing the transition returned by
choose trans(s, A, cf), which is given by choose trans rew(s, A, cf). Sim-
ilarly, φ(s, A, cf) is the frequency of such a transition, which is given by
φ(choose trans(s, A, cf)).

4 The Measure Definition Mechanism of MSL

MSL is equipped with a component-oriented measure definition mechanism
built on top of its core logic. The purpose of this mechanism is related to the
usability issue. First, the mechanism allows a performance metric to be given
a mnemonic name whenever it is derived from a reward structure specified
through a set of formula schemas of the MSL core logic. Second, it allows a
performance metric to be parameterized with respect to component activities
and component behaviors. Third, assumed that the identifier of a perfor-
mance metric denotes the value of the metric computed on a certain ACTMC,

10

Aldini, Bernardo

it allows metric identifiers to be combined through the usual arithmetical op-
erators and mathematical functions.

The syntax for defining a performance measure in MSL, possibly parame-
terized with respect to a set of component-oriented arguments, is the following:

MEASURE / name. (/parameters.) IS / body.

In practice, we can envision to deal with libraries of basic measure definitions
and derived measure definitions. The body of a basic measure definition is a set
of formula schemas of the MSL core logic. By contrast, the body of a derived
measure definition is an expression involving identifiers of previously defined
metrics (each denoting the value of the corresponding measure computed on
a given ACTMC), arithmetical operators, and mathematical functions.

The parameters of the metric identifier can comprise component activities
as well as component behaviors together with possibly associated real num-
bers. The component activities and the component behaviors result in the
activity sets occurring in the quantifications of the MSL formula schemas,
whereas the real numbers express the reward contributions of the activities
within the MSL formula schemas (i.e. they are used in the definition of the
rew function).

Using this mechanism, with MSL it is possible to define typical instant-
of-time performance measures in a component-oriented way. The idea is that
the difficulties with measure specification should be hidden inside the defini-
tion body, so that the designer has only to provide component-oriented actual
parameters when using the metric identifier. To illustrate this point, we now
consider the following four classes of performance measures frequently recur-
ring both in queueing theory and in practice: system throughput, resource
utilization, mean queue length, and mean response time.

A definition for the system throughput that is easy to use should only
request the designer to specify the component activities contributing to the
throughput, while a unitary transition reward is transparently associated in
the definition body with each of such activities. Using the dot notation for
expressing the component activities in the form C.a, we have the following
definition for the throughput:

MEASURE throughput(C1.a1, . . . , Cn.an) IS

∀a ∈ {C1.a1, . . . , Cn.an}(is trans(s, a, λ, s′) ⇒ eq(trans rew(s, a, λ, s′), 1))

According to the ACTMC interpretation of the MSL core logic, the definition
above means that each transition labeled with an activity in {C1.a1, . . . , Cn.an}
must be given a unitary instantaneous reward. An equivalent way to define
the same measure is to specify that the rate at which each state accumulates
reward is the sum of the rates of the activities contributing to the throughput
that are enabled at that state:

11

Aldini, Bernardo

MEASURE throughput(C1.a1, . . . , Cn.an) IS

∀a ∈ {C1.a1, . . . , Cn.an}
(is trans(s, a, λ, s′) ⇒ eq(partial contrib(s, a, λ, s′), rew(a, λ))) ⇒

eq(state rew(s), sum partial contrib(s, {C1.a1, . . . , Cn.an}))
where rew(a, λ) = λ whenever a = Ci.ai for some i = 1, . . . , n.

In the case of the utilization of a resource, it should be enough for the
designer to specify the component activities modeling the utilization of that
resource, while a unitary reward is transparently associated in the definition
body with each state in which at least one of such activities is enabled:

MEASURE utilization(C.a1, . . . , C.an) IS

∃a ∈ {C.a1, . . . , C.an}(is trans(s, a, λ, s′)) ⇒
eq(state rew(s), choose state rew(s, {C.a1, . . . , C.an}, min))

where rew(a,) = 1 whenever a = C.ai for some i = 1, . . . , n. According to
the ACTMC interpretation of the MSL core logic, the definition above means
that each state enabling at least one activity in {C.a1, . . . , C.an} must be
given a unitary rate reward. Note that resource utilization is a special case of
performance measure representing the probability of being in a state in which
some activities can be carried out.

The mean queue length, which represents the mean number of customers
waiting for service, should only require the designer to specify the number
of customers in each part of the behavior of the component managing the
customer queueing. Using the dot notation for expressing the component be-
havior parts in the form C.B, we have the following definition:

MEASURE mean queue length(C.B1(k1), . . . , C.Bn(kn)) IS

∃a ∈ activities(C.B1)(is trans(s, a, λ, s′)) ⇒
eq(state rew(s), choose state rew(s, activities(C.B1), min))

...

∃a ∈ activities(C.Bn)(is trans(s, a, λ, s′)) ⇒
eq(state rew(s), choose state rew(s, activities(C.Bn), min))

where activities is a built-in function that retrieves the set of the activities that
a behavior part can perform, and rew(a,) = ki whenever a ∈ activities(C.Bi)
for some i = 1, . . . , n. According to the ACTMC interpretation of the MSL
core logic, the definition above means that each state comprising one of the
considered behavior parts, from which at least one transition departs that is
labeled with one of the activities occurring in the behavior, must be given as
rate reward the number specified for that behavior.

The mean response time can be defined similarly to mean queue length

12

Aldini, Bernardo

thanks to Little’s law by taking into account the arrival rate λ of the customers.
This is done by replacing ki with ki/λ for i = 1, . . . , n.

All the examples shown so far illustrate basic measure definitions. An ex-
ample of a derived metric is given by the mean queue length for a system that
has m queueing components C1, C2, . . . , Cm, which is defined as follows:

MEASURE total mean queue length(C1.B1,1(k1,1), . . . , C1.B1,n1(k1,n1),

C2.B2,1(k2,1), . . . , C2.B2,n2(k2,n2),
...

Cm.Bm,1(km,1), . . . , Cm.Bm,nm(km,nm)) IS

mean queue length(C1.B1,1(k1,1), . . . , C1.B1,n1(k1,n1)) +

mean queue length(C2.B2,1(k2,1), . . . , C2.B2,n2(k2,n2)) +
...

mean queue length(Cm.Bm,1(km,1), . . . , Cm.Bm,nm(km,nm))

5 SPA Interpretation of MSL

In this section we provide an interpretation of the core logic of MSL based
on SPA, aiming at verifying whether a framework can be developed in which
system models can be compositionally manipulated without altering the value
of instant-of-time performance measures specified with MSL. We shall also
address some issues concerned with the enhanced expressiveness of MSL with
respect to traditional reward structures when dealing with modeling notations
like SPA, in which the concept of state is implicit.

5.1 SPA with Universal and Existential Rewards

In order to achieve compositionality, we adopt a subcalculus of EMPAgr1 [7]
extended with universal and existential rewards. In this calculus every action
is a tuple like <a, λ, (uy , ub, ey , eb)> or <a, ∗w, (∗, ∗, ∗, ∗)>, where:

• a ∈ Act is the action type (τ if invisible).

• λ ∈ RI >0 expresses the rate of an exponentially timed action.

• ∗w denotes a passive action with reactive weight w ∈ RI >0.

• (uy , ub, ey , eb) is a reward 4-tuple, where every reward belongs to RI if the
action is exponentially timed, or is ∗ if the action is passive. In the case of
an exponentially timed action, such rewards express the action contribution
rew(a, λ) occurring in the four MSL formula schemas of Def. 3.1, where the
universal yield reward uy is related to (i), the universal bonus reward ub
is related to (ii), the existential yield reward ey is related to (iii), and the
existential bonus reward eb is related to (iv).

13

Aldini, Bernardo

Hence, a performance measure defined through a MSL formula schema quan-
tified with respect to an activity set A is rendered by inserting the rewards
rew(a, λ) occurring in the MSL formula schema into the appropriate position
of the reward 4-tuple of the exponentially timed actions whose type is in A.

In order to compute the instant-of-time value of a performance measure
defined in MSL, in accordance with the ACTMC interpretation of the core
logic of MSL the universal yield rewards are governed by the partial contribu-
tion additivity assumption. This means that the overall rate at which reward
is accumulated while staying in a certain state is the sum of the universal
yield rewards associated with the exponentially timed actions whose type is
in A that are enabled at that state. By contrast, the existential yield rewards
of the actions simultaneously enabled at a given state cannot be summed up,
as this would conflict with the intuition behind the existential quantification.
Instead a choice function is applied to the existential yield rewards of the ex-
ponentially timed actions whose type is in A that are enabled at that state.
Similarly, in the case of the universal and existential bonus rewards we can
argue in accordance with the ACTMC interpretation of the core logic of MSL.

The formal syntax and semantics for this calculus with universal and ex-
istential rewards is the natural extension of the syntax and the semantics
presented in [7]. As usual, we restrict ourselves to the set G of the closed and
guarded terms and we denote by E the set of the performance closed terms
of G.

5.2 Congruence Result

We now show that it is possible to define a performance-measure-sensitive
congruence for a SPA extended with universal and existential rewards. This
means that we can provide a formal framework for the compositional manip-
ulation of system models that does not alter the value of the performance
measures expressed in MSL.

The reward-based Markovian behavioral equivalence that we are going to
introduce is an extension of the bisimulation-based one of [6]. In essence, this
equivalence aggregates the transitions labeled with the same type and depart-
ing from the same state that reach states of the same equivalence class. More
precisely, the rates and the universal yield rewards of such transitions are
summed up, while their universal bonus rewards are multiplied by the proba-
bility of executing the corresponding transitions before being summed up. The
existential yield rewards and the existential bonus rewards are subject to the
application of a choice function instead of the addition. By so doing, we are
consistent with the ACTMC interpretation summarized through equation (2).

Definition 5.1 We define partial function aggregated rate-reward
RR : G × Act × {exp, ∗} × 2G −→o RI >0 × (RI ∪ {∗})4 by:

RR(E, a, l, C) = (Rate(E, a, l, C),UY (E, a, l, C),UB(E, a, l, C),

EY (E, a, l, C),EB(E, a, l, C))

14

Aldini, Bernardo

where:

Rate(E, a, exp, C) =
∑{|λ | ∃uy , ub, ey , eb.∃E ′ ∈ C. E

a,λ,(uy,ub,ey,eb)

−−−−−−−−−→E ′ |}
Rate(E, a, ∗, C) =

∑{|w | ∃E ′ ∈ C. E
a,∗w,(∗,∗,∗,∗)
−−−−−−−−−→E ′ |}

UY (E, a, exp, C) =
∑{| uy | ∃λ, ub, ey , eb.∃E ′ ∈ C.E

a,λ,(uy,ub,ey,eb)

−−−−−−−−−→E ′ |}
UB(E, a, exp, C) =

∑{| λ
Rate(E,a,exp,C)

· ub |
∃uy , ey , eb.∃E ′ ∈ C.E

a,λ,(uy,ub,ey,eb)

−−−−−−−−−→E ′ |}
EY (E, a, exp, C) = cf {| ey | ∃λ, uy , ub, eb. ∃E ′ ∈ C. E

a,λ,(uy,ub,ey,eb)

−−−−−−−−−→E ′ |}
EB(E, a, exp, C) = cf {| λ

Rate(E,a,exp,C)
· eb |

∃uy , ub, ey .∃E ′ ∈ C.E
a,λ,(uy,ub,ey,eb)

−−−−−−−−−→E ′ |}
UY (E, a, ∗, C) = UB(E, a, ∗, C) = EY (E, a, ∗, C) = EB(E, a, ∗, C) = ∗

where cf is the choice function and RR(E, a, l, C) = ⊥ whenever the multisets
above are empty.

Definition 5.2 An equivalence relation B ⊆ G ×G is a reward-based Marko-
vian bisimulation iff, whenever (E1, E2) ∈ B, then for all action types a ∈ Act ,
levels l ∈ {exp, ∗}, and equivalence classes C ∈ G/B:

RR(E1, a, l, C) = RR(E2, a, l, C)

It is easy to see that the union of all the reward-based Markovian bisimulations
is the largest reward-based Markovian bisimulation. Such a union, denoted
∼RMB, is called reward-based Markovian bisimilarity.

Theorem 5.3 Whenever cf is commutative, associative, and distributive with
respect to the multiplication by non-negative numbers, then ∼RMB is a congru-
ence with respect to all the process algebraic operators as well as recursion.

Proof. As far as the rates and the universal rewards are concerned, the proof
is the same as that of the corresponding theorem of [6,7]. In the case of the
existential rewards, it is sufficient to observe that the properties required about
cf are exactly the same as the ones used in the case of the universal rewards
when working with the addition operator. 2

For instance, min and max are choice functions that satisfy the hypothesis of
the congruence theorem above.

Theorem 5.4 Let E1, E2 ∈ E . If E1 ∼RMB E2 then the value of the reward-
based performance measure is the same for E1 and E2.

Proof. We can argue similarly as done in the proof of Thm. 5.3. 2

15

Aldini, Bernardo

5.3 Axiomatization

We now provide a sound and complete axiomatization of ∼RMB. Let ARMB

be the set of axioms of [6] extended with universal and existential rewards,
where the axioms expressing the aggregation of rates and rewards are recast
as follows:

<a, λ1, (uy1, ub1, ey1, eb1)>.E + <a, λ2, (uy2, ub2, ey2, eb2)>.E =

<a, λ1 + λ2, (uy1 + uy2,
λ1

λ1+λ2
· ub1 + λ2

λ1+λ2
· ub2,

cf (ey1, ey2), cf (λ1

λ1+λ2
· eb1,

λ2

λ1+λ2
· eb2))>.E

<a, ∗w1 , (∗, ∗, ∗, ∗)>.E + <a, ∗w1 , (∗, ∗, ∗, ∗)>.E =

<a, ∗w1+w2 , (∗, ∗, ∗, ∗)>.E

Note that such a pair of axioms reflects the definition of the aggregated rate-
reward function RR (see Def. 5.1).

Theorem 5.5 Whenever cf satisfies the same constraints as Thm. 5.3, then
the deductive system Ded(ARMB) is sound and complete for ∼RMB over the set
of the non-recursive terms of G.

Proof. We can argue similarly as done in the proof of Thm. 5.3. 2

In order to augment the aggregation power of ∼RMB without losing the
congruence property, as shown in [6] it is possible to jointly consider uni-
versal yield rewards and universal bonus rewards, thus resulting in a normal
form in which only universal yield rewards are used. Indeed, an axiom like
<a, λ1, (uy1, ub1, 0, 0)>.E + <a, λ2, (uy2, ub2, 0, 0)>.E = <a, λ1 + λ2, (uy1 +
uy2 + λ1 · ub1 + λ2 · ub2, 0, 0, 0)>.E would be correct. Instead, in the case of
the existential rewards, a similar axiom would cause a loss of compositional-
ity. Intuitively, applying in an interleaved way the addition and the choice
function does not preserve the value of the performance measures, as shown
below in the case the choice function is max.

Example 5.6 Let E
∆
= <a, λ1, (0, 0, ey1, eb1)>.E+<a, λ2, (0, 0, ey2, eb2)>.E,

whose underlying ACTMC has a single state with a single self-loop transition
labeled with a whose rate is λ1 + λ2. Then consider a performance measure
for E that is existentially quantified with respect to {a}. The instant-of-
time value of such a performance measure is given by ERr(E, {a}, max) +
ERi(E, {a}, max) = max(ey1, ey2) + max(λ1 · eb1, λ2 · eb2). By contrast, if
we express the existential bonus rewards in terms of existential yield rewards,
we obtain max(ey1 + λ1 · eb1, ey2 + λ2 · eb2). Now assume ey1 = 1, ey2 =
2, and λ1 · eb1 = 2, λ2 · eb2 = 1. In the former case we obtain the value
max(1, 2) + max(2, 1) = 2 + 2 = 4. On the other hand, in the latter case we
obtain a different value, which is max(1 + 2, 2 + 1) = 3.

16

Aldini, Bernardo

5.4 Expressiveness

We conclude by observing that the introduction of existential rewards en-
hances the expressiveness with respect to [6,7]. For instance let us consider
again the queueing system example of Sect. 2.2. Suppose we wish to measure
the overall system utilization, i.e. the percentage of time during which at least
one server is busy. To do that, we try to extend the Æmilia specification of
Sect. 2.1 by inserting rewards into the actions occurring in the specification.
We soon realize that the only way to carry out this task correctly is to associate
a unitary existential yield reward with any serve action, which corresponds
to using a MSL formula of type (iii) as done in Sect. 3. This is because the
only state of Fig. 1 in which two serve transitions can be executed must be
counted only once. Note that this would not be possible if we had at our
disposal only universal rewards.

6 Conclusion

In this paper we have addressed the problem of making the specification of
performance measures a task that can be carried out in a component-oriented
fashion. As a step towards the solution of this usability-related problem, we
have proposed MSL, a formal notation for specifying performance measures.
MSL relies on a simple first-order logic, which we have interpreted both on
ACTMCs and on SPA. The second interpretation has been useful to show that
the core logic of MSL supports performance-sensitive compositional reasoning.

As far as usability is concerned, MSL is equipped with a measure definition
mechanism, through which it is possible to associate mnemonic names with
performance metrics derived from a reward structure specified through a set
of MSL core logic formulas, as well as to parameterize them with respect to
component activities and behaviors. The objective of this component-oriented
measure definition mechanism is to manage the numeric values of the rewards
as transparently as possible. In this way, while the definition of a basic metric
may be a task for a performance expert, the definition of derived metrics and
the use of any metric definition should be affordable by non-specialists. MSL
has been exemplified on a number of typical performance measures.

Due to the introduction of the existential rewards, in the case of modeling
notations in which the concept of state is implicit MSL is able to express an
increased number of performance measures with respect to previous reward-
based notations. However, it is still difficult (if not impossible) to define
reachability-like performance measures. To this purpose, we plan to investi-
gate a way to integrate MSL and CSL [3] in order to achieve an enhanced
expressiveness while retaining a satisfactory degree of usability.

17

Aldini, Bernardo

References

[1] A. Aldini and M. Bernardo, “On the Usability of Process Algebra: An
Architectural View”, in Theoretical Computer Science 335:281–329, Elsevier,
2005.

[2] M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis,
“Modelling with Generalized Stochastic Petri Nets”, John Wiley & Sons, 1995.

[3] C. Baier, J.-P. Katoen, and H. Hermanns, “Approximate Symbolic Model
Checking of Continuous Time Markov Chains”, in Proc. of the 10th Int. Conf.
on Concurrency Theory (CONCUR 1999), LNCS 1664:146-162, 1999.

[4] C. Baier, B. Haverkort, H. Hermanns, and J.-P. Katoen, “On the Logical
Characterisation of Performability Properties”, in Proc. of the 27th Int. Coll.
on Automata, Languages and Programming (ICALP 2000), LNCS 1853:780-
792, 2000.

[5] S. Balsamo, M. Bernardo, and M. Simeoni, “Performance Evaluation at the
Software Architecture Level”, in Formal Methods for Software Architectures,
LNCS 2804:207-258, 2003.

[6] M. Bernardo and M. Bravetti, “Reward Based Congruences: Can We
Aggregate More?”, in Proc. of the Joint Int. Workshop on Process Algebra
and Performance Modelling and Probabilistic Methods in Verification
(PAPM/PROBMIV 2001), LNCS 2165:136-151, 2001.

[7] M. Bernardo and M. Bravetti, “Performance Measure Sensitive Congruences
for Markovian Process Algebras”, in Theoretical Computer Science 290:117-
160, 2003.

[8] M. Bernardo, L. Donatiello, and P. Ciancarini, “Stochastic Process Algebra:
From an Algebraic Formalism to an Architectural Description Language”,
in Performance Evaluation of Complex Systems: Techniques and Tools,
LNCS 2459:236-260, 2002.

[9] G. Ciardo, J. Muppala, and K.S. Trivedi, “On the Solution of GSPN Reward
Models”, in Performance Evaluation 12:237-253, 1991.

[10] G. Clark, “Formalising the Specification of Rewards with PEPA”, in Proc.
of the 4th Workshop on Process Algebras and Performance Modelling
(PAPM 1996), CLUT, pp. 139-160, 1996.

[11] G. Clark, S. Gilmore, and J. Hillston, “Specifying Performance Measures for
PEPA”, in Proc. of the 5th AMAST Int. Workshop on Formal Methods for
Real Time and Probabilistic Systems (ARTS 1999), LNCS 1601:211-227, 1999.

[12] B.R. Haverkort and K.S. Trivedi, “Specification Techniques for Markov
Reward Models”, in Discrete Event Dynamic Systems: Theory and
Applications 3:219-247, 1993.

[13] H. Hermanns, “Interactive Markov Chains”, LNCS 2428, 2002.

18

Aldini, Bernardo

[14] J. Hillston, “A Compositional Approach to Performance Modelling”,
Cambridge University Press, 1996.

[15] R.A. Howard, “Dynamic Probabilistic Systems”, John Wiley & Sons, 1971.

[16] L. Kleinrock, “Queueing Systems”, John Wiley & Sons, 1975.

[17] M.A. Qureshi and W.H. Sanders, “Reward Model Solution Methods with
Impulse and Rate Rewards: An Algorithm and Numerical Results”, in
Performance Evaluation 20:413-436, 1994.

[18] W.H. Sanders and J.F. Meyer, “A Unified Approach for Specifying Measures of
Performance, Dependability, and Performability”, in Dependable Computing
and Fault Tolerant Systems 4:215-237, 1991.

[19] W.J. Stewart, “Introduction to the Numerical Solution of Markov Chains”,
Princeton University Press, 1994.

[20] J.E. Voeten, “Temporal Rewards for Performance Evaluation”, in Proc.
of the 8th Int. Workshop on Process Algebra and Performance Modelling
(PAPM 2000), Carleton Scientific, pp. 511-522, 2000.

19

