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Abstract. We discuss the genesis of the ULTraS metamodel and sum-
marize its evolution arising from the introduction of coherent resolutions
of nondeterminism and reachability-consistent semirings.

1 The ULTraS Metamodel

In 2009, within the Italian project PaCo – Performability-Aware Computing:
Logics, Models, and Languages, I started working with Rocco De Nicola and
Michele Loreti on the definition of a general, state-transition behavioral model,
hopefully paving the way to the development of a unifying theory as well as reuse
facilities in the field of concurrency, without resorting to abstract representations
such as the categorical ones based on coalgebras and bialgebras.

Together with Diego Latella and Mieke Massink, Rocco and Michele had al-
ready done much work in that framework, aiming at providing a uniform defini-
tion of the structural operational semantics for various stochastic process calculi.
To this purpose, they developed rate-based transition systems [14], which then
evolved into the semiring-based metamodel known as FuTS – state-to-function
labeled transition system [15,35].

Rocco, Michele, and I wanted to explore a different direction, not related
to languages and their semantics. Our first objective was to define a meta-
model general enough to encompass specific behavioral models widely used in
the concurrency literature, featuring nondeterminism, probabilities, determinis-
tic/stochastic time, or a combination of them. We thus came up in [4] with a
metamodel that we called ULTraS – uniform labeled transition system (then
exemplified in [5] as an extension of rate-based transition systems to formalize
process semantics), which was fully elaborated in [6] and further fine-tuned in [3].

ULTraS is a discrete-state metamodel parameterized with respect to a set D,
whereD-values are interpreted as different degrees of one-step reachability. These
values are assumed to be ordered according to a reflexive and transitive relation
vD, which is equipped with minimum ⊥D expressing unreachability. Let us de-
note by (S → D) the set of functions from a set S to D. When S is a set of states,
every element ∆ of (S → D) can be interpreted as a function that distributes
reachability over all possible next states. The set of states supp(∆) = {s ∈ S |
∆(s) 6= ⊥D} that are reachable according to ∆ is called the support of ∆.

The set (S → D)nefs of D-distributions ∆ over S is considered, which satisfies
the constraint 0 < |supp(∆)| < ω. The first part of the constraint establishes that
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the target distribution of each transition has a nonempty support, so to avoid
distributions always returning ⊥D and hence transitions leading to nowhere. The
second part of the constraint ensures that the same distribution has a finite sup-
port, a fact that will enable a correct definition of behavioral metaequivalences.

Definition 1. Let (D,vD,⊥D) be a preordered set equipped with minimum.
A uniform labeled transition system on it, or D-ULTraS for short, is a triple
U = (S,A,−→) where:

– S 6= ∅ is an at most countable set of states.
– A 6= ∅ is a countable set of transition-labeling actions.
– −→ ⊆ S ×A× (S → D)nefs is a transition relation.

Every transition (s, a,∆) of U is written s
a−→∆, where ∆(s′) is a D-value

quantifying the degree of reachability of s′ from s via that a-transition, with
∆(s′) = ⊥D meaning that s′ is not reachable with that transition. In the di-
rected graph description of U (see the forthcoming Figs. 1, 2, 3, 4, 5, 6), vertices
represent states and action-labeled edges represent action-labeled transitions.
Given a transition s

a−→∆, the corresponding a-labeled edge goes from the ver-
tex representing state s to a set of vertices linked by a dashed line, each of which
represents a state s′ ∈ supp(∆) and is labeled with ∆(s′).

In [6,9] we showed what follows about the choice of D:

– B = {⊥,>}, with ⊥ vB >, captures nondeterministic models such as:
• labeled transition systems (LTS) [30], i.e., fully nondeterministic pro-

cesses;
• timed automata (TA) [1] – provided that S and A are allowed to be

uncountable – where time is deterministic.
– R[0,1], with the usual ≤, captures probabilistic models such as:
• action-labeled discrete-time Markov chains (ADTMC) [48], i.e., fully

probabilistic processes;
• Markov decision processes (MDP) [17]/Rabin probabilistic automata [41],

i.e., reactive probabilistic processes according to the terminology of [21];
• Segala probabilistic automata (PA) [42], i.e., nondeterministic and prob-

abilistic processes;
• probabilistic timed automata (PTA) [33] – provided that S and A are

allowed to be uncountable – where time is deterministic.
• Markov automata (MA) [18], where time is stochastic.

– R≥0, with the usual ≤, captures stochastic models such as:
• action-labeled continuous-time Markov chains (ACTMC) [48], i.e., fully

stochastic processes;
• continuous-time Markov decision processes (CTMDP) [40] / Knast prob-

abilistic automata [31], i.e., reactive stochastic processes;
• nondeterministic and stochastic processes intended as extensions of PA.

The definition of the ULTraS metamodel is extremely parsimonious, in the
sense that it does not require any algebraic structure, really necessary only for
behavioral relations and language semantics. It simply relies on a preordered set
equipped with minimum, because this is sufficient to express reachability degrees
for the various states when performing a transition, as well as unreachability.
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2 Behavioral Metaequivalences on ULTraS

The second objective of Rocco, Michele, and myself was to define, on ULTraS,
behavioral metaequivalences general enough to encompass equivalences for
specific classes of processes appeared in the literature. In [6] we focused on three
approaches – bisimulation [38,36], testing [13], and trace [26] – so to cover to
some extent the linear-time/branching-time spectrum [20]. We showed that:

– Bisimulation metaequivalence can be instantiated to bisimilarities for:
• fully nondeterministic processes [23];
• fully probabilistic processes [19];
• reactive probabilistic processes [34];
• fully stochastic processes [25,24];
• reactive stochastic processes [37].

– Trace metaequivalence can be instantiated to trace equivalences for:
• fully nondeterministic processes [10];
• fully probabilistic processes [29];
• reactive probabilistic processes [46];
• fully stochastic processes [50,2].

– Testing metaequivalence can be instantiated to testing equivalences for:
• fully nondeterministic processes [13];
• fully probabilistic processes [11,12];
• reactive probabilistic processes [32];
• fully stochastic processes [2].

Surprisingly enough, it turned out that our behavioral metaequivalences,
as defined in [6], were not able to capture the following well known equivalences
for nondeterministic and probabilistic processes:

– The bisimulation equivalences of [22,45] are finer than the one derivable from
our bisimulation metaequivalence. The latter, studied in [8] and akin to the
ones in [49,47], contains the former as coarsest congruence with respect to
parallel composition, and has the nice property of being characterized by
(a minor variant of) the probabilistic modal logic PML [34] like in the case
of fully/reactive probabilistic processes [34] and alternating PA [39].

– The trace equivalence of [43] is finer than the one derivable from our trace
metaequivalence. The latter, studied in [7], has the nice property of being a
congruence with respect to parallel composition.

– The testing equivalences of [51,28,44,16] are finer than the one derivable from
our testing metaequivalence. The latter, studied in [7], has the nice property
of being backward compatible with testing equivalences for fully nondeter-
ministic, fully probabilistic, and reactive probabilistic processes without im-
posing any restriction on the set of tests.

In order to retrieve also the aforementioned equivalences, in [3] I introduced
the notion of resolution of nondeterminism in the ULTraS framework – with
a formalization inspired by testing theories for nondeterministic and probabilis-
tic processes – and, similar to what we did with Rocco and Michele in [8,7],
I played with the order of certain universal quantifiers in the definition of the
metaequivalences thereby obtaining pre- and post-metaequivalences.
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2.1 Resolutions of Nondeterminism

When several transitions depart from the same state, they describe a choice
among different behaviors, but the presence of these choices may hamper the
calculations that will be required by behavioral metaequivalences. A resolution
of a state s of a D-ULTraS U is the result of a possible way of resolving choices
starting from s, as if a scheduler were applied that, at the current state, selects
one of its outgoing transitions or no transitions at all.

Following [27], in [3] I formalized a resolution as a D-ULTraS Z with a
tree-like structure – whose branching points correspond to target distributions
of transitions – obtained by unfolding from s the graph structure of U and by
selecting at each reached state at most one of its outgoing transitions. Since U
can be cyclic, I made use of a correspondence function from the acyclic state
space of Z to the original state space of U . This function must be bijective1

between the support of the target distribution of each transition in Z and the
support of the target distribution of the corresponding transition in U .

Definition 2. Let U = (S,A,−→) be a D-ULTraS and s ∈ S. A D-ULTraS
Z = (Z,A, −→Z), with no cycles and Z disjoint from S, is a resolution of s,
written Z ∈ Res(s), iff there exists a correspondence function corrZ : Z → S
such that s = corrZ(zs), for some zs ∈ Z, and for all z ∈ Z it holds that:

– If z
a−→Z ∆ then corrZ(z)

a−→∆′, with corrZ being bijective between supp(∆)
and supp(∆′) and ∆(z′) = ∆′(corrZ(z′)) for all z′ ∈ supp(∆).

– At most one transition departs from z.

For bisimulation semantics, choices need to be resolved only at the first step
or, more generally, only at each of the first k steps in case of a multistep definition
of bisimilarity. A notion of partial resolution is thus introduced. It has the same
characteristics as a resolution in its initial part – i.e., states not in S for ensuring
the absence of cycles and choices – but, after the first k steps, its states and
transitions are identical to the original ones.

Definition 3. Let U = (S,A,−→) be a D-ULTraS, s ∈ S, and k ∈ N≥1.
A D-ULTraS Z = (Z,A, −→Z) is a k-resolution of s, written Z ∈ k-Res(s),
iff there exists a correspondence function corrZ : Z → S such that s = corrZ(zs),
for some zs ∈ Z, and for all z ∈ Z it holds that:

– If z
a−→Z ∆ then corrZ(z)

a−→∆′, with corrZ being bijective between supp(∆)
and supp(∆′) and ∆(z′) = ∆′(corrZ(z′)) for all z′ ∈ supp(∆).

– If z is reachable from zs with a sequence of less than k transitions, then:
• z /∈ S;
• z cannot be part of a cycle;
• z has at most one outgoing transition;

otherwise z is equal to corrZ(z) ∈ S and has the same outgoing transitions
that it has in U .

1 Requiring only injectivity as in [3] is not enough because it does not ensure that the
former distribution preserves the overall reachability mass of the latter distribution
(unlike the probabilistic case, in general there is no predefined reachability mass).
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2.2 Reachability-Consistent Semirings

To express the calculations needed by behavioral metaequivalences, in [3] I fur-
ther assumed that D has a commutative semiring structure – thereby reconciling
ULTraS with FuTS to a large extent – i.e., that D is equipped with two bi-
nary operations denoted by ⊕ and ⊗, with the latter distributing over the former,
which satisfy the following properties:

– ⊗ is associative and commutative and admits neutral element 1D and
absorbing element 0D. This multiplicative operation enables the calculation
of multistep reachability from values of consecutive single-step reachability
along the same trajectory.

– ⊕ is associative and commutative and admits neutral element 0D. This addi-
tive operation is useful for aggregating values of multistep reachability along
different trajectories starting from the same state, as well as for shorthands
of the form ∆(S′) =

⊕
s′∈S′ ∆(s′) given a transition s

a−→∆.

In [3] I also assumed that these two binary operations are reachability
consistent, in the sense that they satisfy the following additional properties in
accordance with the intuition behind the concept of reachability:

– 0D = ⊥D (i.e., the zero of the semiring denotes unreachability).
– d1 ⊗ d2 6= 0D whenever d1 6= 0D 6= d2 (hence two consecutive steps cannot

result in unreachability).
– The sum via ⊕ of finitely many values 1D is always different from 0D (known

as characteristic zero; it ensures that two nonzero values sum up to zero only
if they are one the inverse of the other w.r.t. ⊕, thus avoiding inappropriate
zero results when aggregating values of trajectories from the same state).

For example, the following reachability-consistent semirings can be used:

– (B,∨,∧,⊥,>) for nondeterministic models;
– (R≥0,+,×, 0, 1) for probabilistic and stochastic models;

while characteristic zero rules out all semirings (Zn,+n,×n, 0, 1) of the classes
of integer numbers that are congruent modulo n ∈ N≥2.

2.3 Measure Schemata for Multistep Reachability

The definition of behavioral metaequivalences requires the capability of measur-
ing the degree of reachability of a given set of states from a given state when
executing a sequence of transitions labeled with a certain sequence of actions. On
the basis of [6], in [3] I provided a notion of measure schema for a D-ULTraS
U as a set of homogeneously defined measure functions, one for each resolution
Z of U . In the following, A∗ denotes the set of traces over an action set A, ε the
empty trace, and |α| the length of a trace α ∈ A∗.
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Definition 4. Let (D,⊕,⊗, 0D, 1D) be a reachability-consistent semiring and
U = (S,A,−→) be a D-ULTraS. A D-measure schema M for U is a set of
measure functions of the form MZ : Z × A∗ × 2Z → D, one for each Z =
(Z,A,−→Z) ∈ Res(s) and s ∈ S, which are inductively defined on the length of
their second argument by letting MZ(z, α, Z ′) be equal to:

fZ(
⊕

z′∈supp(∆)

(∆(z′)⊗MZ(z′, α′, Z ′)), z, a,∆) if α = aα′ and z
a−→Z ∆

1D if α = ε and z ∈ Z ′
0D otherwise

where fZ : D × Z ×A× (Z → D)nefs → D.

In the first clause, the value ofMZ(z, α, Z ′) is built around a sum of products
of D-values, with the summation being well defined because supp(∆) is finite as
established in Def. 1. The definition above applies to Z ∈ k-Res(s) by restricting
to traces α ∈ A∗ such that |α| ≤ k (note that Z ′ ⊆ S when |α| = k). For
simplicity,M will often indicate both the measure schema and any of its measure
functions MZ , with Mnd being used when the semiring is (B,∨,∧,⊥,>) and
Mpb when it is (R≥0,+,×, 0, 1).

To provide some degree of flexibility, further parameters, internal or external
to U , may be taken into account. On the one hand, the auxiliary function fZ
returns its first argument unless otherwise stated, but can also exploit informa-
tion related to the source state z, the action label a, or the target distribution ∆
of the transition elicited in the first clause. On the other hand, when necessary
MZ is allowed to depend on arguments external to U , such as time [3], which
are consistently inherited by fZ (the codomain of both functions remains D).

2.4 Bisimulation and Trace Pre-/Post-Metaequivalences: Coherency

In [3] I focused on the two endpoints of the linear-time/branching-time spectrum
and redefined bisimulation and trace semantics for ULTraS with respect to [6]
on the basis of the newly introduced concepts: resolutions of nondeterminism,
reachability-consistent semirings, measure schemata. This allowed me to capture
also the equivalences for nondeterministic and probabilistic processes.

For bisimulation semantics there are two different metaequivalences, ∼pre
B

and ∼post
B . Both are defined in the style of [34], which requires bisimulations to

be equivalence relations, but deal with sets of equivalence classes, rather than
only with individual equivalence classes, to avoid an undesirable decrease of the
discriminating power in certain circumstances. The difference between the two
metaequivalences lies in the position – underlined in the definition below – of
the universal quantification over sets of equivalence classes.

In the first case, inspired by [49,47,8] and referred to as pre-bisimulation, the
quantification occurs before the transition of the challenger and the transition of
the defender. In the second case, which is the widely accepted approach of [45]
referred to as post-bisimulation, the quantification occurs after those two tran-
sitions. Given an equivalence relation B over a state space S together with a set
of equivalence classes G ∈ 2S/B,

⋃
G ⊆ S denotes the union of all the equivalence

classes in G. The two considered transitions are represented via 1-resolutions.
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Fig. 1. Difference between bisimulation metaequivalences: s1 6∼post
B,M s2, s1 ∼pre

B,M s2

Definition 5. Let (D,⊕,⊗, 0D, 1D) be a reachability-consistent semiring, U =
(S,A,−→) be a D-ULTraS, M be a D-measure schema for U , and s1, s2 ∈ S:

– s1 ∼pre
B,M s2 iff there exists an M-pre-bisimulation B over S such that

(s1, s2) ∈ B. An equivalence relation B over S is an M-pre-bisimulation
iff, whenever (s1, s2) ∈ B, then for all a ∈ A and for all G ∈ 2S/B it holds
that for each Z1 ∈ 1-Res(s1) there exists Z2 ∈ 1-Res(s2) such that:

M(zs1 , a,
⋃
G) = M(zs2 , a,

⋃
G)

– s1 ∼post
B,M s2 iff there exists an M-post-bisimulation B over S such that

(s1, s2) ∈ B. An equivalence relation B over S is an M-post-bisimulation iff,
whenever (s1, s2) ∈ B, then for all a ∈ A it holds that for each Z1 ∈ 1-Res(s1)
there exists Z2 ∈ 1-Res(s2) such that for all G ∈ 2S/B:

M(zs1 , a,
⋃
G) = M(zs2 , a,

⋃
G)

To understand the difference between the two bisimulation metaequivalences,
consider the two D-ULTraS models in Fig. 1. Both models feature internal
nondeterminism (due to the three a-transitions departing from s1 and s2), the
same distinct D-values d1 and d2, and the same inequivalent continuations given
by the D-ULTraS submodels with initial states r1, r2, r3. Notice that both
the D-values and the continuations are shuffled within each model, while only
the D-values are shuffled across the two models too. It holds that s1 6∼post

B,M s2
because, e.g., the leftmost a-transition of s1 is not matched by any of the three a-
transitions of s2. In contrast, s1 ∼pre

B,M s2. For instance, the leftmost a-transition
of s1 is matched by the central (resp. rightmost) a-transition of s2 with respect
to the equivalence class of r1 (resp. r2) and by the leftmost a-transition of s2
with respect to the union of the equivalence classes of r1 and r2 (see the dashed
arrow-headed lines in Fig. 1).

Also for trace semantics there are two different metaequivalences, ∼pre
T and

∼post
T , which differ for the position of the universal quantification over traces. In

the first case, inspired by [7], the quantification occurs before the computation
of the challenger and the computation of the defender, so that superscript pre
is used. In the second case, which is the widely accepted approach of [43], the
quantification occurs after those two computations, hence superscript post.
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In the definition of trace semantics, the considered computations are rep-
resented through resolutions. The ULTraS submodels rooted in the support
of the target distribution of a transition are not necessarily distinct and can
have several outgoing transitions. Therefore, on the resolution side, the sched-
uler has the freedom of making different decisions in different occurrences of
the same submodel within a target distribution. Unfortunately, this results in
overdiscriminating trace metaequivalences.

Unlike [3], in this paper I limit the excessive power of schedulers by restricting
myself to coherent resolutions, i.e., resolutions in which the decisions made in
different occurrences of the same submodel are coherent with each other. This
can be expressed by reasoning on suitable sets of traces, each extended with its
degree of executability in a given resolution.

Given a ∈ A, d ∈ D \ {0D}, and T, T1, T2 ⊆ A∗ × (D \ {0D}), let:
a . T = {(aα, d′) | (α, d′) ∈ T}
d⊗ T = {(α, d⊗ d′) | (α, d′) ∈ T}
tr(T ) = {α ∈ A∗ | (α, d′) ∈ T for some d′ ∈ D \ {0D}}

T1 ⊕ T2 = {(α, d1 ⊕ d2) | (α, d1) ∈ T1 ∧ (α, d2) ∈ T2}
∪ {(α, d1) ∈ T1 | there exists no (α, d2) ∈ T2 or there exists

α′ 6= α in either tr(T1) or tr(T2) such that |α′| ≤ |α|}
∪ {(α, d2) ∈ T2 | there exists no (α, d1) ∈ T1 or there exists

α′ 6= α in either tr(T1) or tr(T2) such that |α′| ≤ |α|}
The set of coherent D-traces of a state s of a D-ULTraS is defined as follows:

T c
D(s) =

⋃
n∈N

T c
D,n(s)

where T c
D,n(s) is the set of coherent D-traces of s having length at most n:

T c
D,0(s) = {(ε, 1D)}

T c
D,n+1(s) = {(ε, 1D)} ∪

⋃
s

a−→∆

a .

( ⊕
Θ⊆A∗

tr(T c
D,n(s

′))=Θ⊕
s′∈supp(∆)

(∆(s′)⊗ T c
D,n(s′))

)
Definition 6. Let U = (S,A,−→) be a D-ULTraS, s ∈ S, Z = (Z,A, −→Z) ∈
Res(s) with correspondence function corrZ : Z → S. Z is said to be a coherent

resolution of s, written Z ∈ Resc(s), iff for all z ∈ Z, whenever z
a−→Z ∆, then

for all z′, z′′ ∈ supp(∆) and n ∈ N:
tr(T c

D,n(corrZ(z′))) = tr(T c
D,n(corrZ(z′′))) =⇒ tr(T c

D,n(z′)) = tr(T c
D,n(z′′))

Definition 7. Let (D,⊕,⊗, 0D, 1D) be a reachability-consistent semiring, U =
(S,A,−→) be a D-ULTraS, M be a D-measure schema for U , and s1, s2 ∈ S:

– s1 ∼pre
T,M s2 iff for all α ∈ A∗ it holds that for each Z1 = (Z1, A,−→Z1

) ∈
Resc(s1) there exists Z2 = (Z2, A,−→Z2

) ∈ Resc(s2) such that:
M(zs1 , α, Z1) = M(zs2 , α, Z2)

and also the condition obtained by exchanging Z1 with Z2 is satisfied.
– s1 ∼post

T,M s2 iff it holds that for each Z1 = (Z1, A,−→Z1
) ∈ Resc(s1) there

exists Z2 = (Z2, A,−→Z2
) ∈ Resc(s2) such that for all α ∈ A∗:

M(zs1 , α, Z1) = M(zs2 , α, Z2)
and also the condition obtained by exchanging Z1 with Z2 is satisfied.
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Fig. 2. Validity of Prop. 1(3) thanks to resolution coherency: s1 ∼post
B,M s2, s1 ∼post

T,M s2

2.5 Comparing Bisimulation and Trace Metaequivalences

The outcome of the comparison of the discriminating power of the four behavioral
metaequivalences is recalled below from [3].

Proposition 1. Let (D,⊕,⊗, 0D, 1D) be a reachability-consistent semiring, U =
(S,A,−→) be a D-ULTraS, and M be a D-measure schema for U . Then:

1. ∼post
B,M ⊆∼

pre
B,M, with ∼post

B,M =∼pre
B,M if U has no internal nondeterminism.

2. ∼post
T,M ⊆∼

pre
T,M.

3. ∼post
B,M ⊆∼

post
T,M.

The validity of the third property2 above is ensured by the coherency of
the resolutions used in the definition of the trace metaequivalences. Consider
for instance the two D-ULTraS models in the leftmost part of Fig. 2, where
s1 ∼post

B,M s2 and s1 ∼post
T,M s2. The latter identification is made possible by reso-

lution coherency in ∼post
T,M. Indeed, T c

D(s′2) = {(ε, 1D), (b, 1D)} = T c
D(s′′2). There-

fore, the resolution of s2 coinciding with the entire second model is coherent,
while the one in the rightmost part of Fig. 2 is not, because
T c
D(z′2) = {(ε, 1D), (b, 1D)} 6= {(ε, 1D)} = T c

D(z′′2 ), and would lead to s1 6∼post
T,M s2

if it were admitted.
As far as the strictness of the inclusions in Prop. 1 and the incomparability of

certain metaequivalences are concerned, consider the three B-ULTraS models
in the upper part of Fig. 3 – where only the second one features internal non-
determinism and b1 6= b2 – together with their maximal resolutions in the lower
part of Fig. 3 (> is omitted in the case of target distributions with singleton
support). It turns out what follows:

– s1 ∼pre
B,Mnd

s2 but s1 6∼post
B,Mnd

s2 because the only a-transition of s1 cannot be
matched, in theMnd-post-bisimulation game, by any of the two a-transitions
of s2, as the transition of s1 can reach two different equivalence classes, while
each transition of s2 can reach only one class.

2 The proof is the same as the third property of Prop. 3.5 of [3], which is now correct
in its inductive part (|α| = n+1, a′ = a, “either α′ . . . ”) due to resolution coherency.
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Fig. 3. Strictness of inclusions in Prop. 1 and incomparability of metaequivalences

– s1 6∼pre
B,Mnd

s3, and hence s1 6∼post
B,Mnd

s3, because the state reached by the
a-transition of s3 enables two actions and, as a consequence, cannot be equiv-
alent to any of the two states reached by the a-transition of s1. Indeed, al-
though s2 and s3 have the same resolutions, their maximal 1-resolutions are
different; for s2 they coincide with the two maximal resolutions, while for s3
the only maximal 1-resolution coincides with the original model.

– s1 ∼pre
T,Mnd

s2 but s1 6∼post
T,Mnd

s2 because the only maximal resolution of s1

cannot be matched, in the case of ∼post
T,Mnd

, by any of the two maximal
resolutions of s2, as the maximal resolution of s1 has two different maximal
traces, while each maximal resolution of s2 has only one maximal trace.

– s1 ∼pre
T,Mnd

s3 but s1 6∼post
T,Mnd

s3 because s3 has the same resolutions as s2.

This shows that, unlike bisimulation semantics, ∼pre
T,M and ∼post

T,M do not
coincide even in the absence of internal nondeterminism, unless excluding B-
ULTraS models such as the first one that cannot be considered the canon-
ical representation of any labeled transition system and, more generally, all
semirings with a set D 6= B containing a value d 6= 0D such that d ⊕ d = d
(so that trace a would distinguish s1 from s3 – and also s2 – w.r.t. ∼pre

T,M).

– s2 ∼post
T,Mnd

s3 as they have the same resolutions, but s2 6∼post
B,Mnd

s3.

– ∼pre
B,M is generally incomparable with ∼post

T,M and ∼pre
T,M. On the one hand,

s2 6∼pre
B,Mnd

s3 while s2 ∼post
T,Mnd

s3 and s2 ∼pre
T,Mnd

s3. On the other hand, in

Fig. 1 it holds that s1 ∼pre
B,M s2 while s1 6∼post

T,M s2; moreover s1 6∼pre
T,M s2 if r1

(resp. r2) has a b-transition that reaches with degree d′b (resp. d′′b ) a terminal
state, whenever degrees (d1⊗d′b)⊕(d2⊗d′′b ) and (d2⊗d′b)⊕(d1⊗d′′b ) associated
with trace a b – which is assumed not to be executable via r3 – are different
from each other and from d1 ⊗ d′b and d2 ⊗ d′′b .
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2.6 Alternative Characterizations of Trace Metaequivalences

On the basis of [7], in [3] I provided an alternative characterization of ∼pre
T,M,

which is slightly revised here. Since this metaequivalence treats traces individu-
ally regardless of the resolutions in which they can be executed, two states turn
out to be equivalent according to ∼pre

T,M iff they have the same set of D-traces.

The validity of the lemma below relies on the use of coherent resolutions,
together with the fact that the definition of T1 ⊕ T2 before Def. 6 also includes
(α, d1) taken from T1 and (α, d2) taken from T2 without summing up their de-
grees, provided that there exists another trace α′ not longer than α in only one
of T1 and T2 – meaning that T1 and T2 stem from two inequivalent states.3

Lemma 1. Let (D,⊕,⊗, 0D, 1D) be a reachability-consistent semiring, U = (S,
A,−→) be a D-ULTraS, M be a D-measure schema for U . Let (α, d) ∈ A∗ ×
(D\{0D}) and s ∈ S. Then (α, d) ∈ T c

D(s) iff there exists (Z,A,−→Z) ∈ Resc(s)
such that M(zs, α, Z) = d.

Theorem 1. Let s1, s2 ∈ S. Then s1 ∼pre
T,M s2 iff T c

D(s1) = T c
D(s2).

An analogous characterization can be provided for ∼post
T,M by reasoning in

terms of coherent D-trace distributions, so to bind extended D-traces to the
resolutions in which they can be executed. For a state s, what is obtained is a
family of sets of extended D-traces instead of a flat set:

TDc(s) = {T c(zs) | there exists Z ∈ Resc(s) whose initial state is zs}
from which the result below immediately follows.

Theorem 2. Let s1, s2 ∈ S. Then s1 ∼post
T,M s2 iff TDc

D(s1) = TDc
D(s2).

3 Metaresults for Behavioral Metaequivalences

After the identification of models and equivalences captured or generated by the
ULTraS framework, the ongoing research is aimed at investigating the proper-
ties of behavioral metaequivalences. The objective of this activity is to produce
metaresults, in the sense that the obtained results should be valid regardless of
specific classes of processes, thereby leading to a unifying process theory.

The compositionality metaresults established in [3] for bisimulation and trace
pre-/post-metaequivalences are now discussed, by rephrasing them in the setting
of a general process calculus relying on the same underpinnings as ULTraS.
The definition of the semantics for this language makes use of the two binary
operations provided by the underlying reachability-consistent semiring.

3 The definition of T1 ⊕ T2 before Lemma 4.11 of [3] should be rectified by removing
the two instances of “α occurring only in . . . ” as resolutions are not coherent there
(otherwise the if part of Lemma 4.11(2) would not hold).
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D 7−→ ∆

a .D a−→∆

P1
a−→∆

P1 + P2
a−→∆

P2
a−→∆

P1 + P2
a−→∆

P1
a−→∆1 a /∈ L

P1 ‖L P2
a−→∆1 ⊗ δP2

P2
a−→∆2 a /∈ L

P1 ‖L P2
a−→ δP1 ⊗∆2

P1
a−→∆1 P2

a−→∆2 a ∈ L

P1 ‖L P2
a−→∆1 ⊗∆2

d . P 7−→ {(P, d)}
D1 7−→ ∆1 D2 7−→ ∆2

D1 +◦ D2 7−→ ∆1 ⊕∆2

Table 1. Structural operational semantic rules for UProC

3.1 A Process Algebraic View of ULTraS

Given a preordered set D equipped with minimum that yields a reachability-
consistent semiring (D,⊕,⊗, 0D, 1D), together with a countable set A of actions,
the syntax for UProC – uniform process calculus features two levels, one for
the set P of processes and one for the set D of reachability distributions:

P ::= 0 | a .D | P + P | P ‖L P
D ::= d . P | D+◦ D

where a ∈ A, L ⊆ A, d ∈ D \ {0D}.
The structural operational semantic rules in Table 1 generate a D-ULTraS

(P, A,−→) by exploiting the semiring operations. The primary transition relation
−→ is defined as the smallest subset of P×A× (P→ D)nefs satisfying the rules
in the upper part, where ⊗ is lifted to reachability distributions over the parallel
composition of processes by letting (∆1 ⊗ ∆2)(P1 ‖L P2) = ∆1(P1) ⊗ ∆2(P2),
while δP is the reachability distribution identically equal to 0D except in P
where its value is 1D. The secondary transition relation 7−→ is the smallest
subset of D × (P → D)nefs satisfying the rules in the lower part, with {(P, d)}
being a shorthand for the reachability distribution identically equal to 0D except
in P where its value is d; furthermore, ⊕ is lifted to reachability distributions
by letting (∆1⊕∆2)(P ) = ∆1(P )⊕∆2(P ). Let supp(D) = supp(∆) if D 7−→ ∆.

As far as the process operator + is concerned, it expresses a generic choice to
be interpreted on the basis of D. For example, if D = B then the choice is nonde-
terministic. If instead D = R≥0, in the presence of alternative identical actions –
corresponding to identically labeled transitions departing from the same state –
the choice is nondeterministic and a (variant of) probabilistic automata can be
derived; otherwise, the choice may be regarded as probabilistic, in the sense that
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a Markov chain or a Markov decision process may be obtained. Moreover, note
that a probabilistic process term like P1 p+P2, where p ∈ R]0,1[, can be rendered
as τ . (p . P1 +◦ (1− p) . P2) in UProC, where τ is the invisible action.

3.2 Congruence with Respect to Distribution/Dynamic Operators

Let us investigate the compositionality properties of the four behavioral metae-
quivalences with respect to the operators of UProC. Due to the two-level format
of the syntax, as a preliminary step the metaequivalences are lifted from pro-
cesses to reachability distributions over processes. Extending [34], this can be
done by considering D1,D2 ∈ D related by an equivalence relation ∼ over P
when D1 and D2 assign the same reachability degree to the same equivalence
class, i.e., ∆1(C) = ∆2(C) for all C ∈ P/∼ with D1 7−→ ∆1 and D2 7−→ ∆2.
Note that, given D 7−→ ∆, it holds that ∆ ∈ (P→ D)nefs and hence ∆(C), i.e.,⊕

P∈C ∆(P ), can only have finitely many summands different from 0D.
Compositionality with respect to the distribution operators . and +◦ can be

established in a way that abstracts from the specific behavioral metaequivalence.

Theorem 3. Let ∼M ∈ {∼pre
B,M,∼

post
B,M,∼

pre
T,M,∼

post
T,M} for a measure schema M

over the D-ULTraS semantics of UProC. Let P1, P2 ∈ P and D1,D2 ∈ D.
If P1 ∼M P2 and D1 ∼M D2, then:

1. d . P1 ∼M d . P2 for all d ∈ D \ {0D}.
2. D1 +◦ D ∼M D2 +◦ D and D+◦ D1 ∼M D+◦ D2 for all D ∈ D.

As far as the two dynamic process operators are concerned, there are different
proofs for bisimulation and trace semantics, which are reworkings of those in [3].

Theorem 4. Let ∼M ∈ {∼pre
B,M,∼

post
B,M,∼

pre
T,M,∼

post
T,M} for a measure schema M

over the D-ULTraS semantics of UProC. Let P1, P2 ∈ P and D1,D2 ∈ D.
If P1 ∼M P2 and D1 ∼M D2, then:

1. a .D1 ∼M a .D2 for all a ∈ A.
2. P1 + P ∼M P2 + P and P + P1 ∼M P + P2 for all P ∈ P.

Unlike Thm. 4.2 of [3], trace metaequivalences are full congruences with re-
spect to action prefix. If ordinary resolutions were considered instead of coherent
ones, a lack of compositionality would arise in the general setting of ULTraS
because the continuation after an action is not a single process, but a reachability
distribution over processes.

This can be illustrated through the following UProC terms P1 and P2:
P1 = a . (d1 . Q1 +◦ d2 . Q2)
P2 = a . (d1 . Q2 +◦ d2 . Q2)
Q1 = a′. b . 0 + a′. c . 0
Q2 = a′. (b . 0 + c . 0)

where a sequence of action prefixes like a′. b . 0 is a shorthand for a′. (d.b . (d.0))
for some d ∈ D \ {0D}. Their underlying D-ULTraS models are shown in the
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1P 2P

1d + 2d
1d 2d

1z

coherent

not

1d 2d

a’

aa
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b c
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d

d

d

b

d

d

c

d d d

a

a’ a’

d

c

d

d

b

d

Fig. 4. Full compositionality w.r.t. action prefix thanks to resolution coherency

leftmost part of Fig. 4. It is easy to see Q1 and Q2 are trace equivalent, hence the
two distributions describing the a-continuations of P1 and P2 are trace equivalent
too. However, if one considers the trace α = a a′b and the resolution of P1 shown
in the rightmost part of Fig. 4 – in which α is executable with degree d1⊗ d⊗ d
– then no resolution of P2 is capable of matching it – as the executability degree
would be (d1⊕ d2)⊗ d⊗ d or 0D – unless D = B in which case d1 = d2 = > and
d1 ⊕ d2 = > ∨ > = >. As can be noted, that resolution of P1 is not coherent,
as the scheduler makes different decisions in the two trace equivalent submodels
respectively rooted at Q1 and Q2, thereby producing two resolutions of those
two submodels that are no longer trace equivalent.

3.3 Congruence with Respect to Parallel Composition

Addressing parallel composition is much more involved. Following [3], the first
metaresult states that ∼post

B,M is a congruence with respect to parallel composition
always, i.e., for every possible ULTraS. As a consequence of Prop. 1, this is the
case also for ∼pre

B,M in the absence of internal nondeterminism.

Theorem 5. Let M be a measure schema for the D-ULTraS semantics of
UProC. Let P1, P2 ∈ P. If P1 ∼post

B,M P2, then P1 ‖L P ∼post
B,M P2 ‖L P and

P ‖L P1 ∼post
B,M P ‖L P2 for all L ⊆ A and P ∈ P.

Corollary 1. Let M be a measure schema for the D-ULTraS semantics of
UProC. Let P1, P2 ∈ P have no internal nondeterminism. If P1 ∼pre

B,M P2, then

P1 ‖L P ∼pre
B,M P2 ‖L P and P ‖L P1 ∼pre

B,M P ‖L P2 for all L ⊆ A and P ∈ P.

As for the compositionality of ∼pre
B,M in the presence of internal nondetermin-

ism, let us consider the case |D| = 2, i.e., the simplest reachability-consistent
semiring (B,∨,∧,⊥,>) together with the corresponding measure schema Mnd.
In this specific case, ∼pre

B,M turns out to be a congruence with respect to parallel
composition. Intuitively, in addition to the coinductive nature of bisimulation,
the reason is that, starting from transitions whose target distributions can only
contain > and ⊥ as values, their parallel composition cannot generate, for the
target distributions of the resulting transitions, values different from > and ⊥.
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a

P

d’ d"

Fig. 5. ∼pre
B,M is not compositional when |D| ≥ 3 and there is internal nondeterminism

Theorem 6. Let Mnd be the measure schema for the B-ULTraS semantics of
UProC. Let P1, P2 ∈ P. If P1 ∼pre

B,Mnd
P2, then P1 ‖L P ∼pre

B,Mnd
P2 ‖L P and

P ‖L P1 ∼pre
B,Mnd

P ‖L P2 for all L ⊆ A and P ∈ P.

In all the other cases, i.e., when |D| ≥ 3 and internal nondeterminism is
present, the relation ∼pre

B,M is no longer guaranteed to be a congruence with
respect to parallel composition.

Consider for instance the first two D-ULTraS models in the upper part
of Fig. 5 (D-values of terminal states are omitted), where d′, d′′ ∈ D satisfy
d′ 6= d′′ and d′ 6= 0D 6= d′′ (these values exist because |D| ≥ 3). Given a D-
measure schemaM, it holds that P1 ∼pre

B,M P2. However, if the last D-ULTraS
in the upper part is taken into account, the two D-ULTraS models in the lower
part of Fig. 5 are obtained, which satisfy P1 ‖A P 6∼pre

B,M P2 ‖A P . The reason is
that, when examining the set of equivalence classes whose states can perform b1
or b2, the leftmost a-transition of P1 ‖A P is not matched by any a-transition of
P2 ‖A P whenever (d′⊗d′)⊕ (d′′⊗d′′) /∈ {(d′′⊗d′)⊕ (d′⊗d′′), d′⊗d′, d′′⊗d′′}.

A coarsest congruence metaresult relating ∼post
B,M and ∼pre

B,M for |D| ≥ 3 can
be established whenever the reachability-consistent semiring (D,⊕,⊗, 0D, 1D)
is a field – like, e.g., (Q,+,×, 0, 1), (R,+,×, 0, 1), and (C,+,×, 0, 1) – which
means that the inverse operations with respect to ⊕ and ⊗ exist:

– d	 d = d⊕ inv⊕(d) = inv⊕(d)⊕ d = 0D for all d ∈ D.
– d� d = d⊗ inv⊗(d) = inv⊗(d)⊗ d = 1D for all d ∈ D \ {0D}.

Such a metaresult holds under image finiteness – i.e., when the number of identi-
cally labeled transitions departing from any state is finite – and relies on the fact
that transitions have target distributions with finite support. The proof exploits
the algebraic and topological properties of the vector spaces that can be built
on top of the field, as well as characteristic zero, which guarantees that the field
and hence the vector spaces on it are infinite.
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Fig. 6. ∼post
T,M is not compositional

Theorem 7. Let (D,⊕,	,⊗,�, 0D, 1D) be a reachability-consistent field and
M be a measure schema for the D-ULTraS semantics of UProC. Let P1, P2 ∈
P be image finite. Then P1 ∼post

B,M P2 iff P1 ‖L P ∼pre
B,M P2 ‖L P for all L ⊆ A

and P ∈ P.

In the case of trace semantics, it is ∼pre
T,M that, for every possible ULTraS,

is a congruence with respect to parallel composition, hence no compositionality
connection can be established with ∼post

T,M as the latter is finer than the former.

The proof of this congruence metaresult for ∼pre
T,M exploits the alternative char-

acterization of Thm. 1.

Theorem 8. Let M be a measure schema for the D-ULTraS semantics of
UProC. Let P1, P2 ∈ P. If P1 ∼pre

T,M P2, then P1 ‖L P ∼pre
T,M P2 ‖L P and

P ‖L P1 ∼pre
T,M P ‖L P2 for all L ⊆ A and P ∈ P.

As for the compositionality of ∼post
T,M, even under the simplest reachability-

consistent semiring (B,∨,∧,⊥,>) and the corresponding measure schema Mnd

the relation is not a congruence with respect to parallel composition, unless
excluding B-ULTraS models that cannot be regarded as the canonical repre-
sentation of any labeled transition system (for a congruence counterexample
based on Mpb, see Fig. 3 of [43]).
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Consider for instance the first two B-ULTraS models in the upper part
of Fig. 6 (> is omitted in the case of target distributions with singleton sup-
port), which satisfy P1 ∼post

T,Mnd
P2. If the last B-ULTraS in the upper part

is taken into account, the two B-ULTraS models in the lower part of Fig. 6
are obtained (dots stands for transitions that are not shown), which satisfy
P1 ‖∅ P 6∼post

T,Mnd
P2 ‖∅ P . This is witnessed by the maximal resolutions of P1 ‖∅ P

and P2 ‖∅ P that start with trace a a′ and continue with one of the traces in
{b b1 c1, b b1 c2, b b2 c1, b b2 c2}. As an example, the maximal resolution of P2 ‖∅ P
whose associated set of maximal traces is {a a′ b b1 c1, a a′ b b2 c2} is not matched
under ∼post

T,Mnd
by any maximal resolution of P1 ‖∅ P .

3.4 Final Remarks

In conclusion, the metaresults of [3] – which have been reformulated here in a
process algebraic setting – confirm a foundational difference between bisimula-
tion and trace semantics. This difference refers to compositionality with respect
to parallel combinators and shows up under internal nondeterminism, as had
emerged in the specific case of nondeterministic and probabilistic processes [8,7].

A question naturally arises: is there a semantics for which both pre- and post-
metaequivalences are always congruences with respect to parallel composition?

4 Future Directions

I plan to keep putting ULTraS at work on behavioral metaequivalences to
further extend the resulting unifying process theory. In particular, I would like
to investigate:

– Equational characterization metaresults.

– Logical characterization metaresults.

– Metaresults for other bisimulation-/trace-based metaequivalences.

– Metaresults for testing metaequivalences.

– The spectrum of metaequivalences on ULTraS.

As far as behavioral metarelations are concerned, it is also worth studying:

– Behavioral metapreorders.

– Weak variants of behavioral metarelations.

– Approximate variants of behavioral metarelations.

Finally, on the metamodel side, it would be interesting to capture also:

– Interleaving models with continuous state spaces.

– Truly concurrent models such as Petri nets and event structures.
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