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Abstract

Formal notations for system performance modeling need to be equipped with suit-
able notations for specifying performance measures. These companion notations
have been traditionally based on reward structures and, more recently, on temporal
logics. In this paper we propose an approach that combines logics and rewards to-
gether with a definition mechanism that allows performance measures to be specified
in a component-oriented way, thus facilitating the task for non-experts. The result-
ing Measure Specification Language (MSL) is interpreted both on action-labeled
continuous-time Markov chains and on stochastic process algebras. The latter in-
terpretation provides a compositional framework for performance-sensitive model
manipulations and emphasizes the increased expressiveness with respect to tradi-
tional reward structures for implicit-state modeling notations.

1 Introduction

The need for assessing the quantitative characteristics of a system during
the early stages of its design has fostered within the academic community
the development of formal methods integrating the traditionally addressed
functional aspects with the performance aspects. This has resulted in different
system modeling notations, with complementary strengths and weaknesses,
among which we mention stochastic process algebras (SPA: see, e.g., [20,19,11]
and the references therein) and stochastic Petri nets (SPN: see, e.g., [2] and
the references therein). Both SPAs and SPNs are equipped with precisely
defined semantics as well as analysis techniques, which – in the performance
evaluation case – require the solution of the underlying stochastic process in
the form of a continuous-time Markov chain (CTMC [28]).
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From the usability viewpoint, the modeling notations above force the system
designer to be familiar with their technicalities, some of which are not so
easy to learn. Moreover, such notations do not support a fully elucidated
component-oriented way of modeling systems, which is especially desirable
when dealing with complex systems made out of numerous interacting parts.

This usability issue has been tackled with the development of Æmilia [12,8],
an architectural description language based on EMPAgr [11] for the textual
and graphical representation of system families. Æmilia clearly separates the
specification of the system behavior from the specification of the system topol-
ogy, thus hiding many of the technicalities of the static operators of SPA. This
is achieved by dividing an Æmilia specification into two sections. In the first
section, the designer defines – through SPA equations in which only the easier
dynamic operators can occur – the behavior of the types of components that
form the system, together with their interactions with the rest of the system.
In the second section, the designer declares the instances of the previously
defined types of components that are present in the system, as well as the way
in which their interactions are attached to each other in order to make the
components communicate.

For performance evaluation purposes, the modeling notations mentioned be-
fore have been endowed with companion notations for the specification of the
performance measures of interest. According to the classifications proposed
in [27,18], we have instant-of-time measures, expressing the gain/loss received
at a particular time instant, and interval-of-time (or cumulative) measures,
expressing the overall gain/loss received over some time interval. Both kinds
of measures can refer to stationary or transient states. Most of the approaches
that have appeared in the literature for expressing various kinds of perfor-
mance measures are based on the definition of reward structures [21] for the
CTMCs underlying the system models.

In the framework of modeling notations like SPA and SPN, the idea is that the
reward structures should not be defined at the level of the CTMC states and
transitions, but at the level of the system models and then automatically inher-
ited by their underlying CTMCs. In the SPN case, the rewards can naturally be
associated with the net markings and the net transitions/activities [14,26]. In
the SPA case, the reward association is harder because the modeling notation
is action-based, hence the concept of state is implicit. In [15,16] the CTMC
states to which certain rewards have to be attached are singled out by means
of suitable modal logic formulas, whereas in [11,10] the rewards are directly
written into the actions occurring in the system specifications and are then
transferred to the CTMC states and transitions during the CTMC construc-
tion. In [29], instead, temporal reward formulas have been introduced, which
are able to express accumulated atomic rewards over sequences of CTMC
states and allow performance measures to be evaluated through techniques
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for computing long-run averages. Finally, a different, non-reward-based ap-
proach relies on the branching-time temporal logic CSL [6], which is used to
directly specify performance measures and to reduce performance evaluation
to model checking. Based on the observation that the progress of time can be
regarded as the earning of reward, a variant of CSL called CRL has been sub-
sequently proposed in [7], where rewards are assumed to be already attached
to the CTMC states.

The usability issue for the performance modeling notations obviously extends
to the companion notations for expressing performance measures. In particu-
lar, we observe that none of the proposals surveyed above allows the designer
to specify the performance measures in a component-oriented way, which once
again would be highly desirable.

From the designer viewpoint, even the use of a component-oriented modeling
notation like Æmilia may be insufficient if accompanied by an auxiliary nota-
tion in which the specification of performance measures is not easy. This was
the outcome of a usability-related experiment conducted with some gradu-
ate and undergraduate students at the University of L’Aquila. Such students,
who are familiar with software engineering concepts and methodologies, but
not with formal methods like SPA, were previously exposed to SPA together
with the reward-based companion notation proposed in [10], then they were
exposed to Æmilia together with the same companion notation. At the end
of this process, on the modeling side the students felt more confident about
the correctness of the communications they wanted to establish – thanks to
the separation of concerns between behavior specification and topology speci-
fication – and found very beneficial the higher degree of parametricity (hence
the increased potential for specification reuse). On the other hand, they still
complained about the difficulties with a notation to specify performance mea-
sures that forced them to reason in terms of states and transitions rather than
components. Most importantly, they perceived the definition of the measures
as a task for performance experts, because for them it was not trivial at all to
decide which kinds and values of rewards to use in order to derive even simple
indicators like system throughput or resource utilization.

Although the difficulty with choosing adequate values for the rewards is an
intrinsic limitation of the reward-based approach to the specification of perfor-
mance measures, in this paper we claim that a remarkable improvement of the
usability of such an approach can be obtained by combining ideas from action-
based methods and from logic-based methods in a component-oriented flavor.
More specifically, we shall propose a Measure Specification Language (MSL)
that builds on a simple first-order logic by means of which the rewards are at-
tached to the states and the transitions of the CTMCs underlying component-
oriented system models, like e.g. Æmilia specifications. Such a mixed approach
relying on both rewards and logical constructs turns out to be more expres-
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sive than classical reward-based methods when using modeling notations like
SPA in which the concept of state is implicit. Component-orientation is then
achieved in MSL by means of a mechanism to define measures that are pa-
rameterized with respect to component activities and component behaviors.
In particular, such a mechanism allows performance metrics to be defined in
a transparent way in terms of the activities that individual components or
parts of their behavior can carry out, or in terms of specific local behaviors
that describe the components of interest. Another contribution of this paper
is to provide an interpretation for the core logic of MSL based on SPA, which
allows for performance-sensitive compositional reasoning. The improved us-
ability and expressiveness of MSL is shown through a case study originally
conducted in [1] with Æmilia and action-based rewards.

The rest of the paper, which is a full and revised version of [4], is organized
as follows. In Sect. 2 we recall some background about component-oriented
system modeling, action-labeled CTMCs, and reward structures. In Sect. 3
we present MSL by defining its core logic together with its action-labeled
CTMC interpretation. In Sect. 4 we present the measure definition mechanism
associated with MSL. In Sect. 5 we provide the SPA-based interpretation for
the core logic of MSL. In Sect. 6 we reconsider a case study about the analysis
of the energy consumption for a battery-powered device employing a dynamic
power manager. Finally, in Sect. 7 we conclude by reporting comparisons with
related work and perspectives on future developments.

2 Setting the Context

The formal approach to the specification of performance measures we present
in this paper is conceived for component-oriented system models whose un-
derlying stochastic processes are action-labeled CTMCs.

2.1 Component-Oriented System Models

Following the guidelines proposed in [3], the model of a component-oriented
system should comprise at least two parts: the description of the individual
system component types and the description of the overall system topology.

The description of a system component type should be provided by specifying
at least its name, its (data-related and performance-related) parameters, its
behavior, and its interactions. The behavior should express all the alternative
sequences of activities that the component type can carry out 1 , while the

1 This general framework allows for both branching-time and linear-time models
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interactions are those activities occurring in the behavior that are used by
the component type to communicate with the rest of the system. The inter-
actions can be annotated with qualifiers expressing e.g. the direction (input
vs. output) or the form (point-to-point, broadcast, server-clients, etc.) of the
communication they can be involved in.

The description of the system topology should be provided by declaring the
instances of the component types that form the system, together with the
specification of the way in which their interactions should be attached to each
other in order to make the components communicate. If the interactions are
annotated with qualifiers, the attachments should be consistent with them.
The description of the topology should then be completed by the possible in-
dication of component interactions that act as interfaces for the overall system,
which is useful to support hierarchical modeling.

In the following we consider as an illustrative example a queueing system
M/M/2 with arrival rate λ ∈ RI >0 and service rates µ1, µ2 ∈ RI >0 [25]. This
system represents a service center with no buffer equipped with two servers
processing requests at rate µ1 and µ2, respectively. Service is provided to
an unbounded population of customers, which arrive at the service center
according to a Poisson process of rate λ. Whenever both servers are idle, an
incoming customer has the same probability to be served by the two servers.

The overall system thus comprises two component types: the arrival process
and the server. In the framework of the architectural description language
Æmilia such component types would be modeled as follows:

ARCHI_TYPE QS_M_M_2(rate lambda, rate mu1, rate mu2)

ARCHI_BEHAVIOR

ARCHI_ELEM_TYPE Arrivals_Type(rate arrival_rate)
BEHAVIOR

Arrivals(void) = <arrive, exp(arrival_rate)> . Arrivals()
INPUT INTERACTIONS void
OUTPUT INTERACTIONS OR arrive

ARCHI_ELEM_TYPE Server_Type(rate service_rate)
BEHAVIOR

Server_Idle(void) =
<arrive, _> . Server_Busy();

Server_Busy(void) =
<serve, exp(service_rate)> . Server_Idle()

INPUT INTERACTIONS UNI arrive
OUTPUT INTERACTIONS void

and includes different formalisms like process algebras and Petri nets.
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The system topology comprises one instance of Arrivals Type and two in-
stances of Server Type, suitably connected to each other as modeled below
in Æmilia:

ARCHI_TOPOLOGY
ARCHI_ELEM_INSTANCES
Arr : Arrivals_Type(lambda);
S1 : Server_Type(mu1);
S2 : Server_Type(mu2)

ARCHI_INTERACTIONS
void

ARCHI_ATTACHMENTS
FROM Arr.arrive TO S1.arrive;
FROM Arr.arrive TO S2.arrive

END

2.2 Action-labeled CTMCs and Reward Structures

For performance evaluation purposes, we assume that from the considered
component-oriented system models it is possible to extract finite-state, finitely-
branching, action-labeled CTMCs.

Definition 2.1 A finite action-labeled CTMC (ACTMC) is a quadruple

M = (S,Act , −−−→M, s0)

where S is a finite set of states, s0 ∈ S is the initial state, Act is a non-empty
set of activities, and −−−→M ⊆ S × (Act × RI >0) × S is a finite transition
relation.

Each state s of an ACTMC obtained from a component-oriented system model
is actually a global state representing a system configuration that can be
viewed as a vector of local states [z1, z2, . . . , zn], which are the current behav-
iors of the individual components. We denote by Slocal the set of local states
of M. Each transition corresponds instead either to an activity performed by
a single component in isolation, or to a set of attached interactions executed
simultaneously by several communicating components. As an example, Fig. 1
shows the ACTMC underlying the queueing system modeled with Æmilia in
Sect. 2.1.

As far as the analysis of ACTMC-based component-oriented models is con-
cerned, the typical approach to performance measure specification relying on
reward structures can be followed. This requires associating real numbers with
system behaviors and activities, which are then transferred to the proper states
(as rate rewards) and transitions (as instantaneous rewards) of the ACTMC,
respectively. A rate reward expresses the rate at which a gain (or a loss, if the
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Fig. 1. ACTMC model of the queueing system example

number is negative) is accumulated while sojourning in the related state. By
contrast, an instantaneous reward specifies the instantaneous gain (or loss)
implied by the execution of the related transition.

The instant-of-time value of a performance measure specified through a reward
structure is computed for an ACTMC M = (S,Act , −−−→M, s0) through the
following equation:

∑
s∈S

Rr(s) · π(s) +
∑

(s,a,λ,s′)∈−−−→M

Ri(s, a, λ, s′) · φ(s, a, λ, s′) (1)

where:

• Rr(s) is the rate reward associated with s.
• π(s) is the probability of being in s at the considered instant of time.
• Ri(s, a, λ, s′) is the instantaneous reward associated with the transition

(s, a, λ, s′).
• φ(s, a, λ, s′) is the frequency of the transition (s, a, λ, s′) at the considered

instant of time, which is given by π(s) · λ.

Suppose for instance that, in the queueing system example, we are interested
in computing throughput and utilization. The system throughput is defined
as the mean number of customers that are served per time unit. In order to
compute it, we should set:

Rr(s) =





µ1 if s = [Arr.Arrivals, S1.Server Busy, S2.Server Idle]

µ2 if s = [Arr.Arrivals, S1.Server Idle, S2.Server Busy]

µ1 + µ2 if s = [Arr.Arrivals, S1.Server Busy, S2.Server Busy]

0 if s = [Arr.Arrivals, S1.Server Idle, S2.Server Idle]

Equivalently, we may set Ri( , a, , ) = 1 for a ∈ {S1.serve, S2.serve} and
Ri( , a, , ) = 0 for a ∈ {arrive}. The system utilization, instead, is defined
as the percentage of time during which at least one server is busy. In order to
compute it, we should set Rr(s) = 1 if s contains as local state at least one
between S1.Server Busy and S2.Server Busy, Rr(s) = 0 otherwise.
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3 MSL: Core Logic and ACTMC Interpretation

MSL is based on a core logic for associating rewards with the ACTMCs un-
derlying component-oriented system models. The core logic is in turn based
on a set of first-order predicates, which we shall interpret on an ACTMC
M = (S,Act , −−−→M, s0). In order to achieve a satisfactory degree of expres-
siveness, at least six formula schemas have to be present in the core logic, for
the reasons that we are going to explain.

On the one hand, the designer has to be allowed to decide whether state
rewards or transition rewards are needed to define a certain performance mea-
sure. As far as state rewards are concerned, while it is straightforward to define
them for state-based modeling notations by means of rewards directly associ-
ated with the local states, in the case of an action-based modeling notation
they can only be expressed indirectly, i.e. by means of rewards associated with
the activities enabled in the states. Thus, there are three options: direct state
rewards, indirect state rewards, and transition rewards.

On the other hand, the designer has to be allowed to decide whether all the
local states in a given set Z ⊆ Slocal or all the activities in a given set A ⊆ Act
contribute to the value of a certain performance measure, or only one element
of the set does. Therefore, there are two options: universal quantification and
existential quantification. In conclusion, the combination of the two sets of
options results in six alternatives to be made available to the designer.

Definition 3.1 The core logic of MSL is a first-order logic composed of the
universal closure with respect to S of the following six formula schemas:

(i) ∀z ∈ Z(is local(z, s) ⇒ eq(lstate contrib(z, s), lstate rew(z))) ⇒
eq(state rew(s), sum lstate contrib(s, Z))

(ii) ∀a ∈ A(is trans(s, a, λ, s′)⇒eq(act contrib(s, a, λ, s′), act rew(a, λ)))⇒
eq(state rew(s), sum act contrib(s, A))

(iii) ∀a ∈ A(is trans(s, a, λ, s′) ⇒
eq(trans rew(s, a, λ, s′), act rew(a, λ)))

(iv) ∃z ∈ Z(is local(z, s)) ⇒
eq(state rew(s), choose lstate rew(s, Z, cf ))

(v) ∃a ∈ A(is trans(s, a, λ, s′)) ⇒
eq(state rew(s), choose act rew(s, A, cf ))

(vi) ∃a ∈ A(is trans(s, a, λ, s′)) ⇒
eq(trans rew(choose trans(s, A, cf )), choose trans rew(s, A, cf ))

Because of their initial quantification, we call universal the first three formula
schemas and existential the last three formula schemas. Intuitively, the first
universal formula schema establishes that every local state z ∈ Z of the cur-
rent state of M directly provides a contribution of value lstate rew(z) to the

8



rate at which the reward is gained while staying in that state. Since several
contributing local states may be part of the current state, we assume that
all their partial contributions have to be summed up (local state contribution
additivity assumption). The second universal formula schema establishes that
all the transitions labeled with an activity a ∈ A that depart from the cur-
rent state of M indirectly provide a contribution of value act rew(a, λ) to the
rate at which the reward is gained while staying in that state. Since several
contributing transitions may depart from the current state, we assume that
all their partial contributions have to be summed up (activity contribution
additivity assumption). The third universal formula schema specifies that all
the transitions labeled with an activity a ∈ A gain an instantaneous reward
of value act rew(a, λ) whenever they are executed.

In the queueing system example, the system throughput can be specified
through a formula of type (i) where:

Z = {S1.Server Busy, S2.Server Busy}
lstate rew(S1.Server Busy) = µ1, lstate rew(S2.Server Busy) = µ2

or, equivalently, through a formula of type (ii) such that:

A = {S1.serve, S2.serve}
act rew(S1.serve, ) = µ1, act rew(S2.serve, ) = µ2

or, equivalently, through a formula of type (iii) where:

A = {S1.serve, S2.serve}
act rew(S1.serve, ) = act rew(S2.serve, ) = 1

Similarly, the throughput of S1 alone can be specified through a formula of
type (i) where:

Z = {S1.Server Busy}
lstate rew(S1.Server Busy) = µ1

or through a formula of type (ii) such that:

A = {S1.serve}
act rew(S1.serve, ) = µ1

or through a formula of type (iii) where:

A = {S1.serve}
act rew(S1.serve, ) = 1

The first existential formula schema establishes that the current state of M
gains a contribution to the rate at which the reward is accumulated while stay-
ing there if at least one of its local states is in Z. The value of the contribution
will have to be selected by applying a choice function cf to the direct state
rewards lstate rew(z) associated with the local states in Z that are part of
the current state. By choice function we mean a function that simply returns
one of its arguments, like e.g. max and min. Similarly, the second existential
formula schema establishes that the current state of M gains a contribution
to the rate at which the reward is accumulated while staying there if it can
execute at least one transition labeled with an activity a ∈ A. The value of
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the contribution is determined by applying a choice function cf to the indi-
rect state rewards act rew(a, λ) associated with the transitions labeled with
an activity a ∈ A that depart from the current state. The third existential for-
mula schema specifies that only one of the transitions labeled with an activity
a ∈ A that depart from the current state of M gains an instantaneous reward
upon execution. Such a transition is selected by means of a choice function cf ,
which takes into account the transition rewards act rew(a, λ) of the activities
a ∈ A labeling the transitions that depart from the current state multiplied
by the frequencies of the transitions themselves.

In the queueing system example, the system utilization can be specified through
a formula of type (iv) where:

Z = {S1.Server Busy, S2.Server Busy}
lstate rew(S1.Server Busy) = lstate rew(S2.Server Busy) = 1

cf = min

or, equivalently, through a formula of type (v) such that:

A = {S1.serve, S2.serve}
act rew(S1.serve, ) = act rew(S2.serve, ) = 1

cf = min

Similarly, the utilization of S1 alone can be specified through a formula of
type (iv) where:

A = {S1.Server Busy}
lstate rew(S1.Server Busy) = 1

cf = min

or through a formula of type (v) such that:

A = {S1.serve}
act rew(S1.serve, ) = 1

cf = min

Finally, the actual arrival rate can be specified through a formula of type (vi)
where:

A = {arrive}
act rew(arrive, ) = 1

cf = min

In order to formalize the semantics of the core logic of MSL, we now provide
the following ACTMC-based interpretation of the syntactical predicates and
functions occurring in Def. 3.1. As a shorthand, we use the notation z ∈ s
to express that s = [z1, z2, . . . , zn] with z = zi for some 1 ≤ i ≤ n. We also
denote by CF the set of the choice functions that can occur in the existential
formula schemas:

CF = {f : 2RI → RI | f(∅) = 0 ∧ ∀n ∈ NI >0. f({x1, . . . , xn}) ∈ {x1, . . . , xn}}
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• is local : Z × S → {true, false} such that:

is local(z, s) =





true if z ∈ s

false otherwise

• is trans : S × Act × RI >0 × S → {true, false} such that:

is trans(s, a, λ, s′) =





true if (s, a, λ, s′) ∈ −−−→M

false otherwise

• eq : RI × RI → {true, false} such that:

eq(x, y) =





true if x = y

false otherwise

• lstate rew : Z → RI such that lstate rew(z) is the reward contribution given
by local state z ∈ Z.

• act rew : A× RI >0 → RI such that act rew(a, λ) is the reward contribution
given by activity a ∈ A when labeling a transition with rate λ ∈ RI >0.

• state rew : S → RI such that state rew(s) is the rate at which the reward
is gained while staying in state s.

• trans rew : −−−→M → RI such that trans rew(s, a, λ, s′) is the instanta-
neous reward that transition (s, a, λ, s′) gains whenever it is executed.

• lstate contrib : Z × S → RI such that lstate contrib(z, s) is the partial
contribution given by local state z of s to the rate at which the state reward
is gained at s.

• act contrib : −−−→M → RI such that act contrib(s, a, λ, s′) is the partial
contribution given by transition (s, a, λ, s′) to the rate at which the state
reward is gained at s.

• sum lstate contrib : S × 2Slocal → RI such that:

sum lstate contrib(s, Z) =
∑

z∈Z∧is local(z,s)
lstate contrib(z, s)

where the sum is zero whenever no local state z ∈ Z is part of s.
• sum act contrib : S × 2Act → RI such that:

sum act contrib(s, A) =
∑

a∈A

∑
(s,a,λ,s′)∈−−−→M

act contrib(s, a, λ, s′)

where the sum is zero whenever no transition labeled with a ∈ A can be
executed by s.

• choose lstate rew : S × 2Slocal × CF → RI such that:

choose lstate rew(s, Z, cf ) = cf {| lstate rew(z) | z ∈ Z ∧ is local(z, s) |}

• choose act rew : S × 2Act × CF → RI such that:

choose act rew(s, A, cf ) =

cf {| act rew(a, λ) | a ∈ A ∧ ∃s′ ∈ S. is trans(s, a, λ, s′) |}
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• choose trans : S × 2Act × CF −→o −−−→M such that:

choose trans(s, A, cf ) = (s, a, λ, s′)
iff there are transitions labeled with an action in A executable by s and:

act rew(a, λ) · φ(s, a, λ, s′) =

cf {| act rew(b, µ) · φ(s, b, µ, s′′) | b ∈ A ∧ is trans(s, b, µ, s′′) |}
• choose trans rew : S × 2Act × CF −→o RI such that:

choose trans rew(s, A, cf ) = act rew(a, λ)

iff for some s′ ∈ S:

choose trans(s, A, cf ) = (s, a, λ, s′)

In the light of the above ACTMC interpretation of the core logic of MSL, we
observe that equation (1) is reformulated as follows with respect to a local
state set Z, an activity set A, and a choice function cf :

∑
s∈S

(URls
r (s, Z) + URa

r (s, A)) · π(s) +

∑
a∈A

∑
(s,a,λ,s′)∈−−−→M

URi(s, a, λ, s′) · φ(s, a, λ, s′) +

∑
s∈S

(ERls
r (s, Z, cf ) + ERa

r (s, A, cf )) · π(s) +

∑
s∈S

ERi(s, A, cf ) · φ(s, A, cf )

(2)

Each reward element of equation (2) maps to a corresponding MSL formula
schema of Def. 3.1 as follows:

(i) URls
r (s, Z) is the universal state reward with respect to Z that is accu-

mulated while staying in s, which is given by sum lstate contrib(s, Z).
(ii) URa

r (s, A) is the universal state reward with respect to A that is accu-
mulated while staying in s, which is given by sum act contrib(s, A).

(iii) URi(s, a, λ, s′) is the universal transition reward that is gained when ex-
ecuting the transition (s, a, λ, s′) such that a ∈ A, which is given by
trans rew(s, a, λ, s′).

(iv) ERls
r (s, Z, cf ) is the existential state reward with respect to Z and cf that

is accumulated while staying in s, which is given by
choose lstate rew(s, Z, cf ).

(v) ERa
r (s, A, cf ) is the existential state reward with respect to A and cf that

is accumulated while staying in s, which is given by
choose act rew(s, A, cf ).

(vi) ERi(s, A, cf ) is the existential transition reward with respect to A and cf
that is gained when executing the transition returned by
choose trans(s, A, cf ), which is given by choose trans rew(s, A, cf ). Sim-
ilarly, φ(s, A, cf ) is the frequency of such a transition, which is given by
φ(choose trans(s, A, cf )).
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4 The Measure Definition Mechanism of MSL

MSL is equipped with a component-oriented measure definition mechanism
built on top of its core logic. The purpose of this mechanism is related to the
usability issue mentioned in the introduction. First, the mechanism allows a
performance metric to be given a mnemonic name whenever it is derived from
a reward structure specified through a set of formula schemas of the MSL core
logic. Second, it allows a performance metric to be parameterized with respect
to component behaviors and component activities. Third, assumed that the
identifier of a performance metric denotes the value of the metric computed
on a certain ACTMC, it allows metric identifiers to be combined through the
usual arithmetical operators and mathematical functions.

The syntax for defining a performance measure in MSL, possibly parameter-
ized with respect to a set of component-oriented arguments, is the following:

MEASURE / name. ( /parameters. ) IS / body.

In practice, we can envision to deal with libraries of basic measure definitions
and derived measure definitions. The body of a basic measure definition is a set
of formula schemas of the MSL core logic. By contrast, the body of a derived
measure definition is an expression involving identifiers of previously defined
metrics (each denoting the value of the corresponding measure computed on
a given ACTMC), arithmetical operators, and mathematical functions.

The parameters of the metric identifier can comprise component behaviors
(together with possibly associated real numbers) as well as component activ-
ities. The component behaviors result in the local state sets occurring in the
quantifications of the MSL formula schemas (i) and (iv), with the possibly as-
sociated real numbers expressing the reward contributions of the local states
within the MSL formula schemas (i.e. they are used in the definition of func-
tion lstate rew). The component activities, instead, result in the activity sets
occurring in the quantifications of the MSL formula schemas (ii), (iii), (v),
and (vi).

Using this mechanism, with MSL it is possible to define typical instant-of-time
performance measures in a component-oriented way. The idea is that the diffi-
culties with measure specification should be hidden inside the definition body,
so that the designer has only to provide component-oriented actual parame-
ters when using the metric identifier. To illustrate this point, we now consider
the following four classes of performance measures frequently recurring both
in queueing theory and in practice: system throughput, resource utilization,
mean queue length, and mean response time.

A definition for the system throughput that is easy to use should only re-
quest the designer to specify the component activities contributing to the
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throughput, while a unitary transition reward is transparently associated in
the definition body with each of such activities. Using the dot notation for
expressing the component activities in the form C.a, we have the following
definition for the throughput:

MEASURE throughput iii(C1.a1, . . . , Cn.an) IS

∀a ∈ {C1.a1, . . . , Cn.an}(is trans(s, a, λ, s′) ⇒ eq(trans rew(s, a, λ, s′), 1))

According to the ACTMC interpretation of the MSL core logic, the definition
above means that each transition labeled with an activity in {C1.a1, . . . , Cn.an}
must be given a unitary instantaneous reward. An equivalent way to define
the same measure is to specify that the rate at which each state accumulates
reward is the sum of the rates of the activities contributing to the throughput
that are enabled at that state:

MEASURE throughput ii(C1.a1, . . . , Cn.an) IS

∀a ∈ {C1.a1, . . . , Cn.an}
(is trans(s, a, λ, s′) ⇒ eq(act contrib(s, a, λ, s′), act rew(a, λ))) ⇒

eq(state rew(s), sum act contrib(s, {C1.a1, . . . , Cn.an}))
where act rew(a, λ) = λ whenever a = Ci.ai for some 1 ≤ i ≤ n.

In the case of the utilization of a resource, it should be enough for the designer
to specify the component activities modeling the utilization of that resource,
while a unitary reward is transparently associated in the definition body with
each state in which at least one of such activities is enabled:

MEASURE utilization(C.a1, . . . , C.an) IS

∃a ∈ {C.a1, . . . , C.an}(is trans(s, a, λ, s′)) ⇒
eq(state rew(s), choose act rew(s, {C.a1, . . . , C.an}, min))

where act rew(a, ) = 1 whenever a = C.ai for some 1 ≤ i ≤ n. According to
the ACTMC interpretation of the MSL core logic, the definition above means
that each state enabling at least one activity in {C.a1, . . . , C.an}must be given
a unitary rate reward.

The mean queue length, which represents the mean number of customers wait-
ing for service, should only require the designer to specify the number of cus-
tomers in each part of the behavior of the component managing the customer
queueing. Using the dot notation for expressing the component behavior parts
in the form C.B, we have the following definition:

MEASURE mean queue length(C.B1(k1), . . . , C.Bn(kn)) IS

∃z ∈ {C.B1, . . . , C.Bn}(is local(z, s)) ⇒
eq(state rew(s), choose lstate rew(s, {C.B1, . . . , C.Bn}, min))

where lstate rew(z) = ki whenever z = C.Bi for some 1 ≤ i ≤ n. According to
the ACTMC interpretation of the MSL core logic, the definition above means
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that each state comprising one of the considered behavior parts must be given
as rate reward the number specified for that behavior.

The mean response time can be defined similarly to mean queue length thanks
to Little’s law by taking into account the arrival rate λ of the customers. This
is done by replacing ki with ki/λ for 1 ≤ i ≤ n.

Another useful class of performance measures is the one concerning the proba-
bility of being in a specific behavior of an individual component of the system.
In this case it should be enough for the designer to specify the behavior of
interest:

MEASURE behavior prob(C.B) IS

∃z ∈ {C.B}(is local(z, s)) ⇒
eq(state rew(s), choose lstate rew(s, {C.B}, min))

where lstate rew(C.B) = 1.

All the examples shown so far illustrate basic measure definitions. An example
of a derived metric is given by the mean queue length for a system that has
m queueing components C1, C2, . . . , Cm, which is defined as follows:

MEASURE total mean queue length(C1.B1,1(k1,1), . . . , C1.B1,n1(k1,n1),

C2.B2,1(k2,1), . . . , C2.B2,n2(k2,n2),
...

Cm.Bm,1(km,1), . . . , Cm.Bm,nm(km,nm)) IS

mean queue length(C1.B1,1(k1,1), . . . , C1.B1,n1(k1,n1)) +

mean queue length(C2.B2,1(k2,1), . . . , C2.B2,n2(k2,n2)) +
...

mean queue length(Cm.Bm,1(km,1), . . . , Cm.Bm,nm(km,nm))

As can be noted, the body of this derived measure definition is an arithmetic
expression whose atomic constituents are identifiers of basic measure defini-
tions with actual component-oriented parameters.

5 SPA Interpretation of MSL

In this section we provide an interpretation of the core logic of MSL based
on SPA. The purpose is to develop a framework in which system models can
be compositionally manipulated without altering the value of instant-of-time
performance measures specified with MSL.
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Whenever a formal description technique like SPA is used to model a system
and to represent its performance aspects, rewards are not directly specified at
the level of the underlying stochastic process like, e.g., an ACTMC. Instead
they are defined at the level of the process algebraic description, and then
automatically inherited by the underlying stochastic process. Therefore, in
order to extend an action-based modeling notation like SPA with universal
and existential rewards, it is necessary to decide how to represent state and
transition rewards at the process algebraic level.

As illustrated in Sect. 3, on the one hand indirect state rewards and transition
rewards are associated with the system activities. Thus, in SPA it will be
natural to attach such rewards to the process algebra actions representing
these activities. On the other hand, the direct state rewards are associated
with the local states, but these are not explicitly described in an action-based
formalism like SPA. Our proposal is to attach state rewards to behavioral
equations, as the operational semantic rules make them correspond to the
local states.

In this section we shall also address some issues concerned with the enhanced
expressiveness of MSL with respect to traditional reward structures when deal-
ing with modeling notations like SPA, in which the concept of state is implicit.

5.1 Syntax of SPA with Universal and Existential Rewards

Here we adopt a variant of EMPAgr1 [11], which we extend with universal
and existential rewards. In this calculus every action α is either exponentially
timed or passive:

α ::= <a, λ, (uy , ub, ey , eb)> | <a, ∗w, (∗, ∗, ∗, ∗)>
where:

• a ∈ Act is the action name (τ if invisible).
• λ ∈ RI >0 expresses the rate of an exponentially timed action.
• ∗w denotes a passive action (whose duration is unspecified) with reactive

weight w ∈ RI >0.
• (uy , ub, ey , eb) is a reward 4-tuple for an exponentially timed action, where

every reward belongs to RI .
• (∗, ∗, ∗, ∗) is a reward 4-tuple for a passive action, where ∗ denotes an un-

specified reward.

In the case of an exponentially timed action, the attached rewards uy , ub, ey , eb
express the contribution act rew(a, λ) occurring in four of the six MSL formula
schemas of Def. 3.1. More precisely, the universal yield reward uy is related
to (ii), the universal bonus reward ub is related to (iii), the existential yield
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reward ey is related to (v), and the existential bonus reward eb is related to
(vi). Hence, a performance measure defined through an MSL formula schema
quantified with respect to an activity set A is rendered by inserting the re-
wards act rew(a, λ) occurring in the MSL formula schema into the appropriate
position of the reward 4-tuple of the exponentially timed actions whose name
is in A.

The set G of process terms is generated by the following syntax:

E ::=
∑
i∈I

αi.Ei | E ‖A E | B(us , es)

where:

• The guarded alternative composition operator expresses a choice among |I|
actions, where I is a finite set of indices. The sum expresses the null term
0 if I = ∅. In general, whenever αi is the selected action for some i ∈ I, the
system performs αi and then behaves as Ei. The selection of the action is
performed according to the following rules. The choice among exponentially
timed actions is solved according to the race policy, i.e. the action sampling
the least duration wins. The choice among passive actions with the same
name is probabilistic. More precisely, each passive action with the same
name is given an execution probability proportional to its reactive weight.
Finally, the choice among passive actions with different names or among
passive actions and exponentially timed actions is nondeterministic.

• The parallel composition operator ‖A , with A ⊆ Act , expresses the con-
current execution of two terms. E1 ‖A E2 asynchronously executes the ac-
tions of E1 and E2 that do not belong to A, and synchronously executes
actions of E1 and E2 with the same name in A, which becomes the name of
the resulting action. A synchronization is possible only between a passive
action and an exponentially timed action, with the latter determining the
rate of the resulting action, or between two passive actions, which results
in a passive action.

• For each process constant B there exists a behavioral equation of the fol-
lowing form:

B(x, y)
∆
=

∑
i∈I

αi.Ei

where (x, y) expresses a pair of rewards belonging to RI .

In the case of a constant invocation like B(us , es), the rewards us , es represent
the contribution lstate rew(z) occurring in two of the six MSL formula schemas
of Def. 3.1. More precisely, the universal local state reward us is related to
(i), while the existential local state reward es is related to (iv). Hence, a
performance measure defined through an MSL formula schema quantified with
respect to a local state set Z is rendered by inserting the rewards lstate rew(z)
occurring in the MSL formula schema into the appropriate position of the
reward pair of the constant invocations expressing the local states in Z.
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The reason for restricting the syntax to the guarded alternative composi-
tion operator and the guarded definition of constants derives from the role
played by the local state rewards. In particular, it is worth noting that a se-
quential process term describes a local state to which a pair of local state
rewards is attached whenever the term is invoked. On the one hand, we want
to avoid the definition of a local state described by an ambiguous process
term like B(us , es) + B′(us ′, es ′), for which the value of the local state re-
wards would depend on the result of the choice. On the other hand, a pro-

cess term like B(x, y)
∆
= α.E ‖A B′(us ′, es ′) would be ambiguous as well, be-

cause a constant invocation like B(us , es) is intended to describe a local state
rather than the parallel composition of local states. Instead, the process term

B(x, y)
∆
= α.(E ‖A E ′) is acceptable, because it models a local state (with its

pair of local state rewards) that evolves into the parallel composition of several
local states after the execution of α.

In order to compute the instant-of-time value of a performance measure de-
fined in MSL, in accordance with the ACTMC interpretation of the core logic
of MSL the universal yield rewards uy are governed by the activity contribu-
tion additivity assumption. This means that the overall rate at which reward
is accumulated while staying in a certain state is the sum of the universal yield
rewards associated with the exponentially timed actions whose name is in A
that are enabled at that state. By contrast, the existential yield rewards ey
of the actions simultaneously enabled at a given state cannot be summed up,
as this would conflict with the intuition behind the existential quantification.
Instead a choice function is applied to the existential yield rewards of the ex-
ponentially timed actions whose name is in A that are enabled at that state.
Similarly, in the case of the universal and existential bonus rewards ub and eb
we can argue in accordance with the ACTMC interpretation of the core logic
of MSL.

As far as the local state rewards are concerned, in accordance with the ACTMC
interpretation of the core logic of MSL the universal local state rewards us are
governed by the local state contribution additivity assumption. This means
that the overall rate at which reward is accumulated while staying in a certain
state is the sum of the universal local state rewards associated with the local
states in Z of that state. By contrast, the existential local state rewards es
are not summed up. Instead, they are subject to the application of a choice
function cf that picks up the reward associated with one of the local states in
Z that are part of the state under consideration.
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5.2 Semantics for SPA with Universal and Existential Rewards

The semantics for our calculus is given by a labeled multi-transition system
whose states are described by triples of the form 〈z, us , es〉 or by the parallel
composition of several such triples. Each triple denotes a local state z described
by a sequential process term, a universal local state reward us , and an existen-
tial local state reward es . In order to correctly construct such triples starting
from the process algebraic specification of a system, we employ a function init
that appropriately associates universal and existential local state rewards with
process terms in G:

init(
∑
i∈I

αi.Ei) = 〈∑
i∈I

αi.Ei, 0, 0〉

init(E1 ‖A E2) = init(E1) ‖A init(E2)

init(B(us , es)) = 〈∑
i∈I

αi.Ei, us , es〉 if B(x, y)
∆
=

∑
i∈I

αi.Ei

The set T of process states is then defined as follows:

T ::= 〈∑
i∈I

αi.Ei, us , es〉 | T ‖A T

Formally, the operational semantics of a process term E ∈ G is given by a
labeled multi-transition system whose transition relation is the least multiset
satisfying the operational rules reported in Table 1, and whose initial state
is init(E) ∈ T . As far as the first two rules for parallel composition are
concerned, in addition to them we also consider the symmetric ones that are
obtained by exchanging the roles of T1 and T2 in the premises.

We say that E is performance closed if and only if the semantics of E does not
contain transitions labeled with passive actions. In this case, the semantics of
E is a well-defined ACTMC on which it is possible to conduct the reward-
based performance analysis as seen in Sect. 2.2. In the following, we denote
by E the set of the performance closed process terms of G.

5.3 Congruence Result

We now show that it is possible to define a performance-measure-sensitive
congruence for an SPA extended with universal and existential rewards. This
means that we can provide a formal framework for the compositional manip-
ulation of system models that does not alter the value of the performance
measures expressed in MSL.

The reward-based Markovian behavioral equivalence that we are going to in-
troduce is an extension of the bisimulation-based one of [10]. In essence, this
equivalence aggregates the transitions labeled with the same name and depart-
ing from the same state that reach states of the same equivalence class. More
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〈∑
i∈I

αi.Ei, us, es〉 αi−−−→ 〈Ei, us, es〉 if Ei =
∑
j∈J

α′j .E
′
j

〈∑
i∈I

αi.Ei, us, es〉 αi−−−→ init(Ei) if Ei = B(us ′, es ′) ∨ Ei = E1 ‖A E2

T1

α−−−→ T ′1

T1 ‖A T2

α−−−→ T ′1 ‖A T2

if name(α) 6∈ A

T1

a,λ,(uy,ub,ey,eb)
−−−−−−−−−−−−→ T ′1 T2

a,∗w,(∗,∗,∗,∗)
−−−−−−−−−−−−→ T ′2

T1 ‖A T2

a,λ· w
Wa(T2)

,(uy· w
Wa(T2)

,ub,ey,eb)

−−−−−−−−−→ T ′1 ‖A T ′2

if a ∈ A

T1

a,∗w1 ,(∗,∗,∗,∗)
−−−−−−−−−−−−→ T ′1 T2

a,∗w2 ,(∗,∗,∗,∗)
−−−−−−−−−−−−→ T ′2

T1 ‖A T2

a,∗ w1
Wa(T1)

· w2
Wa(T2)

·(Wa(T1)+Wa(T2))
,(∗,∗,∗,∗)

−−−−−−−−−→ T ′1 ‖A T ′2

if a ∈ A

where:

name(<a, , ( , , , )>) = a

Wa(T ) =
∑{|w | ∃T ′ ∈ T . T

a,∗w,(∗,∗,∗,∗)
−−−−−−−−−−−−→ T ′ |}

Table 1
Operational semantics

precisely, the rates and the universal yield rewards of such transitions and
the universal local state rewards of the departing state are summed up, while
the universal bonus rewards are multiplied by the probability of executing
the corresponding transitions before being summed up. The existential local
state rewards, the existential yield rewards, and the existential bonus rewards
are subject to the application of a choice function instead of the addition.
By doing so, we are consistent with the ACTMC interpretation summarized
through equation (2).

Definition 5.1 Let cf ∈ CF . We define the partial function aggregated rate-
reward with respect to cf :

RRcf : T × Act × {exp, ∗} × 2T −→o RI >0 × RI × ( RI ∪{∗})2 × RI × ( RI ∪{∗})2

by letting:

RRcf (T, a, l, C) = (Rate(T, a, l, C),

US (T ),UY (T, a, l, C),UB(T, a, l, C),

ES cf (T ),EYcf (T, a, l, C),EB cf (T, a, l, C))

where:
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Rate(T, a, exp, C) =
∑{|λ | ∃uy , ub, ey , eb.∃T ′ ∈ C. T

a,λ,(uy,ub,ey,eb)−−−−−−−−−−−−→ T ′ |}
Rate(T, a, ∗, C) =

∑{|w | ∃T ′ ∈ C. T
a,∗w,(∗,∗,∗,∗)−−−−−−−−−−−−→ T ′ |}

US (T ) =
∑{| us | us ∈ u lstate rew set(T ) |}

UY (T, a, exp, C) =
∑{| uy | ∃λ, ub, ey , eb.∃T ′ ∈ C. T

a,λ,(uy,ub,ey,eb)−−−−−−−−−−−−→ T ′ |}
UB(T, a, exp, C) =

∑{| λ
Rate(T,a,exp,C)

· ub |
∃uy , ey , eb.∃T ′ ∈ C. T

a,λ,(uy,ub,ey,eb)−−−−−−−−−−−−→ T ′ |}
ES cf (T ) = cf {| es | es ∈ e lstate rew set(T ) |}
EYcf (T, a, exp, C) = cf {| ey | ∃λ, uy , ub, eb.∃T ′ ∈ C. T

a,λ,(uy,ub,ey,eb)−−−−−−−−−−−−→ T ′ |}
EB cf (T, a, exp, C) = cf {| λ

Rate(T,a,exp,C)
· eb |

∃uy , ub, ey .∃T ′ ∈ C. T
a,λ,(uy,ub,ey,eb)−−−−−−−−−−−−→ T ′ |}

UY (T, a, ∗, C) = UB(T, a, ∗, C) = EYcf (T, a, ∗, C) = EB cf (T, a, ∗, C) = ∗
with RRcf (T, a, l, C) = ⊥ whenever the multisets above are empty, and:

u lstate rew set(T ) =




{| us |} if T = 〈 , us , es〉
{| us |} ∪ u lstate rew set(T ′) if T = 〈 , us , es〉 ‖A T ′

e lstate rew set(T ) =




{| es |} if T = 〈 , us , es〉
{| es |} ∪ u lstate rew set(T ′) if T = 〈 , us , es〉 ‖A T ′

Definition 5.2 Let cf ∈ CF . An equivalence relation B ⊆ T ×T is a reward-
based Markovian bisimulation with respect to cf iff, whenever (T1, T2) ∈ B,
then for all action names a ∈ Act , levels l ∈ {exp, ∗}, and equivalence classes
C ∈ T /B:

RRcf (T1, a, l, C) = RRcf (T2, a, l, C)

It is easy to see that the union of all the reward-based Markovian bisimulations
with respect to cf is the largest reward-based Markovian bisimulation with
respect to cf . Such a union, denoted ∼cf

RMB, is called reward-based Markovian
bisimilarity with respect to cf .

It is possible to lift ∼cf
RMB in order to equate process terms rather than process

states. In essence, we assume that ∼cf
RMB equates two process terms E and F

if and only if the tuples constructed from E and F through the function init
are reward-based Markovian bisimilar with respect to cf .

Definition 5.3 Let E1, E2 ∈ G and cf ∈ CF . Then:

E1 ∼cf
RMB E2 ⇔ init(E1) ∼cf

RMB init(E2)
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Theorem 5.4 Let cf ∈ CF be commutative, associative, and distributive
with respect to multiplication by non-negative numbers, and let I be a finite
set of indices. Then:

• ∀i ∈ I. Ei ∼cf
RMB Fi ⇒ ∀{α1, . . . , α|I|}. ∑

i∈I
αi.Ei ∼cf

RMB

∑
i∈I

αi.Fi.

• E ∼cf
RMB E ′ ⇒ ∀F ∈ G.∀A ⊆ Act . E ‖A F ∼cf

RMB E ′ ‖A F ∧ F ‖A E ∼cf
RMB

F ‖A E ′.

Proof First, we observe that the proof for the congruence with respect to the
guarded alternative composition operator is a straightforward generalization
of that concerning the prefix and the binary alternative composition operator
of the corresponding theorem of [10,11]. As far as the rates and the universal
yield/bonus rewards are concerned, the proof is the same as that of the corre-
sponding theorem of [10,11]. In the case of the existential yield/bonus rewards,
it is sufficient to observe that the properties required about cf are exactly the
same as the ones used in the case of the universal yield/bonus rewards when
working with addition. Finally, in the case of the universal/existential local
state rewards, it is sufficient to observe that such rewards do not affect each
other inside the vector of local states.

For instance, min and max are choice functions that satisfy the hypothesis of
the congruence theorem above.

Theorem 5.5 Let P1, P2 ∈ E and cf ∈ CF . If P1 ∼cf
RMB P2 then the value of

the reward-based performance measure defined with MSL is the same for P1

and P2.

Proof We can argue similarly as done in the proof of Thm. 5.4.

5.4 Axiomatization

We now provide a sound and complete axiomatization of ∼cf
RMB. This is il-

lustrated by the set Acf
RMB of axioms in Table 2, the first of which simply

subsumes the commutativity and the associativity axioms of the deduction
system of [10].

Axioms (A2)
cf
RMB and (A3)

cf
RMB express the aggregation of rates and of universal

and existential transition rewards according to the definition of the aggregated
rate-reward function RRcf (see Def. 5.1). Unlike the deduction system of [10],
here a subterm of the form

∑
i∈I

αi.Ei occurs in both sides of the two axioms, as

we are no longer dealing with a binary alternative composition operator but
with a multi-operand guarded alternative composition operator.
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(A1)
cf
RMB

∑
i∈I

αi.Ei =
∑
i∈I

ασ(i).Eσ(i) where σ is a permutation of I

(A2)
cf
RMB <a, λ1, (uy1, ub1, ey1, eb1)>.E +

<a, λ2, (uy2, ub2, ey2, eb2)>.E +
∑
i∈I

αi.Ei =

<a, λ1 + λ2, (uy1 + uy2,
λ1

λ1+λ2
· ub1 + λ2

λ1+λ2
· ub2,

cf (ey1, ey2), cf ( λ1
λ1+λ2

· eb1,
λ2

λ1+λ2
· eb2))>.E +

∑
i∈I

αi.Ei

(A3)
cf
RMB <a, ∗w1 , (∗, ∗, ∗, ∗)>.E + <a, ∗w2 , (∗, ∗, ∗, ∗)>.E +

∑
i∈I

αi.Ei =

<a, ∗w1+w2 , (∗, ∗, ∗, ∗)>.E +
∑
i∈I

αi.Ei

(A4)
cf
RMB B0(us0, es0) ‖A B1(us1, es1) = B(us0 + us1, cf (es0, es1))

Table 2
Axiomatization of ∼cf

RMB

The details of axiom (A4)
cf
RMB, which is a reworking of the expansion law,

can be found in Table 3. In axiom (A4)
cf
RMB we use the following notation:

λ̃ ∈ RI >0 and ũy, ũb, ẽy, ẽb ∈ RI for an exponentially timed action, while λ̃
is ∗w and ũy, ũb, ẽy, ẽb are ∗ for a passive action. (A4)

cf
RMB is similar to the

corresponding axiom of [10] with some difference concerning the manipulation
of the universal and existential rewards. In particular, note that (A4)

cf
RMB is

the unique axiom that equates a vector of local states to a single local state.
For this reason, the universal and existential local state rewards are calculated
by means of adequate invocations of process constants obeying the function
RRcf (see Def. 5.1) and the semantics of the guarded alternative composition
operator.

Theorem 5.6 Let cf ∈ CF satisfy the same constraints as Thm. 5.4. Then
the deduction system Ded(Acf

RMB) is sound and complete for ∼cf
RMB over the

set of the non-recursive terms of G.

Proof We can argue similarly as done in the proof of Thm. 5.4. As far as
the universal/existential local state rewards are concerned, it is worth noting
what follows. In the case of axioms (A1)

cf
RMB to (A3)

cf
RMB the local state rewards

do not depend on the form of the process term, which describes a single local
state. In the case of axiom (A4)

cf
RMB it is sufficient to observe that the constant

invocation B(us0 + us1, cf (es0, es1)) fulfils the definition of the aggregated
rate-reward function RRcf and that the use of constant invocations in the
definition of B(x, y) ensures a correct calculation of the local state rewards
in accordance with the semantic rules of the guarded alternative composition
operator.

In order to augment the aggregation power of ∼cf
RMB without losing the con-
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B0(x, y) ∆=
∑

i∈I0

<ai, λ̃i, (ũyi, ũbi, ẽyi, ẽbi)>.Ei

B1(x, y) ∆=
∑

i∈I1

<ai, λ̃i, (ũyi, ũbi, ẽyi, ẽbi)>.Ei

B(x, y) ∆=
∑

j∈I0,aj /∈A
<aj , λ̃j , (ũyj , ũbj , ẽyj , ẽbj)>.

(f(Ej , us0, es0) ‖A B1(us1, es1)) +
∑

j∈I1,aj /∈A
<aj , λ̃j , (ũyj , ũbj , ẽyj , ẽbj)>.

(B0(us0, es0) ‖A f(Ej , us1, es1)) +
∑

k∈K0

∑
h∈P1,ak

<ak, λ̃k · wh
W1,ak

, (ũyk · wh
W1,ak

, ũbk, ẽyk, ẽbk)>.

(f(Ek, us0, es0) ‖A f(Eh, us1, es1)) +
∑

k∈K1

∑
h∈P0,ak

<ak, λ̃k · wh
W0,ak

, (ũyk · wh
W0,ak

, ũbk, ẽyk, ẽbk)>.

(f(Eh, us0, es0) ‖A f(Ek, us1, es1)) +
∑

k∈P0

∑
h∈P1,ak

<ak, ∗ wk
W0,ak

· wh
W1,ak

·(W0,ak
+W1,ak

), (∗, ∗, ∗, ∗)>.

(f(Ek, us0, es0) ‖A f(Eh, us1, es1))

such that I0 ∩ I1 = ∅ and for j ∈ {0, 1} :

Pj,a = {k ∈ Ij | ak = a ∧ λ̃k = ∗wk
}

Kj = {k ∈ Ij | ak ∈ A ∧ λ̃k ∈ RI >0 ∧ P1−j,ak
6= ∅}

P0 = {k ∈ I0 | ∃a ∈ A. k ∈ P0,a ∧ P1,a 6= ∅}
Wj,a =

∑{|wk | k ∈ Pj,a ∧ λ̃k = ∗wk
}

and for i ∈ I0 ∪ I1 :

f(Ei, us, es) =





Bi(us, es) with Bi(x, y) ∆= Ei if Ei =
∑
j∈J

αj .E
′
j

Bi(us ′, es ′) if Ei = Bi(us ′, es ′)

f(E1, 0, 0) ‖A′ f(E2, 0, 0) if Ei = E1 ‖A′ E2

Table 3
Details of axiom (A4)

cf
RMB

gruence property, as shown in [10] it is possible to jointly consider universal
yield rewards and universal bonus rewards, thus resulting in a normal form in
which only universal yield rewards are used. Indeed, an axiom like:

<a, λ1, (uy1, ub1, 0, 0)>.E + <a, λ2, (uy2, ub2, 0, 0)>.E +
∑
i∈I

αi.Ei =

<a, λ1 + λ2, (uy1 + uy2 + λ1 · ub1 + λ2 · ub2, 0, 0, 0)>.E +
∑
i∈I

αi.Ei

would be correct. Instead, in the case of the existential rewards, a similar axiom
would cause a loss of compositionality. Intuitively, applying in an interleaved

24



way the addition and the choice function does not preserve the value of the
performance measures, as shown below in the case the choice function is max.

Example 5.7 Consider the constant invocation B(us , es) of the following
process term:

B(x , y)
∆
= <a, λ1, (0, 0, ey1, eb1)>.B(x , y) +

<a, λ2, (0, 0, ey2, eb2)>.B(x , y)

whose underlying ACTMC has a single state with a single self-loop transi-
tion labeled with a whose rate is λ1 + λ2. Then consider a performance mea-
sure that is existentially quantified with respect to {a}. The instant-of-time
value of such a performance measure is given by ERa

r (B(us , es), {a}, max) +
ERi(B(us , es), {a}, max) = max(ey1, ey2) + max(λ1 · eb1, λ2 · eb2). By con-
trast, if we express the existential bonus rewards in terms of existential yield
rewards, we obtain max(ey1 + λ1 · eb1, ey2 + λ2 · eb2). Now assume ey1 = 1,
ey2 = 2, and λ1 · eb1 = 2, λ2 · eb2 = 1. In the former case we obtain the value
max(1, 2) + max(2, 1) = 2 + 2 = 4. On the other hand, in the latter case we
obtain a different value, which is max(1 + 2, 2 + 1) = 3.

5.5 Expressiveness

We conclude by observing that the introduction of existential rewards and
local state rewards enhances the expressiveness with respect to [10,11].

For instance let us consider the ACTMC underlying the queueing system ex-
ample of Sect. 2.2. Suppose we wish to measure the overall system utilization,
i.e. the percentage of time during which at least one server is busy. To do that,
we try to extend the Æmilia specification of Sect. 2.1 by inserting rewards into
the actions or local states occurring in the specification. We soon realize that
the only ways to carry out this task correctly are to associate either a uni-
tary existential local state reward with the behaviors S1.Server Busy and
S2.Server Busy, which corresponds to using an MSL formula of type (iv), or
a unitary existential yield reward with any serve action, which corresponds
to using an MSL formula of type (v), as done in Sect. 3. This is because the
only state of Fig. 1 in which two serve transitions can be executed must be
counted only once. Note that this would not be possible if we had at our
disposal only universal rewards.

As another example, consider the basic measure behavior prob of Sect. 4, which
determines the probability of being in a certain behavior of an individual com-
ponent. This measure is rendered in SPA by inserting a universal or existential
local state reward equal to 1 into the appropriate position of the constant in-
vocation expressing the behavior of interest. Instead, it cannot be specified
by attaching yield or bonus rewards to the actions of that behavior. This is
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because every state including that behavior must gain a reward equal to 1,
even if the state does not enable any action of such a behavior.

6 Case Study: Dynamic Power Management

In this section we reconsider a case study [1] conducted by some PhD students
at the University of Urbino, which emphasizes the fundamental role of an easy-
to-use notation to specify performance measures.

These students dealt with the problem of evaluating the introduction of a
dynamic power manager within a battery-powered device. The use of a policy
that aims at modifying the power consumption of the device on the basis of
certain run-time conditions may not be transparent, as it may alter the overall
system behavior and efficiency. Thus, the main objective of the case study
was to evaluate the impact of the dynamic power management on the system
functionalities and performance. The students used the Æmilia specification
language and the companion tool TwoTowers [9].

The considered system is depicted in Fig. 2. The client (C) synchronously in-
teracts with the battery-powered server (S) through a full-duplex radio channel
implemented by two half-duplex radio channels: RCS, from C to S, and RSC,
from S to C. RCS is used by the client to send requests to the server, while
RSC is used by the server to send the results back to the client. The server
also interacts with the dynamic power manager (DPM), which periodically
issues shutdown commands in order to put the server in a low-power inactive
state whenever appropriate. Two more signals, idle and busy, are used by the
server to notify the DPM about every change of its service state, in order for
the DPM to shut down the server only when the latter is idle.

Since the impact of the DPM on the system efficiency can be measured through
the energy consumed by the server, we concentrate on the server component
type. Its behavior is characterized through four states: idle (the server is wait-
ing for a request or a shutdown to arrive), busy (the server is processing a
request), sleeping (the server has been shut down by the DPM), awaking (the
server has been woken up by the arrival of a request).
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The Æmilia description developed by the students is the following:

ARCHI_ELEM_TYPE Server_Type(rate server_proc_rate,
rate server_awaking_rate,
rate server_notify_rate,
rate server_response_rate)

BEHAVIOR

Idle_Server(void) =
choice {

<receive_request_packet, _> .
<notify_busy, exp(server_notify_rate)> . Busy_Server(),

<receive_shutdown, _> . Sleeping_Server()
};

Busy_Server(void) =
<prepare_result_packet, exp(server_proc_rate)> .

Responding_Server();

Responding_Server(void) =
<send_result_packet, exp(server_response_rate)> .

<notify_idle, exp(server_notify_rate)> . Idle_Server();

Sleeping_Server(void) =
<receive_request_packet, _> . Awaking_Server();

Awaking_Server(void) =
<awake, exp(server_awaking_rate)> . Busy_Server();

INPUT_INTERACTIONS
UNI receive_request_packet; receive_shutdown

OUTPUT_INTERACTIONS
UNI send_result_packet; notify_busy; notify_idle

The first equation is associated with the idle state, while the second and
the third equation represent the busy state. Two equations are necessary for
this state because two activities are carried out – processing the request and
sending the results back to the client. The fourth and the fifth equation are
concerned with the sleeping and the awaking state, respectively. While the
processing of a request and the awaking represent internal activities, the re-
ception of a request or of a shutdown command are input interactions and the
sending of the results is an output interaction. Two more output interactions
(whose name starts with notify ) are used to keep the DPM aware of the
state of the server.
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As far as the specification of the performance behavior is concerned, the de-
scription of Server Type is parameterized with respect to the rate of its dura-
tional activities. In fact, every exponentially timed action contains the speci-
fication of its duration through exp( ). All the other actions are passive and
get a duration only if they communicate with an exponentially timed action.

In order to assess the impact of the DPM from the performance viewpoint,
the students evaluated – besides typical metrics like e.g. server utilization –
the energy that is consumed by the server for different values of the shutdown
period of the DPM. The objective was to get insight in the trend of the
energy consumption. At steady state, the energy consumption is the sum of
the probabilities of being in the various server states, each multiplied by a
factor that describes the rate at which the server consumes energy in that
state.

The students initially followed a classical approach based on reward structures
in a way inspired by [11]. Since in this approach the measures are specified
by associating yield and bonus rewards with actions, it was not possible to
single out the states of interest through the actions occurring in the behavior
of Server Type. In order to overcome this drawback, the students realized
that it was necessary to modify the Æmilia specification by augmenting each
defining equation of Server Type with a self-looping, exponentially timed ac-
tion exploited to measure the percentage of time that is spent by the server
in each of its states. For instance, equation Idle Server became:

Idle_Server(void) =
choice {
<receive_request_packet, _> .
<notify_busy, exp(server_notify_rate)> . Busy_Server(),

<receive_shutdown, _> . Sleeping_Server(),
<monitor_idle_server> . exp(1)> . Idle_Server()

};

Then, to measure the energy consumption, the students gave a suitable yield
reward to every action whose name starts with monitor . The value of such
a reward was chosen depending on the local state of the server. In particular,
they assumed that the energy consumed in the busy state is 50% more than
the energy consumed in the idle and awaking state, while of course no energy
is consumed in the sleeping state.

Subsequently, the students were exposed to the novel approach based on MSL,
which is currently being implemented in TwoTowers. This was quite beneficial
for the students, because it turned out that it was no longer necessary to
modify the Æmilia specification with monitoring actions in order to define
the energy consumption metric. Instead, the students employed the following
approach.
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Given that the energy consumption depends on the probabilities of being in
the various server states, first of all the students defined the basic measure
state energy consumption as follows:

MEASURE state energy consumption(C.B(l)) IS

∃z ∈ {C.B}(is local(z, s)) ⇒
eq(state rew(s), choose lstate rew(s, {C .B}, min))

where lstate rew(C.B) = l. Note that this measure definition is a general-
ization of the basic metric behavior prob of Sect. 4 where the parameter of
the metric identifier is equipped with a real number denoting the value of
the reward associated with the local state. Then, the students employed the
basic metric state energy consumption to define the following derived metric
expressing the overall energy consumption of the server:

MEASURE energy consumption(C .Idle(li),C .Busy(lb),C .Responding(lr),

C .Sleeping(ls),C .Awaking(la)) IS

state energy consumption(C .Idle(li)) +

state energy consumption(C .Busy(lb)) +

state energy consumption(C .Responding(lr)) +

state energy consumption(C .Sleeping(ls)) +

state energy consumption(C .Awaking(la))
Finally, based on the value of the rewards chosen by the students, the energy
consumption was easily evaluated through the following measure invocation:

energy consumption(S .Idle Server(2),S .Busy Server(3),S .Responding Server(3),

S .Sleeping Server(0),S .Awaking Server(2))
As the students pointed out, it was quite easy to describe the performance
measure of interest in this bottom-up way. In fact, it adheres to the intu-
ition behind the performance measure and hence results in an arithmetical
expression in which the energy consumptions in the individual server states
are summed up. This incremental approach is even more beneficial when-
ever basic metrics like state energy consumption become part of a library of
measure definitions that can be exploited to easily define derived metrics like
energy consumption.

7 Conclusion

In this paper we have addressed the problem of making the specification of
performance measures a task that can be carried out in a component-oriented
fashion. As a step towards the solution of this usability-related problem that
affects many system modeling formalisms, we have proposed MSL, a precise
and expressive notation for specifying performance measures. MSL is equipped
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with a measure definition mechanism, through which it is possible to associate
mnemonic names with performance metrics derived from reward structures
specified through sets of MSL core logic formulas, as well as to parameterize
them with respect to component activities and component behaviors.

The objective of this component-oriented measure definition mechanism is to
manage the numeric values of the rewards as transparently as possible. In
this way, while the definition of a basic metric may be a task for a perfor-
mance expert, the definition of derived metrics and the use of any metric
definition should be affordable by non-specialists. In this paper MSL has been
exemplified on a number of typical performance measures and its enhanced ex-
pressiveness and usability have been illustrated through a realistic case study.

MSL mixes traditional reward structures with a simple first-order logic, which
we have shown to support performance-sensitive compositional reasoning in
the context of SPA. We believe that MSL fits well with the recent trend of ex-
tending model checking tools and performability tools to combine into a single
unifying framework logical verification and performance analysis. Among the
various proposals, we mention SMART [13], PRISM [24,23], MRMC [22], and
Möbius [17].

The SMART tool is based on the Petri nets formalism and offers stochastic
timing analysis for both DTMCs and CTMCs. For logical analysis, SMART
implements the branching-time logic CTL. For stochastic timing analysis, both
numerical solutions and simulation are available. However, SMART does not
implement reward-based analysis techniques.

The PRISM tool integrates model checking and performance analysis by ex-
tending with costs/rewards and an expectation operator more expressive logics
such as PCTL and CSL. The input language is a probabilistic extension of
the reactive modules [5], whose underlying stochastic models can be DTMCs,
CTMCs, or Markov Decision Processes.

Along the same line, MRMC is a model checker for discrete-time and continuous-
time Markov reward models. It supports reward extensions of PCTL and CSL,
and allows for the automated verification of properties concerning long-run and
instantaneous rewards as well as cumulative rewards. For instance, MRMC al-
lows the modeler to specify non-trivial properties such as the probability to
reach one of the goal states within a given number of steps (amount of time)
while having earned a certain accumulated reward. MRMC expects as inputs
several data structures describing e.g. the probability/rate matrix and the
reward structure.

While both PRISM and MRMC privilege the expressiveness of their logic-
based measure specification languages, they are neither intended to favour
the description of the reward structure for performance non-experts, nor to

30



allow for a component-oriented specification of performance measures.

The Möbius modeling environment offers several modeling formalisms (from
process algebra to Petri nets and stochastic automata networks) and a reward
model for measure specification, called performance variable, that is based on
both rate rewards and instantaneous (called impulse) rewards. The options
for evaluating a performance variable include solving for the mean, variance,
or distribution of the measure, or for the probability that the measure will
fall within a specified range. In order to estimate a reward-based measure,
Möbius supports discrete event simulation and state-based numerical tech-
niques. From the usability viewpoint, Möbius uses an explicit component-
based system model. A hierarchical approach to modeling is adopted that
permits the construction of composed models from previously defined ones.
Similarly, reward models build upon atomic and composed models, by equip-
ping them with the specification of a performance measure, which is given as a
piece of C++ code. However, Möbius does not include expressive mechanisms
such as universal/existential quantification or temporal logic reward formulas.

We conclude by observing that, due to the introduction of the existential
rewards, in the case of modeling notations in which the concept of state is
implicit, MSL is able to express an increased number of performance measures
with respect to previous reward-based notations. However, it is still difficult (if
not impossible) to define reachability-like performance measures. To this aim,
we plan to investigate a way to integrate MSL and CSL in order to further
enhance expressiveness while retaining a satisfactory degree of usability.
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