
PRPC: Semantics, Logics, Axioms

A Process Algebraic Theory
of Reversible Computing

Marco Bernardo
University of Urbino – Italy

PRIN 2020 project NiRvAna

© 2025

Concurrency: Nondeterminism vs. Irreversibility

Systems composed of several interconnected computing parts that
communicate by exchanging information or simply synchronizing.

Models: shared memory, message passing, web services, cloud, . . .

Types: centralized/distributed/decentralized, static/dynamic/mobile.

Aspects: functionality, security, reliability, performance, . . .

Nondeterminism: the input does not uniquely define the output.

Different advancing speeds, scheduling policies, . . .

What if the output does not uniquely define the input?

Irreversibility: typical of functions that are not invertible.

Example 1: conjunctions/disjunctions are irreversible.

Example 2: negation is reversible.

Concurrency: Nondeterminism vs. Irreversibility

Systems composed of several interconnected computing parts that
communicate by exchanging information or simply synchronizing.

Models: shared memory, message passing, web services, cloud, . . .

Types: centralized/distributed/decentralized, static/dynamic/mobile.

Aspects: functionality, security, reliability, performance, . . .

Nondeterminism: the input does not uniquely define the output.

Different advancing speeds, scheduling policies, . . .

What if the output does not uniquely define the input?

Irreversibility: typical of functions that are not invertible.

Example 1: conjunctions/disjunctions are irreversible.

Example 2: negation is reversible.

Concurrency: Nondeterminism vs. Irreversibility

Systems composed of several interconnected computing parts that
communicate by exchanging information or simply synchronizing.

Models: shared memory, message passing, web services, cloud, . . .

Types: centralized/distributed/decentralized, static/dynamic/mobile.

Aspects: functionality, security, reliability, performance, . . .

Nondeterminism: the input does not uniquely define the output.

Different advancing speeds, scheduling policies, . . .

What if the output does not uniquely define the input?

Irreversibility: typical of functions that are not invertible.

Example 1: conjunctions/disjunctions are irreversible.

Example 2: negation is reversible.

Concurrency: Nondeterminism vs. Irreversibility

Systems composed of several interconnected computing parts that
communicate by exchanging information or simply synchronizing.

Models: shared memory, message passing, web services, cloud, . . .

Types: centralized/distributed/decentralized, static/dynamic/mobile.

Aspects: functionality, security, reliability, performance, . . .

Nondeterminism: the input does not uniquely define the output.

Different advancing speeds, scheduling policies, . . .

What if the output does not uniquely define the input?

Irreversibility: typical of functions that are not invertible.

Example 1: conjunctions/disjunctions are irreversible.

Example 2: negation is reversible.

Reversible Computing

What does (ir)reversibility mean in computing?

Well established concept in mathematics, physics, chemistry, biology:
inverse relation/function/operation/formula/law/reaction . . .

Much more recent in informatics: seminal papers by Landauer in 1961
and Bennett in 1973 on IBM Journal of Research and Development.

Landauer principle states that any manipulation of information
that is irreversible – i.e., causes information loss – such as:

erasure/overwriting of bits
merging of computation paths

must be accompanied by a corresponding entropy increase.

Minimal heat generation due to extra work for standardizing signals
and making them independent of their history, so that it becomes
impossible to determine the input from the output.

Reversible Computing

What does (ir)reversibility mean in computing?

Well established concept in mathematics, physics, chemistry, biology:
inverse relation/function/operation/formula/law/reaction . . .

Much more recent in informatics: seminal papers by Landauer in 1961
and Bennett in 1973 on IBM Journal of Research and Development.

Landauer principle states that any manipulation of information
that is irreversible – i.e., causes information loss – such as:

erasure/overwriting of bits
merging of computation paths

must be accompanied by a corresponding entropy increase.

Minimal heat generation due to extra work for standardizing signals
and making them independent of their history, so that it becomes
impossible to determine the input from the output.

Reversible Computing

What does (ir)reversibility mean in computing?

Well established concept in mathematics, physics, chemistry, biology:
inverse relation/function/operation/formula/law/reaction . . .

Much more recent in informatics: seminal papers by Landauer in 1961
and Bennett in 1973 on IBM Journal of Research and Development.

Landauer principle states that any manipulation of information
that is irreversible – i.e., causes information loss – such as:

erasure/overwriting of bits
merging of computation paths

must be accompanied by a corresponding entropy increase.

Minimal heat generation due to extra work for standardizing signals
and making them independent of their history, so that it becomes
impossible to determine the input from the output.

Due to Landauer principle, the logical irreversibility of a function
implies the physical irreversibility of computing that function
and the consequent dissipative effects.

Experimentally verified by Bérut et al in 2012 and revisited
in terms of its physical foundations by Frank in 2018.

Every reversible computation, where no information is lost instead,
may be potentially carried out without dissipating further heat.

Lower energy consumption could therefore be achieved by resorting
to reversible computing.

There are many other applications of reversible computing:

Biochemical reaction modeling (nature).
Parallel discrete-event simulation (speedup).
Fault-tolerant computing systems (rollback).
Robotics and control theory (backtrack).
Concurrent program debugging (reproducibility).
Distributed algorithms (deadlock, consensus).

Due to Landauer principle, the logical irreversibility of a function
implies the physical irreversibility of computing that function
and the consequent dissipative effects.

Experimentally verified by Bérut et al in 2012 and revisited
in terms of its physical foundations by Frank in 2018.

Every reversible computation, where no information is lost instead,
may be potentially carried out without dissipating further heat.

Lower energy consumption could therefore be achieved by resorting
to reversible computing.

There are many other applications of reversible computing:

Biochemical reaction modeling (nature).
Parallel discrete-event simulation (speedup).
Fault-tolerant computing systems (rollback).
Robotics and control theory (backtrack).
Concurrent program debugging (reproducibility).
Distributed algorithms (deadlock, consensus).

Due to Landauer principle, the logical irreversibility of a function
implies the physical irreversibility of computing that function
and the consequent dissipative effects.

Experimentally verified by Bérut et al in 2012 and revisited
in terms of its physical foundations by Frank in 2018.

Every reversible computation, where no information is lost instead,
may be potentially carried out without dissipating further heat.

Lower energy consumption could therefore be achieved by resorting
to reversible computing.

There are many other applications of reversible computing:

Biochemical reaction modeling (nature).
Parallel discrete-event simulation (speedup).
Fault-tolerant computing systems (rollback).
Robotics and control theory (backtrack).
Concurrent program debugging (reproducibility).
Distributed algorithms (deadlock, consensus).

Two directions of computation characterize every reversible system:

Forward: coincides with the normal way of computing.

Backward: the effects of the forward one are undone (when needed).

How to proceed backward? Same path as the forward direction?
Paths with causally independent actions should be deemed equivalent.

Is the last executed action uniquely identifiable?
Not necessarily, especially in the case of a concurrent system.

Different notions of reversibility developed in different settings:

Causal reversibility is the capability of going back to a past state
consistently with the computational history: an action can be undone
iff all of its consequences have been undone already [DanosKrivine04].

Time reversibility refers to the conditions under which the stochastic
behavior remains the same when the direction of time is reversed
(quantitative models, efficient performance evaluation) [Kelly79].

Only recently the relationships between the two have been investigated
(the former implies the latter over models based on Markov chains
when certain constraints are met).

Two directions of computation characterize every reversible system:

Forward: coincides with the normal way of computing.

Backward: the effects of the forward one are undone (when needed).

How to proceed backward? Same path as the forward direction?
Paths with causally independent actions should be deemed equivalent.

Is the last executed action uniquely identifiable?
Not necessarily, especially in the case of a concurrent system.

Different notions of reversibility developed in different settings:

Causal reversibility is the capability of going back to a past state
consistently with the computational history: an action can be undone
iff all of its consequences have been undone already [DanosKrivine04].

Time reversibility refers to the conditions under which the stochastic
behavior remains the same when the direction of time is reversed
(quantitative models, efficient performance evaluation) [Kelly79].

Only recently the relationships between the two have been investigated
(the former implies the latter over models based on Markov chains
when certain constraints are met).

Two directions of computation characterize every reversible system:

Forward: coincides with the normal way of computing.

Backward: the effects of the forward one are undone (when needed).

How to proceed backward? Same path as the forward direction?
Paths with causally independent actions should be deemed equivalent.

Is the last executed action uniquely identifiable?
Not necessarily, especially in the case of a concurrent system.

Different notions of reversibility developed in different settings:

Causal reversibility is the capability of going back to a past state
consistently with the computational history: an action can be undone
iff all of its consequences have been undone already [DanosKrivine04].

Time reversibility refers to the conditions under which the stochastic
behavior remains the same when the direction of time is reversed
(quantitative models, efficient performance evaluation) [Kelly79].

Only recently the relationships between the two have been investigated
(the former implies the latter over models based on Markov chains
when certain constraints are met).

Two directions of computation characterize every reversible system:

Forward: coincides with the normal way of computing.

Backward: the effects of the forward one are undone (when needed).

How to proceed backward? Same path as the forward direction?
Paths with causally independent actions should be deemed equivalent.

Is the last executed action uniquely identifiable?
Not necessarily, especially in the case of a concurrent system.

Different notions of reversibility developed in different settings:

Causal reversibility is the capability of going back to a past state
consistently with the computational history: an action can be undone
iff all of its consequences have been undone already [DanosKrivine04].

Time reversibility refers to the conditions under which the stochastic
behavior remains the same when the direction of time is reversed
(quantitative models, efficient performance evaluation) [Kelly79].

Only recently the relationships between the two have been investigated
(the former implies the latter over models based on Markov chains
when certain constraints are met).

Two directions of computation characterize every reversible system:

Forward: coincides with the normal way of computing.

Backward: the effects of the forward one are undone (when needed).

How to proceed backward? Same path as the forward direction?
Paths with causally independent actions should be deemed equivalent.

Is the last executed action uniquely identifiable?
Not necessarily, especially in the case of a concurrent system.

Different notions of reversibility developed in different settings:

Causal reversibility is the capability of going back to a past state
consistently with the computational history: an action can be undone
iff all of its consequences have been undone already [DanosKrivine04].

Time reversibility refers to the conditions under which the stochastic
behavior remains the same when the direction of time is reversed
(quantitative models, efficient performance evaluation) [Kelly79].

Only recently the relationships between the two have been investigated
(the former implies the latter over models based on Markov chains
when certain constraints are met).

Reversibility in Process Algebra

There are no inverse process algebraic operators!

The dynamic approach of [DanosKrivine04] yielding RCCS
uses explicit stack-based memories attached to processes
to record all executed actions and all discarded subprocesses.

A single transition relation is defined, while actions are divided into
forward and backward resulting in forward and backward transitions.

The static approach of [PhillipsUlidowski07] yielding CCSK
is a method to reverse calculi by retaining within process syntax:

all executed actions, which are suitably decorated;
all dynamic operators, which are therefore treated as static.

A forward transition relation and a backward transition relation are
separately defined, labeled with communication keys so as to know
who synchronized with whom when building backward transitions.

Reversibility in Process Algebra

There are no inverse process algebraic operators!

The dynamic approach of [DanosKrivine04] yielding RCCS
uses explicit stack-based memories attached to processes
to record all executed actions and all discarded subprocesses.

A single transition relation is defined, while actions are divided into
forward and backward resulting in forward and backward transitions.

The static approach of [PhillipsUlidowski07] yielding CCSK
is a method to reverse calculi by retaining within process syntax:

all executed actions, which are suitably decorated;
all dynamic operators, which are therefore treated as static.

A forward transition relation and a backward transition relation are
separately defined, labeled with communication keys so as to know
who synchronized with whom when building backward transitions.

Reversibility in Process Algebra

There are no inverse process algebraic operators!

The dynamic approach of [DanosKrivine04] yielding RCCS
uses explicit stack-based memories attached to processes
to record all executed actions and all discarded subprocesses.

A single transition relation is defined, while actions are divided into
forward and backward resulting in forward and backward transitions.

The static approach of [PhillipsUlidowski07] yielding CCSK
is a method to reverse calculi by retaining within process syntax:

all executed actions, which are suitably decorated;
all dynamic operators, which are therefore treated as static.

A forward transition relation and a backward transition relation are
separately defined, labeled with communication keys so as to know
who synchronized with whom when building backward transitions.

In [PU07] forward-reverse bisimilarity has been introduced too.

Truly concurrent as it does not satisfy the expansion law of parallel
composition into a choice among all possible action sequencings (a 6= b):

0_ O/|| 0_a. b.

0_ O/|| 0_[].ia b [].j

0_ 0_+b.a. b.a.

0_ 0_+b. b.a.[].ia

0_ 0_+b.a.[].ia b [].j

0_0_ O/ b.[].ia ||

ia []

0_ O/|| 0_a. b j[].

b j[]

b j[] ia []

ia [] b j[]

ia []b j[]

ia []

ia []

ia []ia []

0_ 0_+b.a. b a[]. [].j i

0_ 0_+b.a. b a.[].j

b j[] b j[]

b j[]

b j[]

no match with

In [DeNicolaMontanariVaandrager90] back-and-forth bisimilarity.

Interleaving view restoration because this bisimilarity is defined on
computations instead of states to preserve both causality and history
(one transition relation, viewed as bidirectional, outgoing/incoming).

In [PU07] forward-reverse bisimilarity has been introduced too.

Truly concurrent as it does not satisfy the expansion law of parallel
composition into a choice among all possible action sequencings (a 6= b):

0_ O/|| 0_a. b.

0_ O/|| 0_[].ia b [].j

0_ 0_+b.a. b.a.

0_ 0_+b. b.a.[].ia

0_ 0_+b.a.[].ia b [].j

0_0_ O/ b.[].ia ||

ia []

0_ O/|| 0_a. b j[].

b j[]

b j[] ia []

ia [] b j[]

ia []b j[]

ia []

ia []

ia []ia []

0_ 0_+b.a. b a[]. [].j i

0_ 0_+b.a. b a.[].j

b j[] b j[]

b j[]

b j[]

no match with

In [DeNicolaMontanariVaandrager90] back-and-forth bisimilarity.

Interleaving view restoration because this bisimilarity is defined on
computations instead of states to preserve both causality and history
(one transition relation, viewed as bidirectional, outgoing/incoming).

What are the properties of bisimilarity over reversible processes?

Minimal process calculus tailored for reversible processes
to comparatively study congruence, logics, and axioms for:

Forward-reverse bisimilarity.
Forward bisimilarity.
Reverse bisimilarity.

Two different kinds of bisimilarities:

Strong bisimilarities (all actions are treated in the same way).
Weak bisimilarities (abstracting from unobservable actions).

Considering only sequential processes (i.e., no parallel composition)
to be neutral with respect to interleaving view vs. true concurrency.

Adding parallel composition to uniformly investigate expansion laws
(relate sequential specifications to concurrent implementations).

Characterizations via other behavioral equivalences.

Can we avoid external memories and communication keys?

What are the properties of bisimilarity over reversible processes?

Minimal process calculus tailored for reversible processes
to comparatively study congruence, logics, and axioms for:

Forward-reverse bisimilarity.
Forward bisimilarity.
Reverse bisimilarity.

Two different kinds of bisimilarities:

Strong bisimilarities (all actions are treated in the same way).
Weak bisimilarities (abstracting from unobservable actions).

Considering only sequential processes (i.e., no parallel composition)
to be neutral with respect to interleaving view vs. true concurrency.

Adding parallel composition to uniformly investigate expansion laws
(relate sequential specifications to concurrent implementations).

Characterizations via other behavioral equivalences.

Can we avoid external memories and communication keys?

What are the properties of bisimilarity over reversible processes?

Minimal process calculus tailored for reversible processes
to comparatively study congruence, logics, and axioms for:

Forward-reverse bisimilarity.
Forward bisimilarity.
Reverse bisimilarity.

Two different kinds of bisimilarities:

Strong bisimilarities (all actions are treated in the same way).
Weak bisimilarities (abstracting from unobservable actions).

Considering only sequential processes (i.e., no parallel composition)
to be neutral with respect to interleaving view vs. true concurrency.

Adding parallel composition to uniformly investigate expansion laws
(relate sequential specifications to concurrent implementations).

Characterizations via other behavioral equivalences.

Can we avoid external memories and communication keys?

What are the properties of bisimilarity over reversible processes?

Minimal process calculus tailored for reversible processes
to comparatively study congruence, logics, and axioms for:

Forward-reverse bisimilarity.
Forward bisimilarity.
Reverse bisimilarity.

Two different kinds of bisimilarities:

Strong bisimilarities (all actions are treated in the same way).
Weak bisimilarities (abstracting from unobservable actions).

Considering only sequential processes (i.e., no parallel composition)
to be neutral with respect to interleaving view vs. true concurrency.

Adding parallel composition to uniformly investigate expansion laws
(relate sequential specifications to concurrent implementations).

Characterizations via other behavioral equivalences.

Can we avoid external memories and communication keys?

What are the properties of bisimilarity over reversible processes?

Minimal process calculus tailored for reversible processes
to comparatively study congruence, logics, and axioms for:

Forward-reverse bisimilarity.
Forward bisimilarity.
Reverse bisimilarity.

Two different kinds of bisimilarities:

Strong bisimilarities (all actions are treated in the same way).
Weak bisimilarities (abstracting from unobservable actions).

Considering only sequential processes (i.e., no parallel composition)
to be neutral with respect to interleaving view vs. true concurrency.

Adding parallel composition to uniformly investigate expansion laws
(relate sequential specifications to concurrent implementations).

Characterizations via other behavioral equivalences.

Can we avoid external memories and communication keys?

What are the properties of bisimilarity over reversible processes?

Minimal process calculus tailored for reversible processes
to comparatively study congruence, logics, and axioms for:

Forward-reverse bisimilarity.
Forward bisimilarity.
Reverse bisimilarity.

Two different kinds of bisimilarities:

Strong bisimilarities (all actions are treated in the same way).
Weak bisimilarities (abstracting from unobservable actions).

Considering only sequential processes (i.e., no parallel composition)
to be neutral with respect to interleaving view vs. true concurrency.

Adding parallel composition to uniformly investigate expansion laws
(relate sequential specifications to concurrent implementations).

Characterizations via other behavioral equivalences.

Can we avoid external memories and communication keys?

PRPC – Proved Reversible Process Calculus

Countable set A of actions including the unobservable action τ ,
renaming ρ : A → A s.t. ρ(τ) = τ , synchronization set L ⊆ A \ {τ}.
Usually only the future behavior of processes is described.

We store the past behavior in the syntax like in [PU07]:

P ::= 0 | a . P | a†. P | P xρq | P + P | P ‖L P
a†. P executed action a, its forward continuation is inside P , and
can undo a after all executed actions within P have been undone.

Single transition relation like in [DMV90] labeled just with actions.

Therefore there is no need of communication keys [PU07], thus
allowing for uniform action decorations like in [BoudolCastellani94].

No need to distinguish between forward and backward actions
or resort to stack-based memories [DK04].

PRPC – Proved Reversible Process Calculus

Countable set A of actions including the unobservable action τ ,
renaming ρ : A → A s.t. ρ(τ) = τ , synchronization set L ⊆ A \ {τ}.
Usually only the future behavior of processes is described.

We store the past behavior in the syntax like in [PU07]:

P ::= 0 | a . P | a†. P | P xρq | P + P | P ‖L P
a†. P executed action a, its forward continuation is inside P , and
can undo a after all executed actions within P have been undone.

Single transition relation like in [DMV90] labeled just with actions.

Therefore there is no need of communication keys [PU07], thus
allowing for uniform action decorations like in [BoudolCastellani94].

No need to distinguish between forward and backward actions
or resort to stack-based memories [DK04].

PRPC – Proved Reversible Process Calculus

Countable set A of actions including the unobservable action τ ,
renaming ρ : A → A s.t. ρ(τ) = τ , synchronization set L ⊆ A \ {τ}.
Usually only the future behavior of processes is described.

We store the past behavior in the syntax like in [PU07]:

P ::= 0 | a . P | a†. P | P xρq | P + P | P ‖L P
a†. P executed action a, its forward continuation is inside P , and
can undo a after all executed actions within P have been undone.

Single transition relation like in [DMV90] labeled just with actions.

Therefore there is no need of communication keys [PU07], thus
allowing for uniform action decorations like in [BoudolCastellani94].

No need to distinguish between forward and backward actions
or resort to stack-based memories [DK04].

Initial processes: standard as all of their actions are unexecuted.

Set P of well-formed processes with unexecuted and executed actions:
wf(0)

wf(a . P ′) iff initial(P ′)
wf(a†. P ′) iff wf(P ′)

wf(P ′ xρq) iff wf(P ′)
wf(P1 + P2) iff (wf(P1) ∧ initial(P2))∨

(initial(P1) ∧ wf(P2))
wf(P1 ‖L P2) iff wf(P1) ∧ wf(P2)

0 is both initial and well-formed.

Any initial process is well-formed too.

P also contains processes that are not initial: a†. b . 0.

Past actions can never follow future actions: b . a†. 0 /∈ P.

Alternative processes cannot be both non-initial: a†. 0 + b†. 0 /∈ P.

Initial processes: standard as all of their actions are unexecuted.

Set P of well-formed processes with unexecuted and executed actions:
wf(0)

wf(a . P ′) iff initial(P ′)
wf(a†. P ′) iff wf(P ′)

wf(P ′ xρq) iff wf(P ′)
wf(P1 + P2) iff (wf(P1) ∧ initial(P2))∨

(initial(P1) ∧ wf(P2))
wf(P1 ‖L P2) iff wf(P1) ∧ wf(P2)

0 is both initial and well-formed.

Any initial process is well-formed too.

P also contains processes that are not initial: a†. b . 0.

Past actions can never follow future actions: b . a†. 0 /∈ P.

Alternative processes cannot be both non-initial: a†. 0 + b†. 0 /∈ P.

Initial processes: standard as all of their actions are unexecuted.

Set P of well-formed processes with unexecuted and executed actions:
wf(0)

wf(a . P ′) iff initial(P ′)
wf(a†. P ′) iff wf(P ′)

wf(P ′ xρq) iff wf(P ′)
wf(P1 + P2) iff (wf(P1) ∧ initial(P2))∨

(initial(P1) ∧ wf(P2))
wf(P1 ‖L P2) iff wf(P1) ∧ wf(P2)

0 is both initial and well-formed.

Any initial process is well-formed too.

P also contains processes that are not initial: a†. b . 0.

Past actions can never follow future actions: b . a†. 0 /∈ P.

Alternative processes cannot be both non-initial: a†. 0 + b†. 0 /∈ P.

Initial processes: standard as all of their actions are unexecuted.

Set P of well-formed processes with unexecuted and executed actions:
wf(0)

wf(a . P ′) iff initial(P ′)
wf(a†. P ′) iff wf(P ′)

wf(P ′ xρq) iff wf(P ′)
wf(P1 + P2) iff (wf(P1) ∧ initial(P2))∨

(initial(P1) ∧ wf(P2))
wf(P1 ‖L P2) iff wf(P1) ∧ wf(P2)

0 is both initial and well-formed.

Any initial process is well-formed too.

P also contains processes that are not initial: a†. b . 0.

Past actions can never follow future actions: b . a†. 0 /∈ P.

Alternative processes cannot be both non-initial: a†. 0 + b†. 0 /∈ P.

Proved labeled transition system (P,Θ,−→) with −→ ⊆ P×Θ× P.

Labeling every transition with a proof term [BoudolCastellani88]
will enable the uniform derivation of expansion laws.

Action preceded by the operators in the scope of which it occurs:

θ ::= a | .aθ | xqρθ | .+θ | +.θ | ULθ | TLθ | 〈θ, θ〉L
Set P (P of reachable processes from an initial one: a†. 0 ‖{a} 0 /∈ P.

Single transition relation viewed as symmetric to meet loop property:
executed actions can be undone and undone actions can be redone.

Like in [DMV90] a transition P
θ−→ P ′ goes:

forward if it is viewed as an outgoing transition of P ,
in which case action act(θ) is done;
backward if it is viewed as an incoming transition of P ′,
in which case action act(θ) is undone.

Since all information needed to enable reversibility is in the syntax,
action prefix and choice are made static by the semantics [PU07].

Proved labeled transition system (P,Θ,−→) with −→ ⊆ P×Θ× P.

Labeling every transition with a proof term [BoudolCastellani88]
will enable the uniform derivation of expansion laws.

Action preceded by the operators in the scope of which it occurs:

θ ::= a | .aθ | xqρθ | .+θ | +.θ | ULθ | TLθ | 〈θ, θ〉L
Set P (P of reachable processes from an initial one: a†. 0 ‖{a} 0 /∈ P.

Single transition relation viewed as symmetric to meet loop property:
executed actions can be undone and undone actions can be redone.

Like in [DMV90] a transition P
θ−→ P ′ goes:

forward if it is viewed as an outgoing transition of P ,
in which case action act(θ) is done;
backward if it is viewed as an incoming transition of P ′,
in which case action act(θ) is undone.

Since all information needed to enable reversibility is in the syntax,
action prefix and choice are made static by the semantics [PU07].

Proved labeled transition system (P,Θ,−→) with −→ ⊆ P×Θ× P.

Labeling every transition with a proof term [BoudolCastellani88]
will enable the uniform derivation of expansion laws.

Action preceded by the operators in the scope of which it occurs:

θ ::= a | .aθ | xqρθ | .+θ | +.θ | ULθ | TLθ | 〈θ, θ〉L
Set P (P of reachable processes from an initial one: a†. 0 ‖{a} 0 /∈ P.

Single transition relation viewed as symmetric to meet loop property:
executed actions can be undone and undone actions can be redone.

Like in [DMV90] a transition P
θ−→ P ′ goes:

forward if it is viewed as an outgoing transition of P ,
in which case action act(θ) is done;
backward if it is viewed as an incoming transition of P ′,
in which case action act(θ) is undone.

Since all information needed to enable reversibility is in the syntax,
action prefix and choice are made static by the semantics [PU07].

Operational semantic rules for action prefix (traditionally dynamic):

initial(P)

a . P
a−→ a†. P

P
θ−→ P ′

a†. P
.aθ−→ a†. P ′

The prefix related to the executed action is not discarded.

It becomes a †-decorated part of the target process,
necessary to offer again that action after rolling back.

Additional rule for performing unexecuted actions that are preceded by
already executed actions (direct consequence of making prefix static).

This second rule propagates actions executed by initial subprocesses.

Can we view a†. as the inverse operator of a . ?

Semantic rules for alternative composition (traditionally dynamic):

P1
θ−→ P ′

1 initial(P2)

P1 + P2
.+θ−→ P ′

1 +P2

P2
θ−→ P ′

2 initial(P1)

P1 + P2
+.θ−→ P1 +P ′

2

The subprocess not involved in the executed action is not discarded
but cannot proceed further (only the non-initial subprocess can).

It becomes part of the target process, which is necessary for offering
again the original choice after undoing all the executed actions.

If both subprocesses are initial, both rules apply (nondet. choice).

If not, should operator + become something like +†?
Not needed due to action decorations within either subprocess.

The proved labeled transition system for a sequential process is a tree,
whose branching points correspond to occurrences of +:

Every non-final process has at least one outgoing transition
(non-final means that not all actions are decorated along one path).
Every non-initial process has exactly one incoming transition
due to decorations associated with executed actions.

Proved labeled transition systems of a . 0 + a . 0 and a . 0:

0_a . 0_a . 0_a . +

+a.+a.

0_a . 0_a . + 0_a . 0_a . + 0_a .

a

.

Single a-transition on the left in a forward-only process calculus.

These two distinct processes should be considered equivalent though.

The proved labeled transition system for a sequential process is a tree,
whose branching points correspond to occurrences of +:

Every non-final process has at least one outgoing transition
(non-final means that not all actions are decorated along one path).
Every non-initial process has exactly one incoming transition
due to decorations associated with executed actions.

Proved labeled transition systems of a . 0 + a . 0 and a . 0:

0_a . 0_a . 0_a . +

+a.+a.

0_a . 0_a . + 0_a . 0_a . + 0_a .

a

.

Single a-transition on the left in a forward-only process calculus.

These two distinct processes should be considered equivalent though.

Semantic rule for renaming (traditionally static):

P
θ−→ P ′

P xρq
xqρ θ−−→ P ′ xρq

Semantic rules for parallel composition (traditionally static):

P1
θ−→ P ′

1 act(θ) /∈ L

P1 ‖L P2
ULθ−→ P ′

1 ‖L P2

P2
θ−→ P ′

2 act(θ) /∈ L

P1 ‖L P2
TLθ−→ P1 ‖L P ′

2

P1
θ1−→ P ′

1 P2
θ2−→ P ′

2 act(θ1) = act(θ2) ∈ L

P1 ‖L P2
〈θ1,θ2〉L−−−−−→ P ′

1 ‖L P ′
2

Semantic rule for renaming (traditionally static):

P
θ−→ P ′

P xρq
xqρ θ−−→ P ′ xρq

Semantic rules for parallel composition (traditionally static):

P1
θ−→ P ′

1 act(θ) /∈ L

P1 ‖L P2
ULθ−→ P ′

1 ‖L P2

P2
θ−→ P ′

2 act(θ) /∈ L

P1 ‖L P2
TLθ−→ P1 ‖L P ′

2

P1
θ1−→ P ′

1 P2
θ2−→ P ′

2 act(θ1) = act(θ2) ∈ L

P1 ‖L P2
〈θ1,θ2〉L−−−−−→ P ′

1 ‖L P ′
2

Variant of the rule for synchronization that is sensitive to causality
thanks to the presence of proof terms on transition labels:

P1
θ1−→ P ′

1 P2
θ2−→ P ′

2 act(θ1) = act(θ2) ∈ L

P1 ‖L P2
〈θ1,θ2〉L−−−−−→ enr(P ′

1 ‖L P ′
2, 〈θ1, θ2〉L)

The †-decoration of every action participating in the synchronization
is enriched with a proof term of the form 〈θ1, θ2〉L.

The LTS of the synchronization of autoconcurrency and autocausation
(a . 0 ‖∅ a . 0) ‖{a} a . a . 0 is different from the one of a . 0 ‖∅ a . 0:

(a . 0 ‖∅ a . 0) ‖{a} a . a . 0
〈U∅a,a〉{a}−−−−−−−→

(a†〈U∅a,a〉{a} . 0 ‖∅ a . 0) ‖{a} a†〈U∅a,a〉{a} . a . 0
〈T∅a,.aa〉{a}−−−−−−−−→

(a†〈U∅a,a〉{a} . 0 ‖∅ a†〈T∅a,.aa〉{a} . 0) ‖{a} a†〈U∅a,a〉{a} . a†〈T∅a,.aa〉{a} . 0

(a . 0 ‖∅ a . 0) ‖{a} a . a . 0
〈T∅a,a〉{a}−−−−−−−→

(a . 0 ‖∅ a†〈T∅a,a〉{a} . 0) ‖{a} a†〈T∅a,a〉{a} . a . 0
〈U∅a,.aa〉{a}−−−−−−−−→

(a†〈U∅a,.aa〉{a} . 0 ‖∅ a†〈T∅a,a〉{a} . 0) ‖{a} a†〈T∅a,a〉{a} . a†〈U∅a,.aa〉{a} . 0

Variant of the rule for synchronization that is sensitive to causality
thanks to the presence of proof terms on transition labels:

P1
θ1−→ P ′

1 P2
θ2−→ P ′

2 act(θ1) = act(θ2) ∈ L

P1 ‖L P2
〈θ1,θ2〉L−−−−−→ enr(P ′

1 ‖L P ′
2, 〈θ1, θ2〉L)

The †-decoration of every action participating in the synchronization
is enriched with a proof term of the form 〈θ1, θ2〉L.

The LTS of the synchronization of autoconcurrency and autocausation
(a . 0 ‖∅ a . 0) ‖{a} a . a . 0 is different from the one of a . 0 ‖∅ a . 0:

(a . 0 ‖∅ a . 0) ‖{a} a . a . 0
〈U∅a,a〉{a}−−−−−−−→

(a†〈U∅a,a〉{a} . 0 ‖∅ a . 0) ‖{a} a†〈U∅a,a〉{a} . a . 0
〈T∅a,.aa〉{a}−−−−−−−−→

(a†〈U∅a,a〉{a} . 0 ‖∅ a†〈T∅a,.aa〉{a} . 0) ‖{a} a†〈U∅a,a〉{a} . a†〈T∅a,.aa〉{a} . 0

(a . 0 ‖∅ a . 0) ‖{a} a . a . 0
〈T∅a,a〉{a}−−−−−−−→

(a . 0 ‖∅ a†〈T∅a,a〉{a} . 0) ‖{a} a†〈T∅a,a〉{a} . a . 0
〈U∅a,.aa〉{a}−−−−−−−−→

(a†〈U∅a,.aa〉{a} . 0 ‖∅ a†〈T∅a,a〉{a} . 0) ‖{a} a†〈T∅a,a〉{a} . a†〈U∅a,.aa〉{a} . 0

Variant of the rule for synchronization that is sensitive to causality
thanks to the presence of proof terms on transition labels:

P1
θ1−→ P ′

1 P2
θ2−→ P ′

2 act(θ1) = act(θ2) ∈ L

P1 ‖L P2
〈θ1,θ2〉L−−−−−→ enr(P ′

1 ‖L P ′
2, 〈θ1, θ2〉L)

The †-decoration of every action participating in the synchronization
is enriched with a proof term of the form 〈θ1, θ2〉L.

The LTS of the synchronization of autoconcurrency and autocausation
(a . 0 ‖∅ a . 0) ‖{a} a . a . 0 is different from the one of a . 0 ‖∅ a . 0:

(a . 0 ‖∅ a . 0) ‖{a} a . a . 0
〈U∅a,a〉{a}−−−−−−−→

(a†〈U∅a,a〉{a} . 0 ‖∅ a . 0) ‖{a} a†〈U∅a,a〉{a} . a . 0
〈T∅a,.aa〉{a}−−−−−−−−→

(a†〈U∅a,a〉{a} . 0 ‖∅ a†〈T∅a,.aa〉{a} . 0) ‖{a} a†〈U∅a,a〉{a} . a†〈T∅a,.aa〉{a} . 0

(a . 0 ‖∅ a . 0) ‖{a} a . a . 0
〈T∅a,a〉{a}−−−−−−−→

(a . 0 ‖∅ a†〈T∅a,a〉{a} . 0) ‖{a} a†〈T∅a,a〉{a} . a . 0
〈U∅a,.aa〉{a}−−−−−−−−→

(a†〈U∅a,.aa〉{a} . 0 ‖∅ a†〈T∅a,a〉{a} . 0) ‖{a} a†〈T∅a,a〉{a} . a†〈U∅a,.aa〉{a} . 0

Variant of the rule for synchronization that is sensitive to causality
thanks to the presence of proof terms on transition labels:

P1
θ1−→ P ′

1 P2
θ2−→ P ′

2 act(θ1) = act(θ2) ∈ L

P1 ‖L P2
〈θ1,θ2〉L−−−−−→ enr(P ′

1 ‖L P ′
2, 〈θ1, θ2〉L)

The †-decoration of every action participating in the synchronization
is enriched with a proof term of the form 〈θ1, θ2〉L.

The LTS of the synchronization of autoconcurrency and autocausation
(a . 0 ‖∅ a . 0) ‖{a} a . a . 0 is different from the one of a . 0 ‖∅ a . 0:

(a . 0 ‖∅ a . 0) ‖{a} a . a . 0
〈U∅a,a〉{a}−−−−−−−→

(a†〈U∅a,a〉{a} . 0 ‖∅ a . 0) ‖{a} a†〈U∅a,a〉{a} . a . 0
〈T∅a,.aa〉{a}−−−−−−−−→

(a†〈U∅a,a〉{a} . 0 ‖∅ a†〈T∅a,.aa〉{a} . 0) ‖{a} a†〈U∅a,a〉{a} . a†〈T∅a,.aa〉{a} . 0

(a . 0 ‖∅ a . 0) ‖{a} a . a . 0
〈T∅a,a〉{a}−−−−−−−→

(a . 0 ‖∅ a†〈T∅a,a〉{a} . 0) ‖{a} a†〈T∅a,a〉{a} . a . 0
〈U∅a,.aa〉{a}−−−−−−−−→

(a†〈U∅a,.aa〉{a} . 0 ‖∅ a†〈T∅a,a〉{a} . 0) ‖{a} a†〈T∅a,a〉{a} . a†〈U∅a,.aa〉{a} . 0

Strong Bisimilarities for PRPC

Bisimulation game: outgoing transitions for forward direction and
incoming transitions for backward direction [DMV90].

A symmetric relation B over P is a:

Forward bisimulation iff, whenever (P1, P2) ∈ B, then:

∀ P1
θ1−→ P ′

1 . ∃ P2
θ2−→ P ′

2 . act(θ1) = act(θ2) ∧ (P ′
1, P

′
2) ∈ B.

Reverse bisimulation iff, whenever (P1, P2) ∈ B, then:

∀ P ′
1
θ1−→ P1 . ∃ P ′

2
θ2−→ P2 . act(θ1) = act(θ2) ∧ (P ′

1, P
′
2) ∈ B.

Forward-reverse bisimulation iff, whenever (P1, P2) ∈ B, then:

∀ P1
θ1−→ P ′

1 . ∃ P2
θ2−→ P ′

2 . act(θ1) = act(θ2) ∧ (P ′
1, P

′
2) ∈ B.

∀ P ′
1
θ1−→ P1 . ∃ P ′

2
θ2−→ P2 . act(θ1) = act(θ2) ∧ (P ′

1, P
′
2) ∈ B.

Largest such relations: ∼FB, ∼RB, ∼FRB.

In order for P1, P2 ∈ P to be identified by ∼FB/∼RB

their forward/backward ready sets must coincide.

Strong Bisimilarities for PRPC

Bisimulation game: outgoing transitions for forward direction and
incoming transitions for backward direction [DMV90].

A symmetric relation B over P is a:

Forward bisimulation iff, whenever (P1, P2) ∈ B, then:

∀ P1
θ1−→ P ′

1 . ∃ P2
θ2−→ P ′

2 . act(θ1) = act(θ2) ∧ (P ′
1, P

′
2) ∈ B.

Reverse bisimulation iff, whenever (P1, P2) ∈ B, then:

∀ P ′
1
θ1−→ P1 . ∃ P ′

2
θ2−→ P2 . act(θ1) = act(θ2) ∧ (P ′

1, P
′
2) ∈ B.

Forward-reverse bisimulation iff, whenever (P1, P2) ∈ B, then:

∀ P1
θ1−→ P ′

1 . ∃ P2
θ2−→ P ′

2 . act(θ1) = act(θ2) ∧ (P ′
1, P

′
2) ∈ B.

∀ P ′
1
θ1−→ P1 . ∃ P ′

2
θ2−→ P2 . act(θ1) = act(θ2) ∧ (P ′

1, P
′
2) ∈ B.

Largest such relations: ∼FB, ∼RB, ∼FRB.

In order for P1, P2 ∈ P to be identified by ∼FB/∼RB

their forward/backward ready sets must coincide.

Strong Bisimilarities for PRPC

Bisimulation game: outgoing transitions for forward direction and
incoming transitions for backward direction [DMV90].

A symmetric relation B over P is a:

Forward bisimulation iff, whenever (P1, P2) ∈ B, then:

∀ P1
θ1−→ P ′

1 . ∃ P2
θ2−→ P ′

2 . act(θ1) = act(θ2) ∧ (P ′
1, P

′
2) ∈ B.

Reverse bisimulation iff, whenever (P1, P2) ∈ B, then:

∀ P ′
1
θ1−→ P1 . ∃ P ′

2
θ2−→ P2 . act(θ1) = act(θ2) ∧ (P ′

1, P
′
2) ∈ B.

Forward-reverse bisimulation iff, whenever (P1, P2) ∈ B, then:

∀ P1
θ1−→ P ′

1 . ∃ P2
θ2−→ P ′

2 . act(θ1) = act(θ2) ∧ (P ′
1, P

′
2) ∈ B.

∀ P ′
1
θ1−→ P1 . ∃ P ′

2
θ2−→ P2 . act(θ1) = act(θ2) ∧ (P ′

1, P
′
2) ∈ B.

Largest such relations: ∼FB, ∼RB, ∼FRB.

In order for P1, P2 ∈ P to be identified by ∼FB/∼RB

their forward/backward ready sets must coincide.

Strong Bisimilarities for PRPC

Bisimulation game: outgoing transitions for forward direction and
incoming transitions for backward direction [DMV90].

A symmetric relation B over P is a:

Forward bisimulation iff, whenever (P1, P2) ∈ B, then:

∀ P1
θ1−→ P ′

1 . ∃ P2
θ2−→ P ′

2 . act(θ1) = act(θ2) ∧ (P ′
1, P

′
2) ∈ B.

Reverse bisimulation iff, whenever (P1, P2) ∈ B, then:

∀ P ′
1
θ1−→ P1 . ∃ P ′

2
θ2−→ P2 . act(θ1) = act(θ2) ∧ (P ′

1, P
′
2) ∈ B.

Forward-reverse bisimulation iff, whenever (P1, P2) ∈ B, then:

∀ P1
θ1−→ P ′

1 . ∃ P2
θ2−→ P ′

2 . act(θ1) = act(θ2) ∧ (P ′
1, P

′
2) ∈ B.

∀ P ′
1
θ1−→ P1 . ∃ P ′

2
θ2−→ P2 . act(θ1) = act(θ2) ∧ (P ′

1, P
′
2) ∈ B.

Largest such relations: ∼FB, ∼RB, ∼FRB.

In order for P1, P2 ∈ P to be identified by ∼FB/∼RB

their forward/backward ready sets must coincide.

Strong Bisimilarities for PRPC

Bisimulation game: outgoing transitions for forward direction and
incoming transitions for backward direction [DMV90].

A symmetric relation B over P is a:

Forward bisimulation iff, whenever (P1, P2) ∈ B, then:

∀ P1
θ1−→ P ′

1 . ∃ P2
θ2−→ P ′

2 . act(θ1) = act(θ2) ∧ (P ′
1, P

′
2) ∈ B.

Reverse bisimulation iff, whenever (P1, P2) ∈ B, then:

∀ P ′
1
θ1−→ P1 . ∃ P ′

2
θ2−→ P2 . act(θ1) = act(θ2) ∧ (P ′

1, P
′
2) ∈ B.

Forward-reverse bisimulation iff, whenever (P1, P2) ∈ B, then:

∀ P1
θ1−→ P ′

1 . ∃ P2
θ2−→ P ′

2 . act(θ1) = act(θ2) ∧ (P ′
1, P

′
2) ∈ B.

∀ P ′
1
θ1−→ P1 . ∃ P ′

2
θ2−→ P2 . act(θ1) = act(θ2) ∧ (P ′

1, P
′
2) ∈ B.

Largest such relations: ∼FB, ∼RB, ∼FRB.

In order for P1, P2 ∈ P to be identified by ∼FB/∼RB

their forward/backward ready sets must coincide.

Discriminating Power

∼FRB (∼FB ∩ ∼RB:

The inclusion is strict because the two processes a†. 0 and a†. 0 + c . 0
are identified by ∼FB and ∼RB, but distinguished by ∼FRB.
∼FB and ∼RB are incomparable because a†. 0 ∼FB 0 but a†. 0 6∼RB 0
while a . 0 ∼RB 0 but a . 0 6∼FB 0.

First comparative remark (∼FB vs. ∼RB):

∼FRB = ∼FB over initial processes, with ∼RB strictly coarser.
∼FRB 6= ∼RB over final processes because, after going backward,
discarded subprocesses come into play again for ∼FRB.

a . 0 + a . 0 and a . 0 are identified by all three bisimilarities
as witnessed by any bisimulation containing the pairs
(a . 0 + a . 0, a . 0), (a†. 0 + a . 0, a†. 0), (a . 0 + a†. 0, a†. 0).

Discriminating Power

∼FRB (∼FB ∩ ∼RB:

The inclusion is strict because the two processes a†. 0 and a†. 0 + c . 0
are identified by ∼FB and ∼RB, but distinguished by ∼FRB.
∼FB and ∼RB are incomparable because a†. 0 ∼FB 0 but a†. 0 6∼RB 0
while a . 0 ∼RB 0 but a . 0 6∼FB 0.

First comparative remark (∼FB vs. ∼RB):

∼FRB = ∼FB over initial processes, with ∼RB strictly coarser.
∼FRB 6= ∼RB over final processes because, after going backward,
discarded subprocesses come into play again for ∼FRB.

a . 0 + a . 0 and a . 0 are identified by all three bisimilarities
as witnessed by any bisimulation containing the pairs
(a . 0 + a . 0, a . 0), (a†. 0 + a . 0, a†. 0), (a . 0 + a†. 0, a†. 0).

Discriminating Power

∼FRB (∼FB ∩ ∼RB:

The inclusion is strict because the two processes a†. 0 and a†. 0 + c . 0
are identified by ∼FB and ∼RB, but distinguished by ∼FRB.
∼FB and ∼RB are incomparable because a†. 0 ∼FB 0 but a†. 0 6∼RB 0
while a . 0 ∼RB 0 but a . 0 6∼FB 0.

First comparative remark (∼FB vs. ∼RB):

∼FRB = ∼FB over initial processes, with ∼RB strictly coarser.
∼FRB 6= ∼RB over final processes because, after going backward,
discarded subprocesses come into play again for ∼FRB.

a . 0 + a . 0 and a . 0 are identified by all three bisimilarities
as witnessed by any bisimulation containing the pairs
(a . 0 + a . 0, a . 0), (a†. 0 + a . 0, a†. 0), (a . 0 + a†. 0, a†. 0).

Compositionality Properties

∼FB equates processes with different past: a†1 . 0 ∼FB a
†
2 . 0 ∼FB 0.

∼RB equates processes with different future: a1 . 0 ∼RB a2 . 0 ∼RB 0.

Second comparative remark (∼FB vs. ∼RB):

a†. b . 0 ∼FB b . 0 but a†. b . 0 + c . 0 6∼FB b . 0 + c . 0.
a†. b . 0 6∼RB b . 0 hence no such compositionality violation for ∼RB.

∼RB and ∼FRB never identify an initial process with a non-initial one,
hence ∼FB has to be made sensitive to the presence of the past.

A symmetric relation B over P is a past-sensitive forward bisimulation
iff it is a forward bisimulation in which initial(P1)⇐⇒ initial(P2)
for all (P1, P2) ∈ B.

Largest such relation: ∼FB:ps.

a†1 . 0 ∼FB:ps a
†
2 . 0, but a†. 0 6∼FB:ps 0 and a†. b . 0 6∼FB:ps b . 0.

Compositionality Properties

∼FB equates processes with different past: a†1 . 0 ∼FB a
†
2 . 0 ∼FB 0.

∼RB equates processes with different future: a1 . 0 ∼RB a2 . 0 ∼RB 0.

Second comparative remark (∼FB vs. ∼RB):

a†. b . 0 ∼FB b . 0 but a†. b . 0 + c . 0 6∼FB b . 0 + c . 0.
a†. b . 0 6∼RB b . 0 hence no such compositionality violation for ∼RB.

∼RB and ∼FRB never identify an initial process with a non-initial one,
hence ∼FB has to be made sensitive to the presence of the past.

A symmetric relation B over P is a past-sensitive forward bisimulation
iff it is a forward bisimulation in which initial(P1)⇐⇒ initial(P2)
for all (P1, P2) ∈ B.

Largest such relation: ∼FB:ps.

a†1 . 0 ∼FB:ps a
†
2 . 0, but a†. 0 6∼FB:ps 0 and a†. b . 0 6∼FB:ps b . 0.

Compositionality Properties

∼FB equates processes with different past: a†1 . 0 ∼FB a
†
2 . 0 ∼FB 0.

∼RB equates processes with different future: a1 . 0 ∼RB a2 . 0 ∼RB 0.

Second comparative remark (∼FB vs. ∼RB):

a†. b . 0 ∼FB b . 0 but a†. b . 0 + c . 0 6∼FB b . 0 + c . 0.
a†. b . 0 6∼RB b . 0 hence no such compositionality violation for ∼RB.

∼RB and ∼FRB never identify an initial process with a non-initial one,
hence ∼FB has to be made sensitive to the presence of the past.

A symmetric relation B over P is a past-sensitive forward bisimulation
iff it is a forward bisimulation in which initial(P1)⇐⇒ initial(P2)
for all (P1, P2) ∈ B.

Largest such relation: ∼FB:ps.

a†1 . 0 ∼FB:ps a
†
2 . 0, but a†. 0 6∼FB:ps 0 and a†. b . 0 6∼FB:ps b . 0.

Compositionality Properties

∼FB equates processes with different past: a†1 . 0 ∼FB a
†
2 . 0 ∼FB 0.

∼RB equates processes with different future: a1 . 0 ∼RB a2 . 0 ∼RB 0.

Second comparative remark (∼FB vs. ∼RB):

a†. b . 0 ∼FB b . 0 but a†. b . 0 + c . 0 6∼FB b . 0 + c . 0.
a†. b . 0 6∼RB b . 0 hence no such compositionality violation for ∼RB.

∼RB and ∼FRB never identify an initial process with a non-initial one,
hence ∼FB has to be made sensitive to the presence of the past.

A symmetric relation B over P is a past-sensitive forward bisimulation
iff it is a forward bisimulation in which initial(P1)⇐⇒ initial(P2)
for all (P1, P2) ∈ B.

Largest such relation: ∼FB:ps.

a†1 . 0 ∼FB:ps a
†
2 . 0, but a†. 0 6∼FB:ps 0 and a†. b . 0 6∼FB:ps b . 0.

Let P1, P2 ∈ P be such that P1 ∼ P2 and take arbitrary a, ρ, L, P .

All strong bisimilarities are congruences w.r.t. action prefix:

a . P1 ∼ a . P2 provided that initial(P1) ∧ initial(P2).
a†. P1 ∼ a†. P2.

All strong bisimilarities are congruences w.r.t. renaming:

P1 xρq ∼ P2 xρq.

All strong bisimilarities are congruences w.r.t. parallel composition:

P1 ‖L P ∼ P2 ‖L P and P ‖L P1 ∼ P ‖L P2

provided that P1 ‖L P, P2 ‖L P, P ‖L P1, P ‖L P2 ∈ P.

∼FB:ps, ∼RB, ∼FRB are congruences w.r.t. alternative composition:

P1 + P ∼ P2 + P and P + P1 ∼ P + P2

provided that initial(P) ∨ (initial(P1) ∧ initial(P2)).

∼FB:ps is the coarsest congruence w.r.t. + contained in ∼FB:

P1 ∼FB:ps P2 iff P1 + P ∼FB P2 + P
for all P ∈ P s.t. initial(P) ∨ (initial(P1) ∧ initial(P2)).

Let P1, P2 ∈ P be such that P1 ∼ P2 and take arbitrary a, ρ, L, P .

All strong bisimilarities are congruences w.r.t. action prefix:

a . P1 ∼ a . P2 provided that initial(P1) ∧ initial(P2).
a†. P1 ∼ a†. P2.

All strong bisimilarities are congruences w.r.t. renaming:

P1 xρq ∼ P2 xρq.

All strong bisimilarities are congruences w.r.t. parallel composition:

P1 ‖L P ∼ P2 ‖L P and P ‖L P1 ∼ P ‖L P2

provided that P1 ‖L P, P2 ‖L P, P ‖L P1, P ‖L P2 ∈ P.

∼FB:ps, ∼RB, ∼FRB are congruences w.r.t. alternative composition:

P1 + P ∼ P2 + P and P + P1 ∼ P + P2

provided that initial(P) ∨ (initial(P1) ∧ initial(P2)).

∼FB:ps is the coarsest congruence w.r.t. + contained in ∼FB:

P1 ∼FB:ps P2 iff P1 + P ∼FB P2 + P
for all P ∈ P s.t. initial(P) ∨ (initial(P1) ∧ initial(P2)).

Let P1, P2 ∈ P be such that P1 ∼ P2 and take arbitrary a, ρ, L, P .

All strong bisimilarities are congruences w.r.t. action prefix:

a . P1 ∼ a . P2 provided that initial(P1) ∧ initial(P2).
a†. P1 ∼ a†. P2.

All strong bisimilarities are congruences w.r.t. renaming:

P1 xρq ∼ P2 xρq.

All strong bisimilarities are congruences w.r.t. parallel composition:

P1 ‖L P ∼ P2 ‖L P and P ‖L P1 ∼ P ‖L P2

provided that P1 ‖L P, P2 ‖L P, P ‖L P1, P ‖L P2 ∈ P.

∼FB:ps, ∼RB, ∼FRB are congruences w.r.t. alternative composition:

P1 + P ∼ P2 + P and P + P1 ∼ P + P2

provided that initial(P) ∨ (initial(P1) ∧ initial(P2)).

∼FB:ps is the coarsest congruence w.r.t. + contained in ∼FB:

P1 ∼FB:ps P2 iff P1 + P ∼FB P2 + P
for all P ∈ P s.t. initial(P) ∨ (initial(P1) ∧ initial(P2)).

Let P1, P2 ∈ P be such that P1 ∼ P2 and take arbitrary a, ρ, L, P .

All strong bisimilarities are congruences w.r.t. action prefix:

a . P1 ∼ a . P2 provided that initial(P1) ∧ initial(P2).
a†. P1 ∼ a†. P2.

All strong bisimilarities are congruences w.r.t. renaming:

P1 xρq ∼ P2 xρq.

All strong bisimilarities are congruences w.r.t. parallel composition:

P1 ‖L P ∼ P2 ‖L P and P ‖L P1 ∼ P ‖L P2

provided that P1 ‖L P, P2 ‖L P, P ‖L P1, P ‖L P2 ∈ P.

∼FB:ps, ∼RB, ∼FRB are congruences w.r.t. alternative composition:

P1 + P ∼ P2 + P and P + P1 ∼ P + P2

provided that initial(P) ∨ (initial(P1) ∧ initial(P2)).

∼FB:ps is the coarsest congruence w.r.t. + contained in ∼FB:

P1 ∼FB:ps P2 iff P1 + P ∼FB P2 + P
for all P ∈ P s.t. initial(P) ∨ (initial(P1) ∧ initial(P2)).

Let P1, P2 ∈ P be such that P1 ∼ P2 and take arbitrary a, ρ, L, P .

All strong bisimilarities are congruences w.r.t. action prefix:

a . P1 ∼ a . P2 provided that initial(P1) ∧ initial(P2).
a†. P1 ∼ a†. P2.

All strong bisimilarities are congruences w.r.t. renaming:

P1 xρq ∼ P2 xρq.

All strong bisimilarities are congruences w.r.t. parallel composition:

P1 ‖L P ∼ P2 ‖L P and P ‖L P1 ∼ P ‖L P2

provided that P1 ‖L P, P2 ‖L P, P ‖L P1, P ‖L P2 ∈ P.

∼FB:ps, ∼RB, ∼FRB are congruences w.r.t. alternative composition:

P1 + P ∼ P2 + P and P + P1 ∼ P + P2

provided that initial(P) ∨ (initial(P1) ∧ initial(P2)).

∼FB:ps is the coarsest congruence w.r.t. + contained in ∼FB:

P1 ∼FB:ps P2 iff P1 + P ∼FB P2 + P
for all P ∈ P s.t. initial(P) ∨ (initial(P1) ∧ initial(P2)).

Let P1, P2 ∈ P be such that P1 ∼ P2 and take arbitrary a, ρ, L, P .

All strong bisimilarities are congruences w.r.t. action prefix:

a . P1 ∼ a . P2 provided that initial(P1) ∧ initial(P2).
a†. P1 ∼ a†. P2.

All strong bisimilarities are congruences w.r.t. renaming:

P1 xρq ∼ P2 xρq.

All strong bisimilarities are congruences w.r.t. parallel composition:

P1 ‖L P ∼ P2 ‖L P and P ‖L P1 ∼ P ‖L P2

provided that P1 ‖L P, P2 ‖L P, P ‖L P1, P ‖L P2 ∈ P.

∼FB:ps, ∼RB, ∼FRB are congruences w.r.t. alternative composition:

P1 + P ∼ P2 + P and P + P1 ∼ P + P2

provided that initial(P) ∨ (initial(P1) ∧ initial(P2)).

∼FB:ps is the coarsest congruence w.r.t. + contained in ∼FB:

P1 ∼FB:ps P2 iff P1 + P ∼FB P2 + P
for all P ∈ P s.t. initial(P) ∨ (initial(P1) ∧ initial(P2)).

Modal Logic Characterizations

Properties preserved by each equivalence; diagnostic information via
distinguishing formulas explaining why two processes are not bisimilar.

Hennessy-Milner logic extended with a backward modality (and init)
from which suitable fragments are taken.

Syntax:
φ ::= true | init | ¬φ | φ ∧ φ | 〈a〉φ | 〈a†〉φ

Semantics:

P |= true for all P ∈ P
P |= init iff initial(P)
P |= ¬φ iff P 6|= φ
P |= φ1 ∧ φ2 iff P |= φ1 and P |= φ2

P |= 〈a〉φ iff there exists P
θ−→ P ′ s.t. act(θ) = a and P ′ |= φ

P |= 〈a†〉φ iff there exists P ′
θ−→ P s.t. act(θ) = a and P ′ |= φ

Modal Logic Characterizations

Properties preserved by each equivalence; diagnostic information via
distinguishing formulas explaining why two processes are not bisimilar.

Hennessy-Milner logic extended with a backward modality (and init)
from which suitable fragments are taken.

Syntax:
φ ::= true | init | ¬φ | φ ∧ φ | 〈a〉φ | 〈a†〉φ

Semantics:

P |= true for all P ∈ P
P |= init iff initial(P)
P |= ¬φ iff P 6|= φ
P |= φ1 ∧ φ2 iff P |= φ1 and P |= φ2

P |= 〈a〉φ iff there exists P
θ−→ P ′ s.t. act(θ) = a and P ′ |= φ

P |= 〈a†〉φ iff there exists P ′
θ−→ P s.t. act(θ) = a and P ′ |= φ

Fragments characterizing the four strong bisimilarities:

true init ¬ ∧ 〈a〉 〈a†〉
LFB X X X X
LFB:ps X X X X X
LRB X X
LFRB X X X X X

LFB /LFB:ps /LRB /LFRB characterizes ∼FB /∼FB:ps /∼RB /∼FRB:
P1 ∼B P2 iff ∀φ ∈ LB. P1 |= φ⇐⇒ P2 |= φ

∼RB boils down to reverse trace equivalence!

Obvious over sequential processes because each of them has at most
one incoming transition due to executed actions being decorated.

Fragments characterizing the four strong bisimilarities:

true init ¬ ∧ 〈a〉 〈a†〉
LFB X X X X
LFB:ps X X X X X
LRB X X
LFRB X X X X X

LFB /LFB:ps /LRB /LFRB characterizes ∼FB /∼FB:ps /∼RB /∼FRB:
P1 ∼B P2 iff ∀φ ∈ LB. P1 |= φ⇐⇒ P2 |= φ

∼RB boils down to reverse trace equivalence!

Obvious over sequential processes because each of them has at most
one incoming transition due to executed actions being decorated.

Equational Characterizations

Fundamental equational laws; exploitable as bisimilarity-preserving
rewriting rules for manipulating processes.

Deduction system ` has axioms and inference rules corresponding to
∼FB:ps, ∼RB, ∼FRB being equivalence relations and congruences:

Reflexivity P = P , symmetry
P1 = P2

P2 = P1

, transitivity
P1 = P2 P2 = P3

P1 = P3

.

.-Substitutivity:
P1 = P2 initial(P1) ∧ initial(P2)

a . P1 = a . P2

,
P1 = P2

a†. P1 = a†. P2

.

xq-substitutivity:
P1 = P2

P1 xρq = P2 xρq
.

+-Substitutivity:
P1 = P2 initial(P) ∨ (initial(P1) ∧ initial(P2))

P1 + P = P2 + P P + P1 = P + P2

.

‖-substitutivity:
P1 = P2 P1 ‖L P, P2 ‖L P, P ‖L P1, P ‖L P2 ∈ P

P1 ‖L P = P2 ‖L P P ‖L P1 = P ‖L P2

.

` is sound and complete w.r.t. ∼ when ` P1 = P2 iff P1 ∼ P2.

Equational Characterizations

Fundamental equational laws; exploitable as bisimilarity-preserving
rewriting rules for manipulating processes.

Deduction system ` has axioms and inference rules corresponding to
∼FB:ps, ∼RB, ∼FRB being equivalence relations and congruences:

Reflexivity P = P , symmetry
P1 = P2

P2 = P1

, transitivity
P1 = P2 P2 = P3

P1 = P3

.

.-Substitutivity:
P1 = P2 initial(P1) ∧ initial(P2)

a . P1 = a . P2

,
P1 = P2

a†. P1 = a†. P2

.

xq-substitutivity:
P1 = P2

P1 xρq = P2 xρq
.

+-Substitutivity:
P1 = P2 initial(P) ∨ (initial(P1) ∧ initial(P2))

P1 + P = P2 + P P + P1 = P + P2

.

‖-substitutivity:
P1 = P2 P1 ‖L P, P2 ‖L P, P ‖L P1, P ‖L P2 ∈ P

P1 ‖L P = P2 ‖L P P ‖L P1 = P ‖L P2

.

` is sound and complete w.r.t. ∼ when ` P1 = P2 iff P1 ∼ P2.

Equational Characterizations

Fundamental equational laws; exploitable as bisimilarity-preserving
rewriting rules for manipulating processes.

Deduction system ` has axioms and inference rules corresponding to
∼FB:ps, ∼RB, ∼FRB being equivalence relations and congruences:

Reflexivity P = P , symmetry
P1 = P2

P2 = P1

, transitivity
P1 = P2 P2 = P3

P1 = P3

.

.-Substitutivity:
P1 = P2 initial(P1) ∧ initial(P2)

a . P1 = a . P2

,
P1 = P2

a†. P1 = a†. P2

.

xq-substitutivity:
P1 = P2

P1 xρq = P2 xρq
.

+-Substitutivity:
P1 = P2 initial(P) ∨ (initial(P1) ∧ initial(P2))

P1 + P = P2 + P P + P1 = P + P2

.

‖-substitutivity:
P1 = P2 P1 ‖L P, P2 ‖L P, P ‖L P1, P ‖L P2 ∈ P

P1 ‖L P = P2 ‖L P P ‖L P1 = P ‖L P2

.

` is sound and complete w.r.t. ∼ when ` P1 = P2 iff P1 ∼ P2.

Equational Characterizations

Fundamental equational laws; exploitable as bisimilarity-preserving
rewriting rules for manipulating processes.

Deduction system ` has axioms and inference rules corresponding to
∼FB:ps, ∼RB, ∼FRB being equivalence relations and congruences:

Reflexivity P = P , symmetry
P1 = P2

P2 = P1

, transitivity
P1 = P2 P2 = P3

P1 = P3

.

.-Substitutivity:
P1 = P2 initial(P1) ∧ initial(P2)

a . P1 = a . P2

,
P1 = P2

a†. P1 = a†. P2

.

xq-substitutivity:
P1 = P2

P1 xρq = P2 xρq
.

+-Substitutivity:
P1 = P2 initial(P) ∨ (initial(P1) ∧ initial(P2))

P1 + P = P2 + P P + P1 = P + P2

.

‖-substitutivity:
P1 = P2 P1 ‖L P, P2 ‖L P, P ‖L P1, P ‖L P2 ∈ P

P1 ‖L P = P2 ‖L P P ‖L P1 = P ‖L P2

.

` is sound and complete w.r.t. ∼ when ` P1 = P2 iff P1 ∼ P2.

Operator-specific axioms for renaming-free sequential processes:

(A1) (P +Q) +R = P + (Q+R) where at least two are initial
(A2) P +Q = Q+ P where initial(P) ∨ initial(Q)
(A3) P + 0 = P

(A4) [∼FB:ps] a†. P = b†. P if initial(P)
(A5) [∼FB:ps] a†. P = P if ¬initial(P)
(A6) [∼FB:ps] P +Q = P if ¬initial(P), where initial(Q)

(A7) [∼RB] a . P = P where initial(P)
(A8) [∼RB] P +Q = P if initial(Q)

(A9) [∼FB:ps] P + P = P where initial(P)
(A10) [∼FRB] P +Q = P if initial(Q) ∧ to initial(P) = Q

A8 subsumes A3 (with Q = 0) and A9 (with Q = P).

A9 and A6 apply in two different cases (P initial or not).

A10 originally developed in [LanesePhillips21].

`1,2,34,5,6,9 / `
1,2
7,8 / `

1,2,3
10 sound and complete for ∼FB:ps / ∼RB / ∼FRB.

Third comparative remark: explicit vs. implicit idempotency.

Axioms for renaming:

(A11) 0 xρq = 0
(A12) (a . P) xρq = ρ(a) . (P xρq) where initial(P)
(A13) (a†. P) xρq = ρ(a)†. (P xρq)
(A14) (P +Q) xρq = (P xρq) + (Q xρq) where initial(P) ∨ initial(Q)

They progressively remove all occurrences of renaming.

∼FB:ps needs all of them.

∼RB only needs A11 and A13.

∼FRB needs all of them.

We will see later on expansion laws for parallel composition.

Weak Bisimilarities for PRPC

Abstracting from possibly empty sequences =⇒ of τ -transitions:
θ̂

=⇒ = =⇒ if act(θ) = τ ,
θ̂

=⇒ = =⇒ θ−→=⇒ if act(θ) 6= τ .

A symmetric relation B over P is a:
Weak forward bisimulation iff, whenever (P1, P2) ∈ B, then:

∀ P1
θ1−→ P ′

1 . ∃ P2
θ̂2=⇒ P ′

2 . act(θ1) = act(θ2) ∧ (P ′
1, P

′
2) ∈ B.

Weak reverse bisimulation iff, whenever (P1, P2) ∈ B, then:

∀ P ′
1
θ1−→ P1 . ∃ P ′

2
θ̂2=⇒ P2 . act(θ1) = act(θ2) ∧ (P ′

1, P
′
2) ∈ B.

Weak forward-reverse bisimulation iff, whenever (P1, P2) ∈ B, then:

∀ P1
θ1−→ P ′

1 . ∃ P2
θ̂2=⇒ P ′

2 . act(θ1) = act(θ2) ∧ (P ′
1, P

′
2) ∈ B.

∀ P ′
1
θ1−→ P1 . ∃ P ′

2
θ̂2=⇒ P2 . act(θ1) = act(θ2) ∧ (P ′

1, P
′
2) ∈ B.

Largest such relations: ≈FB, ≈RB, ≈FRB.

Alternative definitions with
θ̂1=⇒ in place of

θ1−→.

In order for P1, P2 ∈ P to be identified by ≈FB/≈RB

their weak forward/backward ready sets have to coincide.

Weak Bisimilarities for PRPC

Abstracting from possibly empty sequences =⇒ of τ -transitions:
θ̂

=⇒ = =⇒ if act(θ) = τ ,
θ̂

=⇒ = =⇒ θ−→=⇒ if act(θ) 6= τ .

A symmetric relation B over P is a:
Weak forward bisimulation iff, whenever (P1, P2) ∈ B, then:

∀ P1
θ1−→ P ′

1 . ∃ P2
θ̂2=⇒ P ′

2 . act(θ1) = act(θ2) ∧ (P ′
1, P

′
2) ∈ B.

Weak reverse bisimulation iff, whenever (P1, P2) ∈ B, then:

∀ P ′
1
θ1−→ P1 . ∃ P ′

2
θ̂2=⇒ P2 . act(θ1) = act(θ2) ∧ (P ′

1, P
′
2) ∈ B.

Weak forward-reverse bisimulation iff, whenever (P1, P2) ∈ B, then:

∀ P1
θ1−→ P ′

1 . ∃ P2
θ̂2=⇒ P ′

2 . act(θ1) = act(θ2) ∧ (P ′
1, P

′
2) ∈ B.

∀ P ′
1
θ1−→ P1 . ∃ P ′

2
θ̂2=⇒ P2 . act(θ1) = act(θ2) ∧ (P ′

1, P
′
2) ∈ B.

Largest such relations: ≈FB, ≈RB, ≈FRB.

Alternative definitions with
θ̂1=⇒ in place of

θ1−→.

In order for P1, P2 ∈ P to be identified by ≈FB/≈RB

their weak forward/backward ready sets have to coincide.

Weak Bisimilarities for PRPC

Abstracting from possibly empty sequences =⇒ of τ -transitions:
θ̂

=⇒ = =⇒ if act(θ) = τ ,
θ̂

=⇒ = =⇒ θ−→=⇒ if act(θ) 6= τ .

A symmetric relation B over P is a:
Weak forward bisimulation iff, whenever (P1, P2) ∈ B, then:

∀ P1
θ1−→ P ′

1 . ∃ P2
θ̂2=⇒ P ′

2 . act(θ1) = act(θ2) ∧ (P ′
1, P

′
2) ∈ B.

Weak reverse bisimulation iff, whenever (P1, P2) ∈ B, then:

∀ P ′
1
θ1−→ P1 . ∃ P ′

2
θ̂2=⇒ P2 . act(θ1) = act(θ2) ∧ (P ′

1, P
′
2) ∈ B.

Weak forward-reverse bisimulation iff, whenever (P1, P2) ∈ B, then:

∀ P1
θ1−→ P ′

1 . ∃ P2
θ̂2=⇒ P ′

2 . act(θ1) = act(θ2) ∧ (P ′
1, P

′
2) ∈ B.

∀ P ′
1
θ1−→ P1 . ∃ P ′

2
θ̂2=⇒ P2 . act(θ1) = act(θ2) ∧ (P ′

1, P
′
2) ∈ B.

Largest such relations: ≈FB, ≈RB, ≈FRB.

Alternative definitions with
θ̂1=⇒ in place of

θ1−→.

In order for P1, P2 ∈ P to be identified by ≈FB/≈RB

their weak forward/backward ready sets have to coincide.

Weak Bisimilarities for PRPC

Abstracting from possibly empty sequences =⇒ of τ -transitions:
θ̂

=⇒ = =⇒ if act(θ) = τ ,
θ̂

=⇒ = =⇒ θ−→=⇒ if act(θ) 6= τ .

A symmetric relation B over P is a:
Weak forward bisimulation iff, whenever (P1, P2) ∈ B, then:

∀ P1
θ1−→ P ′

1 . ∃ P2
θ̂2=⇒ P ′

2 . act(θ1) = act(θ2) ∧ (P ′
1, P

′
2) ∈ B.

Weak reverse bisimulation iff, whenever (P1, P2) ∈ B, then:

∀ P ′
1
θ1−→ P1 . ∃ P ′

2
θ̂2=⇒ P2 . act(θ1) = act(θ2) ∧ (P ′

1, P
′
2) ∈ B.

Weak forward-reverse bisimulation iff, whenever (P1, P2) ∈ B, then:

∀ P1
θ1−→ P ′

1 . ∃ P2
θ̂2=⇒ P ′

2 . act(θ1) = act(θ2) ∧ (P ′
1, P

′
2) ∈ B.

∀ P ′
1
θ1−→ P1 . ∃ P ′

2
θ̂2=⇒ P2 . act(θ1) = act(θ2) ∧ (P ′

1, P
′
2) ∈ B.

Largest such relations: ≈FB, ≈RB, ≈FRB.

Alternative definitions with
θ̂1=⇒ in place of

θ1−→.

In order for P1, P2 ∈ P to be identified by ≈FB/≈RB

their weak forward/backward ready sets have to coincide.

Weak Bisimilarities for PRPC

Abstracting from possibly empty sequences =⇒ of τ -transitions:
θ̂

=⇒ = =⇒ if act(θ) = τ ,
θ̂

=⇒ = =⇒ θ−→=⇒ if act(θ) 6= τ .

A symmetric relation B over P is a:
Weak forward bisimulation iff, whenever (P1, P2) ∈ B, then:

∀ P1
θ1−→ P ′

1 . ∃ P2
θ̂2=⇒ P ′

2 . act(θ1) = act(θ2) ∧ (P ′
1, P

′
2) ∈ B.

Weak reverse bisimulation iff, whenever (P1, P2) ∈ B, then:

∀ P ′
1
θ1−→ P1 . ∃ P ′

2
θ̂2=⇒ P2 . act(θ1) = act(θ2) ∧ (P ′

1, P
′
2) ∈ B.

Weak forward-reverse bisimulation iff, whenever (P1, P2) ∈ B, then:

∀ P1
θ1−→ P ′

1 . ∃ P2
θ̂2=⇒ P ′

2 . act(θ1) = act(θ2) ∧ (P ′
1, P

′
2) ∈ B.

∀ P ′
1
θ1−→ P1 . ∃ P ′

2
θ̂2=⇒ P2 . act(θ1) = act(θ2) ∧ (P ′

1, P
′
2) ∈ B.

Largest such relations: ≈FB, ≈RB, ≈FRB.

Alternative definitions with
θ̂1=⇒ in place of

θ1−→.

In order for P1, P2 ∈ P to be identified by ≈FB/≈RB

their weak forward/backward ready sets have to coincide.

Discriminating Power

Each weak bisimilarity is strictly coarser than its strong counterpart.

≈FRB (≈FB ∩ ≈RB with ≈FB and ≈RB being incomparable.

≈FRB 6= ≈FB over initial processes:

τ . a . 0 + a . 0 + b . 0 and τ . a . 0 + b . 0 are identified by ≈FB

but told apart by ≈FRB:

Doing a on the left is matched by doing τ and then a on the right.
Undoing a on the right cannot be matched on the left.

c . (τ . a . 0 + a . 0 + b . 0) and c . (τ . a . 0 + b . 0) is an analogous
counterexample with non-initial τ -actions:

Doing c on one side is matched by doing c on the other side.
Doing a on the left is matched by doing τ and then a on the right.
Undoing a on the right cannot be matched on the left.

Discriminating Power

Each weak bisimilarity is strictly coarser than its strong counterpart.

≈FRB (≈FB ∩ ≈RB with ≈FB and ≈RB being incomparable.

≈FRB 6= ≈FB over initial processes:

τ . a . 0 + a . 0 + b . 0 and τ . a . 0 + b . 0 are identified by ≈FB

but told apart by ≈FRB:

Doing a on the left is matched by doing τ and then a on the right.
Undoing a on the right cannot be matched on the left.

c . (τ . a . 0 + a . 0 + b . 0) and c . (τ . a . 0 + b . 0) is an analogous
counterexample with non-initial τ -actions:

Doing c on one side is matched by doing c on the other side.
Doing a on the left is matched by doing τ and then a on the right.
Undoing a on the right cannot be matched on the left.

Discriminating Power

Each weak bisimilarity is strictly coarser than its strong counterpart.

≈FRB (≈FB ∩ ≈RB with ≈FB and ≈RB being incomparable.

≈FRB 6= ≈FB over initial processes:

τ . a . 0 + a . 0 + b . 0 and τ . a . 0 + b . 0 are identified by ≈FB

but told apart by ≈FRB:

Doing a on the left is matched by doing τ and then a on the right.
Undoing a on the right cannot be matched on the left.

c . (τ . a . 0 + a . 0 + b . 0) and c . (τ . a . 0 + b . 0) is an analogous
counterexample with non-initial τ -actions:

Doing c on one side is matched by doing c on the other side.
Doing a on the left is matched by doing τ and then a on the right.
Undoing a on the right cannot be matched on the left.

Compositionality Properties

Neither ≈FB nor ≈FRB is compositional:

a†. b . 0 ≈FB b . 0 but a†. b . 0 + c . 0 6≈FB b . 0 + c . 0 (same as ∼FB).
τ . a . 0 ≈FB a . 0 but τ . a . 0 + b . 0 6≈FB a . 0 + b . 0.
τ . a . 0 ≈FRB a . 0 but τ . a . 0 + b . 0 6≈FRB a . 0 + b . 0.

The weak congruence construction à la Milner does not work here,
past sensitivity is the solution again.

A symmetric relation B over P is a weak past-sensitive forward bisim.
iff it is a weak forward bisim. in which initial(P1)⇐⇒ initial(P2)
for all (P1, P2) ∈ B.

A symm. rel. B over P is a weak past-sensitive forward-reverse bisim.
iff it is a weak forward-reverse bisim. s.t. initial(P1)⇐⇒ initial(P2)
for all (P1, P2) ∈ B.

Largest such relations: ≈FB:ps, ≈FRB:ps.

∼FRB (≈FRB:ps as the former satisfies the initiality condition.

Compositionality Properties

Neither ≈FB nor ≈FRB is compositional:

a†. b . 0 ≈FB b . 0 but a†. b . 0 + c . 0 6≈FB b . 0 + c . 0 (same as ∼FB).
τ . a . 0 ≈FB a . 0 but τ . a . 0 + b . 0 6≈FB a . 0 + b . 0.
τ . a . 0 ≈FRB a . 0 but τ . a . 0 + b . 0 6≈FRB a . 0 + b . 0.

The weak congruence construction à la Milner does not work here,
past sensitivity is the solution again.

A symmetric relation B over P is a weak past-sensitive forward bisim.
iff it is a weak forward bisim. in which initial(P1)⇐⇒ initial(P2)
for all (P1, P2) ∈ B.

A symm. rel. B over P is a weak past-sensitive forward-reverse bisim.
iff it is a weak forward-reverse bisim. s.t. initial(P1)⇐⇒ initial(P2)
for all (P1, P2) ∈ B.

Largest such relations: ≈FB:ps, ≈FRB:ps.

∼FRB (≈FRB:ps as the former satisfies the initiality condition.

Let P1, P2 ∈ P be such that P1 ≈ P2 and take arbitrary a, ρ, L, P .

All weak bisimilarities are congruences w.r.t. action prefix:
a . P1 ≈ a . P2 provided that initial(P1) ∧ initial(P2).
a†. P1 ≈ a†. P2.

All weak bisimilarities are congruences w.r.t. renaming:
P1 xρq ≈ P2 xρq.

All weak bisimilarities are congruences w.r.t. parallel composition:
P1 ‖L P ≈ P2 ‖L P and P ‖L P1 ≈ P ‖L P2

provided that P1 ‖L P, P2 ‖L P, P ‖L P1, P ‖L P2 ∈ P.

≈FB:ps, ≈RB, ≈FRB:ps are congruences w.r.t. alternative composition:
P1 + P ≈ P2 + P and P + P1 ≈ P + P2

provided that initial(P) ∨ (initial(P1) ∧ initial(P2)).

≈FB:ps is the coarsest congruence w.r.t. + contained in ≈FB:
P1 ≈FB:ps P2 iff P1 + P ≈FB P2 + P
for all P ∈ P s.t. initial(P) ∨ (initial(P1) ∧ initial(P2)).

≈FRB:ps is the coarsest congruence w.r.t. + contained in ≈FRB:
P1 ≈FRB:ps P2 iff P1 + P ≈FRB P2 + P
for all P ∈ P s.t. initial(P) ∨ (initial(P1) ∧ initial(P2)).

Let P1, P2 ∈ P be such that P1 ≈ P2 and take arbitrary a, ρ, L, P .

All weak bisimilarities are congruences w.r.t. action prefix:
a . P1 ≈ a . P2 provided that initial(P1) ∧ initial(P2).
a†. P1 ≈ a†. P2.

All weak bisimilarities are congruences w.r.t. renaming:
P1 xρq ≈ P2 xρq.

All weak bisimilarities are congruences w.r.t. parallel composition:
P1 ‖L P ≈ P2 ‖L P and P ‖L P1 ≈ P ‖L P2

provided that P1 ‖L P, P2 ‖L P, P ‖L P1, P ‖L P2 ∈ P.

≈FB:ps, ≈RB, ≈FRB:ps are congruences w.r.t. alternative composition:
P1 + P ≈ P2 + P and P + P1 ≈ P + P2

provided that initial(P) ∨ (initial(P1) ∧ initial(P2)).

≈FB:ps is the coarsest congruence w.r.t. + contained in ≈FB:
P1 ≈FB:ps P2 iff P1 + P ≈FB P2 + P
for all P ∈ P s.t. initial(P) ∨ (initial(P1) ∧ initial(P2)).

≈FRB:ps is the coarsest congruence w.r.t. + contained in ≈FRB:
P1 ≈FRB:ps P2 iff P1 + P ≈FRB P2 + P
for all P ∈ P s.t. initial(P) ∨ (initial(P1) ∧ initial(P2)).

Modal Logic Characterizations

Modal logic with weak forward/backward modalities (a ∈ A \ {τ}):

φ ::= true | init | ¬φ | φ ∧ φ | 〈〈τ〉〉φ | 〈〈a〉〉φ | 〈〈τ †〉〉φ | 〈〈a†〉〉φ

Semantics:

P |= true for all P ∈ P
P |= init iff initial(P)
P |= ¬φ iff P 6|= φ
P |= φ1 ∧ φ2 iff P |= φ1 and P |= φ2

P |= 〈〈τ〉〉φ iff there exists P =⇒ P ′ such that P ′ |= φ

P |= 〈〈a〉〉φ iff there exists P =⇒ θ−→=⇒ P ′ s.t. act(θ) = a and P ′ |= φ

P |= 〈〈τ†〉〉φ iff there exists P ′ =⇒ P such that P ′ |= φ

P |= 〈〈a†〉〉φ iff there exists P ′ =⇒ θ−→=⇒ P s.t. act(θ) = a and P ′ |= φ

Modal Logic Characterizations

Modal logic with weak forward/backward modalities (a ∈ A \ {τ}):

φ ::= true | init | ¬φ | φ ∧ φ | 〈〈τ〉〉φ | 〈〈a〉〉φ | 〈〈τ †〉〉φ | 〈〈a†〉〉φ

Semantics:

P |= true for all P ∈ P
P |= init iff initial(P)
P |= ¬φ iff P 6|= φ
P |= φ1 ∧ φ2 iff P |= φ1 and P |= φ2

P |= 〈〈τ〉〉φ iff there exists P =⇒ P ′ such that P ′ |= φ

P |= 〈〈a〉〉φ iff there exists P =⇒ θ−→=⇒ P ′ s.t. act(θ) = a and P ′ |= φ

P |= 〈〈τ†〉〉φ iff there exists P ′ =⇒ P such that P ′ |= φ

P |= 〈〈a†〉〉φ iff there exists P ′ =⇒ θ−→=⇒ P s.t. act(θ) = a and P ′ |= φ

Fragments characterizing the five weak bisimilarities:

true init ¬ ∧ 〈〈τ〉〉 〈〈a〉〉 〈〈τ †〉〉 〈〈a†〉〉
LτFB X X X X X
LτFB:ps X X X X X X
LτRB X X X
LτFRB X X X X X X X
LτFRB:ps X X X X X X X X

LτFB /LτFB:ps /LτRB /LτFRB /LτFRB:ps characterizes
≈FB /≈FB:ps /≈RB /≈FRB /≈FRB:ps:

P1 ≈B P2 iff ∀φ ∈ LτB. P1 |= φ⇐⇒ P2 |= φ

Equational Characterizations

Additional operator-specific axioms called τ -laws:

(Aτ1) [≈FB:ps] a . τ . P = a . P where initial(P)
(Aτ2) [≈FB:ps] P + τ . P = τ . P where initial(P)
(Aτ3) [≈FB:ps] a . (P + τ .Q) + a .Q = a . (P + τ .Q) where P , Q initial
(Aτ4) [≈FB:ps] a†. τ . P = a†. P where initial(P)

(Aτ5) [≈RB] τ†. P = P

(Aτ6) [≈FRB:ps] a . (τ . (P +Q) + P) = a . (P +Q) where P , Q initial
(Aτ7) [≈FRB:ps] a†. (τ . (P +Q) + P ′) = a†. (P ′ +Q) if to initial(P ′) = P ,

where P , Q initial
(Aτ8) [≈FRB:ps] a†. (τ†. (P ′ +Q) + P) = a†. (P ′ +Q) if to initial(P ′) = P ,

where initial(P)

Aτ1 , Aτ2 , Aτ3 are Milner τ -laws, Aτ4 needed for completeness.

Aτ5 is a variant of τ . P = P (not valid for weak bisim. congruence).

Aτ6 is Van Glabbeek-Weijland τ -law, Aτ7 and Aτ8 needed for complet.

`1,2,3,4,5,6,91,2,3,4 / `1,2,7,85 / `1,2,3,106,7,8 is sound and complete for
≈FB:ps / ≈RB / ≈FRB:ps over renaming-free sequential processes.

≈FRB is branching bisimilarity over initial sequential processes!

Expansion Laws for Parallel Composition

In forward-only process calculi a . 0 ‖∅ b . 0 and a . b . 0 + b . a . 0
are deemed equivalent: the latter is the expansion of the former.

In our reversible setting we obtain instead (a 6= b):

0_ O/|| 0_a. b.

0_ O/||a . 0_b .

0_ O/|| 0_ba. .O/|| 0_0_a . b.

FB~
~RB

FRB~/

FB~
~RB

FRB~/

FB~

FRB~/
/~RB

0_ 0_+b.a. b.a.

0_ 0_a . +b. b.a.

0_ 0_b .a . +b.a.

0_ b . 0_+b.a. a.

0_ b . a . 0_+b.a.

a b

ab

a b

b a

∼FB is interleaving, while ∼RB and ∼FRB are truly concurrent.

What are the expansion laws for the six bisimulation congruences
∼FB:ps, ∼RB, ∼FRB, ≈FB:ps, ≈RB, ≈FRB:ps?

Expansion Laws for Parallel Composition

In forward-only process calculi a . 0 ‖∅ b . 0 and a . b . 0 + b . a . 0
are deemed equivalent: the latter is the expansion of the former.

In our reversible setting we obtain instead (a 6= b):

0_ O/|| 0_a. b.

0_ O/||a . 0_b .

0_ O/|| 0_ba. .O/|| 0_0_a . b.

FB~
~RB

FRB~/

FB~
~RB

FRB~/

FB~

FRB~/
/~RB

0_ 0_+b.a. b.a.

0_ 0_a . +b. b.a.

0_ 0_b .a . +b.a.

0_ b . 0_+b.a. a.

0_ b . a . 0_+b.a.

a b

ab

a b

b a

∼FB is interleaving, while ∼RB and ∼FRB are truly concurrent.

What are the expansion laws for the six bisimulation congruences
∼FB:ps, ∼RB, ∼FRB, ≈FB:ps, ≈RB, ≈FRB:ps?

Expansion Laws for Parallel Composition

In forward-only process calculi a . 0 ‖∅ b . 0 and a . b . 0 + b . a . 0
are deemed equivalent: the latter is the expansion of the former.

In our reversible setting we obtain instead (a 6= b):

0_ O/|| 0_a. b.

0_ O/||a . 0_b .

0_ O/|| 0_ba. .O/|| 0_0_a . b.

FB~
~RB

FRB~/

FB~
~RB

FRB~/

FB~

FRB~/
/~RB

0_ 0_+b.a. b.a.

0_ 0_a . +b. b.a.

0_ 0_b .a . +b.a.

0_ b . 0_+b.a. a.

0_ b . a . 0_+b.a.

a b

ab

a b

b a

∼FB is interleaving, while ∼RB and ∼FRB are truly concurrent.

What are the expansion laws for the six bisimulation congruences
∼FB:ps, ∼RB, ∼FRB, ≈FB:ps, ≈RB, ≈FRB:ps?

Expansion laws for forward-only calculi in the interleaving setting
are used to identify a . 0 ‖∅ b . 0 and a . b . 0 + b . a . 0.

Also used in truly concurrent semantics to distinguish those processes
by adding suitable discriminating information within action prefixes:

Causal bisimilarity [DarondeauDegano90] (corresponding to
history-preserving bisimilarity [RabinovichTrakhtenbrot88]):
every action is enriched with the set of its causing actions
each of which is expressed as a numeric backward pointer,
hence we get <a, ∅> .<b, ∅> . 0 +<b, ∅> .<a, ∅> . 0
and <a, ∅> .<b, {1}> . 0 +<b, ∅> .<a, {1}> . 0.

Location bisimilarity [BoudolCastellaniHennessyKiehn94]: every action
is enriched with the name of the location in which it is executed,
hence we get <a, la> .<b, lb> . 0 +<b, lb> .<a, la> . 0
and <a, la> .<b, lalb> . 0 +<b, lb> .<a, lbla> . 0.

Pomset bisimilarity [BoudolCastellani88]: a prefix may contain
a combination of actions that are causally related or independent,
hence the former process becomes a . b . 0 + b . a . 0 + (a ‖ b) . 0.

Expansion laws for forward-only calculi in the interleaving setting
are used to identify a . 0 ‖∅ b . 0 and a . b . 0 + b . a . 0.

Also used in truly concurrent semantics to distinguish those processes
by adding suitable discriminating information within action prefixes:

Causal bisimilarity [DarondeauDegano90] (corresponding to
history-preserving bisimilarity [RabinovichTrakhtenbrot88]):
every action is enriched with the set of its causing actions
each of which is expressed as a numeric backward pointer,
hence we get <a, ∅> .<b, ∅> . 0 +<b, ∅> .<a, ∅> . 0
and <a, ∅> .<b, {1}> . 0 +<b, ∅> .<a, {1}> . 0.

Location bisimilarity [BoudolCastellaniHennessyKiehn94]: every action
is enriched with the name of the location in which it is executed,
hence we get <a, la> .<b, lb> . 0 +<b, lb> .<a, la> . 0
and <a, la> .<b, lalb> . 0 +<b, lb> .<a, lbla> . 0.

Pomset bisimilarity [BoudolCastellani88]: a prefix may contain
a combination of actions that are causally related or independent,
hence the former process becomes a . b . 0 + b . a . 0 + (a ‖ b) . 0.

Expansion laws for forward-only calculi in the interleaving setting
are used to identify a . 0 ‖∅ b . 0 and a . b . 0 + b . a . 0.

Also used in truly concurrent semantics to distinguish those processes
by adding suitable discriminating information within action prefixes:

Causal bisimilarity [DarondeauDegano90] (corresponding to
history-preserving bisimilarity [RabinovichTrakhtenbrot88]):
every action is enriched with the set of its causing actions
each of which is expressed as a numeric backward pointer,
hence we get <a, ∅> .<b, ∅> . 0 +<b, ∅> .<a, ∅> . 0
and <a, ∅> .<b, {1}> . 0 +<b, ∅> .<a, {1}> . 0.

Location bisimilarity [BoudolCastellaniHennessyKiehn94]: every action
is enriched with the name of the location in which it is executed,
hence we get <a, la> .<b, lb> . 0 +<b, lb> .<a, la> . 0
and <a, la> .<b, lalb> . 0 +<b, lb> .<a, lbla> . 0.

Pomset bisimilarity [BoudolCastellani88]: a prefix may contain
a combination of actions that are causally related or independent,
hence the former process becomes a . b . 0 + b . a . 0 + (a ‖ b) . 0.

Expansion laws for forward-only calculi in the interleaving setting
are used to identify a . 0 ‖∅ b . 0 and a . b . 0 + b . a . 0.

Also used in truly concurrent semantics to distinguish those processes
by adding suitable discriminating information within action prefixes:

Causal bisimilarity [DarondeauDegano90] (corresponding to
history-preserving bisimilarity [RabinovichTrakhtenbrot88]):
every action is enriched with the set of its causing actions
each of which is expressed as a numeric backward pointer,
hence we get <a, ∅> .<b, ∅> . 0 +<b, ∅> .<a, ∅> . 0
and <a, ∅> .<b, {1}> . 0 +<b, ∅> .<a, {1}> . 0.

Location bisimilarity [BoudolCastellaniHennessyKiehn94]: every action
is enriched with the name of the location in which it is executed,
hence we get <a, la> .<b, lb> . 0 +<b, lb> .<a, la> . 0
and <a, la> .<b, lalb> . 0 +<b, lb> .<a, lbla> . 0.

Pomset bisimilarity [BoudolCastellani88]: a prefix may contain
a combination of actions that are causally related or independent,
hence the former process becomes a . b . 0 + b . a . 0 + (a ‖ b) . 0.

Expansion laws for forward-only calculi in the interleaving setting
are used to identify a . 0 ‖∅ b . 0 and a . b . 0 + b . a . 0.

Also used in truly concurrent semantics to distinguish those processes
by adding suitable discriminating information within action prefixes:

Causal bisimilarity [DarondeauDegano90] (corresponding to
history-preserving bisimilarity [RabinovichTrakhtenbrot88]):
every action is enriched with the set of its causing actions
each of which is expressed as a numeric backward pointer,
hence we get <a, ∅> .<b, ∅> . 0 +<b, ∅> .<a, ∅> . 0
and <a, ∅> .<b, {1}> . 0 +<b, ∅> .<a, {1}> . 0.

Location bisimilarity [BoudolCastellaniHennessyKiehn94]: every action
is enriched with the name of the location in which it is executed,
hence we get <a, la> .<b, lb> . 0 +<b, lb> .<a, la> . 0
and <a, la> .<b, lalb> . 0 +<b, lb> .<a, lbla> . 0.

Pomset bisimilarity [BoudolCastellani88]: a prefix may contain
a combination of actions that are causally related or independent,
hence the former process becomes a . b . 0 + b . a . 0 + (a ‖ b) . 0.

How to uniformly derive the six expansion laws?

Proved trees approach of [DeganoPriami92].

Enabled by the use of proof terms in the operational semantics!

Interleaving: proof terms are reduced to the actions they contain,
hence we are done for ∼FB:ps and ≈FB:ps.

True concurrency: they are transformed into actions extended with
suitable discriminating information (then encode processes accordingly).

Information already available in the operational semantics for
causal bisimilarity, location bisimilarity, pomset bisimilarity.

Unfortunately not available in our proved operational semantics
for ∼RB, ∼FRB, ≈RB, ≈FRB:ps!

How to uniformly derive the six expansion laws?

Proved trees approach of [DeganoPriami92].

Enabled by the use of proof terms in the operational semantics!

Interleaving: proof terms are reduced to the actions they contain,
hence we are done for ∼FB:ps and ≈FB:ps.

True concurrency: they are transformed into actions extended with
suitable discriminating information (then encode processes accordingly).

Information already available in the operational semantics for
causal bisimilarity, location bisimilarity, pomset bisimilarity.

Unfortunately not available in our proved operational semantics
for ∼RB, ∼FRB, ≈RB, ≈FRB:ps!

How to uniformly derive the six expansion laws?

Proved trees approach of [DeganoPriami92].

Enabled by the use of proof terms in the operational semantics!

Interleaving: proof terms are reduced to the actions they contain,
hence we are done for ∼FB:ps and ≈FB:ps.

True concurrency: they are transformed into actions extended with
suitable discriminating information (then encode processes accordingly).

Information already available in the operational semantics for
causal bisimilarity, location bisimilarity, pomset bisimilarity.

Unfortunately not available in our proved operational semantics
for ∼RB, ∼FRB, ≈RB, ≈FRB:ps!

The equivalence of interest drives an observation function
that maps proof terms to the required observations.

Observation function ` applied to proof terms labeling transitions,
so that `(θ1) and `(θ2) are considered in the bisimulation game.

Action preservation: `(θ1) = `(θ2) implies act(θ1) = act(θ2).

` may depend on other possible parameters that are present
in the proved labeled transition system.

∼FB:ps:`F , ∼RB:`R , ∼FRB:`FR
, ≈FB:ps:`F,w , ≈RB:`R,w , ≈FRB:ps:`FR,w

are the six resulting equivalences.

When do they coincide with the six congruences?

What is the discriminating information that is needed by
reverse and forward-reverse semantics?

The equivalence of interest drives an observation function
that maps proof terms to the required observations.

Observation function ` applied to proof terms labeling transitions,
so that `(θ1) and `(θ2) are considered in the bisimulation game.

Action preservation: `(θ1) = `(θ2) implies act(θ1) = act(θ2).

` may depend on other possible parameters that are present
in the proved labeled transition system.

∼FB:ps:`F , ∼RB:`R , ∼FRB:`FR
, ≈FB:ps:`F,w , ≈RB:`R,w , ≈FRB:ps:`FR,w

are the six resulting equivalences.

When do they coincide with the six congruences?

What is the discriminating information that is needed by
reverse and forward-reverse semantics?

As already anticipated ∼FB:ps:`F = ∼FB:ps and ≈FB:ps:`F,w = ≈FB:ps

when `F(θ) = `F,w(θ) = act(θ).

Expansion law for ∼FB:ps and ≈FB:ps:

(A15) P1 ‖L P2 = [a†.]

(∑
i∈I1,a1,i /∈L

a1,i . (P1,i ‖L P ′
2) +∑

i∈I2,a2,i /∈L
a2,i . (P

′
1 ‖L P2,i) +∑

i∈I1,a1,i∈L

∑
j∈I2,a2,j=a1,i

a1,i . (P1,i ‖L P2,j)

)

Pk = [a†k.]P
′
k with P ′k =

∑
i∈Ik

ak,i . Pk,i for k ∈ {1, 2}, called F-nf.

[a†.] is present iff [a†1.] or [a†2.] is present (they are optional).

∼RB:`R = ∼RB and ∼FRB:`FR
= ∼FRB when `R(θ)P ′ = `FR(θ)P ′ =

<act(θ), brs(P ′)> , `brs(θ)P ′ for every proved transition P
θ−→ P ′.

brs(P ′) is the backward ready set of P ′, the set of actions labeling
the incoming transitions of P ′.

Thus a . 0 ‖∅ b . 0 is encoded as:
<a, {a}> .<b, {a, b}> . 0 +<b, {b}> .<a, {a, b}> . 0

while a . b . 0 + b . a . 0 is encoded as:
<a, {a}> .<b, {b}> . 0 +<b, {b}> .<a, {a}> . 0

The encoding of a†. 0 ‖∅ b†. 0 (a case not addressed in [DP92])
cannot be:

<a†, {a}> .<b†, {a, b}> . 0 +<b†, {b}> .<a†, {a, b}> . 0

It is <a†, {a}> .<b†, {a, b}> . 0 +<b, {b}> .<a, {a, b}> . 0
or <a, {a}> .<b, {a, b}> . 0 +<b†, {b}> .<a†, {a, b}> . 0
depending on whether trace a b or trace b a has been executed
(initial subprocesses are needed by the forward-reverse semantics).

∼RB:`R = ∼RB and ∼FRB:`FR
= ∼FRB when `R(θ)P ′ = `FR(θ)P ′ =

<act(θ), brs(P ′)> , `brs(θ)P ′ for every proved transition P
θ−→ P ′.

brs(P ′) is the backward ready set of P ′, the set of actions labeling
the incoming transitions of P ′.

Thus a . 0 ‖∅ b . 0 is encoded as:
<a, {a}> .<b, {a, b}> . 0 +<b, {b}> .<a, {a, b}> . 0

while a . b . 0 + b . a . 0 is encoded as:
<a, {a}> .<b, {b}> . 0 +<b, {b}> .<a, {a}> . 0

The encoding of a†. 0 ‖∅ b†. 0 (a case not addressed in [DP92])
cannot be:

<a†, {a}> .<b†, {a, b}> . 0 +<b†, {b}> .<a†, {a, b}> . 0

It is <a†, {a}> .<b†, {a, b}> . 0 +<b, {b}> .<a, {a, b}> . 0
or <a, {a}> .<b, {a, b}> . 0 +<b†, {b}> .<a†, {a, b}> . 0
depending on whether trace a b or trace b a has been executed
(initial subprocesses are needed by the forward-reverse semantics).

∼RB:`R = ∼RB and ∼FRB:`FR
= ∼FRB when `R(θ)P ′ = `FR(θ)P ′ =

<act(θ), brs(P ′)> , `brs(θ)P ′ for every proved transition P
θ−→ P ′.

brs(P ′) is the backward ready set of P ′, the set of actions labeling
the incoming transitions of P ′.

Thus a . 0 ‖∅ b . 0 is encoded as:
<a, {a}> .<b, {a, b}> . 0 +<b, {b}> .<a, {a, b}> . 0

while a . b . 0 + b . a . 0 is encoded as:
<a, {a}> .<b, {b}> . 0 +<b, {b}> .<a, {a}> . 0

The encoding of a†. 0 ‖∅ b†. 0 (a case not addressed in [DP92])
cannot be:

<a†, {a}> .<b†, {a, b}> . 0 +<b†, {b}> .<a†, {a, b}> . 0

It is <a†, {a}> .<b†, {a, b}> . 0 +<b, {b}> .<a, {a, b}> . 0
or <a, {a}> .<b, {a, b}> . 0 +<b†, {b}> .<a†, {a, b}> . 0
depending on whether trace a b or trace b a has been executed
(initial subprocesses are needed by the forward-reverse semantics).

Encoding to Pbrs: set of sequential processes in which every action
prefix is a pair composed of an action and an action set.

Let ‹P be the `brs-encoding of P .

Let “P be the `brs,w-encoding of P .

Expansion laws for ∼RB and ≈RB:

(A16) ‚�P1 ‖L P2 = e`εbrs,R(‹P1, ‹P2, L)P1 ‖L P2

(A17) ÿ�P1 ‖L P2 = e`εbrs,R(“P1, “P2, L)P1 ‖L P2

Pk = 0 or Pk = a†. P ′k for k ∈ {1, 2}, called R-nf.

Expansion laws for ∼FRB and ≈FRB:ps:

(A18) ‚�P1 ‖L P2 = e`εbrs(
‹P1, ‹P2, L)P1 ‖L P2

(A19) ÿ�P1 ‖L P2 = e`εbrs(
“P1, “P2, L)P1 ‖L P2

Pk = [a†. P ′k +]
∑

i∈Ik ak,i . Pk,i for k ∈ {1, 2}, called FR-nf.

Encoding to Pbrs: set of sequential processes in which every action
prefix is a pair composed of an action and an action set.

Let ‹P be the `brs-encoding of P .

Let “P be the `brs,w-encoding of P .

Expansion laws for ∼RB and ≈RB:

(A16) ‚�P1 ‖L P2 = e`εbrs,R(‹P1, ‹P2, L)P1 ‖L P2

(A17) ÿ�P1 ‖L P2 = e`εbrs,R(“P1, “P2, L)P1 ‖L P2

Pk = 0 or Pk = a†. P ′k for k ∈ {1, 2}, called R-nf.

Expansion laws for ∼FRB and ≈FRB:ps:

(A18) ‚�P1 ‖L P2 = e`εbrs(
‹P1, ‹P2, L)P1 ‖L P2

(A19) ÿ�P1 ‖L P2 = e`εbrs(
“P1, “P2, L)P1 ‖L P2

Pk = [a†. P ′k +]
∑

i∈Ik ak,i . Pk,i for k ∈ {1, 2}, called FR-nf.

Encoding to Pbrs: set of sequential processes in which every action
prefix is a pair composed of an action and an action set.

Let ‹P be the `brs-encoding of P .

Let “P be the `brs,w-encoding of P .

Expansion laws for ∼RB and ≈RB:

(A16) ‚�P1 ‖L P2 = e`εbrs,R(‹P1, ‹P2, L)P1 ‖L P2

(A17) ÿ�P1 ‖L P2 = e`εbrs,R(“P1, “P2, L)P1 ‖L P2

Pk = 0 or Pk = a†. P ′k for k ∈ {1, 2}, called R-nf.

Expansion laws for ∼FRB and ≈FRB:ps:

(A18) ‚�P1 ‖L P2 = e`εbrs(
‹P1, ‹P2, L)P1 ‖L P2

(A19) ÿ�P1 ‖L P2 = e`εbrs(
“P1, “P2, L)P1 ‖L P2

Pk = [a†. P ′k +]
∑

i∈Ik ak,i . Pk,i for k ∈ {1, 2}, called FR-nf.

True Concurrency

How close is ∼FRB to hereditary history-preserving bisimilarity?

A labeled configuration structure is a tuple C = (E , C, `) where:

E is a set of events.
C ⊆ Pfin(E) is a set of configurations.
` :
⋃
X∈C X → A is the labeling function.

A configuration structure C is stable iff it is:

Rooted: ∅ ∈ C.
Connected: ∀X ∈ C \ {∅}.∃e ∈ X.X \ {e} ∈ C.
Closed under bounded unions and intersections:
∀X,Y, Z ∈ C. X ∪ Y ⊆ Z =⇒ X ∪ Y ∈ C ∧X ∩ Y ∈ C.

The causality relation over X ∈ C is defined by letting e1 <X e2
for e1, e2 ∈ X s.t. e1 6= e2 iff ∀Y ∈ C. Y ⊆ X ∧ e2 ∈ Y =⇒ e1 ∈ Y .

The concurrency relation over X is coX = (X ×X) \ (≤X ∪ ≥X).

X
a−→C X

′ for X,X ′ ∈ C iff X ⊆ X ′ ∧X ′ \X = {e} ∧ `(e) = a.

True Concurrency

How close is ∼FRB to hereditary history-preserving bisimilarity?

A labeled configuration structure is a tuple C = (E , C, `) where:

E is a set of events.
C ⊆ Pfin(E) is a set of configurations.
` :
⋃
X∈C X → A is the labeling function.

A configuration structure C is stable iff it is:

Rooted: ∅ ∈ C.
Connected: ∀X ∈ C \ {∅}.∃e ∈ X.X \ {e} ∈ C.
Closed under bounded unions and intersections:
∀X,Y, Z ∈ C. X ∪ Y ⊆ Z =⇒ X ∪ Y ∈ C ∧X ∩ Y ∈ C.

The causality relation over X ∈ C is defined by letting e1 <X e2
for e1, e2 ∈ X s.t. e1 6= e2 iff ∀Y ∈ C. Y ⊆ X ∧ e2 ∈ Y =⇒ e1 ∈ Y .

The concurrency relation over X is coX = (X ×X) \ (≤X ∪ ≥X).

X
a−→C X

′ for X,X ′ ∈ C iff X ⊆ X ′ ∧X ′ \X = {e} ∧ `(e) = a.

True Concurrency

How close is ∼FRB to hereditary history-preserving bisimilarity?

A labeled configuration structure is a tuple C = (E , C, `) where:

E is a set of events.
C ⊆ Pfin(E) is a set of configurations.
` :
⋃
X∈C X → A is the labeling function.

A configuration structure C is stable iff it is:

Rooted: ∅ ∈ C.
Connected: ∀X ∈ C \ {∅}.∃e ∈ X.X \ {e} ∈ C.
Closed under bounded unions and intersections:
∀X,Y, Z ∈ C. X ∪ Y ⊆ Z =⇒ X ∪ Y ∈ C ∧X ∩ Y ∈ C.

The causality relation over X ∈ C is defined by letting e1 <X e2
for e1, e2 ∈ X s.t. e1 6= e2 iff ∀Y ∈ C. Y ⊆ X ∧ e2 ∈ Y =⇒ e1 ∈ Y .

The concurrency relation over X is coX = (X ×X) \ (≤X ∪ ≥X).

X
a−→C X

′ for X,X ′ ∈ C iff X ⊆ X ′ ∧X ′ \X = {e} ∧ `(e) = a.

True Concurrency

How close is ∼FRB to hereditary history-preserving bisimilarity?

A labeled configuration structure is a tuple C = (E , C, `) where:

E is a set of events.
C ⊆ Pfin(E) is a set of configurations.
` :
⋃
X∈C X → A is the labeling function.

A configuration structure C is stable iff it is:

Rooted: ∅ ∈ C.
Connected: ∀X ∈ C \ {∅}.∃e ∈ X.X \ {e} ∈ C.
Closed under bounded unions and intersections:
∀X,Y, Z ∈ C. X ∪ Y ⊆ Z =⇒ X ∪ Y ∈ C ∧X ∩ Y ∈ C.

The causality relation over X ∈ C is defined by letting e1 <X e2
for e1, e2 ∈ X s.t. e1 6= e2 iff ∀Y ∈ C. Y ⊆ X ∧ e2 ∈ Y =⇒ e1 ∈ Y .

The concurrency relation over X is coX = (X ×X) \ (≤X ∪ ≥X).

X
a−→C X

′ for X,X ′ ∈ C iff X ⊆ X ′ ∧X ′ \X = {e} ∧ `(e) = a.

True Concurrency

How close is ∼FRB to hereditary history-preserving bisimilarity?

A labeled configuration structure is a tuple C = (E , C, `) where:

E is a set of events.
C ⊆ Pfin(E) is a set of configurations.
` :
⋃
X∈C X → A is the labeling function.

A configuration structure C is stable iff it is:

Rooted: ∅ ∈ C.
Connected: ∀X ∈ C \ {∅}.∃e ∈ X.X \ {e} ∈ C.
Closed under bounded unions and intersections:
∀X,Y, Z ∈ C. X ∪ Y ⊆ Z =⇒ X ∪ Y ∈ C ∧X ∩ Y ∈ C.

The causality relation over X ∈ C is defined by letting e1 <X e2
for e1, e2 ∈ X s.t. e1 6= e2 iff ∀Y ∈ C. Y ⊆ X ∧ e2 ∈ Y =⇒ e1 ∈ Y .

The concurrency relation over X is coX = (X ×X) \ (≤X ∪ ≥X).

X
a−→C X

′ for X,X ′ ∈ C iff X ⊆ X ′ ∧X ′ \X = {e} ∧ `(e) = a.

Two stable configuration structures Ci = (Ei, Ci, li), i ∈ {1, 2},
are hereditary history-preserving bisimilar, written C1 ∼HHPB C2,
iff there exists a hereditary history-preserving bisimulation between
C1 and C2, i.e., a relation B ⊆ C1 × C2 × P(E1 × E2) such that:

(∅, ∅, ∅) ∈ B.
Whenever (X1, X2, f) ∈ B, then:

f is a bijection from X1 to X2 that preserves
labeling, i.e., l1(e) = l2(f(e)) for all e ∈ X1, and
causality, i.e., e ≤X1 e

′ ⇐⇒ f(e) ≤X2 f(e
′) for all e, e′ ∈ X1.

For each X1
a−→C1 X

′
1 there exist X2

a−→C2 X
′
2 and f ′ such that

(X ′
1, X

′
2, f

′) ∈ B and f ′ � X1 = f , and vice versa.
For each X ′

1
a−→C1 X1 there exist X ′

2
a−→C2 X2 and f ′ such that

(X ′
1, X

′
2, f

′) ∈ B and f � X ′
1 = f ′, and vice versa.

Two stable configuration structures Ci = (Ei, Ci, li), i ∈ {1, 2},
are hereditary history-preserving bisimilar, written C1 ∼HHPB C2,
iff there exists a hereditary history-preserving bisimulation between
C1 and C2, i.e., a relation B ⊆ C1 × C2 × P(E1 × E2) such that:

(∅, ∅, ∅) ∈ B.

Whenever (X1, X2, f) ∈ B, then:

f is a bijection from X1 to X2 that preserves
labeling, i.e., l1(e) = l2(f(e)) for all e ∈ X1, and
causality, i.e., e ≤X1 e

′ ⇐⇒ f(e) ≤X2 f(e
′) for all e, e′ ∈ X1.

For each X1
a−→C1 X

′
1 there exist X2

a−→C2 X
′
2 and f ′ such that

(X ′
1, X

′
2, f

′) ∈ B and f ′ � X1 = f , and vice versa.
For each X ′

1
a−→C1 X1 there exist X ′

2
a−→C2 X2 and f ′ such that

(X ′
1, X

′
2, f

′) ∈ B and f � X ′
1 = f ′, and vice versa.

Two stable configuration structures Ci = (Ei, Ci, li), i ∈ {1, 2},
are hereditary history-preserving bisimilar, written C1 ∼HHPB C2,
iff there exists a hereditary history-preserving bisimulation between
C1 and C2, i.e., a relation B ⊆ C1 × C2 × P(E1 × E2) such that:

(∅, ∅, ∅) ∈ B.
Whenever (X1, X2, f) ∈ B, then:

f is a bijection from X1 to X2 that preserves
labeling, i.e., l1(e) = l2(f(e)) for all e ∈ X1, and
causality, i.e., e ≤X1 e

′ ⇐⇒ f(e) ≤X2 f(e
′) for all e, e′ ∈ X1.

For each X1
a−→C1 X

′
1 there exist X2

a−→C2 X
′
2 and f ′ such that

(X ′
1, X

′
2, f

′) ∈ B and f ′ � X1 = f , and vice versa.
For each X ′

1
a−→C1 X1 there exist X ′

2
a−→C2 X2 and f ′ such that

(X ′
1, X

′
2, f

′) ∈ B and f � X ′
1 = f ′, and vice versa.

Two stable configuration structures Ci = (Ei, Ci, li), i ∈ {1, 2},
are hereditary history-preserving bisimilar, written C1 ∼HHPB C2,
iff there exists a hereditary history-preserving bisimulation between
C1 and C2, i.e., a relation B ⊆ C1 × C2 × P(E1 × E2) such that:

(∅, ∅, ∅) ∈ B.
Whenever (X1, X2, f) ∈ B, then:

f is a bijection from X1 to X2 that preserves
labeling, i.e., l1(e) = l2(f(e)) for all e ∈ X1, and
causality, i.e., e ≤X1 e

′ ⇐⇒ f(e) ≤X2 f(e
′) for all e, e′ ∈ X1.

For each X1
a−→C1 X

′
1 there exist X2

a−→C2 X
′
2 and f ′ such that

(X ′
1, X

′
2, f

′) ∈ B and f ′ � X1 = f , and vice versa.

For each X ′
1

a−→C1 X1 there exist X ′
2

a−→C2 X2 and f ′ such that
(X ′

1, X
′
2, f

′) ∈ B and f � X ′
1 = f ′, and vice versa.

Two stable configuration structures Ci = (Ei, Ci, li), i ∈ {1, 2},
are hereditary history-preserving bisimilar, written C1 ∼HHPB C2,
iff there exists a hereditary history-preserving bisimulation between
C1 and C2, i.e., a relation B ⊆ C1 × C2 × P(E1 × E2) such that:

(∅, ∅, ∅) ∈ B.
Whenever (X1, X2, f) ∈ B, then:

f is a bijection from X1 to X2 that preserves
labeling, i.e., l1(e) = l2(f(e)) for all e ∈ X1, and
causality, i.e., e ≤X1 e

′ ⇐⇒ f(e) ≤X2 f(e
′) for all e, e′ ∈ X1.

For each X1
a−→C1 X

′
1 there exist X2

a−→C2 X
′
2 and f ′ such that

(X ′
1, X

′
2, f

′) ∈ B and f ′ � X1 = f , and vice versa.
For each X ′

1
a−→C1 X1 there exist X ′

2
a−→C2 X2 and f ′ such that

(X ′
1, X

′
2, f

′) ∈ B and f � X ′
1 = f ′, and vice versa.

∼HHPB [Bednarczyk91] is the finest truly concurrent equivalence
preserved under action refinement that is capable of respecting
causality, branching, and their interplay while abstracting from
choices between identical alternatives [VanGlabbeekGoltz01].

∼FRB coincides with ∼HHPB in the absence of autoconcurrency
at the same causality level [PhillipsUlidowski12].

Cross fertilization for their equational and logical characterizations.

Autoconcurrency is a . 0 ‖∅ a . 0, while a . a . 0 is autocausation.

a . 0 ‖∅ a . 0 ∼FRB a . a . 0 + a . a . 0 ∼FRB a . a . 0.

Their `brs-encodings are basically the same:
<a, {a}> .<a, {a, a}> . 0 +<a, {a}> .<a, {a, a}> . 0
<a, {a}> .<a, {a}> . 0 +<a, {a}> .<a, {a}> . 0
<a, {a}> .<a, {a}> . 0

∼HHPB [Bednarczyk91] is the finest truly concurrent equivalence
preserved under action refinement that is capable of respecting
causality, branching, and their interplay while abstracting from
choices between identical alternatives [VanGlabbeekGoltz01].

∼FRB coincides with ∼HHPB in the absence of autoconcurrency
at the same causality level [PhillipsUlidowski12].

Cross fertilization for their equational and logical characterizations.

Autoconcurrency is a . 0 ‖∅ a . 0, while a . a . 0 is autocausation.

a . 0 ‖∅ a . 0 ∼FRB a . a . 0 + a . a . 0 ∼FRB a . a . 0.

Their `brs-encodings are basically the same:
<a, {a}> .<a, {a, a}> . 0 +<a, {a}> .<a, {a, a}> . 0
<a, {a}> .<a, {a}> . 0 +<a, {a}> .<a, {a}> . 0
<a, {a}> .<a, {a}> . 0

Denotational semantics J K for P based on configuration structures
in which events are proof terms.

Ja . 0 ‖∅ a . 0K 6∼HHPB Ja . a . 0K as U∅a and T∅a are independent
while a and .aa are causally related, hence no bijection exists
between the former and the latter that preserves causality.

∼FRB plus backward ready multiset equality distinguish them.

∼FRB:brm =∼HHPB in the presence of autoconcurrency if for each set
of conflicting events all those events are caused by the same event.

∼FRB:brm counts the incoming a-transitions of related configurations,
no bijection between identically labeled events [AubertCristescu20].

∼FRB:brm over P is an operational representation of ∼HHPB.

The `brm-encoding of a . 0 ‖∅ a . 0:
<a, {| a |}> .<a, {| a, a |}> . 0 +<a, {| a |}> .<a, {| a, a |}> . 0

differs from its `brs-encoding:
<a, {a}> .<a, {a, a}> . 0 +<a, {a}> .<a, {a, a}> . 0

Denotational semantics J K for P based on configuration structures
in which events are proof terms.

Ja . 0 ‖∅ a . 0K 6∼HHPB Ja . a . 0K as U∅a and T∅a are independent
while a and .aa are causally related, hence no bijection exists
between the former and the latter that preserves causality.

∼FRB plus backward ready multiset equality distinguish them.

∼FRB:brm =∼HHPB in the presence of autoconcurrency if for each set
of conflicting events all those events are caused by the same event.

∼FRB:brm counts the incoming a-transitions of related configurations,
no bijection between identically labeled events [AubertCristescu20].

∼FRB:brm over P is an operational representation of ∼HHPB.

The `brm-encoding of a . 0 ‖∅ a . 0:
<a, {| a |}> .<a, {| a, a |}> . 0 +<a, {| a |}> .<a, {| a, a |}> . 0

differs from its `brs-encoding:
<a, {a}> .<a, {a, a}> . 0 +<a, {a}> .<a, {a, a}> . 0

Denotational semantics J K for P based on configuration structures
in which events are proof terms.

Ja . 0 ‖∅ a . 0K 6∼HHPB Ja . a . 0K as U∅a and T∅a are independent
while a and .aa are causally related, hence no bijection exists
between the former and the latter that preserves causality.

∼FRB plus backward ready multiset equality distinguish them.

∼FRB:brm =∼HHPB in the presence of autoconcurrency if for each set
of conflicting events all those events are caused by the same event.

∼FRB:brm counts the incoming a-transitions of related configurations,
no bijection between identically labeled events [AubertCristescu20].

∼FRB:brm over P is an operational representation of ∼HHPB.

The `brm-encoding of a . 0 ‖∅ a . 0:
<a, {| a |}> .<a, {| a, a |}> . 0 +<a, {| a |}> .<a, {| a, a |}> . 0

differs from its `brs-encoding:
<a, {a}> .<a, {a, a}> . 0 +<a, {a}> .<a, {a, a}> . 0

Concluding Remarks and Future Work

Reversibility as a bridge between different worlds (branching-time vs. linear-time,

interleaving vs. true concurrency) that retrospectively enlightens concurrency theory:
∼FB is the usual bisimilarity.
∼RB boils down to reverse trace equivalence over Pseq.
≈FRB is branching bisimilarity over Pseq.
∼FRB:brm is almost hereditary history-preserving bisimilarity over P.
Expansion laws addressing interleaving semantics or true concurrency.

Applying noninterference analysis to reversible systems (branching bisimilarity)

and extending causal reversibility by construction [PU07]:
Probabilistic processes (alternation with nondeterminism).
Deterministically timed processes (time additivity/determinism).
Stochastically timed processes (ordinary/exact/strict lumpability,
causal reversibility implies time reversibility).

When does time reversibility imply causal reversibility?

What changes when admitting irreversible actions or recursion?

Underpinning reversible concurrent programming languages?

Unitary transformations in quantum computing are reversible!

Concluding Remarks and Future Work

Reversibility as a bridge between different worlds (branching-time vs. linear-time,

interleaving vs. true concurrency) that retrospectively enlightens concurrency theory:
∼FB is the usual bisimilarity.
∼RB boils down to reverse trace equivalence over Pseq.
≈FRB is branching bisimilarity over Pseq.
∼FRB:brm is almost hereditary history-preserving bisimilarity over P.
Expansion laws addressing interleaving semantics or true concurrency.

Applying noninterference analysis to reversible systems (branching bisimilarity)

and extending causal reversibility by construction [PU07]:
Probabilistic processes (alternation with nondeterminism).
Deterministically timed processes (time additivity/determinism).
Stochastically timed processes (ordinary/exact/strict lumpability,
causal reversibility implies time reversibility).

When does time reversibility imply causal reversibility?

What changes when admitting irreversible actions or recursion?

Underpinning reversible concurrent programming languages?

Unitary transformations in quantum computing are reversible!

Concluding Remarks and Future Work

Reversibility as a bridge between different worlds (branching-time vs. linear-time,

interleaving vs. true concurrency) that retrospectively enlightens concurrency theory:
∼FB is the usual bisimilarity.
∼RB boils down to reverse trace equivalence over Pseq.
≈FRB is branching bisimilarity over Pseq.
∼FRB:brm is almost hereditary history-preserving bisimilarity over P.
Expansion laws addressing interleaving semantics or true concurrency.

Applying noninterference analysis to reversible systems (branching bisimilarity)

and extending causal reversibility by construction [PU07]:
Probabilistic processes (alternation with nondeterminism).
Deterministically timed processes (time additivity/determinism).
Stochastically timed processes (ordinary/exact/strict lumpability,
causal reversibility implies time reversibility).

When does time reversibility imply causal reversibility?

What changes when admitting irreversible actions or recursion?

Underpinning reversible concurrent programming languages?

Unitary transformations in quantum computing are reversible!

Inspiring References

[1] R. Landauer,
“Irreversibility and Heat Generation in the Computing Process”,
IBM Journal of Research and Development 5:183–191, 1961.

[2] C.H. Bennett,
“Logical Reversibility of Computation”,
IBM Journal of Research and Development 17:525–532, 1973.

[3] R. De Nicola, U. Montanari, F. Vaandrager,
“Back and Forth Bisimulations”,
Proc. of CONCUR 1990.

[4] G. Boudol, I. Castellani,
“Flow Models of Distributed Computations: Three Equivalent Semantics for CCS”,
Information and Computation 114:247–314, 1994.

[5] V. Danos, J. Krivine,
“Reversible Communicating Systems”,
Proc. of CONCUR 2004.

[6] I. Phillips, I. Ulidowski,
“Reversing Algebraic Process Calculi”,
Journal of Logic and Algebraic Programming 73:70–96, 2007.

[7] I. Lanese, I. Phillips, I. Ulidowski,
“An Axiomatic Theory for Reversible Computation”,
ACM Trans. on Computational Logic 25(2):11:1–11:40, 2024.

[8] F.P. Kelly,
“Reversibility and Stochastic Networks”,
John Wiley & Sons, 1979.

[9] A. Marin, S. Rossi,
“On the Relations between Markov Chain Lumpability and Reversibility”,
Acta Informatica 54:447–485, 2017.

[10] P. Degano, C. Priami,
“Proved Trees”,
Proc. of ICALP 1992.

[11] G. Boudol, I. Castellani,
“A Non-Interleaving Semantics for CCS Based on Proved Transitions”,
Fundamenta Informaticae 11:433–452, 1988.

[12] R.J. van Glabbeek, U. Goltz,
“Refinement of Actions and Equivalence Notions for Concurrent Systems”,
Acta Informatica 37:229–327, 2001.

[13] Ph. Darondeau, P. Degano,
“Causal Trees: Interleaving + Causality”,
Proc. of the LITP Spring School on Theoretical Computer Science, 1990.

[14] G. Boudol, I. Castellani, M. Hennessy, A. Kiehn,
“A Theory of Processes with Localities”,
Formal Aspects of Computing 6:165–200, 1994.

[15] G. Boudol, I. Castellani,
“Concurrency and Atomicity”,
Theoretical Computer Science 59:25–84, 1988.

[16] A.M. Rabinovich, B.A. Trakhtenbrot,
“Behavior Structures and Nets”,
Acta Informatica 11:357–404, 1988.

[17] M.A. Bednarczyk,
“Hereditary History Preserving Bisimulations or What Is the Power of the Future Perfect in Program Logics”,
Technical Report, Polish Academy of Sciences, Gdansk, 1991.

[18] I. Phillips, I. Ulidowski,
“A Hierarchy of Reverse Bisimulations on Stable Configuration Structures”,
Mathematical Structures in Computer Science 22:333–372, 2012.

[19] C. Aubert, I. Cristescu,
“How Reversibility Can Solve Traditional Questions: The Example of Hereditary History-Preserving Bisimulation”,
Proc. of CONCUR 2020.

Our Contributions

[1] M. Bernardo, S. Rossi,
“Reverse Bisimilarity vs. Forward Bisimilarity”,
Proc. of FOSSACS 2023.

[2] M. Bernardo, A. Esposito,
“On the Weak Continuation of Reverse Bisimilarity vs. Forward Bisimilarity”,
Proc. of ICTCS 2023.

[3] M. Bernardo, A. Esposito,
“Modal Logic Characterizations of Forward, Reverse, and Forward-Reverse Bisimilarities”,
Proc. of GANDALF 2023.

[4] M. Bernardo, A. Esposito, C.A. Mezzina,
“Expansion Laws for Forward-Reverse, Forward, and Reverse Bisimilarities via Proved Encodings”,
Proc. of EXPRESS/SOS 2024.

[5] M. Bernardo, A. Esposito, C.A. Mezzina,
“Alternative Characterizations of Hereditary History-Preserving Bisimilarity via Backward Ready Multisets”,
Proc. of FOSSACS 2025.

[6] A. Esposito, A. Aldini, M. Bernardo,
“Branching Bisimulation Semantics Enables Noninterference Analysis of Reversible Systems”,
Proc. of FORTE 2023.

[7] A. Esposito, A. Aldini, M. Bernardo, S. Rossi,
“Noninterference Analysis of Reversible Systems: An Approach Based on Branching Bisimilarity”,
Logical Methods in Computer Science 21(1):6:1–6:28, 2025.

[8] A. Esposito, A. Aldini, M. Bernardo,
“Noninterference Analysis of Reversible Probabilistic Systems”,
Proc. of FORTE 2024.

[9] A. Esposito, A. Aldini, M. Bernardo,
“Noninterference Analysis of Stochastically Timed Reversible Systems”,
Proc. of FORTE 2025.

[10] A. Esposito, A. Aldini, M. Bernardo,
“Noninterference Analysis of Deterministically Timed Reversible Systems”,
Proc. of QEST+FORMATS 2025.

[11] A. Esposito,
“A Process Algebraic Theory of Reversible Concurrent Systems with Applications to Noninterference Analysis”,
Ph.D. Thesis, University of Urbino, 2025.

[12] M. Bernardo, C.A. Mezzina,
“Towards Bridging Time and Causal Reversibility”,
Proc. of FORTE 2020.

[13] M. Bernardo, C.A. Mezzina,
“Bridging Causal Reversibility and Time Reversibility: A Stochastic Process Algebraic Approach”,
Logical Methods in Computer Science 19(2):6:1–6:27, 2023.

[14] M. Bernardo, I. Lanese, A. Marin, C.A. Mezzina, S. Rossi, C. Sacerdoti Coen,
“Causal Reversibility Implies Time Reversibility”,
Proc. of QEST 2023.

[15] M. Bernardo, C.A. Mezzina,
“Causal Reversibility for Timed Process Calculi with Lazy/Eager Durationless Actions and Time Additivity”,
Proc. of FORMATS 2023.

[16] M. Bernardo, C.A. Mezzina,
“Reversibility in Process Calculi with Nondeterminism and Probabilities”,
Proc. of ICTAC 2024.

[17] M. Bernardo, C.A. Mezzina, A. Esposito,
“Causal Reversibility in Nondeterministic Process Calculi Extended with Time or Probabilities”,
Theoretical Computer Science 1063:115646, 2026.

