
QAPL 2009

Uniform Logical Characterizations of
Testing Equivalences for Nondeterministic,

Probabilistic and Markovian Processes

Marco Bernardo

Università di Urbino “Carlo Bo” – Italy
Istituto di Scienze e Tecnologie dell’Informazione

Abstract

Logical characterizations of nondeterministic, probabilistic, and Markovian variants of bisimulation equiva-
lence rely on similar modal languages, each including true, negation, conjunction, and diamond. Likewise,
logical characterizations of the corresponding variants of trace equivalence rely on similar modal languages,
each including only true and diamond. Unfortunately, this is not the case with the existing logical char-
acterizations of the corresponding variants of testing equivalence, as they are based on different modal
languages. In this paper we show that the logical characterizations of testing equivalences for fully nonde-
terministic processes, fully probabilistic processes, and fully Markovian processes without silent moves can
be harmonized by means of a modal language comprising true, disjunction, and diamond.

Keywords: testing equivalence, modal logic, nondeterministic processes, probabilistic processes,
Markovian processes.

1 Introduction

Behavioral equivalences [14] establish whether computing systems possess the same
behavioral properties. The specific set of properties that are preserved by a specific
behavioral equivalence clearly depends on how the system behavior is observed and
can usually be characterized by means of a modal logic.

In [3] we considered three different approaches to the definition of behavioral
equivalences – bisimulation [23], testing [12], and trace [6] – applied to three different
classes of processes – fully nondeterministic, fully probabilistic, and fully Markovian.
Then we surveyed the nine resulting modal logic characterizations, each of which
relies on a subset of (possibly modified) operators of the Hennessy-Milner logic
(HML) [17]: true, negation, conjunction, and diamond.

The survey was the basis for a comparative study of the involved modal lan-
guages. The comparison is shown in Fig. 1, where on the horizontal axis we have
the three approaches to the definition of behavioral equivalences, while on the ver-
tical axis we have the three classes of processes. The figure emphasizes both dif-
ferences across the three approaches to the definition of behavioral equivalences

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs



Bernardo

a

a p

a λ

true

true

true

a

a

a

a

                     

a

α

a

true

true

true

true

true

true

local

global

TraceTestingBisimulation

Markovian

Nondeterministic

Probabilistic

Fig. 1. Comparison of logical characterizations for behavioral equivalences

(inter-column comparison) and regularities within some of the three approaches
(intra-column comparisons).

The inter-column comparison reveals that, when moving from bisimulation equiv-
alence to trace equivalence, the number of logical operators that are needed tends
to diminish, in accordance with the decreasing distinguishing power of the three
approaches. More precisely, in the case of bisimulation equivalence we have all the
logical operators of HML, then negation is dropped in the case of testing equivalence,
and finally the binary operator is left out as well in the case of trace equivalence.

Another inter-column difference is related to probabilistic and Markovian pro-
cesses and has to do with the treatment of probabilistic and temporal information,
which can be local or global as shown by the third axis in Fig. 1.

In a local characterization, probabilistic and temporal aspects are considered at
the level of each individual action occurring in the computations. Thus probabilistic
and temporal constraints have to be attached to individual logical operators and the
interpretation of the resulting formulas is qualitative as usual, i.e. it returns a truth
value. This is the case with probabilistic and Markovian bisimulation equivalences
where the diamond operator is decorated with a probability/rate lower bound [21,8],
consistently with the fact that the notion of bisimulation captures step-by-step
behavior mimicking.

In a global characterization, instead, probabilistic and temporal aspects are con-
sidered at the level of the overall computations. Thus probabilities and durations of
entire computations become of interest and the interpretation of the usual nondec-
orated formulas is quantitative, in the sense that it returns a number that measures
how much a formula is satisfied. This is the case with probabilistic and Markovian
testing and trace equivalences [20,3].

On the other hand, intra-column comparisons reveal regularities with respect to
the involved logical operators among the three variants of bisimulation equivalence
(up to the diamond decorations discussed before) and among the three variants of
trace equivalence.

In particular, the three logical characterizations of bisimulation equivalence rely
on true, negation, conjunction, and diamond. More precisely, negation occurring

2



Bernardo

in the logical characterization of [22] for the probabilistic case is not necessary as
long as the considered probabilistic processes are reactive [13], but it has to be
reintroduced as soon as the considered probabilistic processes admit nondetermin-
ism [24]. 1 The logical characterization of [8] for the Markovian case includes an
additional operator for asserting that actions with a certain name cannot be exe-
cuted, which is clearly unnecessary in the presence of negation (and hence is not
shown in Fig. 1).

Unfortunately, this regularity disappears in the case of testing equivalence (see
the grey column). For nondeterministic processes, the logical characterization pro-
vided by [16] captures a broom semantics, as the related modal language permits to
ask simple questions after a certain trace has been executed. Therefore, the syntax
of the modal language has a two-layer definition. In the top layer we have a modal
operator on traces. In the bottom layer we have true, disjunction, and diamond
with no continuation. Then two satisfaction relations are defined, which express
that a process may or must satisfy a certain bottom-layer formula after executing
a certain trace. By contrast, for probabilistic and Markovian processes, the logical
characterizations of testing equivalence provided by [3] – on the basis of the original
equivalence definition of [7] and of the fully abstract characterizations of [9,2] – rely
on true and a conditional variant of diamond.

This paper addresses the problem of reconciling the logical characterizations for
the three testing equivalences by means of a single modal language.

A way of tackling this problem is to exploit the relation between testing equiv-
alence and failure equivalence [11] – which extends to ready equivalence in the
probabilistic and Markovian cases [19,2] – and hence using the logical characteri-
zation of the latter. This comprises true, diamond, and a failure predicate, i.e. a
predicate for expressing the fact that actions whose name belongs to a given set
cannot be executed [14].

However, we deem this solution not to be satisfactory because it disrupts the
direct connection with HML operators. In other words, what we are searching
for is a uniform modal language for the three variants of testing equivalence built
from a suitable subset of (direct and dual) operators of HML, so as to preserve the
inter-column decreasing trend shown in Fig. 1 for the operator set.

Since testing equivalence is finer than trace equivalence and the latter is charac-
terized by true and diamond, those two operators will have to be part of the uniform
modal language for testing equivalence. While trace equivalence is a linear-time re-
lation, testing equivalence is sensitive to branching points, hence a binary operator
will be necessary too. The logical characterization of [16] seems to suggest the in-
clusion of disjunction rather than conjunction. Including conjuction would in fact
provide a different distinguishing power, as the modal language formed by true,
diamond, and conjunction characterizes simulation equivalence [17], which is inde-
pendent of testing equivalence [14].

In this paper we demonstrate that a uniform modal language for the three vari-
ants of testing equivalence that retains a direct connection with HML exists and is
precisely formed by true, disjunction, and diamond. With respect to [16], the lan-

1 Should probability and nondeterminism coexist in the same states, a further operator is even necessary.

3



Bernardo

guage is no more concerned with traces but still keeps a may-satisfaction relation
and a must-satisfaction relation. The latter has to be carefully defined for disjunc-
tion and diamond, in order to be consistent with the notion of having to pass a test.
In the probabilistic and Markovian cases, a syntax restriction has to be imposed on
formulas of the form φ1 ∨ φ2, which requires the set of initial actions of φ1 to be
disjoint from the set of initial actions of φ2. This constraint is necessary for a correct
and easier computation of the probability of satisfying such formulas. For the sake
of simplicity and uniformity, we restrict ourselves to finite-state processes without
silent moves and we consider only their finite-length test-driven computations.

This paper is organized as follows. In Sect. 2 we recall the definitions of test-
ing equivalence for fully nondeterministic, fully probabilistic, and fully Markovian
finite-state processes without silent moves. In Sect. 3, 4, and 5 we provide three
alternative logical characterizations for the three testing equivalences, each based
on the uniform modal language mentioned above. Finally, in Sect. 6 we provide
some concluding remarks as well as some comments on the presence of silent moves
and the coexistence of nondeterminism and probabilistic/temporal aspects.

2 Testing Equivalences

In this section we present the definitions of the three variants of testing equivalence
in a process algebraic setting. Firstly we introduce three calculi based on the same
set Name of observable action names and the same set of behavioral operators –
the inactive term, the action prefix operator, the alternative composition operator,
and recursion – which generate all the fully nondeterministic, fully probabilistic,
and fully Markovian finite-state processes. For the sake of simplicity, silent moves
are not admitted within such processes, as it is not possible to abstract from them
in the Markovian case.

Secondly, we recall the notions of execution probability and stepwise average
duration for finite-length computations. Since in the Markovian testing case the
presence of average time upper bounds makes infinite computations unimportant,
for the sake of uniformity we focus only on finite-length test-driven computations for
all three kinds of processes. As a consequence, since the behavior of a process under
test is observed for a finite amount of time, we restrict ourselves to nonrecursive,
finite-state tests for all three kinds of processes.

Thirdly, we describe the structure of tests and interaction systems. In order
not to interfere with the quantitative aspects of the behavior of probabilistic and
Markovian processes under test, we avoid the introduction of a success action ω.
For the sake of uniformity, for all three kinds of processes the successful completion
of a test is formalized in the text syntax by replacing the inactive term with a
zeroary operator denoting a success state. A failure state is not necessary as it can
be encoded through an action not occurring in the processes under test.

2.1 Nondeterministic, Probabilistic, and Markovian Processes

In the nondeterministic process calculus (NPC for short), the choice among all
the actions that are simultaneously enabled is nondeterministic. We denote by
ActN = Name the set of actions of NPC, which are all observable.

4



Bernardo

Definition 2.1 The set of process terms of NPC is generated by the following
syntax:

P ::= 0 | a.P | P + P | A
where 0 is the inactive term, a ∈ ActN, and A is a process constant defined through
the (possibly recursive) equation A

∆= P .

The semantics for NPC can be provided in the usual operational style by asso-
ciating a labeled transition system with each process term. The transition relation
−−−→N for the set PN of closed and guarded terms of NPC is defined as the least
subset of PN ×ActN × PN satisfying the rules shown in the first column of Table 1.

In the probabilistic process calculus (PPC for short), every action is represented
as a pair composed of the name of the action and the probability of executing the
action. We denote by ActP = Name × R]0,1] the set of actions of PPC. In order
to ensure that the sum of the probabilities of the actions that are simultaneously
enabled is either 0 or 1, we replace the action prefix operator and the binary al-
ternative composition operator with a set of n-ary guarded alternative composition
operators, with n ranging over the whole N>0.

Definition 2.2 The set of process terms of PPC is generated by the following
syntax:

P ::= 0 | ∑
i∈I

<ai, pi>.Pi | A

where I is a nonempty finite index set, <ai, pi> ∈ ActP for all i ∈ I, and it holds∑
i∈I pi = 1.

The semantics for PPC can be defined in the usual operational style, provided
that a labeled multitransition system is associated with each process term. In other
words, the multiplicity of the transitions has to be taken into account, where by
multiplicity we mean the number of different ways in which a transition can be de-
rived by applying the operational semantic rules. The reason is that idempotency
(i.e. P + P = P ) no longer holds when moving from nondeterministic processes to
probabilistic ones. As an example, a term like <a, 0.5>.P + <a, 0.5>.P cannot be
equated to <a, 0.5>.P , which can be achieved by observing that there are two dif-
ferent ways of deriving – through the operational semantic rules – a 0.5-probability
transition labeled with a and reaching P (one for the left-hand side <a, 0.5>.P

summand plus another one for the right-hand side <a, 0.5>.P summand). The
multitransition relation −−−→P for the set PP of closed and guarded terms of PPC
is defined as the least multiset of elements of PP × ActP × PP satisfying the rules
shown in the second column of Table 1. The stochastic process underlying a labeled
multitransition system produced by the application of these rules turns out to be a
discrete-time Markov chain.

In the Markovian process calculus (MPC for short), every action is represented
as a pair composed of the name of the action and the rate of the exponential distri-
bution quantifying the duration of the action. We denote by ActM = Name × R>0

the set of actions of MPC. The choice among all the actions that are simultaneously
enabled is governed by the race policy. As a consequence, the execution probability

5



Bernardo

a.P
a−−−→N P

∑
i∈I

<ai, pi>.Pi

aj ,pj−−−→P Pj , j ∈ I <a, λ>.P
a,λ−−−→M P

P1

a−−−→N P ′

P1 + P2

a−−−→N P ′

P1

a,λ−−−→M P ′

P1 + P2

a,λ−−−→M P ′

P2

a−−−→N P ′

P1 + P2

a−−−→N P ′

P2

a,λ−−−→M P ′

P1 + P2

a,λ−−−→M P ′

P
a−−−→N P ′ A

∆= P

A
a−−−→N P ′

P
a,p−−−→P P ′ A

∆= P

A
a,p−−−→P P ′

P
a,λ−−−→M P ′ A

∆= P

A
a,λ−−−→M P ′

Table 1
Semantic rules for PN, PP, and PM

of each action is proportional to its rate and the average sojourn time in the state
associated with a process term is quantified by an exponentially distributed random
variable whose rate is the sum of the rates of the enabled actions.

Definition 2.3 The set of process terms of MPC is generated by the following
syntax:

P ::= 0 | <a, λ>.P | P + P | A
where <a, λ> ∈ ActM.

Similarly to PPC, idempotency no longer holds and hence the multiplicity of
the transitions has to be taken into account by associating a labeled multitransition
system with each process term. As an example, a term like <a, 4.6>.P +<a, 4.6>.P

is not equivalent to <a, 4.6>.P but to <a, 9.2>.P , because rates sum up due to
the race policy. The multitransition relation −−−→M for the set PM of closed and
guarded terms of MPC is defined as the least multiset of elements of PM×ActM×PM

satisfying the rules shown in the third column of Table 1. The stochastic process
underlying a labeled multitransition system produced by the application of these
rules turns out to be a continuous-time Markov chain.

In the following, we denote by init(P ) the set of names of actions initially enabled
by P ∈ PN ∪ PP ∪ PM.

2.2 Computations

A computation of a process term P ∈ PN ∪ PP ∪ PM is a sequence of transitions
that can be executed starting from P . The length of a computation is given by the
number of transitions occurring in it. We say that two distinct computations are
independent of each other if neither is a proper prefix of the other one. We denote
by Cf(P ) the multiset of finite-length computations of P and by If(P ) the multiset
of maximal finite-length computations of P . Moreover, we denote by:

6



Bernardo

ratet(P ) =
∑{|λ ∈ R>0 | ∃a, P ′. P

a,λ−−−→M P ′ |}
probc(P |N) =

∑
a∈N

{| p ∈ R]0,1] | ∃P ′. P
a,p−−−→P P ′ |}

ratec(P |N) =
∑

a∈N

{|λ ∈ R>0 | ∃P ′. P
a,λ−−−→M P ′ |}

the total rate of P ∈ PM (which corresponds to the reciprocal of the average sojourn
time in the state associated with P ), the conditional probability for P ∈ PP of
executing actions whose name belongs to N ⊆ Name, and the conditional rate for
P ∈ PM of executing actions whose name belongs to N ⊆ Name, respectively.

Definition 2.4 Let P ∈ PP ∪ PM and c ∈ Cf(P ). The probability of executing c is
the product of the execution probabilities of the transitions of c, which is defined
by induction on the length of c through the following R]0,1]-valued function:

prob(c) =





1 if length(c) = 0

p · prob(c′) if c ≡ P
a,p−−−→P c′ with P ∈ PP

λ
ratet(P ) · prob(c′) if c ≡ P

a,λ−−−→M c′ with P ∈ PM

We also define the probability of executing a computation in C ⊆ Cf(P ) as:

prob(C) =
∑
c∈C

prob(c)

whenever C is finite and all of its computations are independent of each other.

Definition 2.5 Let P ∈ PM and c ∈ Cf(P ). The stepwise average duration of c

is the sequence of the average sojourn times in the states traversed by c, which is
defined by induction on the length of c through the following (R>0)∗-valued function:

time(c) =





ε if length(c) = 0

1
ratet(P ) ◦ time(c′) if c ≡ P

a,λ−−−→M c′

where ε is the empty sequence and ◦ is the concatenation operator. We also define
the multiset of computations in C ⊆ Cf(P ) whose stepwise average duration is not
greater than θ ∈ (R>0)∗ as:

C≤θ = {c ∈ C | length(c) ≤ length(θ) ∧
∀i = 1, . . . , length(c). time(c)[i] ≤ θ[i]}

2.3 Tests and Interaction Systems

The most convenient way to represent a test is through another process term, which
interacts with the term under test by means of a parallel composition operator that
enforces synchronization on all action names. We denote by s the success state of a
test. Ambiguous tests including several summands among which at least one equal
to s are avoided through a two-level syntax.

In the nondeterministic case, tests are made out of the same kind of actions that
can occur in nondeterministic process terms.

7



Bernardo

Definition 2.6 The set TN of nondeterministic tests is generated by the following
syntax:

T ::= s | T ′

T ′ ::= a.T | T ′ + T ′

where a ∈ Name.

The following operational rule defines the interaction of P ∈ PN and T ∈ TN:

P
a−−−→N P ′ T

a−−−→N T ′

P ‖ T
a−−−→N P ′ ‖ T ′

In the probabilistic and Markovian cases, instead, tests are made out of passive
actions, each equipped with a weight w ∈ R>0. The idea is that, in any of its states,
a process term under test generates the proposal of an action to be executed by
probabilistically selecting one of the actions enabled in that state. Then the test
reacts by probabilistically selecting a passive action (if any) with the same name as
the proposed action.

Definition 2.7 The set TR of reactive tests is generated by the following syntax:

T ::= s | T ′

T ′ ::= <a, ∗w>.T | T ′ + T ′

where a ∈ Name and w ∈ R>0.

Let us denote by −−−→R the multitransition relation for reactive tests. Accord-
ing to the terminology of [15], the following operational rule defines the probabilistic
generative-reactive interaction [5] of P ∈ PP and T ∈ TR:

P
a,p−−−→P P ′ T

a,∗w−−−→R T ′

P ‖ T
a, p

probc(P |init(T ))
· w
weight(T,a)−−−−−−−−−−−−−−−−−−−−−→P P ′ ‖ T ′

where init(T ) = {a ∈ Name | ∃w, T ′. T
a,∗w−−−→R T ′} is the set of names of actions

enabled by T and weight(T, a) =
∑{|w ∈ R>0 | ∃T ′. T

a,∗w−−−→R T ′ |} is the weight of T

with respect to a. Note that, due to the normalization taking place in the conclusion
of the rule above, if P ‖ T has outgoing transitions, then the probabilities of those
transitions sum up to 1.

Likewise, the following operational rule defines the Markovian generative-reactive
interaction [4] of P ∈ PM and T ∈ TR, which preserves the conditional rate of P

with respect to init(T ) due to the normalization taking place in the conclusion of
the rule:

P
a,λ−−−→M P ′ T

a,∗w−−−→R T ′

P ‖ T
a,λ· w

weight(T,a)−−−−−−−−−−−−→M P ′ ‖ T ′

Definition 2.8 Let P ∈ PN and T ∈ TN, or P ∈ PP ∪ PM and T ∈ TR. The

8



Bernardo

interaction system of P and T is process term P ‖ T , where we say that:

• A configuration is a state of the labeled (multi)transition system underlying P ‖ T .
• A configuration is successful iff its test component is s.
• A computation is successful iff so is its last configuration.

We denote by SC(P, T ) the multiset of successful computations in Cf(P ‖ T ).

All the computations in SC(P, T ) are independent of each other because of the
maximality of successful test-driven computations. Moreover, SC(P, T ) is finite
because of the finitely-branching structure of the considered terms.

2.4 Nondeterministic Testing Equivalence

Two nondeterministic processes are testing equivalent if they are indistinguishable
with respect to the possibility and the necessity of passing an arbitrary test [12].

Definition 2.9 Let P ∈ PN and T ∈ TN. We say that:

• P may pass T iff at least one computation of P ‖ T is successful:
SC(P, T ) 6= ∅

• P must pass T iff all maximal computations of P ‖ T are successful:
SC(P, T ) = If(P ‖ T )

Definition 2.10 Let P1, P2 ∈ PN. We say that P1 is nondeterministic testing
equivalent to P2, written P1 ∼NT P2, iff for all nondeterministic tests T ∈ TN:

P1 may pass T ⇐⇒ P2 may pass T

P1 must pass T ⇐⇒ P2 must pass T

2.5 Probabilistic Testing Equivalence

In the probabilistic case, the possibility and the necessity of passing an arbitrary
test are subsumed by the probability of passing the test.

Definition 2.11 Let P1, P2 ∈ PP. We say that P1 is probabilistic testing equivalent
to P2, written P1 ∼PT P2, iff for all reactive tests T ∈ TR:

prob(SC(P1, T )) = prob(SC(P2, T ))

2.6 Markovian Testing Equivalence

In the Markovian case, we have to consider the probability of passing an arbitrary
test within an arbitrary sequence of average amounts of time.

Definition 2.12 Let P1, P2 ∈ PM. We say that P1 is Markovian testing equivalent
to P2, written P1 ∼MT P2, iff for all reactive tests T ∈ TR and sequences θ ∈ (R>0)∗

of average amounts of time:
prob(SC≤θ(P1, T )) = prob(SC≤θ(P2, T ))

9



Bernardo

3 Alternative Logical Characterization of ∼NT

The modal language characterizing ∼NT provided by [16] has a two-layer syntax.
In the top layer there is a modal operator on traces, whereas in the bottom layer
there are true, disjunction, and a modal operator on actions with no continuation.
This language is interpreted by means of two satisfaction relations, which express
that a process may or must perform certain actions after executing a certain trace.

In the following we show an alternative characterization based on a modal lan-
guage with a syntax related to actions only that includes true, disjunction, and
diamond. With respect to HML, this language is less powerful as it is devoid of
negation. Moreover, it replaces conjunction with disjunction. This is unavoidable,
as ∼NT is the intersection of may-testing equivalence and must-testing equivalence,
with the former coinciding with trace equivalence and hence not admitting con-
junction in its characterization. We also observe that conjunction cannot simply
be discarded but must be replaced, as having only true and diamond would not be
enough to characterize must-testing equivalence.

Definition 3.1 The set of formulas of MLT is generated by the following syntax:

φ ::= true | φ′

φ′ ::= 〈a〉φ | φ′ ∨ φ′

where a ∈ Name.

Definition 3.2 The set init(φ) of names of actions initially occurring in a formula
φ ∈MLT is defined by structural induction as follows:

init(true) = ∅
init(φ1 ∨ φ2) = init(φ1) ∪ init(φ2)

init(〈a〉φ) = {a}

The new modal language retains the two satisfaction relations, but the one for
the must case has to be carefully defined for disjunction and diamond in order for
it to be consistent with the notion of having to pass a test.

Definition 3.3 The satisfaction relation |=may ofMLT over PN is defined by struc-
tural induction as follows:

P |=may true

P |=may φ1 ∨ φ2 if P |=may φ1 or P |=may φ2

P |=may 〈a〉φ if there exists P ′ such that P
a−−−→N P ′ and P ′ |=may φ

Definition 3.4 The satisfaction relation |=must ofMLT over PN is defined by struc-

10



Bernardo

tural induction as follows:

P |=must true

P |=must φ1 ∨ φ2 if init(P ) ∩ (init(φ1) ∪ init(φ2)) 6= ∅
and init(P ) ∩ init(φ1) 6= ∅ implies P |=must φ1

and init(P ) ∩ init(φ2) 6= ∅ implies P |=must φ2

P |=must 〈a〉φ if there exists P ′ such that P
a−−−→N P ′

and each such P ′ |=must φ

The intuition behind the definition of |=must is that, given P ∈ PN and φ ∈
MLT − {true}, init(P ) must intersect init(φ) and P must satisfy φ along each of
its computations starting with a transition labeled with an action name belonging
to init(P ) ∩ init(φ).

A must-interpretation of disjunction like the following:
P |=must φ1 ∨ φ2 if P |=must φ1 or P |=must φ2

would be wrong. As an example, it is not the case that a.0+b.0 must pass a.s+b.c.s
because of the unsuccessful maximal test-driven computation composed of transition
b, but it would be a.0+b.0 |=must 〈a〉true∨〈b〉〈c〉true because a.0+b.0 |=must 〈a〉true.

Likewise, a must-interpretation of diamond like the following:
P |=must 〈a〉φ if for all P ′ whenever P

a−−−→N P ′ then P ′ |=must φ

would be wrong. As an example, it is not the case that 0 must pass a.s because
SC(0, a.s) = ∅ 6= {ε} = If(0 ‖ a.s), but it would trivially be 0 |=must 〈a〉true because
there is no P ′ reachable from 0 via a.

We observe that our must-interpretation of diamond differs from the must-
interpretation of the modal operator on traces defined in [16]. In fact, we addi-
tionally require the existence of at least one a-transition leaving P as a necessary
condition for the must-satisfaction of 〈a〉φ. By contrast, due to the two-layer syntax
of the modal language, and consistently with an alternative characterization of [12],
for the modal operator on traces it is simply required that P does not diverge when
accepting the specified trace.

Lemma 3.5 For all T ∈ TN there exists φT ∈ MLT such that init(φT ) = init(T )
and for all P ∈ PN:

P may pass T =⇒ P |=may φT

P must pass T =⇒ P |=must φT

Lemma 3.6 For all φ ∈ MLT there exists Tφ ∈ TN such that init(Tφ) = init(φ)
and for all P ∈ PN:

P |=may φ =⇒ P may pass Tφ

P |=must φ =⇒ P must pass Tφ

Theorem 3.7 Let P1, P2 ∈ PN. Then P1 ∼NT P2 iff for all φ ∈MLT:

11



Bernardo

P1 |=may φ ⇐⇒ P2 |=may φ

P1 |=must φ ⇐⇒ P2 |=must φ

4 Alternative Logical Characterization of ∼PT

A slight variant of MLT denoted by MLT,ind can be employed to characterize
∼PT. In order for probabilities to be computed correctly, in MLT,ind each formula
of the form φ1 ∨ φ2 must satisfy the constraint init(φ1) ∩ init(φ2) = ∅. In this way,
φ1 and φ2 are guaranteed to exercise independent computations of an arbitrary
process term, hence the probability that the term satisfies φ1 ∨ φ2 can essentially
be computed as the sum of the probabilities of satisfying φ1 and φ2.

On the test side, this constraint amounts to work with the set TR,det of name-
deterministic reactive tests, in which each test of the form T1 + T2 must satisfy
init(T1) ∩ init(T2) = ∅. From [7,9] it is known that the canonical reactive tests for
∼PT are generated by the following syntax:

T ::= s | <a, ∗1>.T +
∑

b∈E−{a}
<b, ∗1>.<z, ∗1>.s

where E is a finite subset of Name including a, the summation disappears whenever
E − {a} = ∅, and z is a fresh action name that cannot occur in any process term.
Since canonical reactive tests are name-deterministic, we can restrict ourselves to
TR,det without loss of distinguishing power.

While MLT has been interpreted over PN through two qualitative satisfaction
relations, MLT,ind will be equipped with a quantitative interpretation function in
the spirit of [20]. This function measures the probability of satisfying a formula
under the condition that – consistently with the testing approach – the formula
itself establishes the names of the only actions that can be enabled.

Definition 4.1 The interpretation function [[.]]PT of MLT,ind over PP is defined by
letting [[φ]]PT(P ) = 0 for φ ∈ MLT,ind − {true} whenever init(P ) ∩ init(φ) = ∅,
otherwise by structural induction as follows:

[[true]]PT(P ) = 1

[[φ1 ∨ φ2]]PT(P ) = p1 · [[φ1]]PT(P ) + p2 · [[φ2]]PT(P )

[[〈a〉φ]]PT(P ) =
∑

P
a,p
−−−→P P ′

p
probc(P |{a}) · [[φ]]PT(P ′)

where pj = probc(P |init(φj))
probc(P |init(φ1∨φ2)) for j ∈ {1, 2}.

In the definition above, pj represents the probability with which P performs actions
whose name is in init(φj) rather than actions whose name is in init(φk), k = 3− j,
given that P can perform actions whose name is in init(φ1∨φ2). These probabilities
are used as weights for the correct account of the probabilities with which P satisfies
φ1 alone and φ2 alone in the context of the satisfaction of φ1 ∨ φ2. If such weights
were omitted, then the fact that φ1 ∨ φ2 offers a set of initial actions at least as
large as the ones offered by φ1 alone and φ2 alone would be ignored, thus leading
to a potential overestimate of the probability of satisfying φ1 ∨ φ2.

12



Bernardo

Lemma 4.2 For all T ∈ TR,det there exists φT ∈ MLT,ind such that init(φT ) =
init(T ) and for all P ∈ PP:

[[φT ]]PT(P ) = prob(SC(P, T ))

Lemma 4.3 For all φ ∈ MLT,ind there exists Tφ ∈ TR,det such that init(Tφ) =
init(φ) and for all P ∈ PP:

prob(SC(P, Tφ)) = [[φ]]PT(P )

Theorem 4.4 Let P1, P2 ∈ PP. Then P1 ∼PT P2 iff for all φ ∈MLT,ind:
[[φ]]PT(P1) = [[φ]]PT(P2)

5 Alternative Logical Characterization of ∼MT

The same constrained version MLT,ind of MLT can be used for ∼MT so as to
compute probabilities correctly. Since the canonical reactive tests for ∼MT are the
same as those for ∼PT [2], also in this case we can restrict ourselves to TR,det without
loss of distinguishing power. The difference with respect to the probabilistic case is
that the quantitative interpretation function will have to measure the probability
of satisfying a formula within a sequence of average amounts of time.

Definition 5.1 The interpretation function [[.]]MT of MLT,ind over PM × (R>0)∗ is
defined by letting [[φ]]MT(P, θ) = 0 for φ ∈ MLT,ind − {true} whenever init(P ) ∩
init(φ) = ∅ or θ = ε, otherwise by structural induction as follows:

[[true]]MT(P, θ) = 1

[[φ1 ∨ φ2]]MT(P, t ◦ θ) = p1 · [[φ1]]MT(P, t1 ◦ θ) + p2 · [[φ2]]MT(P, t2 ◦ θ)

[[〈a〉φ]]MT(P, t ◦ θ) =





∑

P
a,λ
−−−→M P ′

λ
ratec(P |{a}) · [[φ]]MT(P ′, θ) if 1

ratec(P |{a}) ≤ t

0 if 1
ratec(P |{a}) > t

where pj = ratec(P |init(φj))
ratec(P |init(φ1∨φ2)) and tj = t + ( 1

ratec(P |init(φj))
− 1

ratec(P |init(φ1∨φ2))) for
j ∈ {1, 2}.
In the definition above, tj represents the extra average time granted to P for sat-
isfying φj . This extra average time is equal to the difference between the average
sojourn time in P when only actions whose name is in init(φj) are enabled and the
average sojourn time in P when also actions whose name is in init(φk), k = 3− j,
are enabled. Since the latter cannot be greater than the former due to the race pol-
icy (more enabled actions means less time spent on average in a state), considering
t instead of tj in the satisfaction of φj would lead to a potential underestimate of
the probability of satisfying φ1 ∨ φ2 within the given time bound, as P may satisfy
φ1 ∨ φ2 within t ◦ θ even if P satisfies neither φ1 alone nor φ2 alone within t ◦ θ.

Lemma 5.2 For all T ∈ TR,det there exists φT ∈ MLT,ind such that init(φT ) =
init(T ) and for all P ∈ PM and θ ∈ (R>0)∗:

[[φT ]]MT(P, θ) = prob(SC≤θ(P, T ))

13



Bernardo

Lemma 5.3 For all φ ∈ MLT,ind there exists Tφ ∈ TR,det such that init(Tφ) =
init(φ) and for all P ∈ PM and θ ∈ (R>0)∗:

prob(SC≤θ(P, Tφ)) = [[φ]]MT(P, θ)

Theorem 5.4 Let P1, P2 ∈ PM. Then P1 ∼MT P2 iff for all φ ∈ MLT,ind and
θ ∈ (R>0)∗:

[[φ]]MT(P1, θ) = [[φ]]MT(P2, θ)

6 Conclusion

Starting from the comparison of [3], in this paper we have tackled the problem of
finding a uniform modal language for characterizing three variants of testing equiv-
alence. We have demonstrated that such a language exists and comprises true,
disjunction, and diamond. In the nondeterministic case, similarly to [16] we have
defined a may-satisfaction relation and a must-satisfaction relation, with the latter
being carefully designed for disjunction and diamond in order to characterize cor-
rectly must-testing equivalence. In the probabilistic and Markovian cases, we have
provided a quantitative interpretation inspired by [20], after imposing an indepen-
dence constraint on the occurrences of disjunction. The revised comparison resulting
from the alternative characterizations of the three variants of testing equivalence is
shown in Fig. 2.

The figure hides the fact that two different satisfaction relations have been pro-
vided in the nondeterministic case, and that must-satisfaction results in a non-
standard interpretation of disjunction and diamond. However, this seems to be
unavoidable due to the way testing equivalence is defined. By contrast, a single in-
terpretation function is enough in the probabilistic and Markovian cases, as the fact
that a process may or must pass a test is encoded within a probability interval. It is
also worth pointing out that, similarly to [20], in those two cases no quantititative
information is necessary within the uniform modal language.

In [3] and in the present work we have compared (on a modal logic basis) bisimu-
lation, testing, and trace equivalences for fully nondeterministic, fully probabilistic,
and fully Markovian finite-state processes without silent moves. In the nondeter-
ministic and probabilistic cases, τ actions can be handled by means of a weak
interpretation of diamond, as shown e.g. in [23,24,10]. However, the situation is
more complicated for Markovian processes, as it is rarely the case that we can ab-
stract from the durations of τ actions while remaining in the field of exponential
distributions [18].

As far as the coexistence of nondeterminism and probabilistic/temporal aspects
is concerned, for bisimulation equivalence we have already mentioned in the intro-
duction that the modal language shown in the first column of Fig. 2 is valid as
long as nondeterminism and probability are not simultaneously present in the same
states, otherwise a further operator is necessary [24]. For the testing case, in [10] it
is shown that a modal language different from the one in the second column of Fig. 2
is necessary, which is composed of true, conjunction, diamond, failure predicate, and
convex combination. However, the testing equivalence considered in [10] for mixed
nondeterministic/probabilistic processes is not a conservative extension of the test-

14



Bernardo

a

a p

a λ

true

true

true

a

a

a

                     

true

true

true

true

a

true

a

true

a

local

global

TraceBisimulation Testing

Nondeterministic

Markovian

Probabilistic

Fig. 2. Revised comparison of logical characterizations for behavioral equivalences

ing equivalence of [12] for fully nondeterministic processes. The reason is that [10]
allows for probabilistic choices within tests, which is enough for distinguishing non-
deterministic processes that are equivalent according to [12]. In fact, probabilistic
choices within tests provide the capability of making copies of the states of the
processes being tested and experimenting on each of them independently, which
increases the distinguishing power [1].

Future work will be devoted to investigating whether and to which extent our
uniform modal language for testing equivalence is suitable for the framework of [10]
under the constraint that tests are fully nondeterministic. Moreover, it would be
interesting to find a way of encoding the uniform modal language of this paper into
modal languages for which model-checking algorithms already exist.

Acknowledgement

We thank Michele Loreti for some initial discussions on modal logics for test-
ing equivalences. This work has been funded by MIUR-PRIN project PaCo –
Performability-Aware Computing: Logics, Models, and Languages.

References

[1] S. Abramsky, “Observational Equivalence as a Testing Equivalence”, in Theoretical Computer
Science 53:225-241, 1987.

[2] M. Bernardo, “Non-Bisimulation-Based Markovian Behavioral Equivalences”, in Journal of Logic
and Algebraic Programming 72:3-49, 2007.

[3] M. Bernardo and S. Botta, “A Survey of Modal Logics Characterizing Behavioral Equivalences for
Nondeterministic and Stochastic Systems”, in Mathematical Structures in Computer Science 18:29-
55, 2008.

[4] M. Bernardo and M. Bravetti, “Performance Measure Sensitive Congruences for Markovian Process
Algebras”, in Theoretical Computer Science 290:117-160, 2003.

[5] M. Bravetti and A. Aldini, “Discrete Time Generative-Reactive Probabilistic Processes with Different
Advancing Speeds”, in Theoretical Computer Science 290:355-406, 2003.

[6] S.D. Brookes, C.A.R. Hoare, and A.W. Roscoe, “A Theory of Communicating Sequential Processes”,
in Journal of the ACM 31:560-599, 1984.

15



Bernardo

[7] I. Christoff, “Testing Equivalences and Fully Abstract Models for Probabilistic Processes”, in Proc.
of the 1st Int. Conf. on Concurrency Theory (CONCUR 1990), LNCS 458:126-140, 1990.

[8] G. Clark, S. Gilmore, and J. Hillston, “Specifying Performance Measures for PEPA”, in Proc.
of the 5th AMAST Int. Workshop on Formal Methods for Real Time and Probabilistic Systems
(ARTS 1999), LNCS 1601:211-227, 1999.

[9] R. Cleaveland, Z. Dayar, S.A. Smolka, and S. Yuen, “Testing Preorders for Probabilistic Processes”,
in Information and Computation 154:93-148, 1999.

[10] Y. Deng, R.J. van Glabbeek, M. Hennessy, C. Morgan, and C. Zhang, “Characterising Testing
Preorders for Finite Probabilistic Processes”, in Proc. of the 22nd IEEE Symp. on Logic in Computer
Science (LICS 2007), IEEE-CS Press, pp. 313-325, 2007.

[11] R. De Nicola, “Extensional Equivalences for Transition Systems”, in Acta Informatica 24:211-237,
1987.

[12] R. De Nicola and M. Hennessy, “Testing Equivalences for Processes”, in Theoretical Computer
Science 34:83-133, 1984.

[13] J. Desharnais, A. Edalat, and P. Panangaden, “Bisimulation for Labelled Markov Processes”, in
Information and Computation 179:163-193, 2002.

[14] R.J. van Glabbeek, “The Linear Time - Branching Time Spectrum I”, in “Handbook of Process
Algebra”, pp. 3-99, Elsevier, 2001.

[15] R.J. van Glabbeek, S.A. Smolka, and B. Steffen, “Reactive, Generative and Stratified Models of
Probabilistic Processes”, in Information and Computation 121:59-80, 1995.

[16] M. Hennessy, “Acceptance Trees”, in Journal of the ACM 32:896-928, 1985.

[17] M. Hennessy and R. Milner, “Algebraic Laws for Nondeterminism and Concurrency”, in Journal of
the ACM 32:137-162, 1985.

[18] J. Hillston, “A Compositional Approach to Performance Modelling”, Cambridge University Press,
1996.

[19] C.-C. Jou and S.A. Smolka, “Equivalences, Congruences, and Complete Axiomatizations for
Probabilistic Processes”, in Proc. of the 1st Int. Conf. on Concurrency Theory (CONCUR 1990),
LNCS 458:367-383, 1990.

[20] M.Z. Kwiatkowska and G.J. Norman, “A Testing Equivalence for Reactive Probabilistic Processes”,
in Proc. of the 2nd Int. Workshop on Expressiveness in Concurrency (EXPRESS 1998),
ENTCS 16(2):114-132, 1998.

[21] K.G. Larsen and A. Skou, “Bisimulation through Probabilistic Testing”, in Information and
Computation 94:1-28, 1991.

[22] K.G. Larsen and A. Skou, “Compositional Verification of Probabilistic Processes”, in Proc. of the 3rd
Int. Conf. on Concurrency Theory (CONCUR 1992), LNCS 630:456-471, 1992.

[23] R. Milner, “Communication and Concurrency”, Prentice Hall, 1989.

[24] A. Parma and R. Segala, “Logical Characterizations of Bisimulations for Discrete Probabilistic
Systems”, in Proc. of the 10th Int. Conf. on Foundations of Software Science and Computational
Structures (FOSSACS 2007), LNCS 4423:287-301, 2007.

Appendix: Proofs

Proof of Lemma 3.5: We proceed by induction on the syntactical structure of
T ∈ TN:

• Let T ≡ s and take φT ≡ true. Since for all P ∈ PN we have that P may pass s,
P must pass s, P |=may true, and P |=must true, the result follows.

• Let T ≡ T1 + T2 and P ∈ PN.
If P may pass T , then P ‖ T has at least one successful computation. Since
T ≡ T1 + T2, this successful computation must belong to P ‖ T1 or P ‖ T2, hence
P may pass T1 or P may pass T2. From the induction hypothesis it follows that
there exist φT1 , φT2 ∈ MLT with init(φT1) = init(T1) and init(φT2) = init(T2)

16



Bernardo

such that P |=may φT1 or P |=may φT2 . Therefore P |=may φT1 ∨ φT2 .
If P must pass T , then all the maximal computations of P ‖ T are successful.
Since T ≡ T1 + T2, it must be the case that init(P ) ∩ (init(T1) ∪ init(T2)) 6=
∅. Moreover, init(P ) ∩ init(T1) 6= ∅ necessarily implies that P must pass T1.
Likewise, init(P )∩init(T2) 6= ∅ necessarily implies that P must pass T2. From the
induction hypothesis it follows that there exist φT1 , φT2 ∈MLT with init(φT1) =
init(T1) and init(φT2) = init(T2) such that init(P )∩init(φT1) 6= ∅ implies P |=must

φT1 and init(P )∩ init(φT2) 6= ∅ implies P |=must φT2 . From init(P )∩ (init(φT1)∪
init(φT2)) 6= ∅ we derive that P |=must φT1 ∨ φT2 .
The result then follows by taking φT ≡ φT1 ∨ φT2 .

• Let T ≡ a.T ′ and P ∈ PN.
If P may pass T , then P ‖ T has at least one successful computation. Since

T ≡ a.T ′, there must exist P ′ ∈ PN such that P
a−−−→N P ′ and P ′ may pass T ′.

From the induction hypothesis it follows that there exists φT ′ ∈ MLT such that
P ′ |=may φT ′ . Therefore P |=may 〈a〉φT ′ .
If P must pass T , then all the maximal computations of P ‖ T are successful. Since

T ≡ a.T ′, there must exist P ′ ∈ PN such that P
a−−−→N P ′ and each such P ′ must

pass T ′. From the induction hypothesis it follows that there exists φT ′ ∈ MLT

such that each such P ′ |=must φT ′ . Therefore P |=must 〈a〉φT ′ .
The result then follows by taking φT ≡ 〈a〉φT ′ .

Proof of Lemma 3.6: We proceed by induction on the syntactical structure of
φ ∈MLT:

• Let φ ≡ true and take Tφ ≡ s. Since for all P ∈ PN we have that P |=may true,
P |=must true, P may pass s, and P must pass s, the result follows.

• Let φ ≡ φ1 ∨ φ2 and P ∈ PN.
If P |=may φ, then P |=may φ1 or P |=may φ2. From the induction hypothesis it
follows that there exist Tφ1 , Tφ2 ∈ TN with init(Tφ1) = init(φ1) and init(Tφ2) =
init(φ2) such that P may pass Tφ1 or P may pass Tφ2 . Therefore P may pass
Tφ1 + Tφ2 .
If P |=must φ, then it must be the case that init(P ) ∩ (init(φ1) ∪ init(φ2)) 6= ∅.
Moreover, init(P ) ∩ init(φ1) 6= ∅ necessarily implies that P |=must φ1. Likewise,
init(P ) ∩ init(φ2) 6= ∅ necessarily implies that P |=must φ2. From the induction
hypothesis it follows that there exist Tφ1 , Tφ2 ∈ TN with init(Tφ1) = init(φ1) and
init(Tφ2) = init(φ2) such that init(P ) ∩ init(Tφ1) 6= ∅ implies that P must pass
Tφ1 and init(P ) ∩ init(Tφ2) 6= ∅ implies that P must pass Tφ2 . From init(P ) ∩
(init(Tφ1) ∪ init(Tφ2)) 6= ∅ we derive that P must pass Tφ1 + Tφ2 .
The result then follows by taking Tφ ≡ Tφ1 + Tφ2 .

• Let φ ≡ 〈a〉φ′ and P ∈ PN.

If P |=may φ, then there exists P ′ ∈ PN such that P
a−−−→N P ′ and P ′ |=may φ′.

From the induction hypothesis it follows that there exists Tφ′ ∈ TN such that P ′

may pass Tφ′ . Therefore P may pass a.Tφ′ .

If P |=must φ, then there exists P ′ ∈ PN such that P
a−−−→N P ′ and each such

P ′ |=must φ′. From the induction hypothesis it follows that there exists Tφ′ ∈ TN

17



Bernardo

such that each such P ′ must pass Tφ′ . Therefore P must pass a.Tφ′ .
The result then follows by taking Tφ ≡ a.Tφ′ .

Proof of Thm. 3.7: A straightforward consequence of the one-to-one correspon-
dence between tests in TN and formulas in MLT established by Lemma 3.5 and
Lemma 3.6.

Proof of Lemma 4.2: We proceed by induction on the syntactical structure of
T ∈ TR,det:

• Let T ≡ s and take φT ≡ true. Since for all P ∈ PP we have [[true]]PT(P ) = 1 =
prob(SC(P, s)), the result follows.

• Let T ≡ T1 + T2 and P ∈ PP. In order to avoid trivial cases, assume init(P ) ∩
init(T ) 6= ∅. So prob(SC(P, T )) = probc(P |init(T1))

probc(P |init(T )) ·prob(SC(P, T1))+
probc(P |init(T2))
probc(P |init(T )) ·

prob(SC(P, T2)). From the induction hypothesis it follows that there exist φT1 , φT2

∈ MLT,ind with init(φT1) = init(T1) and init(φT2) = init(T2) s.t. [[φT1 ]]PT(P )
= prob(SC(P, T1)) and [[φT2 ]]PT(P ) = prob(SC(P, T2)). Thus prob(SC(P, T )) =

probc(P |init(φT1
))

probc(P |init(φT1
∨φT2

)) · [[φT1 ]]PT(P ) + probc(P |init(φT2
))

probc(P |init(φT1
∨φT2

)) · [[φT2 ]]PT(P ). From T ∈
TR,det we derive that φT1 ∨ φT2 ∈ MLT,ind, hence the result follows by taking
φT ≡ φT1 ∨ φT2 .

• Let T ≡ <a, ∗w>.T ′ and P ∈ PP. In order to avoid trivial cases, assume
init(P )∩init(T ) 6= ∅. Then prob(SC(P, T )) =

∑
P

a,p
−−−→P P ′

p
probc(P |{a}) ·prob(SC(P ′, T ′)).

From the induction hypothesis it follows that there exists φT ′ ∈ MLT,ind such
that [[φT ′ ]]PT(P ′) = prob(SC(P ′, T ′)) for each P ′ reachable from P via a. Thus
prob(SC(P, T )) =

∑
P

a,p
−−−→P P ′

p
probc(P |{a}) · [[φT ′ ]]PT(P ′). The result follows by taking

φT ≡ 〈a〉φT ′ .

Proof of Lemma 4.3: We proceed by induction on the syntactical structure of
φ ∈MLT,ind:

• Let φ ≡ true and take Tφ ≡ s. Since for all P ∈ PP we have prob(SC(P, s)) = 1 =
[[true]]PT(P ), the result follows.

• Let φ ≡ φ1 ∨ φ2 and P ∈ PP. In order to avoid trivial cases, assume init(P ) ∩
init(φ) 6= ∅. Then [[φ]]PT(P ) = probc(P |init(φ1))

probc(P |init(φ)) · [[φ1]]PT(P ) + probc(P |init(φ2))
probc(P |init(φ)) ·

[[φ2]]PT(P ). From the induction hypothesis it follows that there exist Tφ1 , Tφ2 ∈
TR,det with init(Tφ1) = init(φ1) and init(Tφ2) = init(φ2) s.t. prob(SC(P, Tφ1)) =

[[φ1]]PT(P ) and prob(SC(P, Tφ2)) = [[φ2]]PT(P ), so [[φ]]PT(P )= probc(P |init(Tφ1
))

probc(P |init(Tφ1
+Tφ2

)) ·
prob(SC(P, Tφ1))+ probc(P |init(Tφ2

))

probc(P |init(Tφ1
+Tφ2

)) ·prob(SC(P, Tφ2)). From φ ∈MLT,ind we
derive that Tφ1 + Tφ2 ∈ TR,det, hence the result follows by taking Tφ ≡ Tφ1 + Tφ2 .

• Let φ ≡ 〈a〉φ′ and P ∈ PP. In order to avoid trivial cases, assume init(P ) ∩
init(φ) 6= ∅. Then [[φ]]PT(P ) =

∑
P

a,p
−−−→P P ′

p
probc(P |{a}) · [[φ

′]]PT(P ′). From the induction

hypothesis it follows that there exists Tφ′ ∈ TR,det such that prob(SC(P ′, Tφ′)) =

18



Bernardo

[[φ′]]PT(P ′) for each P ′ reachable from P via a. Thus [[φ]]PT(P ) =
∑

P
a,p
−−−→P P ′

p
probc(P |{a}) ·

prob(SC(P ′, Tφ′)). The result follows by taking Tφ ≡ <a, ∗w>.Tφ′ .

Proof of Thm. 4.4: A straightforward consequence of the one-to-one correspondence
between classes of tests in TR,det differring only for the action weights and formulas
in MLT,ind established by Lemma 4.2 and Lemma 4.3.

Proof of Lemma 5.2: We proceed by induction on the syntactical structure of
T ∈ TR,det:

• Let T ≡ s and take φT ≡ true. Since for all P ∈ PM and θ ∈ (R>0)∗ we have
[[true]]MT(P, θ) = 1 = prob(SC≤θ(P, s)), the result follows.

• Let T ≡ T1 +T2, P ∈ PM, and θ ∈ (R>0)∗. In order to avoid trivial cases, assume
init(P ) ∩ init(T ) 6= ∅ and θ ≡ t ◦ θ′. Then prob(SC≤θ(P, T )) = ratec(P |init(T1))

ratec(P |init(T )) ·
prob(SC≤t1◦θ′(P, T1)) + ratec(P |init(T2))

ratec(P |init(T )) · prob(SC≤t2◦θ′(P, T2)) where tj = t +
( 1
ratec(P |init(Tj))

− 1
ratec(P |init(T ))) for j ∈ {1, 2}. From the induction hypothesis

it follows that there exist φT1 , φT2 ∈ MLT,ind with init(φT1) = init(T1) and
init(φT2) = init(T2) such that [[φT1 ]]MT(P, t1 ◦ θ′) = prob(SC≤t1◦θ′(P, T1)) and
[[φT2 ]]MT(P, t2 ◦ θ′) = prob(SC≤t2◦θ′(P, T2)). Thus prob(SC≤θ(P, T )) =

ratec(P |init(φT1
))

ratec(P |init(φT1
∨φT2

)) · [[φT1 ]]MT(P, t1 ◦ θ′) + ratec(P |init(φT2
))

ratec(P |init(φT1
∨φT2

)) · [[φT2 ]]MT(P, t2 ◦ θ′).
From T ∈ TR,det we derive that φT1 ∨ φT2 ∈MLT,ind, hence the result follows by
taking φT ≡ φT1 ∨ φT2 .

• Let T ≡ <a, ∗w>.T ′, P ∈ PM, and θ ∈ (R>0)∗. In order to avoid trivial
cases, assume init(P ) ∩ init(T ) 6= ∅, θ ≡ t ◦ θ′, and 1

ratec(P |{a}) ≤ t. Then

prob(SC≤θ(P, T )) =
∑

P
a,λ
−−−→M P ′

λ
ratec(P |{a}) · prob(SC≤θ′(P ′, T ′)). From the induction

hypothesis it follows that there exists φT ′ ∈MLT,ind such that [[φT ′ ]]MT(P ′, θ′) =
prob(SC≤θ′(P ′, T ′)) for each P ′ reachable from P via a. Thus prob(SC≤θ(P, T )) =∑

P
a,λ
−−−→M P ′

λ
ratec(P |{a}) · [[φT ′ ]]MT(P ′, θ′). The result follows by taking φT ≡ 〈a〉φT ′ .

Proof of Lemma 5.3: We proceed by induction on the syntactical structure of
φ ∈MLT,ind:

• Let φ ≡ true and take Tφ ≡ s. Since for all P ∈ PM and θ ∈ (R>0)∗ we have
prob(SC≤θ(P, s)) = 1 = [[true]]MT(P, θ), the result follows.

• Let φ ≡ φ1 ∨ φ2, P ∈ PM, and θ ∈ (R>0)∗. In order to avoid trivial cases, as-
sume init(P ) ∩ init(φ) 6= ∅ and θ ≡ t ◦ θ′. Then [[φ]]MT(P, θ) = ratec(P |init(φ1))

ratec(P |init(φ)) ·
[[φ1]]MT(P, t1◦θ)+ ratec(P |init(φ2))

ratec(P |init(φ)) · [[φ2]]MT(P, t2◦θ) where tj = t+( 1
ratec(P |init(φj))

−
1

ratec(P |init(φ))) for j ∈ {1, 2}. From the induction hypothesis it follows that
there exist Tφ1 , Tφ2 ∈ TR,det with init(Tφ1) = init(φ1) and init(Tφ2) = init(φ2)
such that prob(SC≤t1◦θ(P, Tφ1)) = [[φ1]]MT(P, t1 ◦ θ) and prob(SC≤t2◦θ(P, Tφ2)) =

[[φ2]]MT(P, t2◦θ). Thus [[φ]]MT(P, θ) = ratec(P |init(Tφ1
))

ratec(P |init(Tφ1
+Tφ2

)) ·prob(SC≤t1◦θ(P, Tφ1))+

19



Bernardo

ratec(P |init(Tφ2
))

ratec(P |init(Tφ1
+Tφ2

)) · prob(SC≤t2◦θ(P, Tφ2)). From φ ∈ MLT,ind we derive that
Tφ1 + Tφ2 ∈ TR,det, hence the result follows by taking Tφ ≡ Tφ1 + Tφ2 .

• Let φ ≡ 〈a〉φ′, P ∈ PM, and θ ∈ (R>0)∗. In order to avoid trivial cases, as-
sume init(P ) ∩ init(φ) 6= ∅, θ ≡ t ◦ θ′, and 1

ratec(P |{a}) ≤ t. Then [[φ]]MT(P, θ) =∑

P
a,λ
−−−→M P ′

λ
ratec(P |{a}) · [[φ′]]MT(P ′, θ′). From the induction hypothesis it follows that

there exists Tφ′ ∈ TR,det such that prob(SC≤θ′(P ′, Tφ′)) = [[φ′]]PT(P ′, θ′) for each
P ′ reachable from P via a, so [[φ]]MT(P, θ)=

∑

P
a,λ
−−−→M P ′

λ
ratec(P |{a}) ·prob(SC≤θ′(P ′, Tφ′)).

The result follows by taking Tφ ≡ <a, ∗w>.Tφ′ .

Proof of Thm. 5.4: A straightforward consequence of the one-to-one correspondence
between classes of tests in TR,det differring only for the action weights and formulas
in MLT,ind established by Lemma 5.2 and Lemma 5.3.

20


