A Process Algebraic Theory of Reversible Concurrent Systems

Marco Bernardo
University of Urbino - Italy

Concurrency: Nondeterminism vs. Irreversibility

- Systems composed of many interconnected computing parts that communicate by exchanging information or simply synchronizing.
- Models: shared memory, message passing, web services, ...
- Types: centralized/distributed/decentralized, static/dynamic/mobile.
- Aspects: functionality, security, reliability, performance, ...
- Nondeterminism: the input does not uniquely define the output.
- Due to different speeds, interaction scheme, scheduling policies, ...
- Does the output uniquely define the input? What if it is not the case?
- Irreversibility: typical of functions that are not invertible.
- Example: conjunctions/disjunctions computed inside circuits.

Reversible Computing

- What does (ir)reversibility mean in computing?
- Well established concept in mathematics, physics, chemistry, biology: inverse function, operation, element, reaction, ...
- Much more recent in informatics: seminal papers by Landauer in 1961 and Bennett in 1973 on IBM Journal of Research and Development.
- Landauer principle states that any manipulation of information that is irreversible - i.e., causes information loss - such as:
- erasure/overwriting of bits
- merging of computation paths must be accompanied by a corresponding entropy increase.
- Minimal heat generation due to extra work for standardizing signals and making them independent of their history, so that it becomes impossible to determine the input from the output.
- Due to Landauer principle, the logical irreversibility of a function implies the physical irreversibility of computing that function and the consequent dissipative effects.
- Experimentally verified by Bérut et al in 2012 and revisited in terms of its physical foundations by Frank in 2018.
- Every reversible computation, where no information is lost instead, may be potentially carried out without dissipating further heat.
- Lower energy consumption could therefore be achieved by resorting to reversible computing.
- There are many other applications of reversible computing:
- Biochemical reaction modeling (nature).
- Parallel discrete-event simulation (speedup).
- Fault tolerant computing systems (rollback).
- Robotics and control theory (backtrack).
- Concurrent program debugging (reproducibility).
- Two directions of computation in a reversible system:
- Forward: coincides with the normal way of computing.
- Backward: the effects of the forward one are undone (when needed).
- How to proceed backward? Same path as the forward direction?
- Not necessarily, especially in the case of a concurrent system, where causally independent paths should be deemed equivalent.
- Different notions of reversibility developed in different settings:
- Causal reversibility is the capability of going back to a past state in a way that is consistent with the computational history of the system (easy for sequential systems, hard for concurrent and distributed ones).
- Time reversibility refers to the conditions under which the stochastic behavior remains the same when the direction of time is reversed (quantitative system models, efficient performance evaluation).
- The former implies the latter in models based on Markov chains.

Reversibility in Process Algebra

- There are no inverse process algebraic operators!
- The dynamic approach of [DanosKrivine04] yielding RCCS uses explicit stack-based memories attached to processes to record all the actions executed by those processes.
- A single transition relation is defined, while actions are divided into forward and backward resulting in forward and backward transitions.
- The static approach of [PhillipsUlidowski07] yielding CCSK is a method to reverse calculi by retaining within process syntax:
- all executed actions, which are suitably decorated;
- all dynamic operators, which are therefore treated as static.
- A forward transition relation and a backward transition relation are separately defined, labeled with communication keys so as to know who synchronized with whom when building backward transitions.
- In [PU07] forward-reverse bisimilarity has been introduced too, which is truly concurrent as it does not satisfy the expansion law of parallel composition into a choice among all possible action sequencings:

- With back-and-forth bisimilarity [DeNicolaMontanariVaandrager90] the interleaving view can be restored as this bisimilarity is defined on computations instead of states to preserve both causality and history (one transition relation, viewed as bidirectional, outgoing/incoming).
- What are the properties of bisimilarity over reversible processes?
- Minimal process calculus tailored for reversible processes to comparatively study congruence, axioms, and logics for:
- Forward-reverse bisimilarity.
- Forward-only bisimilarity.
- Reverse-only bisimilarity.
- Two different kinds of bisimilarities:
- Strong bisimilarities (all actions are treated in the same way).
- Weak bisimilarities (abstraction from unobservable actions).
- Initially only sequential processes (i.e., no parallel composition) to be neutral with respect to interleaving view vs. true concurrency.
- Then add parallel composition and investigate expansion laws.

Reversible Nondeterministic Sequential Processes

- We usually describe only the future behavior of processes.
- [PU07] encodes information about the past behavior in the syntax:

$$
P::=\underline{0}|a \cdot P| a^{\dagger} \cdot P \mid P+P
$$

- Countable set A of actions, including the unobservable action τ.
- a^{\dagger}. P executed action a, its forward continuation is inside P, and can undo a after all executed actions within P have been undone.
- Uniform action decorations like in [BoudolCastellani94] instead of communication keys [PU07].
- Consequence of a single transition relation [DMV90].
- No need to distinguish between forward and backward actions [DK04].
- Outgoing vs. incoming transitions in the bisimulation game [DMV90].
- Initial processes: all the actions are unexecuted (they coincide with standard, forward-only processes).
- Final processes: all the actions along a path have been executed (several paths in the presence of + , only one is chosen - \dagger-marked).
- Work with the set \mathbb{P} of reachable processes:

```
                    reachable(0)
    reachable (a.P) \Longleftarrow initial(P)
    reachable( }\mp@subsup{a}{}{\dagger}.P)\Longleftarrow\mathrm{ reachable }(P
reachable ( }\mp@subsup{P}{1}{}+\mp@subsup{P}{2}{})\Longleftarrow(\mathrm{ reachable }(\mp@subsup{P}{1}{})\wedge\mathrm{ initial ( }\mp@subsup{P}{2}{}))
(initial( (P1)^ reachable ( }\mp@subsup{P}{2}{})\mathrm{ )
```

- In $P_{1}+P_{2}$ both subprocesses can be initial (at least one must be).
- Every initial or final process is reachable too ($\underline{0}$ is both).
- \mathbb{P} also contains processes that are neither initial nor final: a^{\dagger}. b. $\underline{0}$.
- Past actions can never follow future actions: $b \cdot a^{\dagger} . \underline{0} \notin \mathbb{P}$.
- Since all information needed to enable reversibility is in the syntax, action prefix and choice are made static by the semantics [PU07].
- Semantics defined according to the structural operational approach: labeled transition system $(\mathbb{P}, A, \longrightarrow)$ where $\longrightarrow \subseteq \mathbb{P} \times A \times \mathbb{P}$.
- Single transition relation viewed as symmetric to meet loop property: executed actions can be undone and undone actions can be redone (necessary condition for any reasonable notion of reversibility).
- Outgoing/incoming transitions for forward/backward bisimilarity like in [DMV90].
- Transition $P \xrightarrow{a} P^{\prime}$ goes:
- forward if it is viewed as an outgoing transition of P, in which case action a is done.
- backward if it is viewed as an incoming transition of P^{\prime}, in which case action a is undone.
- Semantic rules for action prefix:

$$
\frac{\operatorname{initial}(P)}{a \cdot P \xrightarrow{a} a^{\dagger} \cdot P} \quad \frac{P \xrightarrow{b} P^{\prime}}{a^{\dagger} \cdot P \xrightarrow{b} a^{\dagger} \cdot P^{\prime}}
$$

- The prefix related to the executed action is not discarded.
- It becomes a \dagger-decorated part of the target process, necessary to offer again that action after rolling back.
- Additional rule for performing unexecuted actions that are preceded by already executed actions (direct consequence of making prefix static).
- This rule propagates actions executed by initial subprocesses.
- Can we view a^{\dagger}. - as the inverse operator of a..?
- Semantic rules for alternative composition:

$$
\frac{P_{1} \xrightarrow{a} P_{1}^{\prime} \quad \text { initial }\left(P_{2}\right)}{P_{1}+P_{2} \xrightarrow{a} P_{1}^{\prime}+P_{2}} \quad \frac{P_{2} \xrightarrow{a} P_{2}^{\prime} \quad \text { initial }\left(P_{1}\right)}{P_{1}+P_{2} \xrightarrow{a} P_{1}+P_{2}^{\prime}}
$$

- The subprocess not involved in the executed action is not discarded but cannot proceed further (only the non-initial subprocess can).
- It becomes part of the target process, which is necessary for offering again the original choice after undoing all the executed actions.
- If both subprocesses are initial, both rules apply (nondet. choice).
- If not, should operator + become something like $+^{\dagger}$?

Not needed due to action decorations within either subprocess.

- The labeled transition system underlying an initial process is a tree, whose branching points correspond to occurrences of + :
- Every non-final process has at least one outgoing transition.
- Every non-initial process has exactly one incoming transition due to decorations associated with executed actions.
- Consider the two initial processes $a \cdot \underline{0}$ and $a \cdot \underline{0}+a . \underline{0}$:

- Single a-transition on the right in a forward-only process calculus.
- These two distinct processes should be considered equivalent though.

Bisimilarities for Reversible Nondeterministic Processes

- Bisimulation game: outgoing transitions for forward direction and incoming transitions for backward direction [DMV90].
- A symmetric relation \mathcal{B} over \mathbb{P} is a:
- Forward bisimulation iff for all $\left(P_{1}, P_{2}\right) \in \mathcal{B}$ and $a \in A$:
- for each $P_{1} \xrightarrow{a} P_{1}^{\prime}$ there exists $P_{2} \xrightarrow{a} P_{2}^{\prime}$ such that $\left(P_{1}^{\prime}, P_{2}^{\prime}\right) \in \mathcal{B}$.
- Reverse bisimulation iff for all $\left(P_{1}, P_{2}\right) \in \mathcal{B}$ and $a \in A$:
- for each $P_{1}^{\prime} \xrightarrow{a} P_{1}$ there exists $P_{2}^{\prime} \xrightarrow{a} P_{2}$ such that $\left(P_{1}^{\prime}, P_{2}^{\prime}\right) \in \mathcal{B}$.
- Forward-reverse bisimulation iff for all $\left(P_{1}, P_{2}\right) \in \mathcal{B}$ and $a \in A$:
- for each $P_{1} \xrightarrow{a} P_{1}^{\prime}$ there exists $P_{2} \xrightarrow{a} P_{2}^{\prime}$ such that $\left(P_{1}^{\prime}, P_{2}^{\prime}\right) \in \mathcal{B}$;
- for each $P_{1}^{\prime} \xrightarrow{a} P_{1}$ there exists $P_{2}^{\prime} \xrightarrow{a} P_{2}$ such that $\left(P_{1}^{\prime}, P_{2}^{\prime}\right) \in \mathcal{B}$.
- Largest such relations: $\sim_{\mathrm{FB}}, \sim_{\mathrm{RB}}, \sim_{\mathrm{FRB}}$.
- In order for $P_{1}, P_{2} \in \mathbb{P}$ to be identified by $\sim_{\mathrm{FB}} / \sim_{\mathrm{RB}}$, the sets of actions labeling their outgoing/incoming transitions must coincide (forward/backward ready set).

Discriminating Power

- $\sim_{\mathrm{FRB}} \subsetneq \sim_{\mathrm{FB}} \cap \sim_{\mathrm{RB}}:$
- The inclusion is strict because the final processes $a^{\dagger} . \underline{0}$ and $a^{\dagger} . \underline{0}+c . \underline{0}$ are identified by $\sim_{\text {FB }}$ and $\sim_{\text {RB }}$, but distinguished by $\sim_{\text {FRB }}$.
- \sim_{FB} and \sim_{RB} are incomparable because $a^{\dagger} . \underline{0} \sim_{\mathrm{FB}} \underline{0}$ but $a^{\dagger} . \underline{0} \not_{\mathrm{RB}} \underline{0}$ while $a . \underline{0} \sim_{\mathrm{RB}} \underline{0}$ but $a . \underline{0} \not \nsim \mathrm{FB}^{\underline{0}}$.
- First comparative remark $\left(\sim_{\mathrm{FB}}\right.$ vs. $\left.\sim_{\mathrm{RB}}\right)$:
- $\sim_{\text {FRB }}=\sim_{\text {FB }}$ over initial processes, with $\sim_{\text {RB }}$ strictly coarser.
- $\sim_{\text {FRB }} \neq \sim_{\text {RB }}$ over final processes because, after going backward, discarded subprocesses come into play again for $\sim_{\text {FRB }}$.
- $a . \underline{0}$ and $a . \underline{0}+a . \underline{0}$ are identified by all three bisimilarities as witnessed by any bisimulation containing the pairs

$$
(a \cdot \underline{0}, a \cdot \underline{0}+a \cdot \underline{0}),\left(a^{\dagger} \cdot \underline{0}, a^{\dagger} \cdot \underline{0}+a \cdot \underline{0}\right),\left(a^{\dagger} \cdot \underline{0}, a \cdot \underline{0}+a^{\dagger} \cdot \underline{0}\right) .
$$

Compositionality Properties

－\sim_{FB} equates processes with different past：$a_{1}^{\dagger} \cdot \underline{0} \sim_{\mathrm{FB}} a_{2}^{\dagger} \cdot \underline{0} \sim_{\mathrm{FB}} \underline{0}$ ．
－\sim_{RB} equates processes with different future：$a_{1} \cdot \underline{0} \sim_{\mathrm{RB}} a_{2} \cdot \underline{0} \sim_{\mathrm{RB}} \underline{0}$ ．
－Second comparative remark：
－$a^{\dagger} . b . \underline{0} \sim_{\mathrm{FB}} b . \underline{0}$ but $a^{\dagger} . b \cdot \underline{0}+c . \underline{0} \not \chi_{\mathrm{FB}} b . \underline{0}+c . \underline{0}$.
－$a^{\dagger} . b . \underline{0} \not \nsim \mathrm{RB} b . \underline{0}$ hence no such compositionality violation for \sim_{RB} ．
－$\sim_{R B}$ and $\sim_{\text {FRB }}$ never identify an initial process with a non－initial one， hence $\sim_{\text {FB }}$ has to be made sensitive to the presence of the past．
－A symmetric relation \mathcal{B} over \mathbb{P} is a past－sensitive forward bisimulation iff it is a forward bisimulation in which initial $\left(P_{1}\right) \Longleftrightarrow$ initial $\left(P_{2}\right)$ for all $\left(P_{1}, P_{2}\right) \in \mathcal{B}$ ．Largest such relation：$\sim_{\text {FB：ps }}$ ．
－$a_{1}^{\dagger} \cdot \underline{0} \sim_{\mathrm{FB}: \mathrm{ps}} a_{2}^{\dagger} . \underline{0}$ ，but $a^{\dagger} . \underline{0} \not \chi_{\mathrm{FB}: \mathrm{ps}} \underline{0}$ and $a^{\dagger} . b . \underline{0} \not_{\mathrm{FB}: \mathrm{ps}} b . \underline{0}$ ．
－Let $P_{1}, P_{2} \in \mathbb{P}$ be s．t．$P_{1} \sim P_{2}$ and take arbitrary $a \in A$ and $P \in \mathbb{P}$ ．
－All the considered bisimilarities are congruences w．r．t．action prefix：
－a．$P_{1} \sim a . P_{2}$ provided that initial $\left(P_{1}\right) \wedge$ initial $\left(P_{2}\right)$ ．
－$a^{\dagger} . P_{1} \sim a^{\dagger} . P_{2}$ ．
－$\sim_{\text {FB：ps }}, \sim_{\mathrm{RB}}, \sim_{\mathrm{FRB}}$ are congruences w．r．t．alternative composition：
－$P_{1}+P \sim P_{2}+P$ and $P+P_{1} \sim P+P_{2}$ provided that initial $(P) \vee\left(\right.$ initial $\left.\left(P_{1}\right) \wedge \operatorname{initial}\left(P_{2}\right)\right)$ ．
－$\sim_{\text {FB：ps }}$ is the coarsest congruence w．r．t．+ contained in $\sim_{\text {FB }}$ ：
－$P_{1} \sim_{\text {FB：ps }} P_{2}$ iff $P_{1}+P \sim_{\mathrm{FB}} P_{2}+P$ for all $P \in \mathbb{P}$ s．t．initial $(P) \vee\left(\right.$ initial $\left.\left(P_{1}\right) \wedge \operatorname{initial}\left(P_{2}\right)\right)$ ．

Equational Characterizations

- Deduction system based on these axioms and inference rules on \mathbb{P} :
- Reflexivity: $P=P$.
- Symmetry: $\frac{P_{1}=P_{2}}{P_{2}=P_{1}}$.
- Transitivity: $\frac{P_{1}=P_{2} \quad P_{2}=P_{3}}{P_{1}=P_{3}}$.
- .-Substitutivity: $\frac{P_{1}=P_{2} \quad \text { initial }\left(P_{1}\right) \wedge \text { initial }\left(P_{2}\right)}{a \cdot P_{1}=a \cdot P_{2}}, \frac{P_{1}=P_{2}}{a^{\dagger} \cdot P_{1}=a^{\dagger} \cdot P_{2}}$.
- +-Substitutivity: $\frac{P_{1}=P_{2} \quad \text { initial }(P) \vee\left(\text { initial }\left(P_{1}\right) \wedge \text { initial }\left(P_{2}\right)\right)}{P_{1}+P=P_{2}+P \quad P+P_{1}=P+P_{2}}$.
- Correspond to $\sim_{\text {FB:ps }}, \sim_{\mathrm{RB}}, \sim_{\mathrm{FRB}}$ being equivalence relations as well as congruences w.r.t. action prefix and alternative composition.
- Axioms:

$\left(\mathcal{A}_{1}\right)$		$(P+Q)+R$	$=$	$P+(Q+R)$
$\left(\mathcal{A}_{2}\right)$	$P+Q$	$=$	$Q+P$	
$\left(\mathcal{A}_{3}\right)$				
$\left(\mathcal{A}_{4}\right)$	$\left[\sim_{\text {FB:ps }}\right]$	$a^{\dagger} \cdot P$	$=$	P
$\left(\mathcal{A}_{5}\right)$	$\left[\sim_{\text {FB:ps }}\right]$	$a^{\dagger} \cdot P$	$=$	$b^{\dagger} \cdot P$

- \mathcal{A}_{8} subsumes \mathcal{A}_{3} (with $Q=\underline{0}$) and \mathcal{A}_{9} (with $Q=P$).
- \mathcal{A}_{9} and \mathcal{A}_{6} apply in two different cases (P initial or not).
- \mathcal{A}_{10} appeared for the first time in [LanesePhillips21].
- $\vdash_{4,5,6,9}^{1,2,3} / \vdash_{7,8}^{1,2} / \vdash_{10}^{1,2,3}$ sound and complete for $\sim_{\text {FB:ps }} / \sim_{\text {RB }} / \sim_{\text {FRB }}$.
- Third comparative remark: explicit vs. implicit idempotency.

Modal Logic Characterizations

- Hennessy-Milner logic extended with a backward modality (and init) from which suitable fragments are taken.
- Syntax:

$$
\phi::=\text { true } \mid \text { init }|\neg \phi| \phi \wedge \phi|\langle a\rangle \phi|\left\langle a^{\dagger}\right\rangle \phi
$$

- Semantics:

```
\(P \models\) true \(\quad\) for all \(P \in \mathbb{P}\)
\(P \vDash\) init iff initial \((P)\)
\(P \models \neg \phi \quad\) iff \(P \not \vDash \phi\)
\(P \models \phi_{1} \wedge \phi_{2} \quad\) iff \(P \models \phi_{1}\) and \(P \models \phi_{2}\)
\(P \vDash\langle a\rangle \phi \quad\) iff there is \(P^{\prime} \in \mathbb{P}\) such that \(P \xrightarrow{a} P^{\prime}\) and \(P^{\prime} \models \phi\)
\(P \vDash\left\langle a^{\dagger}\right\rangle \phi \quad\) iff there is \(P^{\prime} \in \mathbb{P}\) such that \(P^{\prime} \xrightarrow{a} P\) and \(P^{\prime} \models \phi\)
```

- Fragments characterizing the four strong bisimilarities:

	true	init	\checkmark	\wedge	$\langle a\rangle$	$\left\langle a^{\dagger}\right\rangle$
$\mathcal{L}_{\mathrm{FB}}$	\checkmark		\checkmark	\checkmark	\checkmark	
$\mathcal{L}_{\mathrm{FB}: \mathrm{ps}}$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
$\mathcal{L}_{\mathrm{RB}}$	\checkmark					\checkmark
$\mathcal{L}_{\mathrm{FRB}}$	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark

- $\mathcal{L}_{\mathrm{FB}} / \mathcal{L}_{\mathrm{FB}: \mathrm{ps}} / \mathcal{L}_{\mathrm{RB}} / \mathcal{L}_{\mathrm{FRB}}$ characterizes $\sim_{\mathrm{FB}} / \sim_{\mathrm{FB}: \mathrm{ps}} / \sim_{\mathrm{RB}} / \sim_{\mathrm{FRB}}:$ $P_{1} \sim_{B} P_{2}$ iff $\forall \phi \in \mathcal{L}_{B} . P_{1} \models \phi \Longleftrightarrow P_{2} \models \phi$.
- \sim_{RB} boils down to reverse trace equivalence!
- Every process has at most one incoming transition.

Weak Bisimilarities

- Abstracting from τ-actions: $P \xlongequal{\tau^{*}} P^{\prime}, P \xlongequal{\tau^{*}} \stackrel{a}{\longrightarrow}{ }^{\tau^{*}} P^{\prime}$.
- A symmetric relation \mathcal{B} over \mathbb{P} is a $(a \in A \backslash\{\tau\})$:
- Weak forward bisimulation iff for all $\left(P_{1}, P_{2}\right) \in \mathcal{B}$:
- for each $P_{1} \xrightarrow{\tau} P_{1}^{\prime}$ there is $P_{2} \xrightarrow{\tau^{*}} P_{2}^{\prime}$ s.t. $\left(P_{1}^{\prime}, P_{2}^{\prime}\right) \in \mathcal{B}$;
- for each $P_{1} \xrightarrow{a} P_{1}^{\prime}$ there is $P_{2} \xrightarrow{\tau^{*}} \xrightarrow{a} \xrightarrow{\tau^{*}} P_{2}^{\prime}$ s.t. $\left(P_{1}^{\prime}, P_{2}^{\prime}\right) \in \mathcal{B}$.
- Weak reverse bisimulation iff for all $\left(P_{1}, P_{2}\right) \in \mathcal{B}$ and $a \in A$:
- for each $P_{1}^{\prime} \xrightarrow{\tau} P_{1}$ there is $P_{2}^{\prime} \xrightarrow{\tau^{*}} P_{2}$ s.t. $\left(P_{1}^{\prime}, P_{2}^{\prime}\right) \in \mathcal{B}$;
- for each $P_{1}^{\prime} \xrightarrow{a} P_{1}$ there is $P_{2}^{\prime} \xrightarrow{\tau^{*}} \xrightarrow{a} \xrightarrow{\tau^{*}} P_{2}$ s.t. $\left(P_{1}^{\prime}, P_{2}^{\prime}\right) \in \mathcal{B}$.
- Weak forward-reverse bisimulation iff for all $\left(P_{1}, P_{2}\right) \in \mathcal{B}$ and $a \in A$:
- for each $P_{1} \xrightarrow{\tau} P_{1}^{\prime}$ there is $P_{2} \xrightarrow{\tau^{*}} P_{2}^{\prime}$ s.t. $\left(P_{1}^{\prime}, P_{2}^{\prime}\right) \in \mathcal{B}$;
- for each $P_{1} \xrightarrow{a} P_{1}^{\prime}$ there is $P_{2} \xrightarrow{\tau^{*}} \xrightarrow{a} \xrightarrow{\tau^{*}} P_{2}^{\prime}$ s.t. $\left(P_{1}^{\prime}, P_{2}^{\prime}\right) \in \mathcal{B}$;
- for each $P_{1}^{\prime} \xrightarrow{\tau} P_{1}$ there is $P_{2}^{\prime} \xrightarrow{\tau^{*}} P_{2}$ s.t. $\left(P_{1}^{\prime}, P_{2}^{\prime}\right) \in \mathcal{B}$;
- for each $P_{1}^{\prime} \xrightarrow{a} P_{1}$ there is $P_{2}^{\prime} \xrightarrow{\tau^{*}} \stackrel{a}{\longrightarrow} P_{2}$ s.t. $\left(P_{1}^{\prime}, P_{2}^{\prime}\right) \in \mathcal{B}$.
- Largest such relations: $\approx_{\mathrm{FB}}, \approx_{\mathrm{RB}}, \approx_{\mathrm{FRB}}$.
- Each weak bisimilarity is strictly coarser than its strong counterpart.
- $\approx_{\mathrm{FRB}} \subsetneq \approx_{\mathrm{FB}} \cap \approx_{\mathrm{RB}}$ with \approx_{FB} and \approx_{RB} being incomparable.
- $\approx_{\mathrm{FRB}} \neq \approx_{\mathrm{FB}}$ over initial processes:
- $\tau \cdot a \cdot \underline{0}+a \cdot \underline{0}+b \cdot \underline{0}$ and $\tau \cdot a \cdot \underline{0}+b \cdot \underline{0}$ are identified by \approx_{FB} but told apart by $\approx_{\text {FRB }}$
- Doing a on the left is matched by doing τ and then a on the right.
- Undoing a on the right cannot be matched on the left.
- $c .(\tau \cdot a \cdot \underline{0}+a \cdot \underline{0}+b \cdot \underline{0})$ and $c .(\tau \cdot a \cdot \underline{0}+b \cdot \underline{0})$ is an analogous counterexample with non-initial τ-actions:
- Doing c on one side is matched by doing c on the other side.
- Doing a on the left is matched by doing τ and then a on the right.
- Undoing a on the right cannot be matched on the left.
- Neither \approx_{FB} nor \approx_{FRB} is compositional:
- $a^{\dagger} . b \cdot \underline{0} \approx_{\mathrm{FB}} b . \underline{0}$ but $a^{\dagger} \cdot b \cdot \underline{0}+c . \underline{0} \not \nsim \mathrm{~F}_{\mathrm{FB}} b \cdot \underline{0}+c . \underline{0}$ (same as \sim_{FB}).
- $\tau . a . \underline{0} \approx_{\mathrm{FB}} a . \underline{0}$ but $\tau . a . \underline{0}+b . \underline{0} \not \boldsymbol{z}_{\mathrm{FB}} a . \underline{0}+b . \underline{0}$.
- $\tau . a \cdot \underline{0} \approx_{\mathrm{FRB}} a . \underline{0}$ but $\tau . a \cdot \underline{0}+b . \underline{0} \not \boldsymbol{z}_{\mathrm{FRB}} a \cdot \underline{0}+b . \underline{0}$.
- Weak congruence construction à la Milner does not work here.
- A symmetric relation \mathcal{B} over \mathbb{P} is a weak past-sensitive forward bisim. iff it is a weak forward bisim. in which initial $\left(P_{1}\right) \Longleftrightarrow$ initial $\left(P_{2}\right)$ for all $\left(P_{1}, P_{2}\right) \in \mathcal{B}$. Largest such relation: $\approx_{\mathrm{FB} \text { :ps }}$.
- A symm. rel. \mathcal{B} over \mathbb{P} is a weak past-sensitive forward-reverse bisim. iff it is a weak forward-reverse bisim. s.t. initial $\left(P_{1}\right) \Longleftrightarrow \operatorname{initial}\left(P_{2}\right)$ for all $\left(P_{1}, P_{2}\right) \in \mathcal{B}$. Largest such relation: $\approx_{\text {FRB:ps }}$.
- $\sim_{\text {FRB }} \subsetneq \approx_{\text {FRB:ps }}$ as the former satisfies the initiality condition.
- Let $P_{1}, P_{2} \in \mathbb{P}$ be s.t. $P_{1} \approx P_{2}$ and take arbitrary $a \in A$ and $P \in \mathbb{P}$.
- All the considered bisimilarities are congruences w.r.t. action prefix:
- a. $P_{1} \approx a . P_{2}$ provided that initial $\left(P_{1}\right) \wedge$ initial $\left(P_{2}\right)$.
- $a^{\dagger} . P_{1} \approx a^{\dagger} . P_{2}$.
- $\approx_{\mathrm{FB}: \mathrm{ps}}, \approx_{\mathrm{RB}}, \approx_{\mathrm{FRB}: \text { ps }}$ are congruences w.r.t. alternative composition:
- $P_{1}+P \approx P_{2}+P$ and $P+P_{1} \approx P+P_{2}$ provided that initial $(P) \vee\left(\right.$ initial $\left.\left(P_{1}\right) \wedge \operatorname{initial}\left(P_{2}\right)\right)$.
- $\approx_{\text {FB:ps }}$ is the coarsest congruence w.r.t. + contained in \approx_{FB} :
- $P_{1} \approx_{\mathrm{FB}: \mathrm{ps}} P_{2}$ iff $P_{1}+P \approx_{\mathrm{FB}} P_{2}+P$ for all $P \in \mathbb{P}$ s.t. initial $(P) \vee\left(\right.$ initial $\left.\left(P_{1}\right) \wedge \operatorname{initial}\left(P_{2}\right)\right)$.
- $\approx_{\text {FRB:ps }}$ is the coarsest congruence w.r.t. + contained in $\approx_{\text {FRB }}$:
- $P_{1} \approx_{\text {FRB:ps }} P_{2}$ iff $P_{1}+P \approx_{\text {FRB }} P_{2}+P$ for all $P \in \mathbb{P}$ s.t. initial $(P) \vee\left(\operatorname{initial}\left(P_{1}\right) \wedge \operatorname{initial}\left(P_{2}\right)\right)$.
- Additional axioms (τ-laws):

$\begin{aligned} & \left(\mathcal{A}_{1}^{\tau}\right) \\ & \left(\mathcal{A}_{2}^{\tau}\right) \\ & \left(\mathcal{A}_{3}^{\tau}\right) \\ & \left(\mathcal{A}_{4}^{\tau}\right) \\ & \hline \end{aligned}$	$\begin{aligned} & {\left[\approx_{\mathrm{FB}: \mathrm{ps}}\right]} \\ & {\left[\approx_{\mathrm{FB}: \mathrm{ps}}\right]} \\ & {\left[\approx_{\mathrm{FB}: \mathrm{ps}}\right]} \\ & {\left[\approx_{\mathrm{FB}: \mathrm{ps}}\right]} \end{aligned}$	$\begin{aligned} a \cdot \tau \cdot P & = \\ P+\tau \cdot P & = \\ a \cdot(P+\tau \cdot Q)+a \cdot Q & = \\ a^{\dagger} \cdot \tau \cdot P & = \end{aligned}$	$\begin{aligned} & a \cdot P \\ & \tau \cdot P \\ & a \cdot(P+\tau \cdot Q) \\ & a^{\dagger} \cdot P \end{aligned}$	where initial (P) where initial (P) where P, Q initial where initial (P)
$\left(\mathcal{A}_{5}^{\tau}\right)$	[\sim_{RB}]	P	P	
$\begin{aligned} & \left(\mathcal{A}_{6}^{\tau}\right) \\ & \left(\mathcal{A}_{7}^{\tau}\right) \\ & \left(\mathcal{A}_{8}^{\tau}\right) \end{aligned}$	$\begin{aligned} & {\left[\approx_{\text {FRB:ps }}\right]} \\ & {\left[\approx_{\text {FRB:ps }}\right]} \\ & {\left[\approx_{\text {FRB:ps }}\right]} \end{aligned}$	$\begin{aligned} a \cdot(\tau \cdot(P+Q)+P) & = \\ a^{\dagger} \cdot\left(\tau \cdot(P+Q)+P^{\prime}\right) & = \\ a^{\dagger} \cdot\left(\tau^{\dagger} \cdot\left(P^{\prime}+Q\right)+P\right) & = \end{aligned}$	$\begin{aligned} & a \cdot(P+Q) \\ & a^{\dagger} \cdot\left(P^{\prime}+Q\right) \\ & a^{\dagger} \cdot\left(P^{\prime}+Q\right) \end{aligned}$	where P, Q initial if to_initial $\left(P^{\prime}\right)=P$, where P, Q initial if to_initial $\left(P^{\prime}\right)=P$, where initial (P)

- $\mathcal{A}_{1}^{\tau}, \mathcal{A}_{2}^{\tau}, \mathcal{A}_{3}^{\tau}$ are Milner τ-laws, \mathcal{A}_{4}^{τ} is needed for completeness.
- \mathcal{A}_{5}^{τ} is a variant of $\tau . P=P$ (not valid for weak bisim. congruence).
- \mathcal{A}_{6}^{τ} is Van Glabbeek - Weijland τ-law, \mathcal{A}_{7}^{τ} and \mathcal{A}_{8}^{τ} needed for complet.
- $\vdash_{1,2,3,4}^{1,2,3,4,5,6,9} / \vdash_{5}^{1,2,7,8} / \vdash_{6,7,8}^{1,2,3,10}$ sound and complete for $\approx_{\mathrm{FB}: \mathrm{ps}} / \approx_{\mathrm{RB}} / \approx_{\mathrm{FRB}: \mathrm{ps}}$.
- $\approx_{\text {FRB }}$ is branching bisimilarity over initial processes!
- Modal logic with weak forward/backward modalities ($a \in A \backslash\{\tau\}$):

$$
\phi::=\text { true } \mid \text { init }|\neg \phi| \phi \wedge \phi|\langle\langle\tau\rangle\rangle \phi|\langle\langle a\rangle\rangle \phi\left|\left\langle\left\langle\tau^{\dagger}\right\rangle\right\rangle \phi\right|\left\langle\left\langle a^{\dagger}\right\rangle\right\rangle \phi
$$

- Semantics:

P	\models true	for all $P \in \mathbb{P}$
P	\models init	iff initial (P)
P	$\models \neg \phi$	iff $P \not \models \phi$
P	$\models \phi_{1} \wedge \phi_{2}$	iff $P \models \phi_{1}$ and $P \models \phi_{2}$
P	$\models\langle\langle\tau\rangle\rangle \phi$	iff there is $P^{\prime} \in \mathbb{P}$ such that $P \xlongequal{\tau^{*}} P^{\prime}$ and $P^{\prime} \models \phi$
P	$\models\langle\langle a\rangle\rangle$	iff there is $P^{\prime} \in \mathbb{P}$ such that $P \xlongequal{\tau^{*}} \xrightarrow{a} \xlongequal{\tau^{*}} P^{\prime}$ and $P^{\prime} \models \phi$
P	$\models\left\langle\left\langle\tau^{\top}\right\rangle \phi\right.$	iff there is $P^{\prime} \in \mathbb{P}$ such that $P^{\prime} \xrightarrow{\tau^{*}} P$ and $P^{\prime} \models \phi$
P	$\models\left\langle\left\langle a^{\dagger}\right\rangle\right\rangle \phi$	iff there is $P^{\prime} \in \mathbb{P}$ such that $P^{\prime} \xrightarrow{\tau^{*}} \xrightarrow{a} \xlongequal{\tau^{*}} P$ and $P^{\prime} \models \phi$

- Fragments characterizing the five weak bisimilarities:

	true	init	\checkmark	\wedge	$\langle\langle\tau\rangle\rangle$	$\langle\langle a\rangle\rangle$	$\left\langle\left\langle\tau^{\top}\right\rangle\right\rangle$	$\left\langle\left\langle a^{\dagger}\right\rangle\right\rangle$
$\mathcal{L}_{\mathrm{FB}}^{\tau}$	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark		
$\mathcal{L}_{\mathrm{FB}: \mathrm{ps}}^{\tau}$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
$\mathcal{L}_{\mathrm{RB}}^{\tau}$	\checkmark						\checkmark	\checkmark
$\mathcal{L}_{\mathrm{FRB}}^{\tau}$	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
$\mathcal{L}_{\mathrm{FRB}: \mathrm{ps}}^{\tau}$	\checkmark							

- $\mathcal{L}_{\mathrm{FB}}^{\tau} / \mathcal{L}_{\mathrm{FB}: \mathrm{ps}}^{\tau} / \mathcal{L}_{\mathrm{RB}}^{\tau} / \mathcal{L}_{\mathrm{FRB}}^{\tau} / \mathcal{L}_{\mathrm{FRB}: \mathrm{ps}}^{\tau}$ characterizes

$$
\begin{aligned}
& \approx_{\mathrm{FB}} / \approx_{\mathrm{FB}: \mathrm{ps}} / \approx_{\mathrm{RB}} / \approx_{\mathrm{FRB}} / \approx_{\mathrm{FRB}: \mathrm{ps}}: \\
& \quad P_{1} \approx_{B} P_{2} \text { iff } \forall \phi \in \mathcal{L}_{B}^{\tau} . P_{1} \models \phi \Longleftrightarrow P_{2} \models \phi .
\end{aligned}
$$

Expansion Laws for Concurrent Processes

- We now include parallel composition in the syntax:

$$
P::=\underline{0}|a \cdot P| a^{\dagger} \cdot P|P+P| P \|_{L} P
$$

- Then for $a \neq b$:

- $\sim_{\text {FB }}$ is interleaving, while $\sim_{R B}$ and $\sim_{\text {FRB }}$ are truly concurrent.
- What are the expansion laws for $\sim_{\mathrm{FB}}, \sim_{\mathrm{RB}}, \sim_{\mathrm{FRB}}$?
- Expansion laws for forward-only calculi in the interleaving setting identify $a \cdot \underline{0} \|_{\emptyset} b \cdot \underline{0}$ and $a \cdot b \cdot \underline{0}+b \cdot a \cdot \underline{0}$ [HennessyMilner85].
- Used also in truly concurrent semantics to distinguish those processes by adding suitable discriminating information within action prefixes:
- Causal bisimilarity [DarondeauDegano90] (corresponding to history-preserving bisimilarity): every action is enriched with the set of its causing actions expressed as backward pointers, hence $\langle a, \emptyset\rangle .\langle b, \emptyset\rangle . \underline{0}+\langle b, \emptyset\rangle .\langle a, \emptyset\rangle . \underline{0}$ and $\langle a, \emptyset\rangle .\langle b,\{1\}\rangle . \underline{0}+\langle b, \emptyset\rangle .\langle a,\{1\}\rangle . \underline{0}$.
- Location bisimilarity [BoudolCastellaniHennessyKiehn94]: every action is enriched with the name of the location in which it is executed,
hence $\left\langle a, l_{a}\right\rangle .\left\langle b, l_{b}\right\rangle . \underline{0}+\left\langle b, l_{b}\right\rangle .\left\langle a, l_{a}\right\rangle . \underline{0}$ and $\left\langle a, l_{a}\right\rangle .\left\langle b, l_{a} l_{b}\right\rangle . \underline{0}+\left\langle b, l_{b}\right\rangle .\left\langle a, l_{b} l_{a}\right\rangle . \underline{0}$.
- Pomset bisimilarity [BoudolCastellani88]: a prefix may contain the combination of actions that are independent of each other, hence $a \cdot b \cdot \underline{0}+b \cdot a \cdot \underline{0}+(a \| b) . \underline{0}$.
- How to uniformly derive expansion laws for $\sim_{F B}, \sim_{R B}, \sim_{\text {FRB }}$?
- Proved trees approach of [DeganoPriami92].
- Label every transition with a proof term [BoudolCastellani88], which is an action preceded by the operators in the scope of which it occurs:

$$
\theta::=a|. \theta|+\theta|+\theta| \Downarrow \theta \mid\lfloor\theta \mid\langle\theta, \theta\rangle
$$

- The equivalence of interest then drives an observation function that maps proof terms to the required observations.
- Interleaving: proof terms are reduced to the actions they contain.
- True concurrency: they are transformed into actions extended with suitable discriminating information (encoding processes accordingly).
- Information not necessarily available in the operational semantics, as is the case with $\sim_{R B}$ and $\sim_{\text {FRB }}$.
- Proved operational semantic rules:

$$
\begin{aligned}
& \text { initial(}(P) \\
& \overline{a \cdot P \xrightarrow{a} a^{\dagger} . P} \\
& \frac{P_{1} \xrightarrow{\theta} P_{1}^{\prime} \quad \text { initial }\left(P_{2}\right)}{P_{1}+P_{2} \xrightarrow{+\theta} P_{1}^{\prime}+P_{2}} \\
& \frac{P_{1} \xrightarrow{\theta} P_{1}^{\prime} \operatorname{act}(\theta) \notin L}{P_{1}\left\|_{L} P_{2} \xrightarrow{\Downarrow \theta} P_{1}^{\prime}\right\|_{L} P_{2}} \\
& \xrightarrow{P_{1} \xrightarrow{\theta_{1}} P_{1}^{\prime} \quad P_{2} \xrightarrow{\theta_{2}} P_{2}^{\prime} \quad \operatorname{act}\left(\theta_{1}\right)=\operatorname{act}\left(\theta_{2}\right) \in L} P_{1}\left\|_{L} P_{2} \xrightarrow{\left\langle\theta_{1}, \theta_{2}\right\rangle} P_{1}^{\prime}\right\|_{L} P_{2}^{\prime}
\end{aligned}
$$

- Forward clause rephrased:
- For each $P_{1} \xrightarrow{\theta_{1}} P_{1}^{\prime}$ there exists $P_{2} \xrightarrow{\theta_{2}} P_{2}^{\prime}$ such that $\operatorname{act}\left(\theta_{1}\right)=\operatorname{act}\left(\theta_{2}\right)$ and $\left(P_{1}^{\prime}, P_{2}^{\prime}\right) \in \mathcal{B}$.
- Backward clause rephrased:
- For each $P_{1}^{\prime} \xrightarrow{\theta_{1}} P_{1}$ there exists $P_{2}^{\prime} \xrightarrow{\theta_{2}} P_{2}$ such that $\operatorname{act}\left(\theta_{1}\right)=\operatorname{act}\left(\theta_{2}\right)$ and $\left(P_{1}^{\prime}, P_{2}^{\prime}\right) \in \mathcal{B}$.
- Observation function ℓ applied to proof terms labeling transitions, so that $\ell\left(\theta_{1}\right)$ and $\ell\left(\theta_{2}\right)$ are considered in the bisimulation game.
- May depend on other possible parameters that are present in the proved labeled transition system.
- Preserves actions: $\ell\left(\theta_{1}\right)=\ell\left(\theta_{2}\right)$ implies $\operatorname{act}\left(\theta_{1}\right)=\operatorname{act}\left(\theta_{2}\right)$.
- $\sim_{\mathrm{FB}: \mathrm{ps}: \ell_{\mathrm{F}}}, \sim_{\mathrm{RB}: \ell_{\mathrm{R}}}, \sim_{\mathrm{FRB}: \ell_{\mathrm{FR}}}$ are the three resulting equivalences.
- When do they coincide with $\sim_{\text {FB:ps }}, \sim_{\text {RB }}, \sim_{\text {FRB }}$?
- What is the discriminating information needed by $\sim_{R B}$ and $\sim_{\text {FRB }}$?
- $\sim_{\text {FB:ps: } \ell_{\mathrm{F}}}=\sim_{\text {FB:ps }}$ when $\ell_{\mathrm{F}}(\theta)=\operatorname{act}(\theta)$.
- Axiomatization of $\sim_{\text {FB:ps }}$ over reversible concurrent processes:

$$
\begin{aligned}
& \left(\mathcal{A}_{\mathrm{F}, 1}\right) \quad(P+Q)+R=P+(Q+R) \\
& \left(\mathcal{A}_{\mathrm{F}, 2}\right) \quad P+Q=Q+P \\
& \left(\mathcal{A}_{\mathrm{F}, 3}\right) \quad P+\underline{0}=P \\
& \left(\mathcal{A}_{\mathrm{F}, 4}\right) \quad P+\bar{P}=P \quad \text { where } \operatorname{initial}(P) \\
& \left(\mathcal{A}_{\mathrm{F}, 5}\right) \quad a^{\dagger} . P=P \quad \text { if } \neg \text { initial }(P) \\
& \left(\mathcal{A}_{\mathrm{F}, 6}\right) \quad a^{\dagger} . P=b^{\dagger} . P \\
& \left(\mathcal{A}_{\mathrm{F}, 7}\right) \quad P+Q=P \\
& \left(\mathcal{A}_{\mathrm{F}, 8}\right) \quad P_{1} \|_{L} P_{2}=\left[a^{\dagger} .\right]\left(\sum_{i \in I_{1}, a_{1, i} \notin L} a_{1, i} \cdot\left(P_{1, i} \|_{L} P_{2}^{\prime}\right)+\right. \\
& \sum_{i \in I_{2}, a_{2, i} \notin L} a_{2, i} \cdot\left(P_{1}^{\prime} \|_{L} P_{2, i}\right)+ \\
& \left.\sum_{i \in I_{1}, a_{1, i} \in L} \sum_{j \in I_{2}, a_{2}, j=a_{1, i}} a_{1, i} \cdot\left(P_{1, i} \|_{L} P_{2, j}\right)\right)
\end{aligned}
$$

- $P_{k}=\left[a_{k}^{\dagger} \cdot\right] P_{k}^{\prime}$ with $P_{k}^{\prime}=\sum_{i \in I_{k}} a_{k, i} . P_{k, i}$ for $k \in\{1,2\}$.
- $\left[a^{\dagger}\right.$.] stands for an optional executed action prefix.
- $\sim_{\mathrm{RB}: \ell_{\mathrm{R}}}=\sim_{\mathrm{RB}}$ and $\sim_{\mathrm{FRB}: \ell_{\mathrm{FR}}}=\sim_{\mathrm{FRB}}$ when $\ell_{\mathrm{R}}(\theta)_{P^{\prime}}=\ell_{\mathrm{FR}}(\theta)_{P^{\prime}}$ $\triangleq \ell_{\mathrm{brs}}(\theta)_{P^{\prime}}=<\operatorname{act}(\theta), \operatorname{brs}\left(P^{\prime}\right)>$ for every proved transition $P \xrightarrow{\theta} P^{\prime}$.
- $\operatorname{brs}\left(P^{\prime}\right)$ is the backward ready set of P^{\prime}, the set of actions labeling the incoming transitions of P^{\prime}.
- Then $a \cdot \underline{0} \|_{\emptyset} b \cdot \underline{0}$ is encoded as
$<a,\{a\}>.<b,\{a, b\}>. \underline{0}+<b,\{b\}>.<a,\{a, b\}>. \underline{0}$
while $a \cdot b \cdot \underline{0}+b \cdot a \cdot \underline{0}$ is encoded as
$<a,\{a\}>.<b,\{b\}>. \underline{0}+<b,\{b\}>.<a,\{a\}>. \underline{0}$.
- The encoding of $a^{\dagger} . \underline{0} \|_{\emptyset} b^{\dagger}$. $\underline{0}$ is either $<a^{\dagger},\{a\}>.<b^{\dagger},\{a, b\}>. \underline{0}+<b,\{b\}>.<a,\{a, b\}>. \underline{0}$ or $\langle a,\{a\}\rangle .<b,\{a, b\}>. \underline{0}+<b^{\dagger},\{b\}>.<a^{\dagger},\{a, b\}>$. $\underline{0}$.
- Depends on the trace of actions executed so far.
- It cannot be
$<a^{\dagger},\{a\}>.<b^{\dagger},\{a, b\}>. \underline{0}+<b^{\dagger},\{b\}>.<a^{\dagger},\{a, b\}>. \underline{0}$.
- Axiomatization of $\sim_{R B}$ over reversible concurrent processes:

- $P_{k}=\underline{0}$ or $P_{k}=a^{\dagger}$. P_{k}^{\prime} for $k \in\{1,2\}$.
- Axiomatization of $\sim_{\text {FRB }}$ over reversible concurrent processes:

$\left(\mathcal{A}_{\mathrm{FR}, 1}\right)$	$(\overline{P+Q)+R}$	$=\widehat{P+(Q+R})$		
$\left(\mathcal{A}_{\mathrm{FR}, 2}\right)$	$\widehat{P+Q}$	$=\widehat{Q+P}$		
$\left(\mathcal{A}_{\mathrm{FR}, 3}\right)$	$\widehat{P+0}$	$=\widetilde{P}$		
$\left(\mathcal{A}_{\mathrm{FR}, 4}\right)$	$\widehat{P+Q}$	$=\widetilde{P} \quad$ if $\operatorname{initial}(Q) \wedge$ to_initial $(P)=Q$		
$\left(\mathcal{A}_{\mathrm{FR}, 5}\right)$	$\frac{P_{1} \\|_{L} P_{2}}{}$	$=e \ell_{\mathrm{brs}}^{\varepsilon}\left(\widetilde{P_{1}}, \widetilde{P}_{2}, L\right)_{P_{1} \\|_{L} P_{2}}$		

- $P_{k}=\left[a^{\dagger} . P_{k}^{\prime}+\right] \sum_{i \in I_{k}} a_{k, i} . P_{k, i}$ for $k \in\{1,2\}$.

Hereditary History-Preserving Bisimilarity

- For $a=b$ the two encodings
$<a,\{a\}>.<b,\{a, b\}>. \underline{0}+<b,\{b\}>.<a,\{a, b\}>. \underline{0}$ and $<a,\{a\}>.<b,\{b\}>. \underline{0}+<b,\{b\}>.<a,\{a\}>. \underline{0}$ coincide.
- Then $a . \underline{0} \|_{\emptyset} a . \underline{0} \sim_{\mathrm{FRB}} a \cdot a \cdot \underline{0}+a . a \cdot \underline{0} \sim_{\mathrm{FRB}} a . a \cdot \underline{0}$.
- But $a . \underline{0} \|_{\emptyset} a . \underline{0} \not \chi_{\text {ННРв }} a . a . \underline{0}$.
- Backward ready multisets distinguish them again and this yields the same power as hereditary history-preserving bisimilarity.
- $\sim_{\text {FRB }}$ brm provides an operational view of $\sim_{\text {HHPB }}$.
- No need of identifying identically labeled events, just count them.
- The axiomatization of \sim_{HHPB} is a variant of the one of $\sim_{\text {FRB }}$.

Concluding Remarks and Future Work

- Process algebraic theory encompassing most of concurrency theory:
- Forward bisimilarity is the usual bisimilarity.
- Reverse bisimilarity boils down to reverse trace equivalence.
- Weak forward-reverse bisimilarity is branching bisimilarity.
- Expansion laws addressing interleaving and true concurrency.
- Applied to noninterference analysis.
- Theory extended to Markovian sequential processes in the strong case, link with ordinary/exact/strict lumpability and time reversibility.
- Reversibility of deterministic timed processes (time additivity).
- Reversibility of probabilistic processes (alternating model)?
- Markovian sequential processes in the weak case (W-lumpability)?
- What changes when admitting irreversible actions (commit)?

Inspiring References

［1］R．Landauer，
＂Irreversibility and Heat Generation in the Computing Process＂，
IBM Journal of Research and Development 5：183－191， 1961.
［2］C．H．Bennett，
＂Logical Reversibility of Computation＂，
IBM Journal of Research and Development 17：525－532， 1973.
［3］R．De Nicola，U．Montanari，F．Vaandrager， ＂Back and Forth Bisimulations＂，
Proc．of CONCUR 1990.
［4］V．Danos，J．Krivine，
＂Reversible Communicating Systems＂，
Proc．of CONCUR 2004.
［5］I．Phillips，I．Ulidowski，
＂Reversing Algebraic Process Calculi＂，
Journal of Logic and Algebraic Programming 73：70－96， 2007.
［6］I．Lanese，I．Phillips，I．Ulidowski，
＂An Axiomatic Approach to Reversible Computation＂，
Proc．of FOSSACS 2020.
［7］F．P．Kelly，
＂Reversibility and Stochastic Networks＂，
John Wiley \＆Sons， 1979.
［8］A．Marin，S．Rossi，
＂On the Relations between Markov Chain Lumpability and Reversibility＂， Acta Informatica 54：447－485， 2017.

Our Contributions

[1] M. Bernardo, S. Rossi,
"Reverse Bisimilarity vs. Forward Bisimilarity",
Proc. of FOSSACS 2023.
[2] M. Bernardo, A. Esposito,
"On the Weak Continuation of Reverse Bisimilarity vs. Forward Bisimilarity",
Proc. of ICTCS 2023.
[3] M. Bernardo, A. Esposito,
"Modal Logic Characterizations of Forward, Reverse, and Forward-Reverse Bisimilarities", Proc. of GANDALF 2023.
[4] A. Esposito, A. Aldini, M. Bernardo, "Branching Bisimulation Semantics Enables Noninterference Analysis of Reversible Systems", Proc. of FORTE 2023.
[5] A. Esposito, A. Aldini, M. Bernardo, "Noninterference Analysis of Reversible Probabilistic Systems", Proc. of FORTE 2024.
[6] M. Bernardo, C.A. Mezzina,
"Bridging Causal Reversibility and Time Reversibility: A Stochastic Process Algebraic Approach", Logical Methods in Computer Science 19(2:6):1-27, 2023.
[7] M. Bernardo, C.A. Mezzina,
"Causal Reversibility for Timed Process Calculi with Lazy/Eager Durationless Actions and Time Additivity", Proc. of FORMATS 2023.
[8] M. Bernardo, I. Lanese, A. Marin, C.A. Mezzina, S. Rossi, C. Sacerdoti Coen, "Causal Reversibility Implies Time Reversibility",
Proc. of QEST 2023.

