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Abstract. We study general equational characterizations for bisimula-
tion and trace semantics via the respective post-/pre-metaequivalences
defined on the ULTraS metamodel. This yields axiomatizations encom-
passing those appeared in the literature, as well as new ones, for bisimula-
tion and trace equivalences when applied to specific classes of processes.
The equational laws are developed incrementally, by starting with some
core axioms and then singling out additional axioms for bisimulation
post-/pre-metaequivalences on the one hand, and different additional
axioms for trace post-/pre-metaequivalences on the other hand. The ax-
iomatizations highlight the fundamental differences in the discriminating
power between bisimulation semantics and trace semantics, regardless of
specific classes of processes. Moreover, they generalize idempotency laws
of bisimilarity and choice-deferring laws of trace semantics, in addition
to formalizing shuffling laws for pre-metaequivalences.

1 Introduction

Process calculi [6] constitute a foundational algebraic tool for the specification
and verification of concurrent, distributed, and mobile systems. Their syntax in-
cludes operators for expressing concepts such as sequential/alternative/parallel
composition, action hiding/restriction/renaming, and recursion. Their seman-
tics is typically formalized via structural operational rules associating a labeled
transition system with each process term. Many behavioral equivalences have
been proposed to identify syntactically different process terms on the basis of
observational criteria. Sound and complete axiomatizations have been developed
to emphasize the equational laws on which the equivalences rely, which can then
be exploited for the algebraic manipulation of process terms.

These axiomatizations are usually provided for a specific class of processes
(e.g., nondeterministic, probabilistic, or timed), while we are interested in inves-
tigating general equational laws that are valid for multiple classes of processes.
This can be accomplished by working with behavioral metamodels. On the one
hand, they act as unifying theories by underpinning a deeper understanding
of specific models through a uniform view of the models themselves. On the
other hand, they support the study of metaresults, i.e., results that are valid
for all the specific models that are embodied. Frameworks like operational se-
mantic rule formats [2,1,19], Segala probabilistic automata [40], and weighted
automata [23] can be viewed to some extent as behavioral metamodels, even
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though their emphasis is more on ensuring certain properties in a general setting
or achieving a higher expressivity. More recently, behavioral metamodels such
as WLTS – weighted labeled transition systems [31], FuTS – state-to-function
labeled transition systems [20,34], and ULTraS – uniform labeled transition
systems [10,15,7], have been developed with the explicit purpose of paving the
way to unifying theories.

In this paper, we investigate equational characterization metaresults for the
two endpoints of the branching-time – linear-time spectrum [48], i.e., bisim-
ulation semantics and trace semantics, through the corresponding behavioral
post-/pre-metaequivalences defined on ULTraS. In this metamodel – which en-
compasses a wide gamut of behavioral models ranging from nondeterministic
transition systems to action-labeled Markov chains and several variants of au-
tomata with probability and time – every action-labeled transition goes from
a state to a reachability distribution over states. We make use of this meta-
model because from its inception it has been equipped with several behavioral
relations. In particular, it has inspired some new relations in the probabilistic
setting, whose properties have been analyzed in [13,11], and has been used in [7]
to study compositionality metaresults for bisimulation and trace semantics.

The equational characterization metaresults are developed incrementally on
an ULTraS-based process calculus named UProC, which contains only dy-
namic process operators such as action prefix and alternative composition as
well as operators on state reachability distributions. This calculus provides the
minimum set of operators that are necessary to highlight the fundamental dif-
ferences in the discriminating power of the considered metaequivalences.

We start with some core axioms establishing associativity and commutativ-
ity of alternative composition and distribution composition, together with the
existence of a neutral element for alternative composition. Then we single out
additional axioms for the various semantics, by considering for each of them a
post-metaequivalence and a pre-metaequivalence differring for the way in which
resolutions of nondeterminism have to match each other, for a total of two bisim-
ulation metaequivalences ∼post

B and ∼pre
B plus two trace metaequivalences ∼post

T

and ∼pre
T . Here is a summary of our contributions and their relationships with

previous axiomatizations:

– The equational characterization of ∼post
B relying on idempotency axioms for

alternative and reachability distribution compositions is the expected one,
generalizes the well known ones of [36,29,4,27,26] related to various classes
of specific processes, and is in agreement with the coalgebraic one of [43].

– The equational characterization of ∼pre
B relying on a B-shuffling axiom is new

and yields the first axiomatization for the bisimilarities over nondeterministic
and probabilistic processes of [13,45] characterized by the probabilistic modal
and temporal logics of [33,25].

– The equational characterization of ∼post
T relying on choice-deferring axioms

generalizes the well known ones of [18,39] for nondeterministic processes, is
in agreement with some of the axioms of the coalgebraic ones of [17,44],
and provides the first axiomatization for the probabilistic trace equivalences
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of [29,41] given that the axiomatization in [37] holds for the simulation-like
coarsest congruence [35] contained in the equivalence of [41].

– The equational characterization of ∼pre
T relying on a T-shuffling axiom is

new and opens the way to the first axiomatization of the compositional
trace semantics over nondeterministic and probabilistic processes of [11].

The proof of completeness of the equational characterizations of ∼post
B and

∼pre
B is based on a preliminary reduction of process terms into sum normal

form [36]. In contrast, for ∼post
T the proof employs the technique of [5,48] by

using the choice-deferring axioms as graph rewriting rules to transform the com-
pleteness problem for ∼post

T over arbitrary process terms into the completeness

problem for ∼post
B over process terms in a sum normal form specific to ∼post

T .
The completeness problem for ∼pre

T is still open.
As mentioned above, our general axioms feature as instances the laws of

bisimulation and trace semantics known from the literature for nondeterministic,
probabilistic, or stochastic processes. Moreover, axioms for pre-metaequivalences
have never been investigated before; similarly, the instances of those for trace
post-metaequivalence were not known for certain classes of processes. To the best
of our knowledge, this is the first work in which a concrete behavioral metamodel
is employed in place of category theory – whose mathematics may be perceived
as highly complex by researchers not familiar with it – to develop equational
characterizations that are valid regardless of specific classes of processes.

This paper is organized as follows. In Sect. 2, we recall the ULTraS meta-
model together with its bisimulation and trace metaequivalences revisited ac-
cording to [8,9]. In Sect. 3, we present the ULTraS-inspired process calculus
UProC and show the full compositionality of the metaequivalences with re-
spect to the selected operators thanks to the aforementioned revisitation. In
Sect. 4, we incrementally develop equational characterizations over UProC for
the considered behavioral metaequivalences and discuss their relationships and
limits. Finally, in Sect. 5 we provide some concluding remarks.

2 Background

We recall from [7] the ULTraS metamodel (Sect. 2.1), reachability-consistent
semirings (Sect. 2.2), bisimulation metaequivalences (Sect 2.3), resolutions of
nondeterminism (Sect. 2.4), reachability measures (Sect. 2.5), and a revisitation
of trace metaequivalences based on [8,9] (Sect 2.6).

2.1 The ULTraS Metamodel

ULTraS is a discrete state-transition metamodel parameterized with respect
to a set D, where D-values are interpreted as degrees of one-step reachability.
These values are assumed to be ordered according to a reflexive and transitive
relation vD, which is equipped with minimum ⊥D expressing unreachability. Let
us denote by (S → D) the set of functions from a set S to D. When S is a set
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of states, every element ∆ of (S → D) can be interpreted as a function that
distributes reachability over all possible next states. We call support of ∆ the set
of states supp(∆) = {s ∈ S | ∆(s) 6= ⊥D} that are reachable according to ∆.

To represent transition targets, we use the set (S → D)nefs of D-distributions
∆ over S with nonempty and f inite support, i.e., satisfying 0 < |supp(∆)| < ω.
The lower bound avoids distributions always returning ⊥D and hence transi-
tions leading to nowhere. The upper bound will enable a correct definition of
reachability measures for trace metaequivalences in Sect. 2.5.

Definition 1. Let (D,vD,⊥D) be a preordered set with minimum. A uniform
labeled transition system on it, or D-ULTraS, is a triple U = (S,A,−→) where
S 6= ∅ is an at most countable set of states, A 6= ∅ is a countable set of transition-
labeling actions, and −→ ⊆ S ×A× (S → D)nefs is a transition relation.

Every transition (s, a,∆) of U is written s
a−→∆, where ∆(s′) is a D-value

quantifying the degree of reachability of s′ from s via that a-transition, with
∆(s′) = ⊥D meaning that s′ is not reachable with that transition. In the directed
graph description of U (see, e.g., the forthcoming Fig. 1), vertices represent states
and action-labeled edges represent action-labeled transitions. Given a transition
s

a−→∆, the corresponding a-labeled edge goes from the vertex representing
state s to a set of vertices linked by a dashed line, each of which represents a
state s′ ∈ supp(∆) and is labeled with ∆(s′).

Example 1. As shown in [10,15,7], we can use the set B = {⊥,>} with ⊥ vB
> for capturing labeled transition systems [30] and timed automata [3], the
set R[0,1] with the usual ≤ for capturing action-labeled discrete-time Markov
chains [46], Markov decision processes [22], probabilistic automata [40], proba-
bilistic timed automata [32], and Markov automata [24], and the set R≥0 with
the usual ≤ for capturing action-labeled continuous-time Markov chains [46] and
continuous-time Markov decision processes [38].

2.2 Reachability-Consistent Semirings

To express the calculations needed by behavioral metaequivalences, we further
assume that D has a commutative semiring structure. This means that D is
equipped with two binary operations ⊕ and ⊗, with the latter distributing over
the former, which satisfy the following properties:

– ⊗ is associative and commutative and admits neutral element 1D and ab-
sorbing element 0D. This multiplicative operation enables the combination of
D-values of consecutive single-step reachability along the same computation.

– ⊕ is associative and commutative and admits neutral element 0D. This
additive operation is useful for aggregating D-values of different compu-
tations starting from the same state, as well as for shorthands like ∆(S′) =⊕

s′∈S′ ∆(s′) given s
a−→∆.
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We also assume that these two binary operations are reachability consistent,
in the sense that they satisfy the following additional properties in accordance
with the intuition behind the concept of reachability:

– 0D = ⊥D, i.e., the zero of the semiring denotes unreachability.
– d1 ⊗ d2 6= 0D if d1 6= 0D 6= d2, hence as expected two consecutive steps

cannot result in unreachability.
– The sum via ⊕ of finitely many values 1D is always different from 0D (known

as characteristic zero). It ensures that two nonzero values sum up to zero
only if they are one the inverse of the other with respect to ⊕, thus avoiding
inappropriate zero results when aggregating D-values of distinct computa-
tions departing from the same state.

Example 2. As shown in [7], we can use the reachability-consistent semirings
(B,∨,∧,⊥,>) for nondeterministic models and (R≥0,+,×, 0, 1) for probabilistic
and stochastic models, as well as for their respective behavioral equivalences.
In contrast, characteristic zero rules out all semirings (Nn,+n,×n, 0, 1) of the
classes of natural numbers that are congruent modulo n ∈ N≥2.

2.3 Bisimulation Post-/Pre-Metaequivalences

For bisimulation semantics we have two different variants of metaequivalence in
the ULTraS setting, ∼post

B and ∼pre
B . They are both defined in the style of [33],

which requires bisimulations to be equivalence relations, but deal with sets of
equivalence classes, rather than only with individual classes, to avoid an unde-
sirable decrease of the discriminating power of ∼pre

B in certain circumstances.
The difference between the two variants lies in the position – underlined in the
definition below – of the universal quantification over sets of equivalence classes.

In the first case, which is the approach of [42], the quantification occurs after
selecting a transition from either considered state, hence for each class set the
transition of the challenger state and the transition of the defender state must
reach that set with the same degree (fully matching transitions). In the second
case, inspired by [47,45,13], the quantification occurs before selecting transitions,
so that a transition of the challenger can be matched by different transitions of
the defender with respect to different class sets (partially matching transitions).
In the definition below, given an equivalence relation B over a state space S
together with a set of equivalence classes G ∈ 2S/B,

⋃
G ⊆ S denotes the union

of all the equivalence classes in G.

Definition 2. Let (D,⊕,⊗, 0D, 1D) be a reachability-consistent semiring, U =
(S,A,−→) be a D-ULTraS, and s1, s2 ∈ S:

– s1 ∼post
B s2 iff there exists a post-bisimulation B over S such that (s1, s2) ∈

B. An equivalence relation B over S is a post-bisimulation iff, whenever
(s1, s2) ∈ B, then for all a ∈ A it holds that for each s1

a−→∆1 there exists

s2
a−→∆2 such that for all G ∈ 2S/B:

∆1(
⋃
G) = ∆2(

⋃
G)
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Fig. 1. Difference between bisimulation metaequivalences: s1 6∼post
B s2, s1 ∼pre

B s2

– s1 ∼pre
B s2 iff there exists a pre-bisimulation B over S such that (s1, s2) ∈

B. An equivalence relation B over S is a pre-bisimulation iff, whenever
(s1, s2) ∈ B, then for all a ∈ A and for all G ∈ 2S/B it holds that for each

s1
a−→∆1 there exists s2

a−→∆2 such that:
∆1(

⋃
G) = ∆2(

⋃
G)

The difference between the two bisimulation metaequivalences emerges in the
presence of internal nondeterminism, i.e., identically labeled transitions depart-
ing from the same state. Consider the two D-ULTraS models in Fig. 1, which
feature the same distinct D-values d1 and d2 as well as the same inequivalent
continuations given by the D-ULTraS submodels rooted at r1, r2, r3. Notice
that both the D-values and the continuations are shuffled within each model,
while only the D-values are shuffled across the two models too. It holds that
s1 6∼post

B s2 because, e.g., the leftmost a-transition of s1 is not matched by any of
the three a-transitions of s2. In contrast, we have that s1 ∼pre

B s2. For instance,
the leftmost a-transition of s1 is matched by the central (resp. rightmost) a-
transition of s2 with respect to the equivalence class of r1 (resp. r2), and by the
leftmost a-transition of s2 with respect to the union of the equivalence classes
of r1 and r2 – see the dashed arrow-headed lines at the bottom of Fig. 1.

2.4 Resolutions of Nondeterminism

When several transitions depart from the same state, they describe a nonde-
terministic choice among different behaviors. While in the case of bisimulation
semantics nondeterminism is solved stepwise, for trace semantics overall resolu-
tions of nondeterminism have to be made explicit.

A resolution of a state s of a D-ULTraS U is the result of a possible way of
resolving nondeterministic choices starting from s, as if a deterministic scheduler
were applied that, at the current state s′, selects one of the outgoing transitions
of s′, or no transitions at all thus stopping the execution. The applicability of
other classes of schedulers, like randomized [40] and interpolating [21] ones and
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Fig. 2. Lack of bijectivity breaks structure preservation on the resolution side

combinations thereof [16], may depend on the specific D, hence we will not
consider them here.

We formalize a resolution of s as a D-ULTraS Z with a tree-like structure,
whose branching points correspond to target distributions of transitions. It is
obtained by unfolding from s the graph structure of U and by selecting at each
reached state s′ at most one of its outgoing transitions, hence it is isomorphic to
a submodel of the unfolding of the original model. Following [28], we make use of
a correspondence function from the acyclic state space of Z to the original state
space of U . For each transition z

a−→Z ∆ in Z, all the states in supp(∆) must
preserve the reachability degrees of the corresponding states in the support of
the target of the corresponding transition in U .

Extending [14], this function must be bijective between supp(∆) and the sup-
port of the target distribution of the corresponding transition in U . Requiring
injectivity as in [7] ensures submodel isomorphism, whereas surjectivity addition-
ally guarantees that ∆ preserves the overall reachability of the target distribution
of the corresponding transition in U (unlike number 1 in the probabilistic case,
in general there is no predefined value for the total reachability of a target dis-
tribution). For instance, in Fig. 2 the association of the same value d to s′1 and
s′2 allows for a function that maps z to s, z′1 and z′2 to s′1, and z′′1 and z′′2 to s′′1 ,
which is not injective and would cause the central ULTraS to be considered a
legal resolution of the leftmost ULTraS although the former is not isomorphic
to any submodel of the latter. The situation is similar for the rightmost ULTraS
under the function that maps z̄ to s, z̄′ to s′1, and z̄′′ to s′′1 , which is not surjective.

Definition 3. Let U = (S,A,−→U ) be a D-ULTraS and s ∈ S. An acyclic
D-ULTraS Z = (Z,A, −→Z) is a resolution of s, written Z ∈ Res(s), iff there
exists a correspondence function corrZ : Z → S such that s = corrZ(zs), for
some zs ∈ Z acting as the initial state of Z, and for all z ∈ Z it holds that:

– If z
a−→Z ∆ then corrZ(z)

a−→U Γ , with corrZ being bijective between supp(∆)
and supp(Γ ) and ∆(z′) = Γ (corrZ(z′)) for all z′ ∈ supp(∆).

– At most one transition departs from z.

2.5 Reachability Measures

The definition of trace metaequivalences requires the measurement of multistep
reachability, i.e., the degree of reachability of a given set of states from a given
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state when executing a sequence of transitions labeled with a certain sequence
of actions. We therefore provide a notion of measure schema for a D-ULTraS
U as a set of homogeneously defined measure functions, one for each resolution
Z of U . In the following, we denote by A∗ the set of finite traces over an action
set A, by ε the empty trace, and by |α| the length of a trace α ∈ A∗.

Definition 4. Let (D,⊕,⊗, 0D, 1D) be a reachability-consistent semiring and
U = (S,A,−→U ) be a D-ULTraS. A D-measure schema M for U is a set of
measure functions of the form MZ : Z × A∗ × 2Z → D, one for each Z =
(Z,A,−→Z) ∈ Res(s) and s ∈ S, which are inductively defined on the length of
their second argument as follows:

MZ(z, α, Z ′) =


⊕

z′∈supp(∆)

∆(z′)⊗MZ(z′, α′, Z ′) if α = aα′ and z
a−→Z ∆

1D if α = ε and z ∈ Z ′
0D otherwise

In the first clause, the value of MZ(z, α, Z ′) is built as a sum of products
of D-values – a formal power series in the semiring terminology – with the
summation being well defined because supp(∆) is finite as established in Def. 1.
For simplicity, we will often indicate with M both the measure schema and
any of its measure functions MZ , using Mnd when the reachability-consistent
semiring is (B,∨,∧,⊥,>) and Mpb when it is (R≥0,+,×, 0, 1) as in [7].

2.6 Coherency-Based Trace Post-/Pre-Metaequivalences

Also for trace semantics we have two distinct metaequivalence variants in the
ULTraS framework, ∼post

T and ∼pre
T , with the difference being the position of

the universal quantification over traces. In the first case, which is the approach
of [41], the quantification occurs after selecting resolutions, hence for each trace
the resolution of the challenger and the resolution of the defender must execute
that trace with the same degree (fully matching resolutions). In the second case,
inspired by [11], the quantification occurs before selecting resolutions, so that
a resolution of the challenger can be matched by different resolutions of the
defender with respect to different traces (partially matching resolutions).

Trace metaequivalences tend to be overdiscriminating because of the freedom
of schedulers of making different decisions in states enabling the same actions. To
avoid this, we limit the excessive power of schedulers by restricting them to yield
coherent resolutions. Intuitively, this means that, if several states in the support
of the target distribution of a transition are equivalent, then the decisions made
by the scheduler in those states have to be coherent with each other, so that the
states to which they correspond in any resolution are equivalent too.

Coherent resolutions, introduced in [8] for nondeterministic and probabilistic
processes, are extended to ULTraS in the following. They rely on coherent trace
distributions, which are suitable families of sets of traces weighted with their
execution degrees in a given resolution, built through the operations below.



Towards General Axiomatizations for Bisimilarity and Trace Semantics 9

Definition 5. Let A 6= ∅ be a countable set and (D,⊕,⊗, 0D, 1D) a reachability-
consistent semiring. For a ∈ A, d ∈ D, TD ⊆ 2A

∗×D, and T ⊆ A∗×D we define:
a .TD = {a . T | T ∈ TD} a . T = {(aα, d′) | (α, d′) ∈ T}
d⊗ TD = {d⊗ T | T ∈ TD} d⊗ T = {(α, d⊗ d′) | (α, d′) ∈ T}
tr(TD) = {tr(T ) | T ∈ TD} tr(T ) = {α ∈ A∗ | ∃d′ ∈ D. (α, d′) ∈ T}

while for TD1,TD2 ⊆ 2A
∗×D we define:

TD1 ⊕ TD2 =


{T1 ⊕ T2 | T1 ∈ TD1 ∧ T2 ∈ TD2 ∧ tr(T1) = tr(T2)}

if tr(TD1) = tr(TD2)
{T1 ⊕ T2 | T1 ∈ TD1 ∧ T2 ∈ TD2}

otherwise
where for T1, T2 ⊆ A∗ ×D we define:

T1 ⊕ T2 = {(α, d1 ⊕ d2) | (α, d1) ∈ T1 ∧ (α, d2) ∈ T2} ∪
{(α, d) ∈ T1 ∪ T2 | α /∈ tr(T1) ∩ tr(T2)}

Weighted trace set addition T1 ⊕ T2 is commutative and associative, with
degrees of identical traces in the two summands being always added up for co-
herency purposes. In constrast, trace distribution addition is only commutative.
Essentially, the two summands in TD1 ⊕ TD2 represent two families of sets of
weighted traces executable in the resolutions of two states in the support of a
target distribution. Every weighted trace set T1 ∈ TD1 is summed with every
weighted trace set T2 ∈ TD2 – to characterize an overall resolution – unless
TD1 and TD2 have the same family of trace sets, in which case summation is re-
stricted to weighted trace sets featuring the same traces for the sake of coherency.
Due to the lack of associativity, in the definition below all trace distributions
∆(s′) ·TDc

n−1(s′) exhibiting the same family Θ of trace sets have to be summed
up first, which is ensured by the presence of a double summation.

Definition 6. Let (D,⊕,⊗, 0D, 1D) be a reachability-consistent semiring and
(S,A,−→) be a D-ULTraS. The coherent trace distribution of s ∈ S is the
subset of 2A

∗×(D\{0D}) defined as follows:
TDc(s) =

⋃
n∈N TDc

n(s)
with the coherent trace distribution of s whose traces have length at most n being
defined as:

TDc
n(s) =


(ε, 1D) †

⋃
s

a−→∆

a .

( ⊕
Θ∈tr(∆,n−1)

tr(TDc
n−1(s

′))=Θ⊕
s′∈supp(∆)

∆(s′)⊗ TDc
n−1(s′)

)
if n > 0 and s has outgoing transitions

{{(ε, 1D)}} otherwise
where tr(∆,n− 1) = {tr(TDc

n−1(s′)) | s′ ∈ supp(∆)} and the operator (ε, 1D) †
is such that (ε, 1D) † TD = {{(ε, 1D)} ∪ T | T ∈ TD}.

As shown by several examples in [8], the coherency constraints should involve
all TDc

n( ) distributions separately – rather than TDc( ) – and should not con-
sider the degrees contained in those trace distributions, i.e., they should rely on
tr(TDc

n( )) sets. In [9] it was further shown that the coherency constraints should
be based on a monotonic construction in which any TDc

n( ) incrementally builds
on TDc

n−1( ), in the sense that every weighted trace set in the former should
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include as a subset a weighted trace set in the latter. This is achieved through a
variant of coherent trace distribution, called fully coherent trace distribution.

Definition 7. Let (D,⊕,⊗, 0D, 1D) be a reachability-consistent semiring and
(S,A,−→) be a D-ULTraS. The fully coherent trace distribution of s ∈ S is
the subset of 2A

∗×(D\{0D}) defined as follows:
TDfc(s) =

⋃
n∈N TDfc

n (s)
with the fully coherent trace distribution of s whose traces have length at most n
being the subset of TDc

n(s) defined as:

TDfc
n (s) =


{T ∈ TDc

n(s) | ∃T ′ ∈ TDfc
n−1(s). T ′ ⊆ T}

if n > 0 and s has outgoing transitions
{{(ε, 1D)}}

otherwise

We now adapt to ULTraS the two coherency constraints of [8,9]. The former
preserves the equality of trace set families of any length n between original states
and the resolutions states to which they correspond. The latter requires a com-
plete presence in each resolution of traces of length n if any, including possible
shorter maximal traces, which is looser than requiring resolution maximality.

Definition 8. Let (S,A,−→U ) be a D-ULTraS, s ∈ S, and Z = (Z,A, −→Z)
∈ Res(s) with correspondence function corrZ : Z → S. We say that Z is a co-

herent resolution of s, written Z ∈ Resc(s), iff for all z ∈ Z, whenever z
a−→Z ∆,

then for all n ∈ N:

1. tr(TDfc
n (corrZ(z′))) = tr(TDfc

n (corrZ(z′′))) =⇒ tr(TDfc
n (z′)) = tr(TDfc

n (z′′))
for all z′, z′′ ∈ supp(∆).

2. For all z′ ∈ supp(∆), the only T ∈ TDfc
n (z′) admits T̄ ∈ TDfc

n (corrZ(z′))
such that tr(T ) = tr(T̄ ).

We can now define the two trace metaequivalences by making use of coherent
resolutions of nondeterminism arising from deterministic schedulers. As in the
case of bisimilarity, the difference between the two emerges in the presence of
internal nondeterminism and is illustrated in Fig. 3. In the definition below,
zsi denotes both the initial state of Zi and the state to which si corresponds.

Definition 9. Let (D,⊕,⊗, 0D, 1D) be a reachability-consistent semiring, U =
(S,A,−→U ) be a D-ULTraS,M be a D-measure schema for U , and s1, s2 ∈ S:

– s1 ∼post
T,M s2 iff it holds that for each Z1 = (Z1, A,−→Z1

) ∈ Resc(s1) there
exists Z2 = (Z2, A,−→Z2

) ∈ Resc(s2) such that for all α ∈ A∗:
M(zs1 , α, Z1) = M(zs2 , α, Z2)

and also the condition obtained by exchanging Z1 with Z2 is satisfied.
– s1 ∼pre

T,M s2 iff for all α ∈ A∗ it holds that for each Z1 = (Z1, A,−→Z1) ∈
Resc(s1) there exists Z2 = (Z2, A,−→Z2

) ∈ Resc(s2) such that:
M(zs1 , α, Z1) = M(zs2 , α, Z2)

and also the condition obtained by exchanging Z1 with Z2 is satisfied.
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b2 b4b3b1 b4b1 b2b3

s1 s2 s3

b1 b2 b4b3

aaaaa

d d d d d d d d d d

Fig. 3. Difference between trace metaequivalences: si 6∼post
T,M sj , si ∼pre

T,M sj

The reader is referred to [7] to see that well-known specific equivalences
are captured by the four metaequivalences introduced so far when instantiated
with the semirings (B,∨,∧,⊥,>) and (R≥0,+,×, 0, 1) along with their measure
functionsMnd andMpb. We finally revisit the comparison of the discriminating
power of the four metaequivalences because the adoption of coherency rectifies a
flaw in the proof of Prop. 3.5(3) in [7]. As shown in Fig. 4, where s1 ∼post

B s2, the

inclusion of ∼post
B in ∼post

T,M would be prevented by incoherent resolutions. The
resolution of s2 starting with z2, which cannot be matched by any resolution of s1
with respect to trace a b, is not coherent because tr(TDfc

1 (s′2)) = {{ε, b}, {ε, c}} =
tr(TDfc

1 (s′′2)) whereas tr(TDfc
1 (z′2)) = {{ε, b}} 6= {{ε, c}} = tr(TDfc

1 (z′′2 )).

Proposition 1. Let (D,⊕,⊗, 0D, 1D) be a reachability-consistent semiring, U =
(S,A,−→U ) be a D-ULTraS, and M be a D-measure schema for U . Then:

1. ∼post
B ⊆∼pre

B , with ∼post
B =∼pre

B if U has no internal nondeterminism.

2. ∼post
T,M ⊆∼

pre
T,M.

3. ∼post
B ⊆∼post

T,M.

4. ∼pre
B is incomparable with ∼post

T,M and ∼pre
T,M.

3 A Process Algebraic View of ULTraS

We introduce a very simple process calculus inspired by the ULTraS metamodel,
which we call UProC – uniform process calculus. In order to focus on the essence
of the axiomatization for the various ULTraS behavioral metaequivalences, we
only admit dynamic process operators such as action prefix and choice.

s1

s’1 2d+o1d

2s

2s"2s’

2z

2z’ 2z"
1d 1d2d 2d

not

a

b c

a a

b c b c b c
coherent

Fig. 4. Validity of the inclusion of ∼post
B in ∼post

T,M thanks to coherent resolutions
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Given a preordered set D equipped with minimum that yields a reachability-
consistent semiring (D,⊕,⊗, 0D, 1D), together with a countable set A of actions,
the syntax for UProC features two levels, one for the set P of process terms
and one for the set D of reachability distribution terms:

P ::= 0 | a .D | P + P D ::= d . P | D+◦ D
where a ∈ A, d ∈ D \ {0D}, and unary operators take precedence over binary
ones. We let init(0) = ∅, init(a .D) = {a}, and init(P1+P2) = init(P1)∪init(P2).
We denote by d ⊗ D the distribution term obtained from D by ⊗-multiplying
each of its initial D-values by d.

The operational semantic rules below generate a D-ULTraS (P, A,−→):

D 7−→ ∆

a .D a−→∆

P1
a−→∆

P1 + P2
a−→∆

P2
a−→∆

P1 + P2
a−→∆

d . P 7−→ {(P, d)}
D1 7−→ ∆1 D2 7−→ ∆2

D1 +◦ D2 7−→ ∆1 ⊕∆2

The primary transition relation −→ is defined as the smallest subset of P ×
A× (P→ D)nefs satisfying the rules in the upper part. The secondary transition
relation 7−→ is the smallest subset of D × (P → D)nefs satisfying the rules in
the lower part, with {(P, d)} being a shorthand for the reachability distribution
identically equal to 0D except in P where its value is d; furthermore, ⊕ is lifted to
reachability distributions by letting (∆1⊕∆2)(P ) = ∆1(P )⊕∆2(P ). Whenever
D 7−→ ∆, we let supp(D) = supp(∆) and

⊕
D =

⊕
P∈supp(∆)∆(P ).

To proceed with the axiomatization of the four behavioral metaequivalences,
we need to show that they are congruences with respect to all the operators of
UProC. Due to the two-level format of the syntax, as a preliminary step we
have to lift the metaequivalences from processes to reachability distributions over
processes. Extending [33], this can be done by considering D1,D2 ∈ D related
by an equivalence relation ∼ over P when they assign the same reachability
degree to the same equivalence class, i.e., ∆1(C) = ∆2(C) for all C ∈ P/∼
with D1 7−→ ∆1 and D2 7−→ ∆2.

Compositionality with respect to the two reachability distribution operators
. and +◦ can be established by abstracting from the specific behavioral metae-
quivalence. As for the two process operators, we have instead different proofs
for bisimulation and trace semantics. These are minor reworkings of those in [7],
except for the case of action prefix under trace semantics, for which we achieve
full compositionality thanks to the use of coherent resolutions.

Theorem 1. Let ∼M ∈ {∼post
B ,∼pre

B ,∼post
T,M,∼

pre
T,M} for a measure schema M

over the D-ULTraS semantics of UProC. Let P1, P2 ∈ P and D1,D2 ∈ D.
Then for all d ∈ D \ {0D}, D ∈ D, a ∈ A, P ∈ P:

1. If P1 ∼M P2, then d . P1 ∼M d . P2.
2. If D1 ∼M D2, then D1 +◦ D ∼M D2 +◦ D and D+◦ D1 ∼M D+◦ D2.
3. If D1 ∼M D2, then a .D1 ∼M a .D2.
4. If P1 ∼M P2, then P1 + P ∼M P2 + P and P + P1 ∼M P + P2.



Towards General Axiomatizations for Bisimilarity and Trace Semantics 13

1P 2P

1d 2d

1z

1d 2d
1z’ 1z"2d+o1d1Q 2Q 2Q

coherent

not

a’ a’ a’

a a

b ccb b c

a’

a

a’ a’

b c

Fig. 5. Compositionality of trace semantics w.r.t. action prefix thanks to coherency

If in Def. 9 ordinary resolutions had been used instead of coherent ones, then
similar to Thm. 4.2 of [7] in property 3 above we should have added “provided
that all the processes in supp(Di), i ∈ {1, 2}, are pairwise ∼M-inequivalent”
when ∼M is a trace metaequivalence. In other words, compositionality of trace
semantics with respect to action prefix would be partial without the restriction
to coherent resolutions. The need for this trace-inequivalence constraint would
emerge in our general setting because the continuation after an action is not a
single process, but a reachability distribution over processes.

This can be illustrated through the following UProC terms P1 and P2:
P1 = a . (d1 . Q1 +◦ d2 . Q2) P2 = a . (d1 . Q2 +◦ d2 . Q2)
Q1 = a′. b . 0 + a′. c . 0 Q2 = a′. (b . 0 + c . 0)

where a sequence of action prefixes like a′. b . 0 is a shorthand for a′. (d̂.b . (d̂.0)),

with the same value d̂ ∈ D \ {0D} being used here in all such sequences for
simplicity. Their underlying D-ULTraS models are shown in the leftmost part
of Fig. 5. It is easy to see that Q1 and Q2 are trace equivalent, hence the two
distributions describing the a-continuations of P1 and P2 are trace equivalent too.
However, if we consider the resolution of P1 starting with z1 in the rightmost part
of Fig. 5, in which trace α = a a′b is executable with degree d1 ⊗ d̂⊗ d̂, we have
that no resolution of P2 is capable of matching it, as the executability degree of
α would be (d1 ⊕ d2) ⊗ d̂ ⊗ d̂ or 0D, unless D = B in which case d1 = d2 = >
and d1 ⊕ d2 = > ∨ > = >. As can be noted, the considered resolution of P1

is not coherent because tr(TDfc
2 (Q1)) = {{ε, a′, a′b}, {ε, a′, a′c}} = tr(TDfc

2 (Q2))
but tr(TDfc

2 (z′1)) = {{ε, a′, a′b}} 6= {{ε, a′, a′c}} = tr(TDfc
2 (z′′1 )).

4 Axiomatizations of Behavioral Metaequivalences

In this section, we incrementally provide axioms in the UProC language for
the four behavioral metaequivalences defined over the ULTraS metamodel.
Since these axioms do not depend on any specific reachability-consistent semi-
ring (D,⊕,⊗, 0D, 1D), nor on any specific D-measure schema M, from now on
we omitM from trace metaequivalence symbols. Within examples, we will some-
times use subterms of the form a . 0 as abbreviation of a . (d̂ .0), where the same

value d̂ ∈ D \ {0D} is employed in all those subterms.
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We start with the core axioms and the basic normal form used for all the
metaequivalences (Sect. 4.1), then we single out additional axioms for ∼post

B

(Sect. 4.2) and ∼pre
B (Sect. 4.3) on the one hand, as well as different additional

axioms for ∼post
T (Sect. 4.4) and ∼pre

T on the other hand. Before presenting
soundness and completeness results, each set of axioms will be either compared
with those known in the literature for specific classes of processes, or mentioned
to yield the first equational characterization in a certain setting. Because of the
absence of a completeness result, the axioms for∼pre

T require further investigation
and are not shown in the paper due to lack of space.

4.1 Core Axioms: Associativity, Commutativity, Neutral Element

Thanks to the format of the semantic rules in Sect. 3 and the associativity
and commutativity of ⊕, for each metaequivalence the two UProC operators
+ and +◦ turn out to be associative and commutative – hence we can use their
generalized versions respectively denoted by

∑
and

∑
◦ – with 0 being the neutral

element for operator +. Our starting point is thus a deduction system A that,
in addition to reflexivity, symmetry, transitivity, and substitutivity, is based on
the following core axioms:

(A1) (P1 + P2) + P3 = P1 + (P2 + P3)

(A2) P1 + P2 = P2 + P1

(A3) P + 0 = P

(A4) (D1 +◦ D2) +◦ D3 = D1 +◦ (D2 +◦ D3)

(A5) D1 +◦ D2 = D2 +◦ D1

Axioms A1 to A3 are typical of nondeterministic process calculi [36], while
axioms A4 and A5 encode those typical of probabilistic process calculi [29,4].
The latter calculi usually employ a probabilistic choice operator p+, so that asso-
ciativity is represented as (P ′ p+P ′′) q+P ′′′ = P ′ p·q+ (P ′′ (1−p)·q/(1−p·q)+P ′′′)
and commutativity is represented as P ′ p+P ′′ = P ′′ 1−p+P ′, with p, q ∈ R]0,1[.
In A4 and A5, probabilities decorating operators like p+ are instead expressed
by degrees within distributions, which avoids calculations when moving between
the two distribution terms of either axiom.

To prove the completeness of the equational characterizations for the var-
ious metaequivalences, we introduce as usual a normal form to which each
term is shown to be reducible, then we work with normal forms only. Extend-
ing [36], we say that P ∈ P is in sum normal form (snf) iff it is equal to 0 or∑
i∈I ai . (

∑
◦ j∈Ji di,j . Pi,j) where I and Ji are finite nonempty index sets and

every Pi,j is in snf. The axiom system A is sufficient for snf reducibility.

Lemma 1. Let P ∈ P. Then there exists Q ∈ P in snf such that A ` P = Q.
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4.2 Equational Characterization of ∼post
B : Idempotency

The additional laws for ∼post
B are given by the following idempotency-related

axioms, where we emphasize in boldface the occurrences of identical subterms:

(Apost
B,1 ) P + P = P

(Apost
B,2 ) d1 . P +◦ d2 . P = (d1 ⊕ d2) . P

Axiom Apost
B,1 expresses idempotency of choice and is typical of bisimilarity

over nondeterministic process calculi [36]. Axiom Apost
B,2 expresses a summation-

based variant of idempotency that involves operator . too; it encodes the axioms
typical of bisimilarity over probabilistic process calculi [29,4], i.e., P p+P = P ,
and over stochastic process calculi [27,26], i.e., λ1 . P + λ2 . P = (λ1 + λ2) . P
with λ1, λ2 ∈ R>0 being rates of exponential distributions. The two axioms
are in agreement with those developed in the coalgebraic framework of [43] for
various classes of probabilistic processes possibly including nondeterminism.

It is immediate to establish the soundness with respect to ∼post
B of the de-

duction system Apost
B obtained from A by adding the two idempotency-related

axioms Apost
B,1 and Apost

B,2 .

Theorem 2. Let P1, P2 ∈ P. If Apost
B ` P1 = P2, then P1 ∼post

B P2.

As far as the completeness of Apost
B with respect to ∼post

B is concerned, we
exploit Lemma 1, i.e., reducibility to snf.

Theorem 3. Let P1, P2 ∈ P. If P1 ∼post
B P2, then Apost

B ` P1 = P2.

Corollary 1. Let P1, P2 ∈ P. Then P1 ∼post
B P2 iff Apost

B ` P1 = P2.

4.3 Equational Characterization of ∼pre
B : B-Shuffling

When P1 ∼post
B P2, every a-transition of either term is matched by an a-transition

of the other with respect to all sets of equivalence classes, so that the target
distributions ∆1 and ∆2 of the two a-transitions satisfy ∆1 ∼post

B ∆2. If instead
P1 ∼pre

B P2, every a-transition of either term is matched by an a-transition of
the other with respect to a specific set of equivalence classes, hence ∆1 ∼pre

B ∆2

is not necessarily true.
This is witnessed by the example shown in Fig. 1, which yields the balanced

equality a . (d1 . P1 +◦ d2 . P2) + a . (d2 . P1 +◦ d1 . P3) + a . (d1 . P2 +◦ d2 . P3) =
a . (d2 . P1 +◦ d1 . P2) + a . (d1 . P1 +◦ d2 . P3) + a . (d2 . P2 +◦ d1 . P3) where d1, d2
and P1, P2, P3 are shuffled within either term, while only d1 and d2 are shuffled
across the two terms too. An example of unbalanced equality – with unbalanced
meaning that the number of +◦ -summands is not the same within all a-summands
– is given by a . (d1 . P1) + a . (d2 . P1 +◦ d1 . P2) + a . (d2 . P2) = a . (d2 . P1) +
a . (d1 . P1 +◦ d2 . P2) + a . (d1 . P2).
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(Apre
B,1)

∑
i∈I1

a . (
∑
◦

j∈J1,i

d1,i,j . P1,i,j) =
∑
i∈I2

a . (
∑
◦

j∈J2,i

d2,i,j . P2,i,j)

subject to:
for all i1 ∈ I1 and J1 ⊆ J1,i1 s.t. (j ∈ J1 ∧ P1,i1,k = P1,i1,j) =⇒ k ∈ J1

there exist i2 ∈ I2 and J2 ⊆ J2,i2 s.t. (j ∈ J2 ∧ P2,i2,k = P2,i2,j) =⇒ k ∈ J2

such that the following three constraints are met:
1. ∀j1 ∈ J1. (∃j2 ∈ J2. P1,i1,j1 = P2,i2,j2 ∨ @j2 ∈ J2,i2 . P1,i1,j1 = P2,i2,j2)
2. {P1,i1,j | j ∈ J1} ⊇ {P2,i2,j | j ∈ J2}
3.

⊕
j∈J1

d1,i1,j =
⊕

j∈J2
d2,i2,j

and also the condition obtained by exchanging i1, J1 with i2, J2 is satisfied

Table 1. Axiom characterizing ∼pre
B

In the identifications made possible by ∼pre
B , no regularity can be assumed

in general about the number of a-summands (internal nondeterminism) and
the number of +◦ -summands inside every a-summand. The two identifications
exemplified above turn out to be among the simplest instances of the B-shuffling
axiom in Table 1 characterizing the identification power of ∼pre

B , where I1, J1,i,
J1, I2, J2,i, J2 are finite nonempty index sets and we emphasize in boldface the
occurrences of identical actions.

All +-summands on both sides of the axiom start with the same action a.
For each a-summand on the lefthand side indexed by i1 and on the righthand
side indexed by i2, in the three constraints we use the maximal subsets J1 of
J1,i1 and J2 of J2,i2 whose elements index all the occurrences of certain process
terms, so as to consider every set of equivalence classes of process terms reached
after performing a. More precisely:

1. The first constraint guarantees that, for each equivalence class C such that
(i) C is reached via the a-summand on the lefthand side indexed by i1 and
(ii) the a-derivative terms in C are all indexed by elements of J1, it holds that
either C is reached also via the a-summand on the righthand side indexed
by i2 and the a-derivative terms in C are all indexed by elements of J2, or
C is not reachable at all as no P2,i2,j2 belongs to it.

2. The second constraint ensures that the elements of J2 do not index process
terms of further equivalence classes with respect to those singled out by J1.
It cannot be expressed as {P1,i1,j | j ∈ J1} = {P2,i2,j | j ∈ J2} otherwise
a . (d . P1 +◦ d . P2) = a . (d . P1) + a . (d . P2) subject to d = d ⊕ d would
not be derivable because, for J1 indexing both P1 and P2, we would have J2
indexing at most one of those two a-derivative terms.

3. The maximality of J1 and J2 with respect to the process terms indexed
by their elements, together with the first two constraints, causes the third
constraint to state that, for an arbitrary set of equivalence classes identified
by J1, this set is reached via a with the same overall D-value from both the
a-summand on the lefthand side indexed by i1 and the a-summand on the
righthand side indexed by i2.
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The B-shuffling axiom Apre
B,1 subsumes the following laws that we have already

encountered:

– Apost
B,1 , because in P +P each subterm a .D+a .D composed of two identical

summands placed next to each other can be trivially equated to subterm
a .D of P via Apre

B,1.

– Apost
B,2 , because a . (d1.P +◦ d2.P ) can be trivially equated to a . ((d1⊕d2).P )

via Apre
B,1.

– a .D1 + a .D2 = a . (D1 +◦ D2) under the same conditions as Apre
B,1.

We also point out that Apre
B,1 yields the first axiomatization for the bisimilarities

over nondeterministic and probabilistic processes studied in [13,45], which have
the interesting property of being characterized by the probabilistic modal and
temporal logics of [33,25].

We now show that Apre
B , the deduction system obtained from A by adding the

B-shuffling axiom Apre
B,1, is sound and complete with respect to ∼pre

B by exploiting
again Lemma 1.

Theorem 4. Let P1, P2 ∈ P. If Apre
B ` P1 = P2, then P1 ∼pre

B P2.

Theorem 5. Let P1, P2 ∈ P. If P1 ∼pre
B P2, then Apre

B ` P1 = P2.

Corollary 2. Let P1, P2 ∈ P. Then P1 ∼pre
B P2 iff Apre

B ` P1 = P2.

4.4 Equational Characterization of ∼post
T : Choice Deferral

The additional identification power of ∼post
T with respect to ∼post

B is given by the
choice-deferring axioms in Table 2, where D may have an empty support (abuse
of notation), J is a finite nonempty index set, and we emphasize in boldface the
occurrences of noteworthy subterms, actions, and operators.

Axiom Apost
T,1 expresses the deferral of a nondeterministic choice. Its simplest

instance a . (d.P ′) +a . (d.P ′′) = a . (d. (P ′+P ′′)) is reminiscent of the axiom
typical of trace equivalence over nondeterministic process calculi [18,39] and is in
agreement with axioms in the coalgebraic setting of [17]. The axiom would not be
valid if several distinct terms were considered in either +◦ -choice, as for instance
a . (d1.P

′
1 +◦ d2.P ′2)+a . (d1.P

′′
1 +◦ d2.P ′′2 ) 6∼post

T a . (d1.(P ′1+P ′′1 ) +◦ d2.(P ′2+P ′′2 ))
because on the righthand side a resolution of P ′1 and a resolution of P ′′2 could be
jointly taken into account whereas this is not possible on the lefthand side.

The condition to which Apost
T,1 is subject is necessary because, whenever

P ′ + P ′′ has the same initial actions as a term P in the support of D, then
all resolutions of the righthand side term of the axiom have to satisfy the first
coherency constraint of Def. 8 with respect to P ′ + P ′′ and P , whereas this is
not the case for the resolutions of the lefthand side term of the axiom, thus ham-
pering resolution matching. This can be seen, for D given by d′ . (b . 0 + c . 0),
by considering the two process terms a . (D+◦ d . (b . 0)) + a . (D+◦ d . (c . 0)) and
a . (D+◦ d. (b . 0+c . 0)), because after performing a every resolution of the latter
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(Apost
T,1 ) a . (D+◦ d . P ′) + a . (D+◦ d . P ′′) = a . (D+◦ d . (P ′ + P ′′))

if init(P ′ + P ′′) 6= init(P ) for all P ∈ supp(D), unless init(P ′) = init(P ′′)

(Apost
T,2 ) a . (D+◦ d1 . (

∑
j∈J

bj .D1,j) +◦ d2 . (
∑
j∈J

bj .D2,j))

= a . (D+◦ (d1 ⊕ d2) . (
∑
j∈J

bj . (D′
1,j +◦ D′

2,j)))

if for i = 1, 2 there exists d′i ∈ D such that (d1 ⊕ d2)⊗ d′i = di,
where D′

i,j = d′i ⊗Di,j

Table 2. Axioms characterizing ∼post
T

can execute either b or c with degree d′ ⊕ d due to coherency, while the former
has resolutions in which both b and c are executable after a, which therefore
cannot be matched. The condition is not needed only if P ′ and P ′′ share the
same initial actions.

Axiom Apost
T,2 expresses instead the deferral of a distribution choice. The de-

grees d1 and d2 in it may be different and are summed up anyhow, instead
of being equal and preserved like in Apost

T,1 . This is analogous to what happens

with the two idempotency-related axioms, as Apost
B,1 preserves degrees while Apost

B,2

sums them up. The Apost
T,2 instance a . (d1 . (b . (1D . P1)) +◦ d2 . (b . (1D . P2))) =

a . (1D . b . (d1 . P1 +◦ d2 . P2)), for d1 ⊕ d2 = 1D, is reminiscent of identifications
typical of trace equivalence over fully probabilistic processes [29].

We observe that there is no connection with the axiomatization of trace
semantics for nondeterministic and probabilistic processes in [37], because the
equivalence considered there is the simulation equivalence that turns out to be
the coarsest (with respect to parallel composition) congruence [35] contained in
the trace equivalence of [41]. There is some relationship with the axiomatization
of trace semantics developed for fully probabilistic processes in the coalgebraic
framework of [44], even though only complete traces are considered there. Since
we are not aware of any other axiomatization related to probabilistic trace se-
mantics, ours seems to be the first one that can be applied to the probabilistic
trace equivalences of [29,41].

The embedding in the action prefix context a . (D+◦ ) of both distribution
terms on the two sides of Apost

T,2 is due to the fact that the two distribution terms

themselves are not necessarily identified by ∼post
T . For instance, the probabilistic

terms P ′1, P ′′1 , and P2 respectively given by b . (0.5 . (c1 . 0 + c . 0) +◦ 0.5 . (c2 . 0)),
b . (0.5 . (c1 . 0) +◦ 0.5 . (c . 0 + c2 . 0)), and b . (0.25 . (c1 . 0 + c . 0) +◦ 0.25 . (c2 . 0) +◦
0.25 . (c1 . 0) +◦ 0.25 . (c . 0 + c2 . 0)) are pairwise ∼post

T -inequivalent, hence so are
the distribution terms D1 and D2 respectively given by 0.5 . P ′1 +◦ 0.5 . P ′′1 and
1 . P2, but a .D1 ∼post

T a .D2 as correctly captured by Apost
T,2 .

We now show thatApost
T , the deduction system obtained fromApost

B by adding

the two choice-deferring axioms Apost
T,1 and Apost

T,2 , is sound with respect to ∼post
T .
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Theorem 6. Let P1, P2 ∈ P. If Apost
T ` P1 = P2, then P1 ∼post

T P2.

As far as completeness is concerned, we extend to UProC the technique used
in [5,48] for nondeterministic processes. It reduces the problem of establishing
the completeness of an axiomatization on arbitrary terms with respect to some
behavioral equivalence ∼ (which in our case is ∼post

T ) to the problem of estab-
lishing the completeness of the same axiomatization on terms in a ∼-specific
normal form with respect to bisimilarity (which in our case is ∼post

B ).

We use each of the choice-deferring axioms Apost
T,1 and Apost

T,2 as a graph rewrit-
ing rule (applied to the ULTraS model underlying the considered UProC term)
that transforms its lefthand side into its righthand side. Given P ∈ P, we then
say that it is in ∼post

T -snf iff it is equal to 0 or
∑
i∈I ai . (

∑
◦ j∈Ji di,j .Pi,j) where

I and Ji are finite nonempty index sets, Apost
T,1 is not applicable to any pair of

+-summands starting with the same action, Apost
T,2 is not applicable to any pair

of +◦ -summands sharing the same initial actions, and every Pi,j is in ∼post
T -snf.

Lemma 2. Let P ∈ P. Then there exists Q ∈ P in ∼post
T -snf such that Apost

T `
P = Q.

The completeness of Apost
T holds only for reachability-consistent semirings

whose support D always admits the existence of values d′i that make Apost
T,2

applicable in the presence of any distribution term complying with the one on
the lefthand side of the axiom. This is the case with B and R≥0, but not with N,
because for instance a . (5. (b . (2.P1)) +◦ 2. (b . (3.P2)) +◦ 6. (b . (5.P3))) would
be equated to a . (13 . (b . ( 10

13 . P1 +◦ 6
13 . P2 +◦ 30

13 . P3))) where 10
13 ,

6
13 ,

30
13 /∈ N.

To achieve completeness over N, we should add to Apost
T some further axiom

equating for instance a . (5 . (b . (2 . P1)) +◦ 2 . (b . (3 . P2)) +◦ 6 . (b . (5 . P3))) to
a . (1.(b . (2.P1)) +◦ 8.(b . (3.P2)) +◦ 4.(b . (5.P3))) for suitable P1, P2, P3 such as
0, because in both terms the degree of executability of trace a is 13 and the one of
trace a b is 46. In the following, for the sake of brevity we denote with Dpost

T,2 the
predicate asserting that a reachability-consistent semiring is considered whose
support D always enables the applicability of Apost

T,2 .

Lemma 3. Let P1, P2 ∈ P in ∼post
T -snf. Then P1 ∼post

T P2 iff P1 ∼post
B P2 under

condition Dpost
T,2 .

Theorem 7. Let P1, P2 ∈ P. If P1 ∼post
T P2, then Apost

T ` P1 = P2 under

condition Dpost
T,2 .

Corollary 3. Let P1, P2 ∈ P. Then P1 ∼post
T P2 iff Apost

T ` P1 = P2 under

condition Dpost
T,2 .

5 Conclusions

We have incrementally developed general axiomatizations of bisimulation and
trace semantics by working with the corresponding post-/pre-metaequivalences
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on UProC terms. We have also revised according to [8,9] the notion of resolution
of nondeterminism – originally introduced in [7] for the ULTraS metamodel –
to ensure the inclusion of ∼post

B in ∼post
T as well as the full compositionality of

action prefix for both trace metaequivalences ∼post
T and ∼pre

T .
We plan to expand our axiomatizations to exhibit also the general laws for

static process operators, such as the expansion law for parallel composition, and
recursion. It would then be interesting to search for general axiomatizations of
other semantics in the branching-time – linear-time spectrum, including weak
ones. However, we believe that the most challenging open problems are (i) the
investigation of the completeness of the axiomatization of ∼pre

T and (ii) the exten-

sion of the axiomatization of ∼post
T for achieving completeness over reachability-

consistent semirings like N for which axiom Apost
T,2 is not always applicable.

We finally observe that our general approach has allowed us to discover the
first axiomatization of a behavioral equivalence in several situations. This is
important because, when moving from nondeterministic processes to processes
including also probabilistic and timing aspects, there are several different ways of
defining the same semantics – of which the post-/pre-approaches are two notable
options – and the spectrum consequently becomes much more variegated, as
shown for instance in [12]. In this respect, the ULTraS metamodel has thus
proven to be a useful tool.
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A Equational Characterization of ∼pre
T : T-Shuffling

When P1 ∼post
T P2, every resolution of either term is matched by a resolution

of the other with respect to all traces. However, unlike ∼post
B , the target distri-

butions ∆1 and ∆2 of the initial transitions of two matching resolutions do not
necessarily satisfy ∆1 ∼post

T ∆2, as can be seen from the discussion in Sect. 4.4
about the embedding in an action prefix context of the distribution terms occur-
ring in Apost

T,2 . If instead P1 ∼pre
T P2, every resolution of either term is matched

by a resolution of the other with respect to a specific trace α.

One may therefore expect that the axioms characterizing ∼pre
T are capable of

splitting a distribution D into an alternative composition among its embedded
process terms, thus leading to a . (D1 +◦ D2) = a .D1+a .D2 that we have already
encountered towards the end of Sect. 4.3. Like for ∼pre

B , such an identification is
not valid in general as we need to impose

⊕
(D1 +◦ D2) =

⊕
D1 =

⊕
D2 to

ensure that trace a has the same executability degree in the various resolutions
of the two process terms. We can say that both ∼pre

B and ∼pre
T establish a connec-

tion between the two UProC operators + and +◦ , expressed by the conditional
transformability of one into the other, which holds for instance when D = B.

The identification power of ∼pre
T is actually more general than the aforemen-

tioned conditional transformability, as well as different from the one of ∼pre
B due

to Prop. 1(4). It is given by a shuffling capability distinct from the one of ∼pre
B

because, while ∼pre
B focuses on sets of equivalence classes that are reachable in

one step, ∼pre
T has to take into account degrees of multistep reachability.

For example, the process terms a . (d.(b1 . 0) +◦ d.(b2 . 0))+a . (d.(b3 . 0) +◦ d.
(b4 . 0)) and a . (d.(b1 . 0) +◦ d.(b3 . 0))+a . (d.(b2 . 0) +◦ d.(b4 . 0)) are considered
equivalent to each other and to a . (d . (b1 . 0 + b2 . 0) +◦ d . (b3 . 0 + b4 . 0)) by
∼pre

T , but told apart by ∼pre
B . In constrast, in Fig. 1, where s1 ∼pre

B s2, we
have s1 ∼pre

T s2 if the sets of actions labeling the transitions departing from
r1, r2, r3 are disjoint from each other. However, if each of r1 and r2 has a b-
transition towards a singleton distribution whose support contains a terminal
state reached with degree d′b from r1 and d′′b from r2, then it may hold that
s1 6∼pre

T s2. This is the case when the executability degrees (d1 ⊗ d′b)⊕ (d2 ⊗ d′′b )
and (d2 ⊗ d′b) ⊕ (d1 ⊗ d′′b ) of trace a b – which we assume not to be executable
via r3 – are different from each other as well as from d1 ⊗ d′b and d2 ⊗ d′′b .

In the T-shuffling axiom for ∼pre
T in Table A, we let I1, J1,i, J1, I2, J2,i, J2

be finite nonempty index sets and der(P, b) = {D ∈ D | P has a b .D summand}
and we emphasize in boldface the occurrences of identical actions.

The first condition guarantees that the executability degree of trace a in
any resolution of the term on either side of the axiom is always matched by
a resolution of the term on the other side of the axiom. The necessity of this
condition can be understood from the case in which all P1,i,j and P2,i,j terms
are 0, as the set of actions initially executable by those terms would be empty
and hence the second condition would be trivially satisfied.

The second condition takes care of all the other traces starting with a. For
each possible action b following a in a trace executable by either term on the two
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(Apre
T,1)

∑
i∈I1

a . (
∑
◦

j∈J1,i

d1,i,j . P1,i,j) =
∑
i∈I2

a . (
∑
◦

j∈J2,i

d2,i,j . P2,i,j)

subject to:
for all i1 ∈ I1 there exists i2 ∈ I2 such that

⊕
j∈J1,i1

d1,i1,j =
⊕

j∈J2,i2
d2,i2,j

and also the condition obtained by exchanging i1 with i2 is satisfied
and:

for each b ∈
⋃

i∈I1

⋃
j∈J1,i

init(P1,i,j) it holds that:

for all i1 ∈ I1, J1 ⊆ {j ∈ J1,i1 | b ∈ init(P1,i1,j)}, (D1,i1,j;b)j∈J1 ∈ Xj∈J1der(P1,i1,j , b)
satisfying (j ∈ J1 ∧ (init(P1,i1,k) = init(P1,i1,j) ∨ init(P1,i1,k) = {b})) =⇒ k ∈ J1

there exist i2 ∈ I2, J2 ⊆ {j ∈ J2,i2 | b ∈ init(P2,i2,j)}, (D2,i2,j;b)j∈J2 ∈ Xj∈J2der(P2,i2,j , b)
satisfying (j ∈ J2 ∧ (init(P2,i2,k) = init(P2,i2,j) ∨ init(P2,i2,k) = {b})) =⇒ k ∈ J2

such that the following constraint is met:∑
◦ j∈J1

d1,i1,j ⊗D1,i1,j;b =
∑
◦ j∈J2

d2,i2,j ⊗D2,i2,j;b

and also the condition obtained by exchanging i1, J1 with i2, J2 is satisfied
and also the condition obtained by starting from b ∈

⋃
i∈I2

⋃
j∈J2,i

init(P2,i,j) is satisfied

Table 3. Axiom characterizing ∼pre
T

sides of the axiom, the second condition checks whether that trace is executable
with the same degree from the other term. To this purpose, we proceed as follows:

– In either term, we consider all possible subsets of a-derivative process terms
enabling b – respectively indexed by J1 and J2 – that fulfill the two coherency
constraints of Def. 8. For the first constraint, we require that if a term belongs
to the subset, then so do all derivative terms with the same initial actions
as that term. For the second constraint, we require that if a derivative term
enables only b, then that term must belong to the subset.

– The corresponding tuples (D1,i1,j;b)j∈J1 and (D2,i2,j;b)j∈J2 of b-derivative
distributions are taken from the Cartesian product of the b-derivative sets of
the various a-derivative process terms, with any such set not being a singleton
in the presence of internal nondeterminism, i.e., of several b-actions enabled
by the corresponding a-derivative term.

– The constraint to meet by any pair of matching subsets of a-derivative pro-
cess terms requires that after performing trace a b the same distribution is
reached with the same degree

⊕
j∈J1(d1,i1,j⊗

⊕
D1,i1,j;b) =

⊕
j∈J2(d2,i2,j⊗⊕

D2,i2,j;b). This is jointly expressed by +◦ -summing up the b-derivative dis-
tributions of the considered a-derivative process terms, with all D-values
at the beginning of each b-derivative distribution being ⊗-multiplied by the
D-value .-prefixing the corresponding a-derivative term.

The simplest instance of Apre
T,1 is a . (d.P ′)+a . (d.P ′′) = a . (d.P ′+◦ d.P ′′)

subject to d = d⊕d, thus leading to a . (d.(P ′+P ′′)) = a . (d.P ′+◦ d.P ′′) subject
to d = d ⊕ d due to Apost

T,1 and transitivity, which amounts to the capability
of splitting a term belonging to the support of a target distribution into its
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summands. The T-shuffling axiom Apre
T,1 not only subsumes the two idempotency-

related axioms Apost
B,1 and Apost

B,2 like the B-shuffling axiom Apre
B,1, but also the two

choice-deferring axioms Apost
T,1 and Apost

T,2 :

– For Apost
T,1 , we observe that (i) trace a can be executed with the same degree

d⊕
⊕
D both in either summand on the lefthand side and on the righthand

side and (ii) any longer trace passes through either P ′ or P ′′ with the same
multistep degree on both sides.

– For Apost
T,2 , we observe that (i) trace a can be executed with the same degree

d1⊕d2⊕
⊕
D on both sides and (ii) any trace a bj reaches d1⊗D1,j +◦ d2⊗D2,j

on the lefthand side and (d1⊕ d2)⊗ (d′1⊗D1,j +◦ d′2⊗D2,j) on the righthand
side, which are equal to each other as (d1 ⊕ d2)⊗ d′i = di for i = 1, 2.

It is worth noting thatApre
T,1 paves the way to the first axiomatization for the trace

equivalence over nondeterministic and probabilistic processes studied in [11],
which has interesting congruence properties with respect to parallel composition.

We now prove that Apre
T , the deduction system obtained from A by adding

the T-shuffling axiom Apre
T,1, is sound with respect to ∼pre

T .

Theorem 8. Let P1, P2 ∈ P. If Apre
T ` P1 = P2, then P1 ∼pre

T P2.

The combinatorial nature of Apre
T,1 makes the graph rewriting technique used

in [5,48] inapplicable to this axiom, hence the completeness of Apre
T is hard to

establish. Note that the situation is quite different from the one of Apre
B , where

in the study of completeness the combinatorial nature of Apre
B,1 is compensated

for by the coinductive nature of ∼pre
B .
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B Proofs of Results

Proof of Prop. 1.
Given a reachability-consistent semiring (D,⊕,⊗, 0D, 1D), a D-ULTraS U =
(S,A,−→U ), and a D-measure schema M for U , we proceed as follows:

1. See the proof of Prop. 3.5(1) of [7].

2. See the proof of Prop. 3.5(2) of [7]. Unlike bisimulation semantics, in the
absence of internal nondeterminism we have that ∼post

T,M and ∼pre
T,M do not

necessarily coincide. This can be seen by considering a B-ULTraS starting
with an a-transition that reaches a distribution with two states respectively
having a b-transition and a c-transition, together with another B-ULTraS
starting with a choice between two a-transitions respectively followed by
a b-transition and a c-transition. Their initial states are distinguished by
∼post

T,Mnd
but identified by ∼pre

T,Mnd
(see Fig. 1 of [7], where s1 6∼post

T,Mnd
s2

while s1 ∼pre
T,Mnd

s2).

3. We show that, from (s1, s2) ∈ B for some post-bisimulation B, it follows that
(?) for each Z1 = (Z1, A,−→Z1

) ∈ Resc(s1) – resp. Z2 = (Z2, A,−→Z2
) ∈

Resc(s2) – there exists Z2 = (Z2, A, −→Z2
) ∈ Resc(s2) – resp. Z1 = (Z1, A,

−→Z1) ∈ Resc(s1) – such that for all α ∈ A∗ it holds that:
M(zs1 , α, Z1) = M(zs2 , α, Z2)

Starting from s1, we focus on an arbitrary Z1 = (Z1, A,−→Z1
) ∈ Resc(s1),

which we assume not to consist of a single state without transitions to
avoid trivial cases. Let zs1

a−→Z1
∆1 be the initial transition of Z1, which

we assume to derive from s1
a−→U Γ1. Since (s1, s2) ∈ B and B is a post-

bisimulation, there must exist Z2 = (Z2, A,−→Z2
) ∈ Resc(s2) with initial

transition zs2
a−→Z2

∆2, which we assume to derive from s2
a−→U Γ2, such

that, in particular, for each C ⊆ Z1 ∪Z2 whose image via corrZ1
∪ corrZ2

is
an equivalence class in S/B, it holds that:

∆1(C) = Γ1(corrZ1(C ∩ Z1)) = Γ2(corrZ2(C ∩ Z2)) = ∆2(C)
Among all the resolutions in Resc(s2) satisfying the equality above, we choose
as Z2 one that can execute all the traces of Z1 (which must exist otherwise
s1 could execute a trace not executable by s2 and hence s1 ∼post

B s2 would
be contradicted) and only those traces (longer traces can be ruled out via
pruning). Given an arbitrary α ∈ A∗, we prove property (?) by proceeding
by induction on |α| ∈ N:

– If |α| = 0, i.e., α = ε, then it trivially holds that:
M(zs1 , α, Z1) = 1D = M(zs2 , α, Z2)

– Let |α| = n+1 for some n ∈ N, with α = a′ α′ and |α′| = n, and suppose
that property (?) holds for each trace of length n when starting from
two post-bisimilar states. There are two cases:

• If a′ 6= a, since both Z1 and Z2 start with an a-transition, it trivially
holds that:

M(zs1 , α, Z1) = 0D = M(zs2 , α, Z2)
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• If a′ = a, we observe that an arbitrary C ⊆ Z1 ∪ Z2, whose image
via corrZ1

∪ corrZ2
is an equivalence class in S/B, is either reach-

able via both a-transitions, or via neither; moreover, thanks to the
coherency of Z1 and Z2, either α′ is executable in all the states of
C, or in none of them (this does not necessarily hold in the case
of a set of classes). Let G be the set of subsets of Z1 ∪ Z2, whose
images via corrZ1

∪ corrZ2
are equivalence classes in S/B, that are

reachable via both a-transitions (hence G is finite) and in which
α′ is executable; note that the other subsets do not contribute to
M(zs1 , α, Z1) andM(zs2 , α, Z2). For each C ∈ G, given an arbitrary
zC,1 ∈ C ∩ supp(∆1) and an arbitrary zC,2 ∈ C ∩ supp(∆2) whose
corresponding states in S are sC,1 and sC,2, since sC,1 ∼post

B sC,2 and
|α′| = n by the induction hypothesis and the coherency of Z1 and
Z2 we have that:

M(zC,1, α
′, Z1) = M(zC,2, α

′, Z2)
As a consequence, by the distributivity of ⊗ over ⊕ and the compo-
sitionality of equality with respect to both operations, we have that:

M(zs1 , α, Z1) =
⊕
C∈G

(∆1(C)⊗M(zC,1, α
′, Z1))

=
⊕
C∈G

(∆2(C)⊗M(zC,2, α
′, Z2))

= M(zs2 , α, Z2)
where finitely many D-values occur in both summations because G
is finite.

4. If we consider a B-ULTraS starting with a choice between two a-transitions
respectively followed by a b-transition and a c-transition, together with an-
other B-ULTraS starting with an a-transition followed by a choice between
a b-transition and a c-transition, then their initial states are distinguished by
∼pre

B but identified by ∼post
T,Mnd

and ∼pre
T,Mnd

(see Fig. 1 of [7], where s2 6∼pre
B s3

while s2 ∼post
T,Mnd

s3 and s2 ∼pre
T,Mnd

s3).

On the other hand, in Fig. 1 it holds that s1 ∼pre
B s2 whereas s1 6∼post

T,M s2;

moreover s1 6∼pre
T,M s2 if r1 (resp. r2) has a b-transition that reaches with

degree d′b (resp. d′′b ) a terminal state, whenever degrees (d1⊗ d′b)⊕ (d2⊗ d′′b )
and (d2⊗ d′b)⊕ (d1⊗ d′′b ) associated with trace a b – which we assume not to
be executable via r3 – are different from each other as well as from d1 ⊗ d′b
and d2 ⊗ d′′b .

Proof of Thm. 1.
Let P1 ∼M P2 and D1 ∼M D2 for ∼M ∈ {∼post

B ,∼pre
B ,∼post

T,M,∼
pre
T,M}:

1. From d.P1 7−→ {(P1, d)} = ∆1 and d.P2 7−→ {(P2, d)} = ∆2, it follows that
∆1(C) = ∆2(C) = d for the only equivalence class containing P1 and P2,
while ∆1(C) = ∆2(C) = 0D for all the other classes C ∈ P/∼M. This means
that d . P1 ∼M d . P2.

2. From D1 ∼M D2, it follows that ∆1(C) = ∆2(C) for all C ∈ P/∼M, with
D1 7−→ ∆1 and D2 7−→ ∆2. Assuming D 7−→ ∆, we have that D1 +◦ D 7−→
∆1 ⊕ ∆ and D2 +◦ D 7−→ ∆2 ⊕ ∆ with (∆1 ⊕ ∆)(C) = ∆1(C) ⊕ ∆(C) =
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∆2(C)⊕∆(C) = (∆2 ⊕∆)(C) for all C ∈ P/∼M, i.e., D1 +◦ D ∼M D2 +◦ D.
The proof of D+◦ D1 ∼M D+◦ D2 is analogous.

3. From D1 ∼M D2, it follows that ∆1(C) = ∆2(C) for all C ∈ P/∼M,
with D1 7−→ ∆1 and D2 7−→ ∆2, hence in particular it holds that for each
P1 ∈ supp(∆1) there must exist P2 ∈ supp(∆2) such that P1 ∼M P2, and
vice versa.
If ∼M ∈ {∼post

B ,∼pre
B }, we proceed as in the proof of Thm. 4.1 of [7], after

observing that the starting point is a bisimulation witnessing all the afore-
mentioned ∼M-identifications between processes in supp(∆1) and processes
in supp(∆2).
If ∼M ∈ {∼post

T,M,∼
pre
T,M}, the only interesting case is the one in which we

consider a trace of the form α = aα′ ∈ A∗ and for k ∈ {1, 2} a resolution
Zk = (Zk, A,−→Zk) ∈ Resc(a .Dk) that starts with an a-transition. This a-
transition reaches with degree dC = ∆k(C) the set of processes in Zk whose
corresponding original processes via corrZk are in the same equivalence class
C ∈ P/∼M. The reason is that, thanks to the coherency of Zk, two pro-
cesses in the support of the target distribution of the considered a-transition
of Zk must possess the same traces if so do their corresponding processes in
supp(∆k), as is the case with the processes in C.
Given Pk,C ∈ C ∩ supp(∆k) for some C ∈ P/∼M and Zk,C = (Zk,C , A,
−→Zk,C ) ∈ Resc(Pk,C) part of Zk, for any other P ′k,C ∈ C ∩ supp(∆k) we
observe that Z ′k,C = (Z ′k,C , A,−→Z′k,C ) ∈ Resc(P ′k,C) part of Zk must match

Zk,C with respect to all traces as Pk,C ∼M P ′k,C implies zPk,C ∼M zP ′k,C
due to the coherency of Zk and the absence of nondeterminism in Zk,C and
Z ′k,C .
Starting from a .D1, there are two cases:

– When ∼M =∼post
T,M, we have that:

M(za .D1
, α, Z1) =

⊕
C∩supp(∆1) 6=∅

(dC ⊗M(zP1,C
, α′, Z1,C))

=
⊕

C∩supp(∆2) 6=∅
(dC ⊗M(zP2,C

, α′, Z2,C))

= M(za .D2
, α, Z2)

where the existence of Z2,C = (Z2,C , A,−→Z2,C
) ∈ Resc(P2,C) match-

ing Z1,C with respect to all traces is a consequence of the existence –
mentioned at the beginning of the proof – of P2,C ∈ supp(∆2) such that
P1,C ∼post

T,M P2,C . Therefore Z2 = (Z2, A,−→Z2
) ∈ Resc(s2), which starts

with an a-transition and continues as Z2,C for P2,C ∈ C ∩ supp(∆2),
matches Z1 with respect to all traces.

– When ∼M =∼pre
T,M, we have that:

M(za .D1
, α, Z1) =

⊕
C∩supp(∆1) 6=∅

(dC ⊗M(zP1,C
, α′, Z1,C))

=
⊕

C∩supp(∆2) 6=∅
(dC ⊗M(zP2,C

, α′, Z2,C,α′))

= M(za .D2 , α, Z2,α)
where the existence of Z2,C,α′ = (Z2,C,α′ , A,−→Z2,C,α′ ) ∈ Resc(P2,C)
matching Z1,C with respect to α′ is a consequence of the existence –



Towards General Axiomatizations for Bisimilarity and Trace Semantics 29

mentioned at the beginning of the proof – of P2,C ∈ supp(∆2) such
that P1,C ∼pre

T,M P2,C . Therefore Z2,α = (Z2,α, A,−→Z2,α
) ∈ Resc(s2),

which starts with an a-transition and continues as Z2,C,α′ for P2,C ∈
C ∩ supp(∆2), matches Z1 with respect to α.

4. If ∼M ∈ {∼post
B ,∼pre

B }, we proceed as in the proof of Thm. 4.5 of [7].

If ∼M ∈ {∼post
T,M,∼

pre
T,M}, we proceed as in the proof of Thm. 4.6 of [7].

Proof of Lemma 1.
We proceed by induction on the syntactical structure of P :

– If P is 0, then the result follows by taking Q equal to 0 and using reflexivity.
– If P is a .D, i.e., a . (

∑
◦ j∈J dj . Pj) with J being a finite nonempty index

set due to the syntax rule for D, then by the induction hypothesis for all
j ∈ J there exists Qj in snf such that A ` Pj = Qj . The result follows by
substitutivity with respect to ., +◦ , and action prefix, after observing that
a .
∑
◦ j∈J dj . Qj is in snf.

– If P is P1 + P2, then by the induction hypothesis there exist Q1 and Q2

in snf such that A ` P1 = Q1 and A ` P2 = Q2. The result follows by
substitutivity with respect to choice, as Q1 +Q2 is in snf after removing via
A3 a possible 0-summand between Q1 and Q2.

Proof of Thm. 2.
A straightforward consequence of the definition of Apost

B , the fact that ∼post
B is

an equivalence relation, Thm. 1, and the fact that the lefthand side term of each
core axiom as well as of Apost

B,1 and Apost
B,2 is ∼post

B -equivalent to the term on the
righthand side of the same axiom.

Proof of Thm. 3.
Without loss of generality, we suppose that P1 and P2 are both in snf. Should
this not be the case, thanks to Lemma 1 we could find Q1 and Q2 in snf such
that Apost

B ` P1 = Q1 and Apost
B ` P2 = Q2. Due to Thm. 2, we would then

derive P1 ∼post
B Q1, hence Q1 ∼post

B P1 as ∼post
B is symmetric, and P2 ∼post

B Q2.

Since P1 ∼post
B P2, we would also derive Q1 ∼post

B Q2 as ∼post
B is transitive. As

a consequence, proving Q1 ∼post
B Q2 =⇒ Apost

B ` Q1 = Q2 would finally entail

Apost
B ` P1 = P2 by symmetry (applied to Apost

B ` P2 = Q2) and transitivity.
We thus proceed by induction on the syntactical structure of P1 in snf:

– If P1 is 0, then from P1 ∼post
B P2 and P2 in snf we derive that P2 can only

be 0, from which the result follows by reflexivity.
– If P1 is

∑
i∈I1 a1,i . (

∑
◦ j∈J1,i d1,i,j . P1,i,j), then from P1 ∼post

B P2 and P2 in

snf we derive that P2 can only be
∑
i∈I2 a2,i . (

∑
◦ j∈J2,i d2,i,j . P2,i,j).

Since P1 ∼post
B P2, for each i1 ∈ I1 there exists i2 ∈ I2 such that a2,i2 = a1,i1

and
⊕

P1,i1,j∈∪G
d1,i1,j =

⊕
P2,i2,j∈∪G

d2,i2,j for each set G of equivalence

classes, and vice versa, implying that both summands respectively indexed
by i1 and i2 have process terms in the same classes. Since the various
P1,i1,j and P2,i2,j related by ∼post

B are in snf and hence can be equated by
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Apost
B thanks to the induction hypothesis, a1,i1 . (

∑
◦ j∈J1,i1

d1,i1,j .P1,i1,j) and

a2,i2 . (
∑
◦ j∈J2,i2

d2,i2,j .P2,i2,j) can be equated by Apost
B due to substitutivity

with respect to ., +◦ , and action prefix as well as possible applications ofApost
B,2

(preceded by the necessary applications ofA4 andA5 to make identically tar-
geted +◦ -summands next to each other). Should there exist k2 ∈ I2\{i2} such
that a2,k2 = a1,i1 and

⊕
P1,i1,j

∈∪G d1,i1,j =
⊕

P2,k2,j
∈∪G d2,k2,j for each set G

of equivalence classes, due to the same reasons a2,i2 . (
∑
◦ j∈J2,i2

d2,i2,j .P2,i2,j)

and a2,k2 . (
∑
◦ j∈J2,k2

d2,k2,j . P2,k2,j) could be equated by Apost
B . The result

finally follows from substitutivity with respect to + as well as possible ap-
plications of Apost

B,1 (preceded by the necessary applications of A1 and A2 to
make identical +-summands next to each other).

Proof of Thm. 4.
A straightforward consequence of the definition of Apre

B , the fact that ∼pre
B is an

equivalence relation, Thm. 1, and the fact that the lefthand side term of each
core axiom as well as of Apre

B,1 is ∼pre
B -equivalent to the term on the righthand

side of the same axiom (under the conditions of the axiom itself in the case of
Apre

B,1).

Proof of Thm. 5.
The proof is similar to the one of Thm. 3, but when P1 is

∑
i∈I1 a1,i . (

∑
◦ j∈J1,i d1,i,j

. P1,i,j) and P2 is
∑
i∈I2 a2,i . (

∑
◦ j∈J2,i d2,i,j . P2,i,j), with both terms in snf, it

changes as follows.
Since P1 ∼pre

B P2, for each action a and for each set G of equivalence classes
it holds that for each i1 ∈ I1 there exists i2 ∈ I2 such that a1,i1 = a2,i2 = a
and

⊕
P1,i1,j

∈∪G d1,i1,j =
⊕

P2,i2,j
∈∪G d2,i2,j , and vice versa, implying that both

summands respectively indexed by i1 and i2 have process terms in
⋃
G or neither

has and that, more generally, {a1,i | i ∈ I1} = {a2,i | i ∈ I2}. Since the various
P1,i1,j and P2,i2,j related by ∼pre

B are in snf and hence can be equated by Apre
B

thanks to the induction hypothesis, all those derivative terms belonging to the
same equivalence class can be equated via Apre

B to the same process term, with
the latter being used to replace all the former within P1 and P2 to obtain P ′1 and
P ′2 in snf such that Apre

B ` P ′1 = P1 and Apre
B ` P ′2 = P2 due to substitutivity

with respect to ., +◦ , action prefix, and +.
From Thm. 4 we obtain P ′1 ∼

pre
B P1 and P ′2 ∼

pre
B P2, hence P ′1 ∼

pre
B P ′2 be-

cause P1 ∼pre
B P2 and ∼pre

B is symmetric and transitive. From P ′1 ∼
pre
B P ′2

and ∼pre
B -equivalent derivatives of P ′1 and P ′2 being identical, we then derive

Apre
B ` P ′1 = P ′2 via possible applications of Apre

B,1 to the choices among all sum-
mands in P ′1 and P ′2 starting with the same action (preceded by the necessary
applications of A1 and A2 to make those summands next to each other), followed
by substitutivity with respect to +. The result finally stems from symmetry (ap-
plied to Apre

B ` P ′1 = P1) and transitivity.

Proof of Thm. 6.
A straightforward consequence of the definition of Apost

T , the fact that ∼post
T

is an equivalence relation, Thm. 1, and Thm. 2 together with Prop. 1(3) and
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the fact that the lefthand side term of each of the axioms Apost
T,1 and Apost

T,2 is

∼post
T -equivalent to the term on the righthand side of the same axiom under the

conditions of the axiom itself.
As far as Apost

T,2 is concerned, we observe that the deferral of the distribution
choice preserves the trace distributions when moving from the lefthand side term
to the righthand side one, hence coherency fits smoothly with the deferral both
in the case in which within some D1,j1 or D2,j2 there are ∼post

T -equivalent process

terms, and in the case in which some D1,j1 is ∼post
T -equivalent to some D2,j2 .

We point out that coherency would not fit if looser coherency constraints, based
on weighted trace sets rather than trace distributions as in Def. 8, would have
been adopted. Similar to TDc(s) in Def. 6, one may define T c(s) by considering
all weighted traces executable from s at once – i.e., without keeping track of the
resolutions in which they are feasible – and use it for coherency purposes, but
then axiom Apost

T,2 would not be sound as can be seen from the example in Fig. 9
of [8].

Proof of Lemma 2.
Since the ULTraS U underlying P is a directed acyclic finite graph, the applica-
tion to U of the graph rewriting system based on Apost

T,1 and Apost
T,2 is terminating,

i.e., any reduction sequence leads in finitely many steps to a directed acyclic finite
graph U ′ that cannot be further transformed. Moreover, due to the soundness of
Apost

T,1 and Apost
T,2 with respect to ∼post

T established by Thm. 6, any graph transfor-

mation step preserves ∼post
T . Thanks to Apost

T,1 and Apost
T,2 being part of Apost

T and

substitutivity, each such step is derivable in Apost
T , to which Lemma 1 applies

too as Apost
T includes A, thereby yielding a ∼post

T -snf.

Proof of Lemma 3.
Given P1, P2 ∈ P in∼post

T -snf, we only need to prove P1 ∼post
T P2 =⇒ P1 ∼post

B P2

as the reverse implication is Prop. 1(3). Denoting with P′ the set of UProC
terms in ∼post

T -snf, the result will follow by showing that the equivalence rela-
tion below is a post-bisimulation:

B = {(Q1, Q2) ∈ P′ × P′ | Q1 ∼post
T Q2}

where with respect to Def. 2 we will consider only individual equivalence classes
because unlike pre-bisimilarity, for which addressing also sets of several equiv-
alence classes matters in terms of discriminating power, for post-bisimilarity
individual classes are sufficient.
Observing that (0, 0) ∈ B, we examine (Q1, Q2) ∈ B such that Q1 and Q2 are
both of the form

∑
i∈I ai . (

∑
◦ j∈Ji di,j .Qi,j) with I and Ji finite and nonempty.

Since Q1 ∼post
T Q2, there cannot be any action enabled by only one of the two

considered terms. Thus, in the post-bisimulation game, we can focus on an arbi-
trary action a enabled by both Q1 and Q2. There are three cases related to the
number of a-transitions departing from Q1 and Q2:

1. If Q1
a−→∆1 and Q2

a−→∆2 are the only a-transitions of Q1 and Q2, then
they must match each other in the post-bisimulation game under B, mean-
ing that ∆1 ∼post

T ∆2. This can be shown by examining the reachability via
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those two a-transitions of an arbitrary equivalence class C ∈ P′/B satisfying
C ∩ supp(∆1) 6= ∅ and C ∩ supp(∆2) 6= ∅.
Note that there cannot be any class intersecting only one of those two sup-
ports. Indeed, due to Dpost

T,2 and ∼post
T -snf, in either support any two terms

Q′ and Q′′ must enable two different sets of actions – otherwise Apost
T,2 would

be applicable – and hence Q′ 6∼post
T Q′′. This means that either support in-

tersects as many classes in P′/B as there are process terms in the support
itself so, by virtue of the uniqueness of the two a-transitions of Q1 and Q2

and Q1 ∼post
T Q2, we have that every class intersecting either support must

then intersect also the other, with each intersection being a singleton.
To exploit the aforementioned information in the post-bisimulation game
under B, for k ∈ {1, 2} we build a coherent resolution Zk starting with an
a-transition, to which the only a-transition of Qk corresponds, that leads
to a distribution Γk whose support contains terms from which only traces
of length 1 can be executed. Since the various terms in supp(∆k) enable
different sets of actions, the first coherency constraint of Def. 8 is trivially
satisfied by Zk, while the second coherency constraint requires that every
term in supp(Γk) has an outgoing transition unless its corresponding original
term is 0.
Since we are not guaranteed that different actions can be selected from differ-
ent terms in supp(∆k) – think, e.g., of supp(∆k) containing a term enabling
only a, a term enabling only b, and a term enabling both a and b only – we
consider each term of supp(∆k) in the context of + bC . (dbC . 0), where the
fresh action bC and its corresponding degree dbC depend on the equivalence
class C to which the original term belongs. Thanks to Thm. 1, the term
derived from the one in C ∩ supp(∆1) and the term derived from the one in
C ∩ supp(∆2) are ∼post

T -equivalent. As a consequence, the terms Q′1 and Q′2
respectively derived from Q1 and Q2 are ∼post

T -equivalent too, as well as in

∼post
T -snf.

Let ∆′1 and ∆′2 be the reachability distributions respectively derived from

∆1 and ∆2, so that Q′1
a−→∆′1 and Q′2

a−→∆′2 with |supp(∆′k)| = |supp(∆k)|
and ∆′k(P ′) = ∆k(P ) for P ′ being P + bC . (dbC . 0). From Q′1 ∼

post
T Q′2

and the uniqueness of the two a-transitions of Q′1 and Q′2, it follows that
Z1 ∈ Resc(Q′1) must be matched by Z2 ∈ Resc(Q′2) with respect to all

traces, and vice versa, where zQ′1
a−→ Γ1 and zQ′2

a−→ Γ2 with every term
in supp(Γk) enabling only the corresponding action bC . In particular, for
every equivalence class C ′ derived from C intersecting both supp(∆1) and
supp(∆2), it holds that:

M(zQ′1 , a bC , Z1) = M(zQ′2 , a bC , Z2)
where for k ∈ {1, 2}:

M(zQ′k , a bC , Zk) = ∆′k(C ′)⊗ dbC
and hence:

∆1(C) = ∆′1(C ′) = ∆′2(C ′) = ∆2(C)

2. Suppose that Q1 has a single a-transition Q1
a−→∆1 while Q2 has two a-

transitions Q2
a−→∆′2 and Q2

a−→∆′′2 , where ∆′2 6= ∆′′2 , i.e., supp(∆′2) 6=
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supp(∆′′2) or ∆′2(Q) 6= ∆′′2(Q) for some Q ∈ supp(∆′2) ∪ supp(∆′′2), by virtue
of the operational semantics rules of UProC. Since Q2 is in ∼post

T -snf, it

also holds that ∆′2 6∼
post
T ∆′′2 , i.e., ∆′2(C) 6= ∆′′2(C) for some C ∈ P′/B,

otherwise Apost
T,1 would be applicable to Q2 yielding a single a-derivation for

Q2 itself. The validity of ∆′2 6= ∆′′2 and ∆′2 6∼
post
T ∆′′2 avoids any overlapping

with case 1, as it excludes the possibility for both a-transitions of Q2 of
being matched by the only a-transition of Q1 in the post-bisimulation game
under B.
We show that the existence of two such a-transitions from Q2 contradicts
Q1 ∼post

T Q2 or Q2 being in ∼post
T -snf with respect to the applicability of

Apost
T,1 . There are two subcases related to the number of maximal resolutions

of Q1 starting with an a-transition:

– If Q1 has a single maximal resolution starting with an a-transition, after
performing the initial a-transition there are no nondeterministic choices
in the ULTraS underlying Q1. As a consequence, from ∆′2 6∼

post
T ∆′′2 it

follows that at most one of the two a-transitions of Q2 can be matched
by the only a-transition of Q1 in the post-bisimulation game under B,
hence Q1 ∼post

T Q2 is contradicted.
– Suppose that Q1 has several maximal resolutions each starting with an
a-transition, meaning that after performing the initial a-transition at
least one nondeterministic choice is present in the ULTraS underlying
Q1. We have two further subcases:
• If only one of the two a-transitions of Q2 is matched by the only a-

transition ofQ1 in the post-bisimulation game under B, thenQ1 ∼post
T

Q2 is contradicted.
• Suppose that neither a-transition of Q2 is matched by the only a-

transition of Q1. To allow for several maximal resolutions each start-
ing with an a-transition to which the only a-transition of Q1 cor-
responds, supp(∆1) has to contain for n ∈ N≥1 a term of the form
P1 + a2 . (D2 +◦ d2 . (. . . . (Pn−1 + an . (Dn +◦ dn . (Q′ + Q′′))) . . .))
where init(Q′) 6= init(Q′′). From Q1 ∼post

T Q2 and ∆′2 6∼
post
T ∆′′2 ,

it follows that supp(∆′2) has to contain P1 + a2 . (D2 +◦ d2 . (. . . .
(Pn−1 + an . (Dn +◦ dn .Q′)) . . .)) and supp(∆′′2) has to contain P1 +
a2 . (D2 +◦ d2 . (. . . . (Pn−1 +an . (Dn +◦ dn .Q′′)) . . .)), with init(Q′+
Q′′) 6= init(Q) for all Q ∈ supp(Dn), but then Apost

T,1 could have been

applied n times within Q2 thus contradicting Q2 being in ∼post
T -snf.

3. Suppose that both Q1 and Q2 have several a-transitions each. Similar to
case 2, the supports of the target reachability distributions of the a-transitions
departing from the same term are pairwise different and ∼post

T -inequivalent.
There are three subcases related to a-transition matching:

– If each a-transition of Q1 is matched by an a-transition of Q2 in the
post-bisimulation game under B, and vice versa, then we are done.

– If only Q1 (resp. Q2) has a-transitions not matched by any a-transition of
Q2 (resp. Q1), or both Q1 and Q2 have a single a-transition not matched
by any a-transition of the other, then Q1 ∼post

T Q2 is contradicted.
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– If both Q1 and Q2 have several a-transitions not matched by any a-
transition of the other, then we proceed on these a-transitions as in
case 2, with the difference that both Q1 being in ∼post

T -snf and Q2 being

in ∼post
T -snf may be contradicted.

Proof of Thm. 7.
Without loss of generality, thanks to Lemma 2 we can assume that P1 and P2 are
in ∼post

T -snf. From P1 ∼post
T P2 and Lemma 3, it then follows that P1 ∼post

B P2.

From Thm. 3, we obtain Apost
B ` P1 = P2, hence Apost

T ` P1 = P2 due to
Prop. 1(3).

Proof of Thm. 8.
A straightforward consequence of the definition of Apre

T , the fact that ∼pre
T is an

equivalence relation, Thm. 1, and the fact that the lefthand side term of each
core axiom as well as of Apre

T,1 is ∼pre
T -equivalent to the term on the righthand side

of the same axiom (under the conditions of the axiom itself in the case of Apre
T,1).
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