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Abstract. For nondeterministic and probabilistic processes, the validity
of some desirable properties of probabilistic trace semantics depends both
on the class of schedulers used to resolve nondeterminism and on the ca-
pability of suitably limiting the power of the considered schedulers. Inclu-
sion of probabilistic bisimilarity, compositionality with respect to typical
process operators, and backward compatibility with trace semantics over
fully nondeterministic or fully probabilistic processes, can all be achieved
by restricting to coherent resolutions of nondeterminism. Here we provide
alternative characterizations of probabilistic trace post-equivalence and
pre-equivalence in the case of coherent resolutions. The characterization
of the former is based on fully coherent trace distributions, whereas the
characterization of the latter relies on coherent weighted trace sets.

1 Introduction

Quantitative models of computer, communication, and software systems com-
bine, among others, functional and extra-functional aspects of system behavior.
On the one hand, these models describe system activities and their execution
order, possibly admitting nondeterminism in case of concurrency phenomena or
to support implementation freedom. On the other hand, they include some in-
formation about the probabilities or the timing of activities and events in which
the system is involved.

In the probabilistic setting, a particularly expressive model is given by prob-
abilistic automata [24], because they encompass as special cases fully nondeter-
ministic models like labeled transition systems [21], fully probabilistic models
like action-labeled variants of discrete-time Markov chains [22], and reactive
probabilistic models like Markov decision processes [13]. In a probabilistic au-
tomaton, the choice among the transitions departing from the current state is
nondeterministic and can be influenced by the external environment, while the
choice of the next state reached by the selected transition is probabilistic and
made internally by the process.

Behavioral relations [28,20,16,1,4] play a fundamental role in the analysis
of probabilistic models. They formalize observational mechanisms that permit
relating models that, despite their different representations in the same mathe-
matical domain, cannot be distinguished by external entities when abstracting
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from certain internal details. Moreover, they support system modeling and verifi-
cation by providing a means to relate system descriptions expressed at different
levels of abstraction, as well as to reduce the size of a system representation
while preserving specific properties to be assessed later.

In this paper, we focus on trace semantics for nondeterministic and proba-
bilistic processes represented through a variant of simple probabilistic automata.
A trace is a sequence of activities labeling a sequence of transitions performed
by a process, thus abstracting from branching points in the process behavior.
Several execution probabilities may be associated with the same trace, each
corresponding to a different resolution of nondeterminism. The discriminating
power of probabilistic trace semantics thus depends on the class of schedulers
used to resolve nondeterminism, but in general it turns out to be excessive. This
may hamper the achievement of a number of desirable properties.

The problem with almighty schedulers yielding a demonic view of nondeter-
minism is well known, both for trace semantics and for testing semantics. In the
case of a process given by the parallel composition of several subprocesses, or
in a testing scenario where a process is composed in parallel with a test, sched-
ulers come into play after assembling the various components. As a consequence,
schedulers can solve both choices local to the individual subprocesses and choices
arising from their interleaving execution. This centralized approach thus gives
the possibility to make decisions in one component on the basis of those made
in other components, especially in the case of history-dependent schedulers [30].

To cope with the aforementioned information leakage, the idea of distributed
scheduling was proposed in [10]. Given a number of modules, i.e., of variable-
based versions of automata, that interact synchronously by updating all variables
during every round, for each module there are several schedulers. One of them
chooses the initial and updated values for the module external variables; for each
atom, intended as a cluster of variables of the module, a further scheduler chooses
the initial and updated values for the private and interface variables controlled
by that atom. Compose-and-schedule is thus replaced by schedule-and-compose.

Distributed scheduling was then applied in [9] to the asynchronous model of
switched probabilistic input/output automata. Following the terminology of [29],
given a reactive interpretation to input actions and a generative interpretation
to output actions, an input scheduler and an output scheduler are considered
for each automaton occurring in a system. A token passing mechanism among
the automata eliminates global choices by ensuring that a single automaton at
a time can select a generative output action, to which the other automata can
respond with reactive input actions having the same name.

Both [10] and [9] guarantee the compositionality of the probabilistic trace-
distribution equivalence of [25]. This is not a congruence with respect to parallel
composition under centralized scheduling; as shown in [23], the coarsest con-
gruence contained in that linear-time equivalence turns out to be a variant of
the simulation equivalence of [27], which is a branching-time equivalence. Dis-
tributed scheduling was further investigated in [15] for interleaved probabilistic
input/output automata, a variant of switched ones in which an interleaving
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scheduler replaces the token passing mechanism. The examined problem was the
attainment of the extremal probabilities of satisfying reachability properties un-
der different classes of distributed schedulers (memoryless vs. history-dependent,
deterministic vs. randomized), knowing that in the centralized case those prob-
abilities are obtained when using memoryless deterministic schedulers [6].

Indeed, the overwhelming power of schedulers already shows up in the mem-
oryless case, i.e., when neglecting the path followed to reach the current state.
Under centralized scheduling, in [14] additional labels were used so that the
same decisions are made by schedulers in distinct copies of the same state of
a testing system, thus weakening the discriminating power of the probabilistic
testing equivalences of [31,18,26] that, as shown in [19,11], can be characterized
in terms of branching-time, simulation-like relations. An analogous weakening
result under the same class of schedulers was obtained in [3] by means of a differ-
ent definition of probabilistic testing equivalence, in which success probabilities
are compared in a trace-by-trace fashion rather than cumulatively.

Likewise, under memoryless schedulers, a different definition of probabilistic
trace equivalence allows compositionality to be recovered without resorting to
distributed scheduling. In the probabilistic trace-distribution equivalence of [25],
for each resolution of either process there must exist a resolution of the other pro-
cess such that the two resolutions are fully matching, in the sense that, for every
trace, both resolutions feature the same probability of executing that trace. We
call it probabilistic trace post-equivalence as the quantification over traces occurs
after the quantifications over resolutions. In [3] it was proposed to exchange the
order of those quantifications, which avoids hardly justifiable process distinc-
tions and regains compositionality. Given an arbitrary trace, for each resolution
of either process there must exist a resolution of the other process such that
both of them exhibit the same probability of executing that trace. In this case,
we speak of partially matching resolutions, as a resolution of either process can
be matched by different resolutions of the other process with respect to different
traces. We call the resulting relation probabilistic trace pre-equivalence, because
the quantification over traces occurs before the quantifications over resolutions.

Congruence with respect to parallel composition, which is ensured by dis-
tributed scheduling, is not the only desirable property of probabilistic trace
equivalences. In addition to compositionality with respect to other typical pro-
cess operators, it is necessary to address inclusion of probabilistic bisimilarity [27]
as well as backward compatibility with trace equivalences over less expressive
processes such as fully nondeterministic ones [8] and fully probabilistic ones [20].
As recently shown in [2], the validity of all these properties critically depends
on the capability of limiting the freedom of schedulers and can be achieved if we
restrict ourselves to coherent resolutions of nondeterminism. Similar to [14], the
basic idea is that schedulers cannot select different continuations in states of a
process that are equivalent to each other, so that also the states to which they
correspond in any resolution of the process have equivalent continuations.

The focus of this paper is on alternative characterizazions of trace semantics.
In a fully nondeterministic setting, two processes are trace equivalent iff, for each
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trace α, both processes can perform α or neither can. An immediate alternative
characterization is that two trace equivalent processes possess the same trace
set [8], where this set can be viewed as the language accepted by the automata
underlying those processes. Likewise, two fully probabilistic processes are trace
equivalent iff, for each trace α, both processes can perform α with the same
probability, which amounts to possessing the same set of traces each weighted
with its execution probability [20], i.e., the same probabilistic language. In either
case, process equivalence reduces to (possibly weighted) trace set equality.

Straightforward characterizations of that form are not possible in the case of
nondeterministic and probabilistic processes, because (i) traces can have different
execution probabilities in different coherent resolutions and (ii) trace semantics
can be defined according to different approaches leading to probabilistic trace
post-/pre-equivalences. This motivates the investigation of alternative charac-
terizations for the two aforementioned equivalences under coherent resolutions
arising from centralized, memoryless schedulers – i.e., as they were defined in [2]
– which is the subject of this paper.

The construction developed in [2] to formalize the coherency constraints re-
lies on coherent trace distributions, i.e., suitable families of sets of traces weighted
with their execution probabilities in a given resolution. Therefore, one may
expect that the coherency-based variant of the probabilistic trace-distribution
equivalence of [25], i.e., probabilistic trace post-equivalence, can be characterized
in terms of coherent trace distribution equality. We will show by means of an
example that this is not the case. The characterization of the coherency-based
variant of probabilistic trace post-equivalence relies on the equality of some-
thing stronger, which we will call fully coherent trace distributions and could
also replace coherent trace distributions in the coherency constraints.

The coherency-based variant of the probabilistic trace pre-equivalence of [3]
is less discriminating because it treats traces individually without keeping track
of the resolutions in which they can be executed. We will show that it can thus
be characterized through the equality of something weaker than coherent trace
distributions, which we will call coherent weighted trace sets and is constituted
by suitable sets of traces weighted with their execution probabilities. We will also
illustrate by means of an example that we cannot use them to set up adequate
coherency constraints. In conclusion, fully coherent trace distributions, coherent
trace distributions, and coherent weighted trace sets form a hierarchy in which
every layer serves a different purpose.

This paper is organized as follows. In Sect. 2 we recall simple probabilis-
tic automata and resolutions of nondeterminism, while in Sect. 3 we recall the
two probabilistic trace equivalences together with three anomalies that can be
avoided by resorting to coherent resolutions. In Sect. 4 we show some properties
of coherent trace distributions and coherent resolutions, which are then exploited
in Sects. 5 and 6 to develop the alternative characterizations of the coherency-
based variants of the two equivalences, respectively relying on the equality of
fully coherent trace distributions and on the equality of coherent weighted trace
sets. Finally, in Sect. 7 we provide some concluding remarks.
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2 Nondeterministic and Probabilistic Models

We formalize systems featuring nondeterminism and probabilities through a vari-
ant of simple probabilistic automata [24], in which we do not distinguish between
external and internal actions.

Definition 1. A nondeterministic and probabilistic labeled transition system,
NPLTS for short, is a triple (S,A,−→) where S 6= ∅ is an at most countable
set of states, A 6= ∅ is a countable set of transition-labeling actions, and −→ ⊆
S ×A×Distr(S) is a transition relation, with Distr(S) being the set of discrete
probability distributions over S.

A transition (s, a,∆) is written s
a−→∆. We say that s′ ∈ S is not reachable

from s via that a-transition if ∆(s′) = 0, otherwise we say that it is reachable
with probability p = ∆(s′). The reachable states form the support of the target
distribution ∆, i.e., supp(∆) = {s′ ∈ S | ∆(s′) > 0}. An NPLTS can be depicted
as a directed graph in which vertices represent states and action-labeled edges
represent transitions, with states in the support of the same target distribution
being linked by a dashed line and decorated with the respective probabilities
when these are different from 1 (see the forthcoming Figs. 1 to 5).

An NPLTS represents (i) a fully nondeterministic process when every tran-
sition has a target distribution with a singleton support, (ii) a fully probabilistic
process when every state has at most one outgoing transition, or (iii) a Markov
decision process when for each action any state has at most one outgoing transi-
tion labeled with that action implying the absence of internal nondeterminism.

Definition 2. Let L = (S,A,−→) be an NPLTS and s, s′ ∈ S. We say that the
finite sequence of steps:

c ≡ s0
a1
−7→ s1

a2
−7→ s2 . . . sn−1

an
−7→ sn

is a computation of L of length n ∈ N from s = s0 to s′ = sn compatible with

trace α = a1 a2 . . . an ∈ A∗, written c ∈ CC(s, α), iff for each step si−1
ai
−7→ si in c

there is a transition si−1
ai−→∆i in L such that si ∈ supp(∆i), 1 ≤ i ≤ n, where:

– ∆i(si) is the execution probability of step si−1
ai
−7→ si conditioned on the se-

lection of transition si−1
ai−→∆i at state si−1, or simply the execution prob-

ability of that step if L is fully probabilistic.
– prob(c) =

∏
1≤i≤n∆i(si) is the execution probability of c if L is fully proba-

bilistic, assuming that prob(c) = 1 when n = 0.
– For C ⊆ CC(s, α), we let prob(C) =

∑
c∈C prob(c) if L is fully probabilistic,

provided that no computation in C is a proper prefix of one of the others.

When several transitions depart from the same state s of an NPLTS L, they
describe a nondeterministic choice among different behaviors. A resolution of s
is the result of a possible way of resolving nondeterministic choices starting
from s, as if a scheduler were applied that decides which activity has to be
performed next. A resolution of nondeterminism can thus be formalized as a
fully probabilistic NPLTS Z with a tree-like structure, whose branching points
correspond to target distributions of transitions deriving from those of L.
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Fig. 1. Lack of injectivity breaks structure preservation

In [2] we examined two ways of resolving nondeterminism. The structure-
preserving approach constructs a resolution by importing states and transitions
from the original NPLTS via a deterministic scheduler. In a resolution of the
structure-modifying approach (i) a transition can be produced by probabilisti-
cally combining transitions of the original model via a randomized scheduler [24],
or (ii) a state can be obtained by probabilistically splitting states of the original
model via an interpolating scheduler [12], or (iii) a combination thereof [7].

As in [2], we focus on structure-preserving resolutions arising from central-
ized, memoryless, deterministic schedulers. At each step, a scheduler of this kind
selects one of the transitions departing from the current state, or no transitions
at all thus stopping the execution. As a consequence, the resulting resolution
is isomorphic to a submodel of the original model (or of its unfolding, should
cycles be present), thereby preserving the structure of the original model (or
of its unfolding). If the model is fully nondeterministic, each of its resolutions
coincides with a computation of the model; if the model is fully probabilistic, its
maximal resolution coincides with (the unfolding of) the entire model.

Following [17,5] we introduce a correspondence function corrZ : Z → S from
the acyclic state space of the resolution Z = (Z,A, −→Z) being built, to the
possibly cyclic state space of the considered model L = (S,A,−→L). For each

transition z
a−→Z ∆, the function corrZ must preserve the probabilities of all the

states corresponding to those in supp(∆) and must be injective over supp(∆). In
the absence of injectivity, the original structure may not be preserved in the case
that the target distribution of a transition assigns the same probability to several
inequivalent states. This is exemplified in Fig. 1. The correspondence function
that maps z to s, z′1 and z′2 to s′1, and z′′1 and z′′2 to s′′1 would cause the rightmost
NPLTS to be considered a legal resolution of the leftmost NPLTS, which is not
correct as the former is not isomorphic to any submodel of the latter.

Definition 3. Let L = (S,A,−→L) be an NPLTS and s ∈ S. An acyclic NPLTS
Z = (Z,A, −→Z) is a structure-preserving resolution of s, written Z ∈ Ressp(s),
iff there exists a correspondence function corrZ : Z → S such that s = corrZ(zs),
for some zs ∈ Z acting as the initial state of Z, and for all z ∈ Z it holds that:

– If z
a−→Z ∆ then corrZ(z)

a−→L Γ , with corrZ being injective over supp(∆)
and satisfying ∆(z′) = Γ (corrZ(z′)) for all z′ ∈ supp(∆).

– At most one transition departs from z.
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3 Probabilistic Trace Equivalences and Their Anomalies

There is only one way of defining trace semantics for fully nondeterministic
processes [8] and for fully probabilistic processes [20]. In contrast, this is not the
case with processes featuring both nondeterminism and probabilities, as shown
in the spectrum of behavioral equivalences for NPLTS models studied in [4].

The first probabilistic trace equivalence that we consider is the one of [25].
Two states are deemed equivalent when every resolution of either state is matched
by a resolution of the other, in the sense that for each trace both resolutions
execute that trace with the same probability. We call it probabilistic trace post-
equivalence because the quantification over traces occurs after selecting the two
fully matching resolutions as underlined in the definition below, where zsi de-
notes both the initial state of Zi and the state to which si corresponds.

Definition 4. Let (S,A,−→) be an NPLTS and s1, s2 ∈ S. We let s1 ∼post
PTr s2

iff for each Z1 ∈ Ressp(s1) there exists Z2 ∈ Ressp(s2) such that for all α ∈ A∗:
prob(CC(zs1 , α)) = prob(CC(zs2 , α))

and also the condition obtained by exchanging Z1 with Z2 is satisfied.

The second probabilistic trace equivalence is the one of [3], which is a congru-
ence with respect to parallel composition. It is less restrictive than the previous
equivalence because, given two states, a resolution of either state can be matched
by different resolutions of the other with respect to different traces. We call it
probabilistic trace pre-equivalence because traces are fixed before selecting the
two partially matching resolutions.

Definition 5. Let (S,A,−→) be an NPLTS and s1, s2 ∈ S. We let s1 ∼pre
PTr s2

iff, for all α ∈ A∗, for each Z1 ∈ Ressp(s1) there is Z2 ∈ Ressp(s2) such that:
prob(CC(zs1 , α)) = prob(CC(zs2 , α))

and also the condition obtained by exchanging Z1 with Z2 is satisfied.

In Fig. 2 we show three NPLTS models whose initial states s1, s2, s3 are
pairwise distinguished by∼post

PTr but identified by∼pre
PTr, because for all i = 1, . . . , 4

the probability of executing trace a bi is the same in the three models.
Although deterministic schedulers are very intuitive, the rigid preservation

they ensure about the structure of the original model, together with their free-
dom of performing choices inconsistent with each other in states with equivalent
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continuations, causes the two considered probabilistic trace equivalences to be
overdiscriminating. This results in the violation of a number of desirable prop-
erties (a fact that also happens with structure-modifying schedulers, but to a
much lesser extent). More precisely, in [2] we showed that ∼post

PTr and ∼pre
PTr:

– are not coarser than probabilistic bisimilarity under deterministic schedulers;
– are not congruences w.r.t. action prefix under deterministic schedulers;
– are not compatible with their version for fully probabilistic processes.

The first anomaly is illustrated by the two NPLTS models in Fig. 3 whose
initial states are s1 and s2. They are probabilistic bisimilar in the sense of [27]
but s1 6∼post

PTr s2 and s1 6∼pre
PTr s2 because of the resolution whose initial state

is z2, where trace a b is executable with probability p instead of 1. This resolution
belongs to Ressp(s2)\Ressp(s1) as it does not preserve the structure of the NPLTS
whose initial state is s1. Therefore, the two probabilistic trace equivalences do
not include probabilistic bisimilarity.

The second anomaly is illustrated by the two NPLTS models in Fig. 3 whose
initial states are s3 and s4. After the two a-transitions, two distributions are
reached that are probabilistic trace equivalent, in the sense that for each class of
equivalent states they both assign the same probability to that class. However,
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it holds that s3 6∼post
PTr s4 and s3 6∼pre

PTr s4 due to the resolution whose initial
state is z3, where trace a a′ b is executable with probability p instead of 1. This
resolution belongs to Ressp(s3) \ Ressp(s4) as it does not preserve the structure
of the NPLTS whose initial state is s4. Therefore, the two probabilistic trace
equivalences are not congruences with respect to the action prefix operator,
which concatenates the execution of an action with a process distribution.

The third anomaly is illustrated by the two NPLTS models in Fig. 3 whose
initial states are s5 and s6. They are identified by the trace equivalence for fully
probabilistic processes of [20], which does not use schedulers at all as in those
processes there are no nondeterministic choices to be solved. However, it turns
out that s5 6∼post

PTr s6 and s5 6∼pre
PTr s6 because ∼post

PTr and ∼pre
PTr do make use of

schedulers, and schedulers may decide of stopping the execution. This is wit-
nessed by the resolution whose initial state is z6 – notice that the scheduler has
decided to stop the execution at z′′6 – where not only trace a b c1 but also trace a b
is executable with probability p. This resolution belongs to Ressp(s6)\Ressp(s5)
as it does not preserve the structure of the NPLTS whose initial state is s5.
Therefore, the two probabilistic trace equivalences are not backward compatible
with the one for fully probabilistic processes.

4 Properties of Coherency

The anomalies shown in Fig. 3 are due to the freedom of schedulers of making
different decisions in states enabling the same actions. In [2] we proposed to
limit the excessive power of schedulers by restricting them to yield coherent
resolutions. Intuitively, this means that, if several states in the support of the
target distribution of a transition are equivalent, then the decisions made by the
scheduler in those states have to be coherent with each other, so that the states
to which they correspond in any resolution are equivalent as well.

The coherency constraints implementing this idea have been expressed in [2]
by reasoning on coherent trace distributions, i.e., families of sets of traces weighted
with their execution probabilities in a given resolution, built through the follow-
ing operations.

Definition 6. Let A 6= ∅ be a countable set. For a ∈ A, p ∈ R, TD ⊆ 2A
∗×R,

and T ⊆ A∗ × R we define:
a .TD = {a . T | T ∈ TD} a . T = {(aα, p′) | (α, p′) ∈ T}
p · TD = {p · T | T ∈ TD} p · T = {(α, p · p′) | (α, p′) ∈ T}

tr(TD) = {tr(T ) | T ∈ TD} tr(T ) = {α ∈ A∗ | ∃p′ ∈ R. (α, p′) ∈ T}
while for TD1,TD2 ⊆ 2A

∗×R we define:

TD1 + TD2 =


{T1 + T2 | T1 ∈ TD1 ∧ T2 ∈ TD2 ∧ tr(T1) = tr(T2)}

if tr(TD1) = tr(TD2)
{T1 + T2 | T1 ∈ TD1 ∧ T2 ∈ TD2}

otherwise
where for T1, T2 ⊆ A∗ × R we define:

T1 + T2 = {(α, p1 + p2) | (α, p1) ∈ T1 ∧ (α, p2) ∈ T2} ∪
{(α, p) ∈ T1 ∪ T2 | α /∈ tr(T1) ∩ tr(T2)}
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Weighted trace set addition T1 + T2 is commutative and associative, with
probabilities of identical traces in the two summands being always added up
for coherency purposes. In constrast, trace distribution addition is only commu-
tative. Essentially, the two summands in TD1 + TD2 represent two families of
sets of weighted traces executable in the resolutions of two states in the support
of a target distribution. Every weighted trace set T1 ∈ TD1 is summed with
every weighted trace set T2 ∈ TD2 – so to characterize an overall resolution –
unless TD1 and TD2 have the same family of trace sets, in which case summa-
tion is restricted to weighted trace sets featuring the same traces for the sake
of coherency. Due to the lack of associativity, in the definition below all trace
distributions ∆(s′) · TDc

n−1(s′) exhibiting the same family Θ of trace sets have
to be summed up first, which is ensured by the presence of a double summation.

Definition 7. Let (S,A,−→) be an NPLTS and s ∈ S. The coherent trace
distribution of s is the subset of 2A

∗×R]0,1] defined as follows:
TDc(s) =

⋃
n∈N TDc

n(s)
with the coherent trace distribution of s whose traces have length at most n being
defined as:

TDc
n(s) =


(ε, 1) †

⋃
s

a−→∆

a .

( ∑
Θ∈tr(∆,n−1)

tr(TDc
n−1(s

′))=Θ∑
s′∈supp(∆)

∆(s′) · TDc
n−1(s′)

)
if n > 0 and s has outgoing transitions

{{(ε, 1)}}
otherwise

where tr(∆,n − 1) = {tr(TDc
n−1(s′)) | s′ ∈ supp(∆)} and the operator (ε, 1) †

is such that (ε, 1) † TD = {{(ε, 1)} ∪ T | T ∈ TD}.

In the case of a fully probabilistic NPLTS, due to the absence of nondeter-
minism any coherent trace distribution TDc

n(s) contains a single weighted trace
set. This holds in particular for resolutions.

Proposition 1. Let (S,A,−→) be a fully probabilistic NPLTS, s ∈ S, n ∈ N.
Let A≤n = {α ∈ A∗ | |α| ≤ n}. Then TDc

n(s) = {{(α, p) ∈ A≤n × R]0,1] |
prob(CC(s, α)) = p}}.

As for the relationship between TDc
n(s) and TDc

n−1(s), it turns out that
every element of the former contains the same traces as an element of the latter.
As we will see in the next section, their probabilities may differ.

Proposition 2. Let (S,A,−→) be an NPLTS, s ∈ S, n ∈ N≥1. Then for all
T ∈ TDc

n(s) there exists T ′ ∈ TDc
n−1(s) such that tr(T ′) ⊆ tr(T ).

For the NPLTS models in Fig. 3 we have that:

– TDc(s′2) = {{(ε, 1)}, {(ε, 1), (b, 1)}, {(ε, 1), (c, 1)}} = TDc(s′′2) while in the
related resolution states it holds that TDc(z′2) = {{(ε, 1)}, {(ε, 1), (b, 1)}} 6=
{{(ε, 1)}, {(ε, 1), (c, 1)}} = TDc(z′′2 ).
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– TDc(s′3) = {{(ε, 1)}, {(ε, 1), (a′, 1)}, {(ε, 1), (a′, 1), (a′ b, 1)}, {(ε, 1), (a′, 1),
(a′ c, 1)}} = TDc(s′′3) but TDc(z′3) = {{(ε, 1)}, {(ε, 1), (a′, 1)}, {(ε, 1), (a′, 1),
(a′ b, 1)}} 6= {{(ε, 1)}, {(ε, 1), (a′, 1)}, {(ε, 1), (a′, 1), (a′ c, 1)}} = TDc(z′′3 ).

– TDc
1(s′6) = {{(ε, 1), (b, 1)}} = TDc

1(s′′6) but TDc
1(z′6) = {{(ε, 1), (b, 1)}} 6=

{{(ε, 1)}} = TDc
1(z′′6 ), which indicates that separate coherency constraints

are needed relying on TDc
n sets for every n ∈ N.

Further examples in [2] show that the coherency constraints should be based
on TDc

n sets up to the probabilities they contain, i.e., the constraints should rely
on tr(TDc

n) sets. Moreover, for every n ∈ N, those examples call for a complete
presence in each resolution of computations of length n if any, including possible
shorter maximal computations. Note that trace completeness up to length n
is looser than requiring resolution maximality.

Definition 8. Let L = (S,A,−→L) be an NPLTS, s ∈ S, and Z = (Z,A, −→Z)
∈ Ressp(s) with correspondence function corrZ : Z → S. We say that Z is
a coherent resolution of s, written Z ∈ Rescsp(s), iff for all z ∈ Z, whenever

z
a−→Z ∆, then for all n ∈ N:

1. tr(TDc
n(corrZ(z′))) = tr(TDc

n(corrZ(z′′))) =⇒ tr(TDc
n(z′)) = tr(TDc

n(z′′))
for all z′, z′′ ∈ supp(∆).

2. For all z′ ∈ supp(∆), the only T ∈ TDc
n(z′) admits T̄ ∈ TDc

n(corrZ(z′))
such that tr(T ) = tr(T̄ ).

Any complete submodel rooted at a state z of a coherent resolution turns
out to be coherent too, where complete means that no state reachable from z in
the resolution is cut off in the resolution submodel. Completeness is important
for satisfying in particular the second coherency constraint of Def. 8.

Proposition 3. Let L = (S,A,−→L) be an NPLTS, s ∈ S, Z = (Z,A,−→Z) ∈
Rescsp(s) with correspondence function corrZ : Z → S. Let Z ′z = (Z ′, A, −→Z′)
be the complete submodel of Z rooted at z ∈ Z. Then Z ′z ∈ Rescsp(corrZ(z)).

The resolutions in Fig. 3 do not respectively belong to Rescsp(s2), Rescsp(s3),
Rescsp(s6). We proved in Thm. 1 of [2] that the examined anomalies disappear
by substituting Rescsp for Ressp in Defs. 4 and 5. This replacement yields the two

coherency-based probabilistic trace equivalences ∼post,c
PTr and ∼pre,c

PTr for which we
will investigate alternative characterizations in the next two sections by exploit-
ing the properties shown in Props. 1, 2, and 3.

5 Alternative Characterization of ∼post,c
PTr

The definition of ∼post,c
PTr essentially requires that two states have the same trace

distributions. Therefore, it is natural to expect an alternative characterization of
∼post,c

PTr based on the construction of Def. 7. Incidentally, this would fully justify
the construction itself, given that the probabilities contained in the TDc

n sets
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have not been exploited in the coherency constraints of Def. 8. However, for an
NPLTS (S,A,−→) and s ∈ S, the set TDc(s) may contain weighted traces that
break coherency, hence that set cannot be used for characterization purposes.

For example, consider the NPLTS in Fig. 4. We have that:
TDc

1(s1) = {{(ε, 1), (b, 1)}} = TDc
1(s2)

and also:
TDc

2(s1) = {{(ε, 1), (b, 1), (b c, 1)}, {(ε, 1), (b, 1), (b d, 1)}} = TDc
2(s2)

because in the complete submodel rooted at s1 it holds that:
TDc

1(s′1) = {{(ε, 1), (c, 1)}, {(ε, 1), (d, 1)}} = TDc
1(s′′1)

and hence, when applying Def. 7 to compute TDc
2(s1), according to Def. 6 the

summation is restricted to weighted trace sets featuring the same traces as:
tr(TDc

1(s′1)) = {{ε, c}, {ε, d}} = tr(TDc
1(s′′1))

Nevertheless, since:
TDc

2(s′1) = {{(ε, 1), (c, 1), (c e1, 1)}, {(ε, 1), (d, 1), (d e2, 1)}}
TDc

2(s′′1) = {{(ε, 1), (c, 1), (c e3, 1)}, {(ε, 1), (d, 1), (d e4, 1)}}
where:
tr(TDc

2(s′1)) = {{ε, c, c e1},{ε, d, d e2}} 6= {{ε, c, c e3},{ε, d, d e4}} = tr(TDc
2(s′′1))

we subsequently derive that:
TDc

3(s1) = (ε, 1) †
({{(b, p), (b c, p), (b c e1, p)},
{(b, p), (b d, p), (b d e2, p)}} +
{{(b, 1− p), (b c, 1− p), (b c e3, 1− p)},
{(b, 1− p), (b d, 1− p), (b d e4, 1− p)}})

= {{(ε, 1), (b, 1), (b c, 1), (b c e1, p), (b c e3, 1− p)},
{(ε, 1), (b, 1), (b c, p), (b d, 1− p), (b c e1, p), (b d e4, 1− p)},
{(ε, 1), (b, 1), (b d, p), (b c, 1− p), (b d e2, p), (b c e3, 1− p)},
{(ε, 1), (b, 1), (b d, 1), (b d e2, p), (b d e4, 1− p)}}

whereas:
TDc

3(s2) = {{(ε, 1), (b, 1), (b c, 1), (b c e1, p), (b c e3, 1− p)},
{(ε, 1), (b, 1), (b d, 1), (b d e2, p), (b d e4, 1− p)}}

Therefore, in the calculation of TDc
4(s) we cannot simply sum up weighted

trace sets in TDc
3(s1) and in TDc

3(s2) that exhibit the same traces. This is due
to the presence in TDc

3(s1) of the following two weighted trace sets:
{(ε, 1), (b, 1), (b c, p), (b d, 1− p), (b c e1, p), (b d e4, 1− p)}
{(ε, 1), (b, 1), (b d, p), (b c, 1− p), (b d e2, p), (b c e3, 1− p)}

which cannot be exposed by any coherent resolution. The key observation is
that coherency constraints on traces like b c and b d are ignored, hence those
two weighted trace sets in TDc

3(s1) are not extensions of weighted trace sets in
TDc

2(s1). Indeed, neither of those weighted trace sets in TDc
3(s1) includes as a

subset a weighted trace set in TDc
2(s1) because of the different probabilities of the

aforementioned traces in the considered sets (see the sentence before Prop. 2).

This example reveals that the construction of Def. 7, together with weighted
trace set addition and trace distribution addition as provided in Def. 6, are
appropriate to set up the coherency constraints in Def. 8, but not to characterize
the trace distributions of coherent resolutions. To achieve this, every set TDc

n(s),
with n > 0 and s having outgoing transitions, should incrementally build on
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Fig. 4. Full coherency is necessary to reconcile TDc
3(s1) and TDc

3(s2)

TDc
n−1(s), in the sense that every weighted trace set in the former should include

as a subset a weighted trace set in the latter (a monotonicity-like property
stronger than the one of Prop. 2). We thus introduce a variant of coherent trace
distribution, which we call fully coherent trace distribution.

Definition 9. Let (S,A,−→) be an NPLTS and s ∈ S. The fully coherent trace
distribution of s is the subset of 2A

∗×R]0,1] defined as follows:
TDfc(s) =

⋃
n∈N TDfc

n (s)
with the fully coherent trace distribution of s whose traces have length at most n
being the subset of TDc

n(s) defined as:

TDfc
n (s) =


{T ∈ TDc

n(s) | ∃T ′ ∈ TDfc
n−1(s). T ′ ⊆ T}

if n > 0 and s has outgoing transitions
{{(ε, 1)}}

otherwise

For the NPLTS in Fig. 4 we have that:
TDfc

3 (s1) = {{(ε, 1), (b, 1), (b c, 1), (b c e1, p), (b c e3, 1− p)},
{(ε, 1), (b, 1), (b d, 1), (b d e2, p), (b d e4, 1− p)}} = TDfc

3 (s2)

and overall TDfc(s) =
⋃

0≤n≤4 TDfc
n (s) where:

TDfc
0 (s) = {{(ε, 1)}}

TDfc
1 (s) = {{(ε, 1), (a, 1)}}

TDfc
2 (s) = {{(ε, 1), (a, 1), (a b, 1)}}

TDfc
3 (s) = {{(ε, 1), (a, 1), (a b, 1), (a b c, 1)},

{(ε, 1), (a, 1), (a b, 1), (a b d, 1)}}
TDfc

4 (s) = {{(ε, 1), (a, 1), (a b, 1), (a b c, 1), (a b c e1, p), (a b c e3, 1− p)},
{(ε, 1), (a, 1), (a b, 1), (a b d, 1), (a b d e2, p), (a b d e4, 1− p)}}

with the various sets TDfc
n (s) precisely capturing the trace distributions of the

coherent resolutions of s.
Fully coherent trace distributions TDfc

n (s) coincide with coherent ones TDc
n(s)

when n ≤ 2 as a consequence of Def. 6. The example in Fig. 4 shows that, when
n ≥ 3, in general TDfc

n (s) cannot be recursively characterized as TDc
n(s) in Def. 7
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even though each element of a fully coherent trace distribution can be expressed
as a sum of elements of other fully coherent trace distributions.

Proposition 4. Let (S,A,−→) be an NPLTS, s ∈ S, n ∈ N. If n ≤ 2 or
s has no outgoing transitions, then TDfc

n (s) = TDc
n(s), otherwise each element

of TDfc
n (s) is anyhow obtained by summing up a suitable element of TDfc

n−1(s′)
for every s′ in the support of the target distribution of a transition of s.

By virtue of Prop. 1, the equality TDfc
n (s) = TDc

n(s) extends to all n ∈ N,
i.e., fully coherent trace distributions boil down to coherent ones, in the case of
a fully probabilistic NPLTS. This holds in particular for resolutions.

Proposition 5. Let (S,A,−→) be a fully probabilistic NPLTS, s ∈ S, n ∈ N.
Then TDfc

n (s) = TDc
n(s).

Before presenting the characterization result, we need to revisit the coherency
constraints of Def. 8 in the light of the example of Fig. 4. Suppose that each of
the two terminal states reached by an e1-transition is replaced by a distribution
with two states in its target, reached with probabilities r and 1 − r and both
featuring a nondeterministic choice between an f -transition to a terminal state
and a g-transition to a terminal state. According to Def. 8, after the leftmost e1-
transition either both f -transitions are selected or both g-transitions are selected,
and the same holds after the rightmost e1-transition.

However, from TDc
3(s1) 6= TDc

3(s2) it follows that TDc
4(s1) 6= TDc

4(s2), so
that on s1 side both f -transitions may be selected while on s2 side both g-
transitions may be selected instead, or vice versa. If we consider an NPLTS
whose initial state s′ has a single outgoing transition, which is labeled with a
and reaches a model isomorphic to the complete submodel rooted at s2 in Fig. 4
(and extended in the aforementioned way after its only e1-transition), s′ would be
distinguished from s instead of being identified with it. The coherency constraints
of Def. 8 thus need to be strengthened by substituting TDfc

n for TDc
n, in which

case Thm. 1 of [2] is still valid and ∼post,c
PTr and ∼pre,c

PTr are modified accordingly.
The following lemma, where Prop. 1 is exploited again together with Props. 3,

4, and 5, lays the basis for a characterization of ∼post,c
PTr in terms of fully coherent

trace distribution equality. In the lemma, zs denotes both the initial state of Z
and the state to which s corresponds.

Lemma 1. Let (S,A,−→) be an NPLTS, s ∈ S, n ∈ N, and T ⊆ A∗ × R]0,1].

Then T ∈ TDfc
n (s) iff there exists Z ∈ Rescsp(s) such that TDfc

n (zs) = {T}.

Theorem 1. Let (S,A,−→) be an NPLTS and s1, s2 ∈ S. Then s1 ∼post,c
PTr s2

iff TDfc(s1) = TDfc(s2).

6 Alternative Characterization of ∼pre,c
PTr

As far as ∼pre,c
PTr is concerned, similar to [3] we can provide an alternative charac-

terization based on sets T c(s) built by considering all weighted traces executable



Alternative Characterizations of Probabilistic Trace Equivalences 15

from state s at once, i.e., without keeping track of the resolutions of s in which
they are feasible. This is consistent with the focus of ∼pre,c

PTr on individual traces
rather than on trace distributions. In the definition below, the double summa-
tion used in Def. 7 in the case that n > 0 and s has outgoing transitions is
not needed thanks to the commutativity and associativity of weighted trace set
addition deriving from Def. 6.

Definition 10. Let (S,A,−→) be an NPLTS and s ∈ S. The coherent weighted
trace set of s is the subset of A∗ × R]0,1] defined as follows:

T c(s) =
⋃
n∈N T

c
n(s)

with the coherent weighted trace set of s whose traces have length at most n being
defined as:

T c
n(s) =


{(ε, 1)} ∪

⋃
s

a−→∆

a .

( ∑
s′∈supp(∆)

∆(s′) · T c
n−1(s′)

)
if n > 0 and s has outgoing transitions

{(ε, 1)}
otherwise

For the NPLTS in Fig. 4 we have that T c(s) =
⋃

0≤n≤4 T
c
n(s) where:

T c
0 (s) = {(ε, 1)}
T c
1 (s) = {(ε, 1), (a, 1)}
T c
2 (s) = {(ε, 1), (a, 1), (a b, 1)}
T c
3 (s) = {(ε, 1), (a, 1), (a b, 1), (a b c, 1), (a b d, 1)}
T c
4 (s) = {(ε, 1), (a, 1), (a b, 1), (a b c, 1), (a b d, 1),

(a b c e1, p), (a b c e3, 1− p), (a b d e2, p), (a b d e4, 1− p)}
with the various sets T c

n(s) precisely capturing the weighted traces of the coherent
resolutions of s.

It is easy to characterize T c
n(s) in the case of a fully probabilistic NPLTS.

This holds in particular for resolutions.

Proposition 6. Let (S,A,−→) be a fully probabilistic NPLTS, s ∈ S, n ∈ N.
Let A≤n = {α ∈ A∗ | |α| ≤ n}. Then T c

n(s) = {(α, p) ∈ A≤n × R]0,1] |
prob(CC(s, α)) = p}.

The construction in Def. 10 turns out to be monotonic, in the sense that
T c
n(s) includes as a subset T c

n−1(s).

Proposition 7. Let (S,A,−→) be an NPLTS, s ∈ S, (α, p) ∈ A∗ × R]0,1], and
n ∈ N≥|α|. Then (α, p) ∈ T c

n(s) implies (α, p) ∈ T c
n+1(s).

The following lemma, which exploits Props. 6 and 7, provides the basis for
a characterization of ∼pre,c

PTr in terms of coherent weighted trace set equality.
In the lemma, zs denotes both the initial state of Z and the state to which s
corresponds.

Lemma 2. Let (S,A,−→) be an NPLTS, s ∈ S, and (α, p) ∈ A∗×R]0,1]. Then
(α, p) ∈ T c(s) iff there exists Z ∈ Rescsp(s) such that prob(CC(zs, α)) = p.
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Fig. 5. Using weighted trace sets for coherency breaks probabilistic trace equivalence

Theorem 2. Let (S,A,−→) be an NPLTS and s1, s2 ∈ S. Then s1 ∼pre,c
PTr s2 iff

T c(s1) = T c(s2).

We conclude with two remarks. The first one is that the construction in
Def. 10 is identical to the one in Def. 3.5 of [3], but this should not be the case
as coherency was neglected in [3]. Indeed, before Def. 3.5 of [3] the definition of
X+Y – i.e., T1 +T2 using the notation of this paper – should have included also
(α, q1) ∈ X and (α, q2) ∈ Y without summing them up, otherwise the right-to-
left implication in Lemma 3.7 of [3] does not hold as can be seen from trace a b of
the (incoherent) resolution in Fig. 3 of this paper whose initial state is z2. That
definition of X + Y works here instead because the focus on coherency requires
to always sum up the probabilities of weighted traces sharing the same trace.

The second remark is that looser coherency constraints, based on weighted
trace sets rather than on trace distributions as in Def. 8, would not work. As
anticipated in [2], if we used T c

n sets instead of TDc
n sets, then probabilistic

trace equivalent NPLTS models like the ones in Fig. 5 would be told apart.
Indeed, we would have tr(T c(s′1)) = {ε, b, b c1, b c2, b c} = tr(T c(s′2)) – whereas
tr(TDc(s′1)) 6= tr(TDc(s′2)) – hence in any coherent resolution of s′ traces a b c1,
a b c2, a b c could only be executed with probability 0.5 if present, while s′′ admits
coherent resolutions in which those traces have execution probability 0.25.

7 Conclusions

Based on the notion of coherent resolution of nondeterminism, presented in [2]
to avoid the anomalies of probabilistic trace semantics depicted in Fig. 3, in
this paper we have provided alternative characterizations of ∼post,c

PTr [25] and
∼pre,c

PTr [3], respectively relying on the equality of fully coherent trace distributions
and on the equality of coherent weighted trace sets. Both fully coherent trace
distributions and coherent weighted trace sets are different from coherent trace
distributions, introduced in [2] for defining coherency constraints on resolutions.

We plan to exploit the aforementioned alternative characterizations for study-
ing properties and decision procedures of the two examined coherency-based
probabilistic trace equivalences over nondeterministic and probabilistic processes.
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A Proofs of Results

Proof of Prop. 1.
We proceed by induction on n ∈ N:

– For n = 0 we have that TDc
n(s) = {{(ε, 1)}} = {{(α, p) ∈ A≤n × R]0,1] |

prob(CC(s, α)) = p}}.
– Let n = m + 1 for some m ∈ N and suppose that the result holds for the

coherent trace distribution TDc
m(s′) of any state s′ ∈ S. To avoid trivial

cases, we assume that s has an outgoing transition s
a−→∆, which is unique

as the considered NPLTS is fully probabilistic. Then:

TDc
n(s) = (ε, 1) † a .

( ∑
Θ∈tr(∆,m)

tr(TDc
m(s′))=Θ∑

s′∈supp(∆)

∆(s′) · TDc
m(s′)

)
From the induction hypothesis, for each s′ ∈ supp(∆) it follows that:

TDc
m(s′) = {{(α′, p′) ∈ A≤m × R]0,1] | prob(CC(s′, α′)) = p′}}

and hence:
TDc

n(s) = (ε, 1) †
∑

s′∈supp(∆)

{{(aα′, ∆(s′) · p′) ∈ A≤n × R]0,1] | prob(CC(s′, α′)) = p′}}

= {{(α, p) ∈ A≤n × R]0,1] | prob(CC(s, α)) = p}}
where the summation indexed by Θ has disappeared because when summing
up singleton trace distributions there is no difference according to Def. 6
between the case in which they share the same family of trace sets and the
case in which they do not.

Proof of Prop. 2.
Assuming that s has outgoing transitions so to avoid trivial cases, we proceed
by induction on n ∈ N≥1:

– For n = 1 we have that TDc
n(s) = {{(ε, 1), (a, 1)} | s a−→∆}, with each of its

elements T including as a subset the only element T ′ = {(ε, 1)} of TDc
n−1(s).

– Let n = m+ 1 for some m ∈ N≥1 and suppose that the result holds for the
coherent trace distributions TDc

m(s′) and TDc
m−1(s′) of any state s′ ∈ S.

Consider an arbitrary element T of TDc
n(s) originated from some transition

departing from s, say s
a−→∆. Then:

T ∈ (ε, 1) † a .

( ∑
Θ∈tr(∆,m)

tr(TDc
m(s′))=Θ∑

s′∈supp(∆)

∆(s′) · TDc
m(s′)

)
Since T is obtained by summing up a suitable element Ts′ of TDc

m(s′) for
every s′ ∈ supp(∆), we have that:

tr(T ) = {ε} ∪ a .
⋃

s′∈supp(∆)

tr(Ts′)

From the induction hypothesis, for each such Ts′ ∈ TDc
m(s′) there ex-

ists T ′s′ ∈ TDc
m−1(s′) such that tr(T ′s′) ⊆ tr(Ts′). Using these sets T ′s′ ∈

TDc
m−1(s′) in the first formula above deriving from Def. 7, we assemble a

set T ′ ∈ TDc
m(s) such that:

tr(T ′) = {ε} ∪ a .
⋃

s′∈supp(∆)

tr(T ′s′)

which thus satisfies tr(T ′) ⊆ tr(T ).
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Proof of Prop. 3.
It immediately derives from the fact that every state of Z having an outgoing
transition fulfills constraints 1 and 2 of Def. 8, because every state of Z ′ is a
state of Z too (being Z ′ a submodel of Z) and every state reachable from z in Z
is reachable from z in Z ′ too (due to the completeness of Z ′).

Proof of Prop. 4.
If n = 0 or s has no outgoing transitions, then TDfc

n (s) = {{(ε, 1)}} = TDc
n(s).

Henceforth we suppose that s has outgoing transitions.
If n = 1 then TDfc

n (s) = TDc
n(s) because TDfc

n−1(s) = {{(ε, 1)}} and every
T ∈ TDc

n(s) is of the form {(ε, 1), (a, 1)} for some action a labeling an outgoing
transition of s, thus satisfying {(ε, 1)} ⊆ T .

If n = 2 then TDfc
n (s) = TDc

n(s) because TDfc
n−1(s) = {{(ε, 1), (a, 1)} | s a−→∆}

and for every transition s
a−→∆ it holds that TDc

n(s) includes as a subset:

(ε, 1) † a .

( ∑
Θ∈tr(∆,1)

tr(TDc
n−1(s

′))=Θ∑
s′∈supp(∆)

∆(s′) · TDc
n−1(s′)

)
each element T of which certainly satisfies {(ε, 1), (a, 1)} ⊆ T . Note that the pres-
ence of (a, 1) in T stems from the summation of all pairs (ε,∆(s′)) occurring in
the various summands ∆(s′) · TDc

n−1(s′) due to the fact that the probabilities
of identical traces are always added up according to Def. 6.
If n ≥ 3 then each element T of TDfc

n (s), whose nonempty traces all start with

some action a labeling an outgoing transition of s, say s
a−→∆, is obtained

by summing up a suitable element Ts′ of TDfc
n−1(s′) for every s′ ∈ supp(∆).

The reason is that no element T ′s′ of TDc
n−1(s′) \TDfc

n−1(s′) includes as a subset

an element of TDfc
n−2(s′) and hence its weighted traces of length at most n− 2

cannot contribute to the construction of an element of TDfc
n−1(s) included as a

subset of an element of TDfc
n (s). Indeed, with respect to any element of TDfc

n−2(s′)
of which it contains all traces of length at most n−2, each such T ′s′ has a different
probability associated with at least one of those traces, with the probabilities
of the corresponding left-extended traces of length m ≥ n executable by an up-
stream state (i.e., s or one of its predecessors) remaining different from each
other because they are obtained by multiplying the probabilities of the origi-
nal traces by the same value, which is the probability of reaching s′ from the
upstream state in m− n+ 1 steps.

Proof of Prop. 5.
We proceed by induction on n ∈ N:

– For n = 0 we have that TDfc
n (s) = {{(ε, 1)}} = TDc

n(s).
– Let n = m + 1 for some m ∈ N and suppose that the result holds when

considering traces of length at most m. By virtue of Prop. 1 we have that:
TDc

n(s) = {{(α, p) ∈ A≤n × R]0,1] | prob(CC(s, α)) = p}}
TDc

m(s) = {{(α, p) ∈ A≤m × R]0,1] | prob(CC(s, α)) = p}}
where:

{(α, p) ∈ A≤m × R]0,1] | prob(CC(s, α)) = p} ⊆ {(α, p) ∈ A≤n × R]0,1] | prob(CC(s, α)) = p}
Since from the induction hypothesis it follows that TDc

m(s) = TDfc
m(s),
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we have proved that the only weighted trace set in TDc
n(s) includes as a

subset the only weighted trace set in TDfc
m(s), hence TDfc

n (s) = TDc
n(s).

Proof of Lemma 1.
We proceed by induction on n ∈ N:

– For n = 0 we have that TDfc
n (s) = {{(ε, 1)}} = TDfc

n (zs) with zs being the
initial state of any Z ∈ Rescsp(s), hence the result trivially follows.

– Let n = m + 1 for some m ∈ N and suppose that the result holds for each
weighted trace set, of any state, whose traces have length at most m. To avoid
trivial cases, we assume that T 6= {(ε, 1)} and that s has outgoing transitions.
The proof is divided into two parts:

• Let T ∈ TDfc
n (s), with all of its nonempty traces starting with some ac-

tion a labeling an outgoing transition of s, say s
a−→∆. From T ∈ TDfc

n (s)
we derive that T ∈ TDc

n(s) and hence:

T ∈ (ε, 1) † a .

( ∑
Θ∈tr(∆,m)

tr(TDc
m(s′))=Θ∑

s′∈supp(∆)

∆(s′) · TDc
m(s′)

)
[?]

From Prop. 4 we further derive that T is obtained by adding up – ac-
cording to Def. 6 applied to the double summation of [?] – a suitable
element Ts′ of TDfc

m(s′) for every s′ ∈ supp(∆).
From the induction hypothesis, for each such Ts′ it follows that there
exists Zs′ = (Zs′ , A,−→Zs′ ) ∈ Rescsp(s′) such that TDfc

m(zs′) = {Ts′}.
Without loss of generality, we can assume that each Zs′ has computa-
tions of length at most m and, subject to this, all of its computations
are maximal (in the sense that no further steps can be added to reach
length m) with respect to the corresponding computations from s′.
Consider now the resolution Z = (Z,A,−→Z) of s such that (i) the image

via corrZ of its initial transition zs
a−→Z ∆′ is s

a−→∆ and (ii) from each
zs′ ∈ supp(∆′) the resolution behaves as Zs′ . Then {T} = TDc

n(zs) =
TDfc

n (zs), due to Prop. 5, and Z ∈ Rescsp(s), because each Zs′ is coherent

and zs
a−→Z ∆′ satisfies both constraints of Def. 8.

The satisfaction of the first constraint stems from T being an element
of TDfc

n (s) and Z having computations of length at most n. Specifically,
for z′1, z

′
2 ∈ supp(∆′), if tr(TDfc

m(corrZ(z′1))) = tr(TDfc
m(corrZ(z′2))) then

TDc
m(corrZ(z′1)) and TDc

m(corrZ(z′2)) are added up in the innermost
summation of [?] according to Def. 6. This requires in the construction
of T based on [?] that the two sets TcorrZ(z′1) ∈ TDfc

m(corrZ(z′1)) and

TcorrZ(z′2) ∈ TDfc
m(corrZ(z′2)) are coherent with each other, thus guaran-

teeing that tr(TDfc
m(z′1)) = tr(TDfc

m(z′2)). The constraint holds for any
m′ < m too, because T contains as a subset T ′ ∈ TDfc

m′(s) and hence
coherency constraints on shorter traces are not forgotten.
The satisfaction of the second constraint stems from all computations
of each Zs′ being maximal (i.e., no further steps can be added to reach
length m) with respect to the corresponding computations from s′.
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• Let Z = (Z,A,−→Z) ∈ Rescsp(s) be such that TDfc
n (zs) = {T}, with

all nonempty traces of T starting with some action a labeling an outgo-
ing transition of zs, say zs

a−→Z ∆′. By virtue of Prop. 5, from {T} =
TDfc

n (zs) we derive that:

{T} = (ε, 1) † a .

( ∑
Θ∈tr(∆′,m)

tr(TDfc
m(z′))=Θ∑

z′∈supp(∆′)
∆′(z′) · TDfc

m(z′)

)
For all z′ ∈ supp(∆′), since the complete submodel of Z rooted at z′ is
still coherent thanks to Prop. 3 and satisfies TDfc

m(z′) = {Tz′} for some
Tz′ ⊆ A≤m×R]0,1] thanks to Props. 5 and 1, from the induction hypoth-

esis it follows that Tz′ ∈ TDfc
m(corrZ(z′)).

Since T is obtained by summing up Tz′ ∈ TDfc
m(corrZ(z′)) for every

z′ ∈ supp(∆′), for s
a−→∆ corresponding via corrZ to zs

a−→Z ∆′ it holds
that:

T = (ε, 1) † a .

( ∑
Θ∈tr(∆,m)

tr(Tz′ )=Θ∑
corrZ(z′)∈supp(∆)

∆(corrZ(z′)) · Tz′
)

and hence T ∈ TDfc
n (s) because Z ∈ Rescsp(s).

Proof of Thm. 1.
By definition, s1 ∼post,c

PTr s2 iff for each Z1 ∈ Rescsp(s1) – resp. Z2 ∈ Rescsp(s2) –
there exists Z2 ∈ Rescsp(s2) – resp. Z1 ∈ Rescsp(s1) – such that for all α ∈ A∗:

prob(CC(zs1 , α)) = prob(CC(zs2 , α))
Let A≤n = {α ∈ A∗ | |α| ≤ n} for n ∈ N. Then s1 ∼post,c

PTr s2 iff for each
Z1 ∈ Rescsp(s1) – resp. Z2 ∈ Rescsp(s2) – there exists Z2 ∈ Rescsp(s2) – resp.

Z1 ∈ Rescsp(s1) – such that for all n ∈ N and α ∈ A≤n:
prob(CC(zs1 , α)) = prob(CC(zs2 , α))

Thanks to Props. 5 and 1, we have that for all n ∈ N:
TDfc

n (zs1) = {{(α, p) ∈ A≤n × R]0,1] | prob(CC(zs1 , α)) = p}}
TDfc

n (zs2) = {{(α, p) ∈ A≤n × R]0,1] | prob(CC(zs2 , α)) = p}}
Therefore s1 ∼post,c

PTr s2 iff for each Z1 ∈ Rescsp(s1) – resp. Z2 ∈ Rescsp(s2) – there
exists Z2 ∈ Rescsp(s2) – resp. Z1 ∈ Rescsp(s1) – such that for all n ∈ N:

TDfc
n (zs1) = TDfc

n (zs2)
This is the same as for all n ∈ N and T ⊆ A∗ × R]0,1]:

∃Z ∈ Rescsp(s1).TDfc
n (zs1) = {T} ⇐⇒ ∃Z ∈ Rescsp(s2).TDfc

n (zs2) = {T}
which by virtue of Lemma 1 amounts to for all n ∈ N and T ⊆ A∗ × R]0,1]:

T ∈ TDfc
n (s1) ⇐⇒ T ∈ TDfc

n (s2)
which in turn is equivalent to TDfc(s1) = TDfc(s2).

Proof of Prop. 6.
We proceed by induction on n ∈ N:

– For n = 0 we have that T c
n(s) = {(ε, 1)} = {(α, p) ∈ A≤n × R]0,1] |

prob(CC(s, α)) = p}.
– Let n = m + 1 for some m ∈ N and suppose that the result holds for the

weighted trace set T c
m(s′) of any state s′ ∈ S. To avoid trivial cases, we

assume that s has an outgoing transition s
a−→∆, which is unique as the
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considered NPLTS is fully probabilistic. Then:

T c
n(s) = {(ε, 1)} ∪ a .

( ∑
s′∈supp(∆)

∆(s′) · T c
n−1(s′)

)
From the induction hypothesis, for each s′ ∈ supp(∆) it follows that:

T c
m(s′) = {(α′, p′) ∈ A≤m × R]0,1] | prob(CC(s′, α′)) = p′}

and hence:
T c
n(s) = {(ε, 1)} ∪

∑
s′∈supp(∆)

{(aα′, ∆(s′) · p′) ∈ A≤n × R]0,1] | prob(CC(s′, α′)) = p′}

= {(α, p) ∈ A≤n × R]0,1] | prob(CC(s, α)) = p}

Proof of Prop. 7.
We proceed by induction on |α| ∈ N:

– If |α| = 0, i.e., α = ε, then for all n ∈ N we have that (ε, p) ∈ T c
n(s) iff p = 1,

from which the result trivially follows because (ε, 1) ∈ T c
n(s) for all n ∈ N.

– Let |α| = m + 1 for some m ∈ N, with α = aα′ and |α′| = m, and suppose
that the result holds for each trace of length m.
If (α, p) ∈ T c

n(s) for some n ≥ |α|, then there exists a transition s
a−→∆ such

that:
(α′, p) ∈

∑
s′∈supp(∆)

∆(s′) · T c
n−1(s′)

For each s′ ∈ supp(∆), either α′ does not occur in T c
n−1(s′), or α′ occurs in

T c
n−1(s′) with some probability ps′ ∈ R]0,1] (if α′ occurs several times with

different probabilities due to internal nondeterminism, ps′ is the probability
of the only occurrence that contributes to p). We denote with S′ the set of
states s′ ∈ supp(∆) such that α′ occurs in T c

n−1(s′), where S′ 6= ∅, because
p > 0, and

∑
s′∈S′ ∆(s′) · ps′ = p, because according to the weighted trace

set addition of Def. 6 the probabilities of weighted traces sharing the same
trace – α′ in our case – are always summed up.
For each s′ ∈ S′, since (α′, ps′) ∈ T c

n−1(s′) and |α′| = m, from the induction
hypothesis it follows that (α′, ps′) ∈ T c

n(s′) too. As a consequence, it also
holds that:

(α′, p) ∈
∑

s′∈supp(∆)

∆(s′) · T c
n(s′)

and hence (α, p) ∈ T c
n+1(s) too.

Proof of Lemma 2.
We proceed by induction on |α| ∈ N:

– Let |α| = 0, i.e., α = ε. On the one hand, we have that (ε, p) ∈ T c(s) iff p = 1.
On the other hand, for each Z ∈ Rescsp(s) it holds that prob(CC(zs, ε)) = 1.
Therefore, the result trivially follows.

– Let |α| = m + 1 for some m ∈ N, with α = aα′ and |α′| = m, and suppose
that the result holds for each trace of length m. The proof is divided into
two parts:

• Let (α, p) ∈ T c(s). Then (α, p) ∈ T c
n(s) for n = |α| and hence there exists

a transition s
a−→∆ such that:
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(α′, p) ∈
∑

s′∈supp(∆)

∆(s′) · T c
m(s′) [?]

For each s′ ∈ supp(∆), either α′ does not occur in T c
m(s′), or α′ occurs in

T c
m(s′) with some probability ps′ ∈ R]0,1] (if α′ occurs several times with

different probabilities due to internal nondeterminism, ps′ is the proba-
bility of the only occurrence that contributes to p). We denote with S′ the
set of states s′ ∈ supp(∆) such that α′ occurs in T c

m(s′), where S′ 6= ∅,
because p > 0, and

∑
s′∈S′ ∆(s′) · ps′ = p, because according to the

weighted trace set addition of Def. 6 the probabilities of weighted traces
sharing the same trace – α′ in our case – are always summed up.
For each s′ ∈ S′, since (α′, ps′) ∈ T c

m(s′) ⊆ T c(s′) and |α′| = m, from the
induction hypothesis it follows that there exists Zs′ = (Zs′ , A,−→Zs′ ) ∈
Rescsp(s′) such that prob(CC(zs′ , α′)) = ps′ . Without loss of generality,
we can assume that each Zs′ has computations of length at most m and,
subject to this, all of its computations are maximal (in the sense that
no further steps can be added to reach length m) with respect to the
corresponding computations from s′.
We proceed in a similar way for each s′ ∈ supp(∆) \ S′, i.e., we take
an arbitrary Zs′ = (Zs′ , A,−→Zs′ ) ∈ Rescsp(s′) satisfying the aforemen-
tioned assumption about the length and the maximality of its compu-
tations. Moreover, for s′1, s

′
2 ∈ supp(∆) \ S′, we select Zs′1 and Zs′2 in

such a way that tr(TDfc
m′(s

′
1)) = tr(TDfc

m′(s
′
2)) implies tr(TDfc

m′(zs′1)) =

tr(TDfc
m′(zs′2)) for all m′ ≤ m.

Consider now the resolution Z = (Z,A,−→Z) of s such that (i) the image

via corrZ of its initial transition zs
a−→Z ∆′ is s

a−→∆ and (ii) from each
zs′ ∈ supp(∆′) the resolution behaves as Zs′ . Then prob(CC(zs, α)) = p,
by construction, and Z ∈ Rescsp(s), because each Zs′ is coherent and

zs
a−→Z ∆′ satisfies both constraints of Def. 8.

The satisfaction of the first constraint stems from (α, p) being an element
of T c

n(s) and Z having computations of length at most n. Specifically, for
z′1, z

′
2 ∈ supp(∆′) with corrZ(z′1), corrZ(z′2) ∈ S′ to avoid trivial cases,

if tr(TDfc
m(corrZ(z′1))) = tr(TDfc

m(corrZ(z′2))) then tr(T c
m(corrZ(z′1))) =

tr(T c
m(corrZ(z′2))). When adding up T c

m(corrZ(z′1)) and T c
m(corrZ(z′2))

in the summation of [?] according to Def. 6, every probability occurring
in the former is thus summed with some probability occurring in the
latter and viceversa, which guarantees by the construction of Z that
tr(TDfc

m(z′1)) = tr(TDfc
m(z′2)). The constraint holds for any m′ < m too,

because due to Prop. 7 T c
n(s) contains as a subset T c

m′(s) and hence co-
herency constraints on shorter traces are not forgotten.
The satisfaction of the second constraint stems from all computations
of each Zs′ being maximal (i.e., no further steps can be added to reach
length m) with respect to the corresponding computations from s′.

• Let Z = (Z,A,−→Z) ∈ Rescsp(s) be such that prob(CC(zs, α)) = p with

p ∈ R]0,1]. Then there exists a transition zs
a−→Z ∆′ such that, by virtue

of Prop. 6, it holds that:
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p =
∑

z′∈supp(∆′)
∆′(z′) · prob(CC(z′, α′))

For each z′ ∈ supp(∆′), either α′ is not executable from z′, or there
exists pz′ ∈ R]0,1] such that prob(CC(z′, α′)) = pz′ . We denote with
Z ′ the set of states z′ ∈ supp(∆′) for which there exists pz′ ∈ R]0,1]

such that prob(CC(z′, α′)) = pz′ , where Z ′ 6= ∅, because p > 0, and
p =

∑
z′∈Z′ ∆(z′) · pz′ .

For all z′ ∈ Z ′, since the complete submodel of Z rooted at z′ is still co-
herent thanks to Prop. 3 and satisfies prob(CC(z′, α′)) = pz′ with |α′| =
m, from the induction hypothesis it follows that (α′, pz′) ∈ T c(corrZ(z′)),
hence (α′, pz′) ∈ T c

m(corrZ(z′)).

For s
a−→∆ corresponding via corrZ to zs

a−→Z ∆′, we thus have that:
(α′, p) ∈

∑
corrZ(z′)∈supp(∆)

∆(corrZ(z′)) · T c
m(corrZ(z′))

and hence (α, p) ∈ T c
m+1(corrZ(zs)) ⊆ T c(corrZ(zs)) = T c(s).

Proof of Thm. 2.
By definition, s1 ∼pre,c

PTr s2 iff for all α ∈ A∗ it holds that for each Z1 ∈ Rescsp(s1)
– resp. Z2 ∈ Rescsp(s2) – there exists Z2 ∈ Rescsp(s2) – resp. Z1 ∈ Rescsp(s1) –
such that:

prob(CC(zs1 , α)) = p = prob(CC(zs2 , α))
The case p = 0, which implies α 6= ε, is not important because, if the considered
resolution of the challenger yields p = 0 for α, then it can trivially be matched
by the resolution of the defender containing only the initial state without any
outgoing transition, as the latter cannot perform α thus yielding p = 0 too.
Therefore s1 ∼pre,c

PTr s2 iff for all (α, p) ∈ A∗ × R]0,1]:
∃Z ∈ Rescsp(s1). prob(CC(zs1 , α)) = p ⇐⇒ ∃Z ∈ Rescsp(s2). prob(CC(zs2 , α)) = p
which by virtue of Lemma 2 amounts to for all (α, p) ∈ A∗ × R]0,1]:

(α, p) ∈ T c(s1) ⇐⇒ (α, p) ∈ T c(s2)
which in turn is equivalent to T c(s1) = T c(s2).
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