
A Process Algebraic Theory
of Reversible Concurrent Systems

Marco Bernardo
University of Urbino – Italy

© 2024

Concurrency: Nondeterminism vs. Irreversibility

Systems composed of many interconnected computing parts that
communicate by exchanging information or simply synchronizing.

Models: shared memory, message passing, web services, . . .

Types: centralized/distributed/decentralized, static/dynamic/mobile.

Aspects: functionality, security, reliability, performance, . . .

Nondeterminism: the input does not uniquely define the output.

Due to different speeds, interaction scheme, scheduling policies, . . .

Does the output uniquely define the input? What if it is not the case?

Irreversibility: typical of functions that are not invertible.

Example: conjunctions/disjunctions computed inside circuits.

Reversible Computing

What does (ir)reversibility mean in computing?

Well established concept in mathematics, physics, chemistry, biology:
inverse function, operation, element, reaction, . . .

Much more recent in informatics: seminal papers by Landauer in 1961
and Bennett in 1973 on IBM Journal of Research and Development.

Landauer principle states that any manipulation of information
that is irreversible – i.e., causes information loss – such as:

erasure/overwriting of bits
merging of computation paths

must be accompanied by a corresponding entropy increase.

Minimal heat generation due to extra work for standardizing signals
and making them independent of their history, so that it becomes
impossible to determine the input from the output.

Due to Landauer principle, the logical irreversibility of a function
implies the physical irreversibility of computing that function and
the consequent dissipative effects.

Experimentally verified by Bérut et al in 2012 and revisited
in terms of its physical foundations by Frank in 2018.

Every reversible computation, where no information is lost instead,
may be potentially carried out without dissipating further heat.

Lower energy consumption could therefore be achieved by resorting
to reversible computing.

There are many other applications of reversible computing:

Biochemical reaction modeling (nature).
Parallel discrete-event simulation (speedup).
Fault tolerant computing systems (rollback).
Robotics and control theory (backtrack).
Concurrent program debugging (reproducibility).

Two directions of computation in a reversible system:

Forward: coincides with the normal way of computing.

Backward: the effects of the forward one are undone (when needed).

How to proceed backward? Same path as the forward direction?

Not necessarily, especially in the case of a concurrent system,
where causally independent paths should be deemed equivalent.

Different notions of reversibility developed in different settings:

Causal reversibility is the capability of going back to a past state in
a way that is consistent with the computational history of the system
(easy for sequential systems, hard for concurrent and distributed ones).

Time reversibility refers to the conditions under which the stochastic
behavior remains the same when the direction of time is reversed
(quantitative system models, efficient performance evaluation).

The former implies the latter in models based on Markov chains.

Reversibility in Process Algebra

There are no inverse process algebraic operators!

The dynamic approach of [DanosKrivine04] yielding RCCS
uses explicit stack-based memories attached to processes
to record all the actions executed by those processes.

A single transition relation is defined, while actions are divided into
forward and backward resulting in forward and backward transitions.

The static approach of [PhillipsUlidowski07] yielding CCSK
is a method to reverse calculi by retaining within process syntax:

all executed actions, which are suitably decorated;
all dynamic operators, which are therefore treated as static.

A forward transition relation and a backward transition relation are
separately defined, labeled with communication keys so as to know
who synchronized with whom when building backward transitions.

In [PU07] forward-reverse bisimilarity has been introduced too, which
is truly concurrent as it does not satisfy the expansion law of parallel
composition into a choice among all possible action sequencings:

0_ O/|| 0_a. b.

0_ O/|| 0_[].ia b [].j

0_ 0_+b.a. b.a.

0_ 0_+b. b.a.[].ia

0_ 0_+b.a.[].ia b [].j

0_0_ O/ b.[].ia ||

ia []

0_ O/|| 0_a. b j[].

b j[]

b j[] ia []

ia [] b j[]

ia []b j[]

ia []

ia []

ia []ia []

0_ 0_+b.a. b a[]. [].j i

0_ 0_+b.a. b a.[].j

b j[] b j[]

b j[]

b j[]

no match with

With back-and-forth bisimilarity [DeNicolaMontanariVaandrager90]
the interleaving view can be restored as this bisimilarity is defined on
computations instead of states to preserve both causality and history
(one transition relation, viewed as bidirectional, outgoing/incoming).

What are the properties of bisimilarity over reversible processes?

Minimal process calculus tailored for reversible processes
to comparatively study congruence, axioms, and logics for:

Forward-reverse bisimilarity.
Forward-only bisimilarity.
Reverse-only bisimilarity.

Two different kinds of bisimilarities:

Strong bisimilarities (all actions are treated in the same way).
Weak bisimilarities (abstraction from unobservable actions).

Initially only sequential processes (i.e., no parallel composition)
to be neutral with respect to interleaving view vs. true concurrency.

Then add parallel composition and investigate expansion laws.

Reversible Nondeterministic Sequential Processes

We usually describe only the future behavior of processes.

[PU07] encodes information about the past behavior in the syntax:

P ::= 0 | a . P | a†. P | P + P

Countable set A of actions, including the unobservable action τ .

a†. P executed action a, its forward continuation is inside P , and
can undo a after all executed actions within P have been undone.

Uniform action decorations like in [BoudolCastellani94]
instead of communication keys [PU07].

Consequence of a single transition relation [DMV90].

No need to distinguish between forward and backward actions [DK04].

Outgoing vs. incoming transitions in the bisimulation game [DMV90].

Initial processes: all the actions are unexecuted
(they coincide with standard, forward-only processes).

Final processes: all the actions along a path have been executed
(several paths in the presence of +, only one is chosen – †-marked).

Work with the set P of reachable processes:

reachable(0)
reachable(a . P) ⇐= initial(P)
reachable(a†. P) ⇐= reachable(P)

reachable(P1 + P2) ⇐= (reachable(P1) ∧ initial(P2))∨
(initial(P1) ∧ reachable(P2))

In P1 + P2 both subprocesses can be initial (at least one must be).

Every initial or final process is reachable too (0 is both).

P also contains processes that are neither initial nor final: a†. b . 0.

Past actions can never follow future actions: b . a†. 0 /∈ P.

Since all information needed to enable reversibility is in the syntax,
action prefix and choice are made static by the semantics [PU07].

Semantics defined according to the structural operational approach:
labeled transition system (P, A,−→) where −→ ⊆ P×A× P.

Single transition relation viewed as symmetric to meet loop property:
executed actions can be undone and undone actions can be redone
(necessary condition for any reasonable notion of reversibility).

Outgoing/incoming transitions for forward/backward bisimilarity
like in [DMV90].

Transition P
a−→ P ′ goes:

forward if it is viewed as an outgoing transition of P ,
in which case action a is done.
backward if it is viewed as an incoming transition of P ′,
in which case action a is undone.

Semantic rules for action prefix:

initial(P)

a . P
a−→ a†. P

P
b−→ P ′

a†. P
b−→ a†. P ′

The prefix related to the executed action is not discarded.

It becomes a †-decorated part of the target process,
necessary to offer again that action after rolling back.

Additional rule for performing unexecuted actions that are preceded by
already executed actions (direct consequence of making prefix static).

This rule propagates actions executed by initial subprocesses.

Can we view a†. as the inverse operator of a . ?

Semantic rules for alternative composition:

P1
a−→ P ′

1 initial(P2)

P1 + P2
a−→ P ′

1 +P2

P2
a−→ P ′

2 initial(P1)

P1 + P2
a−→ P1 +P ′

2

The subprocess not involved in the executed action is not discarded
but cannot proceed further (only the non-initial subprocess can).

It becomes part of the target process, which is necessary for offering
again the original choice after undoing all the executed actions.

If both subprocesses are initial, both rules apply (nondet. choice).

If not, should operator + become something like +†?
Not needed due to action decorations within either subprocess.

The labeled transition system underlying an initial process is a tree,
whose branching points correspond to occurrences of +:

Every non-final process has at least one outgoing transition.
Every non-initial process has exactly one incoming transition
due to decorations associated with executed actions.

Consider the two initial processes a . 0 and a . 0 + a . 0:

0_a . 0_a . +

0_a . 0_a . +0_a . 0_a . +0_a .

0_a .

.

a aa

Single a-transition on the right in a forward-only process calculus.

These two distinct processes should be considered equivalent though.

Bisimilarities for Reversible Nondeterministic Processes

Bisimulation game: outgoing transitions for forward direction and
incoming transitions for backward direction [DMV90].

A symmetric relation B over P is a:

Forward bisimulation iff for all (P1, P2) ∈ B and a ∈ A:

for each P1
a−→ P ′1 there exists P2

a−→ P ′2 such that (P ′1, P
′
2) ∈ B.

Reverse bisimulation iff for all (P1, P2) ∈ B and a ∈ A:

for each P ′1
a−→ P1 there exists P ′2

a−→ P2 such that (P ′1, P
′
2) ∈ B.

Forward-reverse bisimulation iff for all (P1, P2) ∈ B and a ∈ A:

for each P1
a−→ P ′1 there exists P2

a−→ P ′2 such that (P ′1, P
′
2) ∈ B;

for each P ′1
a−→ P1 there exists P ′2

a−→ P2 such that (P ′1, P
′
2) ∈ B.

Largest such relations: ∼FB, ∼RB, ∼FRB.

In order for P1, P2 ∈ P to be identified by ∼FB/∼RB, the sets of
actions labeling their outgoing/incoming transitions must coincide
(forward/backward ready set).

Discriminating Power

∼FRB (∼FB ∩ ∼RB:

The inclusion is strict because the final processes a†. 0 and a†. 0 + c . 0
are identified by ∼FB and ∼RB, but distinguished by ∼FRB.
∼FB and ∼RB are incomparable because a†. 0 ∼FB 0 but a†. 0 6∼RB 0
while a . 0 ∼RB 0 but a . 0 6∼FB 0.

First comparative remark (∼FB vs. ∼RB):

∼FRB = ∼FB over initial processes, with ∼RB strictly coarser.
∼FRB 6= ∼RB over final processes because, after going backward,
discarded subprocesses come into play again for ∼FRB.

a . 0 and a . 0 + a . 0 are identified by all three bisimilarities
as witnessed by any bisimulation containing the pairs
(a . 0, a . 0 + a . 0), (a†. 0, a†. 0 + a . 0), (a†. 0, a . 0 + a†. 0).

Compositionality Properties

∼FB equates processes with different past: a†1 . 0 ∼FB a
†
2 . 0 ∼FB 0.

∼RB equates processes with different future: a1 . 0 ∼RB a2 . 0 ∼RB 0.

Second comparative remark:

a†. b . 0 ∼FB b . 0 but a†. b . 0+ c . 0 6∼FB b . 0+ c . 0.
a†. b . 0 6∼RB b . 0 hence no such compositionality violation for ∼RB.

∼RB and ∼FRB never identify an initial process with a non-initial one,
hence ∼FB has to be made sensitive to the presence of the past.

A symmetric relation B over P is a past-sensitive forward bisimulation
iff it is a forward bisimulation in which initial(P1)⇐⇒ initial(P2)
for all (P1, P2) ∈ B. Largest such relation: ∼FB:ps.

a†1 . 0 ∼FB:ps a
†
2 . 0, but a†. 0 6∼FB:ps 0 and a†. b . 0 6∼FB:ps b . 0.

Let P1, P2 ∈ P be s.t. P1 ∼ P2 and take arbitrary a ∈ A and P ∈ P.

All the considered bisimilarities are congruences w.r.t. action prefix:

a . P1 ∼ a . P2 provided that initial(P1) ∧ initial(P2).
a†. P1 ∼ a†. P2.

∼FB:ps, ∼RB, ∼FRB are congruences w.r.t. alternative composition:

P1 + P ∼ P2 + P and P + P1 ∼ P + P2

provided that initial(P) ∨ (initial(P1) ∧ initial(P2)).

∼FB:ps is the coarsest congruence w.r.t. + contained in ∼FB:

P1 ∼FB:ps P2 iff P1 + P ∼FB P2 + P
for all P ∈ P s.t. initial(P) ∨ (initial(P1) ∧ initial(P2)).

Equational Characterizations

Deduction system based on these axioms and inference rules on P:

Reflexivity: P = P .

Symmetry:
P1 = P2

P2 = P1

.

Transitivity:
P1 = P2 P2 = P3

P1 = P3

.

.-Substitutivity:
P1 = P2 initial(P1) ∧ initial(P2)

a . P1 = a . P2

,
P1 = P2

a†. P1 = a†. P2

.

+-Substitutivity:
P1 = P2 initial(P) ∨ (initial(P1) ∧ initial(P2))

P1 + P = P2 + P P + P1 = P + P2

.

Correspond to ∼FB:ps, ∼RB, ∼FRB being equivalence relations
as well as congruences w.r.t. action prefix and alternative composition.

Axioms:

(A1) (P +Q) +R = P + (Q+R)
(A2) P +Q = Q+ P
(A3) P + 0 = P

(A4) [∼FB:ps] a†. P = P if ¬initial(P)
(A5) [∼FB:ps] a†. P = b†. P if initial(P)
(A6) [∼FB:ps] P +Q = P if ¬initial(P), where initial(Q)

(A7) [∼RB] a . P = P where initial(P)
(A8) [∼RB] P +Q = P if initial(Q)

(A9) [∼FB:ps] P + P = P where initial(P)
(A10) [∼FRB] P +Q = P if initial(Q) ∧ to initial(P) = Q

A8 subsumes A3 (with Q = 0) and A9 (with Q = P).

A9 and A6 apply in two different cases (P initial or not).

A10 appeared for the first time in [LanesePhillips21].

`1,2,34,5,6,9 / `
1,2
7,8 / `

1,2,3
10 sound and complete for ∼FB:ps / ∼RB / ∼FRB.

Third comparative remark: explicit vs. implicit idempotency.

Modal Logic Characterizations

Hennessy-Milner logic extended with a backward modality (and init)
from which suitable fragments are taken.

Syntax:
φ ::= true | init | ¬φ | φ ∧ φ | 〈a〉φ | 〈a†〉φ

Semantics:

P |= true for all P ∈ P
P |= init iff initial(P)
P |= ¬φ iff P 6|= φ
P |= φ1 ∧ φ2 iff P |= φ1 and P |= φ2
P |= 〈a〉φ iff there is P ′ ∈ P such that P

a−→ P ′ and P ′ |= φ

P |= 〈a†〉φ iff there is P ′ ∈ P such that P ′
a−→ P and P ′ |= φ

Fragments characterizing the four strong bisimilarities:

true init ¬ ∧ 〈a〉 〈a†〉
LFB X X X X
LFB:ps X X X X X
LRB X X
LFRB X X X X X

LFB /LFB:ps /LRB /LFRB characterizes ∼FB /∼FB:ps /∼RB /∼FRB:
P1 ∼B P2 iff ∀φ ∈ LB. P1 |= φ⇐⇒ P2 |= φ.

∼RB boils down to reverse trace equivalence!

Every process has at most one incoming transition.

Weak Bisimilarities

Abstracting from τ -actions: P
τ∗

====⇒ P ′, P
τ∗

====⇒ a−→ τ∗
====⇒ P ′.

A symmetric relation B over P is a (a ∈ A \ {τ}):

Weak forward bisimulation iff for all (P1, P2) ∈ B:

for each P1
τ−→ P ′1 there is P2

τ∗
====⇒ P ′2 s.t. (P ′1, P

′
2) ∈ B;

for each P1
a−→ P ′1 there is P2

τ∗
====⇒ a−→ τ∗

====⇒ P ′2 s.t. (P ′1, P
′
2) ∈ B.

Weak reverse bisimulation iff for all (P1, P2) ∈ B and a ∈ A:

for each P ′1
τ−→ P1 there is P ′2

τ∗
====⇒ P2 s.t. (P ′1, P

′
2) ∈ B;

for each P ′1
a−→ P1 there is P ′2

τ∗
====⇒ a−→ τ∗

====⇒ P2 s.t. (P ′1, P
′
2) ∈ B.

Weak forward-reverse bisimulation iff for all (P1, P2) ∈ B and a ∈ A:

for each P1
τ−→ P ′1 there is P2

τ∗
====⇒ P ′2 s.t. (P ′1, P

′
2) ∈ B;

for each P1
a−→ P ′1 there is P2

τ∗
====⇒ a−→ τ∗

====⇒ P ′2 s.t. (P ′1, P
′
2) ∈ B;

for each P ′1
τ−→ P1 there is P ′2

τ∗
====⇒ P2 s.t. (P ′1, P

′
2) ∈ B;

for each P ′1
a−→ P1 there is P ′2

τ∗
====⇒ a−→ τ∗

====⇒ P2 s.t. (P ′1, P
′
2) ∈ B.

Largest such relations: ≈FB, ≈RB, ≈FRB.

Each weak bisimilarity is strictly coarser than its strong counterpart.

≈FRB (≈FB ∩ ≈RB with ≈FB and ≈RB being incomparable.

≈FRB 6= ≈FB over initial processes:

τ . a . 0 + a . 0 + b . 0 and τ . a . 0 + b . 0 are identified by ≈FB

but told apart by ≈FRB

Doing a on the left is matched by doing τ and then a on the right.
Undoing a on the right cannot be matched on the left.

c . (τ . a . 0 + a . 0 + b . 0) and c . (τ . a . 0 + b . 0) is an analogous
counterexample with non-initial τ -actions:

Doing c on one side is matched by doing c on the other side.
Doing a on the left is matched by doing τ and then a on the right.
Undoing a on the right cannot be matched on the left.

Neither ≈FB nor ≈FRB is compositional:

a†. b . 0 ≈FB b . 0 but a†. b . 0+ c . 0 6≈FB b . 0+ c . 0 (same as ∼FB).
τ . a . 0 ≈FB a . 0 but τ . a . 0+ b . 0 6≈FB a . 0+ b . 0.
τ . a . 0 ≈FRB a . 0 but τ . a . 0+ b . 0 6≈FRB a . 0+ b . 0.

Weak congruence construction à la Milner does not work here.

A symmetric relation B over P is a weak past-sensitive forward bisim.
iff it is a weak forward bisim. in which initial(P1)⇐⇒ initial(P2)
for all (P1, P2) ∈ B. Largest such relation: ≈FB:ps.

A symm. rel. B over P is a weak past-sensitive forward-reverse bisim.
iff it is a weak forward-reverse bisim. s.t. initial(P1)⇐⇒ initial(P2)
for all (P1, P2) ∈ B. Largest such relation: ≈FRB:ps.

∼FRB (≈FRB:ps as the former satisfies the initiality condition.

Let P1, P2 ∈ P be s.t. P1 ≈ P2 and take arbitrary a ∈ A and P ∈ P.

All the considered bisimilarities are congruences w.r.t. action prefix:

a . P1 ≈ a . P2 provided that initial(P1) ∧ initial(P2).
a†. P1 ≈ a†. P2.

≈FB:ps, ≈RB, ≈FRB:ps are congruences w.r.t. alternative composition:

P1 + P ≈ P2 + P and P + P1 ≈ P + P2

provided that initial(P) ∨ (initial(P1) ∧ initial(P2)).

≈FB:ps is the coarsest congruence w.r.t. + contained in ≈FB:

P1 ≈FB:ps P2 iff P1 + P ≈FB P2 + P
for all P ∈ P s.t. initial(P) ∨ (initial(P1) ∧ initial(P2)).

≈FRB:ps is the coarsest congruence w.r.t. + contained in ≈FRB:

P1 ≈FRB:ps P2 iff P1 + P ≈FRB P2 + P
for all P ∈ P s.t. initial(P) ∨ (initial(P1) ∧ initial(P2)).

Additional axioms (τ -laws):

(Aτ1) [≈FB:ps] a . τ . P = a . P where initial(P)
(Aτ2) [≈FB:ps] P + τ . P = τ . P where initial(P)
(Aτ3) [≈FB:ps] a . (P + τ .Q) + a .Q = a . (P + τ .Q) where P , Q initial
(Aτ4) [≈FB:ps] a†. τ . P = a†. P where initial(P)

(Aτ5) [≈RB] τ†. P = P

(Aτ6) [≈FRB:ps] a . (τ . (P +Q) + P) = a . (P +Q) where P , Q initial
(Aτ7) [≈FRB:ps] a†. (τ . (P +Q) + P ′) = a†. (P ′ +Q) if to initial(P ′) = P ,

where P , Q initial
(Aτ8) [≈FRB:ps] a†. (τ†. (P ′ +Q) + P) = a†. (P ′ +Q) if to initial(P ′) = P ,

where initial(P)

Aτ1 , Aτ2 , Aτ3 are Milner τ -laws, Aτ4 is needed for completeness.

Aτ5 is a variant of τ . P = P (not valid for weak bisim. congruence).

Aτ6 is Van Glabbeek – Weijland τ -law, Aτ7 and Aτ8 needed for complet.

`1,2,3,4,5,6,91,2,3,4 / `1,2,7,85 / `1,2,3,106,7,8 sound and complete for
≈FB:ps / ≈RB / ≈FRB:ps.

≈FRB is branching bisimilarity over initial processes!

Modal logic with weak forward/backward modalities (a ∈ A \ {τ}):

φ ::= true | init | ¬φ | φ ∧ φ | 〈〈τ〉〉φ | 〈〈a〉〉φ | 〈〈τ †〉〉φ | 〈〈a†〉〉φ

Semantics:

P |= true for all P ∈ P
P |= init iff initial(P)
P |= ¬φ iff P 6|= φ
P |= φ1 ∧ φ2 iff P |= φ1 and P |= φ2

P |= 〈〈τ〉〉φ iff there is P ′ ∈ P such that P
τ∗

====⇒ P ′ and P ′ |= φ

P |= 〈〈a〉〉φ iff there is P ′ ∈ P such that P
τ∗

====⇒ a−→ τ∗
====⇒ P ′ and P ′ |= φ

P |= 〈〈τ†〉〉φ iff there is P ′ ∈ P such that P ′
τ∗

====⇒ P and P ′ |= φ

P |= 〈〈a†〉〉φ iff there is P ′ ∈ P such that P ′
τ∗

====⇒ a−→ τ∗
====⇒ P and P ′ |= φ

Fragments characterizing the five weak bisimilarities:

true init ¬ ∧ 〈〈τ〉〉 〈〈a〉〉 〈〈τ †〉〉 〈〈a†〉〉
LτFB X X X X X
LτFB:ps X X X X X X
LτRB X X X
LτFRB X X X X X X X
LτFRB:ps X X X X X X X X

LτFB /LτFB:ps /LτRB /LτFRB /LτFRB:ps characterizes
≈FB /≈FB:ps /≈RB /≈FRB /≈FRB:ps:
P1 ≈B P2 iff ∀φ ∈ LτB. P1 |= φ⇐⇒ P2 |= φ.

Expansion Laws for Concurrent Processes

We now include parallel composition in the syntax:

P ::= 0 | a . P | a†. P | P + P | P ‖L P

Then for a 6= b:

0_ O/|| 0_a. b.

0_ O/||a . 0_b .

0_ O/|| 0_ba. .

0_ 0_+b.a. b.a.

0_ 0_a . +b. b.a.

0_ 0_b .a . +b.a.

0_ b . 0_+b.a. a.

0_ b . a . 0_+b.a.

FB~
~RB

FRB~/

FB~
~RB

FRB~/

FB~

FRB~/
/~RB

O/|| 0_0_a . b.

a b

ab

a b

b a

∼FB is interleaving, while ∼RB and ∼FRB are truly concurrent.

What are the expansion laws for ∼FB, ∼RB, ∼FRB?

Expansion laws for forward-only calculi in the interleaving setting
identify a . 0 ‖∅ b . 0 and a . b . 0 + b . a . 0 [HennessyMilner85].

Used also in truly concurrent semantics to distinguish those processes
by adding suitable discriminating information within action prefixes:

Causal bisimilarity [DarondeauDegano90] (corresponding to
history-preserving bisimilarity): every action is enriched with
the set of its causing actions expressed as backward pointers,
hence <a, ∅> .<b, ∅> . 0 +<b, ∅> .<a, ∅> . 0
and <a, ∅> .<b, {1}> . 0 +<b, ∅> .<a, {1}> . 0.

Location bisimilarity [BoudolCastellaniHennessyKiehn94]: every action
is enriched with the name of the location in which it is executed,
hence <a, la> .<b, lb> . 0 +<b, lb> .<a, la> . 0
and <a, la> .<b, lalb> . 0 +<b, lb> .<a, lbla> . 0.

Pomset bisimilarity [BoudolCastellani88]: a prefix may contain
the combination of actions that are independent of each other,
hence a . b . 0 + b . a . 0 + (a ‖ b) . 0.

How to uniformly derive expansion laws for ∼FB, ∼RB, ∼FRB?

Proved trees approach of [DeganoPriami92].

Label every transition with a proof term [BoudolCastellani88], which
is an action preceded by the operators in the scope of which it occurs:

θ ::= a | .θ | .+θ | +.θ | Uθ | Tθ | 〈θ, θ〉
The equivalence of interest then drives an observation function
that maps proof terms to the required observations.

Interleaving: proof terms are reduced to the actions they contain.

True concurrency: they are transformed into actions extended with
suitable discriminating information (encoding processes accordingly).

Information not necessarily available in the operational semantics,
as is the case with ∼RB and ∼FRB.

Proved operational semantic rules:

initial(P)

a . P
a−→ a†. P

P
θ−→ P ′

a†. P
.θ−→ a†. P ′

P1
θ−→ P ′1 initial(P2)

P1 + P2
.+θ−→ P ′1 + P2

P2
θ−→ P ′2 initial(P1)

P1 + P2
+.θ−→ P1 + P ′2

P1
θ−→ P ′1 act(θ) /∈ L

P1 ‖L P2
Uθ−→ P ′1 ‖L P2

P2
θ−→ P ′2 act(θ) /∈ L

P1 ‖L P2
Tθ−→ P1 ‖L P ′2

P1
θ1−→ P ′1 P2

θ2−→ P ′2 act(θ1) = act(θ2) ∈ L

P1 ‖L P2
〈θ1,θ2〉−−−−→ P ′1 ‖L P ′2

Forward clause rephrased:

For each P1
θ1−→ P ′

1 there exists P2
θ2−→ P ′

2 such that act(θ1) = act(θ2)
and (P ′

1, P
′
2) ∈ B.

Backward clause rephrased:

For each P ′
1
θ1−→ P1 there exists P ′

2
θ2−→ P2 such that act(θ1) = act(θ2)

and (P ′
1, P

′
2) ∈ B.

Observation function ` applied to proof terms labeling transitions,
so that `(θ1) and `(θ2) are considered in the bisimulation game.

May depend on other possible parameters that are present
in the proved labeled transition system.

Preserves actions: `(θ1) = `(θ2) implies act(θ1) = act(θ2).

∼FB:ps:`F , ∼RB:`R , ∼FRB:`FR
are the three resulting equivalences.

When do they coincide with ∼FB:ps, ∼RB, ∼FRB?

What is the discriminating information needed by ∼RB and ∼FRB?

∼FB:ps:`F = ∼FB:ps when `F(θ) = act(θ).

Axiomatization of ∼FB:ps over reversible concurrent processes:

(AF,1) (P +Q) +R = P + (Q+R)
(AF,2) P +Q = Q+ P
(AF,3) P + 0 = P
(AF,4) P + P = P where initial(P)
(AF,5) a†. P = P if ¬initial(P)
(AF,6) a†. P = b†. P if initial(P)
(AF,7) P +Q = P if ¬initial(P), where initial(Q)

(AF,8) P1 ‖L P2 = [a†.]

(∑
i∈I1,a1,i /∈L

a1,i . (P1,i ‖L P ′2) +∑
i∈I2,a2,i /∈L

a2,i . (P
′
1 ‖L P2,i) +∑

i∈I1,a1,i∈L

∑
j∈I2,a2,j=a1,i

a1,i . (P1,i ‖L P2,j)

)

Pk = [a†k.]P
′
k with P ′k =

∑
i∈Ik

ak,i . Pk,i for k ∈ {1, 2}.

[a†.] stands for an optional executed action prefix.

∼RB:`R = ∼RB and ∼FRB:`FR
= ∼FRB when `R(θ)P ′ = `FR(θ)P ′

, `brs(θ)P ′ = <act(θ), brs(P ′)> for every proved transition P
θ−→ P ′.

brs(P ′) is the backward ready set of P ′, the set of actions labeling
the incoming transitions of P ′.

Then a . 0 ‖∅ b . 0 is encoded as
<a, {a}> .<b, {a, b}> . 0 +<b, {b}> .<a, {a, b}> . 0
while a . b . 0 + b . a . 0 is encoded as
<a, {a}> .<b, {b}> . 0 +<b, {b}> .<a, {a}> . 0.

The encoding of a†. 0 ‖∅ b†. 0 is
either <a†, {a}> .<b†, {a, b}> . 0 +<b, {b}> .<a, {a, b}> . 0
or <a, {a}> .<b, {a, b}> . 0 +<b†, {b}> .<a†, {a, b}> . 0.

Depends on the trace of actions executed so far.

It cannot be
<a†, {a}> .<b†, {a, b}> . 0 +<b†, {b}> .<a†, {a, b}> . 0.

Axiomatization of ∼RB over reversible concurrent processes:

(AR,1) Â�(P +Q) +R = Â�P + (Q+R)

(AR,2) ‡P +Q = ‡Q+ P

(AR,3) fia . P = ‹P where initial(P)

(AR,4) ‡P +Q = ‹P if initial(Q)

(AR,5) ‚�P1 ‖L P2 = e`εbrs(
‹P1, ‹P2, L)P1 ‖L P2

Pk = 0 or Pk = a†. P ′k for k ∈ {1, 2}.
Axiomatization of ∼FRB over reversible concurrent processes:

(AFR,1) Â�(P +Q) +R = Â�P + (Q+R)

(AFR,2) ‡P +Q = ‡Q+ P

(AFR,3) flP + 0 = ‹P
(AFR,4) ‡P +Q = ‹P if initial(Q) ∧ to initial(P) = Q

(AFR,5) ‚�P1 ‖L P2 = e`εbrs(
‹P1, ‹P2, L)P1 ‖L P2

Pk = [a†. P ′k+]
∑

i∈Ik ak,i . Pk,i for k ∈ {1, 2}.

Hereditary History-Preserving Bisimilarity

For a = b the two encodings
<a, {a}> .<b, {a, b}> . 0 +<b, {b}> .<a, {a, b}> . 0 and
<a, {a}> .<b, {b}> . 0 +<b, {b}> .<a, {a}> . 0 coincide.

Then a . 0 ‖∅ a . 0 ∼FRB a . a . 0 + a . a . 0 ∼FRB a . a . 0.

But a . 0 ‖∅ a . 0 6∼HHPB a . a . 0.

Backward ready multisets distinguish them again and this yields
the same power as hereditary history-preserving bisimilarity.

∼FRB:brm provides an operational view of ∼HHPB.

No need of identifying identically labeled events, just count them.

The axiomatization of ∼HHPB is a variant of the one of ∼FRB.

Concluding Remarks and Future Work

Process algebraic theory encompassing most of concurrency theory:

Forward bisimilarity is the usual bisimilarity.
Reverse bisimilarity boils down to reverse trace equivalence.
Weak forward-reverse bisimilarity is branching bisimilarity.
Expansion laws addressing interleaving and true concurrency.

Applied to noninterference analysis.

Theory extended to Markovian sequential processes in the strong case,
link with ordinary/exact/strict lumpability and time reversibility.

Reversibility of deterministic timed processes (time additivity).

Reversibility of probabilistic processes (alternating model)?

Markovian sequential processes in the weak case (W-lumpability)?

What changes when admitting irreversible actions (commit)?

Inspiring References

[1] R. Landauer,
“Irreversibility and Heat Generation in the Computing Process”,
IBM Journal of Research and Development 5:183–191, 1961.

[2] C.H. Bennett,
“Logical Reversibility of Computation”,
IBM Journal of Research and Development 17:525–532, 1973.

[3] R. De Nicola, U. Montanari, F. Vaandrager,
“Back and Forth Bisimulations”,
Proc. of CONCUR 1990.

[4] V. Danos, J. Krivine,
“Reversible Communicating Systems”,
Proc. of CONCUR 2004.

[5] I. Phillips, I. Ulidowski,
“Reversing Algebraic Process Calculi”,
Journal of Logic and Algebraic Programming 73:70–96, 2007.

[6] I. Lanese, I. Phillips, I. Ulidowski,
“An Axiomatic Approach to Reversible Computation”,
Proc. of FOSSACS 2020.

[7] F.P. Kelly,
“Reversibility and Stochastic Networks”,
John Wiley & Sons, 1979.

[8] A. Marin, S. Rossi,
“On the Relations between Markov Chain Lumpability and Reversibility”,
Acta Informatica 54:447–485, 2017.

Our Contributions

[1] M. Bernardo, S. Rossi,
“Reverse Bisimilarity vs. Forward Bisimilarity”,
Proc. of FOSSACS 2023.

[2] M. Bernardo, A. Esposito,
“On the Weak Continuation of Reverse Bisimilarity vs. Forward Bisimilarity”,
Proc. of ICTCS 2023.

[3] M. Bernardo, A. Esposito,
“Modal Logic Characterizations of Forward, Reverse, and Forward-Reverse Bisimilarities”,
Proc. of GANDALF 2023.

[4] A. Esposito, A. Aldini, M. Bernardo,
“Branching Bisimulation Semantics Enables Noninterference Analysis of Reversible Systems”,
Proc. of FORTE 2023.

[5] A. Esposito, A. Aldini, M. Bernardo,
“Noninterference Analysis of Reversible Probabilistic Systems”,
Proc. of FORTE 2024.

[6] M. Bernardo, C.A. Mezzina,
“Bridging Causal Reversibility and Time Reversibility: A Stochastic Process Algebraic Approach”,
Logical Methods in Computer Science 19(2:6):1–27, 2023.

[7] M. Bernardo, C.A. Mezzina,
“Causal Reversibility for Timed Process Calculi with Lazy/Eager Durationless Actions and Time Additivity”,
Proc. of FORMATS 2023.

[8] M. Bernardo, I. Lanese, A. Marin, C.A. Mezzina, S. Rossi, C. Sacerdoti Coen,
“Causal Reversibility Implies Time Reversibility”,
Proc. of QEST 2023.

