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Abstract. Information flow theory aims at guaranteeing the absence of
covert channels among different security levels. As for the verification of
noninterference via equivalence checking, in nondeterministic and proba-
bilistic settings weak bisimilarity is adequate only for forward-computing
systems, while branching bisimilarity has turned out to be appropriate
for reversible systems too. In this paper we investigate noninterference for
deterministically timed systems based on the model of Moller and Tofts.
After recasting a selection of noninterference properties via timed vari-
ants of weak and branching bisimilarities, we analyze their preservation
and compositionality aspects, establish their taxonomy, and compare it
with the nondeterministic taxonomy for (ir)reversible systems. We illus-
trate the adequacy of our proposal on real-time database transactions.

1 Introduction

The notion of noninterference was introduced in [34] to reason about the way in
which illegitimate information flows can occur in multi-level security systems due
to covert channels from high-level agents to low-level ones. Since the first defini-
tion, conceived for deterministic systems, a lot of work has been done to extend
the approach to a variety of more expressive domains, such as nondeterministic
systems, systems in which quantitative aspects like time and probability play
a central role, and reversible systems; see, e.g., [26,3,44,35,65,58,9,6,4,37,25,23]
and the references therein. Likewise, to verify information-flow security proper-
ties based on noninterference, several different approaches have been proposed
ranging from the application of type theory [70] and abstract interpretation [30]
to control flow and equivalence or model checking [27,45,5].

Noninterference guarantees that low-level agents cannot infer from their ob-
servations what high-level ones are doing. Regardless of its specific definition,
noninterference is closely tied to the notion of behavioral equivalence [32] be-
cause, given a multi-level security system, the idea is to compare the system
behavior with high-level actions being prevented and the system behavior with
the same actions being hidden. A natural framework in which to study system
behavior is given by process algebra [46]. In this setting, weak bisimilarity has
been employed in [26] to reason formally about covert channels and illegitimate
information flows as well as to study a classification of noninterference properties
for nondeterministic forward-computing systems.
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Noninterference analysis has been recently extended to reversible systems –
which feature forward and backward computations – both in the nondeterminis-
tic setting [25] and in the probabilistic one [23]. Reversibility has started to gain
attention in computing since it has been shown that it may achieve lower levels
of energy consumption [40,10]. Its applications range from biochemical reaction
modeling [54,55] and parallel discrete-event simulation [52,60] to robotics [43],
wireless communications [61], fault-tolerant systems [19,66,41,64], program de-
bugging [29,42], and distributed algorithms [68,13].

As shown in [25,23], noninterference properties based on weak bisimilarity
are not adequate in a reversible context because they fail to detect information
flows emerging when backward computations are triggered. A more appropriate
semantics turns out to be branching bisimilarity [33] because it coincides with
weak back-and-forth bisimilarity [21]. The latter behavioral equivalence requires
systems to be able to mimic each other’s behavior stepwise not only when per-
forming actions in the standard forward direction, but also when undoing those
actions in the backward direction. Formally, weak back-and-forth bisimilarity is
defined on computation paths instead of states thus preserving not only causal-
ity but also history, as backward moves are constrained to take place along the
same path followed in the forward direction even in the presence of concurrency.

In this paper we extend the approach of [25,23] to a deterministically timed
setting, in which delays are fixed (as opposed to being subject to stochastic
fluctuations), so as to address noninterference properties in a framework fea-
turing nondeterminism, time, and reversibility. To accomplish this we move
to a model combining nondeterminism and time inspired by [47,48], in which
transitions are divided into action transitions, each labeled with an action,
and timed transitions, each labeled with a positive natural number that ex-
presses a delay. The reason for choosing – in the vast realm of timed process
calculi [57,47,69,8,15,2,36,50,56,17,49,63] – this model in which time passing is
orthogonal to action execution instead of a model in which action execution and
time passing are integrated (see [11] for encodings between integrated-time and
orthogonal-time calculi) is that the former naturally supports the definition of
behavioral equivalences abstracting from unobservable actions [48] – which are
necessary for noninterference analysis – whereas this is not the case in the latter.

Following [47] we build a process calculus featuring action prefix separated
from delay prefix. As for behavioral equivalences, we adopt the weak timed
bisimilarity of [48] and introduce a novel timed branching bisimilarity. By us-
ing these two equivalences we recast the noninterference properties of [26,28] for
irreversible systems and the noninterference properties of [25] for reversible sys-
tems, respectively, to study their preservation and compositionality aspects as
well as to provide a taxonomy similar to those in [26,25,23]. Reversibility comes
into play by extending one of the results of [21] to our orthogonal-time model;
we show that a timed variant of weak back-and-forth bisimilarity coincides with
our timed branching bisimilarity.

This paper is organized as follows. In Section 2 we recall the orthogonal-time
model of [47] along with various definitions of strong and weak bisimilarities for
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it and a process calculus interpreted on it. In Section 3 we recast in our timed
framework a selection of noninterference properties taken from [26,28,25]. In Sec-
tion 4 we study their preservation and compositionality characteristics as well as
their taxonomy, which in Section 5 we relate to the nondeterministic taxonomy
of [25]. In Section 6 we establish a connection with reversibility by introducing a
weak timed back-and-forth bisimilarity and proving that it coincides with timed
branching bisimilarity. In Section 7 we present a real-time database management
system example to show the adequacy of our approach when dealing with infor-
mation flows in reversible systems featuring nondeterminism and time. Finally,
in Section 8 we provide some concluding remarks.

2 Background Definitions and Results

In this section we recall the timed model of [47] (Section 2.1) along with weak
timed bisimilarity [48] and define timed branching bisimilarity (Section 2.2).
Then we introduce a timed process language inspired by [47] through which we
will express bisimulation-based information-flow security properties accounting
for nondeterminism and time (Section 2.3).

2.1 Timed Labeled Transition Systems

To represent the behavior of a process featuring nondeterminism and time, we
use a timed labeled transition system. This is a variant of a labeled transition
system [39] whose transitions are labeled with actions or positive natural num-
bers expressing delays [47]. We assume that the action set Aτ contains a set A of
observable actions and a single action τ /∈ A representing unobservable actions.

Definition 1. A timed labeled transition system (TLTS) is a triple (S,Aτ ,−→)
where S 6= ∅ is an at most countable set of states, Aτ = A ∪ {τ} is a countable
set of actions, and −→ = −→a ∪ −→t is the transition relation, with −→a ⊆
S ×Aτ ×S being the action transition relation whilst −→t ⊆ S ×N>0×S being
the timed transition relation.

An action transition (s, a, s′) is written s
a−→a s

′ while a timed transition

(s, t, s′) is written s
t−→t s

′, where s is the source state and s′ is the target state.
We say that s′ is reachable from s, written s′ ∈ reach(s), iff s′ = s or there
exists a sequence of finitely many transitions such that the target state of each
of them coincides with the source state of the subsequent one, with the source
of the first transition being s and the target of the last one being s′.

Following [47] we assume that timed transitions are subject to time deter-
minism, i.e., every state has at most one outgoing timed transition, and time
additivity, i.e., a timed transition can be split into a sequence of timed transitions
whose overall duration is equal to the duration of the original transition, as well
as a sequence of timed transitions can be merged into a single timed transition
whose duration is equal to the sum of the durations of the original transitions.
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As for the interplay between action transitions and timed ones, we assume eager-
ness, i.e., actions must be performed as soon as they become enabled without any
delay, thereby implying that their execution is urgent. Moreover τ -transitions,
which cannot be disabled by the environment where the system executes, take
precedence over timed ones; this property is called maximal progress.

2.2 Bisimulation Equivalences

Bisimilarity [51,46] identifies processes mimicking each other’s behavior stepwise,
i.e., having the same branching structure. In our setting this extends to timed
behavior [47]. Due to maximal progress, timed transitions are compared only in

states s with no outgoing τ -transitions, which is denoted by s 6τ−→a.

Definition 2. Let (S,Aτ ,−→) be a TLTS. We say that s1, s2 ∈ S are strongly
timed bisimilar, written s1 ∼t s2, iff (s1, s2) ∈ B for some strong timed bisim-
ulation B. A symmetric relation B over S is a strong timed bisimulation iff,
whenever (s1, s2) ∈ B, then:

– For each s1
a−→a s

′
1 there exists s2

a−→a s
′
2 such that (s′1, s

′
2) ∈ B.

– If s1 6
τ−→a, for each s1

t−→t s
′
1 there exists s2

t−→t s
′
2 such that (s′1, s

′
2) ∈ B.

Weak bisimilarity [46] is additionally capable of abstracting from unobserv-

able actions. Let ==⇒a be the reflexive and transitive closure of
τ−→a. Moreover

let
â

==⇒a stand for ==⇒a if a = τ or ==⇒a
a−→a ==⇒a if a 6= τ , while

t
==⇒t

stands for ==⇒a
t1−→t ==⇒a . . . ==⇒a

tn−→t ==⇒a where
∑

1≤i≤n ti = t and every
ti-transition departs from a state with no outgoing τ -transitions. The weak timed
bisimilarity below is taken from [48].

Definition 3. Let (S,Aτ ,−→) be a TLTS. We say that s1, s2 ∈ S are weakly
timed bisimilar, written s1 ≈tw s2, iff (s1, s2) ∈ B for some weak timed bisim-
ulation B. A symmetric relation B over S is a weak timed bisimulation iff,
whenever (s1, s2) ∈ B, then:

– For each s1
a−→a s

′
1 there exists s2

â
==⇒a s

′
2 such that (s′1, s

′
2) ∈ B.

– If s1 6
τ−→a then there exists s2 ==⇒a s̄2 such that s̄2 6

τ−→a, (s1, s̄2) ∈ B, and

for each s1
t−→t s

′
1 there exists s̄2

t
==⇒t s

′
2 such that (s′1, s

′
2) ∈ B.

Branching bisimilarity [33] is finer than weak bisimilarity as it preserves the
branching structure of processes even when abstracting from τ -actions – see
condition (s1, s̄2) ∈ B in the action transitions matching of the definition below.
We adapt it to the timed setting as follows.

Definition 4. Let (S,Aτ ,−→) be a TLTS. We say that s1, s2 ∈ S are timed
branching bisimilar, written s1 ≈tb s2, iff (s1, s2) ∈ B for some timed branching
bisimulation B. A symmetric relation B over S is a timed branching bisimulation
iff, whenever (s1, s2) ∈ B, then:
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Fig. 1. States s1 and s2 are related by ≈tw but distinguished by ≈tb

– For each s1
a−→a s

′
1:

• either a = τ and (s′1, s2) ∈ B;

• or there exists s2 ==⇒a s̄2
a−→a s

′
2 such that (s1, s̄2) ∈ B and (s′1, s

′
2) ∈ B.

– If s1 6
τ−→a then there exists s2 ==⇒a s̄2 such that s̄2 6

τ−→a, (s1, s̄2) ∈ B, and

for each s1
t−→t s

′
1 there exists s̄2

t
==⇒t s

′
2 such that (s′1, s

′
2) ∈ B.

It is worth noting that the clause for timed transitions in the two definitions

above implies that the states along s̄2
t

==⇒t s
′
2 that are connected by τ -transitions,

for which time is not progressing, belong to the same equivalence class. This
feature, which is a piecewise variant of the stuttering property for τ -computations
of [33], is established by the following proposition.

Proposition 1. Let s1, s2 ∈ S and ≈ ∈ {≈tw,≈tb}. Suppose that s1 ≈ s2,

s1 6τ−→a, s2 6τ−→a, s1
t−→t s

′
1, s2

t1−→t s2,1 ==⇒a . . . ==⇒a s
′
2,n−1

tn−→t s2,n ==⇒a s
′
2,∑

1≤i≤n ti = t, and s′1 ≈ s′2. Then s2,i ≈ s′2,i for all s2,i ==⇒a s
′
2,i.

It may be argued that the weak bisimilarity of Definition 3 is already very
close to branching bisimilarity, because maximal progress forces a check on the
branching structure of the considered processes. We show that our novel Defini-
tion 4, which sticks to the original one of [33], is more discriminating. Consider
Figure 1, where every TLTS is depicted as a directed graph in which vertices
represent states and action- or delay-labeled edges represent transitions. The ini-
tial states s1 and s2 of the two TLTSs are weakly timed bisimilar but not timed
branching bisimilar. On the one hand, each of the two states reachable from s1
after 5 time units and a τ -transition and the state reachable from s2 after a
τ -transition and 5 time units are all weakly timed bisimilar. On the other hand,
the two states reachable from s1 are not timed branching bisimilar, because if
the one on the right performs a then the one on the left cannot respond by
performing τ followed by a because the state reached after τ no longer enables b.
Thus, with respect to timed branching bisimilarity, s1 reaches two inequivalent
states, while s2 reaches only one of them.
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Prefix a . P
a−→a P

Choice
P1

a−→a P
′
1

P1 + P2
a−→a P

′
1

P2
a−→a P

′
2

P1 + P2
a−→a P

′
2

Parallel
P1

a−→a P
′
1 a /∈ L

P1 ‖L P2
a−→a P

′
1 ‖L P2

P2
a−→a P

′
2 a /∈ L

P1 ‖L P2
a−→a P1 ‖L P ′2

Synch
P1

a−→a P
′
1 P2

a−→a P
′
2 a ∈ L

P1 ‖L P2
a−→a P

′
1 ‖L P ′2

Restriction
P

a−→a P
′ a /∈ L

P \ L a−→a P
′ \ L

Hiding
P

a−→a P
′ a ∈ L

P /L
τ−→a P

′ /L

P
a−→a P

′ a /∈ L
P /L

a−→a P
′ /L

Table 1. Operational semantic rules for action transitions

2.3 A Timed Process Calculus with High and Low Actions

We now introduce a timed process calculus to formalize the security properties
of interest. To address two security levels, we partition the set A of observable
actions into AH ∪ AL, with AH ∩ AL = ∅, where AH is the set of high-level
actions, ranged over by h, and AL is the set of low-level actions, ranged over by l.
Note that τ /∈ AH ∪ AL.

The set P of process terms is obtained by considering typical operators from
CCS [46] and CSP [16] together with delay prefix from [47]. In addition to
prefix, choice, and parallel composition – taken from CSP so as not to turn
synchronizations among high-level actions into τ as would happen with the CCS
parallel composition – we include restriction and hiding as they are necessary to
formalize noninterference properties. The syntax for P is:

P ::= 0 | a . P | (t) . P | P + P | P ‖L P | P \ L | P /L
where:

– 0 is the terminated process.
– a . , for a ∈ Aτ , is the action prefix operator describing a process that can

initially perform action a.
– (t) . , for t ∈ N>0, is the delay prefix operator describing a process that can

initially let t time units pass.
– + is the alternative composition operator expressing a choice between

two processes, which is nondeterministic in case of actions, governed by time
determinism in case of delays [47], or subject to maximal progress otherwise.

– ‖L , for L ⊆ A, is the parallel composition operator allowing two pro-
cesses to proceed independently on any action not in L and forcing them to
synchronize on every action in L and on delays due to time determinism [47].

– \L, for L ⊆ A, is the restriction operator, which prevents the execution of
all actions belonging to L.
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TimedPrefix (t) . P
t−→t P

TimedSplit
t = t1 + t2 t1, t2 ∈ N>0

(t) . P
t1−→t (t2) . P

TimedMerge
P

t2−→t P
′ t = t1 + t2

(t1) . P
t−→t P

′

TimedChoice
P1

t−→t P
′
1 P2

t−→t P
′
2

P1 + P2
t−→t P

′
1 + P ′2

TimedSynch
P1

t−→t P
′
1 P2

t−→t P
′
2

P1 ‖L P2
t−→t P

′
1 ‖L P ′2

TimedRestriction
P

t−→t P
′

P \ L t−→t P
′ \ L

TimedHiding
P

t−→t P
′

P /L
t−→t P

′ /L

Table 2. Operational semantic rules for timed transitions

– /L, for L ⊆ A, is the hiding operator, which turns all the executed actions
belonging to L into the unobservable action τ .

The operational semantic rules for the process language are shown in Tables 1
and 2 for action and timed transitions respectively. Together they produce the
TLTS (P,Aτ ,−→) where −→ = −→a ∪ −→t, with −→a ⊆ P × Aτ × P and
−→t ⊆ P×N>0×P, to which the bisimulation equivalences defined in Section 2.2
are applicable. Following [47], rules TimedSplit and TimedMerge implement time
additivity, while rules TimedChoice and TimedSynch implement time determin-
ism, according to which time does not solve choices and does not decide which
subprocess advances in a parallel composition.

3 Timed Information-Flow Security Properties

The intuition behind noninterference in a two-level security system is that, if
a group of agents at the high level performs some actions, the effect of those
actions should not be seen by any agent at the low level. To formalize this, the
restriction and hiding operators play a central role.

In this section we recast the noninteference properties defined in [26,28,25] –
Nondeterministic Non-Interference (NNI) and Non-Deducibility on Composition
(NDC) – by taking as behavioral equivalence the weak or branching bisimilar-
ity of Section 2.2. In the acronyms of the following variants of NNI and NDC
properties, B stands for bisimulation-based, S stands for strong, and P stands
for persistent.
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Definition 5. Let P ∈ P and ≈ ∈ {≈tw,≈tb}:

– P ∈ BSNNI≈ ⇐⇒ P \ AH ≈ P /AH.

– P ∈ BNDC≈ ⇐⇒ for all Q ∈ P such that all of its action prefixes belongs
to AH whilst its timed prefixes match the ones in P and for all L ⊆ AH,
P \ AH ≈ ((P ‖LQ) /L) \ AH.

– P ∈ SBSNNI≈ ⇐⇒ for all P ′ ∈ reach(P ), P ′ ∈ BSNNI≈ .

– P ∈ P BNDC≈ ⇐⇒ for all P ′ ∈ reach(P ), P ′ ∈ BNDC≈ .

– P ∈ SBNDC≈ ⇐⇒ for all P ′, P ′′ ∈ reach(P ) such that P ′
h−→a P

′′,
P ′ \ AH ≈ P ′′ \ AH.

Bisimulation-based Strong Nondeterministic Non-Interference (BSNNI) has
been one of the first and most intuitive proposals. Basically, it is satisfied by any
process P that behaves the same when its high-level actions are prevented (as
modeled by P \AH) or when they are considered as hidden, unobservable actions
(as modeled by P /AH). The equivalence between these two low-level views of P
states that a low-level agent cannot deduce the high-level behavior of the system.
For instance, in our timed setting, a low-level agent that observes the execution
of l in (t) . l . 0 + h . h . (t) . l . 0. cannot infer anything about the execution of h.
Indeed, a low-level user always observes the execution of l after a delay of t units
of time. Formally, P \ {h} ≈ P / {h} because (t) . l . 0 ≈ (t) . l . 0 + τ . τ . (t) . l . 0.

BSNNI≈ is not powerful enough to capture covert channels that derive from
the behavior of a high-level agent interacting with the system. For instance,
(t) . l . 0 + h1 . h2 . (t) . l . 0 is BSNNI≈ for the same reason discussed above. How-
ever, a high-level agent could decide to enable only h1, thus yielding the low-level
view of the system (t) . l . 0 + τ . 0, which is clearly distinguishable from (t) . l . 0
as the former is forced, due to maximal progress, to perform τ and reach a ter-
minal state, while the latter can let t units of time pass and then perform l.
To avoid such a limitation, the most obvious solution consists of checking ex-
plicitly the interaction on any action set L ⊆ AH between the system and every
possible high-level agent Q. The resulting property is the Bisimulation-based
Non-Deducibility on Composition (BNDC), which features a universal quantifi-
cation over Q containing only high-level actions.

Note that in our timed setting the high-level agent Q must allow the same
amount of time as P to pass, otherwise the property BNDC would never be
satisfied. To see why, consider the trivially safe process (1) . l . 0 and the high-
level agent h . 0. The processes ((1) . l . 0) \ AH and (((1) . l . 0 ‖L h . 0) /L) \ AH
are not equivalent, regardless of the specific L ⊆ AH chosen, because the former
can let time pass, while the latter cannot, as it is blocked by the process h . 0.

To overcome the verification problems related to the quantification over Q,
several properties have been proposed that are stronger than BNDC. They all
express some persistency conditions, stating that the security checks have to be
extended to all the processes reachable from a secure one. Three of the most rep-
resentative ones among such properties are the variant of BSNNI that requires
every reachable process to satisfy BSNNI itself, called Strong BSNNI (SBSNNI),
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the variant of BNDC that requires every reachable process to satisfy BNDC it-
self, called Persistent BNDC (P BNDC), and Strong BNDC (SBNDC), which
requires the low-level view of every reachable process to be the same before
and after the execution of any high-level action, meaning that the execution
of high-level actions must be completely transparent to low-level agents. In the
nondeterministic and probabilistic settings, P BNDC and SBSNNI have been
proven to coincide in the case of both weak bisimilarity and branching bisimi-
larity [28,25,23].

4 Characteristics of Timed Security Properties

In this section we investigate preservation and compositionality characteristics
of the noninterference properties introduced in the previous section (Section 4.1)
as well as the inclusion relationships between the ones based on ≈tw and the ones
based on ≈tb (Section 4.2).

4.1 Preservation and Compositionality

All the timed noninterference properties of Definition 5 turn out to be preserved
by the bisimilarity employed in their definition. This means that if a process P1

is secure under any of such properties, then every other equivalent process P2

is secure too according to the same property. This is very useful for automated
property verification, as it allows us to work with the process with the smallest
state space among the equivalent ones.

These results immediately follow from the next lemma, which states that
≈tw and ≈tb are congruences with respect to action prefix, delay prefix, parallel
composition, restriction, and hiding. Some of these results were already proven
in [48] for weak timed bisimilarity. Here we extend those results to the operators
of our calculus as well as to timed branching bisimilarity.

Lemma 1. Let P1, P2 ∈ P and ≈ ∈ {≈tw,≈tb}. If P1 ≈ P2 then:

1. a . P1 ≈ a . P2 for all a ∈ Aτ .
2. (t) . P1 ≈ (t) . P2 for all t ∈ N>0.
3. P1 ‖L P ≈ P2 ‖L P and P ‖L P1 ≈ P ‖L P2 for all L ⊆ A and P ∈ P.
4. P1 \ L ≈ P2 \ L for all L ⊆ A.
5. P1 /L ≈ P2 /L for all L ⊆ A.

Theorem 1. Let P1, P2 ∈ P, ≈ ∈ {≈tw,≈tb}, and P ∈ {BSNNI≈ ,BNDC≈ ,
SBSNNI≈ ,P BNDC≈ ,SBNDC≈}. If P1 ≈ P2 then P1 ∈ P ⇐⇒ P2 ∈ P.

As far as modular verification is concerned, like in the nondeterministic and
probabilistic settings [26,25,23] only the local properties SBSNNI≈ , P BNDC≈ ,
and SBNDC≈ are compositional, i.e., are preserved by some operators of the cal-
culus in certain circumstances. Moreover, similar to [25,23] compositionality with
respect to parallel composition is limited, for SBSNNI≈tb

and P BNDC≈tb
, to
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the case in which synchronizations can take place only among low-level ac-
tions, i.e., L ⊆ AL. A limitation to low-level actions applies to action prefix
and hiding as well, whilst this is not the case for restriction. Another anal-
ogy with the nondeterministic and probabilistic settings [26,25,23] is that none
of the considered noninterference properties is compositional with respect to
alternative composition. As an example, let us examine processes P1 = l . 0
and P2 = h . 0. Both processes are BSNNI≈ , as (l . 0) \ {h} ≈ (l . 0) / {h} and
(h . 0) \ {h} ≈ (h . 0) / {h}, but P1 +P2 /∈ BSNNI≈ , because (l . 0 +h . 0) \ {h} ≈
l . 0 6≈ l . 0 + τ . 0 ≈ (l . 0 + h . 0) / {h}. It is easy to check that P1 + P2 /∈ P also
for P ∈ {BNDC≈ ,SBSNNI≈ ,SBNDC≈}.

Theorem 2. Let P, P1, P2 ∈ P, ≈ ∈ {≈tw,≈tb}, P ∈ {SBSNNI≈ ,P BNDC≈ ,
SBNDC≈}. Then:

1. P ∈ P =⇒ a . P ∈ P for all a ∈ AL ∪ {τ}.
2. P ∈ P =⇒ (t) . P ∈ P for all t ∈ N>0.
3. P1, P2∈P =⇒ P1‖LP2 ∈ P for all L⊆AL if P∈{SBSNNI≈tb

,P BNDC≈tb
}

or for all L ⊆ A if P ∈ {SBSNNI≈tw
,P BNDC≈tw

,SBNDC≈tw
,SBNDC≈tb

}.
4. P ∈ P =⇒ P \ L ∈ P for all L ⊆ A.
5. P ∈ P =⇒ P /L ∈ P for all L ⊆ AL.

As for the limitation to L ⊆ AL for parallel composition under SBSNNI≈tb
,

for example both P1 = h . 0 + l1 . 0 + τ . 0 and P2 = h . 0 + l2 . 0 + τ . 0 are
SBSNNI≈tb

, but P1 ‖{h} P2 is not because the transition (P1 ‖{h} P2) /AH
τ−→a

(0 ‖{h} 0) /AH arising from the synchronization between the two h-actions can-
not be matched by (P1 ‖{h} P2) \AH in the timed branching bisimulation game.

Indeed, the only two possibilities are (P1 ‖{h} P2)\AH==⇒a (P1 ‖{h} P2)\AH
τ−→a

(0 ‖{h} P2)\AH
τ−→a (0 ‖{h} 0)\AH and (P1 ‖{h} P2)\AH==⇒a (P1 ‖{h} P2)\AH

τ−→a (P1 ‖{h} 0)\AH
τ−→a (0 ‖{h} 0)\AH. However, neither (0 ‖{h} P2)\AH nor

(P1 ‖{h} 0) \ AH is timed branching bisimilar to (P1 ‖{h} P2) \ AH when l1 6= l2.

Note that (P1 ‖{h} P2) /AH ≈ (P1 ‖{h} P2) \AH because (P1 ‖{h} P2) /AH
τ−→a

(0 ‖{h} 0) /AH is matched by (P1 ‖{h} P2) \ AH==⇒a (0 ‖{h} 0) \ AH. Similar
to [25,23], it is not only a matter of the higher discriminating power of ≈tb

with respect to ≈tw. If we used the CCS parallel composition operator [46],
which turns into τ the synchronization of two actions thus combining communi-
cation with hiding, then the parallel composition of P1 and P2 with restriction
on AH would be able to respond with a single τ -transition reaching the parallel
composition of 0 and 0 with restriction on AH.

4.2 Taxonomy of Security Properties

First of all, similar to the nondeterministic and probabilistic settings [26,25,23]
the properties in Definition 5 turn out to be increasingly finer. This result holds
for both those based on ≈tw and those based on ≈tb.

Theorem 3. Let ≈ ∈ {≈tw,≈tb}. Then:
SBNDC≈ ( SBSNNI≈ = P BNDC≈ ( BNDC≈ ( BSNNI≈
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All the inclusions are strict as shown by the following counterexamples:

– The process τ . l . 0 + l . l . 0 + h . l . 0 is SBSNNI≈ (resp. P BDNC≈) because
(τ . l . 0 + l . l . 0 + h . l . 0) \ {h} ≈ (τ . l . 0 + l . l . 0 + h . l . 0)/{h} and ac-
tion h is enabled only by the initial process so every derivative is BSNNI≈
(resp. BNDC≈). It is not SBNDC≈ because the low-level view of the pro-
cess reached after action h, i.e., (l . 0) \ {h}, is not ≈-equivalent to (τ . l . 0 +
l . l . 0 + h . l . 0) \ {h}.

– The process l . 0+l . l . 0+l . h . l . 0 is BNDC≈ because, whether there are syn-
chronizations with high-level actions or not, the overall process can always
perform either an l-action or a sequence of two l-actions. It is not SBSNNI≈
(resp. P BNDC≈) because the reachable process h . l . 0 is not BSNNI≈ (resp.
BNDC≈).

– The process l . 0 + h . h . l . 0 is BSNNI≈ as (l . 0 + h . h . l . 0) \ {h} ≈ (l . 0 +
h . h . l . 0)/{h}. It is not BNDC≈ as (((l . 0+h . h . l . 0) ‖{h}(h . 0))/{h})\{h}
6≈ (l . 0 + h . h . l . 0) \ {h} in that the former behaves as l . 0 + τ . 0 while the
latter behaves as l . 0.

Secondly, we observe that all the ≈tb-based noninterference properties imply
the corresponding ≈tw-based ones, due to the fact that ≈tb is finer than ≈tw.

Theorem 4. The following inclusions hold:

1. BSNNI≈tb
( BSNNI≈tw

.
2. BNDC≈tb

( BNDC≈tw
.

3. SBSNNI≈tb
( SBSNNI≈tw

.
4. P BNDC≈tb

( P BNDC≈tw
.

5. SBNDC≈tb
( SBNDC≈tw

.

All the inclusions above are strict by virtue of the following result; for an
example of P1 and P2 below, see Figure 1.

Theorem 5. Let P1, P2 ∈ P be such that P1 ≈tw P2 but P1 6≈tb P2. If no high-
level actions occur in P1 and P2, then Q ∈ {P1 + h . P2, P2 + h . P1} is such
that:

1. Q ∈ BSNNI≈tw but Q /∈ BSNNI≈tb
.

2. Q ∈ BNDC≈tw
but Q /∈ BNDC≈tb

.
3. Q ∈ SBSNNI≈tw

but Q /∈ SBSNNI≈tb
.

4. Q ∈ P BNDC≈tw
but Q /∈ P BNDC≈tb

.
5. Q ∈ SBNDC≈tw

but Q /∈ SBNDC≈tb
.

The diagram in Figure 2, which follows the same pattern as the nondetermin-
istic and probabilistic settings [25,23], summarizes the relationships among the
various noninterference properties based on the results in Theorems 3 and 4. In
the diagram, P → Q means that P is strictly included in Q, while missing arrows
express incomparability and are justified by the following counterexamples:
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BSNNI≈tw

BNDC≈tw

SBSNNI≈tw

P BNDC≈tw

SBNDC≈tw

BSNNI≈tb

BNDC≈tb

SBSNNI≈tb

P BNDC≈tb

SBNDC≈tb

Fig. 2. Taxonomy of security properties based on timed bisimilarities

– SBNDC≈tw
vs. SBSNNI≈tb

. The process τ . l . 0+ l . l . 0+h . l . 0 is BSNNI≈tb

as τ . l . 0 + l . l . 0 ≈tb τ . l . 0 + l . l . 0 + τ . l . 0. It is also SBSNNI≈tb
because

every reachable process does not enable any more high-level actions. How-
ever, it is not SBNDC≈tw , because after executing the high-level action h it
can perform a single action l, while the original process with the restriction
on high-level actions can go along a path where it performs two l-actions.
On the other hand, the process Q mentioned in Theorem 5 is SBNDC≈tw

but neither BSNNI≈tb
nor SBSNNI≈tb

.
– SBSNNI≈tw vs. BNDC≈tb

. The process l . h . l . 0 + l . 0 + l . l . 0 is BSNNI≈tb

as l . 0+l . 0+l . l . 0 ≈tb l . τ . l . 0+l . 0+l . l . 0. The same process is BNDC≈tb

too as it includes only one high-level action, hence the only possible high-
level strategy coincides with the check conducted by BSNNI≈tb

. However,
the process is not SBSNNI≈tw

because of the reachable process h . l . 0, which
is not BSNNI≈tw . On the other hand, the process Q mentioned in Theorem 5
is SBSNNI≈tw but not BSNNI≈tb

and, therefore, cannot be BNDC≈tb
.

– BNDC≈tw
vs. BSNNI≈tb

. The process (t) . l . 0+h1 . h2 . (t) . l . 0 is BSNNI≈tb

as discussed in Section 3, but it is not BNDC≈tw
. In contrast, the pro-

cess Q mentioned in Theorem 5 is both BSNNI≈tw
and BNDC≈tw

, but not
BSNNI≈mb

.

5 Relating Nondeterministic and Timed Taxonomies

Let us compare our timed taxonomy with the nondeterministic one of [25]. In
the following, we assume that ≈w denotes the weak nondeterministic bisimilarity
of [46] and ≈b denotes the nondeterministic branching bisimilarity of [33]. These
can also be obtained from the corresponding definitions in Section 2.2 by ignoring
the clause about timed transitions. Since we are abstracting from delays, given a
process P ∈ P we can obtain its nondeterministic variant, denoted by nd(P ), by
replacing every occurrence of (t) . P ′ with τ . P ′. However, to respect maximal
progress, first we have to eliminate every subprocess starting with a delay prefix
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that is alternative to a subprocess starting with a τ -prefix. To accomplish this
transformation syntactically, we focus on the set Pseq of sequential processes, i.e.,
without parallel composition; this is not too restrictive because, in the absence
of recursion, parallel composition can be eliminated by repeatedly applying a
timed variant of the expansion law [47].

The next proposition states that if two sequential processes are equivalent
according to any of the weak bisimilarities in Section 2.2, then their nondeter-
ministic variants are equivalent according to the corresponding nondeterministic
weak bisimilarity. The inverse does not hold; e.g., processes P1 = (1) . a . 0 and
P2 = (2) . a . 0 are such that P1 6≈tw P2 and P1 6≈tb P2, but their nondeterministic
counterparts coincide as both of them are equal to τ . a . 0.

Proposition 2. Let P1, P2 ∈ Pseq. Then:

– P1 ≈tw P2 =⇒ nd(P1) ≈w nd(P2).
– P1 ≈tb P2 =⇒ nd(P1) ≈b nd(P2).

An immediate consequence is that if a sequential process is secure under any
of the timed noninterference properties of Section 3, then its nondeterministic
variant is secure under the corresponding nondeterministic property. The taxon-
omy of Figure 2 thus extends to the left the one in [25], as each of the properties
of Section 3 is finer than its nondeterministic counterpart.

Corollary 1. Let Ptm ∈ {BSNNI≈tm ,BNDC≈tm ,SBSNNI≈tm ,P BNDC≈tm ,
SBNDC≈tm

} and Pnd ∈ {BSNNI≈nd
,BNDC≈nd

,SBSNNI≈nd
,P BNDC≈nd

,
SBNDC≈nd

} for ≈tm ∈ {≈tw,≈tb} and ≈nd ∈ {≈w,≈b}, where Pnd is the non-
deterministic variant of Ptm. Then P ∈ Ptm =⇒ nd(P ) ∈ Pnd for all P ∈ Pseq.

6 Reversibility via Timed Back-and-Forth Bisimilarity

In [21] it was shown that, for nondeterministic processes, weak back-and-forth
bisimilarity coincides with branching bisimilarity. We now extend that result
so that timed branching bisimilarity can be employed in the noninterference
analysis of reversible processes featuring nondeterminism and time.

A TLTS (S,Aτ ,−→) represents a reversible process if each of its transitions
is seen as bidirectional. When going backward, it is of paramount importance to
respect causality, i.e., the last performed transition must be the first one to be
undone. Following [21] we set up an equivalence that enforces not only causality
but also history preservation. This means that, when going backward, a process
can only move along the path representing the history that brought the process
to the current state even in the presence of concurrency. To accomplish this, the
equivalence has to be defined over computations, not over states, and the notion
of transition has to be revised so that it has source and target paths instead of
states. We start by adapting the notation of the nondeterministic setting of [21]
to our nondeterministic and timed setting. We use ` for a label in Aτ ∪ N>0.
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Definition 6. A sequence ξ = (s0, `1, s1)(s1, `2, s2) . . . (sn−1, `n, sn) ∈ −→ ∗ is
a path of length n from state s0. We let first(ξ) = s0 and last(ξ) = sn; the empty
path is indicated with ε. We denote by path(s) the set of paths from s.

Definition 7. A pair ρ = (s, ξ) is called a run from state s iff ξ ∈ path(s),
in which case we let path(ρ) = ξ, first(ρ) = first(ξ) = s, last(ρ) = last(ξ), with
first(ρ) = last(ρ) = s when ξ = ε. We denote by run(s) the set of runs from
state s. Given ρ = (s, ξ) ∈ run(s) and ρ′ = (s′, ξ′) ∈ run(s′), their composition

ρρ′ = (s, ξξ′) ∈ run(s) is defined iff last(ρ) = first(ρ′) = s′. We write ρ
`−→ ρ′

iff there exists ρ′′ = (s̄, (s̄, `, s′)) with s̄ = last(ρ) such that ρ′ = ρρ′′; note that
first(ρ) = first(ρ′).

In the considered TLTS we work with the set U of runs in lieu of S. Follow-
ing [21], given a run ρ, we distinguish between outgoing and incoming transitions
of ρ during the weak bisimulation game, both for action transitions and for timed
ones, depending on whether we examine the forward or backward direction.

Definition 8. Let (S,Aτ ,−→) be a TLTS. We say that s1, s2 ∈ S are weakly
timed back-and-forth bisimilar, written s1 ≈tbf s2, iff ((s1, ε), (s2, ε)) ∈ B for
some weak timed back-and-forth bisimulation B. A symmetric relation B over U
is a weak timed back-and-forth bisimulation iff, whenever (ρ1, ρ2) ∈ B, then:

– For each ρ1
a−→a ρ

′
1 there exists ρ2

â
==⇒a ρ

′
2 such that (ρ′1, ρ

′
2) ∈ B.

– For each ρ′1
a−→a ρ1 there exists ρ′2

â
==⇒a ρ2 such that (ρ′1, ρ

′
2) ∈ B.

– For each ρ1 ==⇒a ρ
′
1 with ρ′1 6

τ−→a there exists ρ2 ==⇒a ρ
′
2 with ρ′2 6

τ−→a such

that (ρ′1, ρ
′
2) ∈ B and for each ρ′1

t−→t ρ
′′
1 there exists ρ′2

t
==⇒t ρ

′′
2 such that

(ρ′′1 , ρ
′′
2) ∈ B.

– For each ρ′1
t−→t ρ1 with ρ′1 6 τ−→a there exists ρ′2

t
==⇒t ρ2 with ρ′2 6 τ−→a such

that (ρ′1, ρ
′
2) ∈ B.

We show that weak timed back-and-forth bisimilarity over runs coincides
with ≈tb, the forward-only timed branching bisimilarity over states. We pro-
ceed by adopting the proof strategy followed in [21] to show that their weak
back-and-forth bisimilarity over runs coincides with the forward-only branching
bisimilarity over states of [33]. Therefore we start by proving that ≈tbf satisfies
the cross property. This means that, whenever two runs of two ≈tbf -equivalent
states can perform a sequence of finitely many τ -transitions, such that each of
the two target runs is ≈tbf -equivalent to the source run of the other sequence,
then the two target runs are ≈tbf -equivalent to each other as well.

Lemma 2. Let s1, s2 ∈ S with s1 ≈tbf s2. For all ρ′1, ρ
′′
1 ∈ run(s1) such that

ρ′1 ==⇒a ρ
′′
1 and for all ρ′2, ρ

′′
2 ∈ run(s2) such that ρ′2 ==⇒a ρ

′′
2 , if ρ′1 ≈tbf ρ

′′
2 and

ρ′′1 ≈tbf ρ
′
2 then ρ′′1 ≈tbf ρ

′′
2 .

Theorem 6. Let s1, s2 ∈ S. Then s1 ≈tbf s2 ⇐⇒ s1 ≈tb s2.
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In conclusion, the properties BSNNI≈tb
, BNDC≈tb

, SBSNNI≈tb
, P BNDC≈tb

,
and SBNDC≈tb

do not change if ≈tb is replaced by ≈tbf . This allows us to study
noninterference properties for reversible systems featuring nondeterminism and
time by using ≈tb in a process calculus like the one of Section 2.3, without hav-
ing to resort to external memories [18], communication keys [53], or executed
action decorations [14,12] like in reversible process calculi.

7 Use Case: Real-Time Database Transactions

Integrating security in real-time systems is a critical issue in several application
domains, ranging from database management systems (DBMS) [1] to cyber-
physical [7] and embedded [67] systems. In particular, the processing of concur-
rent transactions in real-time, multi-level secure database systems has to respect
noninterference security properties about values (i.e., data read by low-level users
cannot be affected by actions performed by high-level transactions), delays (i.e.,
the delay experienced by low-level transactions cannot depend on the execution
of high-level transactions), and recovery (the abort of low-level transactions, as
well as the actions taken to recover, cannot be influenced by the presence of
high-level transactions) [38,62]. The satisfaction of these conditions is even more
complicated in systems where transactions with real-time requirements are as-
signed priorities, as they are served according to their priorities rather than on
a first-come-first-served basis [1].

Let us first explain through some examples inspired by [62] the subtleties
of potential covert channels in such a complex scenario. To this aim, consider
a sequence of three transactions, each with its own security level, priority, ar-
rival time for scheduling, and execution time. Depending on these parameters,
we will show that covert channels may or may not arise. In the following, we
assume that the first transaction, arriving at time 1, is the high-level transaction
HT 1. Then, we have the two low-level transactions LT 2 and LT 3, arriving at time
8 and 11 respectively, such that the priority of LT 3 is higher than the priority
of LT 2. Moreover, HT 1 requests read access to variable x, while the two low-
level transactions request write access to that variable. The three transactions
follow a classical two-phase locking (2PL) mechanism based on the acquisition
and release of a read/write lock before and after the requested operation. By ab-
stracting from the lock operations and denoting by hr1, lw2, and lw3 the three
access operations, we obtain the following process:

DBMS = (1) . (τ . (7) . lw2 . (3) . lw3 . 0 + hr1 . (7) . lw2 . (3) . lw3 . 0)
which represents the case in which HT 1, if scheduled, terminates before the ar-
rival of LT 2, which in turn terminates before the arrival of LT 3. This means
that every low-level transaction does not experience any delay due to the other
transactions. Both value and delay security hold and, in particular, it can be
easily verified that DBMS \ {hr1} and DBMS / {hr1} enable weakly/branching
bisimilar behaviors in this nondeterministic and timed setting.

Now, consider the following variant:
DBMS ′ = (1) . (τ . (7) . lw2 . (3) . lw3 . 0 + hr1 . (9) . lw2 . (1) . lw3 . 0)
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s1 s2 s3 s4 s5τ τ τ τ

hdy hdz

lrx
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t3

lrx lrx

lrx

t4

Fig. 3. Interleaving of two concurrent transactions (r for read, d for delete)

expressing that if HT 1 is scheduled then LT 2 is delayed by 2 time units with re-
spect to its arrival time (e.g., because the duration of HT 1 exceeds 7 time units,
thus blocking the lock acquisition for LT 2), while LT 3 does not experience any
delay. Delay security does not hold anymore and, in particular, this can be ver-
ified via DBMS ′ \ {hr1} and DBMS ′ / {hr1} not being timed weakly/branching
bisimilar. Note that, in contrast, their nondeterministic versions are still nonde-
terministic weakly/branching bisimilar as in the previous case.

Finally, consider the following further variant, where the execution of HT 1

requires 11 time units:
DBMS ′′ = (1) . (τ . (7) . lw2 . (3) . lw3 . 0 + hr1 . (11) . lw3 . (1) . lw2 . 0)

Note that, because of the latency due to HT 1, LT 3 arrives when LT 2 is still
waiting, thus preempting it because of the higher priority level. Hence, in this
case, both value and delay security do not hold anymore, as confirmed by the
fact that DBMS ′′ \ {hr1} and DBMS ′′ / {hr1} are not nondeterministic/timed
weakly/branching bisimilar.

Several approaches have been proposed to make 2PL robust with respect
to these kinds of interferences. Here we consider a solution in which conflict-
ing lock operations are not delayed thanks to the use of virtual locks. From the
user viewpoint, such operations are transparent and the variables are accessed
immediately on demand (see, e.g., [62,20] for details). In this scenario, we de-
scribe an example that emphasizes how the branching semantics helps to capture
violations of recovery security whenever the DBMS supports reversible transac-
tions [22,25]. Consider a low-level transaction LT and a high-level transaction
HT accessing three variables x, y, and z. Their interleaving is shown in Figure 3,
where actions of the form lrv denote a read access on variable v by LT , while
actions of the form hdv denote the deletion of variable v by HT . Since the virtual
lock operations are transparent from the user viewpoint, they are not modeled.
The execution starts in s1 with LT and HT that are activated. Then, in s2, LT
has to choose between some internal activity and the reading of variable x, after
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which a delay of t1 time units follows, while at the same time HT may access
variable y to delete it. The interpretation of the subsequent branches is analo-
gous. Note that the high-level transaction departing from s2 skips s3, because
variable y is deleted and, consequently, LT could not access it.

It is worth noting that the system in Figure 3, call it DBMSvl, satisfies
the SBSNNI≈tw

property. In particular, the most interesting case is given by

the transition s2
τ−→a s4 in DBMSvl /AH, which is simulated by the sequence

s2
τ−→a s3

τ−→a s4 in DBMSvl \ AH (we can reason analogously for the transi-

tion s3
τ−→a s5). However, this does not hold when considering the ≈tb-based

semantics, because the intermediate state s3 is not timed branching bisimilar to
the departing state s2. From the back-and-forth perspective, consider executing
the run τ . τ . lrz of DBMSvl /AH, which can be matched by the run τ . τ . τ . lrz
of DBMSvl \ AH. By undoing the actions of the former run (e.g., due to the
recovery following an abort on the reading operation), it is not possible to go
back to a state enabling action lry. Instead, this is possible by undoing the latter
run. This is enough to distinguish the two versions of the system in the setting of
reversible transactions. As a consequence, it turns out that the BSNNI≈tb

prop-
erty is not satisfied, thus revealing that the ≈tb-based semantics is adequate to
verify recovery security.

8 Conclusions

In this paper we have extended to a deterministically timed setting our previ-
ous compositionality, preservation, and classification results about a selection
of noninterfence properties for irreversible or reversible systems developed in a
nondeterministic setting [25] and in a probabilistic one [23] (stochastic time has
been recently addressed in [24]). To represent the passing of time, we have as-
sumed time determinism and time additivity. The two behavioral equivalences –
designed to comply with the further assumption of maximal progress – for those
noninterference properties are weak timed bisimilarity [48] and a newly defined
timed branching bisimilarity. Since we have shown that timed branching bisim-
ilarity coincides with a timed variant of the weak back-and-forth bisimilarity
of [21], noninterference properties based on this equivalence can be applied to
reversible timed systems, thus extending the results in [25,23] for nondetermin-
istic and probabilistic systems.

As for future work, we would like to include recursion in the considered
process language, thus allowing one to model systems that may not terminate.
This requires identifying adequate timed variants of the up-to technique for
weak [59] and branching [31] bisimilarities, to be used in the proof of some
results where we can now proceed by induction on the depth of the tree-like
TLTS underlying the considered process term. Another direction that we want
to pursue is addressing dense time [69].
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A Proofs of Results

Proof of Proposition 1. We start by noting that by repeatedly applying

TimeSplit to s1
t−→t s

′
1 we can obtain s1

t1−→t s1,1
t2−→t . . .

tn−1−→t s1,n
tn−→t s

′
1 with∑

1≤i≤n ti = t. Then, to prove the result, we reason by induction on the num-
ber n of timed transitions:

– If n = 1 then t1 = t and hence P1
t1−→t s1,1

t2−→t . . .
tn−1−→t s1,n

tn−→t s
′
1 and

s2 ==⇒a s2,1
t1−→t s2,2 ==⇒a . . . ==⇒a s2,n−1

tn−→t s2,n ==⇒a s
′
2 boil down to

s1
t−→t s

′
1 and s2

t−→t s̄2 ==⇒a s
′
2, notice that s2 cannot perform any τ action.

Then from s1 ≈ s2 we obtain that s1 ≈ s̄2 and by transitivity s̄2 ≈ s′1 ≈ s′2.
– If n > 0 then by focusing on the start of each sequence of transitions, i.e.,

s1
t1−→t s1,1

t2−→t . . . and s2 ==⇒a s2,1
t1−→t s2,2 ==⇒a . . . we can notice that

from s1 ≈ s2 and the fact the s1 only enables one timed transition, we have
s1 ≈ s2,1. Then since we assume time determinism, i.e., each state can have

at most one outgoing timed transition, from s1
t1−→t s1,1 and s2,1

t1−→t s2,2
we obtain s1,1 ≈ s2,2. The remainder of the transition sequences are shorter,
and hence we can apply the induction hypothesis to obtain the desired result.

Proof of Lemma 1. The congruence of ≈tw with respect to the operators of our
calculus has already been proven in [48], with the only differences being in the
parallel composition operator considered, a CCS-style operator instead of CSP,
and in the hiding operator, which is not presented directly but it is implemented
throught a relabeling operator.
We then prove the four ≈tb-based properties. Let B be a timed branching bisim-
ulation witnessing P1 ≈tb P2:

1. The symmetric relation B′ = B ∪ {(a .Q1, a .Q2) | (Q1, Q2) ∈ B ∧ Q1, Q2 ∈
P} is a timed branching bisimulation too. The result immediately follows

from the fact that, given (a .Q1, a .Q2) ∈ B′, a .Q1
a−→aQ1 is matched by

a .Q2 ==⇒ a .Q2
a−→aQ2 with (a .Q1, a .Q2) ∈ B′ and (Q1, Q2) ∈ B′.

2. The symmetric relation B′ = B∪{((t) . Q1, (t) . Q2) | (Q1, Q2) ∈ B∧Q1, Q2 ∈
P} is a timed branching bisimulation too. The result immediately follows

from the fact that, given ((t) . Q1, (t) . Q2) ∈ B′, (t) . Q1 6
τ−→a, (t) . Q2 6

τ−→a

and (t) . Q1
t−→tQ1 is matched by (t) . Q2 ==⇒ (t) . Q2

t−→tQ2 ==⇒Q2 with
(Q1, Q2) ∈ B′.

3. The symmetric relation B′= B ∪ {(Q1 ‖LQ,Q2 ‖LQ) | (Q1, Q2)∈B} and its
variant B′′ in which Q occurs to the left of parallel composition in each pair
added with respect to B are timed branching bisimulations too. Let us focus
on B′ and consider (Q1 ‖LQ,Q2 ‖LQ) ∈ B′. There are three cases for action
transitions based on the operational semantic rules in Table 1:

– IfQ1 ‖LQ
a−→aQ

′
1 ‖LQ withQ1

a−→aQ
′
1 and a /∈L, then either a = τ and

(Q′1, Q2) ∈ B, or Q2 ==⇒ Q̄2
a−→aQ

′
2 with (Q1, Q̄2) ∈ B and (Q′1, Q

′
2) ∈

B. Thus in the former subcase Q2 ‖LQ is allowed to stay idle with
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(Q′1 ‖LQ,Q2 ‖LQ) ∈ B′, while in the latter subcase Q2 ‖LQ==⇒ Q̄2 ‖LQ
a−→aQ

′
2 ‖LQ with (Q1 ‖LQ, Q̄2 ‖LQ) ∈ B′ and (Q′1 ‖LQ,Q′2 ‖LQ) ∈ B′.

– The case Q1 ‖LQ
a−→aQ1 ‖LQ′ with Q

a−→aQ
′ and a /∈ L is trivial.

– If Q1 ‖LQ
a−→aQ

′
1 ‖LQ′ with Q1

a−→aQ
′
1, Q

a−→aQ
′, and a ∈ L, then

Q2 ==⇒ Q̄2
a−→aQ

′
2 with (Q1, Q̄2) ∈ B and (Q′1, Q

′
2) ∈ B. Thus Q2 ‖LQ

==⇒ Q̄2 ‖LQ
a−→aQ

′
2 ‖LQ′ with (Q1 ‖LQ, Q̄2 ‖LQ) ∈ B′ and (Q′1 ‖LQ′,

Q′2 ‖LQ′) ∈ B′.
As for delays, suppose Q1 ‖LQ 6 τ−→a so that Q1 6 τ−→a, Q 6 τ−→a, and

Q1 ‖LQ
t−→tQ

′
1 ‖LQ′ with Q1

t−→tQ
′
1 and Q

t−→tQ
′ then from (Q1, Q2)

∈ B we have that Q2 ==⇒ Q̄2 such that Q̄2 6 τ−→a, (Q1, Q̄2) ∈ B, and

Q̄2
t

==⇒Q′2 with (Q′1, Q
′
2) ∈ B. Thus Q2 ‖LQ==⇒ Q̄2 ‖LQ

t
==⇒Q′2 ‖LQ′ with

Q̄2 ‖LQ) 6τ−→a, (Q1 ‖LQ, Q̄2 ‖LQ) ∈ B′, and (Q′1 ‖LQ′, Q′2 ‖LQ′) ∈ B′.
4. The symmetric relation B′ = B∪{(Q1 \L,Q2 \L) | (Q1, Q2) ∈ B} is a timed

branching bisimulation too. Given (Q1 \L,Q2 \L) ∈ B′, there are two cases
for action transitions based on the operational semantic rules in Table 1:

– If Q1 \ L
τ−→aQ

′
1 \ L with Q1

τ−→aQ
′
1, then either (Q′1, Q2) ∈ B, or

Q2 ==⇒ Q̄2
τ−→aQ

′
2 with (Q1, Q̄2) ∈ B and (Q′1, Q

′
2) ∈ B. Since the re-

striction operator does not apply to τ in the former subcase Q2 \ L
is allowed to stay idle with (Q′1 \ L,Q2 \ L) ∈ B′, while in the latter

subcase Q2 \ L==⇒ Q̄2 \ L
τ−→aQ

′
2 \ L with (Q1 \ L, Q̄2 \ L) ∈ B′ and

(Q′1 \ L,Q′2 \ L) ∈ B′.
– IfQ1\L

a−→aQ
′
1\L withQ1

a−→aQ
′
1 and a /∈ L∪{τ}, thenQ2 ==⇒ Q̄2

a−→a

Q′2 with (Q1, Q̄2) ∈ B and (Q′1, Q
′
2) ∈ B. Since the restriction operator

does not apply to τ and a /∈ L, it follows that Q2\L==⇒ Q̄2\L
a−→aQ

′
2\L

with (Q1 \ L, Q̄2 \ L) ∈ B′ and (Q′1 \ L,Q′2 \ L) ∈ B′.
As for delays, suppose Q1 \ L 6τ−→a so that Q1 6

τ−→a and Q1 \ L
t−→tQ

′
1 \ L

with Q1
t−→tQ

′
1, then from (Q1, Q2) ∈ B it follows that Q2 ==⇒ Q̄2 such

that Q̄2 6 τ−→a, (Q1, Q̄2) ∈ B, and Q̄2
t

==⇒Q′2 with (Q′1, Q
′
2) ∈ B. Since the

restriction operator do not apply to τ or timed transistions, it follows that

Q2 \L==⇒ Q̄2 \L
t

==⇒Q′2 \AH with Q̄2 \AH 6τ−→a, (Q1 \AH, Q̄2 \AH) ∈ B,
and (Q′1 \ L,Q′2 \ L) ∈ B′.

5. The symmetric relation B′ = B∪{(Q1 /L,Q2 /L) | (Q1, Q2) ∈ B} is a timed
branching bisimulation too. Given (Q1 /L,Q2 /L) ∈ B′, there are two cases
for action transitions based on the operational semantic rules in Table 1:

– If Q1 /L
τ−→aQ

′
1 /L with Q1

τ−→aQ
′
1, then either (Q′1, Q2) ∈ B, or

Q2 ==⇒ Q̄2
τ−→aQ

′
2 with (Q1, Q̄2) ∈ B and (Q′1, Q

′
2) ∈ B. Since the hid-

ing operator does not apply to τ in the former subcase Q2 /L is al-
lowed to stay idle with (Q′1 /L,Q2 /L) ∈ B′, while in the latter subcase

Q2 /L==⇒ Q̄2 /L
τ−→aQ

′
2 /L with (Q1 /L, Q̄2 /L) ∈ B′ and (Q′1 /L,

Q′2 /L) ∈ B′.
– If Q1 /L

a−→aQ
′
1 /L with Q1

b−→aQ
′
1 and b ∈ L∧a = τ or b /∈ L∪{τ}∧

a = b, then Q2 ==⇒ Q̄2
b−→aQ

′
2 with (Q1, Q̄2) ∈ B and (Q′1, Q

′
2) ∈ B.
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Since the hiding operator does not apply to τ it follows that Q2 /L==⇒
Q̄2 /L

a−→aQ
′
2 /L with (Q1 /L, Q̄2 /L) ∈ B′ and (Q′1 /L,Q

′
2 /L) ∈ B′.

As for delays, suppose Q1 /L 6τ−→a so that Q1 6
τ−→a and Q1 /L

t−→tQ
′
1 /L

with Q1
t−→tQ

′
1, then from (Q1, Q2) ∈ B we have Q2 ==⇒ Q̄2 such that

Q̄2 6 τ−→a, (Q1, Q̄2) ∈ B, and Q̄2
t

==⇒Q′2 with (Q′1, Q
′
2) ∈ B. Since the

hiding operator does not apply to τ or timed transistions, it follows that

Q2 /L==⇒ Q̄2
t

==⇒Q′2 /L with Q̄2 \ AH 6 τ−→a, (Q′1 /L, Q̄2 /L) ∈ B′, and
(Q′1 /L,Q

′
2 /L) ∈ B′.

Proof of Theorem 1. The results immediately follow from the fact that ≈tw

and ≈tb are congruences with respect to the parallel, restriction and hiding
operators (see the proof of the Lemma 1).

Proof of Theorem 2. We divide the proof into two parts. In the first part we
prove the theorem for the ≈tw-based properties, and in the second part we do
the same for the ≈tb-based properties. We first prove the results for SBSNNI≈tw

,
and hence for P BNDC≈tw

too by virtue of the forthcoming Theorem 3:

1. Given an arbitrary P ∈ SBSNNI≈tw and an arbitrary a ∈ AL ∪ {τ}, from
P \AH ≈tw P /AH we derive that a . (P \AH) ≈tw a . (P /AH) because ≈tw

is a congruence with respect to action prefix (see proof of Lemma 1), from
which it follows that (a . P ) \ AH ≈tw (a . P ) /AH, i.e., a . P ∈ BSNNI≈tw

,
because a /∈ AH. To conclude the proof, it suffices to observe that all the
processes reachable from a . P after performing a are processes reachable
from P , which are known to be BSNNI≈tw .

2. Given an arbitrary P ∈ SBSNNI≈tw
and an arbitrary t ∈ N>0, from P \

AH ≈tw P /AH we derive that (t) . (P \AH) ≈tw (t) . (P /AH) because ≈tw

is a congruence with respect to timed prefix (see proof of Lemma 1), from
which it follows that (t) . P \ AH ≈tw (t) . P /AH, i.e., (t) . P ∈ BSNNI≈tw ,
because restriction and hiding do not apply to timed transitions. To conclude
the proof, it suffices to observe that all the processes reachable from (t) . P
after performing t are processes reachable from P , which are known to be
BSNNI≈tw

.
3. Given two arbitrary P1, P2 ∈ P such that Q1, Q2 ∈ reach(P1), R1, R2 ∈

reach(P2), and arbitrary L ⊆ AL the result follows by proving that the
symmetric relation B = {((Q1 ‖LQ2) \ AH, (R1 ‖LR2) /AH) | Q1 ‖LQ2) ∈
reach(P1 ‖L P2)∧ (R1 ‖LR2 ∈ reach(P1 ‖L P2)∧Q1 \AH ≈tw R1 /AH ∧Q2 \
AH ≈tw R2 /AH} by taking Q1 identical to R1 and Q2 identical to R2.
thirteen cases for action transitions based on the operational semantic rules
in Table 1. In the first five cases, it is (Q1 ‖LQ2) \ AH to move first:

– If (Q1 ‖LQ2) \ AH
l−→a (Q′1 ‖LQ2) \ AH with Q1

l−→aQ
′
1 and l /∈ L,

then Q1 \ AH
l−→aQ

′
1 \ AH as l /∈ AH. From Q1 \ AH ≈tw R1 /AH

it follows that there exists R′1 such that R1 /AH==⇒ l−→a ==⇒R′1 /AH
with Q′1 \ AH ≈tw R′1 /AH. Since synchronization does not apply to τ

and l, we have that (R1 ‖LR2) /AH==⇒ l−→a ==⇒ (R′1 ‖LR2) /AH with
((Q′1 ‖LQ2) \ AH, (R′1 ‖LR2) /AH) ∈ B.
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– If (Q1 ‖LQ2)\AH
l−→a (Q1 ‖LQ′2)\AH with Q2

l−→aQ
′
2 and l /∈ L, then

the proof is similar to the one of the previous case.

– If (Q1 ‖LQ2)\AH
l−→a (Q′1 ‖LQ′2)\AH withQi

l−→aQ
′
i for i ∈ {1, 2} and

l ∈ L, then Qi\AH
l−→aQ

′
i\AH as l /∈ AH. From Qi\AH ≈tw Ri /AH it

follows that there exists R′i such that Ri /AH==⇒ l−→a ==⇒R′i /AH with
Q′i\AH ≈tw R′i /AH. Since synchronization does not apply to τ , we have

that (R1 ‖LR2) /AH==⇒ l−→a ==⇒ (R′1 ‖LR′2) /AH with ((Q′1 ‖LQ′2) \
AH, (R′1 ‖LR′2) /AH) ∈ B.

– If (Q1 ‖LQ2) \AH
τ−→a (Q′1 ‖LQ2) \AH with Q1

τ−→aQ
′
1, then Q1 \AH

τ−→aQ
′
1\AH as τ /∈ AH. From Q1\AH ≈tw R1 /AH it follows that there

exists R′1 such that R1 /AH==⇒R′1 /AH with Q′1 \ AH ≈tw R′1 /AH.
Since synchronization does not apply to τ , we have that (R1 ‖LR2) /AH
==⇒ (R′1 ‖LR2) /AH with ((Q′1 ‖LQ2) \ AH, (R′1 ‖LR2) /AH) ∈ B.

– If (Q1 ‖LQ2)\AH
τ−→a (Q1 ‖LQ′2)\AH with Q2

τ−→aQ
′
2, then the proof

is similar to the one of the previous case.
In the other eight cases, instead, it is (R1 ‖LR2) /AH to move first:

– If (R1 ‖LR2) /AH
l−→a (R′1 ‖LR2) /AH with R1

l−→aR
′
1 and l /∈ L, then

R1 /AH
l−→aR

′
1 /AH as l /∈ AH. From R1 /AH ≈tw Q1 \ AH it fol-

lows that there exists Q′1 such that Q1 \AH==⇒ l−→a ==⇒Q′1 \AH with
R1 /AH ≈tw Q′1 \ AH and R′1 /AH ≈tw Q′1 \ AH. Since synchronization

does not apply to τ and l, we have that (Q1 ‖LQ2) \ AH==⇒ l−→a ==⇒
(Q′1 ‖LQ2) \ AH with ((R′1 ‖LR2)/AH, (Q′1 ‖LQ2) \ AH) ∈ B.

– If (R1 ‖LR2) /AH
l−→a (R1 ‖LR′2) /AH with R2

l−→aR
′
2 and l /∈ L, then

the proof is similar to the one of the previous case.

– If (R1 ‖LR2) /AH
l−→a (R′1 ‖LR′2) /AH with Ri

l−→aR
′
i for i ∈ {1, 2}

and l ∈ L, then Ri /AH
l−→aR

′
i /AH as l /∈ AH. From Ri /AH ≈tw

Qi\AH it follows that there existsQ′i such thatQi\AH==⇒ l−→a ==⇒Q′i\
AH with R′i /AH ≈tw Q′i \ AH. Since synchronization does not apply

to τ , we have that (Q1 ‖LQ2) \ AH==⇒ l−→a ==⇒ (Q′1 ‖LQ′2) \ AH with
((R′1 ‖LR′2)/AH, (Q′1 ‖LQ′2) \ AH) ∈ B.

– If (R1 ‖LR2) /AH
τ−→a (R′1 ‖LR2) /AH with R1

τ−→aR
′
1, then R1 /AH

τ−→aR
′
1 /AH as τ /∈ AH. From R1 /AH ≈tw Q1\AH it follows that there

exists Q′1 such that Q1 \ AH==⇒Q′1 \ AH with R′1 /AH ≈tw Q′1 \ AH.
Since synchronization does not apply to τ , we have that (Q1 ‖LQ2) \
AH==⇒ (Q′1 ‖LQ2) \ AH with ((R′1 ‖LR2)/AH, (Q′1 ‖LQ2) \ AH) ∈ B.

– If (R1 ‖LR2) /AH
τ−→a (R1 ‖LR′2) /AH with R2

τ−→aR
′
2, then the proof

is similar to the one of the previous case.

– If (R1 ‖LR2) /AH
τ−→a (R′1 ‖LR2) /AH with R1

h−→aR
′
1 and h /∈ L,

then R1 /AH
τ−→aR

′
1 /AH as h ∈ AH. The rest of the proof is like

the one of the fourth case.
– If (R1 ‖LR2) /AH

τ−→a (R1 ‖LR′2) /AH with R2
h−→aR

′
2 and h /∈ L,

then the proof is similar to the one of the previous case.
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– If (R1 ‖LR2) /AH
τ−→a (R′1 ‖LR′2) /AH with Ri

h−→aR
′
i for i ∈ {1, 2}

and h ∈ L, then Ri /AH
τ−→aR

′
i /AH as h ∈ AH. From Ri /AH ≈tw

Qi \ AH it follows that there exists Q′i such that Qi \ AH==⇒Q′i \ AH
with R′i /AH ≈tw Q′i\AH. Since synchronization does not apply to τ , we
have that (Q1 ‖LQ2) \ AH==⇒ (Q′1 ‖LQ′2) \ AH with ((R′1 ‖LR′2) /AH,
(Q′1 ‖LQ′2) \ AH) ∈ B.

As for delays, suppose (Q1 ‖LQ2) \ AH 6 τ−→a so that Qi \ AH 6 τ−→a, then
from Q1 \ AH ≈tw R1 /AH and Q2 \ AH ≈tw R2 /AH it follows that

there exists Ri /AH==⇒ R̄i /AH with i ∈ {1, 2} such that R̄i 6
τ−→a, Q1 \

AH ≈tw R̄1 /AH, and Q2 \AH ≈tw R̄2 /AH. Since the sychronization oper-
ator does not apply to τ , we have that (R1 ‖LR2) /AH==⇒ (R̄1 ‖L R̄2) /AH
with (R̄1 ‖L R̄2) /AH 6τ−→a and ((Q1 ‖LQ2) \ AH, (R̄1 ‖L R̄2) /AH) ∈ B. If

(Q1 ‖LQ2) \ AH
t−→t (Q′1 ‖LQ′2) \ AH then we have Qi \ AH

t−→tQ
′
i \ AH

and hence R̄i /AH
t

==⇒R′i /AH with Q′i \AH ≈tw R′i /AH. Since the hiding
operator does not apply to timed transitions, and since they can be splitted
and merged by TimeSplit and TimeMerge we have that (R̄1 ‖L R̄2) /AH==⇒
(R′1 ‖LR′2) /AH with ((Q′1 ‖LQ′2) \ AH, (R′1 ‖LR′2) /AH) ∈ B.

If we suppose that (R1 ‖LR2) /AH 6τ−→a, then the reasoning is similar to the
previous case.

4. Given an arbitrary P ∈ SBSNNI≈tw
and an arbitrary L ⊆ A, the result

follows by proving that the symmetric relation B = {((Q/AH) \ L, (R \
L) /AH), ((R\L) /AH, (Q/AH)\L) | Q,R ∈ reach(P )∧Q/AH ≈tw R\AH}
is a weak timed bisimulation, as can be seen by taking Q identical to R –
which will be denoted by P ′ – because:

– (P ′ \L) \AH ≈tw (P ′ \AH) \L as the order in which restriction sets are
considered is unimportant.

– (P ′ \ AH) \ L ≈tw (P ′ /AH) \ L because P ′ \ AH ≈tw P ′ /AH – as
P ∈ SBSNNI≈t

and P ′ ∈ reach(P ) – and ≈tw is a congruence with
respect to the restriction operator due to Lemma 1(3).

– (P ′ /AH) \ L ≈tw (P ′ \ L) /AH as ((P ′ /AH) \ L, (P ′ \ L) /AH) ∈ B.

– From the transitivity of ≈tw we obtain that (P ′ \ L) \ AH ≈tw (P ′ \
L) /AH.

Starting from (Q/AH)\L and (R\L) /AH related by B, so that Q/AH ≈tw

R \ AH, there are six cases for action transitions based on the operational
semantic rules in Table 1. In the first three cases, it is (Q/AH) \L to move
first:

– If (Q/AH)\L l−→a (Q′ /AH)\L with Q
l−→aQ

′ and l /∈ L, then Q/AH
l−→aQ

′ /AH as l /∈ AH. From Q/AH ≈tw R \ AH it follows that there

exists R′ such that R \ AH==⇒ l−→a ==⇒R′ \ AH with Q′ /AH ≈tw

R′\AH. Since the restriction and hiding operators do not apply to τ and

l, we have that (R\L) /AH==⇒ l−→a ==⇒ (R′\L) /AH with ((Q′ /AH)\
L, (R′ \ L) /AH) ∈ B.
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– If (Q/AH)\L τ−→a (Q′ /AH)\L withQ
τ−→aQ

′, thenQ/AH
τ−→aQ

′ /AH
as τ /∈ AH. From Q/AH ≈tw R \ AH it follows that there exists
R′ such that R \ AH==⇒R′ \ AH with Q′ /AH ≈tw R′ \ AH. Since
the restriction and hiding operators do not apply to τ , we have that
(R \ L) /AH==⇒ (R′ \ L) /AH with ((Q′ /AH) \ L, (R′ \ L) /AH) ∈ B.

– If (Q/AH)\L τ−→a (Q′ /AH)\L withQ
h−→aQ

′, thenQ/AH
τ−→aQ

′ /AH
as h ∈ AH. The rest of the proof is like the one of the previous case.

In the other three cases, instead, it is (R \ L) /AH to move first:

– If (R \ L) /AH
l−→a (R′ \ L) /AH with R

l−→aR
′ and l /∈ L, then R \

AH
l−→aR

′ \ AH as l /∈ AH. From R \ AH ≈tw Q/AH it follows

that there exists Q′ such that Q/AH==⇒ l−→a ==⇒Q′ /AH with R′ \
AH ≈tw Q′ /AH. Since the restriction operator does not apply to τ

and l, we have that (Q/ ,AH) \ L==⇒ l−→a ==⇒ (Q′ /AH) \ L with
((R′ \ L) /AH, (Q′ /AH) \ L) ∈ B.

– If (R\L) /AH
τ−→a (R′\L) /AH withR

τ−→aR
′, thenR\AH

τ−→aR
′\AH

as τ /∈ AH. From R \AH ≈tw Q/AH it follows that there exists Q′ such
that Q/AH==⇒Q′ /AH with R′\AH ≈tw Q′ /AH. Since the restriction
operator does not apply to τ we have that (Q/AH)\L==⇒ (Q′ /AH)\L
with ((R′ \ L) /AH, (Q′ /AH) \ L) ∈ B.

– If (R \ L) /AH
τ−→a (R′ \ L) /AH with R

h−→aR
′ and h /∈ L, then

R/AH
τ−→aR

′ /AH as h ∈ AH (note that R \ AH cannot perform h).
From R/AH ≈tw R \ AH – as P ∈ SBSNNI≈tw and R ∈ reach(P )
– and R \ AH ≈tw Q/AH it follows that there exists Q′ such that
Q/AH==⇒Q′ /AH with R′ /AH ≈tw Q′ /AH and hence R′ \ AH ≈tw

Q′ /AH – as R′ /AH ≈tw R′ \ AH due to P ∈ SBSNNI≈tw
and R′ ∈

reach(P ). Since the restriction operator does not apply to τ , we have that
(Q/AH) \ L==⇒ (Q′ /AH) \ L with ((R′ \ L) /AH, (Q′ /AH) \ L) ∈ B.

As for delays, suppose (Q/AH) \ L 6 τ−→a so that Q/AH 6 τ−→a then from
Q/AH ≈tw R \ AH ≈tw R/AH – as P ∈ SBSNNI≈tw

and R ∈ reach(P ) –

it follows that there exists R/AH==⇒ R̄ /AH such that R̄ /AH 6 τ−→a and
Q/AH ≈tw R̄ /AH ≈tw R̄\AH. Since restriction and hiding do not operate

on τ we have that (R \ L) /AH==⇒ (R̄ \ L) /AH with (R̄ \ L) /AH 6 τ−→a

and ((Q/AH) \ L, (R̄ \ L) /AH) ∈ B. If (Q/AH) \ L t−→t (Q′ /AH) \ L
then we have that Q1 /AH

t−→tQ
′
1 /AH and hence R̄ \ AH

t
==⇒R′ \ AH

with R′ \ AH ≈tw Q′ /AH. Since restriction and hiding do not apply to τ

and timed transitions, it follows that (R̄ \ L) /AH
t

==⇒ (R′ \ L) /AH with
((Q′ /AH) \ L, (R′ \ L) /AH) ∈ B.

If we suppose that (R \ L) /AH 6 τ−→a then the reasoning is similar to the
previous case.

5. Given an arbitrary P ∈ SBSNNI≈tw
and an arbitrary L ⊆ AL, for every

P ′ ∈ reach(P ) it holds that P ′ \AH ≈tw P ′ /AH, from which we derive that
(P ′ \ AH) /L ≈tw (P ′/AH) /L because ≈tw is a congruence with respect
to the hiding operator (see the proof of Lemma 1). Since L ∩ AH = ∅, we
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have that (P ′ \ AH) /L is isomorphic to (P ′ /L) \ AH and (P ′ /AH) /L
is isomorphic to (P ′ /L) /AH, hence (P ′ /L) \ AH ≈tw (P ′ /L) /AH, i.e.,
P ′ /L is BSNNI≈tw .

We now prove the results for SBNDC≈tw
:

1. Given an arbitrary P ∈ SBNDC≈tw
and an arbitrary a ∈ Aτ \AH, it trivially

holds that a . P ∈ SBNDC≈tw
.

2. Given an arbitrary P ∈ SBNDC≈tw
and an arbitrary t ∈ N>0, it trivially

holds that (t) . P ∈ SBNDC≈tw
.

3. Given two arbitrary P1, P2 ∈ SBNDC≈tw
and an arbitrary L ⊆ A, the

result follows by proving that the symmetric relation B = {((Q1 ‖LQ2) \
AH, (R1 ‖LR2)\AH), ((R1 ‖LR2)\AH, (Q1 ‖LQ2)\AH) | Q1 ‖LQ2, R1 ‖LR2

∈ reach(P1 ‖L P2) ∧ Q1 \ AH ≈tw R1 \ AH ∧ Q2 \ AH ≈tw R2 \ AH}
is a weak timed bisimulation, as can be seen by observing that whenever

P ′1 ‖L P ′2
h−→a P

′′
1 ‖L P ′′2 for P ′1 ‖L P ′2 ∈ reach(P1 ‖L P2):

– If P ′1
h−→a P

′′
1 , P ′′2 = P ′2 (hence P ′2 \ AH ≈tw P ′′2 \ AH), and h /∈ L, then

from
P1 ∈ SBNDC≈tw

it follows that P ′1 \ AH ≈tw P ′′1 \ AH, which in turn
entails that (P ′1 ‖L P ′2)\AH ≈tw (P ′′1 ‖L P ′′2 )\AH because≈tw is a congru-
ence with respect to the parallel composition operator due to Lemma 1(2)
and restriction distributes over parallel composition.

– If P ′2
h−→a P

′′
2 , P ′′1 = P ′1, and h /∈ L, then we reason like in the previous

case.
– If P ′1

h−→a P
′′
1 , P ′2

h−→a P
′′
2 , and h ∈ L, then from P1, P2 ∈ SBNDC≈tw it

follows that P ′1 \ AH ≈tw P ′′1 \ AH and P ′2 \ AH ≈tw P ′′2 \ AH, which
in turn entail that (P ′1 ‖L P ′2) \ AH ≈tw (P ′′1 ‖L P ′′2 ) \ AH because ≈tw is
a congruence with respect to the parallel composition operator due to
Lemma 1(2) and restriction distributes over parallel composition.

Assuming that ((Q1 ‖LQ2) \AH, (R1 ‖LR2) \AH) ∈ B, there are five cases:

– If (Q1 ‖LQ2) \ AH
l−→a (Q′1 ‖LQ2) \ AH with Q1

l−→aQ
′
1 and l /∈ L,

then Q1 \ AH
l−→aQ

′
1 \ AH as l /∈ AH. From Q1 \ AH ≈tw R1 \ AH it

follows that there exists R′1 such that R1 \ AH==⇒ l−→a ==⇒R′1 \ AH
with Q′1 \ AH ≈tw R′1 \ AH. Since synchronization does not apply to τ ,

we have that (R1 ‖LR2) \ AH==⇒ l−→a ==⇒ (R′1 ‖LR2) \ AH with and
((Q′1 ‖LQ2) \ AH, (R′1 ‖LR2) \ AH) ∈ B.

– If (Q1 ‖LQ2)\AH
l−→a (Q1 ‖LQ′2)\AH with Q2

l−→aQ
′
2 and l /∈ L, then

the proof is similar to the one of the previous case.

– If (Q1 ‖LQ2)\AH
l−→a (Q′1 ‖LQ′2)\AH withQi

l−→aQ
′
i for i ∈ {1, 2} and

l ∈ L, then Qi\AH
l−→aQ

′
i\AH as l /∈ AH. From Qi\AH ≈tw Ri\AH it

follows that there exists R′i such that Ri\AH==⇒ l−→a ==⇒R′i\AH with
Q′i\AH ≈tw R′i\AH. Since synchronization does not apply to τ , we have

that (R1 ‖LR2) \ AH==⇒ l−→a ==⇒ (R′1 ‖LR′2) \ AH with ((Q′1 ‖LQ′2) \
AH, (R′1 ‖LR′2) \ AH) ∈ B.
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– If (Q1 ‖LQ2) \ AH
τ−→a (Q′1 ‖LQ2) \ AH with Q1

τ−→aQ
′
1, then Q1 \

AH
τ−→aQ

′
1 \AH as τ /∈ AH. From Q1 \AH ≈tw R1 \AH it follows that

there exists R′1 such that R1\AH==⇒R′1\AH with Q′1\AH ≈tw R′1\AH.
Since synchronization does not apply to τ , we have that (R1 ‖LR2) \
AH==⇒ (R′1 ‖LR2) \ AH with ((Q′1 ‖LQ2) \ AH, (R′1 ‖LR2) \ AH) ∈ B.

– If (Q1 ‖LQ2)\AH
τ−→a (Q1 ‖LQ′2)\AH with Q2

τ−→aQ
′
2, then the proof

is similar to the one of the previous case.
As for delays, suppose that (Q1 ‖LQ2) \ AH 6 τ−→a so that Qi \ AH 6 τ−→a

for i ∈ {1, 2} then from Qi \ AH ≈tw Ri \ AH it follows that there exist

Ri \AH==⇒ R̄i \AH with R̄i \AH 6τ−→a and Qi \AH ≈tw R̄i \AH. Since syn-
crhonization do not apply to τ , we have that (R1 ‖LR2)\AH==⇒ (R̄1 ‖L R̄2)\
AH with (R̄1 ‖L R̄2) \AH 6τ−→a and ((Q1 ‖LQ2) \AH, (R̄1 ‖L R̄2) \AH) ∈ B.

If (Q1 ‖LQ2) \ AH
t−→t (Q′1 ‖LQ′2) \ AH then Qi \ AH

t−→tQ
′
i \ AH and we

have R̄i \ AH==⇒R′i \ AH with Q′i \ AH ≈tw R′i \ AH. Since the restriction
operator does not apply to timed transitions, and since they can be split-
ted and merged by TimeSplit and TimeMerge we have that (R̄1 ‖L R̄2) \
AH

t
==⇒ (R′1 ‖LR′2) \ AH with ((Q′1 ‖LQ′2) \ AH, (R′1 ‖LR′2) \ AH) ∈ B.

4. Given an arbitrary P ∈ SBNDC≈tw
and an arbitrary L ⊆ A, for every P ′ ∈

reach(P ) and for every P ′′ such that P ′
h−→a P

′′ it holds that P ′ \ AH ≈tw

P ′′ \AH, from which we derive that (P ′ \AH)\L ≈tw (P ′′ \AH)\L because
≈tw is a congruence with respect to the restriction operator (see the proof of
Lemma 1). Since (P ′\AH)\L is isomorphic to (P ′\L)\AH and (P ′′\AH)\L
is isomorphic to (P ′′ \L)\AH, we have that (P ′ \L)\AH ≈tw (P ′′ \L)\AH.

5. Given an arbitrary P ∈ SBNDC≈tw
and an arbitrary L ⊆ AL, for every P ′ ∈

reach(P ) and for every P ′′ such that P ′
h−→a P

′′ it holds that P ′ \ AH ≈tw

P ′′ \AH, from which we derive that (P ′ \AH) /L ≈tw (P ′′ \AH) /L because
≈tw is a congruence with respect to the hiding operator (see the proof of
Lemma 1). Since L ∩ AH = ∅, we have that (P ′ \ AH) /L is isomorphic
to (P ′ /L) \ AH and (P ′′ \ AH) /L is isomorphic to (P ′′ /L) \ AH, hence
(P ′ /L) \ AH ≈tw (P ′′ /L) \ AH.

We now prove the same result for the ≈tb-based properties. As for the
first part of the proof, we first prove the results for SBSNNI≈tb

, and hence
for P BNDC≈tb

too by virtue of the forthcoming Theorem 3:

1. Given an arbitrary P ∈ SBSNNI≈tb
and an arbitrary a ∈ AL ∪ {τ}, we

proceed as in the ≈tw case.
2. Given an arbitrary P ∈ SBSNNI≈tb

and an arbitrary t ∈ N>0, we proceed
as in the ≈tw case.

3. Given two arbitrary P1, P2 ∈ P such that Q1, Q2 ∈ reach(P1), R1, R2 ∈
reach(P2), and arbitrary L ⊆ AL the result follows by proving that the
symmetric relation B = {((Q1 ‖LQ2) \ AH, (R1 ‖LR2) /AH) | Q1 ‖LQ2) ∈
reach(P1 ‖L P2)∧ (R1 ‖LR2 ∈ reach(P1 ‖L P2)∧Q1 \AH ≈tb R1 /AH ∧Q2 \
AH ≈tb R2 /AH} by taking Q1 identical to R1 and Q2 identical to R2. There
are thirteen cases for action transitions based on the operational semantic
rules in Table 1. In the first five cases, it is (Q1 ‖LQ2) \ AH to move first:
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– If (Q1 ‖LQ2)\AH
l−→a (Q′1 ‖LQ2)\AH with Q1

l−→aQ
′
1 and l /∈ L, then

Q1 \ AH
l−→aQ

′
1 \ AH as l /∈ AH. From Q1 \ AH ≈tb R1 /AH it follows

that there exist R̄1 and R′1 such that R1 /AH==⇒ R̄1 /AH
l−→aR

′
1 /AH

with Q1 \ AH ≈tb R̄1 /AH and Q′1 \ AH ≈tb R′1 /AH. Since syn-
chronization does not apply to τ and l, we have that (R1 ‖LR2) /AH
==⇒ (R̄1 ‖LR2) /AH

l−→a (R′1 ‖LR2) /AH with ((Q1 ‖LQ2) \ AH,
(R̄1 ‖LR2) /AH) ∈ B and ((Q′1 ‖LQ2) \ AH, (R′1 ‖LR2) /AH) ∈ B.

– If (Q1 ‖LQ2)\AH
l−→a (Q1 ‖LQ′2)\AH with Q2

l−→aQ
′
2 and l /∈ L, then

the proof is similar to the one of the previous case.

– If (Q1 ‖LQ2)\AH
l−→a (Q′1 ‖LQ′2)\AH withQi

l−→aQ
′
i for i ∈ {1, 2} and

l ∈ L, then Qi\AH
l−→aQ

′
i\AH as l /∈ AH. From Qi\AH ≈tb Ri /AH it

follows that there exist R̄i and R′i such that Ri /AH==⇒ R̄i /AH
l−→a

R′i /AH with Qi \ AH ≈tb R̄i /AH and Q′i \ AH ≈tb R′i /AH. Since
synchronization does not apply to τ , we have that (R1 ‖LR2) /AH==⇒
(R̄1 ‖L R̄2) /AH

l−→a (R′1 ‖LR′2) /AH with ((Q1 ‖LQ2)\AH, (R̄1 ‖L R̄2) /
AH) ∈ B and ((Q′1 ‖LQ′2) \ AH, (R′1 ‖LR′2) /AH) ∈ B.

– If (Q1 ‖LQ2) \ AH
τ−→a (Q′1 ‖LQ2) \ AH with Q1

τ−→aQ
′
1, then Q1 \

AH
τ−→aQ

′
1 \ AH as τ /∈ AH. From Q1 \ AH ≈tb R1 /AH it follows

that either Q′1 \ AH ≈tb R1 /AH, or there exist R̄1 and R′1 such that

R1 /AH==⇒ R̄1 /AH
τ−→aR

′
1 /AH with Q1 \AH ≈tb R̄1 /AH and Q′1 \

AH ≈tb R
′
1 /AH. In the former subcase (R1 ‖LR2) /AH is allowed to

stay idle with ((Q′1 ‖LQ2) \ AH, (R1 ‖LR2) /AH) ∈ B, while in the lat-
ter subcase, since synchronization does not apply to τ , we have that
(R1 ‖LR2) /AH==⇒ (R̄1 ‖LR2) /AH

τ−→a (R′1 ‖LR2) /AH with
((Q1 ‖LQ2)\AH, (R̄1 ‖LR2) /AH) ∈ B and ((Q′1 ‖LQ2)\AH, (R′1 ‖LR2)
/AH) ∈ B.

– If (Q1 ‖LQ2)\AH
τ−→a (Q1 ‖LQ′2)\AH with Q2

τ−→aQ
′
2, then the proof

is similar to the one of the previous case.

In the other seven cases, instead, it is (R1 ‖LR2) /AH to move first:

– If (R1 ‖LR2) /AH
l−→a (R′1 ‖LR2) /AH with R1

l−→aR
′
1 and l /∈ L, then

R1 /AH
l−→aR

′
1 /AH as l /∈ AH. From R1 /AH ≈tb Q1 \ AH it follows

that there exist Q̄1 and Q′1 such that Q1 \AH==⇒ Q̄1 \AH
l−→aQ

′
1 \AH

with R1 /AH ≈tb Q̄1 \ AH and R′1 /AH ≈tb Q
′
1 \ AH. Since synchro-

nization does not apply to τ and l, we have that (Q1 ‖LQ2) \ AH==⇒
(Q̄1 ‖LQ2)\AH

l−→a (Q′1 ‖LQ2)\AH with ((R1 ‖LR2)/AH, (Q̄1 ‖LQ2)\
AH) ∈ B and ((R′1 ‖LR2)/AH, (Q′1 ‖LQ2) \ AH) ∈ B.

– If (R1 ‖LR2) /AH
l−→a (R1 ‖LR′2) /AH with R2

l−→aR
′
2 and l /∈ L, then

the proof is similar to the one of the previous case.

– If (R1 ‖LR2) /AH
l−→a (R′1 ‖LR′2) /AH with Ri

l−→aR
′
i for i ∈ {1, 2}

and l ∈ L, then Ri /AH
l−→aR

′
i /AH as l /∈ AH. From Ri /AH ≈tb

Qi \AH it follows that there exist Q̄i and Q′i such that Qi \AH==⇒ Q̄i \
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AH
l−→aQ

′
i \ AH with Ri /AH ≈tb Q̄i \ AH and R′i /AH ≈tb Q

′
i \ AH.

Since synchronization does not apply to τ , we have that (Q1 ‖LQ2) \
AH==⇒ (Q̄1 ‖L Q̄2) \ AH

l−→a (Q′1 ‖LQ′2) \ AH with ((R1 ‖LR2)/AH,
(Q̄1 ‖L Q̄2) \ AH) ∈ B and ((R′1 ‖LR′2) /AH, (Q′1 ‖LQ′2) \ AH) ∈ B.

– If (R1 ‖LR2) /AH
τ−→a (R′1 ‖LR2) /AH with R1

τ−→aR
′
1, then R1 /AH

τ−→aR
′
1 /AH as τ /∈ AH. From R1 /AH ≈tb Q1 \ AH it follows that

either R′1 /AH ≈tb Q1 \ AH, or there exist Q̄1 and Q′1 such that Q1 \
AH==⇒ Q̄1\AH

τ−→aQ
′
1\AH withR1 /AH ≈tb Q̄1\AH andR′1 /AH ≈tb

Q′1 \ AH. In the former subcase (Q1 ‖LQ2) \ AH is allowed to stay idle
with ((R′1 ‖LR2)/AH, (Q1 ‖LQ2) \AH) ∈ B, while in the latter subcase,
since synchronization does not apply to τ , we have that (Q1 ‖LQ2) \
AH==⇒ (Q̄1 ‖LQ2) \ AH

τ−→a (Q′1 ‖LQ2) \ AH with ((R1 ‖LR2)/AH,
(Q̄1 ‖LQ2) \ AH) ∈ B and ((R′1 ‖LR2)/AH, (Q′1 ‖LQ2) \ AH) ∈ B.

– If (R1 ‖LR2) /AH
τ−→a (R1 ‖LR′2) /AH with R2

τ−→aR
′
2, then the proof

is similar to the one of the previous case.

– If (R1 ‖LR2) /AH
τ−→a (R′1 ‖LR2) /AH with R1

h−→aR
′
1 and h /∈ L,

then R1 /AH
τ−→aR

′
1 /AH as h ∈ AH. The rest of the proof is like

the one of the fourth case.
– If (R1 ‖LR2) /AH

τ−→a (R1 ‖LR′2) /AH with R2
h−→aR

′
2 and h /∈ L,

then the proof is similar to the one of the previous case.

As for delays, then the proof is similar to the one of the ≈tw case.
4. Given an arbitrary P ∈ SBSNNI≈tb

and an arbitrary L ⊆ A, the result
follows by proving that the symmetric relation B = {((P1 /AH) \ L, (P2 \
L) /AH), ((P2 \ L) /AH, (P1 /AH) \ L) | P1, P2 ∈ reach(P ) ∧ P1 /AH ≈tb

P2 \ AH} is a timed branching bisimulation, as can be seen by taking P1

identical to P2 – which will be denoted by P ′ – because:

– (P ′ \L) \AH ≈tb (P ′ \AH) \L as the order in which restriction sets are
considered is unimportant.

– (P ′ \ AH) \ L ≈tb (P ′ /AH) \ L due to P ′ \ AH ≈tb P ′ /AH – as
P ∈ SBSNNI≈tb

and P ′ ∈ reach(P ) – and ≈tb being a congruence with
respect to the restriction operator (see the proof of Lemma 1).

– (P ′ /AH) \ L ≈tb (P ′ \ L) /AH as ((P ′ /AH) \ L, (P ′ \ L) /AH) ∈ B.
– From the transitivity of ≈tb it follows that (P ′\L)\AH ≈tb (P ′\L) /AH.

Starting from (Q/AH)\L and (R\L) /AH related by B, so that Q/AH ≈tb

R \ AH, there are six cases for action transitions based on the operational
semantic rules in Table 1. In the first three cases, it is (Q/AH) \L to move
first:

– If (Q/AH)\L l−→a (Q′ /AH)\L with Q
l−→aQ

′ and l /∈ L, then Q/AH
l−→aQ

′ /AH as l /∈ AH. From Q/AH ≈tb R \ AH it follows that there

exist R̄ and R′ such that R\AH==⇒ R̄\AH
l−→aR

′\AH withQ/AH ≈tb

R̄ \ AH and Q′ /AH ≈tb R
′ \ AH. Since the restriction and hiding op-

erators do not apply to τ and l, we have that (R \ L) /AH==⇒ (R̄ \
L) /AH

l−→a (R′ \ L) /AH with ((Q/AH) \ L, (R̄ \ L) /AH) ∈ B and
((Q′ /AH) \ L, (R′ \ L) /AH) ∈ B.
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– If (Q/AH)\L τ−→a (Q′ /AH)\L with Q
τ−→aQ

′, then Q/AH
τ−→aQ

′ /
AH as τ /∈ AH. FromQ/AH ≈tb R\AH it follows that eitherQ′ /AH ≈tb

R\AH, or there exist R̄ and R′ such that R\AH==⇒ R̄\AH
τ−→aR

′\AH
with Q/AH ≈tb R̄\AH and Q′ /AH ≈tb R

′\AH. In the former subcase
(R\L) /AH is allowed to stay idle with ((Q′ /AH)\L, (R\L) /AH) ∈ B,
while in the latter subcase, since the restriction and hiding operators do
not apply to τ , we have that (R \ L) /AH==⇒ (R̄ \ L) /AH

τ−→a (R′ \
L) /AH with ((Q/AH) \ L, (R̄ \ L) /AH) ∈ B and ((Q′ /AH) \ L, (R′ \
L) /AH) ∈ B.

– If (Q/AH)\L τ−→a (Q′ /AH)\L with Q
h−→aQ

′, then Q/AH
τ−→aQ

′ /
AH as h ∈ AH. The rest of the proof is like the one of the previous case.

In the other three cases, instead, it is (R \ L) /AH to move first:

– If (R \ L) /AH
l−→a (R′ \ L) /AH with R

l−→aR
′ and l /∈ L, then R \

AH
l−→aR

′ \ AH as l /∈ AH. From R \ AH ≈tb Q/AH it follows that

there exist Q̄ and Q′ such that Q/AH==⇒ Q̄ /AH
l−→aQ

′ /AH with R\
AH ≈tb Q̄ /AH and R′ \AH ≈tb Q

′ /AH. Since the restriction operator
does not apply to τ and l, we have that (Q/AH) \ L==⇒ (Q̄ /AH) \
L

l−→a (Q′ /AH) \ L with ((R \ L) /AH, (Q̄ /AH) \ L) ∈ B and ((R′ \
L) /AH, (Q′ /AH) \ L) ∈ B.

– If (R\L) /AH
τ−→a (R′\L) /AH withR

τ−→aR
′, thenR\AH

τ−→aR
′\AH

as τ /∈ AH. From R \ AH ≈tb Q/AH it follows that either R′ \ AH ≈tb

Q/AH, or there exist Q̄ and Q′ such that Q/AH==⇒ Q̄ /AH
τ−→aQ

′ /
AH with R \ AH ≈tb Q̄ /AH and R′ \ AH ≈tb Q

′ /AH. In the former
subcase (Q/AH)\L is allowed to stay idle with ((R′\L) /AH, (Q/AH)\
L) ∈ B, while in the latter subcase, since the restriction operator does not

apply to τ we have that (Q/AH)\L==⇒ (Q̄ /AH)\L τ−→a (Q′ /AH)\L
with ((R\L) /AH, (Q̄ /AH)\L) ∈ B and ((R′\L) /AH, (Q′ /AH)\L) ∈
B.

– If (R \ L) /AH
τ−→a (R′ \ L) /AH with R

h−→aR
′ and h /∈ L, then

R/AH
τ−→aR

′ /AH as h ∈ AH (note that R \ AH cannot perform h).
From R/AH ≈tb R \ AH – as P ∈ SBSNNI≈tb

and R ∈ reach(P )
– and R \ AH ≈tb Q/AH it follows that either R′ /AH ≈tb Q/AH
and hence R′ \ AH ≈tb Q/AH – as R′ /AH ≈tb R′ \ AH due to
P ∈ SBSNNI≈tb

and R′ ∈ reach(P ) – or there exist Q̄ and Q′ such that

Q/AH==⇒ Q̄ /AH
τ−→aQ

′ /AH with R/AH ≈tb Q̄ /AH and R′ /AH
≈tb Q

′ /AH and hence R \ AH ≈tb Q̄ /AH and R′ \ AH ≈tb Q
′ /AH.

In the former subcase (Q/AH) \ L is allowed to stay idle with ((R′ \
L) /AH, (Q/AH) \L) ∈ B, while in the latter subcase, since the restric-
tion operator does not apply to τ transitions, we have that (Q/AH) \
L==⇒ (Q̄ /AH)\L τ−→a (Q′ /AH)\L with ((R\L) /AH, (Q̄ /AH)\L) ∈
B and ((R′ \ L) /AH, (Q′ /AH) \ L) ∈ B.

As for delays, we proceed as in the ≈tw case.
5. Given an arbitrary P ∈ SBSNNI≈tb

and an arbitrary L ⊆ AL we proceed as
in the ≈tw case.
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We now prove the result for the SBNDC≈tb
properties.

1. Given an arbitrary P ∈ SBNDC≈tb
and an arbitrary a ∈ Aτ \AH, it trivially

holds that a . P ∈ SBNDC≈tb
.

2. Given an arbitrary P ∈ SBNDC≈tb
and an arbitrary t ∈ N>0, it trivially

holds that (λ) . P ∈ SBNDC≈tb
.

3. Assuming that ((Q1 ‖LQ2) \AH, (R1 ‖LR2) \AH) ∈ B, there are five cases:

– If (Q1 ‖LQ2)\AH
l−→a (Q′1 ‖LQ2)\AH with Q1

l−→aQ
′
1 and l /∈ L, then

Q1\AH
l−→aQ

′
1\AH as l /∈ AH. FromQ1\AH ≈tb R1\AH it follows that

there exist R̄1 and R′1 such that R1\AH==⇒a R̄1\AH
l−→aR

′
1\AH with

Q1 \ AH ≈tb R̄1 \ AH and Q′1 \ AH ≈tb R
′
1 \ AH. Since synchronization

does not apply to τ , it follows that (R1 ‖LR2) \ AH==⇒a (R̄1 ‖LR2) \
AH

l−→a (R′1 ‖LR2) \ AH with ((Q1 ‖LQ2) \ AH, (R̄1 ‖LR2) \ AH) ∈ B
and ((Q′1 ‖LQ2) \ AH, (R′1 ‖LR2) \ AH) ∈ B.

– If (Q1 ‖LQ2)\AH
l−→a (Q1 ‖LQ′2)\AH with Q2

l−→aQ
′
2 and l /∈ L, then

the proof is similar to the one of the previous case.

– If (Q1 ‖LQ2) \ AH
l−→a (Q′1 ‖LQ′2) \ AH with Qi

l−→aQ
′
i for i ∈ {1, 2}

and l ∈ L, then Qi \ AH
l−→aQ

′
i \ AH as l /∈ AH. From Qi \ AH ≈b

Ri \AH it follows that there exist R̄i and R′i such that Ri \AH==⇒a R̄i \
AH

l−→aR
′
i \ AH with Qi \ AH ≈tb R̄i \ AH and Q′i \ AH ≈tb R

′
i \ AH.

Since synchronization does not apply to τ , it follows that (R1 ‖LR2) \
AH==⇒a (R̄1 ‖L R̄2) \ AH

l−→a (R′1 ‖LR′2) \ AH with ((Q1 ‖LQ2) \ AH,
(R̄1 ‖L R̄2) \ AH) ∈ B and ((Q′1 ‖LQ′2) \ AH, (R′1 ‖LR′2) \ AH) ∈ B.

– If (Q1 ‖LQ2) \ AH
τ−→a (Q′1 ‖LQ2) \ AH with Q1

τ−→aQ
′
1, then Q1 \

AH
τ−→aQ

′
1 \AH. From Q1 \AH ≈tb R1 \AH it follows that either Q′1 \

AH ≈tb R1 \AH, or there exist R̄1 and R′1 such that R1 \AH==⇒a R̄1 \
AH

τ−→aR
′
1 \ AH with Q1 \ AH ≈tb R̄1 \ AH and Q′1 \ AH ≈tb R′1 \

AH. In the former subcase (R1 ‖LR2) \ AH is allowed to stay idle with
((Q′1 ‖LQ2) \ AH, (R1 ‖LR2) \ AH) ∈ B, while in the latter subcase,
since synchronization does not apply to τ , it follows that (R1 ‖LR2) \
AH==⇒a (R̄1 ‖LR2) \ AH

τ−→a (R′1 ‖LR2) \ AH with ((Q1 ‖LQ2) \ AH,
(R̄1 ‖LR2) \ AH) ∈ B and ((Q′1 ‖LQ2) \ AH, (R′1 ‖LR2) \ AH) ∈ B.

– If (Q1 ‖LQ2)\AH
τ−→a (Q1 ‖LQ′2)\AH with Q2

τ−→aQ
′
2, then the proof

is similar to the one of the previous case.

As for delay, we proceed as in the ≈tw case.

4. Given an arbitrary P ∈ SBNDC≈tb
and an arbitrary L ⊆ A, we proceed as

in the ≈tw case.

5. Given an arbitrary P ∈ SBNDC≈tb
and an arbitrary L ⊆ AL, we proceed

as in the ≈tw.

Proof of Theorem 3. We first prove the results for the ≈tw-based properties.
Let us examine each relationship separately:
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– SBNDC≈tw
⊂ SBSNNI≈tw

. We need to prove that for a given P ∈ P, if P ∈
SBNDC, it follows that for every P ′ reachable from P , P ′ ∈ BSNNI≈tw

.
Since the processes we are considering are not recursive we can treat them
as trees, and hence we can proceed by induction on their depth. In this case
we will proceed by induction on the depth of P :

• If the depth of P is 0 then P has no outgoing transitions and it behaves
as 0. This obviously entails that P \ AH ≈tw P /AH.
• If the depth of P is n+ 1 with n ∈ N, then take any P ′ of depth n such

that P
a−→a P

′ or P
t−→t P

′. By hypothesis, P, P ′ ∈ SBNDC≈tw and by
induction hypothesis P ′ ∈ SBSNNI≈tw

. Hence, we just need to prove
that P \ AH ≈tw P /AH. There are three cases:

∗ If a /∈ AH then both P \ AH and P /AH can execute a and reach,
respectively, P ′ \AH and P ′ /AH, which are weakly timed bisimilar
by induction hypothesis. Thus Definition 3 is respected.

∗ If a ∈ AH we have that P /AH
τ−→a P

′ /AH, with P
a−→a P

′. By
induction hypothesis we have that P ′ \ AH ≈tw P ′ /AH, and since
a ∈ AH and P ∈ SBNDC≈tw

we have P \AH ≈tw P ′ \AH. By tran-
sitivity it follows that P \ AH ≈tw P ′ /AH which, combined with

P /AH
τ−→a P

′ /AH, determines the condition required by Defini-
tion 3.

∗ If P
t−→t P

′ then both P \ AH and P /AH can perform the same

transitions, i.e., P \ AH
t−→t P

′ \ AH and P /AH
t−→t P

′ /AH, be-
cause the hiding and restriction operators do not apply to timed
transitions. The processes P ′ /AH and P ′ \ AH are weakly timed
bisimilar because of the induction hypothesis.

– SBSNNI≈tw = P BNDC≈tw . We first prove that P BNDC≈t ⊆ SBSNNI≈tw .
If P ∈ P BNDC≈tw , then P ′ ∈ BNDC≈tw for every P ′ ∈ reach(P ). Since
BNDC≈tw

⊂ BSNNI≈tw
as will be shown in the last case of the proof of

this part of the theorem, P ′ ∈ BSNNI≈tw
for every P ′ ∈ reach(P ), i.e.,

P ∈ SBSNNI≈t
.

The fact that SBSNNI≈tw ⊆ P BNDC≈tw
will follow by proving that the

symmetric relation B = {(P ′1 \ AH, ((P ′2 ‖LQ) /L) \ AH), (((P ′2 ‖LQ) /L) \
AH, P ′1 \AH) | P ′1 ∈ reach(P1)∧P ′2 ∈ reach(P2)∧ Q executing only actions in
AH ∧ L ⊆ AH ∧ P ′1 \ AH ≈tw P ′2 /AH ∧ P2 ∈ SBSNNI≈tw

} is a weak timed
bisimulation, as can be seen by taking P ′1 identical to P ′2 and both reachable
from P ∈ SBSNNI≈tw

. Assuming that P ′1 \AH and ((P ′2 ‖LQ) /L) \AH are
related by B – so that P ′1 \AH ≈tw P ′2 /AH – there are six cases. In the first
two cases, it is P ′1 \ AH to move first:

• Let P ′1 \ AH
l−→a P

′′
1 \ AH. We observe that from P ′2 ∈ reach(P2) and

P2 ∈ SBSNNI≈tw it follows that P ′2 \ AH ≈tw P ′2 /AH, so that P ′1 \
AH ≈tw P ′2 /AH ≈tw P ′2 \ AH, i.e., P ′1 \ AH ≈tw P ′2 \ AH, as ≈tw is
symmetric and transitive. As a consequence, since l 6= τ there exists P ′2 \
AH

l
==⇒ P ′′2 \AH such that P ′′1 \AH ≈tw P ′′2 \AH. Thus ((P ′2 ‖LQ) /L)\

AH
l

==⇒ ((P ′′2 ‖LQ) /L) \ AH with (P ′′1 \ AH, ((P ′′2 ‖LQ) /L) \ AH) ∈ B
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because P ′′1 ∈ reach(P1), P ′′2 ∈ reach(P2), and P ′′1 \ AH ≈tw P ′′2 /AH as
P2 ∈ SBSNNI≈tw

.

• Let P ′1 \AH
τ−→a P

′′
1 \AH. The proof is like the one of the previous case

with ==⇒ used in place of
l

==⇒.

In the other four cases, instead, it is ((P ′2 ‖LQ) /L) \ AH to move first:

• Let ((P ′2 ‖LQ) /L) \ AH
l−→a ((P ′′2 ‖LQ) /L) \ AH with P ′2

l−→a P
′′
2 so

that P ′2 \ AH
l−→a P

′′
2 \ AH as l /∈ AH. We observe that from P ′2 ∈

reach(P2) and P2 ∈ SBSNNI≈tw
it follows that P ′2 \ AH ≈tw P ′2 /AH,

so that P ′2 \ AH ≈tw P ′2 /AH ≈tw P ′1 \ AH, i.e., P ′2 \ AH ≈tw P ′1 \ AH,
as ≈tw is symmetric and transitive. As a consequence, since l 6= τ there

exists P ′1 \ AH
l

==⇒ P ′′1 \ AH such that P ′′2 \ AH ≈tw P ′′1 \ AH. Thus
(((P ′′2 ‖LQ) /L) \ AH, P ′′1 \ AH) ∈ B because P ′′1 ∈ reach(P1), P ′′2 ∈
reach(P2), and P ′′1 \ AH ≈tw P ′′2 /AH as P2 ∈ SBSNNI≈t

.

• Let ((P ′2 ‖LQ) /L) \ AH
τ−→a ((P ′′2 ‖LQ) /L) \ AH with P ′2

τ−→a P
′′
2 so

that P ′2 \ AH
τ−→a P

′′
2 \ AH as τ /∈ AH. The proof is like the one of the

previous case with ==⇒ used in place of
l

==⇒.
• If ((P ′2 ‖LQ) /L) \ AH

τ−→a ((P ′2 ‖LQ′) /L) \ AH with Q
τ−→aQ

′, then
trivially
(((P ′2 ‖LQ′) /L)\AH, P ′1\AH) ∈ B as P ′2 ≈tw P ′2 and hence P ′2 /AH ≈tw

P ′2 /AH by Lemma 1(4).

• Let ((P ′2 ‖LQ) /L)\AH
τ−→a ((P ′′2 ‖LQ′) /L)\AH with P ′2

h−→a P
′′
2 – so

that P ′2 /AH
τ−→a P

′′
2 /AH as h ∈ AH – and Q

h−→aQ
′ for h ∈ L. We

observe that from P ′2, P
′′
2 ∈ reach(P2) and P2 ∈ SBSNNI≈tw

it follows
that P ′2 \ AH ≈tw P ′2 /AH and P ′′2 \ AH ≈tw P ′′2 /AH, so that P ′2 \
AH==⇒ P ′′2 \AH as P ′2 /AH

τ−→a P
′′
2 /AH and P ′2 \AH ≈tw P ′2 /AH ≈tw

P ′1 \ AH, i.e., P ′2 \ AH ≈tw P ′1 \ AH, as ≈tw is symmetric and transitive.
As a consequence there exists P ′1 \ AH==⇒ P ′′1 \ AH such that P ′′2 \
AH ≈tw P ′′1 \ AH. Thus (((P ′′2 ‖LQ′) /L) \ AH, P ′′1 \ AH) ∈ B because
P ′′1 ∈ reach(P1), P ′′2 ∈ reach(P2), and P ′′1 \ AH ≈tw P ′′2 /AH as P2 ∈
SBSNNI≈tw .

As for delays, suppose P ′1 \ AH 6 τ−→a then from P ′1 \ AH ≈tw P ′2 /AH
it follows that there exists P ′2 /AH==⇒ P̄ ′2 /AH with P̄ ′2 /AH 6 τ−→a and
P ′1 \ AH ≈tw P̄ ′2 /AH. Since parallel composition, hiding and restriction do
not operate on τ it follows that ((P ′2 ‖LQ) /L)\AH==⇒ ((P̄ ′2 ‖LQ) /L)\AH
with ((P̄ ′2 ‖LQ) /L) \ AH 6τ−→a and (P ′1 \ AH, ((P̄ ′2 ‖LQ) /L) \ AH) ∈ B. If

P ′1\AH
t−→t P

′′
1 \AH then P̄ ′2 /AH

t
==⇒ P ′′2 /AH with P ′′1 \AH ≈tw P ′′2 /AH.

Since parallel composition, hiding and restriction do not operate on τ and
timed transitions, and since we assume that Q can let pass the same time

as P̄ ′2, it follows that ((P̄ ′2 ‖LQ) /L) \ AH
t

==⇒ ((P ′′2 ‖LQ) /L) \ AH with
(P ′′1 \ AH, ((P ′′2 ‖LQ) /L) \ AH) ∈ B.

– SBSNNI≈tw ⊂ BNDC≈tw . If P ∈ SBSNNI≈tw = P BNDC≈tw
, then it imme-

diately follows that P ∈ BNDC≈tw
.
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– BNDC≈tw
⊂ BSNNI≈tw

. If P ∈ BNDC≈tw
, i.e., P \ AH ≈tw (P ‖LQ) /L) \

AH for all Q ∈ P such that every Q′ ∈ reach(Q) executes only actions
in AH and for all L ⊆ AH, then we can consider in particular Q̂ capable
of stepwise mimicking the high-level behavior of P , in the sense that Q̂
is able to synchronize with all the high-level actions executed by P and its
reachable processes, along with L̂ = AH. As a consequence (P ‖L̂ Q̂) / L̂)\AH
is isomorphic to P /AH, hence P \ AH ≈tw P /AH, i.e., P ∈ BSNNI≈tw

.

We now prove the same results for the ≈tb-based properties. Let us examine
each relationship separately:

– SBNDC≈tb
⊂ SBSNNI≈tb

. We need to prove that for a given P ∈ P, if P ∈
SBNDC, it follows that for every P ′ reachable from P , P ′ ∈ BSNNI≈tb

.
Since the processes we are considering are not recursive we can treat them
as trees, and hence we can proceed by induction on their depth. In this case
we will proceed by induction on the depth of P :

• If the depth of P is 0 then P has no outgoing transitions and it behaves
as 0. This obviously entails that P \ AH ≈tb P /AH.
• If the depth of P is n+ 1 with n ∈ N, then take any P ′ of depth n such

that P
a−→a P

′. By hypothesis, P, P ′ ∈ SBNDC≈tb
and by induction

hypothesis P ′ ∈ SBSNNI≈tb
. Hence, we just need to prove that P \

AH ≈tb P /AH. There are three cases:
∗ If a /∈ AH then both P \AH and P /AH can execute a and reach, re-

spectively, P ′\AH and P ′ /AH, which are timed branching bisimilar
by induction hypothesis. Thus Definition 4 is respected.

∗ If a ∈ AH we have that P /AH
τ−→a P

′ /AH, with P
a−→a P

′. By
induction hypothesis we have that P ′ \ AH ≈tb P

′ /AH, and since
a ∈ AH and P ∈ SBNDC≈tb

we have P \AH ≈tb P
′ \AH. By tran-

sitivity it follows that P \ AH ≈tb P ′ /AH which, combined with

P /AH
τ−→a P

′ /AH, determines the condition required by Defini-
tion 4.

∗ If P
t−→t P

′ then both P \ AH and P /AH can perform the same

transitions, i.e., P \ AH
t−→t P

′ \ AH and P /AH
t−→t P

′ /AH, be-
cause the hiding and restriction operators do not apply to timed
transitions. The processes P ′ /AH and P ′ \ AH are weakly timed
bisimilar because of the induction hypothesis.

– SBSNNI≈tb
= P BNDC≈tb

. We first prove that P BNDC≈tb
⊆ SBSNNI≈tb

.
If P ∈ P BNDC≈tb

, then P ′ ∈ BNDC≈tb
for every P ′ ∈ reach(P ). Since

BNDC≈tb
⊂ BSNNI≈tb

as will be shown in the last case of the proof of this
theorem, P ′ ∈ BSNNI≈tb

for every P ′ ∈ reach(P ), i.e., P ∈ SBSNNI≈tb
.

The fact that SBSNNI≈tb
⊆ P BNDC≈tb

will follow by proving that the
symmetric relation B = {(P ′1 \ AH, ((P ′2 ‖LQ) /L) \ AH), (((P ′2 ‖LQ) /L) \
AH, P ′1 \AH) | P ′1 ∈ reach(P1)∧P ′2 ∈ reach(P2)∧Q executing only actions in
AH∧L ⊆ AH∧P ′1\AH ≈tb P

′
2 /AH∧P2 ∈ SBSNNI≈tb

} is a timed branching
bisimulation, as can be seen by taking P ′1 identical to P ′2 and both reachable
from P ∈ SBSNNI≈tb

. Assuming that P ′1 \ AH and ((P ′2 ‖LQ) /L) \ AH are
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related by B – so that P ′1 \AH ≈tb P
′
2 /AH – there are six cases. In the first

two cases, it is P ′1 \ AH to move first:

• Let P ′1 \ AH
l−→a P

′′
1 \ AH. We observe that from P ′2 ∈ reach(P2) and

P2 ∈ SBSNNI≈tb
it follows that P ′2 \ AH ≈tb P ′2 /AH, so that P ′1 \

AH ≈tb P ′2 /AH ≈tb P ′2 \ AH, i.e., P ′1 \ AH ≈tb P ′2 \ AH, as ≈tb is
symmetric and transitive. As a consequence, since l 6= τ there exists

P ′2 \ AH==⇒ P̄ ′2 \ AH
l−→a P

′′
2 \ AH such that P ′1 \ AH ≈tb P̄

′
2 \ AH and

P ′′1 \AH ≈tb P
′′
2 \AH. Thus ((P ′2 ‖LQ) /L)\AH==⇒ ((P̄ ′2 ‖LQ) /L)\AH

l−→a ((P ′′2 ‖LQ) /L) \ AH with (P ′1 \ AH, ((P̄ ′2 ‖LQ) /L) \ AH) ∈ B –
because P ′1 ∈ reach(P1), P̄ ′2 ∈ reach(P2), and P ′1 \ AH ≈b P̄ ′2 /AH as
P2 ∈ SBSNNI≈tb

– and (P ′′1 \ AH, ((P ′′2 ‖LQ) /L) \ AH) ∈ B – because
P ′′1 ∈ reach(P1), P ′′2 ∈ reach(P2), and P ′′1 \ AH ≈tb P ′′2 /AH as P2 ∈
SBSNNI≈tb

.

• If P ′1 \ AH
τ−→a P

′′
1 \ AH there are two subcases:

∗ If P ′′1 \AH ≈tb P
′
2 /AH then (P ′2 ‖LQ) /L)\AH is allowed to stay idle

with
(P ′′1 \ AH, ((P ′2 ‖LQ) /L) \ AH) ∈ B because P ′′1 ∈ reach(P1) and
P ′2 ∈ reach(P2).

∗ If P ′′1 \AH 6≈tb P
′
2 /AH then the proof is like the one of the previous

case with
τ−→a used in place of

l−→a.

In the other four cases, instead, it is ((P ′2 ‖LQ) /L) \ AH to move first:

• Let ((P ′2 ‖LQ) /L) \ AH
l−→a ((P ′′2 ‖LQ) /L) \ AH with P ′2

l−→a P
′′
2 so

that P ′2 \ AH
l−→a P

′′
2 \ AH as l /∈ AH. We observe that from P ′2 ∈

reach(P2) and P2 ∈ SBSNNI≈tb
it follows that P ′2 \ AH ≈tb P ′2 /AH,

so that P ′2 \ AH ≈tb P
′
2 /AH ≈tb P

′
1 \ AH, i.e., P ′2 \ AH ≈tb P

′
1 \ AH,

as ≈tb is symmetric and transitive. As a consequence, since l 6= τ there

exists P ′1 \AH==⇒ P̄ ′1 \AH
l−→a P

′′
1 \AH such that P ′2 \AH ≈tb P̄

′
1 \AH

and P ′′2 \ AH ≈tb P
′′
1 \ AH. Thus (((P ′2 ‖LQ) /L) \ AH, P̄ ′1 \ AH) ∈ B

– because P̄ ′1 ∈ reach(P1), P ′2 ∈ reach(P2), and P̄ ′1 \ AH ≈tb P
′
2 /AH as

P2 ∈ SBSNNI≈tb
– and (((P ′′2 ‖LQ) /L) \ AH, P ′′1 \ AH) ∈ B – because

P ′′1 ∈ reach(P1), P ′′2 ∈ reach(P2), and P ′′1 \ AH ≈tb P ′′2 /AH as P2 ∈
SBSNNI≈tb

.

• If ((P ′2 ‖LQ) /L)\AH
τ−→a ((P ′′2 ‖LQ) /L)\AH with P ′2

τ−→a P
′′
2 so that

P ′2 \ AH
τ−→a P

′′
2 \ AH as τ /∈ AH, there are two subcases:

∗ If P ′′2 \ AH ≈tb P
′
1 \ AH then P ′1 \ AH is allowed to stay idle with

(((P ′′2 ‖LQ) /L) \ AH, P ′1 \ AH) ∈ B because P ′1 ∈ reach(P1), P ′′2 ∈
reach(P2), and P ′1 \ AH ≈tb P

′′
2 /AH as P2 ∈ SBSNNI≈tb

.
∗ If P ′′2 \AH 6≈tb P

′
1 \AH then the proof is like the one of the previous

case with
τ−→a used in place of

l−→a.

• If ((P ′2 ‖LQ) /L) \ AH
τ−→a ((P ′2 ‖LQ′) /L) \ AH with Q

τ−→aQ
′, then

trivially (((P ′2 ‖LQ′) /L) \ AH, P ′1 \ AH) ∈ B as P ′2 ≈tb P
′
2 and hence

P ′2 /AH ≈tb P
′
2 /AH by Lemma 1(4).
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• Let ((P ′2 ‖LQ) /L)\AH
τ−→a ((P ′′2 ‖LQ′) /L)\AH with P ′2

h−→a P
′′
2 – so

that P ′2 /AH
τ−→a P

′′
2 /AH as h ∈ AH – and Q

h−→aQ
′ for h ∈ L. We

observe that from P ′2, P
′′
2 ∈ reach(P2) and P2 ∈ SBSNNI≈tb

it follows
that P ′2 \ AH ≈tb P ′2 /AH and P ′′2 \ AH ≈tb P ′′2 /AH, so that P ′2 \
AH

τ−→a P
′′
2 \AH and P ′2\AH ≈tb P

′
2 /AH ≈tb P

′
1\AH, i.e., P ′2\AH ≈tb

P ′1 \ AH, as ≈tb is symmetric and transitive. There are two subcases:

∗ If P ′′2 \ AH ≈tb P
′
1 \ AH then P ′1 \ AH is allowed to stay idle with

(((P ′′2 ‖LQ′) /L) \ AH, P ′1 \ AH) ∈ B because P ′1 ∈ reach(P1), P ′′2 ∈
reach(P2), and P ′1 \ AH ≈tb P

′′
2 /AH as P2 ∈ SBSNNI≈tb

.

∗ If P ′′2 \AH 6≈tb P
′
1\AH then there exists P ′1\AH==⇒ P̄ ′1\AH

τ−→a P
′′
1 \

AH such that P ′2 \ AH ≈tb P̄ ′1 \ AH and P ′′2 \ AH ≈tb P ′′1 \ AH.
Thus (((P ′2 ‖LQ) /L) \ AH, P̄ ′1 \ AH) ∈ B – because P̄ ′1 ∈ reach(P1),
P ′2 ∈ reach(P2), and P̄ ′1 \ AH ≈tb P ′2 /AH as P2 ∈ SBSNNI≈tb

–
and (((P ′′2 ‖LQ′) /L) \AH, P ′′1 \AH) ∈ B – because P ′′1 ∈ reach(P1),
P ′′2 ∈ reach(P2), and P ′′1 \ AH ≈tb P

′′
2 /AH as P2 ∈ SBSNNI≈tb

.

As for delays, we reason as in the ≈tw.
– SBSNNI≈tb

⊂ BNDC≈tb
. If P ∈ SBSNNI≈tb

= P BNDC≈tb
, then it imme-

diately follows that P ∈ BNDC≈tb
.

– BNDC≈tb
⊂ BSNNI≈tb

. If P ∈ BNDC≈tb
, i.e., P \ AH ≈tb (P ‖LQ) /L) \

AH for all Q ∈ P such that every Q′ ∈ reach(Q) executes only actions
in AH and for all L ⊆ AH, then we can consider in particular Q̂ capable
of stepwise mimicking the high-level behavior of P , in the sense that Q̂
is able to synchronize with all the high-level actions executed by P and its
reachable processes, along with L̂ = AH. As a consequence (P ‖L̂ Q̂) / L̂)\AH
is isomorphic to P /AH, hence P \ AH ≈tb P /AH, i.e., P ∈ BSNNI≈tb

.

Proof of Theorem 5 Let Q be P1 + h . P2 (the proof is similar for Q equal
to P2 + h . P1) and observe that no high-level actions occur in every process
reachable from Q except Q itself:

1. Since the only high-level action occurring in Q is h, in the proof of Q ∈
BSNNI≈tw

the only interesting case is the transition Q/AH
τ−→a (P2) /AH,

to which Q \ AH responds by staying idle because (P2) /AH ≈tw P2 ≈tw

P2 ≈tw P1 ≈tw Q \AH, i.e., (P2) /AH ≈tw Q \AH as ≈tw is symmetric and
transitive.
On the other hand, Q /∈ BSNNI≈tb

because P2 6≈tb P1 in the same situation
as before.

2. Since Q ∈ BSNNI≈tw
by the previous result and no high-level actions occur

in every process reachable from Q, it holds that Q ∈ SBSNNI≈tw
and hence

Q ∈ BNDC≈tw
by virtue of Theorem 3.

On the other hand, from Q /∈ BSNNI≈tb
by the previous result it follows that

Q /∈ BNDC≈tb
by virtue of Theorem 3.

3. We already know from the proof of the previous result that Q ∈ SBSNNI≈tw
.

On the other hand, from Q /∈ BSNNI≈tb
by the first result it follows that

Q /∈ SBSNNI≈tb
by virtue of Theorem 3.
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4. An immediate consequence of P BNDC≈tw
= SBSNNI≈tw

and P BNDC≈tb

= SBSNNI≈tb
as established by Theorem 3.

5. Since the only high-level action occurring in Q is h, in the proof of Q ∈
SBNDC≈tw the only interesting case is the transition Q

h−→a P2, for which
it holds that Q \AH ≈tw P1 ≈tw P2 ≈tw P2 ≈tw (P2) \AH, i.e., Q \AH ≈tw

(P2) \ AH as ≈tw is transitive.
On the other hand, Q /∈ SBNDC≈tb

because P1 6≈tb P2 in the same situation
as before.

Proof of Proposition 2

1. We need to prove that the symmetric relation B = {(nd(P1),nd(P2)) |
P1 ≈tw P2} is a weak bisimulation. We start by observing that from P1 ≈tw

P2 it follows that for each P1
a−→a P

′
1 there exists P2

â
==⇒ P ′2 such that P ′1 ≈tw

P ′2. Since nd(P1) and nd(P2) are obtained by only replacing each timed

transition with a τ -transition, we have that for each nd(P1)
a−→a nd(P ′1)

there exists nd(P2)
â

==⇒a nd(P ′2) such that (nd(P ′1),nd(P ′2)) ∈ B. Similarly, if

nd(P1)
τ−→a nd(P ′1) with P1

t−→t P
′
1 then we have that P2 ==⇒ P̄1

t
==⇒ P ′2 with

P1 ≈tw P̄2 and P ′1 ≈tw P ′2. Since those timed transitions are turned into τ
transitions in nd(P1) and nd(P2) it follows that there exists nd(P2) ==⇒ nd(P ′2)
with (nd(P ′1),nd(P ′2)) ∈ B.

2. We need to prove that the symmetric relation B = {nd(P1),nd(P2)) | P1 ≈tb

P2} is a timed branching bisimulation. We start by observing that from

P1 ≈tb P2 it follows that for each P1
a−→a P

′
1 either a = τ and P ′1 ≈tb P2,

or there exists P2 ==⇒ P̄2
a−→a P

′
2 such that P1 ≈tb P̄2 and P ′1 ≈tb P

′
2. Since

nd(P1) and nd(P2) enable the same τ transitions of P1 and P2 for each

nd(P1)
a−→a nd(P ′1) either a = τ and (nd(P ′1),nd(P2)) ∈ B, or there exists

nd(P2)
τ∗

==⇒a nd(P̄2)
a−→a nd(P ′2) such that (nd(P1),nd(P̄2)) ∈ B and (nd(P ′1),

nd(P ′2)) ∈ B. If nd(P1)
τ−→a nd(P ′1) with P1

t−→t P
′
1 then we proceed like the

≈tw case.

Proof of Corollary 1 The result follows directly from Proposition 1.

Proof of Lemma 2 Given s1, s2 ∈ S with s1 ≈tbf s2, consider the transitive
closure B+ of the reflexive and symmetric relation B =≈tbf ∪{(ρ′′1 , ρ′′2), (ρ′′2 , ρ

′′
1) ∈

(run(s1)×run(s2))∪(run(s2)×run(s1)) | ∃ρ′1 ∈ run(s1), ρ′2 ∈ run(s2). ρ′1 ==⇒ ρ′′1∧
ρ′2 ==⇒ ρ′′2∧ρ′1 ≈tbf ρ

′′
2∧ρ′′1 ≈tbf ρ

′
2}. The result will follow by proving that B+ is a

weak timed back-and-forth bisimulation, because this implies that ρ′′1 ≈tbf ρ
′′
2 for

every additional pair – i.e., B+ satisfies the cross property – as well as B+ =≈tbf

– hence ≈tbf satisfies the cross property too.
Let (ρ′′1 , ρ

′′
2) ∈ B \≈tbf to avoid trivial cases. Then there exist ρ′1 ∈ run(s1) and

ρ′2 ∈ run(s2) such that ρ′1 ==⇒ ρ′′1 , ρ′2 ==⇒ ρ′′2 , ρ′1 ≈tbf ρ
′′
2 , and ρ′′1 ≈tbf ρ

′
2. There

are two cases for action transitions:

– Assume that ρ′′1
a−→a ρ

′′′
1 , from which it follows that ρ′1 ==⇒ ρ′′1

a−→a ρ
′′′
1 . From

ρ′1 ≈tbf ρ′′2 we get ρ′′2==⇒ a−→a ==⇒ ρ′′′2 , or ρ′′2 ==⇒ ρ′′′2 when a = τ , with
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ρ′′′1 ≈tbf ρ
′′′
2 and hence (ρ′′′1 , ρ

′′′
2 ) ∈ B.

When starting from ρ′′2
a−→a ρ

′′′
2 , we exploit ρ′2 ==⇒ ρ′′2 and ρ′′1 ≈tbf ρ

′
2 instead.

– Assume that ρ′′′1
a−→a ρ

′′
1 . From ρ′′1 ≈tbf ρ

′
2 we get ρ′′′2 ==⇒ a−→a ==⇒ ρ′2, so

that ρ′′′2 ==⇒ a−→a ==⇒ ρ′′2 , or ρ′′′2 ==⇒ ρ′2 when a = τ , so that ρ′′′2 ==⇒ ρ′′2 , with
ρ′′′1 ≈tbf ρ

′′′
2 and hence (ρ′′′1 , ρ

′′′
2 ) ∈ B.

When starting from ρ′′′2
a−→a ρ

′′
2 , we exploit ρ′1 ≈tbf ρ

′′
2 and ρ′1 ==⇒ ρ′′1 instead.

Moreover, there are two further cases for timed transitions:

– Assume that ρ′′1 ==⇒ ρ̄′′1 with ρ̄′′1 6 τ−→a, from which follows that ρ′1 ==⇒ ρ̄′′1 .

From ρ′1 ≈tbf ρ
′′
2 we get ρ′′2==⇒ ρ̄′′2 with ρ̄′′2 6 τ−→a, ρ̄′′1 ≈tbf ρ̄

′′
2 , and hence

(ρ̄′′1 , ρ̄
′′
2) ∈ B. If ρ̄′′1

t−→t ρ
′′′
1 then ρ̄′′2

t
==⇒ ρ′′′2 with ρ′′′1 ≈tbf ρ

′′′
2 and hence

(ρ′′′1 , ρ
′′′
2 ) ∈ B.

When starting from ρ′′2
a−→a ρ

′′′
2 , we exploit ρ′2 ==⇒ ρ′′2 and ρ′′1 ≈tbf ρ

′
2 instead.

– Assume that ρ′′′1
t−→t ρ

′′
1 . From ρ′′1 ≈tbf ρ

′
2 we get ρ′′′2

t
==⇒ ρ′2, so that ρ′′′2

t
==⇒ ρ′′2

with ρ′′′1 ≈tbf ρ
′′′
2 and hence (ρ′′′1 , ρ

′′′
2 ) ∈ B.

When starting from ρ′′′2
a−→a ρ

′′
2 , we exploit ρ′1 ≈tbf ρ

′′
2 and ρ′1 ==⇒ ρ′′1 instead.

Proof of Theorem 6. The proof is divided into two parts:

– Suppose that s1 ≈tbf s2 and let B be a weak timed back-and-forth bisim-
ulation over U such that ((s1, ε), (s2, ε)) ∈ B. Assume that B only contains
all the pairs of ≈tbf -equivalent runs from s1 and s2, so that Lemma 2 is
applicable to B. We show that B′ = {(last(ρ1), last(ρ2)) | (ρ1, ρ2) ∈ B} is
a timed branching bisimulation over the states in S reachable from s1 and
s2, from which s1 ≈tb s2 will follow. Note that B′ is an equivalence relation
because so is B.
Given (last(ρ1), last(ρ2)) ∈ B′, by definition of B′ we have that (ρ1, ρ2) ∈ B.

Let rk = last(ρk) for k ∈ {1, 2}, so that (r1, r2) ∈ B′. Suppose that r1
a−→a r

′
1,

i.e., ρ1
a−→a ρ

′
1 where last(ρ′1) = r′1. There are two cases:

• If a = τ then from (ρ1, ρ2) ∈ B it follows that ρ2 ==⇒ ρ′2 with (ρ′1, ρ
′
2) ∈ B.

This means that we have a sequence of n ≥ 0 transitions of the form
ρ2,i

τ−→a ρ2,i+1 for all 0 ≤ i ≤ n − 1 where ρ2,0 is ρ2 while ρ2,n is ρ′2 so
that (ρ′1, ρ2,n) ∈ B as (ρ′1, ρ

′
2) ∈ B.

If n = 0 then we are done because ρ′2 is ρ2 and hence (ρ′1, ρ2) ∈ B as
(ρ′1, ρ

′
2) ∈ B – thus (r′1, r2) ∈ B′ – otherwise from ρ2,n we go back to

ρ2,n−1 via ρ2,n−1
τ−→a ρ2,n. Recalling that (ρ′1, ρ2,n) ∈ B then ρ′1 can re-

spond by staying idle so that (ρ′1, ρ2,n−1) ∈ B and we are done because
ρ2,n−1 is ρ2 and hence (ρ′1, ρ2) ∈ B as (ρ′1, ρ2,n−1) ∈ B – thus (r′1, r2) ∈ B′

– otherwise we go further back to ρ2,n−2 via ρ2,n−2
τ−→a ρ2,n−1. Then ρ′1

can respond by staying idle, so that (ρ′1, ρ2,n−2) ∈ B then we are done
because ρ2,n−2 is ρ2 and hence (ρ′1, ρ2) ∈ B as (ρ′1, ρ2,n−2) ∈ B – thus
(r′1, r2) ∈ B′ – otherwise we keep going backward.
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By repeating this procedure, since (ρ′1, ρ2,n) ∈ B either we get to
(ρ′1, ρ2,n−n) ∈ B and we are done because this implies that (ρ′1, ρ2) ∈ B
– thus (r′1, r2) ∈ B′ – or for some 0 < m ≤ n such that (ρ′1, ρ2,m) ∈ B
the incoming transition ρ2,m−1

τ−→a ρ2,m is matched by ρ̄1 ==⇒ ρ1
τ−→a ρ

′
1

with (ρ̄1, ρ2,m−1) ∈ B. In the latter case, since last(ρ1), last(ρ2,m−1) ∈
Sn, ρ̄1 ==⇒ ρ1, ρ2 ==⇒ ρ2,m−1, (ρ̄1, ρ2,m−1) ∈ B, and (ρ1, ρ2) ∈ B, from
Lemma 2 it follows that (ρ1, ρ2,m−1) ∈ B. Consequently ρ2 ==⇒ ρ2,m−1
τ−→a ρ2,m with (ρ1, ρ2,m−1) ∈ B and (ρ′1, ρ2,m) ∈ B – thus r2 ==⇒

last(ρ2,m−1)
τ−→a last(ρ2,m) with (r1, last(ρ2,m−1)) ∈ B′ and (r′1,

last(ρ2,m)) ∈ B′.
• If a 6= τ then from (ρ1, ρ2) ∈ B it follows that ρ2 ==⇒ ρ̄2

a−→a ρ̄
′
2 ==⇒ ρ′2

with (ρ′1, ρ
′
2) ∈ B.

From (ρ′1, ρ
′
2) ∈ B and ρ̄′2 ==⇒ ρ′2 it follows that ρ̄′1 ==⇒ ρ′1 with (ρ̄′1, ρ̄

′
2) ∈

B. Since ρ1
a−→a ρ

′
1 and hence the last transition in ρ′1 is labeled with a,

we derive that ρ̄′1 is ρ′1 and hence (ρ′1, ρ̄
′
2) ∈ B.

From (ρ′1, ρ̄
′
2) ∈ B and ρ̄2

a−→a ρ̄
′
2 it follows that ρ̄1 ==⇒ ρ1

a−→a ρ
′
1 with

(ρ̄1, ρ̄2) ∈ B.
Since last(ρ1), last(ρ̄2) ∈ Sn, ρ̄1 ==⇒ ρ1, ρ2 ==⇒ ρ̄2, (ρ̄1, ρ̄2) ∈ B, and
(ρ1, ρ2) ∈ B, from Lemma 2 it follows that (ρ1, ρ̄2) ∈ B.

Consequently ρ2 ==⇒ ρ̄2
a−→a ρ̄

′
2 with (ρ1, ρ̄2) ∈ B and (ρ′1, ρ̄

′
2) ∈ B – thus

r2 ==⇒ last(ρ̄2)
a−→a last(ρ̄′2) with (r1, last(ρ̄2)) ∈ B′ and (r′1, last(ρ̄′2)) ∈

B′.
As for delays, suppose r1 ==⇒ r̄1 with r̄1 6

τ−→a, i.e., ρ1 ==⇒ ρ̄1 with last(ρ̄1) =

r̄1 and ρ̄1 6 τ−→a then from (ρ1, ρ2) ∈ B we get ρ2 ==⇒ ρ̄2 with ρ̄2 6 τ−→a and

(ρ̄1, ρ̄2) ∈ B, i.e., r2 ==⇒ r̄2 with last(ρ̄2) = r̄2 and r̄2 6
τ−→a and (r̄1, r̄2) ∈ B′.

Therefore if r̄1
t−→t r

′
1, i.e., ρ̄1

t−→t ρ
′
1 with last(ρ′1) = r′1 we get ρ̄2

t
==⇒ ρ′2

with (ρ′1, ρ
′
2) ∈ B, i.e., r̄2

t
==⇒ r′2 with last(ρ′2) = r′2 and hence (r′1, r

′
2) ∈ B′.

– Suppose that s1 ≈tb s2 and let B be a timed branching bisimulation over
S such that (s1, s2) ∈ B. Assume that B only contains all the pairs of
≈tb-equivalent states reachable from s1 and s2. We show that the reflexive
and transitive closure B′∗ of B′ = {(ρ1, ρ2), (ρ2, ρ1) ∈ (run(s1) × run(s2)) ∪
(run(s2)× run(s1)) | (last(ρ1), last(ρ2)) ∈ B} is a weak timed back-and-forth
bisimulation over the runs in U from s1 and s2, from which (s1, ε) ≈tbf (s2, ε),
i.e., s1 ≈tbf s2, will follow.
Given (ρ1, ρ2) ∈ B′, by definition of B′ we have that (last(ρ1), last(ρ2)) ∈ B.
Let rk = last(ρk) for k ∈ {1, 2}, so that (r1, r2) ∈ B. For action transitions
there are two cases:
• If ρ1

a−→a ρ
′
1, i.e., r1

a−→a r
′
1 where r′1 = last(ρ′1), then either a = τ

and (r′1, r
′
2) ∈ B where r′2 = r2, or r2 ==⇒ r̄2

a−→a r
′
2 with (r1, r̄2) ∈ B

and (r′1, r
′
2) ∈ B. In both cases ρ2

â
==⇒ ρ′2 where last(ρ′2) = r′2, so that

(ρ′1, ρ
′
2) ∈ B′.

• If ρ′1
a−→a ρ1, i.e., r′1

a−→a r1 where r′1 = last(ρ′1), there are two subcases:

∗ If ρ′1 is (s1, ε), i.e., r′1
a−→a r1 is s1

a−→a r1 and last(ρ′1) = s1, then
from (s1, s2) ∈ B it follows that either a = τ and (r1, r2) ∈ B where
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r2 = s2, or s2 ==⇒ r̄2
a−→a r2 with (s1, r̄2) ∈ B and (r1, r2) ∈ B. In

both cases ρ′2
â

==⇒ ρ2 where last(ρ′2) = s2, so that (ρ′1, ρ
′
2) ∈ B′.

∗ If ρ′1 is not (s1, ε) then from (s1, s2) ∈ B it follows that s1 reaches
r′1 with a sequence of moves that are B-compatible with those with
which s2 reaches some r′2 such that (r′1, r

′
2) ∈ B as B only contains

all the states reachable from s1 and s2. Therefore either a = τ and
(r1, r

′
2) ∈ B where r′2 = r2, or r′2 ==⇒ r̄2

a−→a r2 with (r′1, r̄2) ∈ B and

(r1, r2) ∈ B. In both cases ρ′2
â

==⇒ ρ2 where last(ρ′2) = r′2, so that
(ρ′1, ρ

′
2) ∈ B′.

Moreover, there are two further cases for timed transition:

• If ρ1 ==⇒ ρ̄1 with ρ̄1 6
τ−→a, i.e., r1 ==⇒ r̄1 with r̄1 = last(ρ̄1) and r̄1 6

τ−→a

then from (r1, r2) ∈ B it follows that r2 ==⇒ r̄2 with r̄2 6
τ−→a and (r̄1, r̄2) ∈

B and hence ρ2 ==⇒ ρ̄2 with last(ρ̄2) = r̄2 and (ρ̄1, ρ̄2) ∈ B′. Therefore,

if ρ̄1
t−→t ρ

′
1, i.e., r̄1

t−→t r
′
1 with r′1 = last(ρ′1) we get r̄2

t
==⇒ r′2 with

(r′1, r
′
2) ∈ B and hence ρ̄2

t
==⇒ ρ′2 with last(ρ′2) = r′2 and (ρ′1, ρ

′
2) ∈ B′.

• If ρ′1
t−→t ρ1, i.e., r′1

t−→t r1 where r′1 = last(ρ′1), there are two cases:

∗ If ρ′1 is (s1, ε), i.e., r′1
t−→t r1 is s1

t−→t r1 and last(ρ′1) = s1, then

from (s1, s2) ∈ B it follows that s2
t

==⇒ r2 with (r1, r2) ∈ B. Hence,

ρ′2
t

==⇒ ρ2 where last(ρ′2) = s2, so that (ρ′1, ρ
′
2) ∈ B′.

∗ If ρ′1 is not (s1, ε) then from (s1, s2) ∈ B it follows that s1 reaches
r′1 with a sequence of moves that are B-compatible with those with
which s2 reaches some r′2 such that (r′1, r

′
2) ∈ B as B only contains

all the states reachable from s1 and s2. Therefore r′2
t

==⇒ r2 with

(r1, r2) ∈ B. Hence, ρ′2
t

==⇒ ρ2 where last(ρ′2) = r′2, so that (ρ′1, ρ
′
2) ∈

B′.
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