A PROCESS ALGEBRAIC THEORY OF REVERSIBLE CONCURRENT SYSTEMS

Marco Bernardo

University of Urbino - Italy

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Concurrency: Nondeterminism vs. Irreversibility

- Systems composed of many interconnected computing parts that communicate by exchanging information or simply synchronizing.
- Models: shared memory, message passing, web services, ...
- Types: centralized/distributed/decentralized, static/dynamic/mobile.
- Aspects: functionality, security, reliability, performance, ...
- Nondeterminism: the input does not uniquely define the output.
- Due to different speeds, interaction scheme, scheduling policies, ...
- Does the output uniquely define the input? What if it is not the case?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- Irreversibility: typical of functions that are not invertible.
- Example: conjunctions/disjunctions computed inside circuits.

- What does (ir)reversibility mean in computing?
- Well established concept in mathematics, physics, chemistry, biology: inverse function, operation, element, reaction, ...
- Much more recent in informatics: seminal papers by Landauer in 1961 and Bennett in 1973 on IBM Journal of Research and Development.
- Landauer principle states that any manipulation of information that is *irreversible* i.e., causes information loss such as:
 - erasure/overwriting of bits
 - merging of computation paths

must be accompanied by a corresponding entropy increase.

• Minimal *heat generation* due to *extra work* for standardizing signals and making them independent of their history, so that it becomes *impossible to determine the input from the output*.

- Due to Landauer principle, the logical irreversibility of a function implies the physical irreversibility of computing that function and the consequent dissipative effects.
- Experimentally verified by Bérut et al in 2012 and revisited in terms of its physical foundations by Frank in 2018.
- Every reversible computation, where no information is lost instead, may be potentially carried out without dissipating further heat.
- Lower energy consumption could therefore be achieved by resorting to reversible computing.
- There are many other applications of reversible computing:
 - Biochemical reaction modeling (nature).
 - Parallel discrete-event simulation (speedup).
 - Fault tolerant computing systems (rollback).
 - Robotics and control theory (backtrack).
 - Concurrent program debugging (reproducibility).

- Two directions of computation in a reversible system:
 - Forward: coincides with the normal way of computing.
 - Backward: the effects of the forward one are undone (when needed).
- How to proceed backward? Same path as the forward direction?
- Not necessarily, especially in the case of a concurrent system, where causally independent paths should be deemed equivalent.
- Different notions of reversibility developed in different settings:
 - Causal reversibility is the capability of going back to a past state in a way that is *consistent with the computational history* of the system (easy for sequential systems, hard for concurrent and distributed ones).
 - Time reversibility refers to the conditions under which the stochastic behavior remains the same when the *direction of time* is reversed (quantitative system models, efficient performance evaluation).
 - The former implies the latter in models based on Markov chains.

- There are no inverse process algebraic operators!
- The *dynamic* approach of [DanosKrivine04] yielding RCCS uses explicit stack-based memories attached to processes to record all the actions executed by those processes.
- A single transition relation is defined, while actions are divided into forward and backward resulting in forward and backward transitions.
- The static approach of [PhillipsUlidowski07] yielding CCSK is a method to reverse calculi by retaining within process syntax:
 - all executed actions, which are suitably decorated;
 - all dynamic operators, which are therefore treated as static.
- A forward transition relation and a backward transition relation are separately defined, labeled with communication keys so as to know who synchronized with whom when building backward transitions.

• In [PU07] forward-reverse bisimilarity has been introduced too, which is truly concurrent as it does not satisfy the expansion law of parallel composition into a choice among all possible action sequencings:

 With back-and-forth bisimilarity [DeNicolaMontanariVaandrager90] the interleaving view can be restored as this bisimilarity is defined on computations instead of states to preserve both causality and history (one transition relation, viewed as bidirectional, outgoing/incoming).

• What are the properties of bisimilarity over reversible processes?

- Minimal process calculus tailored for reversible processes to comparatively study congruence, axioms, and logics for:
 - Forward-reverse bisimilarity.
 - Forward-only bisimilarity.
 - Reverse-only bisimilarity.
- Two different kinds of bisimilarities:
 - Strong bisimilarities (all actions are treated in the same way).
 - Weak bisimilarities (abstraction from unobservable actions).
- Initially only sequential processes (i.e., no parallel composition) to be neutral with respect to interleaving view vs. true concurrency.

◆□▶ ◆舂▶ ◆注≯ ◆注≯ □注□

• Then add parallel composition and investigate expansion laws.

Reversible Nondeterministic Sequential Processes

- We usually describe only the future behavior of processes.
- [PU07] encodes information about the past behavior in the syntax: $P ::= \underline{0} \mid a \cdot P \mid a^{\dagger} \cdot P \mid P + P$
- Countable set A of actions, including the unobservable action τ .
- a[†]. P executed action a, its forward continuation is inside P, and can undo a after all executed actions within P have been undone.
- Uniform action decorations like in [BoudolCastellani94] instead of communication keys [PU07].
- Consequence of a single transition relation [DMV90].
- No need to distinguish between forward and backward actions [DK04].
- Outgoing vs. incoming transitions in the bisimulation game [DMV90].

- Initial processes: all the actions are unexecuted (they coincide with standard, forward-only processes).
- Final processes: all the actions along a path have been executed (several paths in the presence of +, only one is chosen - †-marked).
- Work with the set \mathbb{P} of reachable processes:

 $\begin{array}{rcl} \textit{reachable}(\underline{0}) & \\ \textit{reachable}(a \, . \, P) & \Leftarrow & \textit{initial}(P) \\ \textit{reachable}(a^{\dagger} . \, P) & \Leftarrow & \textit{reachable}(P) \\ \textit{reachable}(P_1 + P_2) & \Leftarrow & (\textit{reachable}(P_1) \land \textit{initial}(P_2)) \lor \\ & & (\textit{initial}(P_1) \land \textit{reachable}(P_2)) \end{array}$

- In $P_1 + P_2$ both subprocesses can be initial (at least one must be).
- Every initial or final process is reachable too (0 is both).
- \mathbb{P} also contains processes that are neither initial nor final: $a^{\dagger} \cdot b \cdot \underline{0}$.
- Past actions can never follow future actions: $b \cdot a^{\dagger} \cdot \underline{0} \notin \mathbb{P}$.

- Since all information needed to enable reversibility is in the syntax, action prefix and choice are made static by the semantics [PU07].
- Semantics defined according to the structural operational approach: labeled transition system $(\mathbb{P}, A, \longrightarrow)$ where $\longrightarrow \subseteq \mathbb{P} \times A \times \mathbb{P}$.
- Single transition relation viewed as symmetric to meet loop property: executed actions can be undone and undone actions can be redone (necessary condition for any reasonable notion of reversibility).
- Outgoing/incoming transitions for forward/backward bisimilarity like in [DMV90].
- Transition $P \xrightarrow{a} P'$ goes:
 - forward if it is viewed as an outgoing transition of P, in which case action a is done.
 - backward if it is viewed as an incoming transition of P', in which case action a is undone.

• Semantic rules for action prefix:

$$\frac{\textit{initial}(P)}{a \cdot P \xrightarrow{a} a^{\dagger} \cdot P} \qquad \qquad \frac{P \xrightarrow{b} P'}{a^{\dagger} \cdot P \xrightarrow{b} a^{\dagger} \cdot P}$$

- The prefix related to the executed action is not discarded.
- It becomes a *†*-decorated part of the target process, necessary to offer again that action after rolling back.
- Additional rule for performing unexecuted actions that are preceded by already executed actions (direct consequence of making prefix static).

< □ > < □ > < □ > < □ > < □ > < □ > = □

- This rule propagates actions executed by initial subprocesses.
- Can we view a^{\dagger} . _ as the inverse operator of a. _?

• Semantic rules for alternative composition:

$$\frac{P_1 \stackrel{a}{\longrightarrow} P'_1 \quad initial(P_2)}{P_1 + P_2 \stackrel{a}{\longrightarrow} P'_1 + P_2} \qquad \qquad \frac{P_2 \stackrel{a}{\longrightarrow} P'_2 \quad initial(P_1)}{P_1 + P_2 \stackrel{a}{\longrightarrow} P_1 + P'_2}$$

- The subprocess not involved in the executed action is *not discarded* but cannot proceed further (only the non-initial subprocess can).
- It becomes part of the target process, which is necessary for offering again the original choice after undoing all the executed actions.

(中) (문) (문) (문) (문)

- If both subprocesses are initial, both rules apply (nondet. choice).
- If not, should operator + become something like +[†]?
 Not needed due to action decorations within either subprocess.

- The labeled transition system underlying an initial process is a *tree*, whose branching points correspond to occurrences of +:
 - Every non-final process has at least one outgoing transition.
 - Every non-initial process has exactly one incoming transition due to decorations associated with executed actions.
- Consider the two initial processes $a \cdot \underline{0}$ and $a \cdot \underline{0} + a \cdot \underline{0}$:

- Single *a*-transition on the right in a forward-only process calculus.
- These two distinct processes should be considered equivalent though.

Bisimilarities for Reversible Nondeterministic Processes

- Bisimulation game: outgoing transitions for forward direction and incoming transitions for backward direction [DMV90].
- A symmetric relation $\mathcal B$ over $\mathbb P$ is a:
 - Forward bisimulation iff for all $(P_1, P_2) \in \mathcal{B}$ and $a \in A$:
 - for each $P_1 \xrightarrow{a} P'_1$ there exists $P_2 \xrightarrow{a} P'_2$ such that $(P'_1, P'_2) \in \mathcal{B}$.
 - Reverse bisimulation iff for all $(P_1, P_2) \in \mathcal{B}$ and $a \in A$:

• for each $P'_1 \xrightarrow{a} P_1$ there exists $P'_2 \xrightarrow{a} P_2$ such that $(P'_1, P'_2) \in \mathcal{B}$.

- Forward-reverse bisimulation iff for all $(P_1, P_2) \in \mathcal{B}$ and $a \in A$:
 - for each $P_1 \xrightarrow{a} P'_1$ there exists $P_2 \xrightarrow{a} P'_2$ such that $(P'_1, P'_2) \in \mathcal{B}$;
 - for each $P'_1 \xrightarrow{a} P_1$ there exists $P'_2 \xrightarrow{a} P_2$ such that $(P'_1, P'_2) \in \mathcal{B}$.
- Largest such relations: \sim_{FB} , \sim_{RB} , \sim_{FRB} .
- In order for P₁, P₂ ∈ P to be identified by ~_{FB}/~_{RB}, the sets of actions labeling their outgoing/incoming transitions must coincide (forward/backward ready set).

• $\sim_{\mathrm{FRB}} \subsetneq \sim_{\mathrm{FB}} \cap \sim_{\mathrm{RB}}$:

- The inclusion is strict because the final processes a[†]. <u>0</u> and a[†]. <u>0</u> + c. <u>0</u> are identified by ∼_{FB} and ∼_{RB}, but distinguished by ∼_{FRB}.
- \sim_{FB} and \sim_{RB} are incomparable because $a^{\dagger} \cdot \underline{0} \sim_{\mathrm{FB}} \underline{0}$ but $a^{\dagger} \cdot \underline{0} \not\sim_{\mathrm{RB}} \underline{0}$ while $a \cdot \underline{0} \sim_{\mathrm{RB}} \underline{0}$ but $a \cdot \underline{0} \not\sim_{\mathrm{FB}} \underline{0}$.

• First comparative remark ($\sim_{\rm FB}$ vs. $\sim_{\rm RB}$):

- $\sim_{\rm FRB} = \sim_{\rm FB}$ over initial processes, with $\sim_{\rm RB}$ strictly coarser.
- $\sim_{\rm FRB} \neq \sim_{\rm RB}$ over final processes because, after going backward, discarded subprocesses come into play again for $\sim_{\rm FRB}$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

a.<u>0</u> and a.<u>0</u> + a.<u>0</u> are identified by all three bisimilarities as witnessed by any bisimulation containing the pairs (a.<u>0</u>, a.<u>0</u> + a.<u>0</u>), (a[†].<u>0</u>, a[†].<u>0</u> + a.<u>0</u>), (a[†].<u>0</u>, a.<u>0</u> + a[†].<u>0</u>).

- $\sim_{\rm FB}$ equates processes with different past: $a_1^{\dagger} \cdot \underline{0} \sim_{\rm FB} a_2^{\dagger} \cdot \underline{0} \sim_{\rm FB} \underline{0}$.
- \sim_{RB} equates processes with different future: $a_1 \cdot \underline{0} \sim_{\text{RB}} a_2 \cdot \underline{0} \sim_{\text{RB}} \underline{0}$.
- Second comparative remark:
 - $a^{\dagger}. b . \underline{0} \sim_{\mathrm{FB}} b . \underline{0}$ but $a^{\dagger}. b . \underline{0} + c . \underline{0} \not\sim_{\mathrm{FB}} b . \underline{0} + c . \underline{0}$.
 - $a^{\dagger}. b. \underline{0} \not\sim_{RB} b. \underline{0}$ hence no such compositionality violation for \sim_{RB} .
- $\sim_{\rm RB}$ and $\sim_{\rm FRB}$ never identify an initial process with a non-initial one, hence $\sim_{\rm FB}$ has to be made sensitive to the *presence of the past*.
- A symmetric relation \mathcal{B} over \mathbb{P} is a past-sensitive forward bisimulation iff it is a forward bisimulation in which $initial(P_1) \iff initial(P_2)$ for all $(P_1, P_2) \in \mathcal{B}$. Largest such relation: $\sim_{\mathrm{FB:ps}}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• $a_1^{\dagger} \cdot \underline{0} \sim_{\mathrm{FB:ps}} a_2^{\dagger} \cdot \underline{0}$, but $a^{\dagger} \cdot \underline{0} \not\sim_{\mathrm{FB:ps}} \underline{0}$ and $a^{\dagger} \cdot b \cdot \underline{0} \not\sim_{\mathrm{FB:ps}} b \cdot \underline{0}$.

- Let $P_1, P_2 \in \mathbb{P}$ be s.t. $P_1 \sim P_2$ and take arbitrary $a \in A$ and $P \in \mathbb{P}$.
- All the considered bisimilarities are congruences w.r.t. action prefix:
 - $a \cdot P_1 \sim a \cdot P_2$ provided that $initial(P_1) \wedge initial(P_2)$.
 - $a^{\dagger} \cdot P_1 \sim a^{\dagger} \cdot P_2$.
- ~_{FB:ps}, ~_{RB}, ~_{FRB} are congruences w.r.t. alternative composition:
 P₁ + P ~ P₂ + P and P + P₁ ~ P + P₂ provided that *initial*(P) ∨ (*initial*(P₁) ∧ *initial*(P₂)).

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

- $\sim_{FB:ps}$ is the coarsest congruence w.r.t. + contained in \sim_{FB} :
 - $P_1 \sim_{\text{FB:ps}} P_2 \text{ iff } P_1 + P \sim_{\text{FB}} P_2 + P$ for all $P \in \mathbb{P}$ s.t. $initial(P) \lor (initial(P_1) \land initial(P_2)).$

Equational Characterizations

• Deduction system based on these axioms and inference rules on \mathbb{P} :

• Reflexivity: P = P. • Symmetry: $\frac{P_1 = P_2}{P_2 = P_1}$. • Transitivity: $\frac{P_1 = P_2 \quad P_2 = P_3}{P_1 = P_3}$. • .-Substitutivity: $\frac{P_1 = P_2 \quad initial(P_1) \land initial(P_2)}{a \cdot P_1 = a \cdot P_2}$, $\frac{P_1 = P_2}{a^{\dagger} \cdot P_1 = a^{\dagger} \cdot P_2}$. • +-Substitutivity: $\frac{P_1 = P_2 \quad initial(P) \lor (initial(P_1) \land initial(P_2))}{P_1 + P = P_2 + P \quad P + P_1 = P + P_2}$.

• Correspond to $\sim_{FB:ps}$, \sim_{RB} , \sim_{FRB} being equivalence relations as well as congruences w.r.t. action prefix and alternative composition.

Axioms:

(\mathcal{A}_1)		(P+Q)+R	=	P + (Q + R)	
(\mathcal{A}_2)		P+Q	=	Q + P	
(\mathcal{A}_3)		$P + \underline{0}$	=	P	
(\mathcal{A}_4)	$[\sim_{\rm FB:ps}]$	$a^{\dagger}.P$	=	Р	if $\neg initial(P)$
(\mathcal{A}_5)	$[\sim_{\rm FB:ps}]$	$a^{\dagger}.P$	=	b^{\dagger} . P	if $initial(P)$
(\mathcal{A}_6)	$[\sim_{\rm FB:ps}]$	P+Q	=	P	if $\neg initial(P)$, where $initial(Q)$
(\mathcal{A}_7)	$[\sim_{\rm RB}]$	a . P	=	P	where $initial(P)$
(\mathcal{A}_8)	$[\sim_{\mathrm{RB}}]$	P+Q	=	P	if $initial(Q)$
(\mathcal{A}_9)	$[\sim_{\mathrm{FB:ps}}]$	P + P	=	P	where $initial(P)$
(\mathcal{A}_{10})	$[\sim_{\rm FRB}]$	P+Q	=	P	if $initial(Q) \land to_initial(P) = Q$

• \mathcal{A}_8 subsumes \mathcal{A}_3 (with $Q = \underline{0}$) and \mathcal{A}_9 (with Q = P).

- \mathcal{A}_9 and \mathcal{A}_6 apply in two different cases (P initial or not).
- \mathcal{A}_{10} appeared for the first time in [LanesePhillips21].
- $\vdash_{4,5,6,9}^{1,2,3} / \vdash_{7,8}^{1,2} / \vdash_{10}^{1,2,3}$ sound and complete for $\sim_{FB:ps} / \sim_{RB} / \sim_{FRB}$.
- Third comparative remark: explicit vs. implicit idempotency.

- Hennessy-Milner logic extended with a backward modality (and init) from which suitable fragments are taken.
- Syntax:

$$\phi ::= \text{true} \mid \text{init} \mid \neg \phi \mid \phi \land \phi \mid \langle a \rangle \phi \mid \langle a^{\dagger} \rangle \phi$$

Semantics:

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

• Fragments characterizing the four strong bisimilarities:

	true	init	_	\wedge	$\langle a \rangle$	$\langle a^{\dagger} \rangle$
$\mathcal{L}_{ ext{FB}}$	\checkmark		\checkmark	\checkmark	\checkmark	
$\mathcal{L}_{\mathrm{FB:ps}}$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
$\mathcal{L}_{ ext{RB}}$	\checkmark					\checkmark
$\mathcal{L}_{ ext{FRB}}$	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark

• $\mathcal{L}_{FB} / \mathcal{L}_{FB:ps} / \mathcal{L}_{RB} / \mathcal{L}_{FRB}$ characterizes $\sim_{FB} / \sim_{FB:ps} / \sim_{RB} / \sim_{FRB}$: $P_1 \sim_B P_2$ iff $\forall \phi \in \mathcal{L}_B$. $P_1 \models \phi \iff P_2 \models \phi$.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

- \sim_{RB} boils down to reverse trace equivalence!
- Every process has at most one incoming transition.

Weak Bisimilarities

- Abstracting from τ -actions: $P \xrightarrow{\tau^*} P'$, $P \xrightarrow{\tau^*} \xrightarrow{a} \xrightarrow{\tau^*} P'$.
- A symmetric relation $\mathcal B$ over $\mathbb P$ is a $(a \in A \setminus \{\tau\})$:
 - Weak forward bisimulation iff for all $(P_1, P_2) \in \mathcal{B}$:
 - for each $P_1 \xrightarrow{\tau} P'_1$ there is $P_2 \xrightarrow{\tau^*} P'_2$ s.t. $(P'_1, P'_2) \in \mathcal{B}$;
 - for each $P_1 \xrightarrow{a} P'_1$ there is $P_2 \xrightarrow{\tau^*} \xrightarrow{a} \xrightarrow{\tau^*} P'_2$ s.t. $(P'_1, P'_2) \in \mathcal{B}$.
 - Weak reverse bisimulation iff for all $(P_1, P_2) \in \mathcal{B}$ and $a \in A$:
 - for each $P'_1 \xrightarrow{\tau} P_1$ there is $P'_2 \xrightarrow{\tau^*} P_2$ s.t. $(P'_1, P'_2) \in \mathcal{B}$;
 - for each $P'_1 \xrightarrow{a} P_1$ there is $P'_2 \xrightarrow{\tau^*} \xrightarrow{a} \xrightarrow{\tau^*} P_2$ s.t. $(P'_1, P'_2) \in \mathcal{B}$.
 - Weak forward-reverse bisimulation iff for all $(P_1, P_2) \in \mathcal{B}$ and $a \in A$:
 - for each $P_1 \xrightarrow{\tau} P'_1$ there is $P_2 \xrightarrow{\tau^*} P'_2$ s.t. $(P'_1, P'_2) \in \mathcal{B}$;
 - for each $P_1 \xrightarrow{a} P'_1$ there is $P_2 \xrightarrow{\tau^*} \xrightarrow{a} \xrightarrow{\tau^*} P'_2$ s.t. $(P'_1, P'_2) \in \mathcal{B}$;
 - for each $P'_1 \xrightarrow{\tau} P_1$ there is $P'_2 \xrightarrow{\tau^*} P_2$ s.t. $(P'_1, P'_2) \in \mathcal{B}$;
 - for each $P'_1 \xrightarrow{a} P_1$ there is $P'_2 \xrightarrow{\tau^*} \xrightarrow{a} \xrightarrow{\tau^*} P_2$ s.t. $(P'_1, P'_2) \in \mathcal{B}$.
- Largest such relations: \approx_{FB} , \approx_{RB} , \approx_{FRB} .

- Each weak bisimilarity is strictly coarser than its strong counterpart.
- $\approx_{FRB} \subsetneq \approx_{FB} \cap \approx_{RB}$ with \approx_{FB} and \approx_{RB} being incomparable.
- $\approx_{\mathrm{FRB}} \neq \approx_{\mathrm{FB}}$ over initial processes:
 - $\tau . a . \underline{0} + a . \underline{0} + b . \underline{0}$ and $\tau . a . \underline{0} + b . \underline{0}$ are identified by \approx_{FB} but told apart by \approx_{FRB}
 - Doing a on the left is matched by doing τ and then a on the right.
 - Undoing a on the right cannot be matched on the left.
 - c. (τ.a.<u>0</u>+a.<u>0</u>+b.<u>0</u>) and c. (τ.a.<u>0</u>+b.<u>0</u>) is an analogous counterexample with non-initial τ-actions:
 - Doing c on one side is matched by doing c on the other side.
 - Doing a on the left is matched by doing τ and then a on the right.

• Undoing a on the right cannot be matched on the left.

- Neither \approx_{FB} nor \approx_{FRB} is compositional:
 - $a^{\dagger} \cdot b \cdot \underline{0} \approx_{\mathrm{FB}} b \cdot \underline{0}$ but $a^{\dagger} \cdot b \cdot \underline{0} + c \cdot \underline{0} \not\approx_{\mathrm{FB}} b \cdot \underline{0} + c \cdot \underline{0}$ (same as \sim_{FB}).
 - $\tau . a . \underline{0} \approx_{\text{FB}} a . \underline{0} \text{ but } \tau . a . \underline{0} + b . \underline{0} \not\approx_{\text{FB}} a . \underline{0} + b . \underline{0}$.
 - $\tau . a . \underline{0} \approx_{\text{FRB}} a . \underline{0} \text{ but } \tau . a . \underline{0} + b . \underline{0} \not\approx_{\text{FRB}} a . \underline{0} + b . \underline{0}$.
- Weak congruence construction à la Milner does not work here.
- A symmetric relation \mathcal{B} over \mathbb{P} is a weak past-sensitive forward bisim. iff it is a weak forward bisim. in which $initial(P_1) \iff initial(P_2)$ for all $(P_1, P_2) \in \mathcal{B}$. Largest such relation: $\approx_{FB:ps}$.
- A symm. rel. B over P is a weak past-sensitive forward-reverse bisim. iff it is a weak forward-reverse bisim. s.t. *initial*(P₁) ⇔ *initial*(P₂) for all (P₁, P₂) ∈ B. Largest such relation: ≈_{FRB:ps}.

• $\sim_{FRB} \subsetneq \approx_{FRB:ps}$ as the former satisfies the initiality condition.

- Let $P_1, P_2 \in \mathbb{P}$ be s.t. $P_1 \approx P_2$ and take arbitrary $a \in A$ and $P \in \mathbb{P}$.
- All the considered bisimilarities are congruences w.r.t. action prefix:
 - a. P₁ ≈ a. P₂ provided that *initial*(P₁) ∧ *initial*(P₂).
 a[†]. P₁ ≈ a[†]. P₂.
- $\approx_{\text{FB:ps}}$, \approx_{RB} , $\approx_{\text{FRB:ps}}$ are congruences w.r.t. alternative composition:
 - P₁ + P ≈ P₂ + P and P + P₁ ≈ P + P₂ provided that *initial*(P) ∨ (*initial*(P₁) ∧ *initial*(P₂)).
- $\approx_{FB:ps}$ is the coarsest congruence w.r.t. + contained in \approx_{FB} :
 - $P_1 \approx_{\text{FB:ps}} P_2$ iff $P_1 + P \approx_{\text{FB}} P_2 + P$ for all $P \in \mathbb{P}$ s.t. $initial(P) \lor (initial(P_1) \land initial(P_2))$.
- $\approx_{\rm FRB:ps}$ is the coarsest congruence w.r.t. + contained in $\approx_{\rm FRB}$:

• $P_1 \approx_{\text{FRB:ps}} P_2 \text{ iff } P_1 + P \approx_{\text{FRB}} P_2 + P$ for all $P \in \mathbb{P}$ s.t. $initial(P) \lor (initial(P_1) \land initial(P_2)).$

• Additional axioms (τ -laws):

$(\mathcal{A}_1^{ au})$	$[\approx_{\rm FB:ps}]$	a . $ au$. P	=	a . P	where $initial(P)$
$(\mathcal{A}_2^{ au})$	$[\approx_{\mathrm{FB:ps}}]$	P+ au . P	=	au . P	where $initial(P)$
$(\mathcal{A}_3^{\overline{ au}})$	$[\approx_{\rm FB:ps}]$	$a \cdot (P + \tau \cdot Q) + a \cdot Q$	=	$a . (P + \tau . Q)$	where P, Q initial
$(\mathcal{A}_4^{ au})$	$[\approx_{\mathrm{FB:ps}}]$	$a^{\dagger}. au$. P	=	a^{\dagger} . P	where $initial(P)$
(\mathcal{A}_5^{τ})	$[\approx_{\mathrm{RB}}]$	$ au^{\dagger}$. P	=	P	
(\mathcal{A}_6^{τ})	$[\approx_{\rm FRB:ps}]$	$a.(\tau.(P+Q)+P)$	=	$a \cdot (P+Q)$	where P, Q initial
(\mathcal{A}_7^{τ})	$[\approx_{\rm FRB:ps}]$	$a^{\dagger} \cdot (\tau \cdot (P+Q) + P')$	=	$a^{\dagger} \cdot (P' + Q)$	if $to_{-initial}(P') = P$,
					where P, Q initial
$(\mathcal{A}_8^{ au})$	$[\approx_{\rm FRB:ps}]$	$a^{\dagger} \cdot (\tau^{\dagger} \cdot (P' + Q) + P)$	=	$a^{\dagger} \cdot (P' + Q)$	if $to_{initial}(P') = P$,
Ť					where $initial(P)$

- \mathcal{A}_1^{τ} , \mathcal{A}_2^{τ} , \mathcal{A}_3^{τ} are Milner τ -laws, \mathcal{A}_4^{τ} is needed for completeness.
- \mathcal{A}_5^{τ} is a variant of $\tau \cdot P = P$ (not valid for weak bisim. congruence).
- \mathcal{A}_{6}^{τ} is Van Glabbeek Weijland τ -law, \mathcal{A}_{7}^{τ} and \mathcal{A}_{8}^{τ} needed for complet. • $\vdash_{1,2,3,4,5,6,9}^{1,2,3,4} / \vdash_{5}^{1,2,7,8} / \vdash_{6,7,8}^{1,2,3,10}$ sound and complete for $\approx_{\mathrm{FB:ps}} / \approx_{\mathrm{RB}} / \approx_{\mathrm{FRB:ps}}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• $\approx_{\rm FRB}$ is branching bisimilarity over initial processes!

• Modal logic with weak forward/backward modalities $(a \in A \setminus \{\tau\})$:

 $\phi ::= \text{true} \mid \text{init} \mid \neg \phi \mid \phi \land \phi \mid \langle\!\langle \tau \rangle\!\rangle \phi \mid \langle\!\langle a \rangle\!\rangle \phi \mid \langle\!\langle \tau^{\dagger} \rangle\!\rangle \phi \mid \langle\!\langle a^{\dagger} \rangle\!\rangle \phi$

Semantics:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• Fragments characterizing the five weak bisimilarities:

	true	init		\wedge	$\langle\!\langle \tau \rangle\!\rangle$	$\langle\!\langle a \rangle\!\rangle$	$\langle\!\langle \tau^{\dagger} \rangle\!\rangle$	$\langle\!\langle a^{\dagger} \rangle\!\rangle$
$\mathcal{L}_{ ext{FB}}^{ au}$	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark		
$\mathcal{L}_{ ext{FB:ps}}^{ au}$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
$\mathcal{L}_{ ext{RB}}^{ au}$	\checkmark						\checkmark	\checkmark
$\mathcal{L}_{ ext{FRB}}^{ au}$	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
$\mathcal{L}_{ ext{FRB:ps}}^{ au}$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

• $\mathcal{L}_{FB}^{\tau} / \mathcal{L}_{FB:ps}^{\tau} / \mathcal{L}_{RB}^{\tau} / \mathcal{L}_{FRB}^{\tau} / \mathcal{L}_{FRB:ps}^{\tau}$ characterizes $\approx_{FB} / \approx_{FB:ps} / \approx_{RB} / \approx_{FRB} / \approx_{FRB:ps}$: $P_1 \approx_B P_2$ iff $\forall \phi \in \mathcal{L}_B^{\tau}. P_1 \models \phi \iff P_2 \models \phi$.

Expansion Laws for Concurrent Processes

• We now include parallel composition in the syntax:

 $P ::= \underline{0} \mid a \cdot P \mid a^{\dagger} \cdot P \mid P + P \mid P \parallel_{L} P$

• Then for $a \neq b$:

æ

- $\bullet ~\sim_{FB}$ is interleaving, while \sim_{RB} and \sim_{FRB} are truly concurrent.
- What are the expansion laws for \sim_{FB} , \sim_{RB} , \sim_{FRB} ?

- Expansion laws for forward-only calculi in the interleaving setting identify a. 0 || ∅ b. 0 and a. b. 0 + b. a. 0 [HennessyMilner85].
- Used also in truly concurrent semantics to distinguish those processes by adding suitable discriminating information within action prefixes:
 - Causal bisimilarity [DarondeauDegano90] (corresponding to history-preserving bisimilarity): every action is enriched with the set of its causing actions expressed as backward pointers, hence $\langle a, \emptyset \rangle . \langle b, \emptyset \rangle . \underline{0} + \langle b, \emptyset \rangle . \langle a, \emptyset \rangle . \underline{0}$ and $\langle a, \emptyset \rangle . \langle b, \{1\} \rangle . \underline{0} + \langle b, \emptyset \rangle . \langle a, \{1\} \rangle . \underline{0}$.
 - Location bisimilarity [BoudolCastellaniHennessyKiehn94]: every action is enriched with the name of the location in which it is executed, hence $\langle a, l_a \rangle . \langle b, l_b \rangle . \underline{0} + \langle b, l_b \rangle . \langle a, l_a \rangle . \underline{0}$ and $\langle a, l_a \rangle . \langle b, l_a l_b \rangle . \underline{0} + \langle b, l_b \rangle . \langle a, l_b l_a \rangle . \underline{0}$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

• Pomset bisimilarity [BoudolCastellani88]: a prefix may contain the combination of actions that are independent of each other, hence $a \cdot b \cdot \underline{0} + b \cdot a \cdot \underline{0} + (a \parallel b) \cdot \underline{0}$.

- \bullet How to uniformly derive expansion laws for $\sim_{FB},\,\sim_{RB},\,\sim_{FRB}?$
- Proved trees approach of [DeganoPriami92].
- Label every transition with a proof term [BoudolCastellani88], which is an action preceded by the operators in the scope of which it occurs:

 $\theta ::= a \mid .\theta \mid +\theta \mid +\theta \mid | \|\theta \mid \|\theta \mid \langle \theta, \theta \rangle$

- The equivalence of interest then drives an observation function that maps proof terms to the required observations.
- Interleaving: proof terms are reduced to the actions they contain.
- True concurrency: they are transformed into actions extended with suitable discriminating information (encoding processes accordingly).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• Information not necessarily available in the operational semantics, as is the case with \sim_{RB} and \sim_{FRB} .

Proved operational semantic rules:

 $P \xrightarrow{\theta} P'$ initial(P) $a \xrightarrow{P} \xrightarrow{a} a^{\dagger} \xrightarrow{P} a^{\dagger}$ $a^{\dagger} P \xrightarrow{.\theta} a^{\dagger} P'$ $P_1 \xrightarrow{\theta} P'_1$ initial(P_2) $P_2 \xrightarrow{\theta} P'_2$ initial(P_1) $P_1 + P_2 \xrightarrow{+\theta} P'_1 + P_2$ $P_1 + P_2 \xrightarrow{+\theta} P_1 + P_2'$ $P_1 \xrightarrow{\theta} P'_1 \quad act(\theta) \notin L$ $P_2 \xrightarrow{\theta} P'_2 \quad act(\theta) \notin L$ $P_1 \parallel_L P_2 \xrightarrow{\parallel \theta} P'_1 \parallel_L P_2$ $P_1 \parallel_L P_2 \xrightarrow{\parallel \theta} P_1 \parallel_L P_2'$ $P_1 \xrightarrow{\theta_1} P'_1 \quad P_2 \xrightarrow{\theta_2} P'_2 \quad \operatorname{act}(\theta_1) = \operatorname{act}(\theta_2) \in L$ $P_1 \parallel_I P_2 \xrightarrow{\langle \theta_1, \theta_2 \rangle} P'_1 \parallel_I P'_2$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

- Forward clause rephrased:
 - For each $P_1 \xrightarrow{\theta_1} P'_1$ there exists $P_2 \xrightarrow{\theta_2} P'_2$ such that $act(\theta_1) = act(\theta_2)$ and $(P'_1, P'_2) \in \mathcal{B}$.
- Backward clause rephrased:
 - For each $P'_1 \xrightarrow{\theta_1} P_1$ there exists $P'_2 \xrightarrow{\theta_2} P_2$ such that $act(\theta_1) = act(\theta_2)$ and $(P'_1, P'_2) \in \mathcal{B}$.
- Observation function ℓ applied to proof terms labeling transitions, so that $\ell(\theta_1)$ and $\ell(\theta_2)$ are considered in the bisimulation game.
- May depend on other possible parameters that are present in the proved labeled transition system.
- Preserves actions: $\ell(\theta_1) = \ell(\theta_2)$ implies $act(\theta_1) = act(\theta_2)$.
- $\sim_{FB:ps:\ell_F}$, $\sim_{RB:\ell_R}$, $\sim_{FRB:\ell_{FR}}$ are the three resulting equivalences.
- When do they coincide with $\sim_{FB:ps}$, \sim_{RB} , \sim_{FRB} ?
- \bullet What is the discriminating information needed by \sim_{RB} and $\sim_{FRB}?$

- $\sim_{\mathrm{FB:ps:}\ell_{\mathrm{F}}} = \sim_{\mathrm{FB:ps}}$ when $\ell_{\mathrm{F}}(\theta) = \operatorname{act}(\theta)$.
- \bullet Axiomatization of $\sim_{FB:ps}$ over reversible concurrent processes:

・ロト ・四ト ・ヨト ・ヨト

æ

•
$$P_k = [a_k^{\dagger}] P'_k$$
 with $P'_k = \sum_{i \in I_k} a_{k,i} \cdot P_{k,i}$ for $k \in \{1, 2\}$.

• $[a^{\dagger}.]$ stands for an optional executed action prefix.

- $\sim_{\mathrm{RB}:\ell_{\mathrm{R}}} = \sim_{\mathrm{RB}}$ and $\sim_{\mathrm{FRB}:\ell_{\mathrm{FR}}} = \sim_{\mathrm{FRB}}$ when $\ell_{\mathrm{R}}(\theta)_{P'} = \ell_{\mathrm{FR}}(\theta)_{P'}$ $\triangleq \ell_{\mathrm{brs}}(\theta)_{P'} = \langle \operatorname{act}(\theta), \operatorname{brs}(P') \rangle$ for every proved transition $P \xrightarrow{\theta} P'$.
- brs(P') is the backward ready set of P', the set of actions labeling the incoming transitions of P'.
- Then $a . \underline{0} \parallel_{\emptyset} b . \underline{0}$ is encoded as $< a, \{a\} > . < b, \{a, b\} > . \underline{0} + < b, \{b\} > . < a, \{a, b\} > . \underline{0}$ while $a . b . \underline{0} + b . a . \underline{0}$ is encoded as $< a, \{a\} > . < b, \{b\} > . \underline{0} + < b, \{b\} > . < a, \{a\} > . \underline{0}.$
- The encoding of $a^{\dagger} . \underline{0} \parallel_{\emptyset} b^{\dagger} . \underline{0}$ is either $\langle a^{\dagger}, \{a\} \rangle . \langle b^{\dagger}, \{a, b\} \rangle . \underline{0} + \langle b, \{b\} \rangle . \langle a, \{a, b\} \rangle . \underline{0}$ or $\langle a, \{a\} \rangle . \langle b, \{a, b\} \rangle . \underline{0} + \langle b^{\dagger}, \{b\} \rangle . \langle a^{\dagger}, \{a, b\} \rangle . \underline{0}$.
- Depends on the trace of actions executed so far.
- It cannot be

 $<\!\!a^{\dagger}, \{a\}\!\!> . <\!\!b^{\dagger}, \{a, b\}\!\!> . \underline{0} + <\!\!b^{\dagger}, \{b\}\!\!> . <\!\!a^{\dagger}, \{a, b\}\!\!> . \underline{0}.$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

 \bullet Axiomatization of \sim_{RB} over reversible concurrent processes:

$$\begin{array}{lll} (\mathcal{A}_{\mathrm{R},1}) & \overbrace{(P+Q)+R} = \overbrace{P+(Q+R)} \\ (\mathcal{A}_{\mathrm{R},2}) & \overbrace{P+Q} = \overbrace{Q+P} \\ (\mathcal{A}_{\mathrm{R},3}) & \overbrace{a.P} = \widecheck{P} & \text{where } \mathit{initial}(P) \\ (\mathcal{A}_{\mathrm{R},4}) & \overbrace{P+Q} = \widecheck{P} & \text{if } \mathit{initial}(Q) \\ (\mathcal{A}_{\mathrm{R},5}) & \overbrace{P_1 \parallel_L P_2} = e\ell_{\mathrm{brs}}^{\varepsilon}(\widetilde{P}_1,\widetilde{P}_2,L)_{P_1 \parallel_L P_2} \end{array}$$

•
$$P_k = \underline{0}$$
 or $P_k = a^{\dagger} \cdot P'_k$ for $k \in \{1, 2\}$.

• Axiomatization of \sim_{FRB} over reversible concurrent processes:

$$\begin{array}{lll} (\mathcal{A}_{\mathrm{FR},1}) & \overbrace{(P+Q)+R} = \overbrace{P+(Q+R)} \\ (\mathcal{A}_{\mathrm{FR},2}) & \overbrace{P+Q} = \overbrace{Q+P} \\ (\mathcal{A}_{\mathrm{FR},3}) & \overbrace{P+Q} = \widecheck{P} \\ (\mathcal{A}_{\mathrm{FR},4}) & \overbrace{P+Q} = \widecheck{P} & \text{if } \mathit{initial}(Q) \land \mathit{to_initial}(P) = Q \\ (\mathcal{A}_{\mathrm{FR},5}) & \overbrace{P_1 \parallel_L P_2} = \mathit{el}_{\mathrm{brs}}^{\varepsilon}(\widetilde{P}_1,\widetilde{P}_2,L)_{P_1 \parallel_L P_2} \end{array}$$

• $P_k = [a^{\dagger} . P'_k +] \sum_{i \in I_k} a_{k,i} . P_{k,i}$ for $k \in \{1, 2\}$.

Hereditary History-Preserving Bisimilarity

• For a = b the two encodings

- Then $a \cdot \underline{0} \parallel_{\emptyset} a \cdot \underline{0} \sim_{\text{FRB}} a \cdot a \cdot \underline{0} + a \cdot a \cdot \underline{0} \sim_{\text{FRB}} a \cdot a \cdot \underline{0}$.
- But $a \cdot \underline{0} \parallel_{\emptyset} a \cdot \underline{0} \not\sim_{\text{HHPB}} a \cdot a \cdot \underline{0}$.
- Backward ready <u>multisets</u> distinguish them again and this yields the same power as hereditary history-preserving bisimilarity.
- $\sim_{\rm FRB:brm}$ provides an operational view of $\sim_{\rm HHPB}$.
- No need of identifying identically labeled events, just count them.
- The axiomatization of $\sim_{\rm HHPB}$ is a variant of the one of $\sim_{\rm FRB}$.

Concluding Remarks and Future Work

- Process algebraic theory encompassing most of concurrency theory:
 - Forward bisimilarity is the usual bisimilarity.
 - Reverse bisimilarity boils down to reverse trace equivalence.
 - Weak forward-reverse bisimilarity is branching bisimilarity.
 - Expansion laws addressing interleaving and true concurrency.
- Applied to noninterference analysis.
- Theory extended to Markovian sequential processes in the strong case, link with ordinary/exact/strict lumpability and time reversibility.
- Reversibility of deterministic timed processes (time additivity).
- Reversibility of probabilistic processes (alternating model)?
- Markovian sequential processes in the weak case (W-lumpability)?
- What changes when admitting irreversible actions (commit)?

Inspiring References

[1] R. Landauer,

"Irreversibility and Heat Generation in the Computing Process", IBM Journal of Research and Development 5:183–191, 1961.

- C.H. Bennett, "Logical Reversibility of Computation", IBM Journal of Research and Development 17:525–532, 1973.
- [3] R. De Nicola, U. Montanari, F. Vaandrager, "Back and Forth Bisimulations", Proc. of CONCUR 1990.
- [4] V. Danos, J. Krivine, "Reversible Communicating Systems", Proc. of CONCUR 2004.
- [5] I. Phillips, I. Ulidowski, *"Reversing Algebraic Process Calculi"*, Journal of Logic and Algebraic Programming 73:70–96, 2007.
- [6] I. Lanese, I. Phillips, I. Ulidowski, "An Axiomatic Approach to Reversible Computation", Proc. of FOSSACS 2020.
- [7] F.P. Kelly, "Reversibility and Stochastic Networks", John Wiley & Sons, 1979.
- [8] A. Marin, S. Rossi, "On the Relations between Markov Chain Lumpability and Reversibility", Acta Informatica 54:447–485, 2017.

크

Our Contributions

- M. Bernardo, S. Rossi, "Reverse Bisimilarity vs. Forward Bisimilarity", Proc. of FOSSACS 2023.
- M. Bernardo, A. Esposito, "On the Weak Continuation of Reverse Bisimilarity vs. Forward Bisimilarity", Proc. of ICTCS 2023.
- [3] M. Bernardo, A. Esposito, "Modal Logic Characterizations of Forward, Reverse, and Forward-Reverse Bisimilarities", Proc. of GANDALF 2023.
- [4] A. Esposito, A. Aldini, M. Bernardo, "Branching Bisimulation Semantics Enables Noninterference Analysis of Reversible Systems", Proc. of FORTE 2023.
- [5] A. Esposito, A. Aldini, M. Bernardo, "Noninterference Analysis of Reversible Probabilistic Systems", Proc. of FORTE 2024.
- [6] M. Bernardo, C.A. Mezzina, "Bridging Causal Reversibility and Time Reversibility: A Stochastic Process Algebraic Approach", Logical Methods in Computer Science 19(2:6):1–27, 2023.
- M. Bernardo, C.A. Mezzina, "Causal Reversibility for Timed Process Calculi with Lazy/Eager Durationless Actions and Time Additivity", Proc. of FORMATS 2023.

<ロト (四) (三) (三) (三) (三)

 M. Bernardo, I. Lanese, A. Marin, C.A. Mezzina, S. Rossi, C. Sacerdoti Coen, "Causal Reversibility Implies Time Reversibility", Proc. of QEST 2023.