PRPC: Semantics, Logics, Axioms A Process Algebraic Theory of Reversible Computing

Marco Bernardo

University of Urbino – Italy

PRIN 2020 project NiRvAna

Concurrency: Nondeterminism vs. Irreversibility

- Systems composed of several interconnected computing parts that communicate by exchanging information or simply synchronizing.
- Models: shared memory, message passing, web services, cloud, ...
- Types: centralized/distributed/decentralized, static/dynamic/mobile.
- Aspects: functionality, security, reliability, performance, . . .

Concurrency: Nondeterminism vs. Irreversibility

- Systems composed of several interconnected computing parts that communicate by exchanging information or simply synchronizing.
- Models: shared memory, message passing, web services, cloud, . . .
- Types: centralized/distributed/decentralized, static/dynamic/mobile.
- Aspects: functionality, security, reliability, performance, . . .
- Nondeterminism: the input does not uniquely define the output.
- Different advancing speeds, scheduling policies, . . .

Concurrency: Nondeterminism vs. Irreversibility

- Systems composed of several interconnected computing parts that communicate by exchanging information or simply synchronizing.
- Models: shared memory, message passing, web services, cloud, ...
- Types: centralized/distributed/decentralized, static/dynamic/mobile.
- Aspects: functionality, security, reliability, performance, ...
- Nondeterminism: the input does not uniquely define the output.
- Different advancing speeds, scheduling policies, ...
- What if the output does not uniquely define the input?
- Irreversibility: typical of functions that are *not invertible*.
- Example 1: conjunctions/disjunctions are irreversible.
- Example 2: negation is reversible.

Reversible Computing

- What does (ir)reversibility mean in computing?
- Well established concept in mathematics, physics, chemistry, biology: inverse relation/function/operation/formula/law/reaction . . .
- Much more recent in informatics: seminal papers by Landauer in 1961 and Bennett in 1973 on IBM Journal of Research and Development.

Reversible Computing

- What does (ir)reversibility mean in computing?
- Well established concept in mathematics, physics, chemistry, biology: inverse relation/function/operation/formula/law/reaction . . .
- Much more recent in informatics: seminal papers by Landauer in 1961 and Bennett in 1973 on IBM Journal of Research and Development.
- Landauer principle states that any manipulation of information that is *irreversible* i.e., causes information loss such as:
 - erasure/overwriting of bits
 - merging of computation paths
 - must be accompanied by a corresponding entropy increase.
- Minimal heat generation due to extra work for standardizing signals and making them independent of their history, so that it becomes impossible to determine the input from the output.

- Due to Landauer principle, the logical irreversibility of a function implies the physical irreversibility of computing that function and the consequent dissipative effects.
- Experimentally verified by Bérut et al in 2012 and revisited in terms of its physical foundations by Frank in 2018.
- Every reversible computation, where no information is lost instead, may be potentially carried out without dissipating further heat.

- Due to Landauer principle, the logical irreversibility of a function implies the physical irreversibility of computing that function and the consequent dissipative effects.
- Experimentally verified by Bérut et al in 2012 and revisited in terms of its physical foundations by Frank in 2018.
- Every reversible computation, where no information is lost instead, may be potentially carried out without dissipating further heat.
- Lower energy consumption could therefore be achieved by resorting to reversible computing.
- There are many other applications of reversible computing:
 - Biochemical reaction modeling (nature).
 - Parallel discrete-event simulation (speedup).
 - Fault-tolerant computing systems (rollback).
 - Robotics and control theory (backtrack).
 - Concurrent program debugging (reproducibility).
 - Distributed algorithms (deadlock, consensus).

- Two directions of computation characterize every reversible system:
 - Forward: coincides with the normal way of computing.
 - Backward: the effects of the forward one are undone (when needed).
- How to proceed backward? Same path as the forward direction?
 Is the last executed action uniquely identifiable?
- Not necessarily, especially in the case of a concurrent system;
 e.g., causally independent paths should be deemed equivalent.

- Two directions of computation characterize every reversible system:
 - Forward: coincides with the normal way of computing.
 - Backward: the effects of the forward one are undone (when needed).
- How to proceed backward? Same path as the forward direction?
 Is the last executed action uniquely identifiable?
- Not necessarily, especially in the case of a concurrent system;
 e.g., causally independent paths should be deemed equivalent.
- Different notions of reversibility developed in different settings:
 - Causal reversibility is the capability of going back to a past state
 consistently with the computational history: an action can be undone
 iff all of its consequences have been undone already [DanosKrivine04].
 - Time reversibility refers to the conditions under which the stochastic behavior remains the same when the *direction of time* is reversed (quantitative models, efficient performance evaluation) [Kelly79].
 - Only recently the relationships between the two have been investigated (the former implies the latter over models based on Markov chains when certain constraints are met).

Reversibility in Process Algebra

• There are no inverse process algebraic operators!

Reversibility in Process Algebra

- There are no inverse process algebraic operators!
- The dynamic approach of [DanosKrivine04] yielding RCCS uses explicit stack-based memories attached to processes to record all executed actions and all discarded subprocesses.
- A single transition relation is defined, while actions are divided into forward and backward resulting in forward and backward transitions.

Reversibility in Process Algebra

- There are no inverse process algebraic operators!
- The dynamic approach of [DanosKrivine04] yielding RCCS uses explicit stack-based memories attached to processes to record all executed actions and all discarded subprocesses.
- A single transition relation is defined, while actions are divided into forward and backward resulting in forward and backward transitions.
- The static approach of [PhillipsUlidowski07] yielding CCSK is a method to reverse calculi by retaining within process syntax:
 - all executed actions, which are suitably decorated;
 - all dynamic operators, which are therefore treated as static.
- A forward transition relation and a backward transition relation are separately defined, labeled with communication keys so as to know who synchronized with whom when building backward transitions.

In [PU07] forward-reverse bisimilarity has been introduced too, which
is truly concurrent as it does not satisfy the expansion law of parallel
composition into a choice among all possible action sequencings (a ≠ b):

In [PU07] forward-reverse bisimilarity has been introduced too, which
is truly concurrent as it does not satisfy the expansion law of parallel
composition into a choice among all possible action sequencings (a ≠ b):

• With back-and-forth bisimilarity [DeNicolaMontanariVaandrager90] the interleaving view can be restored as this bisimilarity is defined on computations instead of states to preserve both causality and history (one transition relation, viewed as bidirectional, outgoing/incoming).

- What are the properties of bisimilarity over reversible processes?
- Minimal process calculus tailored for reversible processes to comparatively study congruence, logics, and axioms for:
 - Forward-reverse bisimilarity.
 - Forward bisimilarity.
 - Reverse bisimilarity.

- What are the properties of bisimilarity over reversible processes?
- Minimal process calculus tailored for reversible processes to comparatively study congruence, logics, and axioms for:
 - Forward-reverse bisimilarity.
 - Forward bisimilarity.
 - Reverse bisimilarity.
- Two different kinds of bisimilarities:
 - Strong bisimilarities (all actions are treated in the same way).
 - Weak bisimilarities (abstracting from unobservable actions).

- What are the properties of bisimilarity over reversible processes?
- Minimal process calculus tailored for reversible processes to comparatively study congruence, logics, and axioms for:
 - Forward-reverse bisimilarity.
 - Forward bisimilarity.
 - Reverse bisimilarity.
- Two different kinds of bisimilarities:
 - Strong bisimilarities (all actions are treated in the same way).
 - Weak bisimilarities (abstracting from unobservable actions).
- Considering only sequential processes (i.e., no parallel composition)
 to be neutral with respect to interleaving view vs. true concurrency.
- Adding parallel composition to uniformly investigate expansion laws (relate sequential specifications to concurrent implementations).
- Characterizations via other behavioral equivalences.

- What are the properties of bisimilarity over reversible processes?
- Minimal process calculus tailored for reversible processes to comparatively study congruence, logics, and axioms for:
 - Forward-reverse bisimilarity.
 - Forward bisimilarity.
 - Reverse bisimilarity.
- Two different kinds of bisimilarities:
 - Strong bisimilarities (all actions are treated in the same way).
 - Weak bisimilarities (abstracting from unobservable actions).
- Considering only sequential processes (i.e., no parallel composition)
 to be neutral with respect to interleaving view vs. true concurrency.
- Adding parallel composition to uniformly investigate expansion laws (relate sequential specifications to concurrent implementations).
- Characterizations via other behavioral equivalences.
- Can we avoid external memories and communication keys?

PRPC - Proved Reversible Process Calculus

- Countable set \mathcal{A} of actions including the unobservable action τ , renaming $\rho: \mathcal{A} \to \mathcal{A}$ s.t. $\rho(\tau) = \tau$, synchronization set $L \subseteq \mathcal{A} \setminus \{\tau\}$.
- Usually only the future behavior of processes is described.

PRPC - Proved Reversible Process Calculus

- Countable set $\mathcal A$ of actions including the unobservable action τ , renaming $\rho: \mathcal A \to \mathcal A$ s.t. $\rho(\tau) = \tau$, synchronization set $L \subseteq \mathcal A \setminus \{\tau\}$.
- Usually only the future behavior of processes is described.
- We store the past behavior in the syntax like in [PU07]: $P ::= \underline{0} \mid a \cdot P \mid a^{\dagger} \cdot P \mid P \, \llcorner \rho^{\lnot} \mid P + P \mid P \parallel_L P$
- a^{\dagger} . P executed action a, its forward continuation is inside P, and can undo a after all executed actions within P have been undone.

PRPC – Proved Reversible Process Calculus

- Countable set \mathcal{A} of actions including the unobservable action τ , renaming $\rho: \mathcal{A} \to \mathcal{A}$ s.t. $\rho(\tau) = \tau$, synchronization set $L \subseteq \mathcal{A} \setminus \{\tau\}$.
- Usually only the future behavior of processes is described.
- We store the past behavior in the syntax like in [PU07]: $P ::= \underline{0} \mid a \cdot P \mid a^{\dagger} \cdot P \mid P \, \llcorner \rho^{\lnot} \mid P + P \mid P \parallel_L P$
- a^{\dagger} . P executed action a, its forward continuation is inside P, and can undo a after all executed actions within P have been undone.
- Single transition relation like in [DMV90] labeled just with actions.
- Therefore there is no need of communication keys [PU07], which allows for uniform action decorations like in [BoudolCastellani94].
- No need to distinguish between forward and backward actions or resort to stack-based memories [DK04].

• Initial processes: standard as all of their actions are unexecuted.

- Initial processes: standard as all of their actions are unexecuted.
- Set P of well-formed processes with unexecuted and executed actions: wf(0)

```
\begin{array}{cccc} & \textit{wf}(\underline{0}) \\ & \textit{wf}(a \cdot P') & \text{iff} & \textit{initial}(P') \\ & \textit{wf}(a^{\dagger} \cdot P') & \text{iff} & \textit{wf}(P') \\ & \textit{wf}(P' \, \llcorner \rho \urcorner) & \text{iff} & \textit{wf}(P') \\ & \textit{wf}(P_1 + P_2) & \text{iff} & (\textit{wf}(P_1) \wedge \textit{initial}(P_2)) \vee \\ & & & (\textit{initial}(P_1) \wedge \textit{wf}(P_2)) \\ & \textit{wf}(P_1 \parallel_L P_2) & \text{iff} & \textit{wf}(P_1) \wedge \textit{wf}(P_2) \end{array}
```

- Initial processes: standard as all of their actions are unexecuted.
- Set P of well-formed processes with unexecuted and executed actions:

```
 \begin{array}{cccc} \textit{wf}(\underline{0}) \\ \textit{wf}(a \cdot P') & \text{iff} & \textit{initial}(P') \\ \textit{wf}(a^{\dagger} \cdot P') & \text{iff} & \textit{wf}(P') \\ \textit{wf}(P' \, \llcorner \rho \urcorner) & \text{iff} & \textit{wf}(P') \\ \textit{wf}(P_1 + P_2) & \text{iff} & (\textit{wf}(P_1) \land \textit{initial}(P_2)) \lor \\ & & & (\textit{initial}(P_1) \land \textit{wf}(P_2)) \\ \textit{wf}(P_1 \parallel_L P_2) & \text{iff} & \textit{wf}(P_1) \land \textit{wf}(P_2) \\ \end{array}
```

- 0 is both initial and well-formed.
- Any initial process is well-formed too.
- P also contains processes that are not initial: a^{\dagger} . b. $\underline{0}$.
- Past actions can never follow future actions: $b \cdot a^{\dagger} \cdot \underline{0} \notin P$.
- Alternative processes cannot be both non-initial: $a^{\dagger} \cdot \underline{0} + b^{\dagger} \cdot \underline{0} \notin P$.

- Since all information needed to enable reversibility is in the syntax, action prefix and choice are made static by the semantics [PU07].
- Labeling every transition with a proof term [BoudolCastellani88] will enable the uniform derivation of expansion laws.
- Action preceded by the operators in the scope of which it occurs:

$$\theta ::= a \mid ._a \theta \mid \Box_\rho \theta \mid + \theta \mid + \theta \mid \rfloor_L \theta \mid \rfloor_L \theta \mid \langle \theta, \theta \rangle_L$$

• Proved labeled transition system $(P, \Theta, \longrightarrow)$ with $\longrightarrow \subseteq P \times \Theta \times P$.

- Since all information needed to enable reversibility is in the syntax, action prefix and choice are made static by the semantics [PU07].
- Labeling every transition with a proof term [BoudolCastellani88] will enable the uniform derivation of expansion laws.
- Action preceded by the operators in the scope of which it occurs:

$$\theta ::= a \mid ._a \theta \mid \Box_\rho \theta \mid + \theta \mid + \theta \mid \bot \bot \theta \mid \bot \bot \theta \mid (\theta, \theta)_L$$

- Proved labeled transition system $(P, \Theta, \longrightarrow)$ with $\longrightarrow \subseteq P \times \Theta \times P$.
- Set $\mathbb{P} \subsetneq \mathsf{P}$ of reachable processes from an initial one: $a^{\dagger} \cdot \underline{0} \parallel_{\{a\}} \underline{0} \notin \mathbb{P}$.
- Single transition relation viewed as symmetric to meet loop property: executed actions can be undone and undone actions can be redone.
- Like in [DMV90] a transition $P \xrightarrow{\theta} P'$ goes:
 - forward if it is viewed as an outgoing transition of P, in which case action $act(\theta)$ is done;
 - backward if it is viewed as an incoming transition of P', in which case action $act(\theta)$ is undone.

Operational semantic rules for action prefix (traditionally dynamic):

$$\frac{\textit{initial}(P)}{a \cdot P \xrightarrow{a} a^{\dagger} \cdot P} \qquad \frac{P \xrightarrow{\theta} P'}{a^{\dagger} \cdot P \xrightarrow{a \theta} a^{\dagger} \cdot P'}$$

- The prefix related to the executed action is *not discarded*.
- It becomes a †-decorated part of the target process, necessary to offer again that action after rolling back.
- Additional rule for performing unexecuted actions that are preceded by already executed actions (direct consequence of making prefix static).
- This second rule propagates actions executed by initial subprocesses.
- Can we view a^{\dagger} . as the inverse operator of a. ?

Semantic rules for alternative composition (traditionally dynamic):

$$\frac{P_1 \stackrel{\theta}{\longrightarrow} P_1' \quad \textit{initial}(P_2)}{P_1 + P_2 \stackrel{+\theta}{\longrightarrow} P_1' + P_2} \qquad \qquad \frac{P_2 \stackrel{\theta}{\longrightarrow} P_2' \quad \textit{initial}(P_1)}{P_1 + P_2 \stackrel{+\theta}{\longrightarrow} P_1 + P_2'}$$

- The subprocess not involved in the executed action is not discarded but cannot proceed further (only the non-initial subprocess can).
- It becomes part of the target process, which is necessary for offering again the original choice after undoing all the executed actions.
- If both subprocesses are initial, both rules apply (nondet. choice).
- If not, should operator + become something like +[†]?
 Not needed due to action decorations within either subprocess.

- The proved labeled transition system for a *sequential* process is a *tree*, whose branching points correspond to occurrences of +:
 - Every non-final process has at least one outgoing transition (non-final means that not all actions are decorated along one path).
 - Every non-initial process has exactly one incoming transition due to decorations associated with executed actions.

- The proved labeled transition system for a *sequential* process is a *tree*, whose branching points correspond to occurrences of +:
 - Every non-final process has at least one outgoing transition (non-final means that not all actions are decorated along one path).
 - Every non-initial process has exactly one incoming transition due to decorations associated with executed actions.
- Proved labeled transition systems of $a \cdot \underline{0} + a \cdot \underline{0}$ and $a \cdot \underline{0}$:

- ullet Single a-transition on the left in a forward-only process calculus.
- These two distinct processes should be considered equivalent though.

Semantic rule for renaming (traditionally static):

$$\frac{P \xrightarrow{\theta} P'}{P \llcorner \rho^{\intercal} \xrightarrow{\Box_{\rho} \theta} P' \llcorner \rho^{\intercal}}$$

• Semantic rules for parallel composition (traditionally static):

$$\begin{split} & \underbrace{P_1 \overset{\theta}{\longrightarrow} P_1' \quad \operatorname{act}(\theta) \notin L}_{P_1 \parallel_L P_2 \overset{\theta}{\longrightarrow} P_1' \parallel_L P_2} \qquad \qquad \underbrace{P_2 \overset{\theta}{\longrightarrow} P_2' \quad \operatorname{act}(\theta) \notin L}_{P_1 \parallel_L P_2 \overset{\theta}{\longrightarrow} P_1 \parallel_L P_2'} \\ & \underbrace{P_1 \parallel_L P_2 \overset{\theta_1}{\longrightarrow} P_1' \quad P_2 \overset{\theta_2}{\longrightarrow} P_2' \quad \operatorname{act}(\theta_1) = \operatorname{act}(\theta_2) \in L}_{P_1 \parallel_L P_2 \overset{\theta_1}{\longrightarrow} P_1 \parallel_L P_2'} \end{split}$$

$$\frac{P_1 \xrightarrow{\theta_1} P_1' \quad P_2 \xrightarrow{\theta_2} P_2' \quad \mathit{act}(\theta_1) = \mathit{act}(\theta_2) \in L}{P_1 \parallel_L P_2 \xrightarrow{\langle \theta_1, \theta_2 \rangle_L} \mathit{enr}(P_1' \parallel_L P_2', \langle \theta_1, \theta_2 \rangle_L)}$$

• The †-decoration of every action participating in the synchronization is enriched with a proof term of the form $\langle \theta_1, \theta_2 \rangle_L$.

$$\frac{P_1 \xrightarrow{\theta_1} P_1' \quad P_2 \xrightarrow{\theta_2} P_2' \quad \mathit{act}(\theta_1) = \mathit{act}(\theta_2) \in L}{P_1 \parallel_L P_2 \xrightarrow{\langle \theta_1, \theta_2 \rangle_L} \mathit{enr}(P_1' \parallel_L P_2', \langle \theta_1, \theta_2 \rangle_L)}$$

- The †-decoration of every action participating in the synchronization is enriched with a proof term of the form $\langle \theta_1, \theta_2 \rangle_L$.
- The LTS of the synchronization of autoconcurrency and autocausation $(a \cdot \underline{0} \parallel_{\emptyset} a \cdot \underline{0}) \parallel_{\{a\}} a \cdot a \cdot \underline{0}$ is different from the one of $a \cdot \underline{0} \parallel_{\emptyset} a \cdot \underline{0}$:

$$\frac{P_1 \stackrel{\theta_1}{\longrightarrow} P_1' \quad P_2 \stackrel{\theta_2}{\longrightarrow} P_2' \quad \mathit{act}(\theta_1) = \mathit{act}(\theta_2) \in L}{P_1 \parallel_L P_2 \stackrel{\langle \theta_1, \theta_2 \rangle_L}{\longrightarrow} \mathit{enr}(P_1' \parallel_L P_2', \langle \theta_1, \theta_2 \rangle_L)}$$

- The †-decoration of every action participating in the synchronization is enriched with a proof term of the form $\langle \theta_1, \theta_2 \rangle_L$.
- The LTS of the synchronization of autoconcurrency and autocausation $(a \cdot \underline{0} \parallel_{\emptyset} a \cdot \underline{0}) \parallel_{\{a\}} a \cdot a \cdot \underline{0}$ is different from the one of $a \cdot \underline{0} \parallel_{\emptyset} a \cdot \underline{0}$:

$$\begin{array}{c} \bullet \ \ (a \cdot \underline{0} \parallel_{\emptyset} a \cdot \underline{0}) \parallel_{\{a\}} a \cdot a \cdot \underline{0} \xrightarrow{\langle \coprod_{\emptyset} a, a \rangle_{\{a\}}} \\ \\ (a^{\dagger \langle \coprod_{\emptyset} a, a \rangle_{\{a\}}} \cdot \underline{0} \parallel_{\emptyset} a \cdot \underline{0}) \parallel_{\{a\}} a^{\dagger \langle \coprod_{\emptyset} a, a \rangle_{\{a\}}} \cdot a \cdot \underline{0} \xrightarrow{\langle \coprod_{\emptyset} a, a \rangle_{\{a\}}} \\ \\ (a^{\dagger \langle \coprod_{\emptyset} a, a \rangle_{\{a\}}} \cdot \underline{0} \parallel_{\emptyset} a^{\dagger \langle \coprod_{\emptyset} a, a \rangle_{\{a\}}} \cdot \underline{0}) \parallel_{\{a\}} a^{\dagger \langle \coprod_{\emptyset} a, a \rangle_{\{a\}}} \cdot a^{\dagger \langle \coprod_{\emptyset} a, a \rangle_{\{a\}}} \cdot \underline{0} \\ \end{array}$$

$$\frac{P_1 \xrightarrow{\theta_1} P_1' \quad P_2 \xrightarrow{\theta_2} P_2' \quad \mathit{act}(\theta_1) = \mathit{act}(\theta_2) \in L}{P_1 \parallel_L P_2 \xrightarrow{\langle \theta_1, \theta_2 \rangle_L} \mathit{enr}(P_1' \parallel_L P_2', \langle \theta_1, \theta_2 \rangle_L)}$$

- The †-decoration of every action participating in the synchronization is enriched with a proof term of the form $\langle \theta_1, \theta_2 \rangle_L$.
- The LTS of the synchronization of autoconcurrency and autocausation $(a \cdot \underline{0} \parallel_{\emptyset} a \cdot \underline{0}) \parallel_{\{a\}} a \cdot a \cdot \underline{0}$ is different from the one of $a \cdot \underline{0} \parallel_{\emptyset} a \cdot \underline{0}$:

$$\begin{array}{c} \bullet \ \ (a . \underline{0} \parallel_{\emptyset} a . \underline{0}) \parallel_{\{a\}} a . a . \underline{0} \xrightarrow{\langle \lfloor \lfloor \varrho a, a \rangle_{\{a\}} \rangle} \\ \\ \ \ (a . \underline{0} \parallel_{\emptyset} a^{\dagger \langle \lfloor \varrho a, a \rangle_{\{a\}} } . \underline{0}) \parallel_{\{a\}} a^{\dagger \langle \lfloor \varrho a, a \rangle_{\{a\}} } . a . \underline{0} \xrightarrow{\langle \lfloor \varrho a, a \rangle_{\{a\}} \rangle} \\ \ \ \ \ (a^{\dagger \langle \lfloor \varrho a, a \rangle_{\{a\}} } . \underline{0} \parallel_{\emptyset} a^{\dagger \langle \lfloor \varrho a, a \rangle_{\{a\}} } . \underline{0}) \parallel_{\{a\}} a^{\dagger \langle \lfloor \varrho a, a \rangle_{\{a\}} } . a^{\dagger \langle \lfloor \varrho a, a \rangle_{\{a\}} } . \underline{0}) \\ \end{array}$$

• Bisimulation game: *outgoing* transitions for forward direction and *incoming* transitions for backward direction [DMV90].

- Bisimulation game: outgoing transitions for forward direction and incoming transitions for backward direction [DMV90].
- A symmetric relation \mathcal{B} over \mathbb{P} is a:
 - Forward bisimulation iff, whenever $(P_1, P_2) \in \mathcal{B}$, then:
 - $\bullet \ \ \forall \ \underset{P_1}{\overset{\theta_1}{\longrightarrow}} P_1' \ . \ \exists \ \underset{P_2}{\overset{\theta_2}{\longrightarrow}} P_2' \ . \ \textit{act}(\theta_1) = \textit{act}(\theta_2) \land (P_1', P_2') \in \mathcal{B}.$

- Bisimulation game: outgoing transitions for forward direction and incoming transitions for backward direction [DMV90].
- ullet A symmetric relation ${\mathcal B}$ over ${\mathbb P}$ is a:
 - Forward bisimulation iff, whenever $(P_1, P_2) \in \mathcal{B}$, then:

•
$$\forall P_1 \xrightarrow{\theta_1} P_1'$$
 . $\exists P_2 \xrightarrow{\theta_2} P_2'$. $act(\theta_1) = act(\theta_2) \land (P_1', P_2') \in \mathcal{B}$.

- Reverse bisimulation iff, whenever $(P_1, P_2) \in \mathcal{B}$, then:
 - $\bullet \ \forall \ P_1' \xrightarrow{\theta_1} \ P_1 \ . \ \exists \ P_2' \xrightarrow{\theta_2} \ P_2 \ . \ \mathit{act}(\theta_1) = \mathit{act}(\theta_2) \land (P_1', P_2') \in \mathcal{B}.$

- Bisimulation game: outgoing transitions for forward direction and incoming transitions for backward direction [DMV90].
- ullet A symmetric relation ${\mathcal B}$ over ${\mathbb P}$ is a:
 - Forward bisimulation iff, whenever $(P_1, P_2) \in \mathcal{B}$, then:

•
$$\forall P_1 \xrightarrow{\theta_1} P_1'$$
 . $\exists P_2 \xrightarrow{\theta_2} P_2'$. $act(\theta_1) = act(\theta_2) \land (P_1', P_2') \in \mathcal{B}$.

• Reverse bisimulation iff, whenever $(P_1, P_2) \in \mathcal{B}$, then:

•
$$\forall P_1' \xrightarrow{\theta_1} P_1 : \exists P_2' \xrightarrow{\theta_2} P_2 : act(\theta_1) = act(\theta_2) \land (P_1', P_2') \in \mathcal{B}.$$

- Forward-reverse bisimulation iff, whenever $(P_1, P_2) \in \mathcal{B}$, then:
 - $\forall P_1 \xrightarrow{\theta_1} P_1'$. $\exists P_2 \xrightarrow{\theta_2} P_2'$. $act(\theta_1) = act(\theta_2) \land (P_1', P_2') \in \mathcal{B}$.
 - $\bullet \ \, \forall \, \, P_1' \xrightarrow{\theta_1} {\rlap/ P_1} \, . \, \, \exists \, \, P_2' \xrightarrow{\theta_2} {\rlap/ P_2} \, . \, \, \textit{act}(\theta_1) = \textit{act}(\theta_2) \wedge (P_1', P_2') \in \mathcal{B}.$

- Bisimulation game: outgoing transitions for forward direction and incoming transitions for backward direction [DMV90].
- A symmetric relation $\mathcal B$ over $\mathbb P$ is a:
 - Forward bisimulation iff, whenever $(P_1, P_2) \in \mathcal{B}$, then:

$$\bullet \ \ \forall \ \underline{P_1} \xrightarrow{\theta_1} P_1' \ . \ \exists \ \underline{P_2} \xrightarrow{\theta_2} P_2' \ . \ \mathit{act}(\theta_1) = \mathit{act}(\theta_2) \land (P_1', P_2') \in \mathcal{B}.$$

• Reverse bisimulation iff, whenever $(P_1, P_2) \in \mathcal{B}$, then:

•
$$\forall P_1' \xrightarrow{\theta_1} P_1 : \exists P_2' \xrightarrow{\theta_2} P_2 : act(\theta_1) = act(\theta_2) \land (P_1', P_2') \in \mathcal{B}.$$

- Forward-reverse bisimulation iff, whenever $(P_1, P_2) \in \mathcal{B}$, then:
 - $\bullet \ \forall \ \underline{P_1} \xrightarrow{\theta_1} P_1' \ . \ \exists \ \underline{P_2} \xrightarrow{\theta_2} P_2' \ . \ \textit{act}(\theta_1) = \textit{act}(\theta_2) \land (P_1', P_2') \in \mathcal{B}.$
 - $\bullet \ \forall \ P_1' \xrightarrow{\theta_1} P_1 \ . \ \exists \ P_2' \xrightarrow{\theta_2} P_2 \ . \ \textit{act}(\theta_1) = \textit{act}(\theta_2) \land (P_1', P_2') \in \mathcal{B}.$
- Largest such relations: $\sim_{\rm FB}$, $\sim_{\rm RB}$, $\sim_{\rm FRB}$.
- In order for $P_1, P_2 \in \mathbb{P}$ to be identified by $\sim_{\mathrm{FB}}/\sim_{\mathrm{RB}}$ their forward/backward ready sets must coincide.

- $\sim_{\text{FRB}} \subseteq \sim_{\text{FB}} \cap \sim_{\text{RB}}$:
 - The inclusion is strict because the two processes $a^{\dagger} \cdot \underline{0}$ and $a^{\dagger} \cdot \underline{0} + c \cdot \underline{0}$ are identified by \sim_{FB} and \sim_{RB} , but distinguished by \sim_{FRB} .
 - \sim_{FB} and \sim_{RB} are incomparable because a^{\dagger} . $\underline{0} \sim_{\mathrm{FB}} \underline{0}$ but a^{\dagger} . $\underline{0} \not\sim_{\mathrm{RB}} \underline{0}$ while a. $\underline{0} \sim_{\mathrm{RB}} \underline{0}$ but a. $\underline{0} \not\sim_{\mathrm{FB}} \underline{0}$.

- $\sim_{\text{FRB}} \subsetneq \sim_{\text{FB}} \cap \sim_{\text{RB}}$:
 - The inclusion is strict because the two processes $a^{\dagger} \cdot \underline{0}$ and $a^{\dagger} \cdot \underline{0} + c \cdot \underline{0}$ are identified by \sim_{FB} and \sim_{RB} , but distinguished by \sim_{FRB} .
 - \sim_{FB} and \sim_{RB} are incomparable because a^{\dagger} . $\underline{0} \sim_{\mathrm{FB}} \underline{0}$ but a^{\dagger} . $\underline{0} \not\sim_{\mathrm{RB}} \underline{0}$ while a. $\underline{0} \sim_{\mathrm{RB}} \underline{0}$ but a. $\underline{0} \not\sim_{\mathrm{FB}} \underline{0}$.
- First comparative remark ($\sim_{\rm FB}$ vs. $\sim_{\rm RB}$):
 - \bullet \sim_{FRB} = \sim_{FB} over initial processes, with \sim_{RB} strictly coarser.
 - $\sim_{\mathrm{FRB}} \neq \sim_{\mathrm{RB}}$ over final processes because, after going backward, discarded subprocesses come into play again for \sim_{FRB} .

- $\sim_{\text{FRB}} \subsetneq \sim_{\text{FB}} \cap \sim_{\text{RB}}$:
 - The inclusion is strict because the two processes a^{\dagger} . $\underline{0}$ and a^{\dagger} . $\underline{0} + c$. $\underline{0}$ are identified by \sim_{FB} and \sim_{RB} , but distinguished by \sim_{FRB} .
 - \sim_{FB} and \sim_{RB} are incomparable because a^{\dagger} . $\underline{0} \sim_{\mathrm{FB}} \underline{0}$ but a^{\dagger} . $\underline{0} \not\sim_{\mathrm{RB}} \underline{0}$ while a. $\underline{0} \sim_{\mathrm{RB}} \underline{0}$ but a. $\underline{0} \not\sim_{\mathrm{FB}} \underline{0}$.
- First comparative remark ($\sim_{\rm FB}$ vs. $\sim_{\rm RB}$):
 - $\sim_{FRB} = \sim_{FB}$ over initial processes, with \sim_{RB} strictly coarser.
 - $\sim_{FRB} \neq \sim_{RB}$ over final processes because, after going backward, discarded subprocesses come into play again for \sim_{FRB} .
- $a \cdot \underline{0} + a \cdot \underline{0}$ and $a \cdot \underline{0}$ are identified by all three bisimilarities as witnessed by any bisimulation containing the pairs $(a \cdot \underline{0} + a \cdot \underline{0}, a \cdot \underline{0}), (a^{\dagger} \cdot \underline{0} + a \cdot \underline{0}, a^{\dagger} \cdot \underline{0}), (a \cdot \underline{0} + a^{\dagger} \cdot \underline{0}, a^{\dagger} \cdot \underline{0}).$

- \sim_{FB} equates processes with different past: $a_1^{\dagger} \cdot \underline{0} \sim_{\mathrm{FB}} a_2^{\dagger} \cdot \underline{0} \sim_{\mathrm{FB}} \underline{0}$.
- \sim_{RB} equates processes with different future: $a_1 \cdot \underline{0} \sim_{RB} a_2 \cdot \underline{0} \sim_{RB} \underline{0}$.

- \sim_{FB} equates processes with different past: $a_1^\dagger \cdot \underline{0} \sim_{\mathrm{FB}} a_2^\dagger \cdot \underline{0} \sim_{\mathrm{FB}} \underline{0}$.
- \sim_{RB} equates processes with different future: $a_1 \cdot \underline{0} \sim_{RB} a_2 \cdot \underline{0} \sim_{RB} \underline{0}$.
- Second comparative remark ($\sim_{\rm FB}$ vs. $\sim_{\rm RB}$):
 - $\bullet \ a^\dagger. \ b \ . \ \underline{0} \ \sim_{\operatorname{FB}} \ b \ . \ \underline{0} \ \operatorname{but} \ a^\dagger. \ b \ . \ \underline{0} + c \ . \ \underline{0} \ \not\sim_{\operatorname{FB}} \ b \ . \ \underline{0} + c \ . \ \underline{0}.$
 - $a^{\dagger}.b.\underline{0} \not\sim_{\mathrm{RB}} b.\underline{0}$ hence no such compositionality violation for \sim_{RB} .

- \sim_{FB} equates processes with different past: a_1^\dagger . $\underline{0} \sim_{\mathrm{FB}} a_2^\dagger$. $\underline{0} \sim_{\mathrm{FB}} \underline{0}$.
- \sim_{RB} equates processes with different future: $a_1 \cdot \underline{0} \sim_{RB} a_2 \cdot \underline{0} \sim_{RB} \underline{0}$.
- Second comparative remark (\sim_{FB} vs. \sim_{RB}):
 - $a^{\dagger}.b.\underline{0} \sim_{\mathrm{FB}} b.\underline{0}$ but $a^{\dagger}.b.\underline{0} + c.\underline{0} \not\sim_{\mathrm{FB}} b.\underline{0} + c.\underline{0}$.
 - $a^{\dagger}.b.\underline{0} \not\sim_{RB} b.\underline{0}$ hence no such compositionality violation for \sim_{RB} .
- \sim_{RB} and \sim_{FRB} never identify an initial process with a non-initial one, hence \sim_{FB} has to be made sensitive to the *presence of the past*.
- A symmetric relation $\mathcal B$ over $\mathbb P$ is a past-sensitive forward bisimulation iff it is a forward bisimulation in which $\operatorname{initial}(P_1) \Longleftrightarrow \operatorname{initial}(P_2)$ for all $(P_1, P_2) \in \mathcal B$.
- Largest such relation: $\sim_{FB:ps}$.
- a_1^\dagger . $\underline{0} \sim_{\mathrm{FB:ps}} a_2^\dagger$. $\underline{0}$, but a^\dagger . $\underline{0} \not\sim_{\mathrm{FB:ps}} \underline{0}$ and a^\dagger . b . $\underline{0} \not\sim_{\mathrm{FB:ps}} b$. $\underline{0}$.

- Let $P_1, P_2 \in \mathbb{P}$ be such that $P_1 \sim P_2$ and take arbitrary a, ρ, L, P .
- All strong bisimilarities are congruences w.r.t. action prefix:
 - $a \cdot P_1 \sim a \cdot P_2$ provided that $initial(P_1) \wedge initial(P_2)$.
 - $a^{\dagger}.P_1 \sim a^{\dagger}.P_2$.
- All strong bisimilarities are congruences w.r.t. renaming:
 - $P_1 \sqcup \rho^{\neg} \sim P_2 \sqcup \rho^{\neg}$.
- All strong bisimilarities are congruences w.r.t. parallel composition:
 - $P_1 \parallel_L P \sim P_2 \parallel_L P$ and $P \parallel_L P_1 \sim P \parallel_L P_2$ provided that $P_1 \parallel_L P, P_2 \parallel_L P, P \parallel_L P_1, P \parallel_L P_2 \in \mathbb{P}$.

- Let $P_1, P_2 \in \mathbb{P}$ be such that $P_1 \sim P_2$ and take arbitrary a, ρ, L, P .
- All strong bisimilarities are congruences w.r.t. action prefix:
 - $a \cdot P_1 \sim a \cdot P_2$ provided that $initial(P_1) \wedge initial(P_2)$.
 - $a^{\dagger}.P_1 \sim a^{\dagger}.P_2$.
- All strong bisimilarities are congruences w.r.t. renaming:
 - $P_1 \sqcup \rho^{\neg} \sim P_2 \sqcup \rho^{\neg}$.
- All strong bisimilarities are congruences w.r.t. parallel composition:
 - $P_1 \parallel_L P \sim P_2 \parallel_L P$ and $P \parallel_L P_1 \sim P \parallel_L P_2$ provided that $P_1 \parallel_L P, P_2 \parallel_L P, P \parallel_L P_1, P \parallel_L P_2 \in \mathbb{P}$.
- $\sim_{FB:ps}$, \sim_{RB} , \sim_{FRB} are congruences w.r.t. alternative composition:
 - $P_1 + P \sim P_2 + P$ and $P + P_1 \sim P + P_2$ provided that $\mathit{initial}(P) \lor (\mathit{initial}(P_1) \land \mathit{initial}(P_2))$.
- $\bullet \sim_{FB:ps}$ is the coarsest congruence w.r.t. + contained in \sim_{FB} :
 - $P_1 \sim_{\mathrm{FB:ps}} P_2$ iff $P_1 + P \sim_{\mathrm{FB}} P_2 + P$ for all $P \in \mathbb{P}$ s.t. $\mathit{initial}(P) \lor (\mathit{initial}(P_1) \land \mathit{initial}(P_2))$.

Modal Logic Characterizations

- Properties preserved by each equivalence; diagnostic information via distinguishing formulas explaining why two processes are not bisimilar.
- Hennessy-Milner logic extended with a backward modality (and init) from which suitable fragments are taken.
- Syntax:

$$\phi \, ::= \, \mathsf{true} \, | \, \mathsf{init} \, | \, \neg \phi \, | \, \phi \wedge \phi \, | \, \langle a \rangle \phi \, | \, \langle a^\dagger \rangle \phi$$

Modal Logic Characterizations

- Properties preserved by each equivalence; diagnostic information via distinguishing formulas explaining why two processes are not bisimilar.
- Hennessy-Milner logic extended with a backward modality (and init) from which suitable fragments are taken.
- Syntax:

$$\phi ::= \mathsf{true} \mid \mathsf{init} \mid \neg \phi \mid \phi \land \phi \mid \langle a \rangle \phi \mid \langle a^{\dagger} \rangle \phi$$

Semantics:

```
\begin{array}{lll} P &\models& \mathrm{true} & \mathrm{for\ all}\ P \in \mathbb{P} \\ P &\models& \mathrm{init} & \mathrm{iff}\ \mathit{initial}(P) \\ P &\models& \neg \phi & \mathrm{iff}\ P \not\models \phi \\ P &\models& \phi_1 \wedge \phi_2 & \mathrm{iff}\ P \models \phi_1 \ \mathrm{and}\ P \models \phi_2 \\ P &\models& \langle a \rangle \phi & \mathrm{iff\ there\ exists}\ P \xrightarrow{\theta} P' \ \mathrm{s.t.}\ \mathit{act}(\theta) = a \ \mathrm{and}\ P' \models \phi \\ P &\models& \langle a^\dagger \rangle \phi & \mathrm{iff\ there\ exists}\ P' \xrightarrow{\theta} P \ \mathrm{s.t.}\ \mathit{act}(\theta) = a \ \mathrm{and}\ P' \models \phi \end{array}
```

• Fragments characterizing the four strong bisimilarities:

	true	init	_	\wedge	$\langle a \rangle$	$\langle a^{\dagger} \rangle$
$\mathcal{L}_{ ext{FB}}$	√		√	√	✓	
$\mathcal{L}_{ ext{FB:ps}}$	√	✓	√	√	√	
$\mathcal{L}_{ ext{RB}}$	√					√
$\mathcal{L}_{ ext{FRB}}$	√		√	√	√	√

• $\mathcal{L}_{\mathrm{FB}}$ / $\mathcal{L}_{\mathrm{FB:ps}}$ / $\mathcal{L}_{\mathrm{RB}}$ / $\mathcal{L}_{\mathrm{FRB}}$ characterizes \sim_{FB} / $\sim_{\mathrm{FB:ps}}$ / \sim_{RB} / \sim_{FRB} : $P_1 \sim_B P_2$ iff $\forall \phi \in \mathcal{L}_B$. $P_1 \models \phi \iff P_2 \models \phi$

Fragments characterizing the four strong bisimilarities:

	true	init	_	\wedge	$\langle a \rangle$	$\langle a^{\dagger} \rangle$
$\mathcal{L}_{ ext{FB}}$	√		√	√	√	
$\mathcal{L}_{ ext{FB:ps}}$	√	✓	√	√	√	
$\mathcal{L}_{ ext{RB}}$	√					√
$\mathcal{L}_{ ext{FRB}}$	√		√	√	√	√

- $\mathcal{L}_{\mathrm{FB}} / \mathcal{L}_{\mathrm{FB:ps}} / \mathcal{L}_{\mathrm{RB}} / \mathcal{L}_{\mathrm{FRB}}$ characterizes $\sim_{\mathrm{FB}} / \sim_{\mathrm{FB:ps}} / \sim_{\mathrm{RB}} / \sim_{\mathrm{FRB}}$: $P_1 \sim_B P_2$ iff $\forall \phi \in \mathcal{L}_B$. $P_1 \models \phi \iff P_2 \models \phi$
- ullet \sim_{RB} boils down to reverse trace equivalence!
- Obvious over sequential processes because each of them has at most one incoming transition due to executed actions being decorated.

Equational Characterizations

- Fundamental equational laws; exploitable as bisimilarity-preserving rewriting rules for manipulating processes.
- Deduction system \vdash based on these axioms and inference rules due to $\sim_{FB:ps}$, \sim_{RB} , \sim_{FRB} being equivalence relations and congruences:

Equational Characterizations

- Fundamental equational laws; exploitable as bisimilarity-preserving rewriting rules for manipulating processes.
- Deduction system \vdash based on these axioms and inference rules due to $\sim_{FB:ps}$, \sim_{RB} , \sim_{FRB} being equivalence relations and congruences:
 - $\qquad \text{Reflexivity } P=P \text{, symmetry } \frac{P_1=P_2}{P_2=P_1} \text{, transitivity } \frac{P_1=P_2 \ P_2=P_3}{P_1=P_3}.$
 - $\bullet \ \ \text{.-Substitutivity:} \ \ \frac{P_1=P_2 \quad \textit{initial}(P_1) \wedge \textit{initial}(P_2)}{a \cdot P_1=a \cdot P_2}, \ \frac{P_1=P_2}{a^\dagger \cdot P_1=a^\dagger \cdot P_2}.$
 - $\bullet \ \, \Box\text{-substitutivity:} \ \, \frac{P_1 = P_2}{P_1 \, \llcorner \rho \, \urcorner = P_2 \, \llcorner \rho \, \urcorner}.$
 - $\bullet \ \ +\text{-Substitutivity:} \ \ \frac{P_1=P_2 \quad \mathit{initial}(P) \lor (\mathit{initial}(P_1) \land \mathit{initial}(P_2))}{P_1+P=P_2+P \quad P+P_1=P+P_2}.$
 - $\bullet \ \, \| \text{-substitutivity:} \ \, \frac{P_1 = P_2 \quad P_1 \, \|_L \, P, P_2 \, \|_L \, P, P \, \|_L \, P_1, P \, \|_L \, P_2 \in \mathbb{P} }{P_1 \, \|_L \, P = P_2 \, \|_L \, P \quad P \, \|_L \, P_1 = P \, \|_L \, P_2 }.$
- \vdash is sound and complete w.r.t. \sim when $\vdash P_1 = P_2$ iff $P_1 \sim P_2$.

Operator-specific axioms for renaming-free sequential processes:

(A_1)				P + (Q + R)	where at least two are initial
(A_2)				Q + P	where $initial(P) \vee initial(Q)$
(A_3)		$P + \underline{0}$	=	P	
(A_4)	$[\sim_{\mathrm{FB:ps}}]$	a^{\dagger} . P			if $initial(P)$
(A_5)	$[\sim_{\mathrm{FB:ps}}]$	a^{\dagger} . P	=	P	if $\neg initial(P)$
(A_6)	$[\sim_{\mathrm{FB:ps}}]$	P+Q	=	P	if $\neg initial(P)$, where $initial(Q)$
(A_7)	$[\sim_{\mathrm{RB}}]$	a . P	=	P	where $initial(P)$
(A_8)	$[\sim_{ m RB}]$	P+Q	=	P	if $initial(Q)$
(A_9)	$[\sim_{\mathrm{FB:ps}}]$	P+P	=	P	where $initial(P)$
(A_{10})	$[\sim_{\mathrm{FRB}}]$	P+Q	=	P	if $initial(Q) \wedge to_initial(P) = Q$

- A_8 subsumes A_3 (with $Q = \underline{0}$) and A_9 (with Q = P).
- A_9 and A_6 apply in two different cases (P initial or not).
- A₁₀ originally developed in [LanesePhillips21].
- $\vdash_{4,5,6,9}^{1,2,3} / \vdash_{7,8}^{1,2} / \vdash_{10}^{1,2,3}$ sound and complete for $\sim_{FB:ps} / \sim_{RB} / \sim_{FRB}$.
- Third comparative remark: explicit vs. implicit idempotency.

Axioms for renaming:

```
 \begin{array}{llll} (\mathsf{A}_{11}) & & \underline{\mathbb{Q}} \, \llcorner \rho^{\neg} &= \, \underline{\mathbb{Q}} \\ (\mathsf{A}_{12}) & & (a \, . \, P) \, \llcorner \rho^{\neg} &= \, \rho(a) \, . \, (P \, \llcorner \rho^{\neg}) & \text{where } \mathit{initial}(P) \\ (\mathsf{A}_{13}) & & (a^{\dagger} \, . \, P) \, \llcorner \rho^{\neg} &= \, \rho(a)^{\dagger} \, . \, (P \, \llcorner \rho^{\neg}) \\ (\mathsf{A}_{14}) & & (P \, + \, Q) \, \llcorner \rho^{\neg} &= \, (P \, \llcorner \rho^{\neg}) \, + \, (Q \, \llcorner \rho^{\neg}) & \text{where } \mathit{initial}(P) \, \lor \mathit{initial}(Q) \\ \end{array}
```

- They progressively remove all occurrences of renaming.
- $\bullet \sim_{\mathrm{FB:ps}}$ needs all of them.
- \sim_{RB} only needs A_{11} and A_{13} .
- $\bullet \sim_{\mathrm{FRB}}$ needs all of them.
- We will see later on expansion laws for parallel composition.

$$\stackrel{\hat{\theta}}{\Longrightarrow} = \Longrightarrow \text{ if } \mathit{act}(\theta) = \tau, \stackrel{\hat{\theta}}{\Longrightarrow} = \Longrightarrow \stackrel{\theta}{\longrightarrow} \Longrightarrow \text{ if } \mathit{act}(\theta) \neq \tau.$$

• Abstracting from possibly empty sequences \implies of au-transitions:

$$\stackrel{\hat{\theta}}{\Longrightarrow} = \Longrightarrow \text{ if } \operatorname{act}(\theta) = \tau, \stackrel{\hat{\theta}}{\Longrightarrow} = \Longrightarrow \stackrel{\theta}{\longrightarrow} \Longrightarrow \text{ if } \operatorname{act}(\theta) \neq \tau.$$

- ullet A symmetric relation ${\mathcal B}$ over ${\mathbb P}$ is a:
 - Weak forward bisimulation iff, whenever $(P_1, P_2) \in \mathcal{B}$, then:
 - $\bullet \ \forall \ \underset{P_1}{P_1} \xrightarrow{\theta_1} P_1' \ . \ \exists \ \underset{P_2}{P_2} \stackrel{\hat{\theta}_2}{\Longrightarrow} P_2' \ . \ \mathit{act}(\theta_1) = \mathit{act}(\theta_2) \land (P_1', P_2') \in \mathcal{B}.$

$$\stackrel{\hat{\theta}}{\Longrightarrow} = \Longrightarrow \text{ if } \operatorname{act}(\theta) = \tau, \stackrel{\hat{\theta}}{\Longrightarrow} = \Longrightarrow \stackrel{\theta}{\longrightarrow} \Longrightarrow \text{ if } \operatorname{act}(\theta) \neq \tau.$$

- A symmetric relation \mathcal{B} over \mathbb{P} is a:
 - Weak forward bisimulation iff, whenever $(P_1, P_2) \in \mathcal{B}$, then:

$$\bullet \ \forall \ \underline{P_1} \xrightarrow{\theta_1} P_1' \ . \ \exists \ \underline{P_2} \stackrel{\hat{\theta}_2}{\Longrightarrow} P_2' \ . \ \textit{act}(\theta_1) = \textit{act}(\theta_2) \land (P_1', P_2') \in \mathcal{B}.$$

- Weak reverse bisimulation iff, whenever $(P_1, P_2) \in \mathcal{B}$, then:
 - $\forall P_1' \xrightarrow{\theta_1} P_1 : \exists P_2' \xrightarrow{\hat{\theta}_2} P_2 : act(\theta_1) = act(\theta_2) \land (P_1', P_2') \in \mathcal{B}.$

$$\stackrel{\hat{\theta}}{\Longrightarrow} = \Longrightarrow \text{ if } \operatorname{act}(\theta) = \tau, \stackrel{\hat{\theta}}{\Longrightarrow} = \Longrightarrow \stackrel{\theta}{\longrightarrow} \Longrightarrow \text{ if } \operatorname{act}(\theta) \neq \tau.$$

- A symmetric relation \mathcal{B} over \mathbb{P} is a:
 - Weak forward bisimulation iff, whenever $(P_1, P_2) \in \mathcal{B}$, then:

$$\bullet \ \forall \ P_1 \stackrel{\theta_1}{\longrightarrow} P_1' \ . \ \exists \ P_2 \stackrel{\hat{\theta}_2}{\Longrightarrow} P_2' \ . \ \mathsf{act}(\theta_1) = \mathsf{act}(\theta_2) \land (P_1', P_2') \in \mathcal{B}.$$

- Weak reverse bisimulation iff, whenever $(P_1, P_2) \in \mathcal{B}$, then:
 - $\forall P_1' \xrightarrow{\theta_1} P_1 : \exists P_2' \xrightarrow{\hat{\theta}_2} P_2 : act(\theta_1) = act(\theta_2) \land (P_1', P_2') \in \mathcal{B}.$
- ullet Weak forward-reverse bisimulation iff, whenever $(P_1,P_2)\in \mathcal{B}$, then:
 - $\forall P_1 \xrightarrow{\theta_1} P_1'$. $\exists P_2 \stackrel{\hat{\theta}_2}{\Longrightarrow} P_2'$. $act(\theta_1) = act(\theta_2) \land (P_1', P_2') \in \mathcal{B}$.
 - $\forall P_1' \xrightarrow{\theta_1} P_1 : \exists P_2' \xrightarrow{\hat{\theta}_2} P_2 : act(\theta_1) = act(\theta_2) \land (P_1', P_2') \in \mathcal{B}.$

$$\stackrel{\hat{\theta}}{\Longrightarrow} = \Longrightarrow \text{ if } \operatorname{act}(\theta) = \tau, \stackrel{\hat{\theta}}{\Longrightarrow} = \Longrightarrow \stackrel{\theta}{\longrightarrow} \Longrightarrow \text{ if } \operatorname{act}(\theta) \neq \tau.$$

- A symmetric relation $\mathcal B$ over $\mathbb P$ is a:
 - Weak forward bisimulation iff, whenever $(P_1, P_2) \in \mathcal{B}$, then:

$$\bullet \ \forall \ P_1 \stackrel{\theta_1}{\longrightarrow} P_1' \ . \ \exists \ P_2 \stackrel{\hat{\theta}_2}{\Longrightarrow} P_2' \ . \ \mathsf{act}(\theta_1) = \mathsf{act}(\theta_2) \land (P_1', P_2') \in \mathcal{B}.$$

- Weak reverse bisimulation iff, whenever $(P_1, P_2) \in \mathcal{B}$, then:
 - $\forall P_1' \xrightarrow{\theta_1} P_1 : \exists P_2' \xrightarrow{\hat{\theta}_2} P_2 : act(\theta_1) = act(\theta_2) \land (P_1', P_2') \in \mathcal{B}.$
- Weak forward-reverse bisimulation iff, whenever $(P_1, P_2) \in \mathcal{B}$, then:
 - $\bullet \ \forall \ \underline{P_1} \xrightarrow{\theta_1} P_1' \ . \ \exists \ \underline{P_2} \stackrel{\hat{\theta}_2}{\Longrightarrow} P_2' \ . \ \mathit{act}(\theta_1) = \mathit{act}(\theta_2) \land (P_1', P_2') \in \mathcal{B}.$
 - $\forall P_1' \xrightarrow{\theta_1} P_1 : \exists P_2' \stackrel{\hat{\theta}_2}{\Longrightarrow} P_2 : act(\theta_1) = act(\theta_2) \land (P_1', P_2') \in \mathcal{B}.$
- Largest such relations: \approx_{FB} , \approx_{RB} , \approx_{FRB} .
- Alternative definitions with $\stackrel{\hat{\theta}_1}{\Longrightarrow}$ in place of $\stackrel{\theta_1}{\Longrightarrow}$.
- In order for $P_1, P_2 \in \mathbb{P}$ to be identified by $\approx_{FB}/\approx_{RB}$ their weak forward/backward ready sets have to coincide.

- Each weak bisimilarity is strictly coarser than its strong counterpart.
- $\bullet \approx_{FRB} \subsetneq \approx_{FB} \cap \approx_{RB}$ with \approx_{FB} and \approx_{RB} being incomparable.

- Each weak bisimilarity is strictly coarser than its strong counterpart.
- $\approx_{FRB} \subseteq \approx_{FB} \cap \approx_{RB}$ with \approx_{FB} and \approx_{RB} being incomparable.
- $\approx_{\rm FRB} \neq \approx_{\rm FB}$ over initial processes:
 - $\tau \cdot a \cdot \underline{0} + a \cdot \underline{0} + b \cdot \underline{0}$ and $\tau \cdot a \cdot \underline{0} + b \cdot \underline{0}$ are identified by \approx_{FB} but told apart by \approx_{FRB}
 - \bullet Doing a on the left is matched by doing τ and then a on the right.
 - ullet Undoing a on the right cannot be matched on the left.
 - $c \cdot (\tau \cdot a \cdot \underline{0} + a \cdot \underline{0} + b \cdot \underline{0})$ and $c \cdot (\tau \cdot a \cdot \underline{0} + b \cdot \underline{0})$ is an analogous counterexample with non-initial τ -actions:
 - \bullet Doing c on one side is matched by doing c on the other side.
 - \bullet Doing a on the left is matched by doing τ and then a on the right.
 - Undoing a on the right cannot be matched on the left.

- Neither \approx_{FB} nor \approx_{FRB} is compositional:
 - $a^{\dagger}.b.\underline{0} \approx_{\mathrm{FB}} b.\underline{0}$ but $a^{\dagger}.b.\underline{0} + c.\underline{0} \not\approx_{\mathrm{FB}} b.\underline{0} + c.\underline{0}$ (same as \sim_{FB}).
 - $\tau . a . \underline{0} \approx_{FB} a . \underline{0}$ but $\tau . a . \underline{0} + b . \underline{0} \not\approx_{FB} a . \underline{0} + b . \underline{0}$.
 - $\tau . a . \underline{0} \approx_{\text{FRB}} a . \underline{0} \text{ but } \tau . a . \underline{0} + b . \underline{0} \not\approx_{\text{FRB}} a . \underline{0} + b . \underline{0}$.
- The weak congruence construction à la Milner does not work here, past sensitivity is the solution again.

- Neither \approx_{FB} nor \approx_{FRB} is compositional:
 - $a^{\dagger}.b.\underline{0} \approx_{\mathrm{FB}} b.\underline{0}$ but $a^{\dagger}.b.\underline{0} + c.\underline{0} \not\approx_{\mathrm{FB}} b.\underline{0} + c.\underline{0}$ (same as \sim_{FB}).
 - $\tau . a . \underline{0} \approx_{FB} a . \underline{0}$ but $\tau . a . \underline{0} + b . \underline{0} \not\approx_{FB} a . \underline{0} + b . \underline{0}$.
 - $\tau . a . \underline{0} \approx_{\text{FRB}} a . \underline{0} \text{ but } \tau . a . \underline{0} + b . \underline{0} \not\approx_{\text{FRB}} a . \underline{0} + b . \underline{0}$.
- The weak congruence construction à la Milner does not work here, past sensitivity is the solution again.
- A symmetric relation $\mathcal B$ over $\mathbb P$ is a weak past-sensitive forward bisim. iff it is a weak forward bisim. in which $initial(P_1) \Longleftrightarrow initial(P_2)$ for all $(P_1, P_2) \in \mathcal B$.
- A symm. rel. $\mathcal B$ over $\mathbb P$ is a weak past-sensitive forward-reverse bisim. iff it is a weak forward-reverse bisim. s.t. $initial(P_1) \iff initial(P_2)$ for all $(P_1, P_2) \in \mathcal B$.
- Largest such relations: $\approx_{\mathrm{FB:ps}}$, $\approx_{\mathrm{FRB:ps}}$.
- $\sim_{FRB} \subsetneq \approx_{FRB:ps}$ as the former satisfies the initiality condition.

- Let $P_1, P_2 \in \mathbb{P}$ be such that $P_1 \approx P_2$ and take arbitrary a, ρ, L, P .
- All weak bisimilarities are congruences w.r.t. action prefix:
 - $a \cdot P_1 \approx a \cdot P_2$ provided that $initial(P_1) \wedge initial(P_2)$.
 - a^{\dagger} , $P_1 \approx a^{\dagger}$, P_2 .
- All weak bisimilarities are congruences w.r.t. renaming:
 - $P_1 \, \llcorner \rho \urcorner \approx P_2 \, \llcorner \rho \urcorner$.
- All weak bisimilarities are congruences w.r.t. parallel composition:
 - $\begin{array}{l} \bullet \ \ P_1 \parallel_L P \approx P_2 \parallel_L P \ \text{and} \ P \parallel_L P_1 \approx P \parallel_L P_2 \\ \text{provided that} \ \ P_1 \parallel_L P, P_2 \parallel_L P, P \parallel_L P_1, P \parallel_L P_2 \in \mathbb{P}. \end{array}$

- Let $P_1, P_2 \in \mathbb{P}$ be such that $P_1 \approx P_2$ and take arbitrary a, ρ, L, P .
- All weak bisimilarities are congruences w.r.t. action prefix:
 - $a \cdot P_1 \approx a \cdot P_2$ provided that $initial(P_1) \wedge initial(P_2)$.
 - a^{\dagger} . $P_1 \approx a^{\dagger}$. P_2 .
- All weak bisimilarities are congruences w.r.t. renaming:
 - $P_1 \, \llcorner \rho \urcorner \approx P_2 \, \llcorner \rho \urcorner.$
- All weak bisimilarities are congruences w.r.t. parallel composition:
 - $P_1 \parallel_L P \approx P_2 \parallel_L P$ and $P \parallel_L P_1 \approx P \parallel_L P_2$ provided that $P_1 \parallel_L P, P_2 \parallel_L P, P \parallel_L P_1, P \parallel_L P_2 \in \mathbb{P}$.
- $\approx_{FB:ps}$, \approx_{RB} , $\approx_{FRB:ps}$ are congruences w.r.t. alternative composition:
 - $P_1 + P \approx P_2 + P$ and $P + P_1 \approx P + P_2$ provided that $initial(P) \lor (initial(P_1) \land initial(P_2))$.
- $\approx_{FB:ps}$ is the coarsest congruence w.r.t. + contained in \approx_{FB} :
 - $P_1 \approx_{\mathrm{FB:ps}} P_2$ iff $P_1 + P \approx_{\mathrm{FB}} P_2 + P$ for all $P \in \mathbb{P}$ s.t. $\mathit{initial}(P) \lor (\mathit{initial}(P_1) \land \mathit{initial}(P_2))$.
- $\approx_{FRB:ps}$ is the coarsest congruence w.r.t. + contained in \approx_{FRB} :
 - $P_1 \approx_{\mathrm{FRB:ps}} P_2$ iff $P_1 + P \approx_{\mathrm{FRB}} P_2 + P$ for all $P \in \mathbb{P}$ s.t. $\mathit{initial}(P) \lor (\mathit{initial}(P_1) \land \mathit{initial}(P_2))$.

Modal Logic Characterizations

• Modal logic with weak forward/backward modalities $(a \in A \setminus \{\tau\})$:

```
\phi ::= \mathsf{true} \mid \mathsf{init} \mid \neg \phi \mid \phi \land \phi \mid \langle\!\langle \tau \rangle\!\rangle \phi \mid \langle\!\langle a \rangle\!\rangle \phi \mid \langle\!\langle \tau^\dagger \rangle\!\rangle \phi \mid \langle\!\langle a^\dagger \rangle\!\rangle \phi
```

Modal Logic Characterizations

• Modal logic with weak forward/backward modalities $(a \in A \setminus \{\tau\})$:

$$\phi \,::= \, \mathsf{true} \, | \, \mathsf{init} \, | \, \neg \phi \, | \, \phi \wedge \phi \, | \, \langle\!\langle \tau \rangle\!\rangle \phi \, | \, \langle\!\langle a \rangle\!\rangle \phi \, | \, \langle\!\langle a^\dagger \rangle$$

Semantics:

```
\begin{array}{lll} P &\models& \mathrm{true} & \mathrm{for\ all}\ P \in \mathbb{P} \\ P &\models& \mathrm{init} & \mathrm{iff}\ initial(P) \\ P &\models& \neg \phi & \mathrm{iff}\ P \not\models \phi \\ P &\models& \phi_1 \wedge \phi_2 & \mathrm{iff}\ P \models \phi_1 \ \mathrm{and}\ P \models \phi_2 \\ P &\models& \langle\!\langle \tau \rangle\!\rangle \phi & \mathrm{iff\ there\ exists}\ P \Longrightarrow P' \ \mathrm{s.t.\ } act(\theta) = a \ \mathrm{and}\ P' \models \phi \\ P &\models& \langle\!\langle a \rangle\!\rangle \phi & \mathrm{iff\ there\ exists}\ P \Longrightarrow P \ \mathrm{such\ that}\ P' \models \phi \\ P &\models& \langle\!\langle a^\dagger \rangle\!\rangle \phi & \mathrm{iff\ there\ exists}\ P' \Longrightarrow P \ \mathrm{such\ that}\ P' \models \phi \\ P &\models& \langle\!\langle a^\dagger \rangle\!\rangle \phi & \mathrm{iff\ there\ exists}\ P' \Longrightarrow P \ \mathrm{s.t.\ } act(\theta) = a \ \mathrm{and}\ P' \models \phi \\ \end{array}
```

• Fragments characterizing the five weak bisimilarities:

	true	init	_	\wedge	$\langle\!\langle \tau \rangle\!\rangle$	$\langle\!\langle a \rangle\!\rangle$	$\langle\!\langle au^\dagger angle\! angle$	$\langle\langle a^{\dagger} \rangle\rangle$
$\mathcal{L}_{ ext{FB}}^ au$	√		✓	√	√	√		
$\mathcal{L}^{ au}_{ ext{FB:ps}}$	√	√	√	√	√	√		
$\mathcal{L}_{ ext{RB}}^{ au}$	√						✓	✓
$\mathcal{L}_{ ext{FRB}}^{ au}$	√		√	√	√	√	✓	✓
$\mathcal{L}^{ au}_{ ext{FRB:ps}}$	✓	√	√	√	√	√	✓	√

•
$$\mathcal{L}_{\mathrm{FB}}^{ au}$$
 / $\mathcal{L}_{\mathrm{FB:ps}}^{ au}$ / $\mathcal{L}_{\mathrm{RB}}^{ au}$ / $\mathcal{L}_{\mathrm{FRB}}^{ au}$ / $\mathcal{L}_{\mathrm{FRB:ps}}^{ au}$ characterizes \approx_{FB} / $\approx_{\mathrm{FB:ps}}$ / $\approx_{\mathrm{FRB:ps}}$ / $\approx_{\mathrm{FRB:ps}}$: $P_1 \approx_B P_2$ iff $\forall \phi \in \mathcal{L}_B^{ au}$. $P_1 \models \phi \iff P_2 \models \phi$

Equational Characterizations

• Additional operator-specific axioms called τ -laws:

$(A_1^{ au})$	[≈ _{FB:ps}]	$a \cdot \tau \cdot P = a \cdot P$	where $initial(P)$
$(A_2^{ au})$	$[\approx_{\mathrm{FB:ps}}]$	$P + \tau \cdot P = \tau \cdot P$	where $initial(P)$
(A_3^{τ})	$[pprox_{\mathrm{FB:ps}}]$	$a \cdot (P + \tau \cdot Q) + a \cdot Q = a \cdot (P$	$+\tau \cdot Q$) where P, Q initial
$(A_4^ au)$	$[\approx_{\mathrm{FB:ps}}]$	$a^{\dagger} \cdot \tau \cdot P = a^{\dagger} \cdot P$	where $initial(P)$
$(A_5^{ au})$	[≈ _{RB}]	$\tau^{\dagger}.P = P$	
$(A_6^{ au})$	$[\approx_{\mathrm{FRB:ps}}]$	$a.(\tau.(P+Q)+P) = a.(P$	
$(A_7^{ au})$	$[pprox_{\mathrm{FRB:ps}}]$	$a^{\dagger} \cdot (\tau \cdot (P+Q) + P') = a^{\dagger} \cdot (P+Q)$	
			where P, Q initial
$(A_8^{ au})$	$[\approx_{\mathrm{FRB:ps}}]$	$a^{\dagger} \cdot (\tau^{\dagger} \cdot (P'+Q) + P) = a^{\dagger} \cdot (P'+Q)$	
			where $initial(P)$

- A_1^{τ} , A_2^{τ} , A_3^{τ} are Milner τ -laws, A_4^{τ} needed for completeness.
- A_5^{τ} is a variant of τ . P = P (not valid for weak bisim. congruence).
- A_6^{τ} is Van Glabbeek-Weijland au-law, A_7^{τ} and A_8^{τ} needed for complet.
- $\vdash_{1,2,3,4}^{1,2,3,4,5,6,9} / \vdash_{5}^{1,2,7,8} / \vdash_{6,7,8}^{1,2,3,10}$ is sound and complete for $\approx_{\mathrm{FB:ps}} / \approx_{\mathrm{RB}} / \approx_{\mathrm{FRB:ps}}$ over renaming-free sequential processes.
- ullet $pprox_{FRB}$ is branching bisimilarity over initial sequential processes!

Expansion Laws for Parallel Composition

• In forward-only process calculi $a \cdot \underline{0} \parallel_{\emptyset} b \cdot \underline{0}$ and $a \cdot b \cdot \underline{0} + b \cdot a \cdot \underline{0}$ are deemed equivalent: the latter is the expansion of the former.

Expansion Laws for Parallel Composition

- In forward-only process calculi $a \cdot \underline{0} \parallel_{\emptyset} b \cdot \underline{0}$ and $a \cdot b \cdot \underline{0} + b \cdot a \cdot \underline{0}$ are deemed equivalent: the latter is the expansion of the former.
- In our reversible setting we obtain instead $(a \neq b)$:

ullet \sim_{FB} is interleaving, while \sim_{RB} and \sim_{FRB} are truly concurrent.

Expansion Laws for Parallel Composition

- In forward-only process calculi $a \cdot \underline{0} \parallel_{\emptyset} b \cdot \underline{0}$ and $a \cdot b \cdot \underline{0} + b \cdot a \cdot \underline{0}$ are deemed equivalent: the latter is the expansion of the former.
- In our reversible setting we obtain instead $(a \neq b)$:

- \bullet \sim_{FB} is interleaving, while \sim_{RB} and \sim_{FRB} are truly concurrent.
- What are the expansion laws for the six bisimulation congruences $\sim_{\mathrm{FB:ps}}$, \sim_{RB} , \sim_{FRB} , $\approx_{\mathrm{FB:ps}}$, $\approx_{\mathrm{FB:ps}}$?

• Expansion laws for forward-only calculi in the interleaving setting are used to identify $a \cdot 0 \parallel_{\emptyset} b \cdot 0$ and $a \cdot b \cdot 0 + b \cdot a \cdot 0$.

- Expansion laws for forward-only calculi in the interleaving setting are used to identify $a \cdot \underline{0} \parallel_{\emptyset} b \cdot \underline{0}$ and $a \cdot b \cdot \underline{0} + b \cdot a \cdot \underline{0}$.
- Also used in truly concurrent semantics to distinguish those processes by adding suitable discriminating information within action prefixes:

- Expansion laws for forward-only calculi in the interleaving setting are used to identify $a \cdot \underline{0} \parallel_{\emptyset} b \cdot \underline{0}$ and $a \cdot b \cdot \underline{0} + b \cdot a \cdot \underline{0}$.
- Also used in truly concurrent semantics to distinguish those processes by adding suitable discriminating information within action prefixes:
 - Causal bisimilarity [DarondeauDegano90] (corresponding to history-preserving bisimilarity [RabinovichTrakhtenbrot88]): every action is enriched with the set of its causing actions each of which is expressed as a numeric backward pointer, hence we get $< a, \emptyset > . < b, \emptyset > . \underline{0} + < b, \emptyset > . < a, \emptyset > . \underline{0}$ and $< a, \emptyset > . < b, \{1\} > . \underline{0} + < b, \emptyset > . < a, \{1\} > . \underline{0}$.

- Expansion laws for forward-only calculi in the interleaving setting are used to identify $a \cdot \underline{0} \parallel_{\emptyset} b \cdot \underline{0}$ and $a \cdot b \cdot \underline{0} + b \cdot a \cdot \underline{0}$.
- Also used in truly concurrent semantics to distinguish those processes by adding suitable discriminating information within action prefixes:
 - Causal bisimilarity [DarondeauDegano90] (corresponding to history-preserving bisimilarity [RabinovichTrakhtenbrot88]): every action is enriched with the set of its causing actions each of which is expressed as a numeric backward pointer, hence we get $< a, \emptyset > . < b, \emptyset > . \underline{0} + < b, \emptyset > . < a, \emptyset > . \underline{0}$ and $< a, \emptyset > . < b, \{1\} > . \underline{0} + < b, \emptyset > . < a, \{1\} > . \underline{0}$.
 - Location bisimilarity [BoudolCastellaniHennessyKiehn94]: every action is enriched with the name of the location in which it is executed, hence we get $<\!a,l_a\!>.<\!b,l_b\!>.\underline{0}+<\!b,l_b\!>.<\!a,l_a\!>.\underline{0}$ and $<\!a,l_a\!>.<\!b,l_al_b\!>.\underline{0}+<\!b,l_b\!>.<\!a,l_bl_a\!>.\underline{0}$.

- Expansion laws for forward-only calculi in the interleaving setting are used to identify $a \cdot \underline{0} \parallel_{\emptyset} b \cdot \underline{0}$ and $a \cdot b \cdot \underline{0} + b \cdot a \cdot \underline{0}$.
- Also used in truly concurrent semantics to distinguish those processes by adding suitable discriminating information within action prefixes:
 - Causal bisimilarity [DarondeauDegano90] (corresponding to history-preserving bisimilarity [RabinovichTrakhtenbrot88]): every action is enriched with the set of its causing actions each of which is expressed as a numeric backward pointer, hence we get $< a, \emptyset > . < b, \emptyset > . 0 + < b, \emptyset > . < a, \emptyset > . 0$ and $< a, \emptyset > . < b, \{1\} > . 0 + < b, \emptyset > . < a, \{1\} > . 0$.
 - Location bisimilarity [BoudolCastellaniHennessyKiehn94]: every action is enriched with the name of the location in which it is executed, hence we get $< a, l_a > . < b, l_b > . \underline{0} + < b, l_b > . < a, l_a > . \underline{0}$ and $< a, l_a > . < b, l_a l_b > . \underline{0} + < b, l_b > . < a, l_b l_a > . \underline{0}$.
 - Pomset bisimilarity [BoudolCastellani88]: a prefix may contain a combination of actions that are causally related or independent, hence the former process becomes $a \cdot b \cdot \underline{0} + b \cdot a \cdot \underline{0} + (a \parallel b) \cdot \underline{0}$.

- How to uniformly derive the six expansion laws?
- Proved trees approach of [DeganoPriami92].
- Enabled by the use of proof terms in the operational semantics!

- How to uniformly derive the six expansion laws?
- Proved trees approach of [DeganoPriami92].
- Enabled by the use of proof terms in the operational semantics!
- Interleaving: proof terms are reduced to the actions they contain, hence we are done for $\sim_{\mathrm{FB:ps}}$ and $\approx_{\mathrm{FB:ps}}$.

- How to uniformly derive the six expansion laws?
- Proved trees approach of [DeganoPriami92].
- Enabled by the use of proof terms in the operational semantics!
- Interleaving: proof terms are reduced to the actions they contain, hence we are done for $\sim_{\mathrm{FB:ps}}$ and $\approx_{\mathrm{FB:ps}}$.
- True concurrency: they are transformed into actions extended with suitable discriminating information (then encode processes accordingly).
- Information already available in the operational semantics for causal bisimilarity, location bisimilarity, pomset bisimilarity.
- Unfortunately not available in our proved operational semantics for \sim_{RB} , \sim_{FRB} , \approx_{RB} , $\approx_{FRB:ps}$!

- The equivalence of interest drives an observation function that maps proof terms to the required observations.
- Observation function ℓ applied to proof terms labeling transitions, so that $\ell(\theta_1)$ and $\ell(\theta_2)$ are considered in the bisimulation game.
- Action preservation: $\ell(\theta_1) = \ell(\theta_2)$ implies $act(\theta_1) = act(\theta_2)$.
- ullet may depend on other possible parameters that are present in the proved labeled transition system.
- $\sim_{\mathrm{FB:ps:}\ell_{\mathrm{F}}}$, $\sim_{\mathrm{RB:}\ell_{\mathrm{R}}}$, $\sim_{\mathrm{FRB:}\ell_{\mathrm{FR}}}$, $\approx_{\mathrm{FB:ps:}\ell_{\mathrm{F,w}}}$, $\approx_{\mathrm{RB:}\ell_{\mathrm{R,w}}}$, $\approx_{\mathrm{FRB:ps:}\ell_{\mathrm{FR,w}}}$ are the six resulting equivalences.
- When do they coincide with the six congruences?
- What is the discriminating information needed by reverse and forward-reverse semantics?

- As already anticipated $\sim_{\mathrm{FB:ps}:\ell_F} = \sim_{\mathrm{FB:ps}}$ and $\approx_{\mathrm{FB:ps}:\ell_{F,w}} = \approx_{\mathrm{FB:ps}}$ when $\ell_F(\theta) = \ell_{F,w}(\theta) = \mathit{act}(\theta)$.
- Expansion law for $\sim_{FB:ps}$ and $\approx_{FB:ps}$:

$$(A_{15}) \quad P_{1} \parallel_{L} P_{2} = [a^{\dagger}.] \left(\sum_{i \in I_{1}, a_{1,i} \notin L} a_{1,i} \cdot (P_{1,i} \parallel_{L} P'_{2}) + \sum_{i \in I_{2}, a_{2,i} \notin L} a_{2,i} \cdot (P'_{1} \parallel_{L} P_{2,i}) + \sum_{i \in I_{1}, a_{1,i} \in L} \sum_{j \in I_{2}, a_{2,j} = a_{1,i}} a_{1,i} \cdot (P_{1,i} \parallel_{L} P_{2,j}) \right)$$

- $P_k=[a_k^\dagger.]P_k'$ with $P_k'=\sum_{i\in I_k}a_{k,i}$. $P_{k,i}$ for $k\in\{1,2\}$, called F-nf.
- $[a^{\dagger}.]$ is present iff $[a_1^{\dagger}.]$ or $[a_2^{\dagger}.]$ is present (they are optional).

- $\sim_{\mathrm{RB}:\ell_{\mathrm{R}}} = \sim_{\mathrm{RB}}$ and $\sim_{\mathrm{FRB}:\ell_{\mathrm{FR}}} = \sim_{\mathrm{FRB}}$ when $\ell_{\mathrm{R}}(\theta)_{P'} = \ell_{\mathrm{FR}}(\theta)_{P'} = \langle \mathit{act}(\theta), \mathit{brs}(P') \rangle \triangleq \ell_{\mathrm{brs}}(\theta)_{P'}$ for every proved transition $P \xrightarrow{\theta} P'$.
- brs(P') is the backward ready set of P', the set of actions labeling the incoming transitions of P'.

- $\sim_{\mathrm{RB}:\ell_{\mathrm{R}}} = \sim_{\mathrm{RB}}$ and $\sim_{\mathrm{FRB}:\ell_{\mathrm{FR}}} = \sim_{\mathrm{FRB}}$ when $\ell_{\mathrm{R}}(\theta)_{P'} = \ell_{\mathrm{FR}}(\theta)_{P'} = \langle \mathit{act}(\theta), \mathit{brs}(P') \rangle \triangleq \ell_{\mathrm{brs}}(\theta)_{P'}$ for every proved transition $P \xrightarrow{\theta} P'$.
- brs(P') is the backward ready set of P', the set of actions labeling the incoming transitions of P'.
- Thus $a \cdot \underline{0} \parallel_{\emptyset} b \cdot \underline{0}$ is encoded as: $< a, \{a\} > . < b, \{a,b\} > . \underline{0} + < b, \{b\} > . < a, \{a,b\} > . \underline{0}$ while $a \cdot b \cdot \underline{0} + b \cdot a \cdot \underline{0}$ is encoded as: $< a, \{a\} > . < b, \{b\} > . 0 + < b, \{b\} > . < a, \{a\} > . 0$

- $\sim_{\mathrm{RB}:\ell_{\mathrm{R}}} = \sim_{\mathrm{RB}}$ and $\sim_{\mathrm{FRB}:\ell_{\mathrm{FR}}} = \sim_{\mathrm{FRB}}$ when $\ell_{\mathrm{R}}(\theta)_{P'} = \ell_{\mathrm{FR}}(\theta)_{P'} = \langle \mathit{act}(\theta), \mathit{brs}(P') \rangle \triangleq \ell_{\mathrm{brs}}(\theta)_{P'}$ for every proved transition $P \stackrel{\theta}{\longrightarrow} P'$.
- brs(P') is the backward ready set of P', the set of actions labeling the incoming transitions of P'.
- Thus $a \cdot \underline{0} \parallel_{\emptyset} b \cdot \underline{0}$ is encoded as: $< a, \{a\} > . < b, \{a,b\} > . \underline{0} + < b, \{b\} > . < a, \{a,b\} > . \underline{0}$ while $a \cdot b \cdot \underline{0} + b \cdot a \cdot \underline{0}$ is encoded as: $< a, \{a\} > . < b, \{b\} > . \underline{0} + < b, \{b\} > . < a, \{a\} > . \underline{0}$
- The encoding of a^{\dagger} . $\underline{0} \parallel_{\emptyset} b^{\dagger}$. $\underline{0}$ (a case not addressed in [DP92]) cannot be:

$$< a^{\dagger}, \{a\} > . < b^{\dagger}, \{a, b\} > . \underline{0} + < b^{\dagger}, \{b\} > . < a^{\dagger}, \{a, b\} > . \underline{0}$$

• It is $<a^{\dagger}$, $\{a\}>...<b^{\dagger}$, $\{a,b\}>...$ 0 + <b, $\{b\}>...<$ a, $\{a,b\}>...$ 0 or <a, $\{a\}>...<by>...$ 5, $\{a,b\}>...$ 6 depending on whether trace a b or trace b a has been executed (initial subprocesses are needed by the forward-reverse semantics).

- Encoding to \mathbb{P}_{brs} : set of sequential processes in which every action prefix is a pair composed of an action and an action set.
- Let \widetilde{P} be the ℓ_{brs} -encoding of P.
- Let \widehat{P} be the $\ell_{\mathrm{brs,w}}$ -encoding of P.

- Encoding to \mathbb{P}_{brs} : set of sequential processes in which every action prefix is a pair composed of an action and an action set.
- Let \widetilde{P} be the ℓ_{brs} -encoding of P.
- Let \widehat{P} be the $\ell_{\mathrm{brs,w}}$ -encoding of P.
- Expansion laws for \sim_{RB} and \approx_{RB} :

$$\begin{array}{|c|c|c|} \hline (\mathsf{A}_{16}) & \widehat{P_1 \parallel_L P_2} &=& e\ell^{\varepsilon}_{\mathrm{brs},\mathrm{R}}(\widetilde{P}_1,\widetilde{P}_2,L)_{P_1 \parallel_L P_2} \\ \hline (\mathsf{A}_{17}) & \widehat{P_1 \parallel_L P_2} &=& e\ell^{\varepsilon}_{\mathrm{brs},\mathrm{R}}(\widehat{P}_1,\widehat{P}_2,L)_{P_1 \parallel_L P_2} \\ \hline \end{array}$$

ullet $P_k=\underline{0}$ or $P_k=a^\dagger.P_k'$ for $k\in\{1,2\}$, called R-nf.

- Encoding to \mathbb{P}_{brs} : set of sequential processes in which every action prefix is a pair composed of an action and an action set.
- Let \widetilde{P} be the ℓ_{brs} -encoding of P.
- Let \widehat{P} be the $\ell_{\mathrm{brs,w}}$ -encoding of P.
- Expansion laws for \sim_{RB} and \approx_{RB} :

$$\begin{array}{|c|c|c|} \hline (\mathsf{A}_{16}) & \widetilde{P_1 \parallel_L P_2} &=& e\ell^{\varepsilon}_{\mathrm{brs,R}}(\widetilde{P}_1,\widetilde{P}_2,L)_{P_1 \parallel_L P_2} \\ (\mathsf{A}_{17}) & \widetilde{P_1 \parallel_L P_2} &=& e\ell^{\varepsilon}_{\mathrm{brs,R}}(\widehat{P}_1,\widehat{P}_2,L)_{P_1 \parallel_L P_2} \\ \hline \end{array}$$

- $P_k = \underline{0}$ or $P_k = a^{\dagger}$. P'_k for $k \in \{1, 2\}$, called R-nf.
- Expansion laws for \sim_{FRB} and $\approx_{FRB:ps}$:

$$\begin{array}{|c|c|} \hline (\mathsf{A}_{18}) & \widetilde{P_1 \parallel_L P_2} &=& e\ell_{\mathrm{brs}}^{\varepsilon}(\widetilde{P}_1,\widetilde{P}_2,L)_{P_1 \parallel_L P_2} \\ (\mathsf{A}_{19}) & \widetilde{P_1 \parallel_L P_2} &=& e\ell_{\mathrm{brs}}^{\varepsilon}(\widehat{P}_1,\widehat{P}_2,L)_{P_1 \parallel_L P_2} \\ \hline \end{array}$$

• $P_k = [a^{\dagger}, P'_k +] \sum_{i \in I_k} a_{k,i} \cdot P_{k,i}$ for $k \in \{1, 2\}$, called FR-nf.

ullet How close is \sim_{FRB} to hereditary history-preserving bisimilarity?

- ullet How close is \sim_{FRB} to hereditary history-preserving bisimilarity?
- A labeled configuration structure is a tuple $C = (\mathcal{E}, \mathcal{C}, \ell)$ where:
 - \bullet \mathcal{E} is a set of events.
 - $\mathcal{C} \subseteq \mathcal{P}_{\mathrm{fin}}(\mathcal{E})$ is a set of configurations.
 - $\ell: \bigcup_{X \in \mathcal{C}} X \to \mathcal{A}$ is the labeling function.

- ullet How close is \sim_{FRB} to hereditary history-preserving bisimilarity?
- A labeled configuration structure is a tuple $C = (\mathcal{E}, \mathcal{C}, \ell)$ where:
 - \bullet \mathcal{E} is a set of events.
 - $\mathcal{C} \subseteq \mathcal{P}_{\operatorname{fin}}(\mathcal{E})$ is a set of configurations.
 - $\ell: \bigcup_{X \in \mathcal{C}} X \to \mathcal{A}$ is the labeling function.
- A configuration structure *C* is stable iff it is:
 - Rooted: $\emptyset \in \mathcal{C}$.
 - Connected: $\forall X \in \mathcal{C} \setminus \{\emptyset\}. \exists e \in X. X \setminus \{e\} \in \mathcal{C}.$
 - Closed under bounded unions and intersections: $\forall X,Y,Z\in\mathcal{C}.\ X\cup Y\subseteq Z \Longrightarrow X\cup Y\in\mathcal{C}\land X\cap Y\in\mathcal{C}.$

- ullet How close is \sim_{FRB} to hereditary history-preserving bisimilarity?
- A labeled configuration structure is a tuple $C = (\mathcal{E}, \mathcal{C}, \ell)$ where:
 - \bullet \mathcal{E} is a set of events.
 - $\mathcal{C} \subseteq \mathcal{P}_{\mathrm{fin}}(\mathcal{E})$ is a set of configurations.
 - $\ell: \bigcup_{X \in \mathcal{C}} X \to \mathcal{A}$ is the labeling function.
- A configuration structure *C* is stable iff it is:
 - Rooted: $\emptyset \in \mathcal{C}$.
 - Connected: $\forall X \in \mathcal{C} \setminus \{\emptyset\}. \exists e \in X. X \setminus \{e\} \in \mathcal{C}.$
 - Closed under bounded unions and intersections: $\forall X,Y,Z\in\mathcal{C}.X\cup Y\subseteq Z \implies X\cup Y\in\mathcal{C}\land X\cap Y\in\mathcal{C}.$
- The causality relation over $X \in \mathcal{C}$ is defined by letting $e_1 <_X e_2$ for $e_1, e_2 \in X$ s.t. $e_1 \neq e_2$ iff $\forall Y \in \mathcal{C}. Y \subseteq X \land e_2 \in Y \Longrightarrow e_1 \in Y$.
- The concurrency relation over X is $co_X = (X \times X) \setminus (\leq_X \cup \geq_X)$.

- ullet How close is \sim_{FRB} to hereditary history-preserving bisimilarity?
- A labeled configuration structure is a tuple $C = (\mathcal{E}, \mathcal{C}, \ell)$ where:
 - \bullet \mathcal{E} is a set of events.
 - $\mathcal{C} \subseteq \mathcal{P}_{\mathrm{fin}}(\mathcal{E})$ is a set of configurations.
 - $\ell: \bigcup_{X \in \mathcal{C}} X \to \mathcal{A}$ is the labeling function.
- A configuration structure *C* is stable iff it is:
 - Rooted: $\emptyset \in \mathcal{C}$.
 - Connected: $\forall X \in \mathcal{C} \setminus \{\emptyset\}. \exists e \in X. X \setminus \{e\} \in \mathcal{C}.$
 - Closed under bounded unions and intersections: $\forall X,Y,Z\in\mathcal{C}.\ X\cup Y\subseteq Z \implies X\cup Y\in\mathcal{C}\land X\cap Y\in\mathcal{C}.$
- The causality relation over $X \in \mathcal{C}$ is defined by letting $e_1 <_X e_2$ for $e_1, e_2 \in X$ s.t. $e_1 \neq e_2$ iff $\forall Y \in \mathcal{C}. Y \subseteq X \land e_2 \in Y \implies e_1 \in Y$.
- The concurrency relation over X is $co_X = (X \times X) \setminus (\leq_X \cup \geq_X)$.
- $X \xrightarrow{a} X'$ for $X, X' \in \mathcal{C}$ iff $X \subseteq X' \land X' \setminus X = \{e\} \land \ell(e) = a$.

• Two stable configuration structures $C_i = (\mathcal{E}_i, \mathcal{C}_i, l_i)$, $i \in \{1, 2\}$, are hereditary history-preserving bisimilar, written $C_1 \sim_{\text{HHPB}} C_2$, iff there exists a hereditary history-preserving bisimulation between C_1 and C_2 , i.e., a relation $\mathcal{B} \subseteq \mathcal{C}_1 \times \mathcal{C}_2 \times \mathcal{P}(\mathcal{E}_1 \times \mathcal{E}_2)$ such that:

- Two stable configuration structures $C_i = (\mathcal{E}_i, \mathcal{C}_i, l_i)$, $i \in \{1, 2\}$, are hereditary history-preserving bisimilar, written $C_1 \sim_{\text{HHPB}} C_2$, iff there exists a hereditary history-preserving bisimulation between C_1 and C_2 , i.e., a relation $\mathcal{B} \subseteq \mathcal{C}_1 \times \mathcal{C}_2 \times \mathcal{P}(\mathcal{E}_1 \times \mathcal{E}_2)$ such that:
 - $(\emptyset, \emptyset, \emptyset) \in \mathcal{B}$.

- Two stable configuration structures $C_i = (\mathcal{E}_i, \mathcal{C}_i, l_i)$, $i \in \{1, 2\}$, are hereditary history-preserving bisimilar, written $C_1 \sim_{\text{HHPB}} C_2$, iff there exists a hereditary history-preserving bisimulation between C_1 and C_2 , i.e., a relation $\mathcal{B} \subseteq \mathcal{C}_1 \times \mathcal{C}_2 \times \mathcal{P}(\mathcal{E}_1 \times \mathcal{E}_2)$ such that:
 - $(\emptyset, \emptyset, \emptyset) \in \mathcal{B}$.
 - Whenever $(X_1, X_2, f) \in \mathcal{B}$, then:
 - f is a bijection from X_1 to X_2 that preserves labeling, i.e., $l_1(e) = l_2(f(e))$ for all $e \in X_1$, and causality, i.e., $e \leq_{X_1} e' \iff f(e) \leq_{X_2} f(e')$ for all $e, e' \in X_1$.

- Two stable configuration structures $C_i = (\mathcal{E}_i, \mathcal{C}_i, l_i)$, $i \in \{1, 2\}$, are hereditary history-preserving bisimilar, written $C_1 \sim_{\text{HHPB}} C_2$, iff there exists a hereditary history-preserving bisimulation between C_1 and C_2 , i.e., a relation $\mathcal{B} \subseteq \mathcal{C}_1 \times \mathcal{C}_2 \times \mathcal{P}(\mathcal{E}_1 \times \mathcal{E}_2)$ such that:
 - $(\emptyset, \emptyset, \emptyset) \in \mathcal{B}$.
 - Whenever $(X_1, X_2, f) \in \mathcal{B}$, then:
 - f is a bijection from X_1 to X_2 that preserves labeling, i.e., $l_1(e) = l_2(f(e))$ for all $e \in X_1$, and causality, i.e., $e \leq_{X_1} e' \iff f(e) \leq_{X_2} f(e')$ for all $e, e' \in X_1$.
 - For each $X_1 \xrightarrow{a}_{C_1} X_1'$ there exist $X_2 \xrightarrow{a}_{C_2} X_2'$ and f' such that $(X_1', X_2', f') \in \mathcal{B}$ and $f' \upharpoonright X_1 = f$, and vice versa.

- Two stable configuration structures $C_i = (\mathcal{E}_i, \mathcal{C}_i, l_i)$, $i \in \{1, 2\}$, are hereditary history-preserving bisimilar, written $C_1 \sim_{\text{HHPB}} C_2$, iff there exists a hereditary history-preserving bisimulation between C_1 and C_2 , i.e., a relation $\mathcal{B} \subseteq \mathcal{C}_1 \times \mathcal{C}_2 \times \mathcal{P}(\mathcal{E}_1 \times \mathcal{E}_2)$ such that:
 - $(\emptyset, \emptyset, \emptyset) \in \mathcal{B}$.
 - Whenever $(X_1, X_2, f) \in \mathcal{B}$, then:
 - f is a bijection from X_1 to X_2 that preserves labeling, i.e., $l_1(e) = l_2(f(e))$ for all $e \in X_1$, and causality, i.e., $e \leq_{X_1} e' \iff f(e) \leq_{X_2} f(e')$ for all $e, e' \in X_1$.
 - For each $X_1 \xrightarrow{a}_{C_1} X_1'$ there exist $X_2 \xrightarrow{a}_{C_2} X_2'$ and f' such that $(X_1', X_2', f') \in \mathcal{B}$ and $f' \upharpoonright X_1 = f$, and vice versa.
 - For each $X_1' \xrightarrow{a}_{C_1} X_1$ there exist $X_2' \xrightarrow{a}_{C_2} X_2$ and f' such that $(X_1', X_2', f') \in \mathcal{B}$ and $f \upharpoonright X_1' = f'$, and vice versa.

- $ho \sim_{\mathrm{HHPB}}$ [Bednarczyk91] is the finest truly concurrent equivalence preserved under action refinement that is capable of respecting causality, branching, and their interplay while abstracting from choices between identical alternatives [VanGlabbeekGoltz01].
- $ho \sim_{FRB}$ coincides with \sim_{HHPB} in the absence of autoconcurrency at the same causality level [PhillipsUlidowski12].
- Cross fertilization for their equational and logical characterizations.

- $ho \sim_{\mathrm{HHPB}}$ [Bednarczyk91] is the finest truly concurrent equivalence preserved under action refinement that is capable of respecting causality, branching, and their interplay while abstracting from choices between identical alternatives [VanGlabbeekGoltz01].
- $ho \sim_{FRB}$ coincides with \sim_{HHPB} in the absence of autoconcurrency at the same causality level [PhillipsUlidowski12].
- Cross fertilization for their equational and logical characterizations.
- Autoconcurrency is $a \cdot \underline{0} \parallel_{\emptyset} a \cdot \underline{0}$, while $a \cdot a \cdot \underline{0}$ is autocausation.
- $a \cdot \underline{0} \parallel_{\emptyset} a \cdot \underline{0} \sim_{\mathrm{FRB}} a \cdot a \cdot \underline{0} + a \cdot a \cdot \underline{0} \sim_{\mathrm{FRB}} a \cdot a \cdot \underline{0}$.
- \bullet Their $\ell_{brs}\text{-encodings}$ are basically the same:

$$< a, \{a\} > . < a, \{a, a\} > . \underline{0} + < a, \{a\} > . < a, \{a, a\} > . \underline{0}$$

 $< a, \{a\} > . < a, \{a\} > . \underline{0} + < a, \{a\} > . < a, \{a\} > . \underline{0}$
 $< a, \{a\} > . < a, \{a\} > . \underline{0}$

- Denotational semantics $\llbracket _ \rrbracket$ for $\Bbb P$ based on configuration structures in which events are proof terms.
- $[a \cdot \underline{0} \parallel_{\emptyset} a \cdot \underline{0}] \nsim_{\text{HHPB}} [a \cdot a \cdot \underline{0}]$ as $\underline{\parallel}_{\emptyset} a$ and $\underline{\parallel}_{\emptyset} a$ are independent while a and $\underline{\cdot}_a a$ are causally related, hence no bijection exists between the former and the latter that preserves causality.

- Denotational semantics $\llbracket _ \rrbracket$ for $\Bbb P$ based on configuration structures in which events are proof terms.
- $[a \cdot \underline{0} ||_{\emptyset} a \cdot \underline{0}] \not\sim_{\text{HHPB}} [a \cdot a \cdot \underline{0}]$ as $||_{\emptyset} a$ and $||_{\emptyset} a$ are independent while a and $._a a$ are causally related, hence no bijection exists between the former and the latter that preserves causality.
- $\bullet \sim_{\mathrm{FRB}}$ plus backward ready <u>multi</u>set equality distinguish them.
- $\sim_{\mathrm{FRB:brm}} = \sim_{\mathrm{HHPB}}$ in the presence of autoconcurrency if for each set of conflicting events all those events are caused by the same event.
- $\sim_{\mathrm{FRB:brm}}$ counts the incoming a-transitions of related configurations, no bijection between identically labeled events [AubertCristescu20].

- Denotational semantics $\llbracket _ \rrbracket$ for $\Bbb P$ based on configuration structures in which events are proof terms.
- $[a \cdot \underline{0} ||_{\emptyset} a \cdot \underline{0}] \nsim_{\text{HHPB}} [a \cdot a \cdot \underline{0}]$ as $||_{\emptyset} a$ and $||_{\emptyset} a$ are independent while a and $._a a$ are causally related, hence no bijection exists between the former and the latter that preserves causality.
- $\bullet \sim_{\mathrm{FRB}}$ plus backward ready <u>multi</u>set equality distinguish them.
- $\sim_{FRB:brm} = \sim_{HHPB}$ in the presence of autoconcurrency if for each set of conflicting events all those events are caused by the same event.
- $\sim_{\mathrm{FRB:brm}}$ counts the incoming a-transitions of related configurations, no bijection between identically labeled events [AubertCristescu20].
- ullet $\sim_{\mathrm{FRB:brm}}$ over $\mathbb P$ is an operational representation of \sim_{HHPB} .
- $\bullet \ \, \text{The $\ell_{\rm brm}$-encoding of a} . \, \underline{0} \parallel_{\emptyset} a \, . \, \underline{0} \colon \\ < a, \{\mid a \mid\}> . \, < a, \{\mid a, a\mid\}> . \, \underline{0} + < a, \{\mid a\mid\}> . \, < a, \{\mid a, a\mid\}> . \, \underline{0} \\ \text{ differs from its $\ell_{\rm brs}$-encoding:}$

$$< a, \{a\} > . < a, \{a, a\} > . \underline{0} + < a, \{a\} > . < a, \{a, a\} > . \underline{0}$$

Concluding Remarks and Future Work

- Reversibility as a bridge between different worlds that retrospectively enlightens concurrency theory:
 - Forward bisimilarity is the usual bisimilarity.
 - ullet Reverse bisimilarity boils down to reverse trace equivalence over $\mathbb{P}_{\mathrm{seq}}.$
 - \bullet Weak forward-reverse bisimilarity is branching bisimilarity over $\mathbb{P}_{\rm seq}.$
 - ullet Connection with hereditary history-preserving bisimilarity over ${\mathbb P}.$
 - Expansion laws addressing interleaving semantics or true concurrency.

Concluding Remarks and Future Work

- Reversibility as a bridge between different worlds that retrospectively enlightens concurrency theory:
 - Forward bisimilarity is the usual bisimilarity.
 - \bullet Reverse bisimilarity boils down to reverse trace equivalence over $\mathbb{P}_{\rm seq}.$
 - ullet Weak forward-reverse bisimilarity is branching bisimilarity over $\mathbb{P}_{\mathrm{seq}}.$
 - ullet Connection with hereditary history-preserving bisimilarity over ${\mathbb P}.$
 - Expansion laws addressing interleaving semantics or true concurrency.
- Noninterference analysis of reversible systems (branching bisimilarity)
 and extensions of causal reversibility by construction [PU07]:
 - Probabilistic processes (alternation with nondeterminism).
 - Deterministically timed processes (time additivity/determinism).
 - Stochastically timed processes (ordinary/exact/strict lumpability, causal reversibility implies time reversibility).

Concluding Remarks and Future Work

- Reversibility as a bridge between different worlds that retrospectively enlightens concurrency theory:
 - Forward bisimilarity is the usual bisimilarity.
 - \bullet Reverse bisimilarity boils down to reverse trace equivalence over $\mathbb{P}_{\rm seq}.$
 - \bullet Weak forward-reverse bisimilarity is branching bisimilarity over $\mathbb{P}_{\rm seq}.$
 - ullet Connection with hereditary history-preserving bisimilarity over ${\mathbb P}.$
 - Expansion laws addressing interleaving semantics or true concurrency.
- Noninterference analysis of reversible systems (branching bisimilarity)
 and extensions of causal reversibility by construction [PU07]:
 - Probabilistic processes (alternation with nondeterminism).
 - Deterministically timed processes (time additivity/determinism).
 - Stochastically timed processes (ordinary/exact/strict lumpability, causal reversibility implies time reversibility).
- When does time reversibility imply causal reversibility?
- What changes when admitting irreversible actions or recursion?
- Underpinning reversible concurrent programming languages?
- Unitary transformations in quantum computing are reversible!

Inspiring References

 R. Landauer, "Irreversibility and Heat Generation in the Computing Process", IBM Journal of Research and Development 5:183-191, 1961.

 [2] C.H. Bennett, "Logical Reversibility of Computation", IBM Journal of Research and Development 17:525–532, 1973.

[3] R. De Nicola, U. Montanari, F. Vaandrager, "Back and Forth Bisimulations", Proc. of CONCUR 1990.

[4] G. Boudol, I. Castellani, "Flow Models of Distributed Computations: Three Equivalent Semantics for CCS", Information and Computation 114:247–314, 1994.

[5] V. Danos, J. Krivine, "Reversible Communicating Systems", Proc. of CONCUR 2004.

[6] I. Phillips, I. Ulidowski, "Reversing Algebraic Process Calculi", Journal of Logic and Algebraic Programming 73:70–96, 2007.

 I. Lanese, I. Phillips, I. Ulidowski, "An Axiomatic Theory for Reversible Computation", ACM Trans. on Computational Logic 25(2):11:1–11:40, 2024.

[8] F.P. Kelly, "Reversibility and Stochastic Networks", John Wiley & Sons, 1979.

[9] A. Marin, S. Rossi, "On the Relations between Markov Chain Lumpability and Reversibility", Acta Informatica 54:447–485, 2017. [10] P. Degano, C. Priami, "Proved Trees", Proc. of ICALP 1992.

[11] G. Boudol, I. Castellani, "A Non-Interleaving Semantics for CCS Based on Proved Transitions", Fundamenta Informaticae 11:433–452, 1988.

[12] R.J. van Glabbeek, U. Goltz, "Refinement of Actions and Equivalence Notions for Concurrent Systems", Acta Informatica 37:229–327, 2001.

[13] Ph. Darondeau, P. Degano, "Causal Trees: Interleaving + Causality", Proc. of the LITP Spring School on Theoretical Computer Science, 1990.

[14] G. Boudol, I. Castellani, M. Hennessy, A. Kiehn, "A Theory of Processes with Localities", Formal Aspects of Computing 6:165–200, 1994.

[15] G. Boudol, I. Castellani, "Concurrency and Atomicity", Theoretical Computer Science 59:25–84, 1988.

[16] A.M. Rabinovich, B.A. Trakhtenbrot, "Behavior Structures and Nets", Acta Informatica 11:357–404, 1988.

[17] M.A. Bednarczyk, "Hereditary History Preserving Bisimulations or What Is the Power of the Future Perfect in Program Logics", Technical Report, Polish Academy of Sciences, Gdansk, 1991.

[18] I. Phillips, I. Ulidowski, "A Hierarchy of Reverse Bisimulations on Stable Configuration Structures", Mathematical Structures in Computer Science 22:333–372, 2012.

[19] C. Aubert, I. Cristescu, "How Reversibility Can Solve Traditional Questions: The Example of Hereditary History-Preserving Bisimulation", Proc. of CONCUR 2020.

Our Contributions

 M. Bernardo, S. Rossi, "Reverse Bisimilarity vs. Forward Bisimilarity", Proc. of FOSSACS 2023.

- [2] M. Bernardo, A. Esposito, "On the Weak Continuation of Reverse Bisimilarity vs. Forward Bisimilarity", Proc. of ICTCS 2023.
- [3] M. Bernardo, A. Esposito, "Modal Logic Characterizations of Forward, Reverse, and Forward-Reverse Bisimilarities", Proc. of GANDALF 2023.
- [4] M. Bernardo, A. Esposito, C.A. Mezzina, "Expansion Laws for Forward-Reverse, Forward, and Reverse Bisimilarities via Proved Encodings", Proc. of EXPRESS/SOS 2024.
- [5] M. Bernardo, A. Esposito, C.A. Mezzina, "Alternative Characterizations of Hereditary History-Preserving Bisimilarity via Backward Ready Multisets", Proc. of FOSSACS 2025.

- [6] A. Esposito, A. Aldini, M. Bernardo, "Branching Bisimulation Semantics Enables Noninterference Analysis of Reversible Systems", Proc. of FORTE 2023.
- [7] A. Esposito, A. Aldini, M. Bernardo, "Noninterference Analysis of Reversible Probabilistic Systems", Proc. of FORTE 2024.
- [8] A. Esposito, A. Aldini, M. Bernardo, "Noninterference Analysis of Stochastically Timed Reversible Systems", Proc. of FORTE 2025.
- [9] A. Esposito, A. Aldini, M. Bernardo, "Noninterference Analysis of Deterministically Timed Reversible Systems", Proc. of QEST+FORMATS 2025.
- [10] A. Esposito, "A Process Algebraic Theory of Reversible Concurrent Systems with Applications to Noninterference Analysis", PhD Thesis, University of Urbino, 2025.

- [11] M. Bernardo, C.A. Mezzina, "Towards Bridging Time and Causal Reversibility", Proc. of FORTE 2020.
- [12] M. Bernardo, C.A. Mezzina, "Bridging Causal Reversibility and Time Reversibility: A Stochastic Process Algebraic Approach", Logical Methods in Computer Science 19(2):6:1–6:27, 2023.
- [13] M. Bernardo, C.A. Mezzina, "Causal Reversibility for Timed Process Calculi with Lazy/Eager Durationless Actions and Time Additivity", Proc. of FORMATS 2023.
- [14] M. Bernardo, C.A. Mezzina, "Reversibility in Process Calculi with Nondeterminism and Probabilities", Proc. of ICTAC 2024.
- [15] M. Bernardo, I. Lanese, A. Marin, C.A. Mezzina, S. Rossi, C. Sacerdoti Coen, "Causal Reversibility Implies Time Reversibility", Proc. of QEST 2023.