
Noname manuscript No.
(will be inserted by the editor)

Multidimensional Context Modeling Applied to
Non-Functional Analysis of Software

Luca Berardinelli · Marco Bernardo ·
Vittorio Cortellessa · Antinisca Di Marco

Received: date / Accepted: date

Abstract Context-awareness is a first-class attribute of today software systems. In-
deed, many applications need to be aware of their context in order to adapt their
structure and behavior for offering the best quality of service even in case the soft-
ware and hardware resources are limited. Modeling the context, its evolution, and
its influence on the services provided by (possibly resource-constrained) applications
are becoming primary activities throughout the whole software life cycle, although
it is still difficult to capture the multidimensional nature of context. We propose a
framework for modeling and reasoning on the context and its evolution along multi-
ple dimensions. Our approach enables (i) the representation of dependencies among
heterogeneous context attributes through a formally defined semantics for attribute
composition and (ii) the stochastic analysis of context evolution. As a result, context
can be part of a model-based software development process, and multidimensional
context analysis can be used for different purposes, such as non-functional analy-
sis. We demonstrate how certain types of analysis, not feasible with context-agnostic
approaches, are enabled in our framework by explicitly representing the interplay be-
tween context evolution and non-functional attributes. Such analyses allow the identi-
fication of critical aspects or design errors that may not emerge without jointly taking

Luca Berardinelli
Distributed Systems Group, Technische Universität Wien, Vienna, Austria
E-mail: luca.berardinelli@tuwien.ac.at

Marco Bernardo
Dip. di Scienze Pure e Applicate, Università di Urbino, Italy.
E-mail: marco.bernardo@uniurb.it

Vittorio Cortellessa
Dip. di Ingegneria e Scienze dell’Informazione, e Matematica, Università dell’Aquila, Italy.
E-mail: vittorio.cortellessa@univaq.it

Antinisca Di Marco
Dip. di Scienze Cliniche Applicate e Biotecnologiche, Università dell’Aquila, Italy.
E-mail: antinisca.dimarco@univaq.it

2 Luca Berardinelli et al.

into account multiple context attributes. The framework is shown at work on a case
study in the e-health domain.

Keywords Context Modeling, Context Evolution, Reliability, Performance,
Transient and Steady-State Analysis.

1 Introduction

Software is increasingly pervading our daily life, as ever more tasks that, up to few
years ago, were performed by mechanical devices are now delegated to software au-
tomation. Beside this, the development of large bandwidth networks has enabled the
easy interaction among geographically distributed software components that collabo-
rate to offer new software services to the users. These evolution trends have brought,
in the last few years, software applications to be required to run in extremely different
contexts without failures and without degradation of their quality.

By context it is here intended the (often heterogeneous) information that a soft-
ware system is capable to sense by itself (e.g., through reflection mechanisms [7])
or from the external environment (e.g., through sensors), and that can influence the
structure and the behavior of the services provided by the system [29]. This abstract
and general definition needs to be instantiated according to the particular sensing ca-
pabilities of the applications. Hence, we consider the context as a heterogeneous and
application-specific property.

Context awareness is a prerequisite to enable adaptation, that is the ability of an
application to change its structure and/or behavior in response to the context evolu-
tion [33], aimed at satisfying requirements. Context evolution is the change of context
information during the system life cycle, from its requirement specification to imple-
mentation, deployment, and execution.

In this respect, context and its evolution may affect the Quality of Service (QoS)
in terms of variations of non-functional properties that may result in (hopefully tem-
porary) violations of non-functional requirements (NFR) [16]. In order to avoid such
violations, a context-aware application should be able to evaluate the QoS in the cur-
rent execution context, as well as to predict how the QoS varies with respect to the
context evolution.

The aim of this paper is the introduction of a framework for: (i) describing and
reasoning on heterogeneous context attributes and their (isolated or combined) evolu-
tion, and (ii) modeling and analyzing non-functional properties of multidimensional
context-aware systems.

For the former goal, we introduce a unifying representation of context based on
a stochastic extension of statecharts [26], where each state represents (a combination
of) context values and the probabilistic transitions represent the context evolution.
For the latter goal, we build on the experience gained in model-based methodologies
for non-functional analysis of software systems, and we extend them to the domain
of context-aware applications.

Beyond what we show in this paper, the context modeling approach we propose
has several potential applications, both during the software development process and
after software deployment:

Multidimensional Context Modeling Applied to Non-Functional Analysis of Software 3

– During the software development process, it can be exploited to better allocate
testing activities in order to focus efforts on those context states where the system
stays longer, or it can be used to calibrate (hardware and software) resources in
each context state, possibly in favour of those where the system sojourns longer.
In this paper, we show in Section 5 how to apply the proposed context modeling
to performance and reliability analysis of software.

– After software deployment, it can allow to determine whether the system and the
underlying assumptions are valid and conform to the stakeholder desiderata. In
particular, it permits to answer questions such as: ”Which is the probability that
a doctor’s device is in low power mode while the doctor is traveling from the
surgery room to the patient’s home?”. This information can reveal, for example,
the inadequacy of the battery of the doctor device. Or ”What is the impact of the
duration of the doctor’s visit to the patients on other activities?”. Just to make
another example, in the domain of cyber-physical production systems (CPPS),
it can help to answer questions such as: ”Which is the probability that, while
machine A is in its self-maintenance phase, the operator is exactly in the same
room?”, or ”Which is the probability that the human operator is in the factory and
not at home while the machine A turns its status in self-maintenance phase?”.
This kind of prediction helps to understand whether the current operator schedule
is acceptable for a specific CPPS1.

In this paper, first we provide a quantitative context analysis methodology whose
results can be evaluated per se. Second, we show how our approach can be com-
bined with other engineering activities like model-based NFR analyses to answer
questions like: ”What happens to non-functional attributes if context evolves along a
certain trend?”, or ”Does the designed adaptation strategy permit to guarantee NFR
over time?”, which cannot be addressed without combining context, design, and non-
functional modeling. Our solution raises the level of abstraction at which designers
deal with context representation, and allows them to capture the interdependencies
between system design, non-functional analyses, and context.

This paper is an extended version of [8], where the extensions are: (i) the intro-
duction of a formal composition semantics for context modeling (see Sections 3.1
and 3.2), (ii) the transient-state and sensitivity context analyses (see Section 4.2), and
(iii) the integration of context modeling and analysis with an existing model-based
reliability approach (see Section 5.2.1).

The paper is organized as follows. Section 2 introduces Mobile eHealth (MeH),
which is a context-aware application that will be used as a leading case study through-
out the paper. Section 3 illustrates the basic ideas behind the proposed context model-
ing approach and formalizes the whole approach with particular emphasis on a com-
positional semantics for context attributes. Section 4 illustrates the context evolution
analysis. Section 5 shows how to combine the proposed context model with UML
as hosting notation and then with model-based performance and reliability analysis
approaches, so that interdependencies among system design, non-functional analy-
ses, and context can be studied. Section 6 presents related work and points out the

1 Our ongoing work in this direction is available at: http://me-at-big.blogspot.co.at/2016/07/context-
modeling-and-analysis-of-cyber.html

4 Luca Berardinelli et al.

novelty of this paper with respect to the state of art. Section 7 concludes the paper
and indicates directions for future work.

2 An Illustrative Case Study: A Mobile eHealth Application

In this section, we introduce the mobile e-health application (MeH) that will be used
throughout the paper as leading case study.

MeH aims at providing services to support doctors’ everyday activities. A criti-
cal one is the retrieval of mixed media information on the assisted patients (Request
Patient Data service, RPD) that combines descriptive text with different kinds of im-
ages referring to patients’ personal data, medical histories, and diseases (e.g., x-ray
images).

The result of the RPD service is a multimedia report that can be displayed on the
doctor’s personal digital assistant (PDA). The application client, which is deployed on
the PDA, is capable to connect to different communication networks, where available,
and to choose the best one (e.g., the one with the highest bandwidth) among the
networks available at the current user location.

Long and/or heavy computational tasks, like the download of large images and/or
their editing, depend on the status of resources available on the client-side, such as a
sufficient charge level of the Battery. For example, the frequency of the CPU equip-
ping the PDA, as well as the brightness of its display, may be limited to reduce the
power consumption when the charge level of the PDA battery is lower than a certain
threshold.

In addition, the doctor may invoke the MeH services while moving across dif-
ferent physical places (e.g., at home, at the surgery, at patients’ home, or outdoor),
where different resources may be available and/or their exploitation may change. For
example, a high-bandwidth network and a PDA battery recharger may be available
only when the doctor stays indoors, and not in other locations.

Therefore, MeH should collect heterogeneous data from different context sources
like users (e.g., the doctor), hardware components (e.g., the battery of the PDA), or
the external environment (e.g., the WiFi) in order to provide the best QoS.

3 Context Modeling through Composable Context Evolution Models

In the literature, several approaches support the idea of modeling physical or logical
location awareness (referred to as spatial context models in [13]) with state machines
or similar notations [20,8], where a state represents the current location (of a physical
device or a software component) and a transition represents a change of location.
A location is usually defined as a (logical or physical) place characterized by the
resources accessible in that place. Multiple physical or logical places may have the
same resources and therefore they can be identified as the same location.

Our approach goes in the same direction, in that it applies the idea of modeling
location awareness with state machines to any kind of context-related attribute. We

Multidimensional Context Modeling Applied to Non-Functional Analysis of Software 5

Fig. 1 Context as a combination of heterogeneous attributes.

have proposed in [8] a stochastic extension of state machines, called Context Evolu-
tion Models2 (CEM), where the context is modeled as a combination of three different
Context Sources (CS), namely the physical location of users, the logical location of
software components, and the status of hardware resources. In this paper, we gener-
alize the modeling in [8] to any combination of different CSs. The assumption of our
stochastic modeling framework is that each CS is represented by a Context Attribute
(CA) that takes a finite set of values and whose evolution can be modeled through a
CEM. Most importantly, we provide the formal underpinnings of our framework by
defining a composition semantics for CEMs, which is inspired by stochastic process
algebras as compositionality is a first-class notion in those formalisms.

As Figure 1 shows, a context is a free combination (denoted by ◦) of CAs and their
values (denoted by v metavariables). In such a way, we are able to model the needed
degrees of context awareness (denoted by *), from the simplest one, which considers
only one CA (1-awareness context layer), to the whole context awareness described
by combining all the identified CAs. Using stochastic state machines to model the
evolution of each CA and leveraging on the state machine composition, we are able to
represent the context evolution, whatever its degree is. In the following, we call First-
Order Context Evolution Model (FOCEM) the stochastic state machine modeling a
single CA associated with a known, unique CS; and Higher-Order Context Evolution
Model (HOCEM) the state machine modeling the considered context obtained by
combining the FOCEMs of the CAs forming the context itself.

In the rest of this section, we formalize the notion of FOCEM (Section 3.1) and
the notion of HOCEM (Section 3.2). We discuss the basic concepts underlying them,
their representation in terms of state machines, their composition mechanism inspired
by stocastic process algebras, and their quantitative aspects based on continuous-time
Markov chain theory, all of which will be exemplified on the MeH case study.

3.1 Context Attributes and FOCEM

A FOCEM is a state machine, where each state represents part of the context and
corresponds to a particular value in a finite set of homogeneously typed values that

2 We replace here the original name Manager with the more appropriate Context Evolution Model.

6 Luca Berardinelli et al.

can be assigned to a specific CA. For example, percentages – whose value is an
integer number between 0 and 100 – are normally used to describe the charge level
of a battery.

A transition represents a change in such a typed value. It can be triggered by an
internal action that modifies the current value of the CA; e.g., an increment/decre-
ment of the percentage representing the battery charge level. A transition can also
be triggered by a remote event occurring in a different FOCEM; e.g., a battery level
change may cause a device screen to reduce its brightness.

Home High Power Normal Open Air High Power Normal

Open Air Low Power Power Save
loc batt cpu

ActionHO

…

… ActionHL

MeH HOCEM

Home Open Air

Surgery

Patient’s Home

High Power Low Power Normal

Under Charge

Power Save

Doctor Location FOCEM Battery Charge FOCEM CPU Mode FOCEM
active ActionHL

ActionLH

ActionNP

ActionPN

active

passive

passive

fired by

fired by

loc batt cpu

Context Attribute: Physical Location
Context Source: Doctor

Context Attribute: Charge Level
Context Source: Battery

Context Attribute: Execution Mode
Context Source: CPU

Fig. 2 MeH: HOCEM and FOCEMs for Doctor, Battery, and CPU elements.

Instances of FOCEMs for MeH are shown in the bottom layer of Figure 2. In
particular, this layer contains three FOCEMs related to three different CAs:

– The Doctor Location FOCEM represents the possible values (Home, Surgery,
Open Air, and Patient’s Home) of the physical location attribute for the doctor.
Transitions here represent the possible moves of the doctor among locations [20].

– The Battery Charge FOCEM represents the charge level evolution of the battery
of the doctor’s PDA. A threshold (e.g., 25%) triggers the transition from high
power state to low power one and vice versa.

– The CPU Mode FOCEM represents two execution modes for the CPU of the
PDA used by the doctor, namely normal and power save. The latter is meant to
reduce the power consumption by decreasing the CPU frequency.

Transitions are labeled with the corresponding actions and the related quantita-
tive information. The action set is partitioned into active actions and passive actions.
Although this action classification is inspired by analogous action classifications in
stochastic process algebras such as PEPA [27] and EMPA [11] and architectural de-
scription languages based on them [5,12] to formalize master-slave synchronizations,
here it is employed to support context dependencies in terms of cause-effect relation-
ships from an active action of a FOCEM to a passive action of another FOCEM. For
instance, the transition from high power to low power within the battery – which
is labeled with an active action – induces the transition from normal to power save
within the CPU – which is labeled with a passive action.

Multidimensional Context Modeling Applied to Non-Functional Analysis of Software 7

Also the quantitative aspects associated with actions are inspired by stochastic
process algebras and hence rely on exponentially distributed durations coming from
continuous-time Markov chain (CTMC) theory [46]. The reason for this choice is
that it yields a simpler mathematical treatment supported by a number of well es-
tablished steady-state and transient-state analysis techniques. On the expressiveness
side, it turns out that exponential distributions are adequate for modeling the tim-
ing of many real-life phenomena like arrival processes, failure events, and chemi-
cal reactions. Moreover, an exponential distribution is the most appropriate stochas-
tic approximation in the case in which only the average duration of an activity is
known [19]. Finally, proper combinations of exponential distributions, called phase-
type distributions [41], can approximate most general distributions arbitrarily closely.
As an example, a fixed duration d can be rendered by a sequence of n exponential
phases each of rate λ such that n/λ = d; the greater n, the better the approximation.

Every occurrence of an active action is governed by its execution rate λ ∈ R>0.
This uniquely quantifies the duration of the action execution in terms of an exponen-
tially distributed random variable, whose expected value 1/λ represents the average
duration of the action. According to CTMC theory, whenever several active actions
are enabled in a state, the action that is executed is the one that samples the least dura-
tion (race policy). As a consequence, every active action has an execution probability
that is proportional to its rate. Moreover, the sojourn time in a state turns out to be
exponentially distributed, with rate given by the sum of the rates of the active actions
enabled in that state.

In contrast, every occurrence of a passive action is governed by its associated
selection probability p ∈ R]0,1]. Whenever a state enables at least one occurrence
of a certain passive action, it must be the case that the selection probabilities of all
the occurrences of that passive action enabled in that state sum up to 1. If only one
occurrence is enabled, then p = 1. This is the case with both passive actions in the
CPU states of Figure 2, as shown in the forthcoming Table 1 where also the rates of
the various active actions are instantiated.

Definition 1 A FOCEM is a triple FOCEM = (S,A,−−−→) where:

– S is a finite set of states.
– A = Aa ∪ Ap is a finite set of actions, where Aa is a set of exponentially timed

active actions while Ap is a set of probabilistic passive actions, such that Aa ∩
Ap = ∅.

– −−−→ ⊆ S × ((Aa ×R>0) ∪ (Ap ×R]0,1]))× S is a transition relation between
states, in which every transition is labeled with an action and a real number.

3.2 Context Composition and HOCEM

A HOCEM is a model resulting from the composition of a set of FOCEMs represent-
ing the evolution of CAs of interest. It follows that:

– Whenever a FOCEM is added to the set, deleted from the set, or modified within
the set, a new composition is computed to rebuild the HOCEM.

8 Luca Berardinelli et al.

– The full context model is given by the HOCEM resulting from the composition
of all the FOCEMs for the considered system.

Similar to CSs in Figure 1, FOCEMs may need to be combined depending on the
type of context awareness suitable for the considered application. A lumping process
is then required that combines two or more FOCEMs to raise the context awareness
degree. Any combination of two or more FOCEMs generates a HOCEM in which
every state represents an instance of the composite context of interest for the appli-
cation, i.e., a set of heterogeneously typed values assigned to attributes from two
or more CSs. As an example, through a HOCEM the MeH system may be aware
of a doctor who is using the PDA to invoke the RPD service (i) while working at
the surgery (ii) with a low charged battery that (iii) induces the CPU of the PDA to
limit its frequency so to decrease the power consumption. The top layer of Figure 2
represents an excerpt of a HOCEM for the MeH application.

Context dependencies are expressed across FOCEMs through a mechanism that
we call remote firing, which is inspired by an analogous mechanism within Harel’s
statecharts [26]. A dependency that induces a remote firing is established by binding
a (firing) event on a transition of a FOCEM to one or more (fired) events on tran-
sitions of one or more different FOCEMs, thus building typical cause-effect events.
This mechanism can be used, for example, to model a change in the CPU frequency
(the fired event) as induced by a change in the battery charge level (the firing event).
Such a dependency is shown in Figure 2 by two dashed fired-by arrows from the fired
transitions of the CPU Mode FOCEM to the firing transitions of Battery Charge FO-
CEM. We call static a causal dependency explicitly declared by the modeler through
an expression of the form a 7→ b, where a is an (exponentially timed) active action
of a FOCEM while b is a (probabilistic) passive action of another FOCEM. Although
only cause-effect pairs can be directly modeled, cause-effect chains emerge due to
the fact that FOCEMs also describe the continuation after the execution of the ac-
tions involved in the cause-effect pairs.

The formal definition of the composition of FOCEMs based on remote firing re-
lies on the classification of their actions into (exponentially timed) active actions and
(probabilistic) passive actions. In the field of stochastic process algebras, from which
it is taken, this classification is used to enforce multiaction synchronizations accord-
ing to the generative-reactive cooperation mechanism [11]. This means that, among
the identically named actions participating in a synchronization, one of them must be
active while all the others must be passive. The overall rate of the syncronization is
given by the rate of the active action multiplied by the product of the selection prob-
abilities of the involved passive actions, which is consistent with the fact that it is the
active action that triggers the passive ones.

However, the synchronization mechanism of stochastic process algebras is too
rigid for our purposes, because it is based on fixed syncronization sets. For example,
if we have three processes with synchronization set {a} between any pair of them,
then all of them must synchronize on a – which is possible only if a is enabled in all
of them – thereby excluding the possibility that only two of them synchronize on a
at a certain point in time. For an adequate modeling of context evolution, we need a
more flexible mechanism in which the execution of an active action a of a FOCEM

Multidimensional Context Modeling Applied to Non-Functional Analysis of Software 9

with static causal dependencies {a 7→ bi | i ∈ I} is not blocked by the fact that for
some j ∈ I passive action bj is not enabled by FOCEM j.

We call dynamic a causal dependency arising from the statically declared ones
and we express it as a 7→ B where a is an active action of a FOCEM, B is a set of
passive actions each belonging to a distinct FOCEM, and for each b ∈ B the static
causal dependency a 7→ b has been declared. Given a dynamic dependency a 7→ B,
when the active action a is enabled, the execution of a induces the simultaneous
execution of the maximal subsetB′ of passive actions inB, such that all those actions
are enabled at that point in time in their respective FOCEMs. Notice that action a is
executed even if B′ = ∅. The execution of a 7→ B′ causes the local states of the
FOCEMs enabling actions in {a}∪B′ to advance, whilst all the other FOCEMs stay
idle.

Definition 2 Given n ∈ N≥2, let:

– FOCEMi = (Si, Ai,−−−→i) be a FOCEM for all i = 1, . . . , n, with Ai∩Aj =
∅ for i 6= j.

– SD i be a possibly empty set of static causal dependencies declared forFOCEMi,
each being expressed as a 7→ b where a ∈ Ai,a, b ∈ Aj,p, and i 6= j.

The corresponding HOCEM is a quadrupleHOCEM = (S,A,DD ,−−−→) where:

– S = S1 × · · · × Sn is the set of composite states.

– A = Aa ∪ Ap is the set of actions, where Aa =
⋃

1≤i≤nAi,a while Ap =⋃
1≤i≤nAi,p.

– DD is the set of dynamic causal dependencies of the form a 7→ B such that:
– a ∈ Aa.

– B ⊆ Ap.

– For all b ∈ B, a 7→ b ∈
⋃

1≤i≤n SD i.

– For all b1, b2 ∈ B such that b1 6= b2, if b1 ∈ Ai,p then b2 ∈ Aj,p with j 6= i.

– −−−→ ⊆ S × (DD ×R>0)× S is a transition relation between composite states

containing transitions of the form s
a 7→B′,λ
−−−−−−→ s′, where s = (s1, . . . , sn) and s′ =

(s′1, . . . , s
′
n), such that:

– There exist ia ∈ {1, . . . , n} and λa ∈ R>0 such that sia
a,λa

−−−→ia s
′
ia

.

– B′ is a maximal subset of Ap such that, for all b ∈ B′, there exist jb ∈

{1, . . . , n} and pb ∈ R]0,1] such that sjb
b,pb
−−−→jb s

′
jb

.

– λ = λa ·
∏
b∈B′ pb, with the second factor being 1 when B′ = ∅.

– For all i ∈ {1, . . . , n} such that i 6= ia and i 6= jb whenever b ∈ B′, s′i = si.

From a HOCEM, we can easily obtain a quantitative model in the form of a
continuous-time Markov chain (CTMC) [46]. This is essentially derived by first elim-
inating dynamic causal dependencies from transition labels, and then merging all the

10 Luca Berardinelli et al.

transitions between any pair of composite states into a single transition, whose rate
is the sum of the rates of the original transitions as a consequence of the race policy.
By solving this CTMC, we can derive the distribution of the probabilities of being in
the various states of a HOCEM at a certain time.

More precisely, the afore-mentioned CTMC can be represented as a state-indexed
matrixQ called the infinitesimal generator. The entry qh,k ∈ R≥0, h 6= k, represents
the rate at which it is possible to go from composite state sh to composite state sk
through a single transition, while qh,h is set to −

∑
k 6=h qh,k thus causing all rows to

sum up to 0. The solution of the CTMC in matrix form is computed as follows:

– Given the initial probability distribution π(0) over composite states, the transient
solution π(t) at time t ∈ R>0 is obtained by solving the differential equation
system:

π(t) ·Q =
dπ(t)

dt

which can be done by means of standard techniques like uniformization.
– The stationary solution π = lim

t→∞
π(t) is obtained (if any) by solving the linear

equation system:

π ·Q = 0,
∑
s∈S

π[s] = 1

which can be done by means of standard techniques from linear algebra.

4 Reasoning on the Context

In this section, we show the reasoning capabilities on the context and its evolution
that are enabled by our framework.

For a schematic view of our approach, Figure 3 depicts the context reasoning
workflow, whose steps will be described in the following subsections.

Context
Attribute
Modeling FOM

Scenario

FOMFOCEM

Context
Composition
Semantics

Parameters
(rate, prob)

FOMFOMHOCEM
(as CTMC)

ScenarioScenario

Context
Scenario
Analysis

Transient
Analysis Result

Context Reasoning

stepartifact
=

process
flow

Legend

Parameters
(rate, prob)
Parameters
(rate, prob)

Transient
Analysis Result
Transient‐State
Analysis Results

Transient
Analysis Result

Transient
Analysis Result
Steady‐State

Analysis Results

Fig. 3 Context reasoning workflow.

The CA modeling step for two possible scenarios, which we denote by ScA and
ScB, is described in Section 4.1. Then, Section 4.2 shows: (i) the application of con-
text composition semantics on FOCEMs and their parameters, as obtained in the pre-
vious step, to generate a CTMC-based HOCEM for each scenario, and (ii) the results

Multidimensional Context Modeling Applied to Non-Functional Analysis of Software 11

of the steady-state and transient-state context scenario analyses on these HOCEMs.
Finally, Section 4.3 carry out a sensitivity analysis of the ScA scenario.

4.1 Context Attribute Modeling

We are able to represent, through CEMs, different context scenarios for a context-
aware application. Each scenario comprises a set of basic FOCEMs, one for each
attribute that the particular application is aware of.

For sake of illustration, we consider again the MeH case study and we combine
three FOCEMs (Doctor Location FOCEM, Battery Charge FOCEM, and CPU Mode
FOCEM) that appear at the bottom of Figure 2.

We assume that in both scenarios, ScA and ScB, the MeH application is capable
to sense the same CAs, which are: (i) the physical location of the doctor, (ii) the
charge level of the battery equipping the doctor’s PDA, and (iii) the execution modes
of the CPU on the same PDA.

Fig. 4 A combined view of the FOCEMs for a) doctor’s physical location, b) charge level of PDA battery,
and c) execution modes for PDA CPU.

12 Luca Berardinelli et al.

Refined versions of the FOCEMs in the bottom layer of Figure 2 are depicted in
Figure 4 using a UML-like state machine diagram notation, and are detailed below:

– Doctor Location FOCEM. Figure 4a shows the states and transitions of the FO-
CEM that models the evolution of the physical location CA. The doctor stays at
home while not working or at the surgery and at the patients’ homes while giving
assistance. The doctor can move among such places in any direction, thus an open
air state is placed between all pairs of locations.

– Battery Charge FOCEM. The battery charge level of the doctor’s PDA may
assume values that vary from a minimum of 0 to a maximum of 100. In order to
limit the number of states, we set up a threshold of 25% to distinguish the low
power state (0 to 24) from the high power state (25 to 100). In addition, a battery
reaches an under charge state when it is plugged into a power socket. Figure 4b
shows the states and transitions of the FOCEM that models the evolution of the
charge level CA. In our scenarios, we assume that the doctor can recharge the
PDA battery only at home and at the surgery. When leaving these places, the
PDA has to be unplugged if it is under charge. Therefore, directed dotted lines
are drawn from the outgoing (fired) transitions of the under charge state of the
Battery Charge FOCEM and the (firing) outgoing transitions from the home and
surgery states of the Doctor Location FOCEM.

– CPU Mode FOCEM. The CPU of the PDA may work in two execution modes:
normal, i.e., without any restriction on the clock frequency, and power save,
when the system needs to reduce the power consumption because the battery
has reached the low power state. Figure 4c shows the states and transitions of the
FOCEM that models the evolution of the CPU mode CA. Two directed dotted
lines are drawn from the fired transitions of the CPU Mode FOCEM to the corre-
sponding firing transitions of the Battery Charge FOCEM to represent the remote
firings among them.

Transitions in Figure 4 are labeled with action names, conditions (where needed),
and $-prefixed variables for rates and probabilities. We remind that the use of rates
of exponential distributions for characterizing durations is justified by a number of
reasons that have already been expressed in Section 3.1.

The two considered scenarios, ScA and ScB, differ for the stochastic parametriza-
tion of these three FOCEMs. Therefore, the specification of the two scenarios consists
of distinct rates/probabilities for active/passive actions. Table 1 reports such input pa-
rameters of ScA and ScB.

The rows in Table 1 are grouped in three sets, one for each FOCEM. Each row
includes an action name, an action type (active or passive), a parameter name and
type (rate or probability), and the values for such parameters in ScA and ScB.

Rates for Doctor Location FOCEM in ScA come from assuming that the doctor3:

– Spends ten hours at home before leaving.
– Takes half an hour to move from home to the surgery.
– Remains at work eight hours before going home.

3 All numbers mentioned in the following represents mean values used to obtain rates of actions.

Multidimensional Context Modeling Applied to Non-Functional Analysis of Software 13

Table 1 Input parameters for the FOCEMs in ScA and ScB.

times/hour prob. times/hour prob.

leaving_home active H_OAhs_rate rate 0.10 0.13
going_to_work active OAhs_S_rate rate 2.00 1.00
leaving_surgery_to_assist_patient active S_OAsp_rate rate 0.25 0.50
going_to_patients active OAsp_P_rate rate 3.00 3.00
leaving_patient's_home active P_OAps_rate rate 12.00 12.00
going_back_to_work active OAps_S_rate rate 3.00 3.00
leaving_surgery_to_go_home active S_OAsh_rate rate 0.13 0.25
going_back_home active OAsh_H_rate rate 1.00 0.50

discharging active HP_LP_rate rate 0.18 0.22
plugging active LP_UC_rate rate 0.53 0.66
unplugging active UC_HP_rate rate 0.50 0.50
anticipated_unplugging passive UC_LP_prob prob 1 1

switching_to_PSM passive NM_PSM_prob prob 1 1
switching_to_NM passive PSM_NM_prob prob 1 1

Doctor Location FOCEM

Battery Charge FOCEM

CPU Mode FOCEM

ScA ScBAction Name Type Parameter ($) Type
Value of rate or probability

– Leaves the surgery every four hours by ambulance to reach patients’ homes.
– Goes to patient’s home by ambulance in twenty minutes.
– Gives first aid to the patient in five minutes.
– Goes back to the surgery by ambulance in twenty minutes.
– Goes back home at the end of the working day in one hour, assuming that the

doctor stops somewhere before arriving at home to perform an activity (e.g., going
to the gym or shopping).

In ScB, the rates of (active) actions have been modified to represent a doctor who
spends less time at home and at the surgery, and moves more frequently, thus spend-
ing more time on the paths in the open air connecting such places. The assumptions
that differentiate ScB from ScA consider that the doctor:

– Spends eight hours at home before leaving.
– Takes one hour (twice than in ScA) to move from home to the surgery.
– Remains at work four hours (half than in ScA) before going home.
– Leaves the surgery every two hours (again, two times per day).
– Goes back home at the end of the working day in two hours (twice than in ScA).

For the Battery Charge FOCEM, we imagine two different usages of the PDA in
ScA and ScB, where the former induces a lower power consumption than the latter.

In both scenarios, we assume that the RPD service will be always running on
the doctor’s PDA, i.e., we do not consider the stand-by time. We also assume a linear
power consumption while the RPD service is running. In ScA, a fully charged battery
is consumed in seven hours and a half, while in ScB the autonomy of the PDA is
reduced to six hours and twenty minutes. Accordingly, we calculate the time needed
to run down the battery: (i) until a certain threshold that we set to 25% of the total
capacity of the battery and (ii) from such a threshold until the battery lasts.

14 Luca Berardinelli et al.

The parametrization of the CPU Mode FOCEM does not change across scenarios
because the actions labeling the transitions from normal mode to power save mode
and vice versa are passive. Since each of them is the unique outgoing transition from
the corresponding state, a probability equal to 1 is assigned in all cases.

The values of all the above defined parameters have been estimated by looking
at multiple real-life examples of doctor behavior profiles from different sources. This
observation brought us to synthesize the mean values (i.e., times or rates) used in this
paper. These values are subject to inaccuracies, mostly due to the variance among
behaviors of profiled doctors. The combination of such inaccuracies, of course, can
propagate to the analysis results. However, our approach is intended to be used at
system design phase, when the analysis is aimed at taking design decisions through
comparisons of different alternatives. In this direction, the inaccuracies of results can
be mitigated by the fact that multiple sets of values can be assigned to parameters
in order to compare analysis results and figure out relevant trends, as we will do in
Section 4.3. Decisions that induce unsatisfactory trends can be highlighted as critical
ones in the design process. Therefore, our approach is not intended to take fine-grain
decisions, it is rather aimed at comparing different situations and, on the basis of
numerical results, at providing support for context-aware system design decisions
before a system is implemented, with particular emphasis on the early phases of its
lifecycle.

4.2 Context Composition Semantics and Scenario Analysis

The given set of FOCEMs can be composed into different HOCEMs. From a model-
ing perspective, a HOCEM is a composite state machine that executes its constituting
FOCEMs in parallel. In Figure 4, the constituing FOCEMs were represented within
distinct regions delimited by dashed lines.

In Figure 5, we show the HOCEM state machine obtained from the context com-
position semantics (see Section 3.2) applied to the FOCEMs in Figure 4. This HO-
CEM explicitly represents composite states and their transitions, as well as the action
rate annotations, which in Figure 5 refer to the ScA scenario4.

In order to illustrate the potential reasoning capabilities of our approach, the re-
sulting composite context states and transitions of the HOCEM have been arranged
to facilitate both left-to-right (or right-to-left) and top-down (or bottom-up) readings,
as indicated by the dotted arrows external to the figure.

The horizontal arrow follows the coupled evolution of two CAs, which are the
battery charge level (high power, low power, and under charge) and the consequent
execution modes of the CPU (normal mode, power save mode), both equipping the
doctor’s PDA.

The vertical arrow follows the context evolution with respect to the physical
moves of the doctor across physical places (i.e., home, surgery, patients’ home, and
the paths in the open air).

In Figure 5, the context states have been horizontally and vertically partitioned
in different sets. States belonging to the same set share a common CA value. In this

4 For sake of readability, we do not show any action name but only the resulting rate.

Multidimensional Context Modeling Applied to Non-Functional Analysis of Software 15

Changing CAs: Battery charge level and CPU modes

Ch
an

gi
ng

 C
A:

 D
oc

to
r l

oc
at

io
n

HP Set LP Set UC Set

O
pen Air Set

Ho
m

e
Se

t
Su

rg
er

y
Se

t
Pa

tie
nt

’s
Ho

m
e

Se
t

Fig. 5 The HOCEM for MeH parametrized with rates for ScA.

respect, the vertical sets in Figure 5 focus on the evolution of the physical locations
of the doctor while binding the other two context attributes (i.e., battery charge level
and CPU modes):

– HP Set identifies a high-power context set where the RPD service is always run-
ning on a fully charged PDA and the only CA that varies is the physical location
of the doctor equipped with the PDA.

– LP Set identifies a set of low power contexts where the RPD service is always
running on a PDA where the charge level of the battery is equal to or lower than
the chosen threshold, namely in our example 25%.

– UC Set includes the two context states where the battery is under charge. Accord-
ing to the remote firing dependencies among the transitions of the Doctor Loca-
tion and Battery Charge FOCEMs, a recharge operation happens only at doctor’s
home or at the surgery. When the doctor leaves such two places to go home or to
patients’ homes, the recharge is interrupted (i.e., the PDA is unplugged from the
socket plug) and, according to the charge level of the battery, a new context state
belonging to the HP Set or LP Set is reached.

Similarly, the horizontal sets focus on the combined evolution of two CAs, that
are the charge level of the battery and the execution modes of the CPU, while binding
doctor’s physical location:

– Home Set includes the context states where the doctor stays at home.
– Surgery Set includes the context states where the doctor works at the surgery.
– Patient’s Home Set includes the context states in which the doctor is giving assis-

tance to the patients at their homes.

16 Luca Berardinelli et al.

– Open Air Set includes the context states where the doctor moves outdoors be-
tween the aforementioned places.

Since the states of a HOCEM are obtained from the cartesian product of the cor-
responding FOCEMs states, the size of the HOCEM state space quickly grows with
the number of considered CAs and the number of states of each attribute. Therefore,
the analysis of a HOCEM can become computationally infeasible due to scalability
issues in case of systems with many and complex CAs. This problem is mitigated
by the fact that, even in systems with numerous attributes, the analysis of a complete
HOCEM (i.e., the one that results from the combination of all FOCEMs) is often
meaningless, because it is difficult to identify causes of problems when too many at-
tributes are considered at the same time. Indeed, our approach is modular, as it does
not mandate to consider all attributes together, but selective combinations of attributes
can be considered to synthesize a partial HOCEM. As evidenced in this section, the
aggregation of states allows us to highlight the role that different attributes may have
in partial context analyses that focus only on some CAs while leaving hidden the
other ones. Without grouping states in sets as in Figure 5, all the context states and
their attributes are instead equally important throughout the context analysis.

In Appendix A, we show the tables containing the transition rates of the HOCEMs
for both ScA and ScB scenarios. By analyzing the CTMCs corresponding to the
parametrized HOCEMs for ScA and ScB, we obtain the steady-state and transient-
state probabilities for the context states shown in Figure 4. These numbers are at the
basis of the computation of performability measures. It is worth recalling that within
our framework there are also other analysis techniques that can be applied, most no-
tably probabilistic/stochastic model checking [4], but they will not be described as
they are outside the scope of this paper.

In the remainder of this section, we analyze the state probabilities of the HOCEM
obtained for the MeH case study, under the two previously defined scenarios. We
have identified scenarios that describe two quite different situations in terms of doc-
tor mobility, so to demonstrate that our approach supports the non-functional analysis
of different real-life situations. Many other scenarios may need to be analyzed in or-
der to compare the effects of system design decisions under different contexts, and
this can incur in scalability problems. However, since the scenarios differ in terms
of transition probabilities, this problem can be mitigated by analyzing first extreme
cases, and then by generating intermediate scenarios only where critical situations
have been identified. For example, critical situations may be originated by conflicting
results on the same HOCEM under different scenarios. In these cases, designers and
domain experts should interact to take (sometime heavy) decisions, such as prevent-
ing some context states from being reached under certain circumstances.

4.2.1 Steady-State Analysis

In the rows of Table 2, we report all 16 context states of Figure 5. For each of them,
steady-state probabilities for ScA and ScB have been obtained by solving the CTMCs
corresponding to the HOCEMs, and the rightmost column shows the differences be-
tween the two scenarios.

Multidimensional Context Modeling Applied to Non-Functional Analysis of Software 17

We have highlighted the three most visited context states in each scenario, be-
cause they could allow to identify whether most of the time, at the steady state, is
spent in contexts with some peculiarities. Table 2 shows this evidence for ScB, where
the three highly visited states are the ones where the doctor stays at home. This infor-
mation can be exploited for multiple purposes, such as improving application aspects
that can be appreciated in a home environment in the ScB case. For example, high
definition images can be shown due to the likely availability of a HD screen. The same
evidence is not provided for ScA, where the highly visited states do not have much
in common, apart from not representing outdoor contexts. However, both scenarios
share the most visited state, which is the one in the first row of the table, meaning
that any improvement of the application in such a context would be beneficial for
both context scenarios.

We have also highlighted, in the rightmost column, the three highest variations of
sojourn probabilities in ScB with respect to ScA. This observation goes in the oppo-
site direction with respect to the latest comment on steady-state probabilities, because
the three identified rows correspond to states that are peculiar only for one scenario.
Hence, it can be appropriate to act on the application characteristics in these contexts
only if accurate data are available about the scenario occurrence. For example, the
highest difference is obtained for context state 06. If it can be asserted that the appli-
cation will be used in ScA, then it is worth to tailor the application to such a context.
In the opposite case, namely if no clue is given about the occurrence of either ScA
or ScB, application improvements in this context could represent a useless effort for
application designers.

Table 2 Steady-state probabilities for ScA and ScB.

18 Luca Berardinelli et al.

To better understand the differences between the two scenarios, we further split
the flattened HOCEM in Figure 5 in different sets. We then calculate the steady-state
probabilities on the different subsets of the HOCEM. The results for both scenarios
are reported in Table 3, where we first observe that the MeH system provides its
services mostly when the doctor is at home (around 0.48 both in ScA and ScB).
However, in ScB the sojourn probability with respect to ScA: (i) in the open air
doubles up to 0.26, (ii) in the surgery decreases down to 0.24, and (iii) it does not
significantly vary at patient’s home.

Table 3 Steady-state analysis for subsets of context states for ScA and ScB.

ScA ScB
Home Set 0.4762 0.4848 0.0087
Open Air Set 0.1349 0.2626 0.1277
Surgery Set 0.3810 0.2424 -0.1385
Patients' Home Set 0.0079 0.0101 0.0022
Total 1.0000 1.0000 0.0000
HP Set 0.5029 0.4118 -0.0911
LP Set 0.3191 0.4070 0.0879
UC Set 0.1780 0.1812 0.0032
Total 1.0000 1.0000 0.0000

Analysis Sets
Steady-State Probability Vector

Diff.

In ScB, we also assume a higher battery consumption (see Table 1) that, combined
with the higher mobility of the doctor, leads to increase the sojourn probability in the
LP Set. This means that the system will more likely cope with a resource-constrained
context where the charge level of the battery is low and the computational power of
the CPU is consequently reduced.

0.7635

0.3633
0.2839 0.2585 0.2567

0.1132

0.1348

0.1205
0.1165 0.1162

0.0286

0.1214

0.1092
0.1037 0.1033

0.0003

0.0158

0.0251
0.0279 0.0281

0.0405

0.1413

0.1712
0.1826 0.1835

0.0068

0.0856
0.1137 0.1221 0.1227

0.0009
0.0437 0.0673 0.0743 0.0748

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 6 12 24 Steady (infinity)

So
jo

ur
n

Pr
ob

ab
ili

ty

Time (hours)

sca

08 S UC PSM

07 S LP PSM

06 S HP NM

03 H UC PSM

01 H HP NM

02 H LP PSM

05b OAsh LP PSM

Surgery Set

Open Air Set

Home Set
47.62%

13.49%

38.10%

Surgery Set

Open Air Set

Home Set
90.54 %

4.51 %

4.82 %

Fig. 6 Transient-state probabilities for ScA.

Multidimensional Context Modeling Applied to Non-Functional Analysis of Software 19

4.2.2 Transient-State Analysis

For the same scenarios ScA and ScB, we carried out a transient analysis to obtain the
sojourn probabilities in the context states of Figure 5 at a certain instant t, and they
have been reported on the charts in Figures 6 and 7. On the x axis, the transient state
probabilities have been calculated 1, 6, 12, and 24 hours before the CTMC reaches
the steady state. In both scenarios, the starting context state of our transient analysis
is the doctor at home with a fully charged battery (first row in Table 2). Sojourn
probabilities of some context states are reported on the y axis. We grouped the sojourn
probabilities sets focusing on the physical location of the doctor (i.e., Home Set, Open
Air Set, Surgery Set, and Patient’s Home Set). Such sets are identified along the y axis
on the left and right sides of both charts to highlight their relative contribution to the
sojourn probability while t flows from left to right. Below each set name, we reported
their transient state probabilities at t = 1 (on the left) and at steady state (on the
right). It is worth noting that, as expected, the steady-state probabilities are reached
around t = 24 hours in both scenarios, as this represents a periodical behavior of the
doctor.

0.0059

0.0813
0.0974 0.0986 0.09856

0.0009
0.0387 0.0511 0.0520 0.05204

0.0282

0.0930
0.0939 0.0919 0.09182

0.0006

0.0510

0.0849 0.0893 0.08933

0.0407

0.1324

0.1269 0.1291 0.12916

0.1265

0.1210

0.1208 0.1223 0.12231

0.7157

0.3023
0.2402 0.2334 0.23339

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 6 12 24 Steady (infinity)

So
jo

ur
n

Pr
ob

ab
ili

ty

Time (hours)

sca

Surgery Set

Open Air Set

Home Set

Surgery Set

Open Air Set

Home Set
88.29 %

4.51 %

4.82 %

48.48%

26.26%

24.24%

08 S UC PSM

07 S LP PSM

06 S HP NM

03 H UC PSM

01 H HP NM

02 H LP PSM

05b OAsh LP PSM

Fig. 7 Transient-state probabilities for ScB.

For ScA in Figure 6, the Home and Surgery Sets are predominant. In both sets,
the doctor experiences the best possible resource environment (i.e., high power and
normal mode for battery and CPU, respectively) for most of the time. The contribu-
tion of the Open Air Set is always lower than 13.5% whereas the one of the Patient’s
Home Set is always negligible, so it has not been represented in Figure 6.

The transient-state probabilities for ScB are depicted in the chart in Figure 7. The
evolution of the sojourn probabilities is similar to ScA and the predominant states are
still the ones in Surgery and Home Sets. However, the contribution of the Open Air
Set increases at any time t due to the higher mobility assumed in ScB, going from

20 Luca Berardinelli et al.

13.49% in ScA to 26.26% in ScB at t = 24. Within the Open Air Set, the highest
increment in sojourn probabilities appears on context states with a low battery charge
level (like context state 05b) since, by assumption, the doctor cannot charge the PDA
outside home and surgery locations.

The relative relevance of the Home Set decreases while the sojourn times in con-
text states belonging to the Open Air Set continuously increase from 13.49% in ScA
to 60.60% in ScB. Indeed, in ScB it may happen that a doctor has to leave the surgery
to assist patients at their homes during the first hour of MeH usage, as specified by
leaving surgery to assist patient row in Table 1, with a 0.5 times/hour rate. In con-
trast, the same action is not likely to happen in ScA during the first hour of usage,
due to a 0.25 rate. However, both scenarios assume that if the MeH system is started
at home, it is very likely to happen that, after one hour of usage, the doctor is still at
home (i.e., leaving home row in Table 1, with a 0.1-0.13 times/hour rate). Therefore,
it is very likely that the charge level of the battery is higher than the assumed thresh-
old, i.e., 25%, during the first hour of usage, thus this resource will likely remain in
the high power state. Finally, it is worth noting that the decrease of the relative rele-
vance of the high power contexts during the first six hours of usage in ScB (i.e., t = 6
in Figure 7) is also influenced by: (i) the 1 hour faster discharging time of the battery
(see discharging row in Table 1, with a 0.18 times/hour rate in ScA and 0.22 rate in
ScB), and (ii) the lower availability of plugs for starting a recharge (by assumption,
plugging action is only available at home and at the surgery).

4.3 Sensitivity Analysis

In order to show how the context analysis results may vary upon variations of con-
text parameters, in this section we report a sensitivity analysis of the ScA scenario.
The goal is to evaluate the impact of duration of doctor’s activities, like assisting pa-
tients at home, and the impact of PDA battery capacity. From a modeling perspective,
it corresponds to changing rates assigned to (active) actions leaving patient’s home
and discharging of the Doctor Location and Battery Charge FOCEMs, respectively,
whose original values appear in Table 1.

In ScA, we assume that the doctor spends 5 minutes on average at patients’
homes before leaving to move back to the surgery, i.e., before triggering the action
leaving patient’s home outgoing the patient’s home state (see Figure 4). For sake of
sensitivity analysis, we extend here the visit duration up to 20 minutes by steps of 5
minutes, thus obtaining four alternatives. These variations are obtained by setting the
corresponding λ parameter of the leaving patient’s home exponential distribution to
12 (i.e., HOCEM ScA, our baseline for comparisons), 6, 4, and 3, respectively.

In ScA, the average time required to discharge a fully charged PDA battery (100%)
down to the given threshold (25%) is 5 hours and 30 minutes (λ = 0.18). Again for
sake of sensitivity analysis, we increase up to 9 hours and 30 minutes the time re-
quired to discharge the battery down to the threshold, by steps of 2 hours. We obtain
three alternative durations determined by the three values for the λ parameter 0.18
(i.e., HOCEM ScA, our baseline for comparisons), 0.13, and 0.1 assigned to the dis-
charging action, respectively.

Multidimensional Context Modeling Applied to Non-Functional Analysis of Software 21

Table 4 Configurations of variants.

12 0:05
0.18 5:30

6 0:10
0.18 5:30

4 0:15
0.18 5:30

3 0:20
0.18 5:30
12 0:05

0.13 7:30
6 0:10

0.13 7:30
4 0:15

0.13 7:30
3 0:20

0.13 7:30
12 0:05
0.1 9:30
6 0:10

0.1 9:30
4 0:15

0.1 9:30
3 0:20

0.1 9:30

Variants

HOCEM 7

HOCEM 8

HOCEM 9

HOCEM 10

HOCEM 11

HOCEM 2

HOCEM 3

HOCEM 4

HOCEM 5

HOCEM 6

HOCEM 1

Rate for actions:
leaving_patient's_home

discharging

HOCEM ScA

Duration (h:mm)

Baseline

The combination of these alternatives generates a total of twelve variants of the
ScA scenario, including the baseline case, which are listed in Table 4. For sake of
sensitivity analysis, we have executed twelve times the context reasoning workflow
illustrated in Figure 3, once for each variant. From a modeling perspective, we have
obtained twelve triples of FOCEMs and related parameters, and we have generated
twelve corresponding HOCEMs. Since we do not change state, transition, and depen-
dency sets, these HOCEMs are structurally identical to the one in Figure 5, but they
have different rates that come from the semantic composition of the FOCEMs with
different parameters.

In Figure 8, we report the analysis results. We reuse the logical partition of HO-
CEM in sets, as depicted in Figure 5, and plot the variations in sojourn probabilities
with respect to the HOCEM ScA scenario (i) for each set as a whole (on the right
side) and (ii) for each HOCEM variant, from HOCEM 1 to HOCEM 11. For sake of
readability, the bar chart highlights, for each set, only the HOCEM x variants with
the highest positive and negative variation (in percentage) with respect to the results
of the ScA scenario (i.e., the first row in Table 4).

As expected, the sojourn probabilities in HOCEM states belonging to the HP
Set and Patient’s Home Set increase (+74.32% and +14.66%) according to longer
lasting battery capacity and higher doctor mobility, respectively. In contrast, the so-
journ probabilities in context states of complementary sets, i.e., UC and LP Sets for
battery charge, and Surgery, Open Air, and Home Sets for doctor’s mobility, de-

22 Luca Berardinelli et al.

+74.32%

‐44.53%

‐29.79%

‐7.82%

‐0.58%

‐6.26%

+14.66%

Location Set

Battery Set

‐10.000% ‐5.000% 0.000% 5.000% 10.000% 15.000%

HP Set

LP Set

UC Set

Home Set

Open Air Set

Surgery Set

Patients' Home Set

VARIATION (%)

SE
TS

HOCEM 1 HOCEM 2 HOCEM 3 HOCEM 4 HOCEM 5 HOCEM 6

HOCEM 7 HOCEM 8 HOCEM 9 HOCEM 10 HOCEM 11

HOCEM 3: +2.31%
HOCEM 7: +2.31%
HOCEM 11: +2.31%

HOCEM 1: +1.31%

HOCEM 11: ‐4.73%

HOCEM 3: +1 %HOCEM 4: ‐4.73%

HOCEM 8: +12.69%

HOCEM 7: ‐2.75%

HOCEM 8: ‐8.11%
HOCEM 4: +7.05 %

Fig. 8 Sensitivity analysis: sojourn probability variations in ScA.

crease. Moreover, it is worth noting how such variations disappear if we consider
the broader Battery and Location Sets obtained by the union of (i) UC, LP, and HP
Sets and (ii) Patient’s, Surgery, Open Air, and Home Sets, respectively. Indeed, both
leaving patient’s home and discharging can be considered internal actions to both
Location and Battery Sets. The variation of their durations is then transparent to a
coarser grained analysis based on Location and Battery Sets. We also like to remark
positive increments that occur for some single HOCEM variants, up to +2.31% when
the average visit duration is set to 20 minutes (variants HOCEM 3, HOCEM 7, HO-
CEM 11).

Note that longer visits to patients may cause disconnection of the PDA from the
power outlet and then an incomplete charging of the battery (see the dependencies
among active and passive actions in Figure 4) that can be charged only at doctor’s
home and at the surgery.

Moreover, we observe a larger impact of longer lasting batteries in HP, LP, and
UC Sets. Two additional hours over the given battery threshold increase the sojourn
time in the HP Set up to +7.05% in HOCEM 4, and up to +12.69% in HOCEM 8
with four additional hours. Conversely, the PDA usage with a low charged battery (LP
Set) and the need for a power outlet to charge the PDA (UC Set) decrease with more
powerful batteries (−4.73% in HOCEM 11 and−8.11% in HOCEM 8, respectively).

Finally, we observe a generic trend among HOCEM variants in HP, LP, and UC
Sets. Given the same battery capacity (e.g., HOCEM 4, HOCEM 5, HOCEM 6, and

Multidimensional Context Modeling Applied to Non-Functional Analysis of Software 23

HOCEM 7), the benefit of bigger batteries (i.e., longer sojourn times in HP Set) is
proportionally reduced by longer stays at patients’ homes.

The above considerations represent the typical results of an analysis that could
not be obtained without a formally quantified approach to context modeling. This
sensitivity analysis highlights the context parameters that have the highest impact on
sojourn probabilities. As mentioned in Section 4.1, such an analysis allows results
to be made more robust in presence of inaccuracies on the estimated values of the
parameters. Although these inaccuracies could be evidenced only by validating the
results on a monitored system, such an analysis provides a support to designers when
they have to evaluate alternative design choices.

5 Applying Context Modeling to Non-Functional Analysis

In this section, we apply our context reasoning approach to software performance and
reliability analysis.

Software
Application
Modeling

stepartifact
=

process
flow

Legend

Service View

Component View

Deployment View

Context View

Non-Functional
Annotations

Context-aware
Steady-State

Performance Analysis

Context
Reasoning

Steady-State Analysis Result

Context-aware
Transient-State

Reliability Analysis

Transient-State Analysis Result

FOMFOMFOCEM
FOMFOMHOCEM

(as CTMC)

«includes»

UML
Model

«part of»

Performance
Analysis Result

Performance
Analysis Result

Performance
Analysis Result

HOCEM States

«refers to»

«refers to»

Reliability
Analysis Result

Reliability
Analysis Result

Reliability
Analysis Result

HOCEM States

Fig. 9 Context reasoning applied to model-based performance and reliability analyses.

Figure 9 depicts how the context reasoning workflow described in Section 4 can
be integrated with two model-based analysis methodologies for performance [17,45]
and reliability [18] analysis purposes. The two considered methodologies share sim-
ilar input artifacts, i.e., a UML model made of several views and properly annotated
for the specific analysis. An additional context view, made of the FOCEM models
described in Section 4, is integrated into the UML model. Thanks to this integration
step, original context-agnostic non-functional methodologies become context aware.

The next sections detail the steps and related artifacts depicted on the bottom side
of Figure 9. In particular, in Section 5.1 we describe the software application mod-
eling, in Section 5.2.1 the reliability analysis, and in Section 5.2.2 the performance
analysis.

24 Luca Berardinelli et al.

5.1 Software Application Modeling

This section illustrates the design model of MeH and its integration with our context
modeling approach.

We adopt UML [43] both as design notation and as hosting notation for the for-
malism introduced in Section 3, for the following reasons:

– UML includes the modeling of statecharts, through its UML StateMachines lan-
guage unit, which nicely fits our FOCEM/HOCEM modeling needs, as illustrated
in Figures 4 and 5.

– UML is extensible through profiles. We can then annotate the stochastic param-
eters (i.e., rates and probabilities) on state transitions through stereotypes and
attributes.

– UML supports modularity. Reusable model elements can be collected in model
libraries, such as FOCEMs and HOCEMs that can thus be reused for other appli-
cations running in similar contexts.

– Several non-functional analysis approaches accept UML-based design models
as input [37,6], thus facilitating the integration of such an analysis methodolo-
gies with our context modeling approach. We have exploited this opportunity by
extending two existing reliability and performance analysis approaches in Sec-
tion 5.2.

It is worth noting that our context modeling approach is constrained neither to
UML, nor to any other modeling notation. Ad-hoc domain-specific languages and no-
tations can be devised for implementing the proposed approach through well-known
MDE techniques (metamodeling) and tools (e.g., Eclipse Modeling Framework) [14].
However, this aspect is out of the scope of this paper and left as future work.

The design and context models represent the input to model-based non-functional
analyses that will be illustrated in Section 5.2.

We have organized the UML model of MeH in views:

– A Service View (SV) represents the services provided by MeH as they are per-
ceived and used by its external actors (Use Case Diagrams, UCD) along with their
behavioral specifications (Sequence Diagrams, SD).

– A Component View (CV) illustrates the MeH software architecture in terms of its
constituting software components and their provided/required interfaces (Compo-
nent Diagrams, CD).

– A Deployment View (DV) models the allocation of software artifacts on the exe-
cution nodes. It also includes a representation of processing, communication, and
storage resources of the supporting platform (Deployment Diagrams, DD).

In addition to such application views, as mentioned above a fourth cross-cutting
Context View embeds the UML StateMachines corresponding to the FOCEMs. A
FOCEM can be associated with any UML modeling element from the Service, Com-
ponent, and Deployment Views, whose attributes are part of the context sensed by the
MeH application.

The Context View for MeH includes the FOCEMs shown in Figure 4 and it com-
bines with the other views as follows:

Multidimensional Context Modeling Applied to Non-Functional Analysis of Software 25

– A FOCEM is assigned to the Doctor actor (in the SV) to model the doctor mobility
across different physical places.

– Two FOCEMs are assigned to the Battery and CPU nodes (in the DV) to model
the evolution of charge-discharge cycles and execution modes, respectively.

The envisaged UML views require several profiles, namely:

– The UML Standard Profile, which specifies a set of predefined standard stereo-
types to identify executable artifacts (Executable) as manifestation of their logical
counterpart in the software architecture (manifest relationship from components)
deployed on execution hosts. These stereotypes are applied to diagrams in Fig-
ures 11 and 13 [43].

– The Mobility Profile introduced in [24] and adopted to model logical and physical
mobility and allocation of architectural elements of mobile systems. We adopt it
to detail the physical mobility of doctors and their PDAs in Figure 13.

– The MARTE (Modeling and Analysis of Real Time and Embedded systems) and
its extension DAM (Dependability Analysis Model). In particular, MARTE [42]
enables UML to support specification and analysis of non-functional properties
(NFPs) in terms of performance attributes. Later on, the DAM [10] profile ac-
complished the same tasks for dependability attributes (including reliability). In-
deed, DAM, being a MARTE specialization, can be used together with MARTE
in UML models to jointly annotate performance and reliability properties, met-
rics, and input parameters.

In the following four subsections, the four views of the MeH system are separately
described through a set of UML diagrams5.

5.1.1 MeH Service View

The MeH application provides the RPD service to doctors for assisting their patients:
a doctor equipped with a PDA is able, through a distributed MeH service, to retrieve
mixed media information on patients, such as text with or without different kinds of
images that refer to their personal data, their medical histories, and their diseases.

The RPD service is shown as a use case in Figure 10 where the Doctor and Pa-
tient have, respectively, an active and a passive role. The RPD service is invoked by
doctors and it always includes the retrieval of textual information about the patients
via interaction with a database. Moreover, depending on the current context, the same
RPD service may be extended by an additional interaction with an image server that
further detail patients’ reports with images.

5.1.2 MeH Component View

The CD in Figure 11 shows the software architecture of the MeH application in terms
of its component types (i.e., Client, AppServer, Database, and ImageServer), their

5 Here the UML diagrams have been suitably tailored to preserve their readability. However, they have
been conceived to be machine readable by means of model transformations to fully support a model-
driven approach. The complete UML model can be downloaded at https://code.google.com/a/
eclipselabs.org/p/context-manager/.

https://code.google.com/a/eclipselabs.org/p/context-manager/
https://code.google.com/a/eclipselabs.org/p/context-manager/

26 Luca Berardinelli et al.

Fig. 10 The MeH Use Case Diagram.

connectors modeled as properly wired required/provided interfaces, and their exe-
cutable artifacts. If not explicitly modeled, we assume a default multiplicity value
of 1 for all software resource types6.

MagicDraw, 1-1 C:\Users\Luca\Desktop\SVN\UNIVAQ\Papers\2017\SOSYM_2017\modelli2\artefacts\

«DaComponent»

AppServer

{failure = "(occurrenceRate = 2 fail/yr)"}

Database
«DaComponent»

{failure = "(occurrenceRate = 2 fail/yr)"}

«DaComponent»

Client

{failure = "(occurrenceRate = 50 fail/yr)"}

ImageServer
«DaComponent»

{failure = "(occurrenceRate = 50 fail/yr)"}

RequestPatientData

GetDiseaseImages

GetMedicalHistory

GetXRayImages

ImageServer.exe
«Executable»

GetPatientData

«Executable»
AppServer.exe

Database.exe
«Executable»

«Executable»
Client.exe

Login
Interaction

«manifest»

«manifest»

«manifest»

«manifest»

Fig. 11 The MeH software architecture.

The view is completed by the specification of service behaviors. Figure 12 shows
a Sequence Diagram associated with the RPD. When the doctor, once logged in, in-
vokes the RPD service, the application server is in charge of retrieving data from
a local database and, if needed, from an image server for patients’ disease-related
images (e.g., X-ray images). Finally, the result is displayed on the client. We envis-
age two alternative behaviors for RPD: (i) a Standard Behavior allows the retrieval
of both text and images, and is represented by the whole Sequence Diagram of Fig-
ure 12; (ii) a Resource Constrained Behavior excludes the download of images, and
is represented by the Sequence Diagram of Figure 12 without any interaction with
ImageServer.

6 We discuss the effect of multiplicities on non-functional analysis at the end of Section 5.1.5.

Multidimensional Context Modeling Applied to Non-Functional Analysis of Software 27

MagicDraw, 1-1 C:\Users\Luca\Desktop\SVN\UNIVAQ\Papers\2014\2014.Context.versioned\source\m

dbs : Database imgs : ImageServerJohn : Doctor as : AppServerc : Client

[PDA::Battery::Manager.state == "High Power"
OR PDA::Battery::Manager.state == "Under Charge"]

opt

[PDA::Battery::Manager.state == "High Power"
OR PDA::Battery::Manager.state == "Under Charge"]

opt

OK4:

PATIENT DATA6:

DISEASE DATA12:

MEDICAL HISTORY8:

XRAY IMAGES10:

DISEASE IMAGES14:

RequestPatientData()1:

loginInteraction()3:
«PaStep»

getPatientData()5:
«PaStep»

getMedicalHistory()7:
«PaStep»

getDiseaseData()11:
«PaStep»

MULTIMEDIA DATA15:

getXRayImages()9:

«PaStep»

{extOpCount = "5", "256", "640",
extOpDemand = "Instr", "Msg", "DbAx"}

getDiseaseImages()13:

«PaStep»

MULTIMEDIA DATA16:

GetPatientData()2:

«PaStep»

Fig. 12 The RPD Sequence Diagram.

5.1.3 MeH Deployment View

Figures 13 and 14 show the MeH hardware platforms at two different levels of detail.

Figure 13, which is inspired by the modeling solution introduced in [24], shows
the overall system architecture that can be logically partitioned in two levels:

28 Luca Berardinelli et al.

– The Hosts Level comprises the execution environments (GaExecHost) where the
executable artifacts of the software components shown in Figure 11 are deployed
(e.g., Client.exe in PDA) and the communication happens (GaCommHost).

– The Physical Locations Level includes the places in which the execution and
communication resources at the Hosts Level may reside while the MeH system
is executing. The AllowedNodeLocation stereotype identifies the possible places
where an execution host can physically reside. According to the locations and
mobility of doctors (see the FOCEM in Figure 4a), this level includes four places
for the PDA (i.e., Home, Surgery, Patient’s Home, Open Air). For non-mobile
execution hosts (i.e., AppServer Host, Database Host, ImageServer Host), we set
a unique location (i.e., Server Room).

Places can provide different types of network connections that are modeled as
typed ports on them: a 3G WAN is available in the Open Air, and wired LAN (e.g.,
802.11g) is available both at doctor’s Home and at the Surgery.

By reusing the nesting capability of UML Node (i.e., the base metaclass of the
Place stereotype), we can also model (i) the containment relationships among places
and (ii) the sharing of certain resources. For example, the 3G network, which is avail-
able in the Open Air, is also available at doctor’s and patient’s homes as well as at the
surgery. In contrast, LANs are only accessible at doctors’ home (@Home) and at the
surgery (@Surgery). In the same manner, executables located in the server room can
access a LAN (@ServerSide).

MagicDraw, 1-1 C:\Users\Luca\Desktop\SVN\UNIVAQ\Papers\2017\SOSYM_2017\modelli2\artefacts\

Open Air
«Place»

«Place»

Patient's Home
«Place»

Surgery

«hw Media»
802.11g : LAN@Surgery

Home
«Place»

«hw Media»
802.11g : LAN@Home

«hw Media»
3G : WAN

Server Room
«Place»

«hw Media»
802.11g : LAN@ServerSide

Client.exe

PDA
«GaExecHost»

Communication
 Network

«GaCommHost»

ImageServer.exe

«GaExecHost»
ImageServerHost

AppServer.exe

«GaExecHost»
AppHost

Database.exe

«GaExecHost»
DbHost

HOSTS
LEVEL

PHYSICAL
LOCATIONS
LEVEL

«CurrentNodeLocation»«CurrentNodeLocation»

«CurrentNodeLocation»
«CurrentNodeLocation» «CurrentNodeLocation»

«CurrentNodeLocation»
«CurrentNodeLocation»

Fig. 13 The MeH Dynamic Deployment Diagram.

The inner hardware resources (CPU, Battery, Display, WiFi Card, 3G Card) of the
PDA and the networks to which the PDA and the other execution hosts can connect
(LAN@Home, LAN@Surgery, LAN@ServerSide, WAN) are shown in Figure 14.
For sake of readability, we omit to draw the inner details of AppServer Host, Database
Host, and ImageServer Host nodes. However, similar to the PDA, all the execution

Multidimensional Context Modeling Applied to Non-Functional Analysis of Software 29

nodes include (at least) processing, storage, and communication resources that are
exploited by the software executables deployed on them7.

MagicDraw, 1-1 C:\Users\Luca\Desktop\SVN\UNIVAQ\Papers\2017\SOSYM_2017\modelli2\artefacts\

PDA
«GaExecHost»

{connectedTo = LAN@Home, LAN@Surgery,
resMult = 1}

WiFi Card

3G Card
{connectedTo = WAN,
resMult = 1}

Display
{resMult = 1}

Disk
{resMult = 1,
schedPolicy = FIFO}

CPU
{resMult = 1,
schedPolicy = FIFO}

Battery
{capacity = "$capacity",
resMult = 1}

«GaCommHost»

Communication Network

LAN@ServerSide
{bandwith = "$lan_server_bandwidth",
resMult = 1,
schedPolicy = FIFO}

WAN
{bandwith = "$wan_bandwidth",
resMult = 1,
schedPolicy = FIFO}

LAN@Home
{bandwith = "$lan_home_bandwidth",
resMult = 1,
schedPolicy = FIFO}

LAN@Surgery
{bandwith = "$lan_surgery_bandwidth",
resMult = 1,
schedPolicy = FIFO}

«GaExecHost»

DbHostImageServerHost
«GaExecHost»

AppHost
«GaExecHost»

Fig. 14 The hardware platform specification of the doctor’s PDA.

5.1.4 MeH Context View

The UML model described so far is agnostic of the context evolution. A Context View
has to be defined for context evolution modeling, hence the notation-independent
modeling approach described in Section 3 is here realized in UML. In Figure 4, we
have shown the FOCEMs for three different CAs: physical location of doctors, charge
level of the PDA battery, and execution modes of the PDA CPU.

Through UML mechanisms, we associate each FOCEM with a UML element. In
our case, the FOCEM in Figure 4a is associated with the Doctor UML actor, whereas
the ones in Figures 4b and 4c with the Battery and CPU UML Deployment Nodes,
respectively.

In addition to the UML StateMachines representing the FOCEMs, Context View
also includes the modeling of the context-aware behaviors of the provided services.

Figure 15 shows an Interaction Overview Diagram for the RPD Service. A deci-
sion node precedes two boxes that refer to the Standard and Resource Constrained
alternative behaviors for RPD. Alternative behaviors are chosen according to a con-
text condition. The latter may be expressed as a first-order logic proposition whose
variables refer to the states of the FOCEMs.

For RPD, only the Resource Constrained behavior (i.e., the one excluding the
download of images) is available when the Battery reaches a Low Power state, in all
other cases the Standard Behavior runs. Given the HOCEM in Figure 5, this means

7 Note that the specification of these inner details makes hardware nodes as elements that can be saved
in UML model libraries, so that they can be reused in other contexts or for other applications.

30 Luca Berardinelli et al.

that RPD is available in any context state, but with reduced capabilities in the states
in the LP set.

[PDA::Battery::BatteryCharge_FOCEM.state == “High Power”
OR PDA::Battery::BatteryCharge_FOCEM.state == “Under Charge”] [PDA::Battery::BatteryCharge_FOCEM.state == “Low Power”]

Fig. 15 Two different behavioral specifications for the RPD service.

It is worth noting that both the service behavioral specification (depicted on the
SD in Figure 12) and context behavioral alternatives (depicted on IOD in Figure 15)
are modeled via UML Interactions. It is up to the modeler to provide a coherent
combined view. In this example, the same SD of Figure 12 is referred to by both
InteractionUses (i.e., the ref boxes) of the IOD in Figure 15 and the same context
conditions activate both alternative flows on IOD and opt fragments on the linked
SD.

5.1.5 Adding Non-Functional Annotations

Concerning the MARTE and DAM annotations, some model elements require the
following additional information to derive the analysis models used in the approaches
illustrated in Section 5.2. In particular:

– The failure rate of each software component (DAM DaComponent, failure at-
tribute) shown in Figure 11 for the ImageServer component. This parameter is
used to calculate the reliability of the whole MeH system.

– The resource demand vectors [45] for the messages exchanged among software
components. A resource demand vector annotates the amounts of high-level or
logical resources required to complete each execution step8. In particular:

– Instr represents the number of high-level instructions to be executed from a
CPU.

– DbAx represents the number of mass memory blocks to be accessed on a disk.
– Msg represents the number of bytes to be exchanged through a communica-

tion network.
Figure 12 shows a modeling solution through the MARTE profile. A getXRay-
Images() call message is annotated with the PaStep stereotype demanding for a
certain amount (extOpCount attribute) of logical resource types (extOpDemand
attribute) for its execution.

– The detailed characteristics of low-level or concrete hardware resource types for
client and server hosts as well as communication networks. For this purpose,

8 We assume that the resource units are implicitly released at the end of each step.

Multidimensional Context Modeling Applied to Non-Functional Analysis of Software 31

different detailed hardware resource configurations can be modeled via MARTE
stereotypes (HwEndPoint, HwI/O, HwMedia, HwMemory, HwPowerSupply, and
HwProcessor in Figure 14) and variables ($-prefixed strings added as stereotype
properties’ values)9. In particular, MARTE variables can act as placeholders for
different input parameters like service times for CPU ($cpu pda instr service time),
access times for disks ($disk pda access time), and bandwidths for communi-
cation networks (e.g., $lan surgery bandwidth). These parameters can be ob-
tained from the clock speed, access time to memory units10, and bandwidth, re-
spectively. The properties of the hardware resources, the corresponding MARTE
variables, and the actual values of all these resources are listed in Table 5.

Table 5 Detailed characteristics of the processing, storage, and communication resources for MeH.

Execution Host Attribute (MARTE variable) Value Unit
CPU 1 GHz $cpu_pda_instr_service_time 1.00E-09 sec
CPU 0,67 $cpu_pda_instr_service_time 1.49E-09 sec
SSD 0.1 ms $disk_pda_access_time 1.00E-04 sec
CPU 3 GHz $cpu_appserver_instr_service_time 3.33E-10 sec
Disk 9 ms $disk_appserver_access_time 9.00E-03 sec
CPU 3 GHz $cpu_database_instr_service_time 3.33E-10 sec
Disk 9 ms $disk_database_access_time 9.00E-03 sec
CPU 3 GHz $cpu_image_server_instr_service_time 3.33E-10 sec
Disk 9 ms $cpu_image_server_access_time 9.00E-03 sec

WAN $wan_bandwidth 4.27E+01 MB/sec
LAN@Home $lan_home_bandwidth 8.00E-01 MB/sec
LAN@Surgery $lan_surgery_bandwidith 8.00E-01 MB/sec
LAN@Server $lan_server_bandwidth 1.56E-03 MB/secDSL 10 Gbps

Hw Resource

PDA

AppServer Host

Database Host

ImageServer Host

WAN
DSL 20 Mbps
DSL 20 Mbps

It is worth noting that we assume as undefined the multiplicity value for all soft-
ware and hardware resource types (i.e., the maximum number of instances of the
resource considered as available [42]11), if not otherwise modeled for non-functional
analyses. For sake of illustration, we have assumed single multiplicity of compo-
nents over all the case study considered in this paper. The introduction of multi-
ple instances, however, does not affect the context modeling, whereas it may affect
the complexity of the non-functional analysis, depending on the analysis approach
adopted. In particular: (i) the reliability analysis adopted here would not be affected,
because the model can deal with multiple instances, whereas (ii) the performance
analysis adopted here, as mentioned later, is not adequate for multiple instance mod-
els, because it does not consider resource contention. In order to address contention,
more complex performance models, such as queueing networks, should be adopted.

9 The annotations for hardware resource configurations must be compliant with the Hardware Resource
Modeling (HRM) subprofile and the Value Specification Language (VSL) included in [42].

10 We consider memory units of 4 KB. For the solid state drive (SSD) the data access is set to 0.1 ms,
while the hard disk drive (HDD) access time estimation derives from different parameters like average
seek time, disk spins, transfer rate, controller overhead, and average rotational delay.

11 In MARTE [42], the default value for resMult is 1. For simplicity, we do not introduce additional
MARTE variables for software and hardware resource multiplicities to represent undefined values.

32 Luca Berardinelli et al.

5.2 Context-Aware Non-Functional Analysis

In this section, we build up non-functional analysis on our context modeling ap-
proach. In particular, we tailor two approaches to reliability and performance analysis
to work on models of context-aware applications built with our approach. This aims
to show that not only does our modeling approach allow introducing all information
necessary to perform non-functional analysis, but also it enables multiple types of
analysis whose results are critical to support decisions in a context-aware domain.

We have adapted two existing approaches for reliability and performance analysis
to the case of context-aware systems, as it will be detailed in the following. However,
other state-based non-functional analyses can be adapted to our context approach,
given that they require the same modeling information. Thereafter, we have used the
reliability approach for a transient-state analysis, whereas the performance approach
for a steady-state analysis. This choice (i.e., transient vs. steady state) has not been
driven by the intrinsic characteristics of the approaches, as they can be easily applied
to the other case, but by the intent of illustrating that both situations can be tackled
with our context approach.

In general, the selection of a non-functional analysis approach depends on the
non-functional system requirements. For example, the reliability approach that we
use here does not consider error propagation (i.e., it assumes only single points of
failures), whereas in a different type of system, such as one that adopts fault tol-
erant mechanisms because it faces more stringent reliability requirements, the error
propagation plays a crucial role, so a different reliability modeling approach has to
be adopted. Similarly, the decision whether transient-state or steady-state analysis
is more appropriate depends on the system scenarios of interest, namely whether a
specific interval of time or the long-term average behavior is of critical interest, re-
spectively.

The analysis that we present here is not aimed, however, at being adopted at run-
time, where real-time requirements claim for lightweight approaches that can return
quick results useful for online decisions. As we have mentioned before, this paper
target is the system design phase, when multiple alternatives have to be considered
and compared to each other in order to support design decisions.

5.2.1 Context-Aware Transient-State Reliability Analysis

Here we consider the reliability analysis approach introduced in [18] to study the
reliability of a software architecture as a function of the reliability of its software
components.

The failure probability FP of a system Sys at time T < t can be expressed as:

FPSys(T < t) = 1−
∏

i∈CSys

FPi(T > t) (1)

where the probability that Sys fails before time t is expressed as the complement of
the probability that all software components (composing set CSys) do not fail before
t. If the component failures are exponentially distributed, then equation (1) becomes:

Multidimensional Context Modeling Applied to Non-Functional Analysis of Software 33

Table 6 Reliability model parameters.

Components Client App Server Database System Image Server
Failure Rate (by year) 50 2 2 50

FPSys(T < t) = 1−
∏

i∈CSys

e−λit (2)

where λi represents the failure rate of component i. We define the system failure
probability in a specific context state sj through equation (2) applied to the set Csj
of components providing services in context state sj , namely:

FPsj (t) = 1−
∏
i∈Csj

e−λit (3)

where we have simplified the notation by omitting T .
In Table 6, we associate failure rates λi with the four MeH software components,

as they appear in the Component Diagram of Figure 11. Failure rates in Table 6 hold
for both ScA and ScB. It is worth noting that the failure rates are invariant with respect
to context states, while the number of software components in Csj that are involved
in the provision of RPD service varies with context states.

We assume that the Standard Behavior is chosen in context states where the bat-
tery is in high power (HP) or under charge (UC) states, and the Resource Constrained
Behavior is adopted in all other states. Such a contextual condition is annotated on
the decision point of the UML Interaction Overview Diagram in Figure 15. Conse-
quently, the Image Server component is not involved in those context states where
the Resource Constrained Behavior is chosen, that is, when the Battery is in the low
power (LP) state. As reported in Table 6, the Image Server component is the most
unreliable one among the servers.

Starting from equation (3), the transient-phase failure probability of a context-
aware software system, given a set S of possible context states (sj ∈ S), can be
obtained by summing the system failure probability in each context state sj weighted
by the corresponding sojourn probability psj (t) at time t, namely:

FPSys(t, S) =
∑
sj∈S

psj (t) · FPsj (t) (4)

where the values of psj (t) have been shown in Figures 6 and 7 for the HOCEMs of
both ScA and ScB.

Equation (4) has been calculated for the MeH system and the results are shown in
Figure 16. Four distinct curves illustrate the variation of the MeH failure probability
at different instants t during the transient phase.

34 Luca Berardinelli et al.

1 2 3 4
Standard Behavior only 0.012 0.069 0.133 0.248
Resource Constrained Behavior only 0.006 0.036 0.071 0.138
Context-Aware Behavior (ScA) 0.011 0.060 0.114 0.213
Context-Aware Behavior (ScB) 0.011 0.058 0.108 0.203

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

0.28

M
eH

 F
ai

lu
re

 P
ro

ba
bi

lit
y

(F
P)

t1 = 1h t2 = 6h t3 = 12h t4 = 24h

Fig. 16 Transient-state reliability analysis for MeH.

Standard Behavior only and Resource Constrained Behavior only curves corre-
spond to context-unaware cases, where the same specific behavior for the RPD ser-
vice is provided in each context state. It is worth noting that such curves also represent
the upper and lower bounds of the failure probability for MeH, respectively. Indeed,
the Resource Constrained Behavior is composed by a strict subset of the interactions
required by the Standard Behavior (i.e., the former excludes any interaction with the
unreliable Image Server). And since the failure probability of an inactive software
component is ignored in equation (3), bounds are obvious.

The other two curves labeled as Context-Aware Behavior illustrate the reliability
of the MeH system in the two context scenarios ScA and ScB. In such cases, the
proper alternative behavior for the RPD service is chosen according to the context
state with a certain probability at a given instant during the transient phase.

These curves appear in the figure very close, but this is due to the need for repre-
senting in the same figure also the bounding curves. In order to appreciate the actual

Multidimensional Context Modeling Applied to Non-Functional Analysis of Software 35

differences of reliability between ScA and ScB, we have reported their numerical
values along time on the bottom of Figure 16.

As expected, the failure probability in ScB is lower than in ScA along the whole
timeline. Indeed, the latter scenario assumes a lower mobility of the RPD users, thus
resulting in a generalized lower probability to sojourn in the LP Set with respect to
ScB (−0.0879, see Table 3) and then to a lower probability to invoke the Standard
Behavior of the RPD service that has a higher probability to fail due to the interaction
with the Image Server component.

An interesting aspect of Figure 16 is that the gap between the reliabilities of
the mobility scenarios sensibly grows with time, because it depends on the different
trends of transient-state probabilities in ScA and ScB, as illustrated in Figures 6 and 7,
respectively. In particular, if we focus on Figure 7, we observe that in the second part
of the day the high mobility of RPD users brings them to locations, like Open Air
ones, where their devices cannot be easily recharged, and thus the Standard Behav-
ior cannot be conveniently invoked. Hence, with time passing, ScB gains reliability
with respect to ScA (of course, at the expense of missing patient analyses images, as
outlined in other occasions before).

Several considerations can be inferred from these results. A first (simple) one is
that the failures of the Image Server heavily affect the system reliability, and this is
particularly evident across different mobility scenarios. Software designers are ad-
vised to spend more time on testing this server, by possibly analyzing also the influ-
ence of remote connection failures on its reliability.

A finer observation concerns the tradeoff between the need of RPD by doctors to
get patient’s images and their tolerance to system failures. To investigate this aspect,
designers can collect users’ feedback about their perceived quality of service, in order
to understand whether the Standard Behavior is appreciated at any time of the day
from the users despite failures. If it is not, then the adaption strategy can be modified
by providing, for example, in the hands of users the possibility to activate/deactivate
the interactions with the Image Server, even when they are in contexts where their
devices can be easily recharged. The study of alternatives like this one only implies, in
our framework, to modify the context modeling and re-execute the reliability analysis.

Finally, we remark that, for sake of illustration, we have here considered a simple
reliability model. Equation (1) assumes: (i) failure independence among components
and (ii) that a component failure corresponds to a system-level one (i.e., fail-and-stop
mechanism). This equation can be easily solved with a basic worksheet, as it does
not require complex solver tools. However, more complex reliability models are still
compatible with our approach because the model complexity does not impact on the
context modeling, whereas it obviously affects: the number of UML annotations, the
complexity of the reliability model extraction from the UML model, and the reliabil-
ity model solution. In such cases, more complex tools, such as SHARPE [48], can be
adopted for reliability analysis.

5.2.2 Context-Aware Steady-State Performance Analysis

Here we consider the performance analysis approach introduced in [17]. In order to
apply this approach, we have transformed the annotated MeH UML model described

36 Luca Berardinelli et al.

in Section 5.1 into an execution graph (EG) [45]. This is a platform-independent
model that represents the software dynamics along with its requests of resources
called resource demand vectors. The latter may be expressed, for example, in terms
of processing, storage, and communication resource units (like virtual machine in-
structions, number of accesses to databases, and number of sent/received messages).
Resource demand vectors are mapped to (more or less powerful) devices that provide
hardware counterparts of such logical resources (e.g., CPU speed, disk access rate,
network bandwidth).

In Figure 17, the EG of the RPD service is shown. It is obtained by combining
the RPD sequence diagram in Figure 12 and the RPD interaction overview diagram in
Figure 1512. The EG is partitioned in vertical swim-lanes, one for each lifeline in Fig-
ure 12, that cut blocks into subsets. The topmost labels indicate the name of the soft-
ware component executing each subset and the execution host on which such software
component is deployed. EG blocks represent UML Call Messages, whereas context-
based behavioral variations of Figure 15 are represented by decision nodes that, in
practice, avoid calls to ImageServer as prescribed for the Resource Constrained RPD
service variant, executed when the Battery is in the low power (LP) or under charge
(UC) states.

A demand vector is associated with each EG block in light gray, and it is labeled
as platform independent (PI). They are obtained from GaAcqStep stereotypes and
properties as described in [17]. In particular, they report the amounts of resUnits
and acqRes properties of GaAcqStep stereotype applied messages in Figure 12. Note
that each block included in both alternative RPD behaviors has two demand vectors
associated, each reporting the amount of resources required in a specific behavior. In
particular, two alternative demand vectors have to be assigned to Multimedia Data
Upload and Multimedia Data Download blocks, representing the return of patient
data sent from the server to the doctor’s PDA, since their demands cannot be uniquely
identified and depend on RPD behavior alternatives for the following reasons:

– The amount of bytes exchanged between AppServer and Client components de-
pends on the presence and dimension of the downloaded images.

– The CPU instructions and the number of accesses to the Disk on the PDA increase
with the need to process the (possibly) downloaded images.

The characteristics of platform resources of execution hosts are taken from the
Deployment Diagram in Figure 14, as listed in Table 5, and they are reported in
Figure 17 as dark gray vectors beside each EG block labeled as Platform.

The deployment of software components onto execution hosts drives the conver-
sion of PI resource demands to platform-specific (PS) ones, and the conversion de-
pends on the hardware resources equipping the target hosts. The same EG block can
be executed on different platform configurations with different CPU clock frequen-
cies (e.g., CPU with highest frequency set to 1 GHz in normal mode or to 667 MHz in
power save mode) and different communication networks (DSL LAN at 20 Mbps at
home or UMTS WAN at 384 Kbps in open air), depending on the particular context

12 Note that the RPD interaction overview diagram considered for performance analysis is slightly dif-
ferent from the original one in Figure 15 because the Resource Constrained Behavior for the RPD service
is here executed also when the battery is UC.

Multidimensional Context Modeling Applied to Non-Functional Analysis of Software 37

Fig. 17 EG of the RPD service

38 Luca Berardinelli et al.

(see Figure 5). Therefore, in Figure 17 two platform configurations are associated
with the RPD block. As a consequence, different PS demand vectors can be obtained
from the same PI demand vector, as shown in Figure 18 for the RPD invocation on
PDA.

1000 instr
1 disk access
0 Msg

CPU 1 GHz
SSD 0.1 ms

DSL 20 Mbps

PI

Platform’

=
CPU 1 GHz
SSD 0.1 ms

DSL 20 Mbps

1,00E-03 CPU
8,00E-04 DB
0,00E+00 NET

demands in time (ms)

Platform Specific (PS’)
for Standard Behavior

resource units

CPU 1 GHz
SSD 0.1 ms

DSL 20 Mbps

Platform’’

demands in time (ms)

Platform Specific (PS’’)
for Resource Constrained Behavior

1,24E-03 CPU CPU 667 MHz
8,00E-04 DB SSD 0.1 ms
0,00E+00 NET UMTS 384 Kbps

Request
Patient Data

EG Block

=

⊗

⊗

alternative
hardware

configurations

Fig. 18 Conversion from PI to PS demand vector

In PS vectors, resource demands are all expressed as service times13. We here
assume that:

– For the Standard Behavior, the Client downloads 5 MBs of textual data and
100 MB of images.

– When downloaded, the images are displayed and further elaborated on the Client
resulting in a processing overhead on the client CPU.

– When downloaded, all images are saved on the local Disk of the PDA thereby
causing several accesses.

We then apply the EG synthesis algorithm [45] to each of the 16 contexts identi-
fied in the HOCEM of Figure 5 and sum up the service times of PS vectors to obtain
context-specific performance indices for both standard and resource constrained RPD
services by following the algorithm in Figure 19.

For sake of illustration, in the following we stepwise apply the algorithm to the
EG in Figure 17. For this goal, the rows mentioned here below refer to the algorithm
in Figure 19.

For each context state, a context-specific platform is obtained in row 3 by select-
ing the CurrentNodeLocation relationships among the allowed ones in a Deployment
Diagram (see MeH DD in Figure 13).

Resource-specific service times of PS demand vectors are then carried out in
row 7 for each EG block by multiplying the amount of each resource, as specified
in its PI demand vector, by the service time of the corresponding resource in the plat-
form listed in Table 5. The service time of each EG block is then obtained in row 8
as the sum of the resource-specific service times carried out in row 7.

13 The service time is the amount of time required by the particular resource (e.g., disk) to satisfy service
requests (e.g., store data by accessing disk sectors).

Multidimensional Context Modeling Applied to Non-Functional Analysis of Software 39

1 For each service s {
2 For each context state c in HOCEM {
3 identify the platform p adopted in context state c
4 identify the EG of the behavior b executed in context state c
5 for service s
6 For each block in this EG {
7 calculate the PS demand vector
8 calculate the service time of the block by summing
9 the PS vector entries
10 }
11 calculate the service time of behavior b by combining
12 the service times of its EG blocks
13 }
14 }

Fig. 19 Context-customized EG synthesis algorithm

For each possible execution flow on the EG, a flow service time is calculated
in row 11 by combining the service times of its blocks. In the MeH system, we have
calculated the service times of the two alternative execution flows of the RPD service,
which correspond to the Standard and Resource Constrained behaviors.

At the end of the inner loop (row 13), the service time of a service is obtained for
each context state. At the end of the outer loop (row 14), the algorithm provides the
service time of all system services in each context state, which for the MeH system
is the RPD service only.

The outputs of this algorithm on MeH are two sets of 16 context-specific ser-
vice times, one for each alternative behavior of the RPD service (i.e., Standard and
Resource Constrained). Table 7 illustrates these values14.

Table 7 Response times of the RPD service.

name Phy. Batt . CPU
s01 H HP NM Standard LAN@Home DSL 20 Mbps 184.25
s02 H LP PSM Resource Constrained LAN@Home DSL 20 Mbps 4.11 *
s03 H UC PSM Resource Constrained LAN@Home DSL 20 Mbps 4.11 *
s04a OAhs HP NM Standard WAN UMTS 4559.3 *
s04b OAsh HP NM Standard WAN UMTS 4559.3 *
s04c OAsp HP NM Standard WAN UMTS 4559.3 *
s04d OAps HP NM Standard WAN UMTS 4559.3 *
s05a OAhs LP PSM Resource Constrained WAN UMTS 192.51
s05b OAsh LP PSM Resource Constrained WAN UMTS 192.51
s05c OAsp LP PSM Resource Constrained WAN UMTS 192.51
s05d OAps LP PSM Resource Constrained WAN UMTS 192.51
s06 S HP NM Standard LAN@Surgery DSL 20 Mbps 184.25
s07 S LP PSM Resource Constrained LAN@Surgery DSL 20 Mbps 4.11 *
s08 S UC PSM Resource Constrained LAN@Surgery DSL 20 Mbps 4.11 *
s09 P HP NM Standard WAINI UMTS 4559.3 *
s10 P LP PSM Resource Constrained W,AIN UMTS 192.51

Max
Context State

RPD Behavior Deployment Platform
Client-AppServer Comm. Network

RT (sec) Min

14 Note that, since no contention of resources is considered in this performance analysis, the algorithm
for EG synthesis has been simply in-house developed.

40 Luca Berardinelli et al.

A maximum response time of 4559.32 sec is obtained when the doctor stays
outdoors (i.e., in the OpenAir Set) and at patient’s home, the battery is in high power
and, then, all the images are downloaded through the only network available, which
is a WAN cellular network (e.g., UMTS).

A minimum response time of 4.11 sec is obtained when the doctor invokes the
Resource Constrained version of the RPD service at home and at the surgery.

It is worth noting that the minimum and maximum values are invariant with re-
spect to the scenarios ScA and ScB, because the underlying hardware platform re-
mains the same.

Then, we calculate the average service time of the MeH system in a steady state
across the context states. The average service time is defined as the weighted sum of
the service times of the RPD behaviors running in each context state, and it can be
formulated as follows:

STSys =
∑
sj∈S

πsj · STsj (5)

where the weights πsj represent the steady-state probabilities calculated for each
context state in Table 2.

name Phy. Batt. CPU
s01 H HP NM Standard LAN@Home DSL 20 Mbps 116,31 0,2567 0,2334 29,86 27,15
s02 H LP PSM Resource Constrained LAN@Home DSL 20 Mbps 4,18 * 0,1162 0,1223 0,49 0,51
s03 H UC PSM Resource Constrained LAN@Home DSL 20 Mbps 4,18 * 0,1033 0,1292 0,43 0,54
s04a OAhs HP NM Standard WAN UMTS 4491,22 * 0,0118 0,0239 52,96 107,40
s04b OAsh HP NM Standard WAN UMTS 4491,22 * 0,0195 0,0319 87,50 143,19
s04c OAsp HP NM Standard WAN UMTS 4491,22 * 0,0144 0,0143 64,84 64,04
s04d OAps HP NM Standard WAN UMTS 4491,22 * 0,0134 0,0130 60,33 58,59
s05a OAhs LP PSM Resource Constrained WAN UMTS 192,58 0,0120 0,0367 2,31 7,07
s05b OAsh LP PSM Resource Constrained WAN UMTS 192,58 0,0281 0,0893 5,42 17,20
s05c OAsp LP PSM Resource Constrained WAN UMTS 192,58 0,0173 0,0261 3,33 5,04
s05d OAps LP PSM Resource Constrained WAN UMTS 192,58 0,0183 0,0274 3,53 5,27
s06 S HP NM Standard LAN@Surgery DSL 20 Mbps 116,31 0,1835 0,0918 21,34 10,68
s07 S LP PSM Resource Constrained LAN@Surgery DSL 20 Mbps 4,18 * 0,1227 0,0986 0,51 0,41
s08 S UC PSM Resource Constrained LAN@Surgery DSL 20 Mbps 4,18 * 0,0748 0,0520 0,31 0,22
s09 P HP NM Standard WAN UMTS 4491,22 * 0,0036 0,0035 15,97 15,72
s10 P LP PSM Resource Constrained WAN UMTS 192,58 0,0044 0,0066 0,84 1,27
Avg. 21,87 29,02

Standard Sum 332,80 426,76
Res.Cons. Sum 17,18 37,52

1,0000 1,0000
21,8738 29,0177

Average Respo

ScA ScB ScA ScBContext State RPD Behavior Deployment Platform
Client-AppServer Comm.Network

RT (sec) Min Max

s01 s04a s04b s04c s04d s06 s09
ScA 29,86 52,96 87,50 64,84 60,33 21,34 15,97
ScB 27,15 107,40 143,19 64,04 58,59 10,68 15,72

0

20

40

60

80

100

120

140

160

se
c

s02 s03 s05a s05b s05c s05d s07 s08 s10
ScA 0,49 0,43 2,31 5,42 3,33 3,53 0,51 0,31 0,84
ScB 0,51 0,54 7,07 17,20 5,04 5,27 0,41 0,22 1,27

0

2

4

6

8

10

12

14

16

18

20

se
c

0

20

40

60

80

100

120

140

160

s01 s04a s04b s04c s04d s06 s09

ScA

ScB

0

2

4

6

8

10

12

14

16

18

20

s02 s03 s05a s05b s05c s05d s07 s08 s10

ScA

ScB

Fig. 20 Contributions to the average response times of Standard RPD service - HP Set.

The resulting average response time is 464.28 sec in ScB and 349.98 sec in ScA.
Note that the former is quite higher than the latter mainly because in ScB the doctor
moves more often than in ScA and therefore can experience low bandwidth networks.

In Figure 20, we report the contribution to these average response times given by
each context state where the Standard Behavior runs because the battery of the doc-
tor’s PDA is in high-power mode (HP). Similarly we do in Figure 21 for the case of
Resource Constrained Behavior induced by battery in low-power mode (LP) or under
charge (UC). As the histograms show, the highest contributions to the whole average
response time across all states comes from s04a, s04b, s04c, and s04d that appear in
Figure 20, and that share the characteristic of using UMTS network connection, as
shown in Table 7. This happens for both mobility scenarios ScA and ScB. Note that

Multidimensional Context Modeling Applied to Non-Functional Analysis of Software 41

name Phy. Batt. CPU
s01 H HP NM Standard LAN@Home DSL 20 Mbps 116,31 0,2567 0,2334 29,86 27,15
s02 H LP PSM Resource Constrained LAN@Home DSL 20 Mbps 4,18 * 0,1162 0,1223 0,49 0,51
s03 H UC PSM Resource Constrained LAN@Home DSL 20 Mbps 4,18 * 0,1033 0,1292 0,43 0,54
s04a OAhs HP NM Resource Constrained WAN UMTS 192,58 0,0118 0,0239 2,27 4,60
s04b OAsh HP NM Resource Constrained WAN UMTS 192,58 0,0195 0,0319 3,75 6,14
s04c OAsp HP NM Resource Constrained WAN UMTS 192,58 0,0144 0,0143 2,78 2,75
s04d OAps HP NM Resource Constrained WAN UMTS 192,58 0,0134 0,0130 2,59 2,51
s05a OAhs LP PSM Resource Constrained WAN UMTS 192,58 0,0120 0,0367 2,31 7,07
s05b OAsh LP PSM Resource Constrained WAN UMTS 192,58 0,0281 0,0893 5,42 17,20
s05c OAsp LP PSM Resource Constrained WAN UMTS 192,58 0,0173 0,0261 3,33 5,04
s05d OAps LP PSM Resource Constrained WAN UMTS 192,58 0,0183 0,0274 3,53 5,27
s06 S HP NM Standard LAN@Surgery DSL 20 Mbps 116,31 0,1835 0,0918 21,34 10,68
s07 S LP PSM Resource Constrained LAN@Surgery DSL 20 Mbps 4,18 * 0,1227 0,0986 0,51 0,41
s08 S UC PSM Resource Constrained LAN@Surgery DSL 20 Mbps 4,18 * 0,0748 0,0520 0,31 0,22
s09 P HP NM Standard WAN UMTS 4491,22 * 0,0036 0,0035 15,97 15,72
s10 P LP PSM Resource Constrained WAN UMTS 192,58 0,0044 0,0066 0,84 1,27
Avg. 5,98 6,69

Standard Sum 78,56 69,55
Res.Cons. Sum 17,18 37,52

1,0000 1,0000
5,9836 6,6920

Average Respo

ScA ScBDeployment Platform
Client-AppServer Comm.Network

Min MaxContext State RPD Behavior RT (sec) ScA ScB

s01 s04a s04b s04c s04d s06 s09
ScA 29,86 2,27 3,75 2,78 2,59 21,34 15,97
ScB 27,15 4,60 6,14 2,75 2,51 10,68 15,72

0

5

10

15

20

25

30

35

se
c

s02 s03 s05a s05b s05c s05d s07 s08 s10
ScA 0,49 0,43 2,31 5,42 3,33 3,53 0,51 0,31 0,84
ScB 0,51 0,54 7,07 17,20 5,04 5,27 0,41 0,22 1,27

0

2

4

6

8

10

12

14

16

18

20
se

c

0

5

10

15

20

25

30

35

s01 s04a s04b s04c s04d s06 s09

se
c

Axis Title

ScA

ScB

0

2

4

6

8

10

12

14

16

18

20

s02 s03 s05a s05b s05c s05d s07 s08 s10

se
c

Axis Title

ScA

ScB

Fig. 21 Contributions to the average response times of Resource Constrained RPD service - UC and LP
Sets.

also in s09 the system runs the standard behavior in presence of UMTS network con-
nection, but, in this case, the contribution to the average response time is mitigated by
the short stay of the doctor in that state in both scenarios, as shown in Table 2. These
considerations highlight that the adaptation strategy is not fully adequate to guarantee
good performance in all context states. This is because the adaptation strategy is not
predicated on the network connection, but only on the PDA battery. However, this
aspect would not have emerged without such a joint analysis.

Hence, in order to improve the performance of the system, the adaptation strategy
should include also the condition of the network connection. To validate this result,
we have imposed that the RPD service runs the standard behavior in all contexts
where the battery is high and the network connection is not UMTS. By considering
this new context-aware adaptation, the average response time for the RPD service
decreases from 349.98 sec to 95.74 sec in ScA, and from 464.28 sec to 107.07 sec in
ScB. In Figure 22, we also report the new contributions to the average response time
of the context states s01, s04a-s04d, s06 and s09, where the gain appears even more
evident.

name Phy. Batt. CPU
s01 H HP NM Standard LAN@Home DSL 20 Mbps 116,31 0,2567 0,2334 29,86 27,15
s02 H LP PSM Resource Constrained LAN@Home DSL 20 Mbps 4,18 * 0,1162 0,1223 0,49 0,51
s03 H UC PSM Resource Constrained LAN@Home DSL 20 Mbps 4,18 * 0,1033 0,1292 0,43 0,54
s04a OAhs HP NM Resource Constrained WAN UMTS 192,58 0,0118 0,0239 2,27 4,60
s04b OAsh HP NM Resource Constrained WAN UMTS 192,58 0,0195 0,0319 3,75 6,14
s04c OAsp HP NM Resource Constrained WAN UMTS 192,58 0,0144 0,0143 2,78 2,75
s04d OAps HP NM Resource Constrained WAN UMTS 192,58 0,0134 0,0130 2,59 2,51
s05a OAhs LP PSM Resource Constrained WAN UMTS 192,58 0,0120 0,0367 2,31 7,07
s05b OAsh LP PSM Resource Constrained WAN UMTS 192,58 0,0281 0,0893 5,42 17,20
s05c OAsp LP PSM Resource Constrained WAN UMTS 192,58 0,0173 0,0261 3,33 5,04
s05d OAps LP PSM Resource Constrained WAN UMTS 192,58 0,0183 0,0274 3,53 5,27
s06 S HP NM Standard LAN@Surgery DSL 20 Mbps 116,31 0,1835 0,0918 21,34 10,68
s07 S LP PSM Resource Constrained LAN@Surgery DSL 20 Mbps 4,18 * 0,1227 0,0986 0,51 0,41
s08 S UC PSM Resource Constrained LAN@Surgery DSL 20 Mbps 4,18 * 0,0748 0,0520 0,31 0,22
s09 P HP NM Standard WAN UMTS 4491,22 * 0,0036 0,0035 15,97 15,72
s10 P LP PSM Resource Constrained WAN UMTS 192,58 0,0044 0,0066 0,84 1,27
Avg. 5,98 6,69

Standard Sum 78,56 69,55
Res.Cons. Sum 17,18 37,52

1,0000 1,0000
5,9836 6,6920

Average Respo

Context State RPD Behavior RT (sec) ScA ScB ScA ScBDeployment Platform
Client-AppServer Comm.Network

Min Max

s01 s04a s04b s04c s04d s06 s09
ScA 29,86 2,27 3,75 2,78 2,59 21,34 15,97
ScB 27,15 4,60 6,14 2,75 2,51 10,68 15,72

0

5

10

15

20

25

30

35

se
c

s02 s03 s05a s05b s05c s05d s07 s08 s10
ScA 0,49 0,43 2,31 5,42 3,33 3,53 0,51 0,31 0,84
ScB 0,51 0,54 7,07 17,20 5,04 5,27 0,41 0,22 1,27

0

2

4

6

8

10

12

14

16

18

20

se
c

0

5

10

15

20

25

30

35

s01 s04a s04b s04c s04d s06 s09

se
c

Axis Title

ScA

ScB

0

2

4

6

8

10

12

14

16

18

20

s02 s03 s05a s05b s05c s05d s07 s08 s10

se
c

Axis Title

ScA

ScB

Fig. 22 New contributions to the average response times of standard RPD service - HP Set.

42 Luca Berardinelli et al.

This analysis shows that the identification of performance degradation causes in
context-aware software systems is often not trivial, and that our approach provides an
automated instrument, in the hands of software developers, aimed at quantifying and
comparing performance indices in combination with contexts and adaptation strate-
gies.

6 Related Work

In [30], Hong et al. proposed a literature review and classification framework for
publications related to context-aware systems. They identify five layered macro ar-
eas, namely (i) Concept&Research, (ii) Network Infrastructure, (iii) Middleware,
(iv) Application, and (v) User Infrastructure. The Concept&Research area, in partic-
ular, covers categories like overview, algorithm, development guideline, framework,
context data management, evaluation, and privacy and security.

The framework that we have presented in this paper contributes to this area by
proposing a context modeling and reasoning approach based on CEMs. We then have
further combined the Concept&Research area with the one concerning model-based
non-functional analyses of software systems. In this respect, our main contribution
lies in the intersection of these two areas. Indeed, we started our research activities
with the aim of adapting existing non-functional analyses methodologies (i.e., for
performance [45] and for reliability [18]) that were adopted in previous works on
context-agnostic software systems.

The next two sections illustrate the related work concerning context modeling and
reasoning approaches (Section 6.1) and non-functional analyses applied to context-
aware software systems (Section 6.2).

6.1 Context Modeling and Reasoning

Surveys on approaches in the Concept&Research [30] are provided in [47] and [13].
In [47], the approaches with respect to the data structures used for representing

and exchanging contextual information are classified as follows:

– Key-Value Models represent the simplest data structure for context modeling.
– Markup-Scheme Models use a hierarchical data structure consisting of markup

tags with attributes and content (e.g., XML).
– Graphical Models provide diagrams where context-related information can be

shown in an ad-hoc manner and/or annotated on preexisting shapes.
– Object-Oriented Models encapsulate context in reusable objects so that the ac-

cess to context information and processing logic can be provided by well-defined
interfaces.

– Logic-Based Models have a high degree of formality and represent context in
terms of facts, expressions, and rules. A logic-based system is then used to man-
age the aforementioned terms and allows new facts to be added, updated, or re-
moved. The inference process can be used to derive new facts based on existing
rules in the systems.

Multidimensional Context Modeling Applied to Non-Functional Analysis of Software 43

– Ontology-Based Models are formal representations of knowledge as a set of con-
cepts within a domain, and the relationships between those concepts.

A newer classification of context modeling and reasoning approaches appeared
in [13], where the authors identified a set of requirements that a context modeling
approach should satisfy.

Different from [47], in [13] context models are distinguished with respect to their
level of abstraction, so that high level context model includes situational context (e.g.,
at home or at work) that are derived by reasoning about low-level context data [22].
Situations are external semantic interpretations of low-level context data that inject
meaning into the application so that possible adaptation actions, like the selection of
alternative service behaviors, are triggered only when low-level context data corre-
spond to situation changes.

Following the classification framework in [13], we have evaluated our context
modeling and reasoning approach based on CEMs. A detailed description is reported
in Appendix B. According to [13], our approach is capable of identifying contextual
situations, since it provides a means for representing and composing different types
of higher-level contexts or situations represented by state machines, as we did with
our CEMs. Other approaches support the idea of modeling physical or logical places
as states and movements as state transitions [20,25]. Our approach extends this usage
of the state machine notation to possibly any kind of context information.

A general formal framework for modeling contexts as situations using graph-
based models is presented in [22], where the context, its evolution, and relationships
with context-aware systems are modeled through situational graphs, context model,
and fibrations concepts. Our approach may be classified as a detailed and concrete
instantiation of such generic concepts, in particular:

– A context evolution model is a kind of situational graph, further enriched with
rates and probabilities on arcs for sake of context reasoning.

– A UML model represents a very detailed type of context model since, potentially,
any model element with its attributes can describe part of the context.

– The combination of UML model with CEMs’ states corresponds to fibrations,
i.e., system configurations that in the proposed MeH case study correspond to
alternative behavioral specifications available when predefined if-context-is con-
ditions are verified.

However, different from our approach, no reasoning capabilities adopting fibra-
tions models are proposed in [22].

In [1], Afanasov et al. present both a context-oriented design concept based on
state machines and a corresponding programming model, based on the nesC lan-
guage, expressly conceived for resource-constrained platforms. In particular, their
context design approach introduces two key concepts, contexts and context groups,
which can be reasonably compared to our CEMs, FOCEM and HOCEM, respectively.
Indeed, different from [1], we are not binding our approach to a specific programming
model, but we extend context design capabilities by formalizing a stochastic exten-
sion of state-based context models (FOCEM and HOCEM), and its integration with
UML models and model-based analysis methodologies [45,18].

44 Luca Berardinelli et al.

Our idea of managing all context-related aspects with state machines can be also
compared to solutions for the modeling and analysis of adaptable software systems
where the notion of context was not explicitly identified as a first-class domain con-
cept as in [28,31,42]. In [28], Uchitel et al. proposed the concept of modes to extend
the Darwin architectural description language for modeling service-oriented comput-
ing systems. Modes are also language primitives in the Architecture&Analysis De-
scription Language (AADL) [31] for modeling real-time and embedded systems. In
both cases, they can be used to model the structural evolution of a software architec-
ture at runtime. AADL, in particular, also allows the modal characterization of all its
modeling elements (e.g., system, connectors, and properties). Thus, our logical and
hardware FOCEM can be modeled as AADL component modes whereas the overall
HOCEM as system modes. In AADL, it is also possible to model the physical mobil-
ity by means of system modes. However, in this case, it cannot be associated with a
system user as we do by associating the FOCEM to UML actors. More recently, the
concept of mode has been introduced in the context of cyber-physical systems [15]
to take into account the level of uncertainty in the context change mechanism.

In this respect, we have adopted the concept of state-based notation for modes
from [28,31,42] and broadened its application to represent heterogeneous context
information. We have concretely generalized the concepts of modes by introducing
CEMs. In addition, thanks to the extensibility and widespread adoption of UML, our
approach can be (i) sized for different definitions of context and (ii) used as a gen-
eral modal-based modeling approach for context-aware software systems in multiple
domains.

In [38], the authors propose a modeling approach and a visual modeling notation
for context-aware social collaboration processes. Here, the context includes docu-
ment and people information. This work shares with ours the idea of modeling and
formalizing context through a state-machine-like notation. However, different from
our approach, [38] aims at providing a context model for a specific application do-
main (i.e., context-aware social collaboration business processes) that is merged with
the software specification in [38].

In [35], the authors describe a data collection campaign that shows how actual
values of CAs can be collected from user-centric CSs and how such data allow the
calculation of sojourn probabilities in predefined context states to be used for further
analysis steps. In this respect, our context modeling and reasoning approach may be
used to formalize such monitored data as distinct FOCEMs, and combine them in
different HOCEMs for sake of alternative and/or refined context reasoning results
(i.e., sojourn times in different FOCEMs and HOCEMs). This work shows how to
exploit context reasoning results for context-aware non-functional analyses.

6.2 On Combining Context Reasoning and Model-Based Analysis

The problem of representing and reasoning on context may be tackled in isolation, as
in the work surveyed in [47] and [13], or in combination with other issues (e.g., the
design and development of context-aware middleware) that shift the focus on other
context-related research areas [30].

Multidimensional Context Modeling Applied to Non-Functional Analysis of Software 45

In this paper, we have combined context modeling and reasoning activities with
non-functional analyses of software systems. We explicitly model and analyze con-
text through CEMs whose steady- and transient-state probability vectors have been
reused as a new additional input to existing methodologies for non-functional analy-
ses.

In this respect, a comparable framework, namely Context-aware Quality Model
Driven Architecture (CQ-MDA), was proposed in [2]. It is an extension of MDA [36]
that can be used for quality control in pervasive computing environments. Software
architecture, hardware platform, and context are explicitly defined within a modular
metamodel, ContextualArchRQMM. Two different metrics, namely Time Behavior
Metric (TBM) and Minimum architectural Adaptive Cost (MaAC), are calculated
on context-specific platform-independent models (CPIM) through simulation and as-
suming different user workloads. CQ-MDA stresses the need for separation of con-
cerns among context, software architecture, and hardware platform. This approach,
however, seems to be lacking a clear semantics for ContextualArchRQMM. There-
fore, it is unclear whether and how both context reasoning and simulation can be
directly carried out on CPIMs and the proposed quality metrics obtained. In our ap-
proach, we have chosen to reuse UML without creating any new language with the
potential benefit from the reuse and extension of UML-based approaches for the de-
sign and analysis of software systems.

To the best of our knowledge, [2] is the only one focusing only on the modeling
and reasoning on context in combination with the non-functional analysis of soft-
ware systems. Indeed, the research focus is usually shifted on software adaptation as
effect of context analysis results. The work presented by Grassi et al. in [23] is repre-
sentative of this research area. They proposed a modeling framework for QoS-aware
self-adaptive software applications that presents some similarities with our work.

The framework in [23] is based on the definition of an intermediate pivot lan-
guage, called D-KLAPER, aimed at providing instruments to transform software
models into non-functional ones and analyze QoS characteristics when changes occur
in the application and/or its execution context. This approach includes the generation
of Markov reward models to analyze non-functional properties even in non-steady
states of the system, as we have done for reliability analysis. Context evolution is then
modeled as sets of trigger events. However, no state machines are provided relating
these triggers to context state and transitions, as we have done with CEMs. Conse-
quently, no dependencies among triggering events can be modeled in D-KLAPER
while we have modeled them through remote firings among CEMs. However, the
approach in [23] presents some advantages, such as the explicit representation of
adaptation actions and the analysis of non-functional costs of such actions.

Modeling and reasoning on context tasks have been usually tackled by interna-
tional projects like [34,21].

In [34], Eliassen et al. proposed a combined resource and context model using
the OMG General Resource Model [3]. The defined model is included in the MUSIC
middleware [44] that monitors the context and the resources to catch their changes
and adapts the application to fulfill the users’ QoS requirements. The approach is
based on QoS predictors and utility functions. The adaptation is based on the con-
cept of service plan [39], which is a platform-independent specification containing

46 Luca Berardinelli et al.

information on service configurations, its dependencies on the environment, and its
QoS characteristics. The work in MUSIC is mostly aimed at providing primitives
and functions supporting self-adaptation in ubiquitous and service-oriented environ-
ments.

As in the MUSIC project, we have adopted UML profiles (MARTE [42] and
DAM [10]) to annotate parameters to be used for performance and reliability analy-
ses. Concerning the context-related attributes, they are annotated on UML structural
elements like Classes and Ports without any additional information about their evo-
lution. Differently, our state-based approach emphasizes the evolutionary nature of
context and allows a higher degree of flexibility and modularity in modeling with
respect to MUSIC. The dynamic, heterogeneous, and hierarchical nature of context
information is modeled through separated and hierarchical sets of CEMs. Our ap-
proach allows a higher degree of flexibility and modularity while designing context
(i) through the possibility of directly associating CEMs with different UML modeling
elements (i.e., Actors, Components, and Nodes) and (ii) by combining them through
remote firing dependencies, if required.

Finally, MUSIC middleware does not provide any support to model and analyze
non-functional properties of such systems before their implementation and deploy-
ment. In this respect, it would be possible, with our framework, the generation of
service plans and the provision of QoS models that work as predictors of context-
specific reliability and performance indexes.

Another interesting project is DiVA [21], which aims at providing an integrated
framework for managing dynamic variability in adaptive systems. Different from
other approaches where the dynamic adaptation is handled at code level, DiVA ex-
ploits both model-driven and aspect-oriented technologies to define an architectural
model (including base, variant, and adaptation models) at design time. The compo-
sition and validation at runtime of alternative models allow: (i) the choice of the
system configuration that best adapts to the changed execution context and (ii) the
deployment and execution of the chosen configuration supported by a reflective mid-
dleware [40]. However, this approach does not provide any support for non-functional
analysis.

7 Discussion and Conclusions

In this paper, we have introduced an approach to model multidimensional software
contexts, which can deal with any type of context that can be modeled with a set
of state machines. Being based on a clear separation of concerns between software
and context modeling, our approach is independent of the application domain. Here,
we consider the eHealth domain as a case study, but we are currently investigating
its usage in the cyber-physical production system domain15. The semantic formaliza-
tion of a context composition operator has provided a formal instrument for context-
dependent software analysis. We have shown how context-aware steady-state perfor-
mance analysis and transient-state reliability analysis can be carried out by combining

15 http://me-at-big.blogspot.co.at/2016/07/context-modeling-and-analysis-of-cyber.html

Multidimensional Context Modeling Applied to Non-Functional Analysis of Software 47

our approach with existing non-functional model generation techniques. This combi-
nation has demonstrated that our modeling approach (i) allows introducing all infor-
mation necessary to perform non-functional analysis and (ii) enables multiple types
of analysis whose results effectively support the decision process in the development
of context-aware systems.

Moreover, non-functional analysis combined with context analysis reveals critical
aspects and design errors that may not emerge without such a joint analysis, thus con-
firming that the identification of software quality degradation causes in context-aware
software systems is often not trivial. Hence, our approach provides an automated
instrument, in the hands of software developers, aimed at quantifying and compar-
ing characteristics of software systems in combination with contexts and adaptation
strategies.

The validity of our approach relies on the main assumption that context and its
evolution can be represented as a Markov chain. In particular, the Markov property
is required for reasoning on the context. Although we have uniformly applied our
approach to the modeling of physical mobility and hardware configuration awareness
(i.e., two CAs of very different nature), the Markovian property assumption turns out
to be more or less strict depending on the particular kind of awareness. For example,
the memoryless property does not perfectly match on the transition of a full battery
to an empty battery, since the longer the battery is in the high power state, the more
likely is that it moves to the low power one. The property works instead very well for
modeling the physical movements of users from one place to another, with the ex-
ception of pre-defined paths (e.g., for a traveling salesman). The extent to which the
Markov property assumption influences the accuracy of our approach in predicting
the whole context evolution should be evaluated case by case, depending on the par-
ticular type of context that best fits the software application. In any case, it is worth
reminding that suitable combinations of exponential distributions can approximate
arbitrarily well basically any distribution.

In order to show how the context analysis results may vary upon variations of
context parameters, we carried out a sensitivity analysis to discuss expected analysis
results while changing the parameterization of FOCEMs and resulting HOCEMs.

In order to reduce context modeling errors, automated procedures can be intro-
duced to synthesize FOCEMs from sensing data. Such procedures sense the context
variables of interest and, by analyzing the stored data, can produce the relative FO-
CEM. An example of such a procedure can be found in [9], where a prototype tool is
proposed to collect data from a RESTful web service with the aim of publishing and
then retrieving battery consumption data, thus very close to build a Battery Charge
FOCEM.

Since our approach does not allow CEMs to change state during the execution of a
service, but only between one invocation and another, as a short-term future direction
we intend to introduce this characteristic in our framework without any heavyweight
extension of the UML metamodel.

Besides, we intend to address more complex forms of adaptation that, for exam-
ple, completely replace the internal structure and behavior of a certain component
when needed [32].

48 Luca Berardinelli et al.

Another future direction is the application of our approach to more complex per-
formance and reliability analyses (e.g., performance under resource contention, re-
liability under error propagation) and/or to other non-functional attributes (such as
availability, security, etc.).

Finally, an interesting direction could be to evaluate the proposed approach w.r.t.
other similar approaches in terms of design guidance and quality of results.

Appendix A: Case Study Detailed Data

In Tables 8 and 9, we report the state transition matrices of the HOCEMs for ScA and
ScB.

Table 8 Transition rates of the HOCEM for ScA.

Table 9 Transition rates of the HOCEM for ScB.

Multidimensional Context Modeling Applied to Non-Functional Analysis of Software 49

Rows and columns have been partitioned to identify three subsets:

– HP Set identifies a powerful context where the RPD service is always running on
a fully charged PDA and the only CA that varies is the physical location of the
doctor equipped with the PDA.

– LP Set, similar to the HP Set, identifies a set of resource constrained contexts
where the RPD service is always running on a PDA where the charge level of
the included battery is always equal to or lower than the chosen threshold, in our
example 25%.

– UC Set includes the two context states that correspond to the invocation of the
RPD service while the battery is under charge. According to the remote firing
dependencies among the transitions of the Doctor Physical Location and the Bat-
tery Hardware Configuration FOCEM, the recharge happens only at the doctor’s
home and at the surgery. When the doctor leaves these two places to go home or
to a patient’s home, the recharge is interrupted (i.e., the PDA is unplugged from
the socket plug) and, according to the charge level of the battery, a new context
state belonging to the HP or LP Sets is reached.

In Tables 10 and 11, several transient-state probabilities vectors are shown as they
are obtained by setting different execution times t (expressed in hours) of the MeH
system.

Table 10 Transient-state probability vectors for ScA.

n° Phy Batt. CPU 1 6 12 24 Steady (infinity)
01 H HP NM 0.7636 0.3633 0.2839 0.2585 0.2567
02 H LP PSM 0.1132 0.1348 0.1205 0.1165 0.1162
03 H UC PSM 0.0287 0.1214 0.1092 0.1037 0.1033
4a OAhs HP NM 0.0341 0.0173 0.0132 0.0119 0.0118
4b OAsh HP NM 0.0016 0.0141 0.0179 0.0194 0.0195
4c OAsp HP NM 0.0021 0.0109 0.0134 0.0144 0.0144
4d OAps HP NM 0.0001 0.0099 0.0124 0.0134 0.0134
5a OAhs LP PSM 0.0065 0.0145 0.0127 0.0121 0.0120
5b OAsh LP PSM 0.0003 0.0158 0.0251 0.0279 0.0281
5c OAsp LP PSM 0.0004 0.0109 0.0158 0.0172 0.0173
5d OAps LP PSM 0.0002 0.0109 0.0165 0.0182 0.0183
06 S HP NM 0.0406 0.1413 0.1712 0.1826 0.1835
07 S LP PSM 0.0068 0.0856 0.1137 0.1221 0.1227
08 S UC PSM 0.0010 0.0437 0.0673 0.0743 0.0748
09 P HP NM 0.0005 0.0027 0.0033 0.0035 0.0036
10 P LP PSM 0.0001 0.0027 0.0040 0.0044 0.0044

1.0000 1.0000 1.0000 1.0000 1.0000Total:

Context State Transient-State Prob. Vector ScA

Appendix B: Characterization of our Approach within a Context Modeling Clas-
sification

In [13], a set of requirements that need to be taken into account when modeling
context information has been introduced, as reported in the following.

50 Luca Berardinelli et al.

Table 11 Transient-state probability vectors for ScB.

n° Phy Batt. CPU 1 6 12 24 Steady (infinity)
01 H HP NM 0.7157 0.3023 0.2402 0.2334 0.23339
02 H LP PSM 0.1265 0.1210 0.1208 0.1223 0.12231
03 H UC PSM 0.0407 0.1324 0.1269 0.1291 0.12916
4a OAhs HP NM 0.0592 0.0338 0.0250 0.0239 0.02391
4b OAsh HP NM 0.0024 0.0295 0.0327 0.0319 0.03188
4c OAsp HP NM 0.0028 0.0143 0.0146 0.0143 0.01426
4d OAps HP NM 0.0012 0.0129 0.0134 0.0131 0.01304
5a OAhs LP PSM 0.0143 0.0406 0.0365 0.0367 0.03669
5b OAsh LP PSM 0.0006 0.0510 0.0849 0.0893 0.08933
5c OAsp LP PSM 0.0007 0.0203 0.0257 0.0261 0.02615
5d OAps LP PSM 0.0003 0.0203 0.0269 0.0274 0.02736
06 S HP NM 0.0282 0.0930 0.0939 0.0919 0.09182
07 S LP PSM 0.0059 0.0813 0.0974 0.0986 0.09856
08 S UC PSM 0.0009 0.0387 0.0511 0.0520 0.05204
09 P HP NM 0.0006 0.0035 0.0036 0.0035 0.00350
10 P LP PSM 0.0001 0.0051 0.0065 0.0066 0.00660

1.0000 1.0000 1.0000 1.0000 1.0000Total:

Context State Transient-State Prob. Vector ScB

– Heterogeneity and mobility. Context information models have to deal with a
large variety of context information sources that differ in their update rate and
their semantic level. Some context information is sensed or derived from existing
context information. A context model should be able to express those different
types of context information and the context management system should provide
management of the information depending on its type. Many context-aware ap-
plications are also mobile (i.e., running on a mobile device) or depend on mobile
context information sources (e.g., mobile sensors). This adds to the problem of
heterogeneity, as the context information provisioning must be adaptable to the
changing environment. In addition, location and spatial layout of the context in-
formation play important roles due to this requirement.

– Relationships and dependencies. There exist various relationships between types
of context information that have to be captured to ensure correct behavior of the
applications. One such relationship is dependency whereby context information
entities/facts may depend on other context information entities. For example, a
change to the value of one property (e.g., network bandwidth) may affect the
values of other properties (e.g., remaining battery power).

– Timeliness. Context-aware applications may need access to past states and fu-
ture states (prognosis). Therefore, timeliness (context histories) is another feature
of context information that needs to be captured by context models and man-
aged by the context management system. The management of context histories
is difficult if the number of updates is very high. It may not be feasible to store
every value for future access, and therefore summarization techniques need to be
applied (e.g., the aggregation of position updates to a movement function using
interpolation techniques, or the use of historical synopses of data).

– Imperfection. Due to its dynamic and heterogeneous nature, context information
may be of variable quality. In fact, it may even be incorrect. Most sensors feature

Multidimensional Context Modeling Applied to Non-Functional Analysis of Software 51

an inherent inaccuracy (e.g., a few meters for GPS positions), and the sensed
values age if the physical world changes, so that this inaccuracy increases over
time. In addition, the context information may be incomplete or conflicting with
other context information. Thus, a good context modeling approach must include
modeling of context information quality to support reasoning about context.

– Reasoning. Context-aware applications use context information to evaluate whether
there is a change to the user and/or computing environment context; taking a deci-
sion whether any adaptation to that change is necessary often requires reasoning
capabilities. It is therefore important that the context modeling techniques are
able to support both consistency verification of the model and context reason-
ing techniques. The latter can be used to derive new context facts from existing
context facts and/or reason about high-level context abstractions that model real
world situations. The reasoning techniques should be computationally efficient.

– Usability of modeling formalisms. Context information models are created by
designers of context-aware applications and are also used by the context manage-
ment systems and context-aware applications to manipulate context information.
Therefore, the important features of modeling formalisms are the ease with which
designers can translate real world concepts to the modeling constructs and the
ease with which the applications can use and manipulate context information at
runtime.

– Efficient context provisioning. Efficient access to context information is needed,
which can be a difficult requirement to meet in the presence of large models and
numerous data objects. To select the relevant objects, attributes for suitable access
paths have to be represented in the context modeling. These access paths represent
dimensions along which applications often select context information, typically
supported by indexes. These dimensions are often referred to as primary context,
in contrast to secondary context, which is accessed using the primary context.
Commonly used primary CAs are the identity of context objects, location, object
type, time, or activity of user. Since the choice of primary CAs is application
dependent, given an application domain, a certain set of primary CAs is used
to build up efficient access paths (e.g., spatial indexes if location is a primary
context).

Table 12 Evaluation of the CEM modeling approach.

Requirements FOCEM Approach
Heterogeneity and mobility Fully supported

Relationships and dependencies Fully supported (remote firings)
Timeliness Potentially supported but not used

Imperfection Not supported
Reasoning Stochastic processes (Markov chains)

Usability of modeling formalism Inherited by Harel’s statecharts
Efficient context provisioning Not applicable

In Table 12, we position our approach with respect to the above requirements.

52 Luca Berardinelli et al.

– Heterogeneity and mobility. Our approach is able to express different types
of context information by separately modeling distinct FOCEMs and combining
them in HOCEMs.

– Relationships and dependencies. Our approach leaves the freedom of creating
the best combination of CAs for any application domains. Dependencies among
events triggering transitions on FOCEM can be expressed through remote fir-
ings [26]. The combination of FOCEMs into HOCEMs is independent from the
particular CAs.

– Timeliness. FOCEM and HOCEM could support the modeling of context histo-
ries through the history mechanism defined in Harel’s statecharts [26] and inher-
ited by UML StateMachines [43]. However, due to the memoryless property of
Markov chains, i.e., the formalism underlying FOCEM and HOCEM, timeliness
is not taken into account in context reasoning.

– Imperfection. Not supported. The quality of the CAs cannot be discriminated
using FOCEM and HOCEM. However, imperfections are higher for approaches
dealing with low-level context data like those monitored by sensors. It is lower
for approaches using higher-level context abstractions like situations [13] as we
do with FOCEM and HOCEM.

– Reasoning. The reasoning capability is based on Markov chains.
– Usability of modeling formalism. The usability is inherited from Harel’s state-

charts [26]. FOCEMs can be easily created by designers with a generic Markov
chain editor (e.g., JMT16 or SHARPE17) without the need of learning a new
domain-specific language.

– Efficient context provisioning. This is a context management system-specific
requirement and goes beyond the scope of our approach.

Acknowledgment

We would like to thank the reviewers for their insightful comments on the paper that
led us to improve our work.

References

1. Mikhail Afanasov, Luca Mottola, and Carlo Ghezzi. Towards Context-Oriented Self-Adaptation in
Resource-Constrained Cyberphysical Systems. In Proceedings of IEEE 38th InternationalComputer
Software and Applications Conference Workshops (COMPSACW), pages 372–377, 2014.

2. Adel Alti, Abdellah Boukerram, and Philippe Roose. Context-Aware Quality Model-Driven Ap-
proach: A New Approach for Quality Control in Pervasive Computing Environments. In Proceedings
of the 4th European Conference on Software Architecture, ECSA’10, pages 441–448, Berlin, Heidel-
berg, 2010. Springer-Verlag.

3. Sten L. Amundsen and Frank Eliassen. A Resource and Context Model for Mobile Middleware.
Personal Ubiquitous Comput., 12(2):143–153, January 2008.

4. Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. The MIT Press, 2008.

16 Java Modeling Tools, http://jmt.sourceforge.net/
17 SHARPE, http://people.ee.duke.edu/˜kst/

http://jmt.sourceforge.net/
http://people.ee.duke.edu/~kst/

Multidimensional Context Modeling Applied to Non-Functional Analysis of Software 53

5. Simonetta Balsamo, Marco Bernardo, and Marta Simeoni. Combining Stochastic Process Algebras
and Queueing Networks for Software Architecture Analysis. In Proceedings of the 3rd International
Workshop on Software and Performance, pages 190–202. ACM, 2002.

6. Simonetta Balsamo, Antinisca Di Marco, Paola Inverardi, and Marta Simeoni. Model-Based Perfor-
mance Prediction in Software Development: A Survey. IEEE Trans. Software Eng., 30(5):295–310,
2004.

7. Nelly Bencomo. Supporting the Modelling and Generation of Reflective Middleware Families and
Applications using Dynamic Variability. Phd thesis, Computing Department, Lancaster University,
2008.

8. Luca Berardinelli, Vittorio Cortellessa, and Antinisca Di Marco. Performance Modeling and Analysis
of Context-Aware Mobile Software Systems. In David S. Rosenblum and Gabriele Taentzer, editors,
Fundamental Approaches to Software Engineering: 13th International Conference, FASE 2010, Pa-
phos, Cyprus, volume LNCS 6013, pages 353–367. Springer Berlin Heidelberg, 2010.

9. Luca Berardinelli, Antinisca Di Marco, and Flavia Di Paolo. MICE: Monitoring and ModelIng the
Context Evolution. In SASO Workshops, pages 139–144. IEEE Computer Society, 2012.

10. Simona Bernardi, Josè Merseguer, and Dorina C. Petriu. A Dependability Profile within MARTE.
Software and Systems Modeling, 10(3):313–336, 2011.

11. Marco Bernardo and Mario Bravetti. Performance Measure Sensitive Congruences for Markovian
Process Algebras. Theoretical Computer Science, 290:117–160, 2003.

12. Marco Bernardo, Paolo Ciancarini, and Lorenzo Donatiello. ÆMPA: A Process Algebraic Description
Language for the Performance Analysis of Software Architectures. In Workshop on Software and
Performance, pages 1–11, 2000.

13. Claudio Bettini, Oliver Brdiczka, Karen Henricksen, Jadwiga Indulska, Daniela Nicklas, Anand Ran-
ganathan, and Daniele Riboni. A Survey of Context Modelling and Reasoning Techniques. Pervasive
and Mobile Computing, 6(2):161 – 180, 2010.

14. Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-Driven Software Engineering in Practice.
Morgan & Claypool, 2012.

15. Tomas Bures, Petr Hnetynka, Jan Kofron, Rima Al Ali, and Dominik Skoda. Statistical Approach to
Architecture Modes in Smart Cyber Physical Systems. In WICSA and COMPARCH, 2016.

16. Lawrence Chung and Julio do Prado Leite. On Non-Functional Requirements in Software Engi-
neering. In Alexander Borgida, Vinay Chaudhri, Paolo Giorgini, and Eric Yu, editors, Conceptual
Modeling: Foundations and Applications, volume 5600 of Lecture Notes in Computer Science, pages
363–379. Springer Berlin / Heidelberg, 2009.

17. Vittorio Cortellessa and Raffaela Mirandola. PRIMA-UML: A Performance Validation Incremental
Methodology on Early UML Diagrams. Sci. Comput. Program., 44(1):101–129, 2002.

18. Vittorio Cortellessa, Harshinder Singh, and Bojan Cukic. Early Reliability Assessment of UML Based
Software Models. In Workshop on Software and Performance, pages 302–309, 2002.

19. Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. John Wiley & Sons, 2012.
20. Antinisca Di Marco and Cecilia Mascolo. Performance Analysis and Prediction of Physically Mobile

Systems. In Proceedings of the 6th international workshop on Software and performance, WOSP ’07,
pages 129–132, New York, NY, USA, 2007. ACM.

21. DiVA Project. DynamIc VAriability in complex adaptive systems Research Project, 2011.
22. Simon Dobson and Juan Ye. Using Fibrations for Situation Identification. In Pervasive 2006 workshop

proceedings, pages 645–651. Springer Verlag, 2006.
23. Vincenzo Grassi, Raffaela Mirandola, and Enrico Randazzo. Model-Driven Assessment of QoS-

Aware Self-Adaptation. In Betty Cheng, Rogério de Lemos, Holger Giese, Paola Inverardi, and Jeff
Magee, editors, Software Engineering for Self-Adaptive Systems, volume 5525 of Lecture Notes in
Computer Science, pages 201–222. Springer Berlin / Heidelberg, 2009.

24. Vincenzo Grassi, Raffaela Mirandola, and Antonino Sabetta. A UML Profile to Model Mobile Sys-
tems. In Thomas Baar, Alfred Strohmeier, Ana Moreira, and Stephen J. Mellor, editors, UML 2004
The Unified Modeling Language. Modeling Languages and Applications, volume 3273 of Lecture
Notes in Computer Science, pages 128–142. Springer Berlin Heidelberg, 2004.

25. Vincenzo Grassi, Raffaela Mirandola, and Antonino Sabetta. A Model-Driven Approach to Performa-
bility Analysis of Dynamically Reconfigurable Component-Based Systems. In Proceedings of the 6th
International Workshop on Software and Performance, WOSP ’07, pages 103–114, New York, NY,
USA, 2007. ACM.

26. David Harel. Statecharts: A Visual Formalism for Complex Systems. Science of Computer Program-
ming, 8(3):231–274, 1987.

54 Luca Berardinelli et al.

27. Jane Hillston. A Compositional Approach to Performance Modelling. Cambridge University Press,
1996.

28. Dan Hirsch, Jeff Kramer, Jeff Magee, and Sebastian Uchitel. Modes for Software Architectures. In
Volker Gruhn and Flavio Oquendo, editors, Software Architecture, volume 4344 of Lecture Notes in
Computer Science, pages 113–126. Springer Berlin Heidelberg, 2006.

29. Robert Hirschfeld, Pascal Costanza, and Oscar Nierstrasz. Context-Oriented Programming. Journal
of Object Technology, 7(3):125–151, 2008.

30. Jong-Yi Hong, Eui-Ho Suh, and Sung-Jin Kim. Context-Aware Systems: A Literature Review and
Classification. Expert Syst. Appl., 36(4):8509–8522, May 2009.

31. Warrendale International Society of Automotive Engineers. SAE-AS5506: SAE Architecture Analy-
sis and Design Language AADL, 2004.

32. Paola Inverardi, Fabio Mancinelli, and Monica Nesi. A Declarative Framework for Adaptable Ap-
plications in Heterogeneous Environments. In Proceedings of the 2004 ACM Symposium on Applied
Computing, SAC ’04, pages 1177–1183, New York, NY, USA, 2004. ACM.

33. Paola Inverardi and Massimo Tivoli. The Future of Software: Adaptation and Dependability. In
Andrea De Lucia and Filomena Ferrucci, editors, Software Engineering, volume 5413 of Lecture
Notes in Computer Science, pages 1–31. Springer Berlin Heidelberg, 2009.

34. IST-MUSIC Project. Middleware Support for Self-Adaptation in Ubiquitous and Service-Oriented
Environments, 2013.

35. Niko Kiukkonen, Jan Blom, Olivier Dousse, Daniel Gatica-Perez, and Juha Laurila. Towards Rich
Mobile Phone Datasets: Lausanne Data Collection Campaign. In Proceedings of the 7th International
Conference on Pervasive Services, 2010.

36. Anneke G. Kleppe, Jos Warmer, and Wim Bast. MDA Explained: The Model Driven Architecture:
Practice and Promise. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2003.

37. Heiko Koziolek. Performance Evaluation of Component-Based Software Systems: A Survey. Perfor-
mance Evaluation, 67(8):634–658, 2010.

38. Vitaliy Liptchinsky, Roman Khazankin, Stefan Schulte, Benjamin Satzger, Hong-Linh Truong, and
Schahram Dustdar. On Modeling Context-Aware Social Collaboration Processes. Inf. Syst., 43(C):66–
82, July 2014.

39. Stern A. Lundesgaard, Ketil Lund, and Frank Eliassen. Service Plans for Context- and QoS-Aware
Dynamic Middleware. In ICDCS Workshops 2006. 26th IEEE International Conference on Dis-
tributed Computing Systems Workshops, 2006., page 70, July 2006.

40. Brice Morin, Franck Fleurey, Nelly Bencomo, Jean-Marc Jézéquel, Arnor Solberg, Vegard Delhen,
and Gordon Blair. An Aspect-Oriented and Model-Driven Approach for Managing Dynamic Vari-
ability. In MODELS’08, volume 5301 of LNCS, pages 782–796, 2008.

41. Marcel F. Neuts. Matrix-Geometric Solutions in Stochastic Models: An Algorithmic Approach.
Courier Corporation, 1981.

42. Inc Object Management Group. UML Profile for MARTE, ptc/08-06-09, 2008.
43. Inc Object Management Group. UML 2.4.1 Superstructure Specification, formal/2011-08-06, 2011.
44. Romain Rouvoy, Paolo Barone, Yun Ding, Frank Eliassen, Svein O. Hallsteinsen, Jorge Lorenzo,

Alessandro Mamelli, and Ulrich Scholz. MUSIC: Middleware Support for Self-Adaptation in Ubiq-
uitous and Service-Oriented Environments. In Software Engineering for Self-Adaptive Systems, pages
164–182, 2009.

45. Connie U. Smith and Lloyd G. Williams. Performance Solutions: A Practical Guide to Creating
Responsive, Scalable Software. Addison Wesley Longman Publishing Co., Inc., Redwood City, CA,
USA, 2002.

46. Williams J. Stewart. Introduction to the Numerical Solution of Markov Chains. Princeton University
Press, 1994.

47. Thomas Strang and Claudia Linnhoff-Popien. A Context Modeling Survey. In Workshop on Ad-
vanced Context Modelling, Reasoning, and Management, UbiComp 2004 - The Sixth International
Conference on Ubiquitous Computing, Nottingham/England, 2004.

48. Kishor S. Trivedi and Robin A. Sahner. SHARPE at the Age of Twenty Two. SIGMETRICS Perfor-
mance Evaluation Review, 36(4):52–57, 2009.

Multidimensional Context Modeling Applied to Non-Functional Analysis of Software 55

Luca Berardinelli is a Postdoctoral Re-
searcher in the Distributed Systems Group
at Technische Universität Wien (Austria).
Prior Technische Universität Wien, he has
been a Postdoctoral Researcher in the Com-
puter Science and Engineering Department
at University of L’Aquila (Italy) where he
held his Ph.D. in Computer Science in April
2011. He has been involved in several na-
tional and European research projects in
the areas of model-driven engineering, non-
functional software validation, and model-
based testing, which are his current main
research interests. He has published about

25 journal and conference articles on these topics and, currently, he is involved in
U-Test, a H2020 project.

Marco Bernardo received a Ph.D. in Com-
puter Science in 1999 from the University
of Bologna, Italy. Since 2001, he is Pro-
fessor of Computer Science at the Univer-
sity of Urbino, Italy, where he has chaired
for several years the undergraduate pro-
gramme in Applied Informatics and cur-
rently is the Rector’s Delegate for Tech-
nological Innovation. His research interests
include: semantics of concurrent program-
ming languages; process algebras, behav-
ioral equivalences, modal logics; labeled

transition systems and Petri nets; modeling and verification of concurrent and dis-
tributed systems; performance evaluation of computer systems and networks; foun-
dations of software architecture and engineering; automated support for model-based
software development. He has co-authored a book entitled ”A Process Algebraic Ap-
proach to Software Architecture Design” as well as more than twenty papers pub-
lished on international scientific journals and more than seventy papers published on
the refereed proceedings of international conferences.

56 Luca Berardinelli et al.

Vittorio Cortellessa is an Associate Pro-
fessor in the Computer Science and En-
gineering Department at University of
L’Aquila (Italy). Prior joining University of
L’Aquila, he has been Post-doc Fellow at
the European Space Agency (Roma, Italy),
Research Associate at the Computer Sci-
ence Department of University of Rome Tor
Vergata, and Research Assistant Professor
at the Lane Department of Computer Sci-
ence and Electrical Engineering of West
Virginia University (Morgantown, WV). He

has been involved in several research projects in the areas of performance and reli-
ability analysis of software/hardware systems, model-driven engineering and non-
functional software validation, which are his current main research interests. He has
served as reviewer for many journals on his research topics. He has published about
100 journal and conference articles on these topics. He is member of editorial boards
of journals, he has served and is currently serving in the program committees of con-
ferences in his research areas.

Antinisca Di Marco is Associate Profes-
sor at the University of L’Aquila where she
held her Ph.D. in Computer Science in June
2005. Since May 2014, she is a Member
of the Board of Directors for SMARTLY
s.r.l., a SPIN OFF of the University of
L’Aquila and a Member of the Executive
Board of Off Site Art, an association es-
tablished in L’Aquila that promotes culture
initiative. Previously she worked as Assis-
tant Professor at the same University and as
Research Fellow at the University College

London, UK. Her main research interests include (early) verification and validation
of QoS, performance modeling, QoS analysis of autonomic services and context-
aware mobile software systems, bio-inspired adaptation mechanisms, eHealth and
Bioinformatics. She published more than 50 journals and conference papers on such
topics. She has served as program committee member for several international con-
ferences and workshops, and as reviewer for many journals on her research topics.
She has been member and coordinator of several national and international research
projects and, currently, she is involved in the iCARE, a H2020 ERC-POC project.

	Introduction
	An Illustrative Case Study: A Mobile eHealth Application
	Context Modeling through Composable Context Evolution Models
	Reasoning on the Context
	Applying Context Modeling to Non-Functional Analysis
	Related Work
	Discussion and Conclusions

