
Theory of Computation

Marco Bernardo

University of Urbino – Italy
Department of Pure and Applied Sciences
Section of Informatics and Mathematics

PhD Program in Research Methods in Science and Technology

© 2025

Syllabus:

1 Introduction to Informatics 3

2 Introduction to Computation 15

3 The Operational View: Turing Machines 33

4 The Functional View: Lambda Calculus 47

5 Computability for Functions, Sets, Problems 69

6 The Modeling View: Process Algebras 91

1. Introduction to Informatics

Topics:

1.1 Informatics: Science, Methodology, Technology 4

1.2 Socio-Economic Impact and Computational Thinking 6

1.3 A Brief History of Informatics 9

1.4 Why Theory and Methodology: Software Disasters 14

1.1 Informatics: Science, Methodology, Technology

What do we mean by informatics?

Informatics: discipline that studies automatic information processing.

People perceive only technological aspects, while informaticians
have to be aware of methodological and scientific aspects too.

Technological aspects – Information & Communication Technology:
computers, operating systems, data bases, computer networks, . . .

Methodological aspects – Software Architecture & Engineering:
programming methodologies, languages, and environments, . . .

Scientific aspects – Computer Science: theory of computation,
algorithmics, automata theory, formal languages, . . .

1.1 Informatics: Science, Methodology, Technology

What do we mean by informatics?

Informatics: discipline that studies automatic information processing.

People perceive only technological aspects, while informaticians
have to be aware of methodological and scientific aspects too.

Technological aspects – Information & Communication Technology:
computers, operating systems, data bases, computer networks, . . .

Methodological aspects – Software Architecture & Engineering:
programming methodologies, languages, and environments, . . .

Scientific aspects – Computer Science: theory of computation,
algorithmics, automata theory, formal languages, . . .

1.1 Informatics: Science, Methodology, Technology

What do we mean by informatics?

Informatics: discipline that studies automatic information processing.

People perceive only technological aspects, while informaticians
have to be aware of methodological and scientific aspects too.

Technological aspects – Information & Communication Technology:
computers, operating systems, data bases, computer networks, . . .

Methodological aspects – Software Architecture & Engineering:
programming methodologies, languages, and environments, . . .

Scientific aspects – Computer Science: theory of computation,
algorithmics, automata theory, formal languages, . . .

1.1 Informatics: Science, Methodology, Technology

What do we mean by informatics?

Informatics: discipline that studies automatic information processing.

People perceive only technological aspects, while informaticians
have to be aware of methodological and scientific aspects too.

Technological aspects – Information & Communication Technology:
computers, operating systems, data bases, computer networks, . . .

Methodological aspects – Software Architecture & Engineering:
programming methodologies, languages, and environments, . . .

Scientific aspects – Computer Science: theory of computation,
algorithmics, automata theory, formal languages, . . .

1.1 Informatics: Science, Methodology, Technology

What do we mean by informatics?

Informatics: discipline that studies automatic information processing.

People perceive only technological aspects, while informaticians
have to be aware of methodological and scientific aspects too.

Technological aspects – Information & Communication Technology:
computers, operating systems, data bases, computer networks, . . .

Methodological aspects – Software Architecture & Engineering:
programming methodologies, languages, and environments, . . .

Scientific aspects – Computer Science: theory of computation,
algorithmics, automata theory, formal languages, . . .

What do we mean by computer?

Computer: set of programmable electromechanical components
for inputting, storing, processing, and outputting information
in the form of numbers, texts, images, audios, and videos.

There are many sets of electromechanical components that can
execute several functions (lifts, household appliances, vehicles, . . .)
but only computers can execute a potentially unlimited number of
functions, i.e., only computers are programmable machines!

Hardware: set of electromechanical components that form a
computer, i.e., computational resources that are made available
(physical parts).

Software: set of programs that can run on a computer, i.e.,
instructions given to its computational resources to carry out tasks
(immaterial parts – name originated from Jacquard looms).

What do we mean by computer?

Computer: set of programmable electromechanical components
for inputting, storing, processing, and outputting information
in the form of numbers, texts, images, audios, and videos.

There are many sets of electromechanical components that can
execute several functions (lifts, household appliances, vehicles, . . .)
but only computers can execute a potentially unlimited number of
functions, i.e., only computers are programmable machines!

Hardware: set of electromechanical components that form a
computer, i.e., computational resources that are made available
(physical parts).

Software: set of programs that can run on a computer, i.e.,
instructions given to its computational resources to carry out tasks
(immaterial parts – name originated from Jacquard looms).

What do we mean by computer?

Computer: set of programmable electromechanical components
for inputting, storing, processing, and outputting information
in the form of numbers, texts, images, audios, and videos.

There are many sets of electromechanical components that can
execute several functions (lifts, household appliances, vehicles, . . .)
but only computers can execute a potentially unlimited number of
functions, i.e., only computers are programmable machines!

Hardware: set of electromechanical components that form a
computer, i.e., computational resources that are made available
(physical parts).

Software: set of programs that can run on a computer, i.e.,
instructions given to its computational resources to carry out tasks
(immaterial parts – name originated from Jacquard looms).

1.2 Socio-Economic Impact and Computational Thinking

Socio-economic impact of informatics since 1950’s:

Execute complicated calculations in a short time.
Process/retrieve/transmit large amounts of data in a short time.
Transfer repetitive or complex activities from people to machines.

The invention of printing in 1400 started to foster in the world
a higher diffusion of knowledge.

The industrial revolution in 1700 widened our physical capabilities
through the introduction of automatic machines.

The digital transformation based on electronics and informatics
is continuously and increasingly extending our cognitive capabilities
through programmable devices like computers and smartphones
and the propagation of digital data over Internet.

1.2 Socio-Economic Impact and Computational Thinking

Socio-economic impact of informatics since 1950’s:

Execute complicated calculations in a short time.
Process/retrieve/transmit large amounts of data in a short time.
Transfer repetitive or complex activities from people to machines.

The invention of printing in 1400 started to foster in the world
a higher diffusion of knowledge.

The industrial revolution in 1700 widened our physical capabilities
through the introduction of automatic machines.

The digital transformation based on electronics and informatics
is continuously and increasingly extending our cognitive capabilities
through programmable devices like computers and smartphones
and the propagation of digital data over Internet.

1.2 Socio-Economic Impact and Computational Thinking

Socio-economic impact of informatics since 1950’s:

Execute complicated calculations in a short time.
Process/retrieve/transmit large amounts of data in a short time.
Transfer repetitive or complex activities from people to machines.

The invention of printing in 1400 started to foster in the world
a higher diffusion of knowledge.

The industrial revolution in 1700 widened our physical capabilities
through the introduction of automatic machines.

The digital transformation based on electronics and informatics
is continuously and increasingly extending our cognitive capabilities
through programmable devices like computers and smartphones
and the propagation of digital data over Internet.

1.2 Socio-Economic Impact and Computational Thinking

Socio-economic impact of informatics since 1950’s:

Execute complicated calculations in a short time.
Process/retrieve/transmit large amounts of data in a short time.
Transfer repetitive or complex activities from people to machines.

The invention of printing in 1400 started to foster in the world
a higher diffusion of knowledge.

The industrial revolution in 1700 widened our physical capabilities
through the introduction of automatic machines.

The digital transformation based on electronics and informatics
is continuously and increasingly extending our cognitive capabilities
through programmable devices like computers and smartphones
and the propagation of digital data over Internet.

Another socio-economic aspect is given by nonprofit communities
of people developing and maintaining open-source software.

Being open source (i.e., inspectable) is a technical prerequisite
for being a free software.

Free Software Foundation founded by Richard Stallman (1985):

Freedom of executing a program for any purpose.
Freedom of studying a program and modifying it.
Freedom of distributing copies of a program to whoever needs it.
Freedom of improving a program and publicly distributing
the improvements in such a way that everybody can benefit.

Examples: GNU/Linux, Firefox, WordPress, LibreOffice, Moodle, . . .

Another socio-economic aspect is given by nonprofit communities
of people developing and maintaining open-source software.

Being open source (i.e., inspectable) is a technical prerequisite
for being a free software.

Free Software Foundation founded by Richard Stallman (1985):

Freedom of executing a program for any purpose.
Freedom of studying a program and modifying it.
Freedom of distributing copies of a program to whoever needs it.
Freedom of improving a program and publicly distributing
the improvements in such a way that everybody can benefit.

Examples: GNU/Linux, Firefox, WordPress, LibreOffice, Moodle, . . .

Computational thinking is the cultural contribution of informatics,
intended as a mental process aiming at problem solving.

Expression coined by Jeannette Wing (2006).

Combination of:

Characteristic methods of informatics:

Algorithmic analysis of problems.
Digital representation of data.
Automation of solutions.

General intellectual capabilities:

Facing complexity.
Comparing alternatives.

Computational variant of abstract thinking typical of mathematics:
software is immaterial!

Computational thinking is the cultural contribution of informatics,
intended as a mental process aiming at problem solving.

Expression coined by Jeannette Wing (2006).

Combination of:

Characteristic methods of informatics:

Algorithmic analysis of problems.
Digital representation of data.
Automation of solutions.

General intellectual capabilities:

Facing complexity.
Comparing alternatives.

Computational variant of abstract thinking typical of mathematics:
software is immaterial!

1.3 A Brief History of Informatics

Pioneers between 1600 and 1800 (mechanical technology):

Blaise Pascal (1623–1662):

Mechanical machine capable to do additions and subtractions (1642).

Gottfried Wilhelm von Leibniz (1646–1716):

Mechanical machine including multiplications and divisions too (1672).
Binary system, characteristica universalis, calculus ratiocinator.

Charles Babbage (1791–1871):

Difference Engine (1822): tabulation of polynomial functions and
hence approximation of logarithmic and trigonometric functions.
Analytical Engine (1834): archetype of modern computers
both for its architecture and for its instruction set.

Ada Byron Lovelace (1815–1852):

Translation of and notes on the Analytical Engine project (1843).
Bernoulli numbers: she was the first programmer of the history!

1.3 A Brief History of Informatics

Pioneers between 1600 and 1800 (mechanical technology):

Blaise Pascal (1623–1662):

Mechanical machine capable to do additions and subtractions (1642).

Gottfried Wilhelm von Leibniz (1646–1716):

Mechanical machine including multiplications and divisions too (1672).
Binary system, characteristica universalis, calculus ratiocinator.

Charles Babbage (1791–1871):

Difference Engine (1822): tabulation of polynomial functions and
hence approximation of logarithmic and trigonometric functions.
Analytical Engine (1834): archetype of modern computers
both for its architecture and for its instruction set.

Ada Byron Lovelace (1815–1852):

Translation of and notes on the Analytical Engine project (1843).
Bernoulli numbers: she was the first programmer of the history!

1.3 A Brief History of Informatics

Pioneers between 1600 and 1800 (mechanical technology):

Blaise Pascal (1623–1662):

Mechanical machine capable to do additions and subtractions (1642).

Gottfried Wilhelm von Leibniz (1646–1716):

Mechanical machine including multiplications and divisions too (1672).
Binary system, characteristica universalis, calculus ratiocinator.

Charles Babbage (1791–1871):

Difference Engine (1822): tabulation of polynomial functions and
hence approximation of logarithmic and trigonometric functions.
Analytical Engine (1834): archetype of modern computers
both for its architecture and for its instruction set.

Ada Byron Lovelace (1815–1852):

Translation of and notes on the Analytical Engine project (1843).
Bernoulli numbers: she was the first programmer of the history!

1.3 A Brief History of Informatics

Pioneers between 1600 and 1800 (mechanical technology):

Blaise Pascal (1623–1662):

Mechanical machine capable to do additions and subtractions (1642).

Gottfried Wilhelm von Leibniz (1646–1716):

Mechanical machine including multiplications and divisions too (1672).
Binary system, characteristica universalis, calculus ratiocinator.

Charles Babbage (1791–1871):

Difference Engine (1822): tabulation of polynomial functions and
hence approximation of logarithmic and trigonometric functions.
Analytical Engine (1834): archetype of modern computers
both for its architecture and for its instruction set.

Ada Byron Lovelace (1815–1852):

Translation of and notes on the Analytical Engine project (1843).
Bernoulli numbers: she was the first programmer of the history!

1.3 A Brief History of Informatics

Pioneers between 1600 and 1800 (mechanical technology):

Blaise Pascal (1623–1662):

Mechanical machine capable to do additions and subtractions (1642).

Gottfried Wilhelm von Leibniz (1646–1716):

Mechanical machine including multiplications and divisions too (1672).
Binary system, characteristica universalis, calculus ratiocinator.

Charles Babbage (1791–1871):

Difference Engine (1822): tabulation of polynomial functions and
hence approximation of logarithmic and trigonometric functions.
Analytical Engine (1834): archetype of modern computers
both for its architecture and for its instruction set.

Ada Byron Lovelace (1815–1852):

Translation of and notes on the Analytical Engine project (1843).
Bernoulli numbers: she was the first programmer of the history!

Some pioneers of 1900 (electronic technology):

Norbert Wiener (1894–1964):

Cybernetics: interdisciplinary study of natural and artificial systems
in terms of control, feedback, and communication.

Claude Shannon (1916–2001):

Connection between electrical circuits and George Boole algebra (1847).
Information theory: study of the encoding and the transmission
of digital information, whose elementary unit he called bit.

Alan Turing (1912–1954):

Turing machine (TM): first formalization of the concept of algorithm.
Universal Turing machine (UTM): vision of software in terms of
computation scheme no longer hardwired.
Cryptography and artificial intelligence.

John Von Neumann (1903–1957):

From plugboard computers to stored program computers (UTMs).
From serial decimal arithmetic to parallel binary arithmetic.
Game theory and quantum physics.

Some pioneers of 1900 (electronic technology):

Norbert Wiener (1894–1964):

Cybernetics: interdisciplinary study of natural and artificial systems
in terms of control, feedback, and communication.

Claude Shannon (1916–2001):

Connection between electrical circuits and George Boole algebra (1847).
Information theory: study of the encoding and the transmission
of digital information, whose elementary unit he called bit.

Alan Turing (1912–1954):

Turing machine (TM): first formalization of the concept of algorithm.
Universal Turing machine (UTM): vision of software in terms of
computation scheme no longer hardwired.
Cryptography and artificial intelligence.

John Von Neumann (1903–1957):

From plugboard computers to stored program computers (UTMs).
From serial decimal arithmetic to parallel binary arithmetic.
Game theory and quantum physics.

Some pioneers of 1900 (electronic technology):

Norbert Wiener (1894–1964):

Cybernetics: interdisciplinary study of natural and artificial systems
in terms of control, feedback, and communication.

Claude Shannon (1916–2001):

Connection between electrical circuits and George Boole algebra (1847).
Information theory: study of the encoding and the transmission
of digital information, whose elementary unit he called bit.

Alan Turing (1912–1954):

Turing machine (TM): first formalization of the concept of algorithm.
Universal Turing machine (UTM): vision of software in terms of
computation scheme no longer hardwired.
Cryptography and artificial intelligence.

John Von Neumann (1903–1957):

From plugboard computers to stored program computers (UTMs).
From serial decimal arithmetic to parallel binary arithmetic.
Game theory and quantum physics.

Some pioneers of 1900 (electronic technology):

Norbert Wiener (1894–1964):

Cybernetics: interdisciplinary study of natural and artificial systems
in terms of control, feedback, and communication.

Claude Shannon (1916–2001):

Connection between electrical circuits and George Boole algebra (1847).
Information theory: study of the encoding and the transmission
of digital information, whose elementary unit he called bit.

Alan Turing (1912–1954):

Turing machine (TM): first formalization of the concept of algorithm.
Universal Turing machine (UTM): vision of software in terms of
computation scheme no longer hardwired.
Cryptography and artificial intelligence.

John Von Neumann (1903–1957):

From plugboard computers to stored program computers (UTMs).
From serial decimal arithmetic to parallel binary arithmetic.
Game theory and quantum physics.

Italian pioneers:

Adriano Olivetti (1901–1960):

Elea 9003 (1957): first computer entirely based on transistors,
designed at Olivetti by Mario Tchou (1924–1961).
P101 (1964): first personal computer of the history,
designed at Olivetti by Pier Giorgio Perotto (1930–2002).

CEP – Calcolatrice Elettronica Pisana (1961):

First scientific computer designed in Italy, at the University of Pisa,
an initiative promoted by Enrico Fermi and Adriano Olivetti.

Federico Faggin (1941):

Designed the first microprocessor of the history at Intel (1971).
Developed the first touchpads and touchscreens (late 1980’s).

Italian pioneers:

Adriano Olivetti (1901–1960):

Elea 9003 (1957): first computer entirely based on transistors,
designed at Olivetti by Mario Tchou (1924–1961).
P101 (1964): first personal computer of the history,
designed at Olivetti by Pier Giorgio Perotto (1930–2002).

CEP – Calcolatrice Elettronica Pisana (1961):

First scientific computer designed in Italy, at the University of Pisa,
an initiative promoted by Enrico Fermi and Adriano Olivetti.

Federico Faggin (1941):

Designed the first microprocessor of the history at Intel (1971).
Developed the first touchpads and touchscreens (late 1980’s).

Italian pioneers:

Adriano Olivetti (1901–1960):

Elea 9003 (1957): first computer entirely based on transistors,
designed at Olivetti by Mario Tchou (1924–1961).
P101 (1964): first personal computer of the history,
designed at Olivetti by Pier Giorgio Perotto (1930–2002).

CEP – Calcolatrice Elettronica Pisana (1961):

First scientific computer designed in Italy, at the University of Pisa,
an initiative promoted by Enrico Fermi and Adriano Olivetti.

Federico Faggin (1941):

Designed the first microprocessor of the history at Intel (1971).
Developed the first touchpads and touchscreens (late 1980’s).

Increasing computation speeds and storage capacities as well as
decreasing costs and sizes of hw (ENIAC vs. modern computers):

Vacuum tubes → transistors → integrated circuits → VLSI → . . .

Operating systems, data bases, computer networks (1969: Internet).

Growing complexity of computing systems:

Sequential → concurrent → distributed → decentralized (DLT) → . . .

Mobile computing: devices not tied to physical locations (IoT).

Global computing: abstraction of a single global computer
accessible anywhere anytime (cloud, edge, fog).

Autonomic computing: self-managing characteristics for adapting
to unpredictable changes (sensors, actuators, policies, AI).

Increasing computation speeds and storage capacities as well as
decreasing costs and sizes of hw (ENIAC vs. modern computers):

Vacuum tubes → transistors → integrated circuits → VLSI → . . .

Operating systems, data bases, computer networks (1969: Internet).

Growing complexity of computing systems:

Sequential → concurrent → distributed → decentralized (DLT) → . . .

Mobile computing: devices not tied to physical locations (IoT).

Global computing: abstraction of a single global computer
accessible anywhere anytime (cloud, edge, fog).

Autonomic computing: self-managing characteristics for adapting
to unpredictable changes (sensors, actuators, policies, AI).

Increasing computation speeds and storage capacities as well as
decreasing costs and sizes of hw (ENIAC vs. modern computers):

Vacuum tubes → transistors → integrated circuits → VLSI → . . .

Operating systems, data bases, computer networks (1969: Internet).

Growing complexity of computing systems:

Sequential → concurrent → distributed → decentralized (DLT) → . . .

Mobile computing: devices not tied to physical locations (IoT).

Global computing: abstraction of a single global computer
accessible anywhere anytime (cloud, edge, fog).

Autonomic computing: self-managing characteristics for adapting
to unpredictable changes (sensors, actuators, policies, AI).

Programming languages:

Procedural imperative: Fortran, Cobol, Algol, Basic, Pascal, C, . . .
Object-oriented imperative: Simula, Smalltalk, C++, Java, C#, . . .
Declarative: Lisp, Scheme, ML, Haskell, Prolog, . . .
Concurrent: Modula, Ada, Occam, Erlang, Scala, . . .

Other languages:

Script: shell, Perl/Raku, Tcl/Tk, Python, PHP, JavaScript, Ruby, . . .
Query: SQL, . . .
Markup: HTML, XML, LATEX, . . .
Modeling: UML, AADL, . . .

Languages for reversible computing (lower power consumption).

Languages for quantum computing (lower running time).

Programming languages:

Procedural imperative: Fortran, Cobol, Algol, Basic, Pascal, C, . . .
Object-oriented imperative: Simula, Smalltalk, C++, Java, C#, . . .
Declarative: Lisp, Scheme, ML, Haskell, Prolog, . . .
Concurrent: Modula, Ada, Occam, Erlang, Scala, . . .

Other languages:

Script: shell, Perl/Raku, Tcl/Tk, Python, PHP, JavaScript, Ruby, . . .
Query: SQL, . . .
Markup: HTML, XML, LATEX, . . .
Modeling: UML, AADL, . . .

Languages for reversible computing (lower power consumption).

Languages for quantum computing (lower running time).

Programming languages:

Procedural imperative: Fortran, Cobol, Algol, Basic, Pascal, C, . . .
Object-oriented imperative: Simula, Smalltalk, C++, Java, C#, . . .
Declarative: Lisp, Scheme, ML, Haskell, Prolog, . . .
Concurrent: Modula, Ada, Occam, Erlang, Scala, . . .

Other languages:

Script: shell, Perl/Raku, Tcl/Tk, Python, PHP, JavaScript, Ruby, . . .
Query: SQL, . . .
Markup: HTML, XML, LATEX, . . .
Modeling: UML, AADL, . . .

Languages for reversible computing (lower power consumption).

Languages for quantum computing (lower running time).

1.4 Why Theory and Methodology: Software Disasters

Information and communication technology is pervasive.

Malfunctioning, poor performance, security breaches, bad interfaces.

These errors result in waste of time and money for software producers.

Human losses and environmental damages if software is safety-critical!

https://en.wikipedia.org/wiki/List of software bugs

Methodologies for guiding software design, development, deployment.

Software testing does not guarantee the absence of errors.

Software verification is needed:

Program annotation (Floyd-Hoare logic, separation logic) and
deductive verification (preconditions-postconditions, invariants).
Program model, property formalization (modal logic, temporal logic),
and model ckecking (including counterexample generation).

1.4 Why Theory and Methodology: Software Disasters

Information and communication technology is pervasive.

Malfunctioning, poor performance, security breaches, bad interfaces.

These errors result in waste of time and money for software producers.

Human losses and environmental damages if software is safety-critical!

https://en.wikipedia.org/wiki/List of software bugs

Methodologies for guiding software design, development, deployment.

Software testing does not guarantee the absence of errors.

Software verification is needed:

Program annotation (Floyd-Hoare logic, separation logic) and
deductive verification (preconditions-postconditions, invariants).
Program model, property formalization (modal logic, temporal logic),
and model ckecking (including counterexample generation).

2. Introduction to Computation

Topics:

2.1 Computational Problems and Algorithmic Solutions 16

2.2 A Classical Model of Computation 19

2.3 From Logicism to Incompleteness and Undecidability 21

2.4 Induction, Enumerations, Encodings 26

2.1 Computational Problems and Algorithmic Solutions

Given a computational problem, the theory of computation
studies the existence of an algorithmic solution and, if any,
the quantity of needed computational resources in terms of:

Running time.
Memory space.
Communication bandwidth.

Computability theory: decidable vs. undecidable problems
depending on the existence of an algorithmic solution or not.

Complexity theory: tractable vs. intractable problems
depending on polynomially or exponentially many resources.

If a computational problem is decidable, there might be
several different algorithms solving it more or less efficiently
(insertsort, selectsort, bubblesort / quicksort, mergesort, heapsort).

2.1 Computational Problems and Algorithmic Solutions

Given a computational problem, the theory of computation
studies the existence of an algorithmic solution and, if any,
the quantity of needed computational resources in terms of:

Running time.
Memory space.
Communication bandwidth.

Computability theory: decidable vs. undecidable problems
depending on the existence of an algorithmic solution or not.

Complexity theory: tractable vs. intractable problems
depending on polynomially or exponentially many resources.

If a computational problem is decidable, there might be
several different algorithms solving it more or less efficiently
(insertsort, selectsort, bubblesort / quicksort, mergesort, heapsort).

What do we mean by algorithm?

Algorithm: finite sequence of steps, represented in a way that is
intelligible by an executor, that solve a computational problem
in its generality (i.e., for all instances of its input data).

Persian mathematician Muhammad ibn Musa al-Khwarizmi (780–850)
is the author of one of the most ancient treatises of algebra (al-jabr)
in which he described how to solve linear and quadratic equations.

Although the representation of an algorithm has a finite length,
the duration of its execution can be unbounded (e.g., loops).

The executor is not necessarily an electromechanical agent,
can be a biological agent or a cyberphysical agent (e.g., recipes).

Program: algorithm expressed in a specific programming language,
whose executor will be a computer (software, application, code, . . .).

What do we mean by algorithm?

Algorithm: finite sequence of steps, represented in a way that is
intelligible by an executor, that solve a computational problem
in its generality (i.e., for all instances of its input data).

Persian mathematician Muhammad ibn Musa al-Khwarizmi (780–850)
is the author of one of the most ancient treatises of algebra (al-jabr)
in which he described how to solve linear and quadratic equations.

Although the representation of an algorithm has a finite length,
the duration of its execution can be unbounded (e.g., loops).

The executor is not necessarily an electromechanical agent,
can be a biological agent or a cyberphysical agent (e.g., recipes).

Program: algorithm expressed in a specific programming language,
whose executor will be a computer (software, application, code, . . .).

What do we mean by algorithm?

Algorithm: finite sequence of steps, represented in a way that is
intelligible by an executor, that solve a computational problem
in its generality (i.e., for all instances of its input data).

Persian mathematician Muhammad ibn Musa al-Khwarizmi (780–850)
is the author of one of the most ancient treatises of algebra (al-jabr)
in which he described how to solve linear and quadratic equations.

Although the representation of an algorithm has a finite length,
the duration of its execution can be unbounded (e.g., loops).

The executor is not necessarily an electromechanical agent,
can be a biological agent or a cyberphysical agent (e.g., recipes).

Program: algorithm expressed in a specific programming language,
whose executor will be a computer (software, application, code, . . .).

Computational problems are usually expressed in a combination of
natural language and mathematical notation.

Decision problem: computational problem with a yes/no answer.

How to formalize algorithms?

Syntax domain: every algorithm is a finite sequence of symbols
taken from a finite alphabet (lexical and grammar rules).

Semantic domain: set of mathematical objects through which
the meaning of algorithms (i.e., what they compute) is expressed.

Interpretation function associating every algorithm with its meaning.

The executor knows the language in which algorithms are written and
is equipped with a memory to store input data and intermediate data.

Computational problems are usually expressed in a combination of
natural language and mathematical notation.

Decision problem: computational problem with a yes/no answer.

How to formalize algorithms?

Syntax domain: every algorithm is a finite sequence of symbols
taken from a finite alphabet (lexical and grammar rules).

Semantic domain: set of mathematical objects through which
the meaning of algorithms (i.e., what they compute) is expressed.

Interpretation function associating every algorithm with its meaning.

The executor knows the language in which algorithms are written and
is equipped with a memory to store input data and intermediate data.

Computational problems are usually expressed in a combination of
natural language and mathematical notation.

Decision problem: computational problem with a yes/no answer.

How to formalize algorithms?

Syntax domain: every algorithm is a finite sequence of symbols
taken from a finite alphabet (lexical and grammar rules).

Semantic domain: set of mathematical objects through which
the meaning of algorithms (i.e., what they compute) is expressed.

Interpretation function associating every algorithm with its meaning.

The executor knows the language in which algorithms are written and
is equipped with a memory to store input data and intermediate data.

Computational problems are usually expressed in a combination of
natural language and mathematical notation.

Decision problem: computational problem with a yes/no answer.

How to formalize algorithms?

Syntax domain: every algorithm is a finite sequence of symbols
taken from a finite alphabet (lexical and grammar rules).

Semantic domain: set of mathematical objects through which
the meaning of algorithms (i.e., what they compute) is expressed.

Interpretation function associating every algorithm with its meaning.

The executor knows the language in which algorithms are written and
is equipped with a memory to store input data and intermediate data.

Computational problems are usually expressed in a combination of
natural language and mathematical notation.

Decision problem: computational problem with a yes/no answer.

How to formalize algorithms?

Syntax domain: every algorithm is a finite sequence of symbols
taken from a finite alphabet (lexical and grammar rules).

Semantic domain: set of mathematical objects through which
the meaning of algorithms (i.e., what they compute) is expressed.

Interpretation function associating every algorithm with its meaning.

The executor knows the language in which algorithms are written and
is equipped with a memory to store input data and intermediate data.

2.2 A Classical Model of Computation

How to formalize algorithm semantics?

Discrete computation: at any time the executor is in one state
from a finite set, state transitions occur at different instants,
and data are represented digitally.

Deterministic computation: from the current state there is at most
one possible next state (given by the current state plus input data).

Sequential computation: a single step at a time is executed.

Alternative options: analog/quantum, nondeterministic/probabilistic,
concurrent (shared memory/message passing/distributed ledger).

Each object in the semantic domain can be formalized as f : N→ N.
In f(a) = b, number a represents input data, number b output data.

Input and output data can be encoded as natural numbers because
any datum is a finite sequence of symbols belonging to a finite set.

2.2 A Classical Model of Computation

How to formalize algorithm semantics?

Discrete computation: at any time the executor is in one state
from a finite set, state transitions occur at different instants,
and data are represented digitally.

Deterministic computation: from the current state there is at most
one possible next state (given by the current state plus input data).

Sequential computation: a single step at a time is executed.

Alternative options: analog/quantum, nondeterministic/probabilistic,
concurrent (shared memory/message passing/distributed ledger).

Each object in the semantic domain can be formalized as f : N→ N.
In f(a) = b, number a represents input data, number b output data.

Input and output data can be encoded as natural numbers because
any datum is a finite sequence of symbols belonging to a finite set.

2.2 A Classical Model of Computation

How to formalize algorithm semantics?

Discrete computation: at any time the executor is in one state
from a finite set, state transitions occur at different instants,
and data are represented digitally.

Deterministic computation: from the current state there is at most
one possible next state (given by the current state plus input data).

Sequential computation: a single step at a time is executed.

Alternative options: analog/quantum, nondeterministic/probabilistic,
concurrent (shared memory/message passing/distributed ledger).

Each object in the semantic domain can be formalized as f : N→ N.
In f(a) = b, number a represents input data, number b output data.

Input and output data can be encoded as natural numbers because
any datum is a finite sequence of symbols belonging to a finite set.

2.2 A Classical Model of Computation

How to formalize algorithm semantics?

Discrete computation: at any time the executor is in one state
from a finite set, state transitions occur at different instants,
and data are represented digitally.

Deterministic computation: from the current state there is at most
one possible next state (given by the current state plus input data).

Sequential computation: a single step at a time is executed.

Alternative options: analog/quantum, nondeterministic/probabilistic,
concurrent (shared memory/message passing/distributed ledger).

Each object in the semantic domain can be formalized as f : N→ N.
In f(a) = b, number a represents input data, number b output data.

Input and output data can be encoded as natural numbers because
any datum is a finite sequence of symbols belonging to a finite set.

2.2 A Classical Model of Computation

How to formalize algorithm semantics?

Discrete computation: at any time the executor is in one state
from a finite set, state transitions occur at different instants,
and data are represented digitally.

Deterministic computation: from the current state there is at most
one possible next state (given by the current state plus input data).

Sequential computation: a single step at a time is executed.

Alternative options: analog/quantum, nondeterministic/probabilistic,
concurrent (shared memory/message passing/distributed ledger).

Each object in the semantic domain can be formalized as f : N→ N.
In f(a) = b, number a represents input data, number b output data.

Input and output data can be encoded as natural numbers because
any datum is a finite sequence of symbols belonging to a finite set.

2.2 A Classical Model of Computation

How to formalize algorithm semantics?

Discrete computation: at any time the executor is in one state
from a finite set, state transitions occur at different instants,
and data are represented digitally.

Deterministic computation: from the current state there is at most
one possible next state (given by the current state plus input data).

Sequential computation: a single step at a time is executed.

Alternative options: analog/quantum, nondeterministic/probabilistic,
concurrent (shared memory/message passing/distributed ledger).

Each object in the semantic domain can be formalized as f : N→ N.
In f(a) = b, number a represents input data, number b output data.

Input and output data can be encoded as natural numbers because
any datum is a finite sequence of symbols belonging to a finite set.

How many algorithms are there?

The cardinality of the syntax domain is equal to the cardinality of N.

The algorithms in the syntax domain can be enumerated according to
the lexicographic order or the shortlex order:

Choose a total order for the finitely many symbols of the alphabet.
Enumerate algorithms of the same length based on their symbols.
Enumerate algorithms of length k before algorithms of length k + 1.

And how many functions over N are there?

The cardinality of {f | f : N→ N} is greater than the one of N!

There are infinitely many functions not computable by any algorithm.

Correspond to undecidable problems, i.e., computational problems
for which there is no algorithm solving them.

Existence of theoretical limits to what can be computed (1850-1950).

How many algorithms are there?

The cardinality of the syntax domain is equal to the cardinality of N.

The algorithms in the syntax domain can be enumerated according to
the lexicographic order or the shortlex order:

Choose a total order for the finitely many symbols of the alphabet.
Enumerate algorithms of the same length based on their symbols.
Enumerate algorithms of length k before algorithms of length k + 1.

And how many functions over N are there?

The cardinality of {f | f : N→ N} is greater than the one of N!

There are infinitely many functions not computable by any algorithm.

Correspond to undecidable problems, i.e., computational problems
for which there is no algorithm solving them.

Existence of theoretical limits to what can be computed (1850-1950).

How many algorithms are there?

The cardinality of the syntax domain is equal to the cardinality of N.

The algorithms in the syntax domain can be enumerated according to
the lexicographic order or the shortlex order:

Choose a total order for the finitely many symbols of the alphabet.
Enumerate algorithms of the same length based on their symbols.
Enumerate algorithms of length k before algorithms of length k + 1.

And how many functions over N are there?

The cardinality of {f | f : N→ N} is greater than the one of N!

There are infinitely many functions not computable by any algorithm.

Correspond to undecidable problems, i.e., computational problems
for which there is no algorithm solving them.

Existence of theoretical limits to what can be computed (1850-1950).

How many algorithms are there?

The cardinality of the syntax domain is equal to the cardinality of N.

The algorithms in the syntax domain can be enumerated according to
the lexicographic order or the shortlex order:

Choose a total order for the finitely many symbols of the alphabet.
Enumerate algorithms of the same length based on their symbols.
Enumerate algorithms of length k before algorithms of length k + 1.

And how many functions over N are there?

The cardinality of {f | f : N→ N} is greater than the one of N!

There are infinitely many functions not computable by any algorithm.

Correspond to undecidable problems, i.e., computational problems
for which there is no algorithm solving them.

Existence of theoretical limits to what can be computed (1850-1950).

2.3 From Logicism to Incompleteness and Undecidability

In 1800 logic needed mathematics to overcome the ambiguity
of natural language in the same way as mathematics needed
rigorous foundations and deductive mechanisms for proofs.

George Boole introduced an algebraic view of logic (1847).

Gottlob Frege thought that arithmetic were reducible to logic and
proposed the use of logic to make proofs of theorems rigorous (1879):

Isolate intuitive or primitive elements as axioms.
Proceed from these axioms via inference rules without gaps.

This was the starting point of logicism:

All mathematical truths can be translated into logical truths, i.e.,
the vocabulary of mathematics is included in the vocabulary of logic.
All proofs of mathematical theorems can be recast as logical proofs
based on axioms and inference rules, i.e., the set of theorems
of mathematics is included in the set of theorems of logic.

2.3 From Logicism to Incompleteness and Undecidability

In 1800 logic needed mathematics to overcome the ambiguity
of natural language in the same way as mathematics needed
rigorous foundations and deductive mechanisms for proofs.

George Boole introduced an algebraic view of logic (1847).

Gottlob Frege thought that arithmetic were reducible to logic and
proposed the use of logic to make proofs of theorems rigorous (1879):

Isolate intuitive or primitive elements as axioms.
Proceed from these axioms via inference rules without gaps.

This was the starting point of logicism:

All mathematical truths can be translated into logical truths, i.e.,
the vocabulary of mathematics is included in the vocabulary of logic.
All proofs of mathematical theorems can be recast as logical proofs
based on axioms and inference rules, i.e., the set of theorems
of mathematics is included in the set of theorems of logic.

2.3 From Logicism to Incompleteness and Undecidability

In 1800 logic needed mathematics to overcome the ambiguity
of natural language in the same way as mathematics needed
rigorous foundations and deductive mechanisms for proofs.

George Boole introduced an algebraic view of logic (1847).

Gottlob Frege thought that arithmetic were reducible to logic and
proposed the use of logic to make proofs of theorems rigorous (1879):

Isolate intuitive or primitive elements as axioms.
Proceed from these axioms via inference rules without gaps.

This was the starting point of logicism:

All mathematical truths can be translated into logical truths, i.e.,
the vocabulary of mathematics is included in the vocabulary of logic.
All proofs of mathematical theorems can be recast as logical proofs
based on axioms and inference rules, i.e., the set of theorems
of mathematics is included in the set of theorems of logic.

2.3 From Logicism to Incompleteness and Undecidability

In 1800 logic needed mathematics to overcome the ambiguity
of natural language in the same way as mathematics needed
rigorous foundations and deductive mechanisms for proofs.

George Boole introduced an algebraic view of logic (1847).

Gottlob Frege thought that arithmetic were reducible to logic and
proposed the use of logic to make proofs of theorems rigorous (1879):

Isolate intuitive or primitive elements as axioms.
Proceed from these axioms via inference rules without gaps.

This was the starting point of logicism:

All mathematical truths can be translated into logical truths, i.e.,
the vocabulary of mathematics is included in the vocabulary of logic.
All proofs of mathematical theorems can be recast as logical proofs
based on axioms and inference rules, i.e., the set of theorems
of mathematics is included in the set of theorems of logic.

Georg Cantor founded set theory, showed the existence of a hierarchy
of infinities, and proved that the real numbers are more numerous
than the natural numbers through the diagonal method (1874).

Richard Dedekind axiomatized the set of natural numbers (1888)
in addition to formalizing the set of real numbers as well as
a general notion of infinite set (equinumerosity to a proper subset).

Giuseppe Peano simplified the natural number axiomatization (1889)
yielding the currently used one (explicit induction principle, PA).

Bertrand Russell and Alfred Whitehead formally proved in their book
“Principia Mathematica” the bulk of the mathematical knowledge of
their time by using sheer symbolic manipulations (1913):

Only real numbers and set theory, including cardinals and ordinals.

Type theory to avoid set theory paradoxes (A
∆
= {B | B /∈ B} ∈ A?).

A large amount of mathematical analysis could in principle be handled.
A further volume on the foundations of geometry had been planned.

Georg Cantor founded set theory, showed the existence of a hierarchy
of infinities, and proved that the real numbers are more numerous
than the natural numbers through the diagonal method (1874).

Richard Dedekind axiomatized the set of natural numbers (1888)
in addition to formalizing the set of real numbers as well as
a general notion of infinite set (equinumerosity to a proper subset).

Giuseppe Peano simplified the natural number axiomatization (1889)
yielding the currently used one (explicit induction principle, PA).

Bertrand Russell and Alfred Whitehead formally proved in their book
“Principia Mathematica” the bulk of the mathematical knowledge of
their time by using sheer symbolic manipulations (1913):

Only real numbers and set theory, including cardinals and ordinals.

Type theory to avoid set theory paradoxes (A
∆
= {B | B /∈ B} ∈ A?).

A large amount of mathematical analysis could in principle be handled.
A further volume on the foundations of geometry had been planned.

Georg Cantor founded set theory, showed the existence of a hierarchy
of infinities, and proved that the real numbers are more numerous
than the natural numbers through the diagonal method (1874).

Richard Dedekind axiomatized the set of natural numbers (1888)
in addition to formalizing the set of real numbers as well as
a general notion of infinite set (equinumerosity to a proper subset).

Giuseppe Peano simplified the natural number axiomatization (1889)
yielding the currently used one (explicit induction principle, PA).

Bertrand Russell and Alfred Whitehead formally proved in their book
“Principia Mathematica” the bulk of the mathematical knowledge of
their time by using sheer symbolic manipulations (1913):

Only real numbers and set theory, including cardinals and ordinals.

Type theory to avoid set theory paradoxes (A
∆
= {B | B /∈ B} ∈ A?).

A large amount of mathematical analysis could in principle be handled.
A further volume on the foundations of geometry had been planned.

Georg Cantor founded set theory, showed the existence of a hierarchy
of infinities, and proved that the real numbers are more numerous
than the natural numbers through the diagonal method (1874).

Richard Dedekind axiomatized the set of natural numbers (1888)
in addition to formalizing the set of real numbers as well as
a general notion of infinite set (equinumerosity to a proper subset).

Giuseppe Peano simplified the natural number axiomatization (1889)
yielding the currently used one (explicit induction principle, PA).

Bertrand Russell and Alfred Whitehead formally proved in their book
“Principia Mathematica” the bulk of the mathematical knowledge of
their time by using sheer symbolic manipulations (1913):

Only real numbers and set theory, including cardinals and ordinals.

Type theory to avoid set theory paradoxes (A
∆
= {B | B /∈ B} ∈ A?).

A large amount of mathematical analysis could in principle be handled.
A further volume on the foundations of geometry had been planned.

Logicism was becoming popular within (philosophy of) mathematics.

David Hilbert launched a program to find a single formal procedure
for deriving all theorems of mathematics, which amounts to manage
to reduce all of mathematics in axiomatic form and to prove that
this axiomatization does not lead to contradictions (1920).

Hilbert claimed that “once a logical formalism is established, one can
expect that a systematic, so-to-say computational, treatment of logic
formulas is possible, which would somewhat correspond to the theory
of equations in algebra”.

According to Hilbert, the complex theories of mathematics could be
founded on simpler theories till the point in which all of mathematics
is based on arithmetic, so that by proving the consistency of the latter
one would have proven the consistency of the former.

Logicism was becoming popular within (philosophy of) mathematics.

David Hilbert launched a program to find a single formal procedure
for deriving all theorems of mathematics, which amounts to manage
to reduce all of mathematics in axiomatic form and to prove that
this axiomatization does not lead to contradictions (1920).

Hilbert claimed that “once a logical formalism is established, one can
expect that a systematic, so-to-say computational, treatment of logic
formulas is possible, which would somewhat correspond to the theory
of equations in algebra”.

According to Hilbert, the complex theories of mathematics could be
founded on simpler theories till the point in which all of mathematics
is based on arithmetic, so that by proving the consistency of the latter
one would have proven the consistency of the former.

Kurt Gödel came up with his two incompleteness theorems (1931):
1 In every axiomatizable theory expressive enough to form statements

about what it can prove (reminiscent of autologies like “A ∈ A?”),
there will always be true statements that the theory can express
but cannot derive from its axioms through its inference rules.

2 Every axiomatizable theory expressive enough to form statements
about arithmetic will never be able to prove its own consistency.

The first theorem means that in every sufficiently powerful theory
there are theorems that cannot be proven within the theory itself.
To prove them, it is necessary to resort to a more powerful theory,
but this will suffer from the same limitation too.

The second theorem points out that even a fundamental branch
of mathematics like arithmetic raises incompleteness issues
from the viewpoint of its computational treatment.

Kurt Gödel came up with his two incompleteness theorems (1931):
1 In every axiomatizable theory expressive enough to form statements

about what it can prove (reminiscent of autologies like “A ∈ A?”),
there will always be true statements that the theory can express
but cannot derive from its axioms through its inference rules.

2 Every axiomatizable theory expressive enough to form statements
about arithmetic will never be able to prove its own consistency.

The first theorem means that in every sufficiently powerful theory
there are theorems that cannot be proven within the theory itself.
To prove them, it is necessary to resort to a more powerful theory,
but this will suffer from the same limitation too.

The second theorem points out that even a fundamental branch
of mathematics like arithmetic raises incompleteness issues
from the viewpoint of its computational treatment.

Alonzo Church proved that predicate logic is not decidable:
there is no algorithm able to establish in a finite amount of time
whether an arbitrary predicate formula is satisfiable or not (1936).

Alan Turing proved that the halting problem is not decidable:
there is no algorithm able to establish in a finite amount of time
whether the execution of an arbitrary algorithm on an arbitrary
instance of its input data terminates or not (1936).

The existence in any deduction system of theorems that cannot
be proven, as well as the existence of computational problems that
cannot be solved by any algorithm, determined the impossibility
of reducing mathematics to mechanistic deductions.

The end of logicism, but not the end of mathematical logic, which is
the calculus of informatics (like infinitesimal calculus for physics).

Alonzo Church proved that predicate logic is not decidable:
there is no algorithm able to establish in a finite amount of time
whether an arbitrary predicate formula is satisfiable or not (1936).

Alan Turing proved that the halting problem is not decidable:
there is no algorithm able to establish in a finite amount of time
whether the execution of an arbitrary algorithm on an arbitrary
instance of its input data terminates or not (1936).

The existence in any deduction system of theorems that cannot
be proven, as well as the existence of computational problems that
cannot be solved by any algorithm, determined the impossibility
of reducing mathematics to mechanistic deductions.

The end of logicism, but not the end of mathematical logic, which is
the calculus of informatics (like infinitesimal calculus for physics).

Alonzo Church proved that predicate logic is not decidable:
there is no algorithm able to establish in a finite amount of time
whether an arbitrary predicate formula is satisfiable or not (1936).

Alan Turing proved that the halting problem is not decidable:
there is no algorithm able to establish in a finite amount of time
whether the execution of an arbitrary algorithm on an arbitrary
instance of its input data terminates or not (1936).

The existence in any deduction system of theorems that cannot
be proven, as well as the existence of computational problems that
cannot be solved by any algorithm, determined the impossibility
of reducing mathematics to mechanistic deductions.

The end of logicism, but not the end of mathematical logic, which is
the calculus of informatics (like infinitesimal calculus for physics).

2.4 Induction, Enumerations, Encodings

N is infinite because it is equinumerous to its proper subset N \ {0}
as shown by the bijective function succ(n) = n+ 1.

Thus it cannot be defined by listing its elements.

Dedekind-Peano axiomatic definition of N based on set theory:
1 There exists an element 0 ∈ N.
2 There exists a total function succ : N→ N.
3 For all n ∈ N, succ(n) 6= 0.
4 For all n, n′ ∈ N, if n 6= n′ then succ(n) 6= succ(n′).
5 If M is a subset of N such that:

0 ∈M ;
for all n ∈ N, n ∈M implies succ(n) ∈M ;

then M = N (hence N is the smallest set closed w.r.t. 0 and succ).

The elements of N are thus 0, succ(0), succ(succ(0)), . . . where
succ(0) is denoted by 1, succ(succ(0)) is denoted by 2, and so on.

2.4 Induction, Enumerations, Encodings

N is infinite because it is equinumerous to its proper subset N \ {0}
as shown by the bijective function succ(n) = n+ 1.

Thus it cannot be defined by listing its elements.

Dedekind-Peano axiomatic definition of N based on set theory:
1 There exists an element 0 ∈ N.
2 There exists a total function succ : N→ N.
3 For all n ∈ N, succ(n) 6= 0.
4 For all n, n′ ∈ N, if n 6= n′ then succ(n) 6= succ(n′).
5 If M is a subset of N such that:

0 ∈M ;
for all n ∈ N, n ∈M implies succ(n) ∈M ;

then M = N (hence N is the smallest set closed w.r.t. 0 and succ).

The elements of N are thus 0, succ(0), succ(succ(0)), . . . where
succ(0) is denoted by 1, succ(succ(0)) is denoted by 2, and so on.

2.4 Induction, Enumerations, Encodings

N is infinite because it is equinumerous to its proper subset N \ {0}
as shown by the bijective function succ(n) = n+ 1.

Thus it cannot be defined by listing its elements.

Dedekind-Peano axiomatic definition of N based on set theory:
1 There exists an element 0 ∈ N.
2 There exists a total function succ : N→ N.
3 For all n ∈ N, succ(n) 6= 0.
4 For all n, n′ ∈ N, if n 6= n′ then succ(n) 6= succ(n′).
5 If M is a subset of N such that:

0 ∈M ;
for all n ∈ N, n ∈M implies succ(n) ∈M ;

then M = N (hence N is the smallest set closed w.r.t. 0 and succ).

The elements of N are thus 0, succ(0), succ(succ(0)), . . . where
succ(0) is denoted by 1, succ(succ(0)) is denoted by 2, and so on.

The last axiom is the induction principle, which is one of the most
powerful tools of discrete mathematics for definitions and proofs.

Allows entire arithmetic to be formally defined: Peano arithmetic.

Let pred : N 6=0 → N be such that pred(succ(n)) = n for all n ∈ N
and succ(pred(n)) = n for all n ∈ N 6=0.

Formal definition of addition over N:

m⊕ n =

{
m if n = 0
succ(m)⊕ pred(n) if n 6= 0

Example: 5⊕ 2 = 6⊕ 1 = 7⊕ 0 = 7.

Formal definition of order relations over N:

m ≤ n iff there exists m′ ∈ N such that m⊕m′ = n.
m < n iff m ≤ n with m 6= n.
m ≥ n iff n ≤ m.
m > n iff n < m.

The last axiom is the induction principle, which is one of the most
powerful tools of discrete mathematics for definitions and proofs.

Allows entire arithmetic to be formally defined: Peano arithmetic.

Let pred : N 6=0 → N be such that pred(succ(n)) = n for all n ∈ N
and succ(pred(n)) = n for all n ∈ N 6=0.

Formal definition of addition over N:

m⊕ n =

{
m if n = 0
succ(m)⊕ pred(n) if n 6= 0

Example: 5⊕ 2 = 6⊕ 1 = 7⊕ 0 = 7.

Formal definition of order relations over N:

m ≤ n iff there exists m′ ∈ N such that m⊕m′ = n.
m < n iff m ≤ n with m 6= n.
m ≥ n iff n ≤ m.
m > n iff n < m.

The last axiom is the induction principle, which is one of the most
powerful tools of discrete mathematics for definitions and proofs.

Allows entire arithmetic to be formally defined: Peano arithmetic.

Let pred : N 6=0 → N be such that pred(succ(n)) = n for all n ∈ N
and succ(pred(n)) = n for all n ∈ N 6=0.

Formal definition of addition over N:

m⊕ n =

{
m if n = 0
succ(m)⊕ pred(n) if n 6= 0

Example: 5⊕ 2 = 6⊕ 1 = 7⊕ 0 = 7.

Formal definition of order relations over N:

m ≤ n iff there exists m′ ∈ N such that m⊕m′ = n.
m < n iff m ≤ n with m 6= n.
m ≥ n iff n ≤ m.
m > n iff n < m.

The last axiom is the induction principle, which is one of the most
powerful tools of discrete mathematics for definitions and proofs.

Allows entire arithmetic to be formally defined: Peano arithmetic.

Let pred : N 6=0 → N be such that pred(succ(n)) = n for all n ∈ N
and succ(pred(n)) = n for all n ∈ N 6=0.

Formal definition of addition over N:

m⊕ n =

{
m if n = 0
succ(m)⊕ pred(n) if n 6= 0

Example: 5⊕ 2 = 6⊕ 1 = 7⊕ 0 = 7.

Formal definition of order relations over N:

m ≤ n iff there exists m′ ∈ N such that m⊕m′ = n.
m < n iff m ≤ n with m 6= n.
m ≥ n iff n ≤ m.
m > n iff n < m.

Formal definition of subtraction over N (m ≥ n):

m	 n =

{
m if n = 0
pred(m)	 pred(n) if n > 0

Formal definition of multiplication over N:

m⊗ n =

{
0 if n = 0
m⊕ (m⊗ pred(n)) if n > 0

Formal definition of division over N (n 6= 0):

m� n =

{
0 if m < n
succ((m	 n)� n) if m ≥ n

Examples:

5	 2 = 4	 1 = 3	 0 = 3.
5⊗2 = 5⊕(5⊗1) = 5⊕(5⊕(5⊗0)) = 5⊕(5⊕0) = 5⊕5 = . . . = 10.
5�2 = succ((5	2)�2) = . . . = succ(3�2) = succ(succ((3	2)�2))
= . . . = succ(succ(1� 2)) = succ(succ(0)) = succ(1) = 2.

Formal definition of subtraction over N (m ≥ n):

m	 n =

{
m if n = 0
pred(m)	 pred(n) if n > 0

Formal definition of multiplication over N:

m⊗ n =

{
0 if n = 0
m⊕ (m⊗ pred(n)) if n > 0

Formal definition of division over N (n 6= 0):

m� n =

{
0 if m < n
succ((m	 n)� n) if m ≥ n

Examples:

5	 2 = 4	 1 = 3	 0 = 3.
5⊗2 = 5⊕(5⊗1) = 5⊕(5⊕(5⊗0)) = 5⊕(5⊕0) = 5⊕5 = . . . = 10.
5�2 = succ((5	2)�2) = . . . = succ(3�2) = succ(succ((3	2)�2))
= . . . = succ(succ(1� 2)) = succ(succ(0)) = succ(1) = 2.

Formal definition of subtraction over N (m ≥ n):

m	 n =

{
m if n = 0
pred(m)	 pred(n) if n > 0

Formal definition of multiplication over N:

m⊗ n =

{
0 if n = 0
m⊕ (m⊗ pred(n)) if n > 0

Formal definition of division over N (n 6= 0):

m� n =

{
0 if m < n
succ((m	 n)� n) if m ≥ n

Examples:

5	 2 = 4	 1 = 3	 0 = 3.
5⊗2 = 5⊕(5⊗1) = 5⊕(5⊕(5⊗0)) = 5⊕(5⊕0) = 5⊕5 = . . . = 10.
5�2 = succ((5	2)�2) = . . . = succ(3�2) = succ(succ((3	2)�2))
= . . . = succ(succ(1� 2)) = succ(succ(0)) = succ(1) = 2.

Formal definition of subtraction over N (m ≥ n):

m	 n =

{
m if n = 0
pred(m)	 pred(n) if n > 0

Formal definition of multiplication over N:

m⊗ n =

{
0 if n = 0
m⊕ (m⊗ pred(n)) if n > 0

Formal definition of division over N (n 6= 0):

m� n =

{
0 if m < n
succ((m	 n)� n) if m ≥ n

Examples:

5	 2 = 4	 1 = 3	 0 = 3.
5⊗2 = 5⊕(5⊗1) = 5⊕(5⊕(5⊗0)) = 5⊕(5⊕0) = 5⊕5 = . . . = 10.
5�2 = succ((5	2)�2) = . . . = succ(3�2) = succ(succ((3	2)�2))
= . . . = succ(succ(1� 2)) = succ(succ(0)) = succ(1) = 2.

The induction principle is the basis of recursive programming too.

A complex problem is divided into simpler subproblems so that
the solution is obtained by combining those of the subproblems.

When the subproblems are of the same nature as the original problem
we can adopt a recursive solution scheme:

Identify one or more base cases, for each of which we can directly
obtain the solution to the problem.
Define one or more general cases through a set of subproblems
of the same nature as the original one but closer to the base cases.

Recursion is a very powerful tool:

Tackling problems not otherwise manageable (towers of Hanoi).
Solving problems more efficiently (binary search, mergesort, quicksort).
Defining data structures in a natural way (lists, trees).

... How many functions from N to N are there?

The induction principle is the basis of recursive programming too.

A complex problem is divided into simpler subproblems so that
the solution is obtained by combining those of the subproblems.

When the subproblems are of the same nature as the original problem
we can adopt a recursive solution scheme:

Identify one or more base cases, for each of which we can directly
obtain the solution to the problem.
Define one or more general cases through a set of subproblems
of the same nature as the original one but closer to the base cases.

Recursion is a very powerful tool:

Tackling problems not otherwise manageable (towers of Hanoi).
Solving problems more efficiently (binary search, mergesort, quicksort).
Defining data structures in a natural way (lists, trees).

... How many functions from N to N are there?

The induction principle is the basis of recursive programming too.

A complex problem is divided into simpler subproblems so that
the solution is obtained by combining those of the subproblems.

When the subproblems are of the same nature as the original problem
we can adopt a recursive solution scheme:

Identify one or more base cases, for each of which we can directly
obtain the solution to the problem.
Define one or more general cases through a set of subproblems
of the same nature as the original one but closer to the base cases.

Recursion is a very powerful tool:

Tackling problems not otherwise manageable (towers of Hanoi).
Solving problems more efficiently (binary search, mergesort, quicksort).
Defining data structures in a natural way (lists, trees).

... How many functions from N to N are there?

An infinite set A is countable iff it is equinumerous to N.

An enumeration of A is a bijective function from N to A (indexing).

An encoding of A is a bijection from A to (an infinite subset of) N.

The union of two countable sets is countable,
therefore Z = N ∪ {−n | n ∈ N \ {0}} is countable.

The Cartesian product of two countable sets is countable,
therefore Q = Z× (N \ {0}) is countable.

|Z| = |N| is shown by the following encoding to the whole N:

fZ(0) = 0.
fZ(z) = 2 · z − 1 if z > 0.
fZ(z) = 2 · (−z) if z < 0.

Positive integers are mapped to odd naturals whereas
negative integers are mapped to even naturals:

· · · −4 −3 −2 −1 0 1 2 3 4 · · ·
· · · 8 6 4 2 0 1 3 5 7 · · ·

An infinite set A is countable iff it is equinumerous to N.

An enumeration of A is a bijective function from N to A (indexing).

An encoding of A is a bijection from A to (an infinite subset of) N.

The union of two countable sets is countable,
therefore Z = N ∪ {−n | n ∈ N \ {0}} is countable.

The Cartesian product of two countable sets is countable,
therefore Q = Z× (N \ {0}) is countable.

|Z| = |N| is shown by the following encoding to the whole N:

fZ(0) = 0.
fZ(z) = 2 · z − 1 if z > 0.
fZ(z) = 2 · (−z) if z < 0.

Positive integers are mapped to odd naturals whereas
negative integers are mapped to even naturals:

· · · −4 −3 −2 −1 0 1 2 3 4 · · ·
· · · 8 6 4 2 0 1 3 5 7 · · ·

An infinite set A is countable iff it is equinumerous to N.

An enumeration of A is a bijective function from N to A (indexing).

An encoding of A is a bijection from A to (an infinite subset of) N.

The union of two countable sets is countable,
therefore Z = N ∪ {−n | n ∈ N \ {0}} is countable.

The Cartesian product of two countable sets is countable,
therefore Q = Z× (N \ {0}) is countable.

|Z| = |N| is shown by the following encoding to the whole N:

fZ(0) = 0.
fZ(z) = 2 · z − 1 if z > 0.
fZ(z) = 2 · (−z) if z < 0.

Positive integers are mapped to odd naturals whereas
negative integers are mapped to even naturals:

· · · −4 −3 −2 −1 0 1 2 3 4 · · ·
· · · 8 6 4 2 0 1 3 5 7 · · ·

|Q| = |N| is shown by the following encoding to N \ {
k∑
i=0

i | k ∈ N}:

fQ(z, n) =
fZ(z)+n∑
i=1

i+ n = (fZ(z)+n)·(fZ(z)+n+1)
2 + n.

Geometrical interpretation: moving in the nonnegative quadrant of
the Cartesian plane along each of its diagonals parallel to y = −x
(the sum of the coordinates of the points of each diagonal is constant
and corresponds to the number of points on the previous diagonal).

Rendering over N×N (the bottom line disappears when encoding Q):

↑ . . .

3 9
. . .

2 5 8
. . . fN×N(n1, n2) =

n1+n2∑
i=1

i+ n2

1 2 4 7
. . .

0 0 1 3 6
. . .

0 1 2 3 →

|Q| = |N| is shown by the following encoding to N \ {
k∑
i=0

i | k ∈ N}:

fQ(z, n) =
fZ(z)+n∑
i=1

i+ n = (fZ(z)+n)·(fZ(z)+n+1)
2 + n.

Geometrical interpretation: moving in the nonnegative quadrant of
the Cartesian plane along each of its diagonals parallel to y = −x
(the sum of the coordinates of the points of each diagonal is constant
and corresponds to the number of points on the previous diagonal).

Rendering over N×N (the bottom line disappears when encoding Q):

↑ . . .

3 9
. . .

2 5 8
. . . fN×N(n1, n2) =

n1+n2∑
i=1

i+ n2

1 2 4 7
. . .

0 0 1 3 6
. . .

0 1 2 3 →

Proving |R| > |N| through Cantor diagonal method:

Suppose by contradiction that |R]0,1[| = |N|.
Then the numbers in R]0,1[can be enumerated as follows:

r0 = 0.d0,0d0,1 . . . d0,n . . .
r1 = 0.d1,0d1,1 . . . d1,n . . .
. .
rn = 0.dn,0dn,1 . . . dn,n . . .
. .

Let r = 0.d0d1 . . . dn . . . where dk 6= dk,k for all k ∈ N and
at least one digit after the decimal point is different from 0.
It holds that r ∈ R]0,1[but r does not occur in the enumeration,
hence |R]0,1[| > |N|.

|{f | f : N→ N}| > |N| can be proven in the same way,
with each fn viewed as (0, fn(0)), (1, fn(1)), . . . , (n, fn(n)), . . .
and f such that f(k) 6= fk(k) for all k ∈ N not in the enumeration.

Thus there are infinitely many functions that are not computable!

Proving |R| > |N| through Cantor diagonal method:

Suppose by contradiction that |R]0,1[| = |N|.
Then the numbers in R]0,1[can be enumerated as follows:

r0 = 0.d0,0d0,1 . . . d0,n . . .
r1 = 0.d1,0d1,1 . . . d1,n . . .
. .
rn = 0.dn,0dn,1 . . . dn,n . . .
. .

Let r = 0.d0d1 . . . dn . . . where dk 6= dk,k for all k ∈ N and
at least one digit after the decimal point is different from 0.
It holds that r ∈ R]0,1[but r does not occur in the enumeration,
hence |R]0,1[| > |N|.

|{f | f : N→ N}| > |N| can be proven in the same way,
with each fn viewed as (0, fn(0)), (1, fn(1)), . . . , (n, fn(n)), . . .
and f such that f(k) 6= fk(k) for all k ∈ N not in the enumeration.

Thus there are infinitely many functions that are not computable!

3. The Operational View: Turing Machines

Topics:

3.1 Automata and Turing Machines 34

3.2 The Universal Turing Machine 41

3.3 Languages Recognized by Turing Machines 43

3.4 Functions Computed by Turing Machines 46

3.1 Automata and Turing Machines

An automaton is an abstract machine that at any time is in one state
and evolves from a state to another in response to external stimuli
like input data (one initial state, possibly several final states).

Operational formalization of an algorithm or a computer.

A finite-state automaton (FSA) is representable as a state-transition
graph in which transitions are labeled with input/output information.

Deterministic or nondeterministic depending on whether the labels of
transitions departing from a state must be different or can be equal.

A pushdown automaton (PDA) is an FSA enriched with a stack-based
memory in which previous input data can be stored or manipulated.

A linear bounded automaton (LBA) is an FSA enriched with a tape
of bounded length in which data can be read and written via a head.

3.1 Automata and Turing Machines

An automaton is an abstract machine that at any time is in one state
and evolves from a state to another in response to external stimuli
like input data (one initial state, possibly several final states).

Operational formalization of an algorithm or a computer.

A finite-state automaton (FSA) is representable as a state-transition
graph in which transitions are labeled with input/output information.

Deterministic or nondeterministic depending on whether the labels of
transitions departing from a state must be different or can be equal.

A pushdown automaton (PDA) is an FSA enriched with a stack-based
memory in which previous input data can be stored or manipulated.

A linear bounded automaton (LBA) is an FSA enriched with a tape
of bounded length in which data can be read and written via a head.

3.1 Automata and Turing Machines

An automaton is an abstract machine that at any time is in one state
and evolves from a state to another in response to external stimuli
like input data (one initial state, possibly several final states).

Operational formalization of an algorithm or a computer.

A finite-state automaton (FSA) is representable as a state-transition
graph in which transitions are labeled with input/output information.

Deterministic or nondeterministic depending on whether the labels of
transitions departing from a state must be different or can be equal.

A pushdown automaton (PDA) is an FSA enriched with a stack-based
memory in which previous input data can be stored or manipulated.

A linear bounded automaton (LBA) is an FSA enriched with a tape
of bounded length in which data can be read and written via a head.

3.1 Automata and Turing Machines

An automaton is an abstract machine that at any time is in one state
and evolves from a state to another in response to external stimuli
like input data (one initial state, possibly several final states).

Operational formalization of an algorithm or a computer.

A finite-state automaton (FSA) is representable as a state-transition
graph in which transitions are labeled with input/output information.

Deterministic or nondeterministic depending on whether the labels of
transitions departing from a state must be different or can be equal.

A pushdown automaton (PDA) is an FSA enriched with a stack-based
memory in which previous input data can be stored or manipulated.

A linear bounded automaton (LBA) is an FSA enriched with a tape
of bounded length in which data can be read and written via a head.

A Turing machine (1936) has:

A finite-state control unit.
A tape with infinitely many cells.
A head that reads and writes symbols and moves in both directions.

First formalization of the notion of algorithm!

Equivalent formulations:

Several heads.
Several tapes (one for reading, one for writing, . . .).
Multidimensional or semi-infinite tape.
The head can stay on the same cell instead of having to move.
Only two states or two input symbols (increase the other number).

Writing capability (PDA, LBA), bidirectional movement (LBA),
and tape unboundedness give TMs a lot of computational power!

A Turing machine (1936) has:

A finite-state control unit.
A tape with infinitely many cells.
A head that reads and writes symbols and moves in both directions.

First formalization of the notion of algorithm!

Equivalent formulations:

Several heads.
Several tapes (one for reading, one for writing, . . .).
Multidimensional or semi-infinite tape.
The head can stay on the same cell instead of having to move.
Only two states or two input symbols (increase the other number).

Writing capability (PDA, LBA), bidirectional movement (LBA),
and tape unboundedness give TMs a lot of computational power!

At the beginning of the computation:

The TM is in its initial state q0.
The input, which is a finite-length sequence σ of input symbols,
is placed on the tape.
The tape head is at the leftmost cell that holds an input symbol.
All the other tape cells contain a special symbol called blank (␢).

Based on its current state and the symbol currently under its head,
at each step the TM will:

Evolve to the next state (may coincide with the current state).
Write a symbol in the current cell (may leave the same symbol).
Move the tape head left or right.

The input alphabet is strictly included in the tape alphabet (␢).

The computation is: discrete, deterministic, sequential.

At the beginning of the computation:

The TM is in its initial state q0.
The input, which is a finite-length sequence σ of input symbols,
is placed on the tape.
The tape head is at the leftmost cell that holds an input symbol.
All the other tape cells contain a special symbol called blank (␢).

Based on its current state and the symbol currently under its head,
at each step the TM will:

Evolve to the next state (may coincide with the current state).
Write a symbol in the current cell (may leave the same symbol).
Move the tape head left or right.

The input alphabet is strictly included in the tape alphabet (␢).

The computation is: discrete, deterministic, sequential.

At the beginning of the computation:

The TM is in its initial state q0.
The input, which is a finite-length sequence σ of input symbols,
is placed on the tape.
The tape head is at the leftmost cell that holds an input symbol.
All the other tape cells contain a special symbol called blank (␢).

Based on its current state and the symbol currently under its head,
at each step the TM will:

Evolve to the next state (may coincide with the current state).
Write a symbol in the current cell (may leave the same symbol).
Move the tape head left or right.

The input alphabet is strictly included in the tape alphabet (␢).

The computation is: discrete, deterministic, sequential.

A TM is a tuple Z = (Q,Σ,Γ, δ, q0) where:

Q is a finite set of states.
Σ is a finite set of input symbols.
Γ is a finite set of tape symbols, with Σ (Γ.
δ : Q× Γ→◦ Q× Γ×D is a transition function, where D = {L,R}
is the set of directions in which the tape head can move.
q0 ∈ Q is the initial state.

δ is a partial function, hence the computation terminates when δ
does not associate anything with the current state and tape symbol.

The instantaneous description of a TM is the finite sequence of
symbols currently in the tape cells between the leftmost and the
rightmost nonblanks, with the current state embedded just before
the symbol currently under the head: X1 . . . Xi−1qXiXi+1 . . . Xn.

Starting from the initial instantaneous description q0 σ,
the computation may terminate or not.

A TM is a tuple Z = (Q,Σ,Γ, δ, q0) where:

Q is a finite set of states.
Σ is a finite set of input symbols.
Γ is a finite set of tape symbols, with Σ (Γ.
δ : Q× Γ→◦ Q× Γ×D is a transition function, where D = {L,R}
is the set of directions in which the tape head can move.
q0 ∈ Q is the initial state.

δ is a partial function, hence the computation terminates when δ
does not associate anything with the current state and tape symbol.

The instantaneous description of a TM is the finite sequence of
symbols currently in the tape cells between the leftmost and the
rightmost nonblanks, with the current state embedded just before
the symbol currently under the head: X1 . . . Xi−1qXiXi+1 . . . Xn.

Starting from the initial instantaneous description q0 σ,
the computation may terminate or not.

The moves of a TM can be described through relation ` ⊆ ID × ID .

If δ(q,Xi) = (q′, X ′, L) then:

1 < i < n:
X1 . . . Xi−1qXiXi+1 . . . Xn ` X1 . . . Xi−2 q

′Xi−1X
′Xi+1 . . . Xn.

i = 1:
qX1X2 . . . Xn ` q′␢X ′X2 . . . Xn.
i = n:
X1 . . . Xn−1qXn ` X1 . . . Xn−2q

′Xn−1X
′.

If δ(q,Xi) = (q′, X ′, R) then:

1 < i < n:
X1 . . . Xi−1qXiXi+1 . . . Xn ` X1 . . . Xi−1X

′q′Xi+1 . . . Xn.
i = 1:
qX1X2 . . . Xn ` X ′q′X2 . . . Xn.
i = n:
X1 . . . Xn−1qXn ` X1 . . . Xn−1X

′q′␢.

A computation from id0 to idn, written id0 `∗ idn, is a sequence of
instantaneous descriptions (id i)0≤i≤n such that id i ` id i+1 for all i.

The moves of a TM can be described through relation ` ⊆ ID × ID .

If δ(q,Xi) = (q′, X ′, L) then:

1 < i < n:
X1 . . . Xi−1qXiXi+1 . . . Xn ` X1 . . . Xi−2 q

′Xi−1X
′Xi+1 . . . Xn.

i = 1:
qX1X2 . . . Xn ` q′␢X ′X2 . . . Xn.
i = n:
X1 . . . Xn−1qXn ` X1 . . . Xn−2q

′Xn−1X
′.

If δ(q,Xi) = (q′, X ′, R) then:

1 < i < n:
X1 . . . Xi−1qXiXi+1 . . . Xn ` X1 . . . Xi−1X

′q′Xi+1 . . . Xn.
i = 1:
qX1X2 . . . Xn ` X ′q′X2 . . . Xn.
i = n:
X1 . . . Xn−1qXn ` X1 . . . Xn−1X

′q′␢.

A computation from id0 to idn, written id0 `∗ idn, is a sequence of
instantaneous descriptions (id i)0≤i≤n such that id i ` id i+1 for all i.

Example of TM computing the successor of a natural number:

Σ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.
Γ = Σ ∪ {␢}.
Q = {q0, q1, q2} where:

q0: TM moves from the leftmost digit to the rightmost one.
q1: TM adds 1 and continues to the left in case of carry.
q2: TM halts.

Matrix representation of transition function δ:

0 1 2 3 4 5 6 7 8 9 ␢
q0

0
R
q0

1
R
q0

2
R
q0

3
R
q0

4
R
q0

5
R
q0

6
R
q0

7
R
q0

8
R
q0

9
R
q0

␢
L
q1

q1
1
L
q2

2
L
q2

3
L
q2

4
L
q2

5
L
q2

6
L
q2

7
L
q2

8
L
q2

9
L
q2

0
L
q1

1
L
q2

q2 − − − − − − − − − − −

Example of TM computing the successor of a natural number:

Σ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.
Γ = Σ ∪ {␢}.
Q = {q0, q1, q2} where:

q0: TM moves from the leftmost digit to the rightmost one.
q1: TM adds 1 and continues to the left in case of carry.
q2: TM halts.

Matrix representation of transition function δ:

0 1 2 3 4 5 6 7 8 9 ␢
q0

0
R
q0

1
R
q0

2
R
q0

3
R
q0

4
R
q0

5
R
q0

6
R
q0

7
R
q0

8
R
q0

9
R
q0

␢
L
q1

q1
1
L
q2

2
L
q2

3
L
q2

4
L
q2

5
L
q2

6
L
q2

7
L
q2

8
L
q2

9
L
q2

0
L
q1

1
L
q2

q2 − − − − − − − − − − −

Example of TM verifying the balancing of a sequence of parentheses:

Σ = {(,)}.
Γ = Σ ∪ {␢,X, 0, 1}.
Q = {q0, q1, q2, q3} where:

q0: TM goes right until it deletes a right parenthesis if any (X).
q1: TM goes left until it deletes the corresponding left par. if any (X).
q2: balancing correct (1) or not (0) if no more left parentheses or not.
q3: TM halts.

Matrix representation of transition function δ:

() X ␢

q0
(
R
q0

X
L
q1

X
R
q0

␢
L
q2

q1
X
R
q0

− X
L
q1

0
L
q3

q2
0
L
q3

− X
L
q2

1
L
q3

q3 − − − −

Example of TM verifying the balancing of a sequence of parentheses:

Σ = {(,)}.
Γ = Σ ∪ {␢,X, 0, 1}.
Q = {q0, q1, q2, q3} where:

q0: TM goes right until it deletes a right parenthesis if any (X).
q1: TM goes left until it deletes the corresponding left par. if any (X).
q2: balancing correct (1) or not (0) if no more left parentheses or not.
q3: TM halts.

Matrix representation of transition function δ:

() X ␢

q0
(
R
q0

X
L
q1

X
R
q0

␢
L
q2

q1
X
R
q0

− X
L
q1

0
L
q3

q2
0
L
q3

− X
L
q2

1
L
q3

q3 − − − −

3.2 The Universal Turing Machine

A TM can be viewed as the formal description of an algorithm
according to an operational style.

It can be thought of as a computer with a hardwired program.

The universal Turing machine can simulate any TM on any input.

It can be thought of as a computer with a stored program,
which may thus be changed after its execution.

UTM represents a computation scheme no longer hardwired.

The first general-purpose electronic computers like ENIAC (1946)
were programmed by setting up switches and connecting cables.

From plugboard computers to stored program computers
thanks to Von Neumann (1952).

3.2 The Universal Turing Machine

A TM can be viewed as the formal description of an algorithm
according to an operational style.

It can be thought of as a computer with a hardwired program.

The universal Turing machine can simulate any TM on any input.

It can be thought of as a computer with a stored program,
which may thus be changed after its execution.

UTM represents a computation scheme no longer hardwired.

The first general-purpose electronic computers like ENIAC (1946)
were programmed by setting up switches and connecting cables.

From plugboard computers to stored program computers
thanks to Von Neumann (1952).

3.2 The Universal Turing Machine

A TM can be viewed as the formal description of an algorithm
according to an operational style.

It can be thought of as a computer with a hardwired program.

The universal Turing machine can simulate any TM on any input.

It can be thought of as a computer with a stored program,
which may thus be changed after its execution.

UTM represents a computation scheme no longer hardwired.

The first general-purpose electronic computers like ENIAC (1946)
were programmed by setting up switches and connecting cables.

From plugboard computers to stored program computers
thanks to Von Neumann (1952).

UTM acts as an interpreter of the instructions of the simulated TM.

UTM needs to know:

The current contents of the tape of the TM being simulated.
The current state of the TM being simulated.
The symbol currently under the head of the TM being simulated.
All the tuples of the transition function of the TM being simulated.

These pieces of information may reside on separate tapes of UTM.

If on a single tape, special tape symbols delimit the various sections.

Like in the fetch-decode-execute cycle of the processor of a computer,
based on the current state and the symbol currently under the head
of the TM being simulated, UTM repeatedly selects a tuple and
updates the state, the tape contents, and the head position.

UTM acts as an interpreter of the instructions of the simulated TM.

UTM needs to know:

The current contents of the tape of the TM being simulated.
The current state of the TM being simulated.
The symbol currently under the head of the TM being simulated.
All the tuples of the transition function of the TM being simulated.

These pieces of information may reside on separate tapes of UTM.

If on a single tape, special tape symbols delimit the various sections.

Like in the fetch-decode-execute cycle of the processor of a computer,
based on the current state and the symbol currently under the head
of the TM being simulated, UTM repeatedly selects a tuple and
updates the state, the tape contents, and the head position.

3.3 Languages Recognized by Turing Machines

Automata theory is deeply intertwined with formal languages.

A language L builds on:

A finite alphabet Σ of symbols (with associated phonemes).
A set of lexemes or words or strings each belonging to the set Σ∗

of finite sequences of symbols of Σ (indeed L ⊆ Σ∗).
A finite set of grammar rules yielding phrases or sentences.
A semantic interpretation assigning meanings to phrases.

A grammar is a tuple G = (Σ, N, S, P) where

Σ is a finite alphabet of terminal symbols.
N is a finite set of nonterminal symbols (syntactic categories).
S ∈ N is the start nonterminal symbol.
P is a finite set of productions each of the form α→ β (or α ::= β)
where α ∈ (Σ ∪N)+ while β ∈ (Σ ∪N)∗.

The language generated by G is L(G) = {σ ∈ Σ∗ | S →∗ σ}.

3.3 Languages Recognized by Turing Machines

Automata theory is deeply intertwined with formal languages.

A language L builds on:

A finite alphabet Σ of symbols (with associated phonemes).
A set of lexemes or words or strings each belonging to the set Σ∗

of finite sequences of symbols of Σ (indeed L ⊆ Σ∗).
A finite set of grammar rules yielding phrases or sentences.
A semantic interpretation assigning meanings to phrases.

A grammar is a tuple G = (Σ, N, S, P) where

Σ is a finite alphabet of terminal symbols.
N is a finite set of nonterminal symbols (syntactic categories).
S ∈ N is the start nonterminal symbol.
P is a finite set of productions each of the form α→ β (or α ::= β)
where α ∈ (Σ ∪N)+ while β ∈ (Σ ∪N)∗.

The language generated by G is L(G) = {σ ∈ Σ∗ | S →∗ σ}.

If TM Z is enriched with an accepting state qa, then we can define the
language recognized by Z as L(Z) = {σ ∈ Σ∗ | q0σ `∗ id 6`, qa ∈ id}.
Membership problem – given σ ∈ Σ∗, establish whether σ ∈ L(Z):

If Z terminates on σ and qa is reached, then σ ∈ L(Z).
If Z terminates on σ and qa is not reached, then σ /∈ L(Z).
If Z does not terminate on σ, then no answer can be provided.

The membership problem is only semi-decidable in general,
because Z certainly halts only when the answer is yes.

L(Z) is thus a recursively enumerable set, i.e., a set for which
there exists an enumeration of its elements.

L(Z) is instead a recursive set when Z terminates on any input,
i.e., when Z ensures the decidability of the membership problem.

The infinite set 2Σ∗ of all languages over Σ is not countable,
hence only countably many languages are recursively enumerable.

If TM Z is enriched with an accepting state qa, then we can define the
language recognized by Z as L(Z) = {σ ∈ Σ∗ | q0σ `∗ id 6`, qa ∈ id}.
Membership problem – given σ ∈ Σ∗, establish whether σ ∈ L(Z):

If Z terminates on σ and qa is reached, then σ ∈ L(Z).
If Z terminates on σ and qa is not reached, then σ /∈ L(Z).
If Z does not terminate on σ, then no answer can be provided.

The membership problem is only semi-decidable in general,
because Z certainly halts only when the answer is yes.

L(Z) is thus a recursively enumerable set, i.e., a set for which
there exists an enumeration of its elements.

L(Z) is instead a recursive set when Z terminates on any input,
i.e., when Z ensures the decidability of the membership problem.

The infinite set 2Σ∗ of all languages over Σ is not countable,
hence only countably many languages are recursively enumerable.

Language classification by Noam Chomsky (1956):

L0 (basis for natural languages):

Generated by general grammars G = (Σ, N, S, P).
Recursively enumerable languages – semi-decidability of σ ∈ L.
Undecidability of language emptiness, finiteness, equivalence.
Recognized by TMs.

L1 (context-sensitive languages):

Generated by context-sensitive grammars (γ1Aγ2 → γ1γγ2).
Recursive languages (anbncn) – decidability of σ ∈ L in O(α|σ|).
Undecidability of language emptiness, finiteness, equivalence.
Recognized by linear bounded automata (LBA).

L2 (context-free languages – basis for programming languages):

Generated by context-free grammars (A→ γ).
Recursive languages (anbn) – decidability of σ ∈ L in O(|σ|2).
Undecidability of language equivalence.
Recognized by pushdown automata (PDA).

L3 (regular languages – representable through regular expressions):

Generated by linear grammars (A→ γ with at most one B ∈ N in γ).
Recursive languages (anbm) – decidability of σ ∈ L in O(|σ|).
Recognized by finite-state automata (FSA).

Language classification by Noam Chomsky (1956):

L0 (basis for natural languages):

Generated by general grammars G = (Σ, N, S, P).
Recursively enumerable languages – semi-decidability of σ ∈ L.
Undecidability of language emptiness, finiteness, equivalence.
Recognized by TMs.

L1 (context-sensitive languages):

Generated by context-sensitive grammars (γ1Aγ2 → γ1γγ2).
Recursive languages (anbncn) – decidability of σ ∈ L in O(α|σ|).
Undecidability of language emptiness, finiteness, equivalence.
Recognized by linear bounded automata (LBA).

L2 (context-free languages – basis for programming languages):

Generated by context-free grammars (A→ γ).
Recursive languages (anbn) – decidability of σ ∈ L in O(|σ|2).
Undecidability of language equivalence.
Recognized by pushdown automata (PDA).

L3 (regular languages – representable through regular expressions):

Generated by linear grammars (A→ γ with at most one B ∈ N in γ).
Recursive languages (anbm) – decidability of σ ∈ L in O(|σ|).
Recognized by finite-state automata (FSA).

Language classification by Noam Chomsky (1956):

L0 (basis for natural languages):

Generated by general grammars G = (Σ, N, S, P).
Recursively enumerable languages – semi-decidability of σ ∈ L.
Undecidability of language emptiness, finiteness, equivalence.
Recognized by TMs.

L1 (context-sensitive languages):

Generated by context-sensitive grammars (γ1Aγ2 → γ1γγ2).
Recursive languages (anbncn) – decidability of σ ∈ L in O(α|σ|).
Undecidability of language emptiness, finiteness, equivalence.
Recognized by linear bounded automata (LBA).

L2 (context-free languages – basis for programming languages):

Generated by context-free grammars (A→ γ).
Recursive languages (anbn) – decidability of σ ∈ L in O(|σ|2).
Undecidability of language equivalence.
Recognized by pushdown automata (PDA).

L3 (regular languages – representable through regular expressions):

Generated by linear grammars (A→ γ with at most one B ∈ N in γ).
Recursive languages (anbm) – decidability of σ ∈ L in O(|σ|).
Recognized by finite-state automata (FSA).

Language classification by Noam Chomsky (1956):

L0 (basis for natural languages):

Generated by general grammars G = (Σ, N, S, P).
Recursively enumerable languages – semi-decidability of σ ∈ L.
Undecidability of language emptiness, finiteness, equivalence.
Recognized by TMs.

L1 (context-sensitive languages):

Generated by context-sensitive grammars (γ1Aγ2 → γ1γγ2).
Recursive languages (anbncn) – decidability of σ ∈ L in O(α|σ|).
Undecidability of language emptiness, finiteness, equivalence.
Recognized by linear bounded automata (LBA).

L2 (context-free languages – basis for programming languages):

Generated by context-free grammars (A→ γ).
Recursive languages (anbn) – decidability of σ ∈ L in O(|σ|2).
Undecidability of language equivalence.
Recognized by pushdown automata (PDA).

L3 (regular languages – representable through regular expressions):

Generated by linear grammars (A→ γ with at most one B ∈ N in γ).
Recursive languages (anbm) – decidability of σ ∈ L in O(|σ|).
Recognized by finite-state automata (FSA).

3.4 Functions Computed by Turing Machines

The function computed by TM Z is partial function fZ : IDZ →◦ IDZ .

Z converges on input σ, written Z ↓ σ, if q0σ `∗ id 6` (fZ(q0σ)= id),
otherwise we say that Z diverges on σ, written Z ↑ σ (fZ(q0σ) und.).

Using a suitable enumeration and a suitable encoding for the set IDZ

we get f ′Z : N→◦ N where f ′Z(n) = encZ(fZ(enumZ(n))).

fZ and f ′Z are total iff Z always converges.

Given an enumeration of TMs, the function computed by UTM U is
f ′U : N× N→◦ N where f ′U (n1, n2) = f ′enum(n1)(n2).

A function over naturals is Turing computable iff there exists a TM
that computes the considered function.

Remind that not all functions over naturals are Turing computable:
countably many are, uncountably many are not.

Can we characterize the set of Turing-computable functions?
Are there computable functions beyond Turing-computable ones?

3.4 Functions Computed by Turing Machines

The function computed by TM Z is partial function fZ : IDZ →◦ IDZ .

Z converges on input σ, written Z ↓ σ, if q0σ `∗ id 6` (fZ(q0σ)= id),
otherwise we say that Z diverges on σ, written Z ↑ σ (fZ(q0σ) und.).

Using a suitable enumeration and a suitable encoding for the set IDZ

we get f ′Z : N→◦ N where f ′Z(n) = encZ(fZ(enumZ(n))).

fZ and f ′Z are total iff Z always converges.

Given an enumeration of TMs, the function computed by UTM U is
f ′U : N× N→◦ N where f ′U (n1, n2) = f ′enum(n1)(n2).

A function over naturals is Turing computable iff there exists a TM
that computes the considered function.

Remind that not all functions over naturals are Turing computable:
countably many are, uncountably many are not.

Can we characterize the set of Turing-computable functions?
Are there computable functions beyond Turing-computable ones?

3.4 Functions Computed by Turing Machines

The function computed by TM Z is partial function fZ : IDZ →◦ IDZ .

Z converges on input σ, written Z ↓ σ, if q0σ `∗ id 6` (fZ(q0σ)= id),
otherwise we say that Z diverges on σ, written Z ↑ σ (fZ(q0σ) und.).

Using a suitable enumeration and a suitable encoding for the set IDZ

we get f ′Z : N→◦ N where f ′Z(n) = encZ(fZ(enumZ(n))).

fZ and f ′Z are total iff Z always converges.

Given an enumeration of TMs, the function computed by UTM U is
f ′U : N× N→◦ N where f ′U (n1, n2) = f ′enum(n1)(n2).

A function over naturals is Turing computable iff there exists a TM
that computes the considered function.

Remind that not all functions over naturals are Turing computable:
countably many are, uncountably many are not.

Can we characterize the set of Turing-computable functions?
Are there computable functions beyond Turing-computable ones?

4. The Functional View: Lambda Calculus

Topics:

4.1 Syntax of Lambda Calculus 48

4.2 Semantics and Combinatory Logic 51

4.3 Recursive Functions via Fixed Points 58

4.4 Termination and Confluence 62

4.5 Lambda Calculus with Types 66

4.1 Syntax of Lambda Calculus

A function f : A→ B is a subset of A×B in which for each a ∈ A
there exists at most one b ∈ B such that (a, b) ∈ f , written f(a) = b.

Extensional view: f is a set of ordered pairs.

Intensional view: computational rules to obtain b from a.

Notational ambiguity: is f(x) the definition or an application of f?

In 1932 Alonzo Church introduced λ-calculus as part of a general
theory of functions and logic, to be a foundation of mathematics.

Calculus able to capture the computational aspects of functions:

Formal system equipped with a syntax for generating terms.
Set of rewriting rules for transforming terms into other terms.

Functional programming: Lisp, Scheme, ML, Haskell (also Python).

4.1 Syntax of Lambda Calculus

A function f : A→ B is a subset of A×B in which for each a ∈ A
there exists at most one b ∈ B such that (a, b) ∈ f , written f(a) = b.

Extensional view: f is a set of ordered pairs.

Intensional view: computational rules to obtain b from a.

Notational ambiguity: is f(x) the definition or an application of f?

In 1932 Alonzo Church introduced λ-calculus as part of a general
theory of functions and logic, to be a foundation of mathematics.

Calculus able to capture the computational aspects of functions:

Formal system equipped with a syntax for generating terms.
Set of rewriting rules for transforming terms into other terms.

Functional programming: Lisp, Scheme, ML, Haskell (also Python).

The λ-calculus describes functions in their full generality,
including recursive functions and higher-order functions.

This is achieved through an extremely simple syntax, which clearly
distinguishes between function definition and function application.

The set Λ of λ-terms is generated by:

E ::= x | λx .E | E E
where:

x ∈ Var , with Var being a countable set of variables.
λx .E is a λ-abstraction, i.e., a function definition, with λ called binder
for formal parameter x within function body E (unary operator).
E1E2 is the application of E1 to E2 (binary operator).

Precedence of application over λ-abstr.: λx .E1E2 = λx . (E1E2).

Right associativity of λ-abstraction: λx . λy .E = λx . (λy .E).

Left associativity of application: E1E2E3 = (E1E2)E3.

The λ-calculus describes functions in their full generality,
including recursive functions and higher-order functions.

This is achieved through an extremely simple syntax, which clearly
distinguishes between function definition and function application.

The set Λ of λ-terms is generated by:

E ::= x | λx .E | E E
where:

x ∈ Var , with Var being a countable set of variables.
λx .E is a λ-abstraction, i.e., a function definition, with λ called binder
for formal parameter x within function body E (unary operator).
E1E2 is the application of E1 to E2 (binary operator).

Precedence of application over λ-abstr.: λx .E1E2 = λx . (E1E2).

Right associativity of λ-abstraction: λx . λy .E = λx . (λy .E).

Left associativity of application: E1E2E3 = (E1E2)E3.

The λ-calculus describes functions in their full generality,
including recursive functions and higher-order functions.

This is achieved through an extremely simple syntax, which clearly
distinguishes between function definition and function application.

The set Λ of λ-terms is generated by:

E ::= x | λx .E | E E
where:

x ∈ Var , with Var being a countable set of variables.
λx .E is a λ-abstraction, i.e., a function definition, with λ called binder
for formal parameter x within function body E (unary operator).
E1E2 is the application of E1 to E2 (binary operator).

Precedence of application over λ-abstr.: λx .E1E2 = λx . (E1E2).

Right associativity of λ-abstraction: λx . λy .E = λx . (λy .E).

Left associativity of application: E1E2E3 = (E1E2)E3.

Examples:

Identity function: λx . x.
Selection of either argument: λx . λy . x and λx . λy . y.
Successor and predecessor functions: λx . x+ 1 and λx . x− 1.
Application of the successor function to value 2: (λx . x+ 1) 2.

Symbols 1, 2, +, − are not admitted in Λ. How to encode them?

Start with natural numbers, then arithmetical operations.

Church numerals based on Dedekind-Peano axioms:

0 = λs . λz . z so that the representation of 0 returns z.
1 = λs . λz . s z so that the representation of 1 returns
a single application of s to z.
2 = λs . λz . s (s z) so that the representation of 2 returns
a double application of s to z.
...
n = λs . λz . s (. . . (s z) . . .) where the application of s is
repeated n ∈ N≥1 times as if n were an iterator of s on z.

Examples:

Identity function: λx . x.
Selection of either argument: λx . λy . x and λx . λy . y.
Successor and predecessor functions: λx . x+ 1 and λx . x− 1.
Application of the successor function to value 2: (λx . x+ 1) 2.

Symbols 1, 2, +, − are not admitted in Λ. How to encode them?

Start with natural numbers, then arithmetical operations.

Church numerals based on Dedekind-Peano axioms:

0 = λs . λz . z so that the representation of 0 returns z.
1 = λs . λz . s z so that the representation of 1 returns
a single application of s to z.
2 = λs . λz . s (s z) so that the representation of 2 returns
a double application of s to z.
...
n = λs . λz . s (. . . (s z) . . .) where the application of s is
repeated n ∈ N≥1 times as if n were an iterator of s on z.

Examples:

Identity function: λx . x.
Selection of either argument: λx . λy . x and λx . λy . y.
Successor and predecessor functions: λx . x+ 1 and λx . x− 1.
Application of the successor function to value 2: (λx . x+ 1) 2.

Symbols 1, 2, +, − are not admitted in Λ. How to encode them?

Start with natural numbers, then arithmetical operations.

Church numerals based on Dedekind-Peano axioms:

0 = λs . λz . z so that the representation of 0 returns z.
1 = λs . λz . s z so that the representation of 1 returns
a single application of s to z.
2 = λs . λz . s (s z) so that the representation of 2 returns
a double application of s to z.
...
n = λs . λz . s (. . . (s z) . . .) where the application of s is
repeated n ∈ N≥1 times as if n were an iterator of s on z.

4.2 Semantics and Combinatory Logic

A variable occurrence within a λ-term is bound/free depending on
whether it is in the scope of a binder with the same name or not:
x is bound in λx . x, free in λy . x.

Term rewriting rules based on syntactical substitutions of free vars:

α-conversion: λx .E =α λy . (E[y/x]) provided that y /∈ fvar(E).
β-conversion: (λx .E)F =β E[F/x].
η-conversion: λx .E x =η E provided that x /∈ fvar(E).

The corresponding equivalence relations ≡α, ≡β, ≡η over Λ
are congruences with respect to λ-abstraction and application,
hence they can be applied compositionally.

If E1 ≡ E2 for ≡ ∈ {≡α,≡β,≡η}, then:

λx .E1 ≡ λx .E2 for all x ∈ Var .
E1 F ≡ E2 F and F E1 ≡ F E2 for all F ∈ Λ.

4.2 Semantics and Combinatory Logic

A variable occurrence within a λ-term is bound/free depending on
whether it is in the scope of a binder with the same name or not:
x is bound in λx . x, free in λy . x.

Term rewriting rules based on syntactical substitutions of free vars:

α-conversion: λx .E =α λy . (E[y/x]) provided that y /∈ fvar(E).
β-conversion: (λx .E)F =β E[F/x].
η-conversion: λx .E x =η E provided that x /∈ fvar(E).

The corresponding equivalence relations ≡α, ≡β, ≡η over Λ
are congruences with respect to λ-abstraction and application,
hence they can be applied compositionally.

If E1 ≡ E2 for ≡ ∈ {≡α,≡β,≡η}, then:

λx .E1 ≡ λx .E2 for all x ∈ Var .
E1 F ≡ E2 F and F E1 ≡ F E2 for all F ∈ Λ.

α-conversion allows bound variable names and binders to be changed:
λx . x =α λy . y, but λx . x z 6=α λz . z z because z ∈ fvar(x z).

Convention: inside every λ-term, especially of the form (λx .E)F ,
the names of variables bound to different occurrences of binders are
always different from each other and from the names of free variables.

β-conversion, with (λx .E)F called redex and E[F/x] contractum,
formalizes the application of a function λx .E to an argument F
as the substitution of the actual parameter F for every occurrence
of the formal parameter x that is free in the function body E.

η-conversion encodes the extensional equality between two functions,
i.e., that two functions are equal iff they produce the same result
whenever they are applied to the same argument.

Equivalent to: if E1 F ≡β E2 F for all F ∈ Λ, then E1 = E2.

α-conversion allows bound variable names and binders to be changed:
λx . x =α λy . y, but λx . x z 6=α λz . z z because z ∈ fvar(x z).

Convention: inside every λ-term, especially of the form (λx .E)F ,
the names of variables bound to different occurrences of binders are
always different from each other and from the names of free variables.

β-conversion, with (λx .E)F called redex and E[F/x] contractum,
formalizes the application of a function λx .E to an argument F
as the substitution of the actual parameter F for every occurrence
of the formal parameter x that is free in the function body E.

η-conversion encodes the extensional equality between two functions,
i.e., that two functions are equal iff they produce the same result
whenever they are applied to the same argument.

Equivalent to: if E1 F ≡β E2 F for all F ∈ Λ, then E1 = E2.

α-conversion allows bound variable names and binders to be changed:
λx . x =α λy . y, but λx . x z 6=α λz . z z because z ∈ fvar(x z).

Convention: inside every λ-term, especially of the form (λx .E)F ,
the names of variables bound to different occurrences of binders are
always different from each other and from the names of free variables.

β-conversion, with (λx .E)F called redex and E[F/x] contractum,
formalizes the application of a function λx .E to an argument F
as the substitution of the actual parameter F for every occurrence
of the formal parameter x that is free in the function body E.

η-conversion encodes the extensional equality between two functions,
i.e., that two functions are equal iff they produce the same result
whenever they are applied to the same argument.

Equivalent to: if E1 F ≡β E2 F for all F ∈ Λ, then E1 = E2.

Reduction semantics when oriented from left to right:

β-reduction: (λx .E)F −−−→β E[F/x].
η-reduction: λx .E x −−−→η E provided that x /∈ fvar(E).
Reflexive and transitive closures up to α-conversion: −−−→β

∗, −−−→η
∗.

Currying: every function with several arguments is viewed as a
function of a single argument that returns a function in which
the remaining arguments are handled (right associativity).

Not all the arguments have to be passed at once (partial evaluation).

Example: (λy . λx . x+ y) 1 −−−→β (λx . x+ y)[1/y] = λx . x+ 1.

Higher-order functions: a function can be passed as an argument
to another function.

Example: (λy . y 2) (λx . x · 3) −−−→β (y 2)[λx . x·3/y] = (λx . x · 3) 2
−−−→β (x · 3)[2/x] = 2 · 3 = 6.

Reduction semantics when oriented from left to right:

β-reduction: (λx .E)F −−−→β E[F/x].
η-reduction: λx .E x −−−→η E provided that x /∈ fvar(E).
Reflexive and transitive closures up to α-conversion: −−−→β

∗, −−−→η
∗.

Currying: every function with several arguments is viewed as a
function of a single argument that returns a function in which
the remaining arguments are handled (right associativity).

Not all the arguments have to be passed at once (partial evaluation).

Example: (λy . λx . x+ y) 1 −−−→β (λx . x+ y)[1/y] = λx . x+ 1.

Higher-order functions: a function can be passed as an argument
to another function.

Example: (λy . y 2) (λx . x · 3) −−−→β (y 2)[λx . x·3/y] = (λx . x · 3) 2
−−−→β (x · 3)[2/x] = 2 · 3 = 6.

Reduction semantics when oriented from left to right:

β-reduction: (λx .E)F −−−→β E[F/x].
η-reduction: λx .E x −−−→η E provided that x /∈ fvar(E).
Reflexive and transitive closures up to α-conversion: −−−→β

∗, −−−→η
∗.

Currying: every function with several arguments is viewed as a
function of a single argument that returns a function in which
the remaining arguments are handled (right associativity).

Not all the arguments have to be passed at once (partial evaluation).

Example: (λy . λx . x+ y) 1 −−−→β (λx . x+ y)[1/y] = λx . x+ 1.

Higher-order functions: a function can be passed as an argument
to another function.

Example: (λy . y 2) (λx . x · 3) −−−→β (y 2)[λx . x·3/y] = (λx . x · 3) 2
−−−→β (x · 3)[2/x] = 2 · 3 = 6.

If succ = λn . λx . λy . x (nx y) then succ n −−−→β
∗ n+ 1.

Example: succ 0 = (λn . λx . λy . x (nx y)) (λs . λz . z) −−−→β

(λx . λy . x (nx y))[λs . λz . z/n] = λx . λy . x ((λs . λz . z)x y) −−−→β

λx . λy . x ((λz . z)[x/s] y) = λx . λy . x ((λz . z) y)−−−→β

λx . λy . x (z[y/z]) = λx . λy . x y =α 1.

If add = λm . λn . λx . λy .mx (nx y) then add mn −−−→β
∗m+ n.

If mult = λm . λn . λx .m (nx) then mult mn −−−→β
∗m · n.

If exp = λm . λn .mn then exp mn −−−→β
∗ nm.

If succ = λn . λx . λy . x (nx y) then succ n −−−→β
∗ n+ 1.

Example: succ 0 = (λn . λx . λy . x (nx y)) (λs . λz . z) −−−→β

(λx . λy . x (nx y))[λs . λz . z/n] = λx . λy . x ((λs . λz . z)x y) −−−→β

λx . λy . x ((λz . z)[x/s] y) = λx . λy . x ((λz . z) y)−−−→β

λx . λy . x (z[y/z]) = λx . λy . x y =α 1.

If add = λm . λn . λx . λy .mx (nx y) then add mn −−−→β
∗m+ n.

If mult = λm . λn . λx .m (nx) then mult mn −−−→β
∗m · n.

If exp = λm . λn .mn then exp mn −−−→β
∗ nm.

If succ = λn . λx . λy . x (nx y) then succ n −−−→β
∗ n+ 1.

Example: succ 0 = (λn . λx . λy . x (nx y)) (λs . λz . z) −−−→β

(λx . λy . x (nx y))[λs . λz . z/n] = λx . λy . x ((λs . λz . z)x y) −−−→β

λx . λy . x ((λz . z)[x/s] y) = λx . λy . x ((λz . z) y)−−−→β

λx . λy . x (z[y/z]) = λx . λy . x y =α 1.

If add = λm . λn . λx . λy .mx (nx y) then add mn −−−→β
∗m+ n.

If mult = λm . λn . λx .m (nx) then mult mn −−−→β
∗m · n.

If exp = λm . λn .mn then exp mn −−−→β
∗ nm.

If succ = λn . λx . λy . x (nx y) then succ n −−−→β
∗ n+ 1.

Example: succ 0 = (λn . λx . λy . x (nx y)) (λs . λz . z) −−−→β

(λx . λy . x (nx y))[λs . λz . z/n] = λx . λy . x ((λs . λz . z)x y) −−−→β

λx . λy . x ((λz . z)[x/s] y) = λx . λy . x ((λz . z) y)−−−→β

λx . λy . x (z[y/z]) = λx . λy . x y =α 1.

If add = λm . λn . λx . λy .mx (nx y) then add mn −−−→β
∗m+ n.

If mult = λm . λn . λx .m (nx) then mult mn −−−→β
∗m · n.

If exp = λm . λn .mn then exp mn −−−→β
∗ nm.

We now present three interesting λ-terms related to each other.

If I = λx . x then I E −−−→β
∗E and in particular I I −−−→β

∗ I:
I I =α (λx . x) (λx′. x′) −−−→β x[λx

′. x′/x] = λx′. x′ =α I.

If K = λx . λy . x then K E = (λx . λy . x)E −−−→β λy .E
and moreover KE F −−−→β

∗E because y /∈ fvar(E)
otherwise we would have renamed λy in the substitution.

If S = λx . λy . λz . x z (y z) then in particular
S K K =α (λx . λy . λz . x z (y z)) (λx′. λy′. x′) (λx′′. λy′′. x′′)−−−→β

∗ I.

We now present three interesting λ-terms related to each other.

If I = λx . x then I E −−−→β
∗E and in particular I I −−−→β

∗ I:
I I =α (λx . x) (λx′. x′) −−−→β x[λx

′. x′/x] = λx′. x′ =α I.

If K = λx . λy . x then K E = (λx . λy . x)E −−−→β λy .E
and moreover K E F −−−→β

∗E because y /∈ fvar(E)
otherwise we would have renamed λy in the substitution.

If S = λx . λy . λz . x z (y z) then in particular
S K K =α (λx . λy . λz . x z (y z)) (λx′. λy′. x′) (λx′′. λy′′. x′′)−−−→β

∗ I.

We now present three interesting λ-terms related to each other.

If I = λx . x then I E −−−→β
∗E and in particular I I −−−→β

∗ I:
I I =α (λx . x) (λx′. x′) −−−→β x[λx

′. x′/x] = λx′. x′ =α I.

If K = λx . λy . x then K E = (λx . λy . x)E −−−→β λy .E
and moreover K E F −−−→β

∗E because y /∈ fvar(E)
otherwise we would have renamed λy in the substitution.

If S = λx . λy . λz . x z (y z) then in particular
S K K =α (λx . λy . λz . x z (y z)) (λx′. λy′. x′) (λx′′. λy′′. x′′)−−−→β

∗ I.

K and S are the basis of combinatory logic, introduced in 1924
by Moses Schönfinkel and reformulated in 1930 by Haskell Curry.

Investigating foundations of mathematics by relying on operations
instead of sets.

The set L of terms contains neither functions nor variable binders,
but only the combinators K and S and their applications:

P ::= x | K | S | P P
Reduction semantics for K, S, and application:

K P Q −−−→L P .
S P QR −−−→L P R (QR).
If P −−−→L P ′ then P Q −−−→L P ′Q and QP −−−→L QP ′.

K and S are the basis of combinatory logic, introduced in 1924
by Moses Schönfinkel and reformulated in 1930 by Haskell Curry.

Investigating foundations of mathematics by relying on operations
instead of sets.

The set L of terms contains neither functions nor variable binders,
but only the combinators K and S and their applications:

P ::= x | K | S | P P
Reduction semantics for K, S, and application:

K P Q −−−→L P .
S P QR −−−→L P R (QR).
If P −−−→L P ′ then P Q −−−→L P ′Q and QP −−−→L QP ′.

K and S are sufficient for implementing the λ-calculus, in particular
λ-abstraction and β-reduction along with syntactical substitutions.

Distinction between bound/free variable occurrences no longer applies
to combinatory logic terms, occurrences are all free.

Define the following L-terms that simulate λ-abstraction according to
three cases based on the body of the function.

λ̂x . x = S K K for all x ∈ Var .
λ̂x . P = K P for all x ∈ Var and P ∈ L such that x /∈ var(P).

λ̂x . P1 P2 = S (λ̂x . P1) (λ̂x . P2) whenever x /∈ var(P1) ∪ var(P2).

Theorem: (λ̂x . P)Q −−−→L P [Q/x] for all x ∈ Var and P,Q ∈ L.

Can we characterize the set of λ-definable functions?
Relation between Turing-computable functions and λ-definable ones?

K and S are sufficient for implementing the λ-calculus, in particular
λ-abstraction and β-reduction along with syntactical substitutions.

Distinction between bound/free variable occurrences no longer applies
to combinatory logic terms, occurrences are all free.

Define the following L-terms that simulate λ-abstraction according to
three cases based on the body of the function.

λ̂x . x = S K K for all x ∈ Var .
λ̂x . P = K P for all x ∈ Var and P ∈ L such that x /∈ var(P).

λ̂x . P1 P2 = S (λ̂x . P1) (λ̂x . P2) whenever x /∈ var(P1) ∪ var(P2).

Theorem: (λ̂x . P)Q −−−→L P [Q/x] for all x ∈ Var and P,Q ∈ L.

Can we characterize the set of λ-definable functions?
Relation between Turing-computable functions and λ-definable ones?

K and S are sufficient for implementing the λ-calculus, in particular
λ-abstraction and β-reduction along with syntactical substitutions.

Distinction between bound/free variable occurrences no longer applies
to combinatory logic terms, occurrences are all free.

Define the following L-terms that simulate λ-abstraction according to
three cases based on the body of the function.

λ̂x . x = S K K for all x ∈ Var .
λ̂x . P = K P for all x ∈ Var and P ∈ L such that x /∈ var(P).

λ̂x . P1 P2 = S (λ̂x . P1) (λ̂x . P2) whenever x /∈ var(P1) ∪ var(P2).

Theorem: (λ̂x . P)Q −−−→L P [Q/x] for all x ∈ Var and P,Q ∈ L.

Can we characterize the set of λ-definable functions?
Relation between Turing-computable functions and λ-definable ones?

4.3 Recursive Functions via Fixed Points

Functions are anonymous in λ-calculus, i.e., have no name.

A recursive mathematical function f = · · · f · · · can be expressed in
λ-calculus only in a nonrecursive way through a higher-order function
λf . · · · f · · · to which a fixed point combinator Ξ is then applied.

A fixed point of a function f : A→ A is a ∈ A such that a = f(a),
i.e., an element of A invariant with respect to the application of f ,
i.e., a solution of the equation x = f(x).

Example: no fixed point for successor, several fixed points for identity.

The fixed point equation for a λ-term E is expressed as F ≡βη E F .

Ξ ∈ Λ is a fixed point combinator iff ΞE ≡βη E (ΞE) for all E ∈ Λ.

A fixed point combinator is a λ-term that allows the fixed point of any
λ-term E to be computed by simply applying the former to the latter.

4.3 Recursive Functions via Fixed Points

Functions are anonymous in λ-calculus, i.e., have no name.

A recursive mathematical function f = · · · f · · · can be expressed in
λ-calculus only in a nonrecursive way through a higher-order function
λf . · · · f · · · to which a fixed point combinator Ξ is then applied.

A fixed point of a function f : A→ A is a ∈ A such that a = f(a),
i.e., an element of A invariant with respect to the application of f ,
i.e., a solution of the equation x = f(x).

Example: no fixed point for successor, several fixed points for identity.

The fixed point equation for a λ-term E is expressed as F ≡βη E F .

Ξ ∈ Λ is a fixed point combinator iff ΞE ≡βη E (ΞE) for all E ∈ Λ.

A fixed point combinator is a λ-term that allows the fixed point of any
λ-term E to be computed by simply applying the former to the latter.

4.3 Recursive Functions via Fixed Points

Functions are anonymous in λ-calculus, i.e., have no name.

A recursive mathematical function f = · · · f · · · can be expressed in
λ-calculus only in a nonrecursive way through a higher-order function
λf . · · · f · · · to which a fixed point combinator Ξ is then applied.

A fixed point of a function f : A→ A is a ∈ A such that a = f(a),
i.e., an element of A invariant with respect to the application of f ,
i.e., a solution of the equation x = f(x).

Example: no fixed point for successor, several fixed points for identity.

The fixed point equation for a λ-term E is expressed as F ≡βη E F .

Ξ ∈ Λ is a fixed point combinator iff ΞE ≡βη E (ΞE) for all E ∈ Λ.

A fixed point combinator is a λ-term that allows the fixed point of any
λ-term E to be computed by simply applying the former to the latter.

Turing fixed point combinator:

Θ = (λx . λy . y (xx y)) (λx . λy . y (xx y))

ΘE −−−→β (λy . y ((λx . λy . y (xx y)) (λx . λy . y (xx y)) y))E
−−−→β E ((λx . λy . y (xx y))(λx . λy . y (xx y))E) = E (ΘE).

Curry fixed point combinator:

Y = λf . (λx . f (xx)) (λx . f (xx))

Y E −−−→β (λx .E (xx)) (λx .E (xx))
−−−→β E ((λx .E (xx)) (λx .E (xx)))≡β E (Y E) because in the
second β-reduction x /∈ fvar(E) otherwise we would have renamed
λx in either substitution (λx . f (xx))[E/f] of the first β-reduction.

Y E −−−→β/ ∗E (Y E) because in the final step
E ((λx .E (xx)) (λx .E (xx))) ≡β E (Y E)
we have exploited the outcome of the initial β-reduction
Y E −−−→β (λx .E (xx)) (λx .E (xx)), not the definition of Y .

Turing fixed point combinator:

Θ = (λx . λy . y (xx y)) (λx . λy . y (xx y))

ΘE −−−→β (λy . y ((λx . λy . y (xx y)) (λx . λy . y (xx y)) y))E
−−−→β E ((λx . λy . y (xx y))(λx . λy . y (xx y))E) = E (ΘE).

Curry fixed point combinator:

Y = λf . (λx . f (xx)) (λx . f (xx))

Y E −−−→β (λx .E (xx)) (λx .E (xx))
−−−→β E ((λx .E (xx)) (λx .E (xx)))≡β E (Y E) because in the
second β-reduction x /∈ fvar(E) otherwise we would have renamed
λx in either substitution (λx . f (xx))[E/f] of the first β-reduction.

Y E −−−→β/ ∗E (Y E) because in the final step
E ((λx .E (xx)) (λx .E (xx))) ≡β E (Y E)
we have exploited the outcome of the initial β-reduction
Y E −−−→β (λx .E (xx)) (λx .E (xx)), not the definition of Y .

Definition of factorial:

Let test0 = λn . λp . λq . n (K q) p where K = λx . λy . x
(when applied to n it behaves as p if n is 0, q otherwise).
Let F = λr . λn . test0 n 1 (mult n (r (pred n))).

Then fact = ΘF , so that fact n −−−→β
∗ n!.

Example of application of factorial:

fact 2 = ΘF 2

−−−→β
∗ F (ΘF) 2

−−−→β
∗ test0 2 1 (mult 2 (ΘF (pred 2)))

−−−→β
∗mult 2 (ΘF 1)

−−−→β
∗mult 2 (F (ΘF) 1)

−−−→β
∗mult 2 (test0 1 1 (mult 1 (ΘF (pred 1))))

−−−→β
∗mult 2 (mult 1 (ΘF 0))

−−−→β
∗mult 2 (mult 1 (F (ΘF) 0))

−−−→β
∗mult 2 (mult 1 (test0 0 1 (mult 0 (ΘF (pred 0)))))

−−−→β
∗mult 2 (mult 1 1)

−−−→β
∗mult 2 1

−−−→β
∗ 2.

Definition of factorial:

Let test0 = λn . λp . λq . n (K q) p where K = λx . λy . x
(when applied to n it behaves as p if n is 0, q otherwise).
Let F = λr . λn . test0 n 1 (mult n (r (pred n))).

Then fact = ΘF , so that fact n −−−→β
∗ n!.

Example of application of factorial:

fact 2 = ΘF 2

−−−→β
∗ F (ΘF) 2

−−−→β
∗ test0 2 1 (mult 2 (ΘF (pred 2)))

−−−→β
∗mult 2 (ΘF 1)

−−−→β
∗mult 2 (F (ΘF) 1)

−−−→β
∗mult 2 (test0 1 1 (mult 1 (ΘF (pred 1))))

−−−→β
∗mult 2 (mult 1 (ΘF 0))

−−−→β
∗mult 2 (mult 1 (F (ΘF) 0))

−−−→β
∗mult 2 (mult 1 (test0 0 1 (mult 0 (ΘF (pred 0)))))

−−−→β
∗mult 2 (mult 1 1)

−−−→β
∗mult 2 1

−−−→β
∗ 2.

The idea behind the encoding of the predecessor of n ∈ N≥1 is to
generate the sequence of pairs (0, 0), (0, 1), (1, 2), . . . , (n− 1, n)
and then return the first component of the last pair:

Let pro
k,i

= λx1 λxk . xi for k ≥ 1 and 1 ≤ i ≤ k.

Let p
E1,E2

= 〈E1;E2〉 = λz . z E1E2 where z /∈ fvar(E1) ∪ fvar(E2).

Let gp = λp . 〈p pro
2,2

; succ (p pro
2,2

)〉.
Then pred = λn . n gp 〈0; 0〉 pro

2,1
, so that pred n −−−→β

∗ n− 1.

Subtraction and division can thus be recursively defined as follows:

Let S = λr . λm . λn . test0 nm (r (pred m) (pred n)).

Then subtr = ΘS, so that subtr mn −−−→β
∗m− n.

Let test≤ = ΘT≤ where
T≤ = λr . λm . λn . λp . λq . test0mp (test0 n q (r (pred m) (pred n) p q)).
Let D = λr . λm . λn . test≤ (succm)n 0 (succ (r (subtr mn)n))
where the initial test m < n is implemented as m+ 1 ≤ n.
Then div = ΘD, so that div mn −−−→β

∗m : n.

The idea behind the encoding of the predecessor of n ∈ N≥1 is to
generate the sequence of pairs (0, 0), (0, 1), (1, 2), . . . , (n− 1, n)
and then return the first component of the last pair:

Let pro
k,i

= λx1 λxk . xi for k ≥ 1 and 1 ≤ i ≤ k.

Let p
E1,E2

= 〈E1;E2〉 = λz . z E1E2 where z /∈ fvar(E1) ∪ fvar(E2).

Let gp = λp . 〈p pro
2,2

; succ (p pro
2,2

)〉.
Then pred = λn . n gp 〈0; 0〉 pro

2,1
, so that pred n −−−→β

∗ n− 1.

Subtraction and division can thus be recursively defined as follows:

Let S = λr . λm . λn . test0 nm (r (pred m) (pred n)).

Then subtr = ΘS, so that subtr mn −−−→β
∗m− n.

Let test≤ = ΘT≤ where
T≤ = λr . λm . λn . λp . λq . test0mp (test0 n q (r (pred m) (pred n) p q)).
Let D = λr . λm . λn . test≤ (succm)n 0 (succ (r (subtr mn)n))
where the initial test m < n is implemented as m+ 1 ≤ n.
Then div = ΘD, so that div mn −−−→β

∗m : n.

The idea behind the encoding of the predecessor of n ∈ N≥1 is to
generate the sequence of pairs (0, 0), (0, 1), (1, 2), . . . , (n− 1, n)
and then return the first component of the last pair:

Let pro
k,i

= λx1 λxk . xi for k ≥ 1 and 1 ≤ i ≤ k.

Let p
E1,E2

= 〈E1;E2〉 = λz . z E1E2 where z /∈ fvar(E1) ∪ fvar(E2).

Let gp = λp . 〈p pro
2,2

; succ (p pro
2,2

)〉.
Then pred = λn . n gp 〈0; 0〉 pro

2,1
, so that pred n −−−→β

∗ n− 1.

Subtraction and division can thus be recursively defined as follows:

Let S = λr . λm . λn . test0 nm (r (pred m) (pred n)).

Then subtr = ΘS, so that subtr mn −−−→β
∗m− n.

Let test≤ = ΘT≤ where
T≤ = λr . λm . λn . λp . λq . test0mp (test0 n q (r (pred m) (pred n) p q)).
Let D = λr . λm . λn . test≤ (succm)n 0 (succ (r (subtr mn)n))
where the initial test m < n is implemented as m+ 1 ≤ n.
Then div = ΘD, so that div mn −−−→β

∗m : n.

4.4 Termination and Confluence

β-reduction is not terminating as witnessed by ω = λx . x x
because ω ω = (λx . x x)ω −−−→β (xx)[ω/x] = ω ω −−−→β . . .

The absence of redexes in a λ-term provides a clear evidence
of the finality of the term itself from a computational viewpoint,
like the number obtained from an arithmetical expression.

A λ-term is in normal form iff it contains no redexes, in which case
it is generated by:

N ::= x | λx .N | xF
F ::= x | λx .N | F F

E ∈ Λ admits normal form iff there exists E′ ∈ Λ in normal form
such that E −−−→β

∗E′.

Not all λ-terms admit normal form, as shown by ω ω.

Analogous to the divergence of a Turing machine on an input.

4.4 Termination and Confluence

β-reduction is not terminating as witnessed by ω = λx . x x
because ω ω = (λx . x x)ω −−−→β (xx)[ω/x] = ω ω −−−→β . . .

The absence of redexes in a λ-term provides a clear evidence
of the finality of the term itself from a computational viewpoint,
like the number obtained from an arithmetical expression.

A λ-term is in normal form iff it contains no redexes, in which case
it is generated by:

N ::= x | λx .N | xF
F ::= x | λx .N | F F

E ∈ Λ admits normal form iff there exists E′ ∈ Λ in normal form
such that E −−−→β

∗E′.

Not all λ-terms admit normal form, as shown by ω ω.

Analogous to the divergence of a Turing machine on an input.

4.4 Termination and Confluence

β-reduction is not terminating as witnessed by ω = λx . x x
because ω ω = (λx . x x)ω −−−→β (xx)[ω/x] = ω ω −−−→β . . .

The absence of redexes in a λ-term provides a clear evidence
of the finality of the term itself from a computational viewpoint,
like the number obtained from an arithmetical expression.

A λ-term is in normal form iff it contains no redexes, in which case
it is generated by:

N ::= x | λx .N | xF
F ::= x | λx .N | F F

E ∈ Λ admits normal form iff there exists E′ ∈ Λ in normal form
such that E −−−→β

∗E′.

Not all λ-terms admit normal form, as shown by ω ω.

Analogous to the divergence of a Turing machine on an input.

β-reduction is not deterministic, i.e., it is not defined a priori
a reduction strategy that, in the presence of several redexes,
establishes to which redex to apply β-reduction first.

In principle it is not guaranteed that the normal form is reached for
a term owning it, nor that the normal form is unique when it exists.

In the presence of several redexes, one can choose between reducing
the outermost or innermost ones w.r.t. the syntactical structure.

In (λx .E)F one can apply β-reduction to the entire term before
or after applying it to possible redexes inside E and inside F .

In the presence of several redexes at the same syntactical level,
one can choose between reducing the leftmost or rightmost one.

In E1E2, where E1 is not a λ-abstraction, one can apply β-reduction
to possible redexes inside E1 first or inside E2 first.

β-reduction is not deterministic, i.e., it is not defined a priori
a reduction strategy that, in the presence of several redexes,
establishes to which redex to apply β-reduction first.

In principle it is not guaranteed that the normal form is reached for
a term owning it, nor that the normal form is unique when it exists.

In the presence of several redexes, one can choose between reducing
the outermost or innermost ones w.r.t. the syntactical structure.

In (λx .E)F one can apply β-reduction to the entire term before
or after applying it to possible redexes inside E and inside F .

In the presence of several redexes at the same syntactical level,
one can choose between reducing the leftmost or rightmost one.

In E1E2, where E1 is not a λ-abstraction, one can apply β-reduction
to possible redexes inside E1 first or inside E2 first.

β-reduction is not deterministic, i.e., it is not defined a priori
a reduction strategy that, in the presence of several redexes,
establishes to which redex to apply β-reduction first.

In principle it is not guaranteed that the normal form is reached for
a term owning it, nor that the normal form is unique when it exists.

In the presence of several redexes, one can choose between reducing
the outermost or innermost ones w.r.t. the syntactical structure.

In (λx .E)F one can apply β-reduction to the entire term before
or after applying it to possible redexes inside E and inside F .

In the presence of several redexes at the same syntactical level,
one can choose between reducing the leftmost or rightmost one.

In E1E2, where E1 is not a λ-abstraction, one can apply β-reduction
to possible redexes inside E1 first or inside E2 first.

Call by name: systematically reduce the leftmost redex among
the outermost ones, which corresponds to passing the arguments
to the function without evaluating them: ω (I I) = (λx . x x) (I I)
−−−→β (I I) (I I) −−−→β I (I I) −−−→β I I −−−→β I.

Call by value: systematically reduce the leftmost redex among
the innermost ones, which corresponds to evaluating the arguments
before passing them to the function: ω (I I) = ω ((λx . x) I)
−−−→β ω I −−−→β I I −−−→β I.

Strong confluence or diamond property holds iff for all E ∈ Λ
E −−−→β E1 ∧ E −−−→β E2 =⇒ E1 −−−→β E

′ ∧ E2 −−−→β E
′.

Weak confluence or Church-Rosser property holds iff for all E ∈ Λ
E −−−→β

∗E1 ∧ E −−−→β
∗E2 =⇒ E1 −−−→β

∗E′ ∧ E2 −−−→β
∗E′.

Strong confluence implies weak one but does not hold in λ-calculus
as shown by the two reduction strategies above applied to ω (I I).

Call by name: systematically reduce the leftmost redex among
the outermost ones, which corresponds to passing the arguments
to the function without evaluating them: ω (I I) = (λx . x x) (I I)
−−−→β (I I) (I I) −−−→β I (I I) −−−→β I I −−−→β I.

Call by value: systematically reduce the leftmost redex among
the innermost ones, which corresponds to evaluating the arguments
before passing them to the function: ω (I I) = ω ((λx . x) I)
−−−→β ω I −−−→β I I −−−→β I.

Strong confluence or diamond property holds iff for all E ∈ Λ
E −−−→β E1 ∧ E −−−→β E2 =⇒ E1 −−−→β E

′ ∧ E2 −−−→β E
′.

Weak confluence or Church-Rosser property holds iff for all E ∈ Λ
E −−−→β

∗E1 ∧ E −−−→β
∗E2 =⇒ E1 −−−→β

∗E′ ∧ E2 −−−→β
∗E′.

Strong confluence implies weak one but does not hold in λ-calculus
as shown by the two reduction strategies above applied to ω (I I).

Call by name: systematically reduce the leftmost redex among
the outermost ones, which corresponds to passing the arguments
to the function without evaluating them: ω (I I) = (λx . x x) (I I)
−−−→β (I I) (I I) −−−→β I (I I) −−−→β I I −−−→β I.

Call by value: systematically reduce the leftmost redex among
the innermost ones, which corresponds to evaluating the arguments
before passing them to the function: ω (I I) = ω ((λx . x) I)
−−−→β ω I −−−→β I I −−−→β I.

Strong confluence or diamond property holds iff for all E ∈ Λ
E −−−→β E1 ∧ E −−−→β E2 =⇒ E1 −−−→β E

′ ∧ E2 −−−→β E
′.

Weak confluence or Church-Rosser property holds iff for all E ∈ Λ
E −−−→β

∗E1 ∧ E −−−→β
∗E2 =⇒ E1 −−−→β

∗E′ ∧ E2 −−−→β
∗E′.

Strong confluence implies weak one but does not hold in λ-calculus
as shown by the two reduction strategies above applied to ω (I I).

Strip lemma (confluence property valid for λ-calculus): for all E ∈ Λ
E −−−→β E1 ∧ E −−−→β

∗E2 =⇒ E1 −−−→β
∗E′ ∧ E2 −−−→β

∗E′.

Church-Rosser theorem: λ-calculus fulfills weak confluence.

Corollary (normal form uniqueness): if E ∈ Λ admits normal form,
then this is unique up to α-conversion.

Corollary (consistency): the β-equivalence theory is consistent, i.e.,
E1 ≡β E2 does not hold for all E1, E2 ∈ Λ.

When existing, the normal form is always reached via call by name:
(λy . z) (ω ω) β-reduces to the normal form z via call by name,
while it β-reduces to itself and hence diverges via call by value.

When leading to the normal form, the call-by-value strategy may
instead turn out to be more efficient than the call-by-name strategy:
in (λn . add nn) (molt 5 4) the latter calculates molt 5 4 twice.

Combining the two strategies via graph sharing and rewriting.

Strip lemma (confluence property valid for λ-calculus): for all E ∈ Λ
E −−−→β E1 ∧ E −−−→β

∗E2 =⇒ E1 −−−→β
∗E′ ∧ E2 −−−→β

∗E′.

Church-Rosser theorem: λ-calculus fulfills weak confluence.

Corollary (normal form uniqueness): if E ∈ Λ admits normal form,
then this is unique up to α-conversion.

Corollary (consistency): the β-equivalence theory is consistent, i.e.,
E1 ≡β E2 does not hold for all E1, E2 ∈ Λ.

When existing, the normal form is always reached via call by name:
(λy . z) (ω ω) β-reduces to the normal form z via call by name,
while it β-reduces to itself and hence diverges via call by value.

When leading to the normal form, the call-by-value strategy may
instead turn out to be more efficient than the call-by-name strategy:
in (λn . add nn) (molt 5 4) the latter calculates molt 5 4 twice.

Combining the two strategies via graph sharing and rewriting.

4.5 Lambda Calculus with Types

Types were introduced by Russell and Whitehead in their book
“Principia Mathematica” to avoid logical paradoxes.

Nowadays used in all modern programming languages.

Types permit to classify terms so as to identify sets of terms with
similar computational properties and prevent undesired behaviors.

Kleene-Rosser paradox replicating Richard one, then Curry paradox.

T: countable set of type symbols that is closed with respect to the
function type τ → σ, where the type operator → is right associative
like λ-abstraction for consistency with currying.

Two different kinds of type systems in λ-calculus:

Type systems à la Church: every λ-term is defined together with
its type so that syntax and semantics include type checking.
Type systems à la Curry: the type of every λ-term is ascribed via
formal rules that infer the type from the format of the term.

4.5 Lambda Calculus with Types

Types were introduced by Russell and Whitehead in their book
“Principia Mathematica” to avoid logical paradoxes.

Nowadays used in all modern programming languages.

Types permit to classify terms so as to identify sets of terms with
similar computational properties and prevent undesired behaviors.

Kleene-Rosser paradox replicating Richard one, then Curry paradox.

T: countable set of type symbols that is closed with respect to the
function type τ → σ, where the type operator → is right associative
like λ-abstraction for consistency with currying.

Two different kinds of type systems in λ-calculus:

Type systems à la Church: every λ-term is defined together with
its type so that syntax and semantics include type checking.
Type systems à la Curry: the type of every λ-term is ascribed via
formal rules that infer the type from the format of the term.

The set ΛT of typed λ-terms à la Church is generated by:

E ::= xτ | (λxτ . Eσ)τ→σ | (Eτ→σ Eτ)σ

The semantic rules over ΛT include type checking:

Typed α-conversion: λxτ . Eσ =α λy
τ . (Eσ[y

τ

/xτ]) with yτ /∈ fvar(Eσ).
Typed β-conversion: (λxτ . Eσ)F τ =β E

σ[F
τ

/xτ].
Typed η-conversion: λxτ . Eσ xτ =η E

σ with xτ /∈ fvar(Eσ).

Let Γ = {xi : τi | xi ∈ Var , τi ∈ T, 1 ≤ i ≤ n, xi 6= xj for i 6= j}
be a basis of type declarations for variables.

Type inference rules à la Curry:

x : τ ∈ Γ

Γ ` x : τ

Γ ∪ {x : τ} ` E : σ

Γ ` (λx .E) : τ → σ

Γ ` E1 : τ → σ Γ ` E2 : τ

Γ ` (E1E2) : σ

Theorem (equivalence of type systems à la Church and à la Curry):
Eτ ∈ ΛT iff {xi : τi | xτii ∈ fvar(Eτ)} ` |Eτ | : τ where |Eτ | is the
λ-term obtained from Eτ by eliminating all types occurring in it.

The set ΛT of typed λ-terms à la Church is generated by:

E ::= xτ | (λxτ . Eσ)τ→σ | (Eτ→σ Eτ)σ

The semantic rules over ΛT include type checking:

Typed α-conversion: λxτ . Eσ =α λy
τ . (Eσ[y

τ

/xτ]) with yτ /∈ fvar(Eσ).
Typed β-conversion: (λxτ . Eσ)F τ =β E

σ[F
τ

/xτ].
Typed η-conversion: λxτ . Eσ xτ =η E

σ with xτ /∈ fvar(Eσ).

Let Γ = {xi : τi | xi ∈ Var , τi ∈ T, 1 ≤ i ≤ n, xi 6= xj for i 6= j}
be a basis of type declarations for variables.

Type inference rules à la Curry:

x : τ ∈ Γ

Γ ` x : τ

Γ ∪ {x : τ} ` E : σ

Γ ` (λx .E) : τ → σ

Γ ` E1 : τ → σ Γ ` E2 : τ

Γ ` (E1E2) : σ

Theorem (equivalence of type systems à la Church and à la Curry):
Eτ ∈ ΛT iff {xi : τi | xτii ∈ fvar(Eτ)} ` |Eτ | : τ where |Eτ | is the
λ-term obtained from Eτ by eliminating all types occurring in it.

The set ΛT of typed λ-terms à la Church is generated by:

E ::= xτ | (λxτ . Eσ)τ→σ | (Eτ→σ Eτ)σ

The semantic rules over ΛT include type checking:

Typed α-conversion: λxτ . Eσ =α λy
τ . (Eσ[y

τ

/xτ]) with yτ /∈ fvar(Eσ).
Typed β-conversion: (λxτ . Eσ)F τ =β E

σ[F
τ

/xτ].
Typed η-conversion: λxτ . Eσ xτ =η E

σ with xτ /∈ fvar(Eσ).

Let Γ = {xi : τi | xi ∈ Var , τi ∈ T, 1 ≤ i ≤ n, xi 6= xj for i 6= j}
be a basis of type declarations for variables.

Type inference rules à la Curry:

x : τ ∈ Γ

Γ ` x : τ

Γ ∪ {x : τ} ` E : σ

Γ ` (λx .E) : τ → σ

Γ ` E1 : τ → σ Γ ` E2 : τ

Γ ` (E1E2) : σ

Theorem (equivalence of type systems à la Church and à la Curry):
Eτ ∈ ΛT iff {xi : τi | xτii ∈ fvar(Eτ)} ` |Eτ | : τ where |Eτ | is the
λ-term obtained from Eτ by eliminating all types occurring in it.

Every term in ΛT is strongly normalizable, i.e., any reduction strategy
applied to it terminates and produces its normal form.

ΛT (Λ, i.e., not all λ-terms can be typed: e.g., in ω = λx . x x
x should simultaneously be of type τ → σ and of type τ .

Not even the fixed point combinators Θ and Y are definable in ΛT.

Since they are necessary for implementing recursion, ΛT is extended
with constants among which Fτ of type (τ → τ)→ τ for each τ ∈ T,
together with the following fixed point rule:

δ-conversion: Fτ E
τ→τ =δ E

τ→τ (Fτ E
τ→τ).

Type inference rules à la Curry result in Curry-Howard isomorphism:

Types correspond to logic formulas (formulas-as-types analogy):

The type inference rule for application corresponds to modus ponens.
The types of combinatory logic operators correspond to Hilbert axioms:
I : τ → τ , K : τ → σ → τ , S : (τ → σ → ρ)→ (τ → σ)→ τ → ρ.

λ-terms of those types correspond to validity proofs of those formulas.
β-reduction corresponds to composition of proofs based on the cut rule.

Every term in ΛT is strongly normalizable, i.e., any reduction strategy
applied to it terminates and produces its normal form.

ΛT (Λ, i.e., not all λ-terms can be typed: e.g., in ω = λx . x x
x should simultaneously be of type τ → σ and of type τ .

Not even the fixed point combinators Θ and Y are definable in ΛT.

Since they are necessary for implementing recursion, ΛT is extended
with constants among which Fτ of type (τ → τ)→ τ for each τ ∈ T,
together with the following fixed point rule:

δ-conversion: Fτ E
τ→τ =δ E

τ→τ (Fτ E
τ→τ).

Type inference rules à la Curry result in Curry-Howard isomorphism:

Types correspond to logic formulas (formulas-as-types analogy):

The type inference rule for application corresponds to modus ponens.
The types of combinatory logic operators correspond to Hilbert axioms:
I : τ → τ , K : τ → σ → τ , S : (τ → σ → ρ)→ (τ → σ)→ τ → ρ.

λ-terms of those types correspond to validity proofs of those formulas.
β-reduction corresponds to composition of proofs based on the cut rule.

Every term in ΛT is strongly normalizable, i.e., any reduction strategy
applied to it terminates and produces its normal form.

ΛT (Λ, i.e., not all λ-terms can be typed: e.g., in ω = λx . x x
x should simultaneously be of type τ → σ and of type τ .

Not even the fixed point combinators Θ and Y are definable in ΛT.

Since they are necessary for implementing recursion, ΛT is extended
with constants among which Fτ of type (τ → τ)→ τ for each τ ∈ T,
together with the following fixed point rule:

δ-conversion: Fτ E
τ→τ =δ E

τ→τ (Fτ E
τ→τ).

Type inference rules à la Curry result in Curry-Howard isomorphism:

Types correspond to logic formulas (formulas-as-types analogy):

The type inference rule for application corresponds to modus ponens.
The types of combinatory logic operators correspond to Hilbert axioms:
I : τ → τ , K : τ → σ → τ , S : (τ → σ → ρ)→ (τ → σ)→ τ → ρ.

λ-terms of those types correspond to validity proofs of those formulas.
β-reduction corresponds to composition of proofs based on the cut rule.

5. Computability for Functions, Sets, Problems

Topics:

5.1 Church-Turing Thesis 70

5.2 Primitive and General Recursive Functions 72

5.3 Recursive and Recursively Enumerable Sets 80

5.4 Decidable and Undecidable Problems 83

5.5 Tractable and Intractable Problems 87

5.1 Church-Turing Thesis

Can we characterize the set of Turing-computable functions?

Can we characterize the set of λ-definable functions?

General recursive functions are functions over naturals
introduced by Kurt Gödel and Jacques Herbrand (1931).

Stephen Kleene proved that general recursive functions
are λ-definable (1936).

Alan Turing proved that λ-definable functions in turn
are Turing-computable (1937).

Both Turing-computable functions and λ-definable functions
coincide with general recursive functions.

5.1 Church-Turing Thesis

Can we characterize the set of Turing-computable functions?

Can we characterize the set of λ-definable functions?

General recursive functions are functions over naturals
introduced by Kurt Gödel and Jacques Herbrand (1931).

Stephen Kleene proved that general recursive functions
are λ-definable (1936).

Alan Turing proved that λ-definable functions in turn
are Turing-computable (1937).

Both Turing-computable functions and λ-definable functions
coincide with general recursive functions.

Are there computable functions beyond the previous ones?

Effective method: finite sequence of instructions that can be
unambiguously interpreted, whose execution always terminates
in a finite amount of time by producing the correct outcome.

The results of Kleene and Turing led to think that the set of functions
computable via any effective method are equivalently characterized by
Turing-computability, λ-definability, and general recursion.

Church thesis: The functions over naturals that are computable
through any effective method are exactly the λ-definable ones.

Turing thesis: The functions over naturals that are computable
through any effective method are exactly the Turing-computable ones.

Theses, not conjectures, as the notion of effective method is informal.

Are there computable functions beyond the previous ones?

Effective method: finite sequence of instructions that can be
unambiguously interpreted, whose execution always terminates
in a finite amount of time by producing the correct outcome.

The results of Kleene and Turing led to think that the set of functions
computable via any effective method are equivalently characterized by
Turing-computability, λ-definability, and general recursion.

Church thesis: The functions over naturals that are computable
through any effective method are exactly the λ-definable ones.

Turing thesis: The functions over naturals that are computable
through any effective method are exactly the Turing-computable ones.

Theses, not conjectures, as the notion of effective method is informal.

Are there computable functions beyond the previous ones?

Effective method: finite sequence of instructions that can be
unambiguously interpreted, whose execution always terminates
in a finite amount of time by producing the correct outcome.

The results of Kleene and Turing led to think that the set of functions
computable via any effective method are equivalently characterized by
Turing-computability, λ-definability, and general recursion.

Church thesis: The functions over naturals that are computable
through any effective method are exactly the λ-definable ones.

Turing thesis: The functions over naturals that are computable
through any effective method are exactly the Turing-computable ones.

Theses, not conjectures, as the notion of effective method is informal.

5.2 Primitive and General Recursive Functions

Basic primitive recursive functions:

Zero function: 0k(x1, . . . , xk) = 0 for k ≥ 0.
Successor function: succ(x) = x+ 1.
Projection function: prok,i(x1, . . . , xk) = xi for k ≥ 1, 1 ≤ i ≤ k.

Closure with respect to:

Composition: if h(y1, . . . , ym) is primitive recursive
and gi(x1, . . . , xk) is primitive recursive for all 1 ≤ i ≤ m,
then f(x1, . . . , xk) = h(g1(x1, . . . , xk), . . . , gm(x1, . . . , xk))
is primitive recursive too.
Primitive recursion: if h(x1, . . . , xm) and g(y, k, x1, . . . , xm)
are primitive recursive, then f(k, x1, . . . , xm) defined by letting:

f(0, x1, . . . , xm) = h(x1, . . . , xm)
f(k + 1, x1, . . . , xm) = g(f(k, x1, . . . , xm), k, x1, . . . , xm)

is primitive recursive too (h is the base case, g is the induction case).

5.2 Primitive and General Recursive Functions

Basic primitive recursive functions:

Zero function: 0k(x1, . . . , xk) = 0 for k ≥ 0.
Successor function: succ(x) = x+ 1.
Projection function: prok,i(x1, . . . , xk) = xi for k ≥ 1, 1 ≤ i ≤ k.

Closure with respect to:

Composition: if h(y1, . . . , ym) is primitive recursive
and gi(x1, . . . , xk) is primitive recursive for all 1 ≤ i ≤ m,
then f(x1, . . . , xk) = h(g1(x1, . . . , xk), . . . , gm(x1, . . . , xk))
is primitive recursive too.

Primitive recursion: if h(x1, . . . , xm) and g(y, k, x1, . . . , xm)
are primitive recursive, then f(k, x1, . . . , xm) defined by letting:

f(0, x1, . . . , xm) = h(x1, . . . , xm)
f(k + 1, x1, . . . , xm) = g(f(k, x1, . . . , xm), k, x1, . . . , xm)

is primitive recursive too (h is the base case, g is the induction case).

5.2 Primitive and General Recursive Functions

Basic primitive recursive functions:

Zero function: 0k(x1, . . . , xk) = 0 for k ≥ 0.
Successor function: succ(x) = x+ 1.
Projection function: prok,i(x1, . . . , xk) = xi for k ≥ 1, 1 ≤ i ≤ k.

Closure with respect to:

Composition: if h(y1, . . . , ym) is primitive recursive
and gi(x1, . . . , xk) is primitive recursive for all 1 ≤ i ≤ m,
then f(x1, . . . , xk) = h(g1(x1, . . . , xk), . . . , gm(x1, . . . , xk))
is primitive recursive too.
Primitive recursion: if h(x1, . . . , xm) and g(y, k, x1, . . . , xm)
are primitive recursive, then f(k, x1, . . . , xm) defined by letting:

f(0, x1, . . . , xm) = h(x1, . . . , xm)
f(k + 1, x1, . . . , xm) = g(f(k, x1, . . . , xm), k, x1, . . . , xm)

is primitive recursive too (h is the base case, g is the induction case).

Encoding f in λ-calculus of function f : for all k, n1, . . . , nk,m ∈ N,

if f(n1, . . . , nk) = m then f n1 . . . nk −−−→β
∗m.

Encoding of basic functions:

0k = λx1 λxk . λs . λz . z.
succ = λn . λx . λy . x (nx y).
pro

k,i
= λx1 λxk . xi.

Encoding of composition:

f = λx1 λxk . h (g
1
x1 xk) . . . (g

m
x1 xk).

The idea behind the encoding of primitive recursion is to start from
the triple corresponding to f evaluated at 0:

(0; h(x1, . . . , xm); g(h(x1, . . . , xm), 0, x1, . . . , xm)) = (0; f(0, x1, . . . , xm); f(1, x1, . . . , xm))

then generate a sequence of k triples where the second component
of the last triple is the result to return for f evaluated at k:

(1; f(1, x1, . . . , xm); g(f(1, x1, . . . , xm), 1, x1, . . . , xm)) = (1; f(1, x1, . . . , xm); f(2, x1, . . . , xm))
(2; f(2, x1, . . . , xm); g(f(2, x1, . . . , xm), 2, x1, . . . , xm)) = (2; f(2, x1, . . . , xm); f(3, x1, . . . , xm))

. . . = . . .
(k; f(k, x1, . . . , xm); g(f(k, x1, . . . , xm), k, x1, . . . , xm)) = (k; f(k, x1, . . . , xm); f(k + 1, x1, . . . , xm))

Encoding f in λ-calculus of function f : for all k, n1, . . . , nk,m ∈ N,

if f(n1, . . . , nk) = m then f n1 . . . nk −−−→β
∗m.

Encoding of basic functions:

0k = λx1 λxk . λs . λz . z.
succ = λn . λx . λy . x (nx y).
pro

k,i
= λx1 λxk . xi.

Encoding of composition:

f = λx1 λxk . h (g
1
x1 xk) . . . (g

m
x1 xk).

The idea behind the encoding of primitive recursion is to start from
the triple corresponding to f evaluated at 0:

(0; h(x1, . . . , xm); g(h(x1, . . . , xm), 0, x1, . . . , xm)) = (0; f(0, x1, . . . , xm); f(1, x1, . . . , xm))

then generate a sequence of k triples where the second component
of the last triple is the result to return for f evaluated at k:

(1; f(1, x1, . . . , xm); g(f(1, x1, . . . , xm), 1, x1, . . . , xm)) = (1; f(1, x1, . . . , xm); f(2, x1, . . . , xm))
(2; f(2, x1, . . . , xm); g(f(2, x1, . . . , xm), 2, x1, . . . , xm)) = (2; f(2, x1, . . . , xm); f(3, x1, . . . , xm))

. . . = . . .
(k; f(k, x1, . . . , xm); g(f(k, x1, . . . , xm), k, x1, . . . , xm)) = (k; f(k, x1, . . . , xm); f(k + 1, x1, . . . , xm))

Encoding f in λ-calculus of function f : for all k, n1, . . . , nk,m ∈ N,

if f(n1, . . . , nk) = m then f n1 . . . nk −−−→β
∗m.

Encoding of basic functions:

0k = λx1 λxk . λs . λz . z.
succ = λn . λx . λy . x (nx y).
pro

k,i
= λx1 λxk . xi.

Encoding of composition:

f = λx1 λxk . h (g
1
x1 xk) . . . (g

m
x1 xk).

The idea behind the encoding of primitive recursion is to start from
the triple corresponding to f evaluated at 0:

(0; h(x1, . . . , xm); g(h(x1, . . . , xm), 0, x1, . . . , xm)) = (0; f(0, x1, . . . , xm); f(1, x1, . . . , xm))

then generate a sequence of k triples where the second component
of the last triple is the result to return for f evaluated at k:

(1; f(1, x1, . . . , xm); g(f(1, x1, . . . , xm), 1, x1, . . . , xm)) = (1; f(1, x1, . . . , xm); f(2, x1, . . . , xm))
(2; f(2, x1, . . . , xm); g(f(2, x1, . . . , xm), 2, x1, . . . , xm)) = (2; f(2, x1, . . . , xm); f(3, x1, . . . , xm))

. . . = . . .
(k; f(k, x1, . . . , xm); g(f(k, x1, . . . , xm), k, x1, . . . , xm)) = (k; f(k, x1, . . . , xm); f(k + 1, x1, . . . , xm))

Encoding f in λ-calculus of function f : for all k, n1, . . . , nk,m ∈ N,

if f(n1, . . . , nk) = m then f n1 . . . nk −−−→β
∗m.

Encoding of basic functions:

0k = λx1 λxk . λs . λz . z.
succ = λn . λx . λy . x (nx y).
pro

k,i
= λx1 λxk . xi.

Encoding of composition:

f = λx1 λxk . h (g
1
x1 xk) . . . (g

m
x1 xk).

The idea behind the encoding of primitive recursion is to start from
the triple corresponding to f evaluated at 0:

(0; h(x1, . . . , xm); g(h(x1, . . . , xm), 0, x1, . . . , xm)) = (0; f(0, x1, . . . , xm); f(1, x1, . . . , xm))

then generate a sequence of k triples where the second component
of the last triple is the result to return for f evaluated at k:

(1; f(1, x1, . . . , xm); g(f(1, x1, . . . , xm), 1, x1, . . . , xm)) = (1; f(1, x1, . . . , xm); f(2, x1, . . . , xm))
(2; f(2, x1, . . . , xm); g(f(2, x1, . . . , xm), 2, x1, . . . , xm)) = (2; f(2, x1, . . . , xm); f(3, x1, . . . , xm))

. . . = . . .
(k; f(k, x1, . . . , xm); g(f(k, x1, . . . , xm), k, x1, . . . , xm)) = (k; f(k, x1, . . . , xm); f(k + 1, x1, . . . , xm))

Encoding of primitive recursion:

Let tE1,E2,E3
= 〈E1;E2;E3〉 = λz . z E1E2E3 with z /∈ fvar(Ei)

for 1 ≤ i ≤ 3, where:

tE1,E2,E3
pro

3,1
−−−→β

∗E1.

tE1,E2,E3
pro

3,2
−−−→β

∗E2.

tE1,E2,E3
pro

3,3
−−−→β

∗E3.

Let h, g be the encodings of the primitive recursive functions h, g.
Let gt = λt .

〈succ (t pro
3,1

); t pro
3,3

; g (t pro
3,3

) (succ (t pro
3,1

))x1 . . . xm〉.
Then f = λk . λx1 λxm .

k gt 〈0; hx1 . . . xm; g (hx1 . . . xm) 0x1 . . . xm〉 pro
3,2

where k acts as an iterator of the triple generator.

Encoding of primitive recursion:

Let tE1,E2,E3
= 〈E1;E2;E3〉 = λz . z E1E2E3 with z /∈ fvar(Ei)

for 1 ≤ i ≤ 3, where:

tE1,E2,E3
pro

3,1
−−−→β

∗E1.

tE1,E2,E3
pro

3,2
−−−→β

∗E2.

tE1,E2,E3
pro

3,3
−−−→β

∗E3.

Let h, g be the encodings of the primitive recursive functions h, g.
Let gt = λt .

〈succ (t pro
3,1

); t pro
3,3

; g (t pro
3,3

) (succ (t pro
3,1

))x1 . . . xm〉.
Then f = λk . λx1 λxm .

k gt 〈0; hx1 . . . xm; g (hx1 . . . xm) 0x1 . . . xm〉 pro
3,2

where k acts as an iterator of the triple generator.

Many largely used functions are primitive recursive:

1k(x1, . . . , xk) = succ(0k(x1, . . . , xk))
2k(x1, . . . , xk) = succ(1k(x1, . . . , xk))
and so on.

add(0, x) = pro1,1(x)
add(k + 1, x) = g(add(k, x), k, x)
where g(y, k, x) = succ(pro3,1(y, k, x)).
mult(0, x) = 01(x)
mult(k + 1, x) = g(mult(k, x), k, x)
where g(y, k, x) = add(pro3,1(y, k, x), pro3,3(y, k, x)).
exp(0, x) = 11(x)
exp(k + 1, x) = g(exp(k, x), k, x)
where g(y, k, x) = mult(pro3,1(y, k, x), pro3,3(y, k, x)).
fact(0) = 10

fact(k + 1) = g(fact(k), k)
where g(y, k) = mult(pro2,1(y, k), g′(y, k))
with g′(y, k)=succ(pro2,2(y, k)).

Many largely used functions are primitive recursive:

1k(x1, . . . , xk) = succ(0k(x1, . . . , xk))
2k(x1, . . . , xk) = succ(1k(x1, . . . , xk))
and so on.
add(0, x) = pro1,1(x)
add(k + 1, x) = g(add(k, x), k, x)
where g(y, k, x) = succ(pro3,1(y, k, x)).

mult(0, x) = 01(x)
mult(k + 1, x) = g(mult(k, x), k, x)
where g(y, k, x) = add(pro3,1(y, k, x), pro3,3(y, k, x)).
exp(0, x) = 11(x)
exp(k + 1, x) = g(exp(k, x), k, x)
where g(y, k, x) = mult(pro3,1(y, k, x), pro3,3(y, k, x)).
fact(0) = 10

fact(k + 1) = g(fact(k), k)
where g(y, k) = mult(pro2,1(y, k), g′(y, k))
with g′(y, k)=succ(pro2,2(y, k)).

Many largely used functions are primitive recursive:

1k(x1, . . . , xk) = succ(0k(x1, . . . , xk))
2k(x1, . . . , xk) = succ(1k(x1, . . . , xk))
and so on.
add(0, x) = pro1,1(x)
add(k + 1, x) = g(add(k, x), k, x)
where g(y, k, x) = succ(pro3,1(y, k, x)).
mult(0, x) = 01(x)
mult(k + 1, x) = g(mult(k, x), k, x)
where g(y, k, x) = add(pro3,1(y, k, x), pro3,3(y, k, x)).

exp(0, x) = 11(x)
exp(k + 1, x) = g(exp(k, x), k, x)
where g(y, k, x) = mult(pro3,1(y, k, x), pro3,3(y, k, x)).
fact(0) = 10

fact(k + 1) = g(fact(k), k)
where g(y, k) = mult(pro2,1(y, k), g′(y, k))
with g′(y, k)=succ(pro2,2(y, k)).

Many largely used functions are primitive recursive:

1k(x1, . . . , xk) = succ(0k(x1, . . . , xk))
2k(x1, . . . , xk) = succ(1k(x1, . . . , xk))
and so on.
add(0, x) = pro1,1(x)
add(k + 1, x) = g(add(k, x), k, x)
where g(y, k, x) = succ(pro3,1(y, k, x)).
mult(0, x) = 01(x)
mult(k + 1, x) = g(mult(k, x), k, x)
where g(y, k, x) = add(pro3,1(y, k, x), pro3,3(y, k, x)).
exp(0, x) = 11(x)
exp(k + 1, x) = g(exp(k, x), k, x)
where g(y, k, x) = mult(pro3,1(y, k, x), pro3,3(y, k, x)).

fact(0) = 10

fact(k + 1) = g(fact(k), k)
where g(y, k) = mult(pro2,1(y, k), g′(y, k))
with g′(y, k)=succ(pro2,2(y, k)).

Many largely used functions are primitive recursive:

1k(x1, . . . , xk) = succ(0k(x1, . . . , xk))
2k(x1, . . . , xk) = succ(1k(x1, . . . , xk))
and so on.
add(0, x) = pro1,1(x)
add(k + 1, x) = g(add(k, x), k, x)
where g(y, k, x) = succ(pro3,1(y, k, x)).
mult(0, x) = 01(x)
mult(k + 1, x) = g(mult(k, x), k, x)
where g(y, k, x) = add(pro3,1(y, k, x), pro3,3(y, k, x)).
exp(0, x) = 11(x)
exp(k + 1, x) = g(exp(k, x), k, x)
where g(y, k, x) = mult(pro3,1(y, k, x), pro3,3(y, k, x)).
fact(0) = 10

fact(k + 1) = g(fact(k), k)
where g(y, k) = mult(pro2,1(y, k), g′(y, k))
with g′(y, k)=succ(pro2,2(y, k)).

A function f(k, x1, . . . , xm) obtained by primitive recursion from
h(x1, . . . , xm) and g(y, k, x1, . . . , xm) is not inherently recursive.

The value of f at k can always be computed in an iterative way
like in the encoding of primitive recursion in λ-calculus.

Iterative algorithm:

Initialize f ′ by letting f ′ = h(x1, . . . , xm).
Initialize f ′′ by letting f ′′ = g(f ′, 0, x1, . . . , xm).
For each i from 1 to k repeat:

Update f ′ by letting f ′ = f ′′.
Update f ′′ by letting f ′′ = g(f ′, i, x1, . . . , xm).

Return f ′.

It is thus reasonable to expect that not all the recursive functions
can be expressed as primitive recursive functions.

A function f(k, x1, . . . , xm) obtained by primitive recursion from
h(x1, . . . , xm) and g(y, k, x1, . . . , xm) is not inherently recursive.

The value of f at k can always be computed in an iterative way
like in the encoding of primitive recursion in λ-calculus.

Iterative algorithm:

Initialize f ′ by letting f ′ = h(x1, . . . , xm).
Initialize f ′′ by letting f ′′ = g(f ′, 0, x1, . . . , xm).
For each i from 1 to k repeat:

Update f ′ by letting f ′ = f ′′.
Update f ′′ by letting f ′′ = g(f ′, i, x1, . . . , xm).

Return f ′.

It is thus reasonable to expect that not all the recursive functions
can be expressed as primitive recursive functions.

The Ackermann function is not primitive recursive:

A(0, 0, y) = y
A(0, x+ 1, y) = A(0, x, y) + 1

A(1, 0, y) = 0
A(k + 2, 0, y) = 1

A(k + 1, x+ 1, y) = A(k,A(k + 1, x, y), y)

It is called generalized exponential because it grows more rapidly
than any primitive recursive function:

A(0, x, y) = x+ y
A(1, x, y) = x · y
A(2, x, y) = yx

A(3, x, y) = yy
..
.y

where the number of exponents y is equal to x

The Ackermann function is not primitive recursive:

A(0, 0, y) = y
A(0, x+ 1, y) = A(0, x, y) + 1

A(1, 0, y) = 0
A(k + 2, 0, y) = 1

A(k + 1, x+ 1, y) = A(k,A(k + 1, x, y), y)

It is called generalized exponential because it grows more rapidly
than any primitive recursive function:

A(0, x, y) = x+ y
A(1, x, y) = x · y
A(2, x, y) = yx

A(3, x, y) = yy
..
.y

where the number of exponents y is equal to x

A function f(x1, . . . , xm) is general recursive iff it is obtained by
minimization from a primitive recursive function h(k, x1, . . . , xm):
f(x1, . . . , xm) = min{k ∈ N | h(k, x1, . . . , xm) = 0}.
The Ackermann function can be expressed in that way.

The idea behind the encoding of general recursion is to generate
the sequence h(0, x1, . . . , xm), h(1, x1, . . . , xm), . . .
until we reach the first value equal to 0 in the sequence if any.

If 0 is not encountered, the computation diverges.

The function generating the considered sequence is the fixed point
of a suitable higher-order function based on a test for 0.

A function f(x1, . . . , xm) is general recursive iff it is obtained by
minimization from a primitive recursive function h(k, x1, . . . , xm):
f(x1, . . . , xm) = min{k ∈ N | h(k, x1, . . . , xm) = 0}.
The Ackermann function can be expressed in that way.

The idea behind the encoding of general recursion is to generate
the sequence h(0, x1, . . . , xm), h(1, x1, . . . , xm), . . .
until we reach the first value equal to 0 in the sequence if any.

If 0 is not encountered, the computation diverges.

The function generating the considered sequence is the fixed point
of a suitable higher-order function based on a test for 0.

Encoding of general recursion:

Let test0 = λn . λp . λq . n (K q) p with K = λx . λy . x
so test0 0E F −−−→β 0 (K F)E −−−→β E
while test0 nE F −−−→β n (K F)E −−−→β n (λy . F)E −−−→β

∗ F
if n > 0 because y /∈ fvar(F).

Let h be the encoding of the primitive recursive function h.
Let H = λr . λk . λx1 λxm .

test0 (h k x1 . . . xm) k (r (succ k)x1 . . . xm).
Then f = λx1 λxm .ΘH 0x1 . . . xm.

f n1 . . . nm = ΘH 0n1 . . . nm −−−→β
∗H (ΘH) 0n1 . . . nm =

test0 (h 0n1 . . . nm) 0 ((ΘH) (succ 0)n1 . . . nm) −−−→β
∗ . . .

Encoding of general recursion:

Let test0 = λn . λp . λq . n (K q) p with K = λx . λy . x
so test0 0E F −−−→β 0 (K F)E −−−→β E
while test0 nE F −−−→β n (K F)E −−−→β n (λy . F)E −−−→β

∗ F
if n > 0 because y /∈ fvar(F).
Let h be the encoding of the primitive recursive function h.
Let H = λr . λk . λx1 λxm .

test0 (h k x1 . . . xm) k (r (succ k)x1 . . . xm).
Then f = λx1 λxm .ΘH 0x1 . . . xm.

f n1 . . . nm = ΘH 0n1 . . . nm −−−→β
∗H (ΘH) 0n1 . . . nm =

test0 (h 0n1 . . . nm) 0 ((ΘH) (succ 0)n1 . . . nm) −−−→β
∗ . . .

5.3 Recursive and Recursively Enumerable Sets

How to characterize sets that can be built algorithmically?

Membership problem: for A ⊆ N and n ∈ N, establish whether n ∈ A.

The characteristic function of A is χA(n) =

{
1 if n ∈ A
0 if n /∈ A .

The membership problem is solvable iff χA is a computable function.

A is a recursive set iff there exists a TM whose computed function
is total and coincides with χA.

A is a recursively enumerable set iff it is the domain or codomain
of a Turing-computable function.

2N is uncountable, while there are only countably many subsets of N
that are recursively enumerable.

5.3 Recursive and Recursively Enumerable Sets

How to characterize sets that can be built algorithmically?

Membership problem: for A ⊆ N and n ∈ N, establish whether n ∈ A.

The characteristic function of A is χA(n) =

{
1 if n ∈ A
0 if n /∈ A .

The membership problem is solvable iff χA is a computable function.

A is a recursive set iff there exists a TM whose computed function
is total and coincides with χA.

A is a recursively enumerable set iff it is the domain or codomain
of a Turing-computable function.

2N is uncountable, while there are only countably many subsets of N
that are recursively enumerable.

Recursive sets correspond to total computable functions, while
recursively enumerable sets correspond to all computable functions.

Any finite set is recursive, with the corresponding TM ideally
comparing the input value with each value in the set.

The set of even (resp. odd) natural numbers is infinite and recursive,
with the corresponding TM checking whether the rightmost digit
is 0, 2, 4, 6, 8 (resp. 1, 3, 5, 7, 9).

The set of prime natural numbers is infinite and recursive too,
with the corresponding TM having to check finitely many values.

Any recursive set is recursively enumerable.

Consider an enumeration of the set Fc of computable functions:

A = {n ∈ N | fn(n)↓} is recursively enumerable but not recursive.
A = {n ∈ N | fn(n)↑} is not even recursively enumerable.

Recursive sets correspond to total computable functions, while
recursively enumerable sets correspond to all computable functions.

Any finite set is recursive, with the corresponding TM ideally
comparing the input value with each value in the set.

The set of even (resp. odd) natural numbers is infinite and recursive,
with the corresponding TM checking whether the rightmost digit
is 0, 2, 4, 6, 8 (resp. 1, 3, 5, 7, 9).

The set of prime natural numbers is infinite and recursive too,
with the corresponding TM having to check finitely many values.

Any recursive set is recursively enumerable.

Consider an enumeration of the set Fc of computable functions:

A = {n ∈ N | fn(n)↓} is recursively enumerable but not recursive.
A = {n ∈ N | fn(n)↑} is not even recursively enumerable.

Recursive sets correspond to total computable functions, while
recursively enumerable sets correspond to all computable functions.

Any finite set is recursive, with the corresponding TM ideally
comparing the input value with each value in the set.

The set of even (resp. odd) natural numbers is infinite and recursive,
with the corresponding TM checking whether the rightmost digit
is 0, 2, 4, 6, 8 (resp. 1, 3, 5, 7, 9).

The set of prime natural numbers is infinite and recursive too,
with the corresponding TM having to check finitely many values.

Any recursive set is recursively enumerable.

Consider an enumeration of the set Fc of computable functions:

A = {n ∈ N | fn(n)↓} is recursively enumerable but not recursive.
A = {n ∈ N | fn(n)↑} is not even recursively enumerable.

A is recursively enumerable iff its elements can be algorithmically
enumerated, i.e., A = ∅ or A is the codomain of a function g
for which there exists a TM whose computed function is total
and coincides with g.

Union/intersection/complement of recursive sets is recursive.

Union/intersection of recursively enumerable sets is rec. enumerable.

Post theorem: if A and its complement A are recursively enumerable,
then A is recursive (and vice versa).

Rice theorem: for F ⊆ Fc the set A = {n ∈ N | fn ∈ F} is recursive
iff F = ∅ or F = Fc, i.e., when ∅ 6= F 6= Fc establishing whether
the function computed by an arbitrary TM is in F is not decidable.

A = {n ∈ N | fn ∈ Fc total} is not recursively enumerable, hence any
formalism computing only total functions cannot compute all of them!

A is recursively enumerable iff its elements can be algorithmically
enumerated, i.e., A = ∅ or A is the codomain of a function g
for which there exists a TM whose computed function is total
and coincides with g.

Union/intersection/complement of recursive sets is recursive.

Union/intersection of recursively enumerable sets is rec. enumerable.

Post theorem: if A and its complement A are recursively enumerable,
then A is recursive (and vice versa).

Rice theorem: for F ⊆ Fc the set A = {n ∈ N | fn ∈ F} is recursive
iff F = ∅ or F = Fc, i.e., when ∅ 6= F 6= Fc establishing whether
the function computed by an arbitrary TM is in F is not decidable.

A = {n ∈ N | fn ∈ Fc total} is not recursively enumerable, hence any
formalism computing only total functions cannot compute all of them!

5.4 Decidable and Undecidable Problems

Membership problems are special cases of decision problems.

A decision problem is a computational problem with a yes/no answer.

Examples of formulations of different related problems:

The existence of a path between two vertices is a decision problem.
Finding a path between those two vertices is not a decision problem.
Finding the shortest path between them is an optimization problem.

Let Iy be the set of input data for which the answer is yes.

A decision problem is said to be decidable when Iy is recursive
and semi-decidable when Iy is recursively enumerable.

A decision problem is said to be undecidable when it is not decidable.

5.4 Decidable and Undecidable Problems

Membership problems are special cases of decision problems.

A decision problem is a computational problem with a yes/no answer.

Examples of formulations of different related problems:

The existence of a path between two vertices is a decision problem.
Finding a path between those two vertices is not a decision problem.
Finding the shortest path between them is an optimization problem.

Let Iy be the set of input data for which the answer is yes.

A decision problem is said to be decidable when Iy is recursive
and semi-decidable when Iy is recursively enumerable.

A decision problem is said to be undecidable when it is not decidable.

5.4 Decidable and Undecidable Problems

Membership problems are special cases of decision problems.

A decision problem is a computational problem with a yes/no answer.

Examples of formulations of different related problems:

The existence of a path between two vertices is a decision problem.
Finding a path between those two vertices is not a decision problem.
Finding the shortest path between them is an optimization problem.

Let Iy be the set of input data for which the answer is yes.

A decision problem is said to be decidable when Iy is recursive
and semi-decidable when Iy is recursively enumerable.

A decision problem is said to be undecidable when it is not decidable.

Problems about the function computed or language recognized
by an arbitrary TM are undecidable in general due to Rice theorem.

The object of study and the working tool coincide, both are TMs!

Every total transformation of TMs into TMs admits a fixed point,
i.e., a TM computing the same function as the transformed TM.

Kleene theorem: for every total function t ∈ Fc there exists n ∈ N
such that fn = ft(n).

To study whether the function computed by an arbitrary TM
enjoys a certain property, we work with a TM acting as a verifier.

If the function computed by the verifier has at least one fixed point,
i.e., a TM invariant w.r.t. the transformation applied by the verifier,
then the verifier cannot always establish whether the property is met.

Problems about the function computed or language recognized
by an arbitrary TM are undecidable in general due to Rice theorem.

The object of study and the working tool coincide, both are TMs!

Every total transformation of TMs into TMs admits a fixed point,
i.e., a TM computing the same function as the transformed TM.

Kleene theorem: for every total function t ∈ Fc there exists n ∈ N
such that fn = ft(n).

To study whether the function computed by an arbitrary TM
enjoys a certain property, we work with a TM acting as a verifier.

If the function computed by the verifier has at least one fixed point,
i.e., a TM invariant w.r.t. the transformation applied by the verifier,
then the verifier cannot always establish whether the property is met.

Problems about the function computed or language recognized
by an arbitrary TM are undecidable in general due to Rice theorem.

The object of study and the working tool coincide, both are TMs!

Every total transformation of TMs into TMs admits a fixed point,
i.e., a TM computing the same function as the transformed TM.

Kleene theorem: for every total function t ∈ Fc there exists n ∈ N
such that fn = ft(n).

To study whether the function computed by an arbitrary TM
enjoys a certain property, we work with a TM acting as a verifier.

If the function computed by the verifier has at least one fixed point,
i.e., a TM invariant w.r.t. the transformation applied by the verifier,
then the verifier cannot always establish whether the property is met.

The proof of undecidability of a problem is usually by contradiction:

Applying Cantor diagonal method to the problem itself.
Showing that the decidability of the problem would lead
to the decidability of a problem known to be undecidable.

Examples of undecidable problems on TMs:

Halting problem: an arbitrary TM converges on an arbitrary input.
Equivalence problem: two arbitrary TMs compute the same function.
The function computed by an arbitrary TM is total/constant.
The language recognized by an arbitrary TM is L1/L2/L3/finite/∅.

Examples of undecidable problems in other fields:

Satisfiability of an arbitrary predicate logic formula.
Reducibility of an arbitrary λ-term to a normal form.
Tenth Hilbert problem: an arbitrary Diophantine equation
(polynomial with integer coefficients) has an integer solution.

The proof of undecidability of a problem is usually by contradiction:

Applying Cantor diagonal method to the problem itself.
Showing that the decidability of the problem would lead
to the decidability of a problem known to be undecidable.

Examples of undecidable problems on TMs:

Halting problem: an arbitrary TM converges on an arbitrary input.
Equivalence problem: two arbitrary TMs compute the same function.
The function computed by an arbitrary TM is total/constant.
The language recognized by an arbitrary TM is L1/L2/L3/finite/∅.

Examples of undecidable problems in other fields:

Satisfiability of an arbitrary predicate logic formula.
Reducibility of an arbitrary λ-term to a normal form.
Tenth Hilbert problem: an arbitrary Diophantine equation
(polynomial with integer coefficients) has an integer solution.

The proof of undecidability of a problem is usually by contradiction:

Applying Cantor diagonal method to the problem itself.
Showing that the decidability of the problem would lead
to the decidability of a problem known to be undecidable.

Examples of undecidable problems on TMs:

Halting problem: an arbitrary TM converges on an arbitrary input.
Equivalence problem: two arbitrary TMs compute the same function.
The function computed by an arbitrary TM is total/constant.
The language recognized by an arbitrary TM is L1/L2/L3/finite/∅.

Examples of undecidable problems in other fields:

Satisfiability of an arbitrary predicate logic formula.
Reducibility of an arbitrary λ-term to a normal form.
Tenth Hilbert problem: an arbitrary Diophantine equation
(polynomial with integer coefficients) has an integer solution.

There are also some decision problems whose undecidability
cannot even be proven.

Examples:

Individual termination of a specific TM on a specific input.
Fermat last theorem: there are no x, y, z ∈ Z \ {0} and
n ∈ Z with n > 2 such that xn + yn = zn.
Planar graph coloring: four colors are sufficient to decorate
the vertices of an arbitrary planar graph in such a way that
no two adjacent vertices are of the same color.

It does not mean that those problems are undecidable.

Fermat last theorem was proven in 1995.

The four color theorem was proven in 1977 in a computer-based way,
thus four colors suffice for political geographic maps.

There are also some decision problems whose undecidability
cannot even be proven.

Examples:

Individual termination of a specific TM on a specific input.
Fermat last theorem: there are no x, y, z ∈ Z \ {0} and
n ∈ Z with n > 2 such that xn + yn = zn.
Planar graph coloring: four colors are sufficient to decorate
the vertices of an arbitrary planar graph in such a way that
no two adjacent vertices are of the same color.

It does not mean that those problems are undecidable.

Fermat last theorem was proven in 1995.

The four color theorem was proven in 1977 in a computer-based way,
thus four colors suffice for political geographic maps.

5.5 Tractable and Intractable Problems

Every decidable decision problem admits an algorithmic solution.

The computational complexity of an algorithm depends on its:

Running time.
Memory space.
Communication bandwidth.

Time is the most expensive resource as it is irreversible.

Time complexity is the order of magnitude of the running time
expressed as a function of the input data size n:

Constant: O(1).
Logarithmic: O(log n).
Linear: O(n).
Pseudolinear: O(n · log n).
Polynomial: O(nk).
Exponential: O(an).

5.5 Tractable and Intractable Problems

Every decidable decision problem admits an algorithmic solution.

The computational complexity of an algorithm depends on its:

Running time.
Memory space.
Communication bandwidth.

Time is the most expensive resource as it is irreversible.

Time complexity is the order of magnitude of the running time
expressed as a function of the input data size n:

Constant: O(1).
Logarithmic: O(log n).
Linear: O(n).
Pseudolinear: O(n · log n).
Polynomial: O(nk).
Exponential: O(an).

A decidable decision problem may have several algorithmic solutions.

Tractability: how efficiently a decidable problem can be solved.

A decidable decision problem is said to be tractable
if it admits a polynomial-time algorithmic solution,
otherwise it is said to be intractable.

P: class of decision problems that can be solved in polynomial time
by a deterministic algorithm.

NP: class of decision problems that can be solved in polynomial time
by a nondeterministic algorithm (it simultaneously explores all paths,
can be exponentially many but each is solved in polynomial time).

P ⊆ NP but it is not known whether the inclusion is strict or not.

P ?
= NP is one of the most important open problems in informatics.

A decidable decision problem may have several algorithmic solutions.

Tractability: how efficiently a decidable problem can be solved.

A decidable decision problem is said to be tractable
if it admits a polynomial-time algorithmic solution,
otherwise it is said to be intractable.

P: class of decision problems that can be solved in polynomial time
by a deterministic algorithm.

NP: class of decision problems that can be solved in polynomial time
by a nondeterministic algorithm (it simultaneously explores all paths,
can be exponentially many but each is solved in polynomial time).

P ⊆ NP but it is not known whether the inclusion is strict or not.

P ?
= NP is one of the most important open problems in informatics.

A decidable problem P1 ⊆ I1 × {0, 1} reduces in polynomial time to
a decidable problem P2 ⊆ I2 × {0, 1} iff there exists a deterministic
algorithm that computes in polynomial time a function f : I1 → I2

such that (i, s) ∈ P1 ⇐⇒ (f(i), s) ∈ P2 for all i ∈ I1 and s ∈ {0, 1}.
The solution to each instance of P1 can be obtained by solving
the corresponding instance of P2 computable in polynomial time.

Cook theorem: any problem in NP reduces in polynomial time
to the satisfiability problem.

Corollary: if there exists a deterministic algorithm solving
the satisfiability problem in polynomial time, then P = NP.

Satisfiability problem: an arbitrary propositional logic formula
in conjunctive normal form admits an assignment of truth values
to its variables that makes the formula true.

A decidable problem P1 ⊆ I1 × {0, 1} reduces in polynomial time to
a decidable problem P2 ⊆ I2 × {0, 1} iff there exists a deterministic
algorithm that computes in polynomial time a function f : I1 → I2

such that (i, s) ∈ P1 ⇐⇒ (f(i), s) ∈ P2 for all i ∈ I1 and s ∈ {0, 1}.
The solution to each instance of P1 can be obtained by solving
the corresponding instance of P2 computable in polynomial time.

Cook theorem: any problem in NP reduces in polynomial time
to the satisfiability problem.

Corollary: if there exists a deterministic algorithm solving
the satisfiability problem in polynomial time, then P = NP.

Satisfiability problem: an arbitrary propositional logic formula
in conjunctive normal form admits an assignment of truth values
to its variables that makes the formula true.

A problem in NP is NP-complete iff the satisfiability problem
reduces to it in polynomial time (corollary applies to each of them).

Examples of NP-complete problems other than satisfiability:

Knapsack problem: given a set A = {a1, . . . , an} of positive integers
and two positive integers c and z, establish whether there exists
a subset of A whose elements sum up to a number between c and z.

Bin packing problem: given a set A = {a1, . . . , an} of positive integers
and two positive integers k and s, establish whether there exists
a partition of A into k disjoint subsets A1, . . . , Ak such that
the sum of the elements in each Ai is not greater than s.
Clique problem: given a graph G and a positive integer k,
establish whether G has a complete subgraph with k vertices.
Traveling salesman problem: given a positive integer k and a graph G
whose edges are each labeled with a positive integer cost, establish
whether G has a cycle that traverses each of its vertices only once
in which the sum of the costs of the edges is not greater than k.

A problem in NP is NP-complete iff the satisfiability problem
reduces to it in polynomial time (corollary applies to each of them).

Examples of NP-complete problems other than satisfiability:

Knapsack problem: given a set A = {a1, . . . , an} of positive integers
and two positive integers c and z, establish whether there exists
a subset of A whose elements sum up to a number between c and z.
Bin packing problem: given a set A = {a1, . . . , an} of positive integers
and two positive integers k and s, establish whether there exists
a partition of A into k disjoint subsets A1, . . . , Ak such that
the sum of the elements in each Ai is not greater than s.

Clique problem: given a graph G and a positive integer k,
establish whether G has a complete subgraph with k vertices.
Traveling salesman problem: given a positive integer k and a graph G
whose edges are each labeled with a positive integer cost, establish
whether G has a cycle that traverses each of its vertices only once
in which the sum of the costs of the edges is not greater than k.

A problem in NP is NP-complete iff the satisfiability problem
reduces to it in polynomial time (corollary applies to each of them).

Examples of NP-complete problems other than satisfiability:

Knapsack problem: given a set A = {a1, . . . , an} of positive integers
and two positive integers c and z, establish whether there exists
a subset of A whose elements sum up to a number between c and z.
Bin packing problem: given a set A = {a1, . . . , an} of positive integers
and two positive integers k and s, establish whether there exists
a partition of A into k disjoint subsets A1, . . . , Ak such that
the sum of the elements in each Ai is not greater than s.
Clique problem: given a graph G and a positive integer k,
establish whether G has a complete subgraph with k vertices.

Traveling salesman problem: given a positive integer k and a graph G
whose edges are each labeled with a positive integer cost, establish
whether G has a cycle that traverses each of its vertices only once
in which the sum of the costs of the edges is not greater than k.

A problem in NP is NP-complete iff the satisfiability problem
reduces to it in polynomial time (corollary applies to each of them).

Examples of NP-complete problems other than satisfiability:

Knapsack problem: given a set A = {a1, . . . , an} of positive integers
and two positive integers c and z, establish whether there exists
a subset of A whose elements sum up to a number between c and z.
Bin packing problem: given a set A = {a1, . . . , an} of positive integers
and two positive integers k and s, establish whether there exists
a partition of A into k disjoint subsets A1, . . . , Ak such that
the sum of the elements in each Ai is not greater than s.
Clique problem: given a graph G and a positive integer k,
establish whether G has a complete subgraph with k vertices.
Traveling salesman problem: given a positive integer k and a graph G
whose edges are each labeled with a positive integer cost, establish
whether G has a cycle that traverses each of its vertices only once
in which the sum of the costs of the edges is not greater than k.

6. The Modeling View: Process Algebras

Topics:

6.1 Concurrency and Communication 92

6.2 Syntax of Process Calculi 103

6.3 Interleaving Semantics via Labeled Transition Systems 111

6.4 Computational Power of Process Calculi 119

6.5 Spectrum of Behavioral Equivalences 124

6.6 Strong Bisimilarity and Its Properties 130

6.7 Weak Bisimilarities and Their Properties 148

6.8 Truly Concurrent Semantics via Petri Nets 157

6.9 Truly Concurrent Semantics via Event Structures 167

6.10 Truly Concurrent Bisimilarities 174

6.1 Concurrency and Communication

Sequential computing (since 1930’s):

A single step at a time is executed.
Imperative models: Turing machines and Von Neumann architecture.
Programming languages: Fortran, Cobol, Algol, Basic, Pascal, C, . . .
Declarative models: Church λ-calculus and first-order logic.
Programming languages: Lisp, Scheme, ML, Haskell, Prolog, . . .

Concurrent and distributed computing (since 1970’s):

Several steps can be simultaneously executed.
Shared-memory model vs. message-passing model.
Primitives for software synchronization: semaphores, monitors, . . .
Concurrent programming languages: Ada, Occam, Erlang, Scala, . . .
Extensions of previously developed languages.

6.1 Concurrency and Communication

Sequential computing (since 1930’s):

A single step at a time is executed.
Imperative models: Turing machines and Von Neumann architecture.
Programming languages: Fortran, Cobol, Algol, Basic, Pascal, C, . . .
Declarative models: Church λ-calculus and first-order logic.
Programming languages: Lisp, Scheme, ML, Haskell, Prolog, . . .

Concurrent and distributed computing (since 1970’s):

Several steps can be simultaneously executed.
Shared-memory model vs. message-passing model.
Primitives for software synchronization: semaphores, monitors, . . .
Concurrent programming languages: Ada, Occam, Erlang, Scala, . . .
Extensions of previously developed languages.

Global computing (since 2000’s): computation over infrastructures
globally accessible via personal devices and offering uniform services.

Abstraction of a global computer that we can use anytime anywhere.

Development of large-scale general-purpose computing systems
that hopefully have a dependably predictable behavior
for the needs of a distributed and mobile world.

Providing support for e-government and e-commerce (web services),
resource sharing (cloud), ambient intelligence (IoT), . . .

Addressing issues that go beyond concurrent and distributed systems:
mobility, ubiquity, dynamicity, interactivity, . . .

“Computing is interaction!” (Robin Milner, 1994).

Global computing (since 2000’s): computation over infrastructures
globally accessible via personal devices and offering uniform services.

Abstraction of a global computer that we can use anytime anywhere.

Development of large-scale general-purpose computing systems
that hopefully have a dependably predictable behavior
for the needs of a distributed and mobile world.

Providing support for e-government and e-commerce (web services),
resource sharing (cloud), ambient intelligence (IoT), . . .

Addressing issues that go beyond concurrent and distributed systems:
mobility, ubiquity, dynamicity, interactivity, . . .

“Computing is interaction!” (Robin Milner, 1994).

Concurrency and communication are essential in the design
and deployment of modern computing systems.

Any such system is composed of many interconnected parts
that interact by exchanging information or simply synchronizing.

Concurrency and communication are complementary notions:

Diversity: each part acts concurrently with (independently of) other parts.
Unity: achieved through communication among the various parts.

Computing systems featuring concurrency and communication are
often required to possess a degree of reactivity to external stimuli
and are usually nonterminating (like operating systems).

Nondeterminism in the final result or in the computation can arise
due to the different speeds of the parts, the interaction scheme
among the parts, and the scheduling policies that are adopted.

Concurrency and communication are essential in the design
and deployment of modern computing systems.

Any such system is composed of many interconnected parts
that interact by exchanging information or simply synchronizing.

Concurrency and communication are complementary notions:

Diversity: each part acts concurrently with (independently of) other parts.
Unity: achieved through communication among the various parts.

Computing systems featuring concurrency and communication are
often required to possess a degree of reactivity to external stimuli
and are usually nonterminating (like operating systems).

Nondeterminism in the final result or in the computation can arise
due to the different speeds of the parts, the interaction scheme
among the parts, and the scheduling policies that are adopted.

Assume that the computation state is the memory content
at a certain point of the execution.

The behavior of a sequential system can be formalized as a
mathematical function that associates a final state (output)
with every possible initial state (input).

This input-output transformation approach for sequential systems
is not applicable to communicating concurrent systems!

Cannot abstract from the intermediate states of the computation.

Consider the following two sequential program fragments:
(1) X := 1; (2) X := 0; X := X + 1;

When executed in isolation, they have the same effect (X becomes 1).

If the two fragments are executed concurrently, the final value of X
is not necessarily 1, but can be either 1 or 2 (cannot be deterministically predicted).

Assume that the computation state is the memory content
at a certain point of the execution.

The behavior of a sequential system can be formalized as a
mathematical function that associates a final state (output)
with every possible initial state (input).

This input-output transformation approach for sequential systems
is not applicable to communicating concurrent systems!

Cannot abstract from the intermediate states of the computation.

Consider the following two sequential program fragments:
(1) X := 1; (2) X := 0; X := X + 1;

When executed in isolation, they have the same effect (X becomes 1).

If the two fragments are executed concurrently, the final value of X
is not necessarily 1, but can be either 1 or 2 (cannot be deterministically predicted).

Assume that the computation state is the memory content
at a certain point of the execution.

The behavior of a sequential system can be formalized as a
mathematical function that associates a final state (output)
with every possible initial state (input).

This input-output transformation approach for sequential systems
is not applicable to communicating concurrent systems!

Cannot abstract from the intermediate states of the computation.

Consider the following two sequential program fragments:
(1) X := 1; (2) X := 0; X := X + 1;

When executed in isolation, they have the same effect (X becomes 1).

If the two fragments are executed concurrently, the final value of X
is not necessarily 1, but can be either 1 or 2 (cannot be deterministically predicted).

How to model and analyze communicating concurrent systems?

Making no distinction of kind between systems and their parts
enables uniform reasoning at different abstraction levels.

Accomplished through the notion of process.

A process may be decomposed into subprocesses for a certain purpose
or may be viewed as being atomic for other purposes.

A process is a series of actions/events divided into:

Internal actions, possibly due to subprocesses communication.
Interactions with neighboring processes or the external environment.

How to model and analyze communicating concurrent systems?

Making no distinction of kind between systems and their parts
enables uniform reasoning at different abstraction levels.

Accomplished through the notion of process.

A process may be decomposed into subprocesses for a certain purpose
or may be viewed as being atomic for other purposes.

A process is a series of actions/events divided into:

Internal actions, possibly due to subprocesses communication.
Interactions with neighboring processes or the external environment.

Any computing system features a structure and a behavior.

A process is an abstraction of the behavior of a computing system.

The behavior of a complex computing system can be defined
as its entire capability of communication.

Black-box view: the behavior of a system is exactly what is observable
and to observe a system is exactly to communicate with it.

The notion of process focuses on the behavioral aspects of a system,
while neglecting its structural and physical attributes.

Any computing system features a structure and a behavior.

A process is an abstraction of the behavior of a computing system.

The behavior of a complex computing system can be defined
as its entire capability of communication.

Black-box view: the behavior of a system is exactly what is observable
and to observe a system is exactly to communicate with it.

The notion of process focuses on the behavioral aspects of a system,
while neglecting its structural and physical attributes.

Consider a sequential system that:

either performs action a followed by action b and then terminates;
or performs action b followed by action a and then terminates.

Consider another system that performs actions a and b in parallel:

either action a terminates first and action b terminates afterwards;
or action b terminates first and action a terminates afterwards.

Structurally different, but behaviorally equivalent!

A concurrent system behaves like a sequential one obtained by
interleaving the actions executed by the parts of the former.

Nondeterministic choice among all possible action sequencings.

Consider a sequential system that:

either performs action a followed by action b and then terminates;
or performs action b followed by action a and then terminates.

Consider another system that performs actions a and b in parallel:

either action a terminates first and action b terminates afterwards;
or action b terminates first and action a terminates afterwards.

Structurally different, but behaviorally equivalent!

A concurrent system behaves like a sequential one obtained by
interleaving the actions executed by the parts of the former.

Nondeterministic choice among all possible action sequencings.

Consider a sequential system that:

either performs action a followed by action b and then terminates;
or performs action b followed by action a and then terminates.

Consider another system that performs actions a and b in parallel:

either action a terminates first and action b terminates afterwards;
or action b terminates first and action a terminates afterwards.

Structurally different, but behaviorally equivalent!

A concurrent system behaves like a sequential one obtained by
interleaving the actions executed by the parts of the former.

Nondeterministic choice among all possible action sequencings.

Is there a calculus for processes as basic as λ-calculus for functions?

Concurrency theory started between late 1970’s and early 1980’s.

Process calculi/algebras constitute a fundamental branch:

Robin Milner, Tony Hoare, Matthew Hennessy, Rocco De Nicola,
Ugo Montanari, Pierpaolo Degano, Ilaria Castellani, Ursula Goltz,
Davide Sangiorgi, Kim Larsen, Rance Cleaveland, Scott Smolka,
Jos Baeten, Jan Bergstra, Jan Willem Klop, Peter Weijland,
Rob van Glabbeek, Frits Vaandrager, Jan Friso Groote, . . .
CCS, π-calculus, CSP, ACP, LOTOS, . . .
CWB, CWB-NC/PAC, FDR, µCRL, CADP, . . .

Is there a calculus for processes as basic as λ-calculus for functions?

Concurrency theory started between late 1970’s and early 1980’s.

Process calculi/algebras constitute a fundamental branch:

Robin Milner, Tony Hoare, Matthew Hennessy, Rocco De Nicola,
Ugo Montanari, Pierpaolo Degano, Ilaria Castellani, Ursula Goltz,
Davide Sangiorgi, Kim Larsen, Rance Cleaveland, Scott Smolka,
Jos Baeten, Jan Bergstra, Jan Willem Klop, Peter Weijland,
Rob van Glabbeek, Frits Vaandrager, Jan Friso Groote, . . .
CCS, π-calculus, CSP, ACP, LOTOS, . . .
CWB, CWB-NC/PAC, FDR, µCRL, CADP, . . .

Process: actions or events representing the observable behavior.

Calculus: system or method of calculation.

Algebra: calculus of symbols combining according to certain laws.

Generalization of formal languages and automata theory focusing on
system behavior rather than language generation and recognition.

Foundations of concurrent programming semantics.

Support for model-based design of modern computing systems.

Process: actions or events representing the observable behavior.

Calculus: system or method of calculation.

Algebra: calculus of symbols combining according to certain laws.

Generalization of formal languages and automata theory focusing on
system behavior rather than language generation and recognition.

Foundations of concurrent programming semantics.

Support for model-based design of modern computing systems.

Conceived for studying communicating concurrent systems and
their various aspects: nondeterminism, mobility, probability, time, . . .

Linguistic counterpart of computational models such as
Keller transition systems, Petri nets, Winskel event structures, . . .

Compositional modeling by means of several behavioral operators
expressing sequential, alternative, parallel compositions of processes.

System dynamics described through (recursive) behavioral equations.

Process comparison through behavioral equivalences and preorders
formalizing the notions of same behavior and behavior refinement.

Abstraction from certain unnecessary details of system behavior
by distinguishing between visible and invisible actions.

Conceived for studying communicating concurrent systems and
their various aspects: nondeterminism, mobility, probability, time, . . .

Linguistic counterpart of computational models such as
Keller transition systems, Petri nets, Winskel event structures, . . .

Compositional modeling by means of several behavioral operators
expressing sequential, alternative, parallel compositions of processes.

System dynamics described through (recursive) behavioral equations.

Process comparison through behavioral equivalences and preorders
formalizing the notions of same behavior and behavior refinement.

Abstraction from certain unnecessary details of system behavior
by distinguishing between visible and invisible actions.

Conceived for studying communicating concurrent systems and
their various aspects: nondeterminism, mobility, probability, time, . . .

Linguistic counterpart of computational models such as
Keller transition systems, Petri nets, Winskel event structures, . . .

Compositional modeling by means of several behavioral operators
expressing sequential, alternative, parallel compositions of processes.

System dynamics described through (recursive) behavioral equations.

Process comparison through behavioral equivalences and preorders
formalizing the notions of same behavior and behavior refinement.

Abstraction from certain unnecessary details of system behavior
by distinguishing between visible and invisible actions.

Running example: producer-consumer system.

General description:

Three components: producer, finite-capacity buffer, consumer.
The producer deposits items into the buffer as long as
the buffer capacity is not exceeded.
Stored items are then withdrawn from the buffer by the consumer
according to some predefined discipline (like FIFO or LIFO).

Specific scenario:

The buffer has only two positions.
Items are identical, hence the discipline is not important.

Running example: producer-consumer system.

General description:

Three components: producer, finite-capacity buffer, consumer.
The producer deposits items into the buffer as long as
the buffer capacity is not exceeded.
Stored items are then withdrawn from the buffer by the consumer
according to some predefined discipline (like FIFO or LIFO).

Specific scenario:

The buffer has only two positions.
Items are identical, hence the discipline is not important.

6.2 Syntax of Process Calculi

Modeling languages for communicating concurrent systems.

Compositionality: building complex models from simpler ones
by means of suitable operators.

Abstraction: ability to neglect some details of a model
by considering them as invisible.

Their basic ingredients are actions and behavioral operators.

Av: countable set of visible action names.

τ : invisible (or silent or unobservable) action.

A = Av ∪ {τ}: set of all action names.

Relab = {ϕ : A → A | ϕ−1(τ) = {τ}}:
set of visibility-preserving action relabeling functions.

6.2 Syntax of Process Calculi

Modeling languages for communicating concurrent systems.

Compositionality: building complex models from simpler ones
by means of suitable operators.

Abstraction: ability to neglect some details of a model
by considering them as invisible.

Their basic ingredients are actions and behavioral operators.

Av: countable set of visible action names.

τ : invisible (or silent or unobservable) action.

A = Av ∪ {τ}: set of all action names.

Relab = {ϕ : A → A | ϕ−1(τ) = {τ}}:
set of visibility-preserving action relabeling functions.

Syntax of process terms:

P ::= 0 terminated process
| a . P action prefix (a ∈ A)

| P + P alternative composition
| P ‖S P parallel composition (S ⊆ Av)

| P /H hiding (H ⊆ Av)

| P \ L restriction (L ⊆ Av)

| P [ϕ] relabeling (ϕ ∈ Relab)

| X process variable (X ∈ Var)

| recX : P recursion (X ∈ Var)

Precedence: unary operators > + > ‖.
Associativity: + and ‖ are left associative.

Syntax of process terms:

P ::= 0 terminated process
| a . P action prefix (a ∈ A)

| P + P alternative composition
| P ‖S P parallel composition (S ⊆ Av)

| P /H hiding (H ⊆ Av)

| P \ L restriction (L ⊆ Av)

| P [ϕ] relabeling (ϕ ∈ Relab)

| X process variable (X ∈ Var)

| recX : P recursion (X ∈ Var)

Precedence: unary operators > + > ‖.
Associativity: + and ‖ are left associative.

0 is a terminated process and hence cannot execute any action.

a . P can perform a and then behaves as P (action-based sequential composition).

P1 + P2 behaves as P1 or P2 depending on the actions they enable.

The choice among several actions initially enabled by P1 and P2

is solved nondeterministically.

The choice is internal if all the initially enabled actions are identical or
some are τ , otherwise it can be affected by the external environment.

Action prefix and alternative composition are dynamic operators
because they are discarded from the target process along with
the executed action and the unselected subprocess respectively.

0 is a terminated process and hence cannot execute any action.

a . P can perform a and then behaves as P (action-based sequential composition).

P1 + P2 behaves as P1 or P2 depending on the actions they enable.

The choice among several actions initially enabled by P1 and P2

is solved nondeterministically.

The choice is internal if all the initially enabled actions are identical or
some are τ , otherwise it can be affected by the external environment.

Action prefix and alternative composition are dynamic operators
because they are discarded from the target process along with
the executed action and the unselected subprocess respectively.

0 is a terminated process and hence cannot execute any action.

a . P can perform a and then behaves as P (action-based sequential composition).

P1 + P2 behaves as P1 or P2 depending on the actions they enable.

The choice among several actions initially enabled by P1 and P2

is solved nondeterministically.

The choice is internal if all the initially enabled actions are identical or
some are τ , otherwise it can be affected by the external environment.

Action prefix and alternative composition are dynamic operators
because they are discarded from the target process along with
the executed action and the unselected subprocess respectively.

Nil, action prefix, and alternative composition are taken from CCS.

CSP includes both action prefix, denoted by a→ P ,
and sequential composition, denoted by P1 ;P2.

CSP has two distinct alternative composition operators:

Internal choice: P1 u P2.
External choice: P1 2P2.

ACP features sequential composition P1 · P2 instead of action prefix.

As a consequence every action is a process too.

Algebraic flavor: additive operation and multiplicative operation.

Nil, action prefix, and alternative composition are taken from CCS.

CSP includes both action prefix, denoted by a→ P ,
and sequential composition, denoted by P1 ;P2.

CSP has two distinct alternative composition operators:

Internal choice: P1 u P2.
External choice: P1 2P2.

ACP features sequential composition P1 · P2 instead of action prefix.

As a consequence every action is a process too.

Algebraic flavor: additive operation and multiplicative operation.

Nil, action prefix, and alternative composition are taken from CCS.

CSP includes both action prefix, denoted by a→ P ,
and sequential composition, denoted by P1 ;P2.

CSP has two distinct alternative composition operators:

Internal choice: P1 u P2.
External choice: P1 2P2.

ACP features sequential composition P1 · P2 instead of action prefix.

As a consequence every action is a process too.

Algebraic flavor: additive operation and multiplicative operation.

P1 ‖S P2 behaves as P1 running in parallel with P2.

Actions enabled by P1 or P2 whose name does not belong to S
are executed autonomously by P1 and by P2.

Synchronization is forced between any action enabled by P1 and
any action enabled by P2 that have the same name belonging to S
(S = ∅ means P1 and P2 fully independent, S = Av means P1 and P2 fully synchronized).

P /H behaves as P but every action belonging to H is turned into τ
(abstraction mechanism; can be used for preventing a process from communicating).

P \ L behaves as P but every action belonging to L is forbidden
(same effect as P ‖L 0).

P [ϕ] behaves as P but every action is renamed according to ϕ
(redundance avoidance; encoding of the previous two operators if ϕ is non-visibility-preserving or partial).

They are static operators, parallel composition is also structural.

P1 ‖S P2 behaves as P1 running in parallel with P2.

Actions enabled by P1 or P2 whose name does not belong to S
are executed autonomously by P1 and by P2.

Synchronization is forced between any action enabled by P1 and
any action enabled by P2 that have the same name belonging to S
(S = ∅ means P1 and P2 fully independent, S = Av means P1 and P2 fully synchronized).

P /H behaves as P but every action belonging to H is turned into τ
(abstraction mechanism; can be used for preventing a process from communicating).

P \ L behaves as P but every action belonging to L is forbidden
(same effect as P ‖L 0).

P [ϕ] behaves as P but every action is renamed according to ϕ
(redundance avoidance; encoding of the previous two operators if ϕ is non-visibility-preserving or partial).

They are static operators, parallel composition is also structural.

P1 ‖S P2 behaves as P1 running in parallel with P2.

Actions enabled by P1 or P2 whose name does not belong to S
are executed autonomously by P1 and by P2.

Synchronization is forced between any action enabled by P1 and
any action enabled by P2 that have the same name belonging to S
(S = ∅ means P1 and P2 fully independent, S = Av means P1 and P2 fully synchronized).

P /H behaves as P but every action belonging to H is turned into τ
(abstraction mechanism; can be used for preventing a process from communicating).

P \ L behaves as P but every action belonging to L is forbidden
(same effect as P ‖L 0).

P [ϕ] behaves as P but every action is renamed according to ϕ
(redundance avoidance; encoding of the previous two operators if ϕ is non-visibility-preserving or partial).

They are static operators, parallel composition is also structural.

Restriction and relabeling are taken from CCS.

Hiding and (multiparty) parallel composition are taken from CSP.

In CCS (binary) parallel composition is denoted by P1 | P2.

An action a can only synchronize with its coaction ā yielding τ
(binary because synchronization and hiding are mixed together).

Restriction must be used to force synchronization: (a . 0 | ā . 0) \ {a}.
In ACP (multiparty) parallel composition is denoted by P1 ‖P2.

It is accompanied by a communication function establishing,
for each action pair, the name of the action resulting from
their synchronization (the three actions may be different).

Partial function when there are actions that cannot synchronize.

Restriction and relabeling are taken from CCS.

Hiding and (multiparty) parallel composition are taken from CSP.

In CCS (binary) parallel composition is denoted by P1 | P2.

An action a can only synchronize with its coaction ā yielding τ
(binary because synchronization and hiding are mixed together).

Restriction must be used to force synchronization: (a . 0 | ā . 0) \ {a}.

In ACP (multiparty) parallel composition is denoted by P1 ‖P2.

It is accompanied by a communication function establishing,
for each action pair, the name of the action resulting from
their synchronization (the three actions may be different).

Partial function when there are actions that cannot synchronize.

Restriction and relabeling are taken from CCS.

Hiding and (multiparty) parallel composition are taken from CSP.

In CCS (binary) parallel composition is denoted by P1 | P2.

An action a can only synchronize with its coaction ā yielding τ
(binary because synchronization and hiding are mixed together).

Restriction must be used to force synchronization: (a . 0 | ā . 0) \ {a}.
In ACP (multiparty) parallel composition is denoted by P1 ‖P2.

It is accompanied by a communication function establishing,
for each action pair, the name of the action resulting from
their synchronization (the three actions may be different).

Partial function when there are actions that cannot synchronize.

recX : P behaves as P with every free occurrence of process variable
X ∈ Var being replaced by recX : P .

Same as behavioral equation B
∆
= P for process constant B ∈ Const .

A process variable is said to occur free in a process term
if it is not in the scope of a rec binder for that variable,
otherwise it is said to be bound in that process term.

A process term is said to be closed if all of its occurrences
of process variables are bound, otherwise it is said to be open
(resp. all of its occurrences of process constants are defined).

A process term is said to be guarded iff all of its occurrences of
process variables/constants are in the scope of action prefix operators.

P: set of closed and guarded process terms, each of which is fully
defined (closure) and enables finitely many actions (guardedness).

recX : P behaves as P with every free occurrence of process variable
X ∈ Var being replaced by recX : P .

Same as behavioral equation B
∆
= P for process constant B ∈ Const .

A process variable is said to occur free in a process term
if it is not in the scope of a rec binder for that variable,
otherwise it is said to be bound in that process term.

A process term is said to be closed if all of its occurrences
of process variables are bound, otherwise it is said to be open
(resp. all of its occurrences of process constants are defined).

A process term is said to be guarded iff all of its occurrences of
process variables/constants are in the scope of action prefix operators.

P: set of closed and guarded process terms, each of which is fully
defined (closure) and enables finitely many actions (guardedness).

recX : P behaves as P with every free occurrence of process variable
X ∈ Var being replaced by recX : P .

Same as behavioral equation B
∆
= P for process constant B ∈ Const .

A process variable is said to occur free in a process term
if it is not in the scope of a rec binder for that variable,
otherwise it is said to be bound in that process term.

A process term is said to be closed if all of its occurrences
of process variables are bound, otherwise it is said to be open
(resp. all of its occurrences of process constants are defined).

A process term is said to be guarded iff all of its occurrences of
process variables/constants are in the scope of action prefix operators.

P: set of closed and guarded process terms, each of which is fully
defined (closure) and enables finitely many actions (guardedness).

recX : P behaves as P with every free occurrence of process variable
X ∈ Var being replaced by recX : P .

Same as behavioral equation B
∆
= P for process constant B ∈ Const .

A process variable is said to occur free in a process term
if it is not in the scope of a rec binder for that variable,
otherwise it is said to be bound in that process term.

A process term is said to be closed if all of its occurrences
of process variables are bound, otherwise it is said to be open
(resp. all of its occurrences of process constants are defined).

A process term is said to be guarded iff all of its occurrences of
process variables/constants are in the scope of action prefix operators.

P: set of closed and guarded process terms, each of which is fully
defined (closure) and enables finitely many actions (guardedness).

Running example (process syntax):

Process constant names: nouns starting with an upper-case letter.
Action names: verbs composed of lower-case letters.
The only observable activities are deposits and withdrawals.
Visible actions: deposit and withdraw .

Structure-independent process algebraic description where
the system state is the number of items in the buffer:

ProdCons0/2
∆
= deposit .ProdCons1/2

ProdCons1/2
∆
= deposit .ProdCons2/2 + withdraw .ProdCons0/2

ProdCons2/2
∆
= withdraw .ProdCons1/2

Specification to which every correct implementation should conform.

Running example (process syntax):

Process constant names: nouns starting with an upper-case letter.
Action names: verbs composed of lower-case letters.
The only observable activities are deposits and withdrawals.
Visible actions: deposit and withdraw .
Structure-independent process algebraic description where
the system state is the number of items in the buffer:

ProdCons0/2
∆
= deposit .ProdCons1/2

ProdCons1/2
∆
= deposit .ProdCons2/2 + withdraw .ProdCons0/2

ProdCons2/2
∆
= withdraw .ProdCons1/2

Specification to which every correct implementation should conform.

6.3 Interleaving Semantics via Labeled Transition Systems

Mathematical model in the form of a state transition graph
that represents all computations and branching points.

States are global as contain the description of the local states
of the subprocesses composed in parallel.

Computations are obtained by interleaving the actions executed
by the subprocesses composed in parallel (all possible sequencings).

Keller labeled transition systems (1976) instead of Kripke structures
to elicit transition-labeling actions instead of state properties.

Process term P ∈ P is mapped to the LTS [[P]] = (P,A,−−−→, P):

Each state corresponds to a process term into which P can evolve.
The initial state corresponds to P .
Each transition from a source state to a target state is labeled with
the action that determines the corresponding state change.

6.3 Interleaving Semantics via Labeled Transition Systems

Mathematical model in the form of a state transition graph
that represents all computations and branching points.

States are global as contain the description of the local states
of the subprocesses composed in parallel.

Computations are obtained by interleaving the actions executed
by the subprocesses composed in parallel (all possible sequencings).

Keller labeled transition systems (1976) instead of Kripke structures
to elicit transition-labeling actions instead of state properties.

Process term P ∈ P is mapped to the LTS [[P]] = (P,A,−−−→, P):

Each state corresponds to a process term into which P can evolve.
The initial state corresponds to P .
Each transition from a source state to a target state is labeled with
the action that determines the corresponding state change.

The transition relation −−−→ ⊆ P×A× P is the smallest subset
of P×A× P that satisfies Plotkin-style operational semantic rules
defined by induction on the syntactical structure of process terms.

Derivation of one single transition at a time by applying the rules
to the source state of the transition under construction.

No rule for 0: [[0]] has a single state and no transitions.

Basic rule for action prefix: a . P
a

−−−→ P (note that a disappears).

Inductive rules for all the other operators.

Different formats for dynamic (+) and static (‖, /, \ , []) operators.

[[P]] is finite state if inside P there are no recursive definitions
that contain static operators.

In that case [[P]] is also finitely branching, i.e., every state has
finitely many outgoing transitions.

The transition relation −−−→ ⊆ P×A× P is the smallest subset
of P×A× P that satisfies Plotkin-style operational semantic rules
defined by induction on the syntactical structure of process terms.

Derivation of one single transition at a time by applying the rules
to the source state of the transition under construction.

No rule for 0: [[0]] has a single state and no transitions.

Basic rule for action prefix: a . P
a

−−−→ P (note that a disappears).

Inductive rules for all the other operators.

Different formats for dynamic (+) and static (‖, /, \ , []) operators.

[[P]] is finite state if inside P there are no recursive definitions
that contain static operators.

In that case [[P]] is also finitely branching, i.e., every state has
finitely many outgoing transitions.

The transition relation −−−→ ⊆ P×A× P is the smallest subset
of P×A× P that satisfies Plotkin-style operational semantic rules
defined by induction on the syntactical structure of process terms.

Derivation of one single transition at a time by applying the rules
to the source state of the transition under construction.

No rule for 0: [[0]] has a single state and no transitions.

Basic rule for action prefix: a . P
a

−−−→ P (note that a disappears).

Inductive rules for all the other operators.

Different formats for dynamic (+) and static (‖, /, \ , []) operators.

[[P]] is finite state if inside P there are no recursive definitions
that contain static operators.

In that case [[P]] is also finitely branching, i.e., every state has
finitely many outgoing transitions.

The transition relation −−−→ ⊆ P×A× P is the smallest subset
of P×A× P that satisfies Plotkin-style operational semantic rules
defined by induction on the syntactical structure of process terms.

Derivation of one single transition at a time by applying the rules
to the source state of the transition under construction.

No rule for 0: [[0]] has a single state and no transitions.

Basic rule for action prefix: a . P
a

−−−→ P (note that a disappears).

Inductive rules for all the other operators.

Different formats for dynamic (+) and static (‖, /, \ , []) operators.

[[P]] is finite state if inside P there are no recursive definitions
that contain static operators.

In that case [[P]] is also finitely branching, i.e., every state has
finitely many outgoing transitions.

Operational semantic rules for alternative composition:

P1

a
−−−→ P ′1

P1 + P2

a
−−−→ P ′1

P2

a
−−−→ P ′2

P1 + P2

a
−−−→ P ′2

Reading order: left-bottom, left-top, right-top, right-bottom.

Note that + no longer occurs in the target processes P ′1 and P ′2.

If several actions are initially enabled, the choice among them
is solved nondeterministically due to the absence of precise criteria
or quantitative information (if-then-else, priority, probability, time race).

The choice is internal if all initially enabled actions are identical or τ .

Otherwise the choice can be influenced by the external environment.

Operational semantic rules for alternative composition:

P1

a
−−−→ P ′1

P1 + P2

a
−−−→ P ′1

P2

a
−−−→ P ′2

P1 + P2

a
−−−→ P ′2

Reading order: left-bottom, left-top, right-top, right-bottom.

Note that + no longer occurs in the target processes P ′1 and P ′2.

If several actions are initially enabled, the choice among them
is solved nondeterministically due to the absence of precise criteria
or quantitative information (if-then-else, priority, probability, time race).

The choice is internal if all initially enabled actions are identical or τ .

Otherwise the choice can be influenced by the external environment.

Operational semantic rules for parallel execution:

P1

a
−−−→ P ′1 a /∈ S

P1 ‖S P2

a
−−−→ P ′1 ‖S P2

P2

a
−−−→ P ′2 a /∈ S

P1 ‖S P2

a
−−−→ P1 ‖S P ′2

These two rules result in the interleaving semantics.

Operational semantic rule for synchronization:

P1

a
−−−→ P ′1 P2

a
−−−→ P ′2 a ∈ S

P1 ‖S P2

a
−−−→ P ′1 ‖S P ′2

Note that ‖S still occurs in the target processes of all the three rules.

Operational semantic rules for parallel execution:

P1

a
−−−→ P ′1 a /∈ S

P1 ‖S P2

a
−−−→ P ′1 ‖S P2

P2

a
−−−→ P ′2 a /∈ S

P1 ‖S P2

a
−−−→ P1 ‖S P ′2

These two rules result in the interleaving semantics.

Operational semantic rule for synchronization:

P1

a
−−−→ P ′1 P2

a
−−−→ P ′2 a ∈ S

P1 ‖S P2

a
−−−→ P ′1 ‖S P ′2

Note that ‖S still occurs in the target processes of all the three rules.

The following process terms represent structurally different systems:

a . b . 0 + b . a . 0
a . 0 ‖∅ b . 0

but they are indistinguishable by an external observer.

The interleaving semantics yields the same labeled transition system:

b

ab

a

up to processes associated with states (which are not observable):

Sequential: left b . 0, right a . 0, bottom 0.
Concurrent: left 0 ‖∅ b . 0, right a . 0 ‖∅ 0, bottom 0 ‖∅ 0.

The following process terms represent structurally different systems:

a . b . 0 + b . a . 0
a . 0 ‖∅ b . 0

but they are indistinguishable by an external observer.

The interleaving semantics yields the same labeled transition system:

b

ab

a

up to processes associated with states (which are not observable):

Sequential: left b . 0, right a . 0, bottom 0.
Concurrent: left 0 ‖∅ b . 0, right a . 0 ‖∅ 0, bottom 0 ‖∅ 0.

Examples of transition derivations:

Starting from a . b . 0 + b . a . 0:

a . b . 0
a

−−−→ b . 0

a . b . 0 + b . a . 0
a

−−−→ b . 0

Starting from a . 0 ‖∅ b . 0:

a . 0
a

−−−→ 0 a /∈ ∅

a . 0 ‖∅ b . 0
a

−−−→ 0 ‖∅ b . 0

Starting from (a . 0 + c . 0) ‖{c}(b . 0 + c . 0):

c . 0
c

−−−→ 0

a . 0 + c . 0
c

−−−→ 0

c . 0
c

−−−→ 0

b . 0 + c . 0
c

−−−→ 0
c ∈ {c}

(a . 0 + c . 0) ‖{c}(b . 0 + c . 0)
c

−−−→ 0 ‖∅ 0

Examples of transition derivations:

Starting from a . b . 0 + b . a . 0:

a . b . 0
a

−−−→ b . 0

a . b . 0 + b . a . 0
a

−−−→ b . 0

Starting from a . 0 ‖∅ b . 0:

a . 0
a

−−−→ 0 a /∈ ∅

a . 0 ‖∅ b . 0
a

−−−→ 0 ‖∅ b . 0

Starting from (a . 0 + c . 0) ‖{c}(b . 0 + c . 0):

c . 0
c

−−−→ 0

a . 0 + c . 0
c

−−−→ 0

c . 0
c

−−−→ 0

b . 0 + c . 0
c

−−−→ 0
c ∈ {c}

(a . 0 + c . 0) ‖{c}(b . 0 + c . 0)
c

−−−→ 0 ‖∅ 0

Examples of transition derivations:

Starting from a . b . 0 + b . a . 0:

a . b . 0
a

−−−→ b . 0

a . b . 0 + b . a . 0
a

−−−→ b . 0

Starting from a . 0 ‖∅ b . 0:

a . 0
a

−−−→ 0 a /∈ ∅

a . 0 ‖∅ b . 0
a

−−−→ 0 ‖∅ b . 0

Starting from (a . 0 + c . 0) ‖{c}(b . 0 + c . 0):

c . 0
c

−−−→ 0

a . 0 + c . 0
c

−−−→ 0

c . 0
c

−−−→ 0

b . 0 + c . 0
c

−−−→ 0
c ∈ {c}

(a . 0 + c . 0) ‖{c}(b . 0 + c . 0)
c

−−−→ 0 ‖∅ 0

Operational semantic rules for hiding, restriction, relabeling:

P
a

−−−→ P ′ a ∈ H

P /H
τ

−−−→ P ′ /H

P
a

−−−→ P ′ a /∈ H

P /H
a

−−−→ P ′ /H

P
a

−−−→ P ′ a /∈ L

P \ L
a

−−−→ P ′ \ L

P
a

−−−→ P ′

P [ϕ]
ϕ(a)
−−−→ P ′ [ϕ]

Operational semantic rules for recursion (variables vs. constants):

P{recX : P ↪→ X}
a

−−−→ P ′

recX : P
a

−−−→ P ′

B
∆
= P P

a
−−−→ P ′

B
a

−−−→ P ′

Operational semantic rules for hiding, restriction, relabeling:

P
a

−−−→ P ′ a ∈ H

P /H
τ

−−−→ P ′ /H

P
a

−−−→ P ′ a /∈ H

P /H
a

−−−→ P ′ /H

P
a

−−−→ P ′ a /∈ L

P \ L
a

−−−→ P ′ \ L

P
a

−−−→ P ′

P [ϕ]
ϕ(a)
−−−→ P ′ [ϕ]

Operational semantic rules for recursion (variables vs. constants):

P{recX : P ↪→ X}
a

−−−→ P ′

recX : P
a

−−−→ P ′

B
∆
= P P

a
−−−→ P ′

B
a

−−−→ P ′

Running example (process semantics):

Let us recall the structure-independent process algebraic description:

ProdCons0/2
∆
= deposit .ProdCons1/2

ProdCons1/2
∆
= deposit .ProdCons2/2 + withdraw .ProdCons0/2

ProdCons2/2
∆
= withdraw .ProdCons1/2

Labeled transition system [[ProdCons0/2]]:

deposit withdraw

deposit withdraw

ProdCons1/2

ProdCons2/2

ProdCons0/2

Obtained by mechanically applying the operational semantic rules
for process constant, alternative composition, and action prefix.

Running example (process semantics):

Let us recall the structure-independent process algebraic description:

ProdCons0/2
∆
= deposit .ProdCons1/2

ProdCons1/2
∆
= deposit .ProdCons2/2 + withdraw .ProdCons0/2

ProdCons2/2
∆
= withdraw .ProdCons1/2

Labeled transition system [[ProdCons0/2]]:

deposit withdraw

deposit withdraw

ProdCons1/2

ProdCons2/2

ProdCons0/2

Obtained by mechanically applying the operational semantic rules
for process constant, alternative composition, and action prefix.

6.4 Computational Power of Process Calculi

Process calculi with the considered operators and recursion
have the same computational power as Turing machines,
λ-calculus, and general recursive functions.

Proven by Robin Milner.

A Turing machine can be simulated by two stacks together with
a finite-state control mechanism:

The first stack contains the symbols to the left of the head.
The second stack contains the symbols to the right of the head.
Reading a symbol from the tape corresponds to a pop operation.
Writing a symbol to the tape corresponds to a push operation.
Moving the head means pop on one stack and push on the other.

How to model this in a process calculus?

6.4 Computational Power of Process Calculi

Process calculi with the considered operators and recursion
have the same computational power as Turing machines,
λ-calculus, and general recursive functions.

Proven by Robin Milner.

A Turing machine can be simulated by two stacks together with
a finite-state control mechanism:

The first stack contains the symbols to the left of the head.
The second stack contains the symbols to the right of the head.
Reading a symbol from the tape corresponds to a pop operation.
Writing a symbol to the tape corresponds to a push operation.
Moving the head means pop on one stack and push on the other.

How to model this in a process calculus?

One process for the finite-state control mechanism together with
one process for each stack.

The interaction of the control mechanism with the two stacks
can be represented through parallel composition.

The finite-state control mechanism can be described by means of
action prefix, alternative composition, and recursion, resulting in
as many behavioral equations of the following form as there are states:

Qi
∆
= ai,j1 . Qj1 + ai,j2 . Qj2 + . . .+ ai,jni . Qjni (1 ≤ i ≤ k)

How to model a stack in a process calculus?

One process for the finite-state control mechanism together with
one process for each stack.

The interaction of the control mechanism with the two stacks
can be represented through parallel composition.

The finite-state control mechanism can be described by means of
action prefix, alternative composition, and recursion, resulting in
as many behavioral equations of the following form as there are states:

Qi
∆
= ai,j1 . Qj1 + ai,j2 . Qj2 + . . .+ ai,jni . Qjni (1 ≤ i ≤ k)

How to model a stack in a process calculus?

Consider a finite set V of values that can be placed in the stack.

The stack content σ is an element of V ∗, which is ε when empty.

Actions push and pop for modeling stack operations along with
signal empty when attemping to pop from an empty stack.

The stack can be inductively specified as follows:

Stack ε
∆
=

∑
w∈V

pushw .Stackw + signal empty .Stack ε

Stackv::σ
∆
=

∑
w∈V

pushw .Stackw::v::σ + popv .Stackσ (σ ∈ V ∗)

Infinitely many behavioral equations because V ∗ is countable!

Consider a finite set V of values that can be placed in the stack.

The stack content σ is an element of V ∗, which is ε when empty.

Actions push and pop for modeling stack operations along with
signal empty when attemping to pop from an empty stack.

The stack can be inductively specified as follows:

Stack ε
∆
=

∑
w∈V

pushw .Stackw + signal empty .Stack ε

Stackv::σ
∆
=

∑
w∈V

pushw .Stackw::v::σ + popv .Stackσ (σ ∈ V ∗)

Infinitely many behavioral equations because V ∗ is countable!

Finite implementation based on as many cells as there are values of V
in the stack, which are created and linked together as needed:

Cellvn̂Cellvn−1̂ . . . ̂Cellv1̂Empty

In case of pop all remaining values are moved to the left by one cell.

|V |+ 2 equations are sufficient:

Empty
∆
=

∑
w∈V

pushw . (CellŵEmpty) + signal empty .Empty

Cellv
∆
=

∑
w∈V

pushw . (CellŵCellv) + popv .Changing (v ∈ V)

Changing
∆
=

∑
u∈V

subtopu .Cellu + bottom cell .Empty

Finite implementation based on as many cells as there are values of V
in the stack, which are created and linked together as needed:

Cellvn̂Cellvn−1̂ . . . ̂Cellv1̂Empty

In case of pop all remaining values are moved to the left by one cell.

|V |+ 2 equations are sufficient:

Empty
∆
=

∑
w∈V

pushw . (CellŵEmpty) + signal empty .Empty

Cellv
∆
=

∑
w∈V

pushw . (CellŵCellv) + popv .Changing (v ∈ V)

Changing
∆
=

∑
u∈V

subtopu .Cellu + bottom cell .Empty

Definition of the left-associative linking operator ̂:

P̂Q ∆
= P [pu/subtopu ,

e/bottom cell] ‖{pu,e}Q [pu/popu ,
e/signal empty]

where P stands for Changing and Q stands for Cellu or Empty ,
while any action with subscript u is a shorthand for all such actions.

Upon push with the external environment, the leftmost cell spawns
a new cell to the left for the new top value w of the stack.

Upon pop with the external environment, the leftmost cell takes on
the value of the cell to the right (subtop) and this behavior propagates
till the rightmost cell, which becomes empty (no garbage collection).

Action prefix, alternative composition, recursion, parallel composition,
and relabeling are all necessary to achieve Turing-completeness.

Definition of the left-associative linking operator ̂:

P̂Q ∆
= P [pu/subtopu ,

e/bottom cell] ‖{pu,e}Q [pu/popu ,
e/signal empty]

where P stands for Changing and Q stands for Cellu or Empty ,
while any action with subscript u is a shorthand for all such actions.

Upon push with the external environment, the leftmost cell spawns
a new cell to the left for the new top value w of the stack.

Upon pop with the external environment, the leftmost cell takes on
the value of the cell to the right (subtop) and this behavior propagates
till the rightmost cell, which becomes empty (no garbage collection).

Action prefix, alternative composition, recursion, parallel composition,
and relabeling are all necessary to achieve Turing-completeness.

Definition of the left-associative linking operator ̂:

P̂Q ∆
= P [pu/subtopu ,

e/bottom cell] ‖{pu,e}Q [pu/popu ,
e/signal empty]

where P stands for Changing and Q stands for Cellu or Empty ,
while any action with subscript u is a shorthand for all such actions.

Upon push with the external environment, the leftmost cell spawns
a new cell to the left for the new top value w of the stack.

Upon pop with the external environment, the leftmost cell takes on
the value of the cell to the right (subtop) and this behavior propagates
till the rightmost cell, which becomes empty (no garbage collection).

Action prefix, alternative composition, recursion, parallel composition,
and relabeling are all necessary to achieve Turing-completeness.

6.5 Spectrum of Behavioral Equivalences

Establishing whether two process terms are equivalent amounts to
establishing whether the systems they represent behave the same.

Compositional reasoning: substituting equals for equals in behaviors.

Abstraction capabilities: behaving the same up to certain details.

Useful for theoretical and applicative purposes:

Comparing process terms that are syntactically different
on the basis of the behavior they exhibit.
Relating process algebraic descriptions of the same system
at different abstraction levels (top-down modeling).
Manipulating process algebraic descriptions in a way that
preserves certain properties (state space reduction before model checking).

6.5 Spectrum of Behavioral Equivalences

Establishing whether two process terms are equivalent amounts to
establishing whether the systems they represent behave the same.

Compositional reasoning: substituting equals for equals in behaviors.

Abstraction capabilities: behaving the same up to certain details.

Useful for theoretical and applicative purposes:

Comparing process terms that are syntactically different
on the basis of the behavior they exhibit.
Relating process algebraic descriptions of the same system
at different abstraction levels (top-down modeling).
Manipulating process algebraic descriptions in a way that
preserves certain properties (state space reduction before model checking).

Features of a good behavioral equivalence:

Being a congruence with respect to all behavioral operators,
so as to support compositional reasoning.

Having a sound and complete axiomatization, which elucidates
the fundamental equational laws of the equivalence with respect
to the behavioral operators (rewriting rules for syntactical manipulation).
Having a logical characterization, which shows the behavioral
properties preserved by the equivalence (diagnostics for inequivalence).
Being equipped with an efficient verification algorithm, which runs
in polynomial time in the worst case (finite-state systems – undecidable otherwise).
Being able to abstract from invisible actions.

Three fundamental approaches: trace, bisimulation, testing (1980’s).

Features of a good behavioral equivalence:

Being a congruence with respect to all behavioral operators,
so as to support compositional reasoning.
Having a sound and complete axiomatization, which elucidates
the fundamental equational laws of the equivalence with respect
to the behavioral operators (rewriting rules for syntactical manipulation).

Having a logical characterization, which shows the behavioral
properties preserved by the equivalence (diagnostics for inequivalence).
Being equipped with an efficient verification algorithm, which runs
in polynomial time in the worst case (finite-state systems – undecidable otherwise).
Being able to abstract from invisible actions.

Three fundamental approaches: trace, bisimulation, testing (1980’s).

Features of a good behavioral equivalence:

Being a congruence with respect to all behavioral operators,
so as to support compositional reasoning.
Having a sound and complete axiomatization, which elucidates
the fundamental equational laws of the equivalence with respect
to the behavioral operators (rewriting rules for syntactical manipulation).
Having a logical characterization, which shows the behavioral
properties preserved by the equivalence (diagnostics for inequivalence).

Being equipped with an efficient verification algorithm, which runs
in polynomial time in the worst case (finite-state systems – undecidable otherwise).
Being able to abstract from invisible actions.

Three fundamental approaches: trace, bisimulation, testing (1980’s).

Features of a good behavioral equivalence:

Being a congruence with respect to all behavioral operators,
so as to support compositional reasoning.
Having a sound and complete axiomatization, which elucidates
the fundamental equational laws of the equivalence with respect
to the behavioral operators (rewriting rules for syntactical manipulation).
Having a logical characterization, which shows the behavioral
properties preserved by the equivalence (diagnostics for inequivalence).
Being equipped with an efficient verification algorithm, which runs
in polynomial time in the worst case (finite-state systems – undecidable otherwise).

Being able to abstract from invisible actions.

Three fundamental approaches: trace, bisimulation, testing (1980’s).

Features of a good behavioral equivalence:

Being a congruence with respect to all behavioral operators,
so as to support compositional reasoning.
Having a sound and complete axiomatization, which elucidates
the fundamental equational laws of the equivalence with respect
to the behavioral operators (rewriting rules for syntactical manipulation).
Having a logical characterization, which shows the behavioral
properties preserved by the equivalence (diagnostics for inequivalence).
Being equipped with an efficient verification algorithm, which runs
in polynomial time in the worst case (finite-state systems – undecidable otherwise).
Being able to abstract from invisible actions.

Three fundamental approaches: trace, bisimulation, testing (1980’s).

Features of a good behavioral equivalence:

Being a congruence with respect to all behavioral operators,
so as to support compositional reasoning.
Having a sound and complete axiomatization, which elucidates
the fundamental equational laws of the equivalence with respect
to the behavioral operators (rewriting rules for syntactical manipulation).
Having a logical characterization, which shows the behavioral
properties preserved by the equivalence (diagnostics for inequivalence).
Being equipped with an efficient verification algorithm, which runs
in polynomial time in the worst case (finite-state systems – undecidable otherwise).
Being able to abstract from invisible actions.

Three fundamental approaches: trace, bisimulation, testing (1980’s).

Trace approach (Hoare et al.): two processes are equivalent iff
they are able to execute the same sequences of visible actions (≈Tr).

Abstraction from branching points leads to deadlock insensitivity:
recX : (a .X+ a . 0) ≈Tr recX : a .X but the first one can deadlock.

Deadlock-sensitive (hence finer) variants of trace equivalence:

Completed-trace equivalence: compares process terms also
with respect to traces that lead to deadlock (≈Tr,c).
Failure equivalence: takes into account the set of visible actions
that can be refused after executing a trace (≈F).
Readiness equivalence: takes into account the set of visible actions
that are enabled after executing a trace (≈R).
Failure-trace equivalence: takes into account the sets of visible actions
that can be refused after the individual steps of a trace (≈FTr).
Ready-trace equivalence: takes into account the sets of visible actions
that are enabled after the individual steps of a trace (≈RTr).

Exponential time for trace equivalence checking in the worst case.

Trace approach (Hoare et al.): two processes are equivalent iff
they are able to execute the same sequences of visible actions (≈Tr).

Abstraction from branching points leads to deadlock insensitivity:
recX : (a .X+ a . 0) ≈Tr recX : a .X but the first one can deadlock.

Deadlock-sensitive (hence finer) variants of trace equivalence:

Completed-trace equivalence: compares process terms also
with respect to traces that lead to deadlock (≈Tr,c).
Failure equivalence: takes into account the set of visible actions
that can be refused after executing a trace (≈F).
Readiness equivalence: takes into account the set of visible actions
that are enabled after executing a trace (≈R).
Failure-trace equivalence: takes into account the sets of visible actions
that can be refused after the individual steps of a trace (≈FTr).
Ready-trace equivalence: takes into account the sets of visible actions
that are enabled after the individual steps of a trace (≈RTr).

Exponential time for trace equivalence checking in the worst case.

Trace approach (Hoare et al.): two processes are equivalent iff
they are able to execute the same sequences of visible actions (≈Tr).

Abstraction from branching points leads to deadlock insensitivity:
recX : (a .X+ a . 0) ≈Tr recX : a .X but the first one can deadlock.

Deadlock-sensitive (hence finer) variants of trace equivalence:

Completed-trace equivalence: compares process terms also
with respect to traces that lead to deadlock (≈Tr,c).
Failure equivalence: takes into account the set of visible actions
that can be refused after executing a trace (≈F).
Readiness equivalence: takes into account the set of visible actions
that are enabled after executing a trace (≈R).
Failure-trace equivalence: takes into account the sets of visible actions
that can be refused after the individual steps of a trace (≈FTr).
Ready-trace equivalence: takes into account the sets of visible actions
that are enabled after the individual steps of a trace (≈RTr).

Exponential time for trace equivalence checking in the worst case.

Bisimulation approach (Park; Milner): two processes are equivalent
iff they are able to mimic each other’s behavior stepwise (∼B).

Faithful account of branching points leads to overdiscrimination:
a . b . c . 0 + a . b . d . 0 6∼B a . (b . c . 0 + b . d . 0) is hardly justifiable.

Coarser variants of bisimulation equivalence:

Simulation equivalence: it is the intersection of two preorders,
each considering the capability of stepwise behavior mimicking
in one single direction (∼S).
Failure-simulation equivalence: same as simulation equivalence,
with each of the two preorders additionally checking for the
equality of the sets of actions that can be stepwise refused (∼FS).
Ready-simulation equivalence: same as simulation equivalence,
with each of the two preorders additionally checking for the
equality of the sets of actions that are stepwise enabled (∼RS).

Abstraction capabilities later on (Milner; Van Glabbeek & Weijland).

Decidable in polynomial time.

Bisimulation approach (Park; Milner): two processes are equivalent
iff they are able to mimic each other’s behavior stepwise (∼B).

Faithful account of branching points leads to overdiscrimination:
a . b . c . 0 + a . b . d . 0 6∼B a . (b . c . 0 + b . d . 0) is hardly justifiable.

Coarser variants of bisimulation equivalence:

Simulation equivalence: it is the intersection of two preorders,
each considering the capability of stepwise behavior mimicking
in one single direction (∼S).
Failure-simulation equivalence: same as simulation equivalence,
with each of the two preorders additionally checking for the
equality of the sets of actions that can be stepwise refused (∼FS).
Ready-simulation equivalence: same as simulation equivalence,
with each of the two preorders additionally checking for the
equality of the sets of actions that are stepwise enabled (∼RS).

Abstraction capabilities later on (Milner; Van Glabbeek & Weijland).

Decidable in polynomial time.

Bisimulation approach (Park; Milner): two processes are equivalent
iff they are able to mimic each other’s behavior stepwise (∼B).

Faithful account of branching points leads to overdiscrimination:
a . b . c . 0 + a . b . d . 0 6∼B a . (b . c . 0 + b . d . 0) is hardly justifiable.

Coarser variants of bisimulation equivalence:

Simulation equivalence: it is the intersection of two preorders,
each considering the capability of stepwise behavior mimicking
in one single direction (∼S).
Failure-simulation equivalence: same as simulation equivalence,
with each of the two preorders additionally checking for the
equality of the sets of actions that can be stepwise refused (∼FS).
Ready-simulation equivalence: same as simulation equivalence,
with each of the two preorders additionally checking for the
equality of the sets of actions that are stepwise enabled (∼RS).

Abstraction capabilities later on (Milner; Van Glabbeek & Weijland).

Decidable in polynomial time.

Testing approach (De Nicola & Hennessy): two processes are
equivalent iff their reaction to tests is the same (≈Te).

Tests formalized as processes extended with success action/state ω.

Interaction between a process and a test formalized through
their parallel composition with synchronization on any visible action.

a . b . c . 0 + a . b . d . 0 ≈Te a . (b . c . 0 + b . d . 0) now holds.

Intersection of may-testing equivalence (at least one computation leads to success)

and must-testing equivalence (all computations lead to success).

May-testing equivalence coincides with trace equivalence.

Testing equivalence coincides with failure equivalence
in the case of nondiverging (no τ -loops), finitely-branching processes.

The diverging process recX : (τ .X+ a . 0) is not must-testing
equivalent to a . 0 because it can fail test a . ω (they are failure equivalent instead).

Checking whether every test may/must be passed is expensive.

Testing approach (De Nicola & Hennessy): two processes are
equivalent iff their reaction to tests is the same (≈Te).

Tests formalized as processes extended with success action/state ω.

Interaction between a process and a test formalized through
their parallel composition with synchronization on any visible action.

a . b . c . 0 + a . b . d . 0 ≈Te a . (b . c . 0 + b . d . 0) now holds.

Intersection of may-testing equivalence (at least one computation leads to success)

and must-testing equivalence (all computations lead to success).

May-testing equivalence coincides with trace equivalence.

Testing equivalence coincides with failure equivalence
in the case of nondiverging (no τ -loops), finitely-branching processes.

The diverging process recX : (τ .X+ a . 0) is not must-testing
equivalent to a . 0 because it can fail test a . ω (they are failure equivalent instead).

Checking whether every test may/must be passed is expensive.

Testing approach (De Nicola & Hennessy): two processes are
equivalent iff their reaction to tests is the same (≈Te).

Tests formalized as processes extended with success action/state ω.

Interaction between a process and a test formalized through
their parallel composition with synchronization on any visible action.

a . b . c . 0 + a . b . d . 0 ≈Te a . (b . c . 0 + b . d . 0) now holds.

Intersection of may-testing equivalence (at least one computation leads to success)

and must-testing equivalence (all computations lead to success).

May-testing equivalence coincides with trace equivalence.

Testing equivalence coincides with failure equivalence
in the case of nondiverging (no τ -loops), finitely-branching processes.

The diverging process recX : (τ .X+ a . 0) is not must-testing
equivalent to a . 0 because it can fail test a . ω (they are failure equivalent instead).

Checking whether every test may/must be passed is expensive.

Linear-time/branching-time spectrum for finitely-branching processes
with no τ -actions and hence no divergence (De Nicola; Van Glabbeek):

~B

~S

~RS

~FS

~~RTr

~~R ~~FTr

~~F
~

Te~

~~Tr,c

~~Tr

6.6 Strong Bisimilarity and Its Properties

Two players: a challenger (action) and a defender (reaction).

Simulation game: whenever the challenger performs a given action,
then the defender has to respond with the same action and
the two derivative states must be able to repeat this game.

Bisimulation game: a simulation game in both directions.

A binary relation B over P is a strong bisimulation iff,
whenever (P1, P2) ∈ B, then for all actions a ∈ A:

For each P1

a
−−−→ P ′1 there exists P2

a
−−−→ P ′2 such that (P ′1, P

′
2) ∈ B.

For each P2

a
−−−→ P ′2 there exists P1

a
−−−→ P ′1 such that (P ′1, P

′
2) ∈ B.

Strong bisimulation equivalence or strong bisimilarity ∼B

is defined as the union of all strong bisimulations.

Strong means not abstracting from τ -actions.

6.6 Strong Bisimilarity and Its Properties

Two players: a challenger (action) and a defender (reaction).

Simulation game: whenever the challenger performs a given action,
then the defender has to respond with the same action and
the two derivative states must be able to repeat this game.

Bisimulation game: a simulation game in both directions.

A binary relation B over P is a strong bisimulation iff,
whenever (P1, P2) ∈ B, then for all actions a ∈ A:

For each P1

a
−−−→ P ′1 there exists P2

a
−−−→ P ′2 such that (P ′1, P

′
2) ∈ B.

For each P2

a
−−−→ P ′2 there exists P1

a
−−−→ P ′1 such that (P ′1, P

′
2) ∈ B.

Strong bisimulation equivalence or strong bisimilarity ∼B

is defined as the union of all strong bisimulations.

Strong means not abstracting from τ -actions.

Properties of strong bisimulations:

The identity relation over P is a strong bisimulation.
The inverse of a strong bisimulation is a strong bisimulation.
The composition of two strong bisimulations is a strong bisimulation.
The denumerable union of strong bisimulations is a strong bisimulation.

Properties of strong bisimilarity: reflexivity, symmetry, transitivity.

Coinductive definition: strong bisimilarity is the maximum fixed point
of the higher-order relation F such that, for all binary relations R
and P1, P2 ∈ P, (P1, P2) ∈ F(R) iff for all actions a ∈ A:

For each P1

a
−−−→ P ′1 there exists P2

a
−−−→ P ′2 such that (P ′1, P

′
2) ∈ R.

For each P2

a
−−−→ P ′2 there exists P1

a
−−−→ P ′1 such that (P ′1, P

′
2) ∈ R.

R is a strong bisimulation iff R ⊆ F(R).

Properties of strong bisimulations:

The identity relation over P is a strong bisimulation.
The inverse of a strong bisimulation is a strong bisimulation.
The composition of two strong bisimulations is a strong bisimulation.
The denumerable union of strong bisimulations is a strong bisimulation.

Properties of strong bisimilarity: reflexivity, symmetry, transitivity.

Coinductive definition: strong bisimilarity is the maximum fixed point
of the higher-order relation F such that, for all binary relations R
and P1, P2 ∈ P, (P1, P2) ∈ F(R) iff for all actions a ∈ A:

For each P1

a
−−−→ P ′1 there exists P2

a
−−−→ P ′2 such that (P ′1, P

′
2) ∈ R.

For each P2

a
−−−→ P ′2 there exists P1

a
−−−→ P ′1 such that (P ′1, P

′
2) ∈ R.

R is a strong bisimulation iff R ⊆ F(R).

In order for P1 ∼B P2 it is necessary they enable the same actions,
i.e., for all actions a ∈ A there exist P ′1, P

′
2 ∈ P such that:

P1

a
−−−→ P ′1 ⇐⇒ P2

a
−−−→ P ′2

Strong bisimilarity is proven by finding a strong bisimulation.

Focus on important pairs of processes in the strong bisimulation.

A binary relation B over P is a strong bisimulation up to ∼B iff,
whenever (P1, P2) ∈ B, then for all actions a ∈ A:

For each P1

a
−−−→ P ′1 there is P2

a
−−−→ P ′2 s.t. P ′1 ∼B Q1BQ2 ∼B P ′2.

For each P2

a
−−−→ P ′2 there is P1

a
−−−→ P ′1 s.t. P ′1 ∼B Q1BQ2 ∼B P ′2.

In order for P1 ∼B P2 it is sufficient to find a strong bisimulation
up to ∼B that contains (P1, P2).

In order for P1 ∼B P2 it is necessary they enable the same actions,
i.e., for all actions a ∈ A there exist P ′1, P

′
2 ∈ P such that:

P1

a
−−−→ P ′1 ⇐⇒ P2

a
−−−→ P ′2

Strong bisimilarity is proven by finding a strong bisimulation.

Focus on important pairs of processes in the strong bisimulation.

A binary relation B over P is a strong bisimulation up to ∼B iff,
whenever (P1, P2) ∈ B, then for all actions a ∈ A:

For each P1

a
−−−→ P ′1 there is P2

a
−−−→ P ′2 s.t. P ′1 ∼B Q1BQ2 ∼B P ′2.

For each P2

a
−−−→ P ′2 there is P1

a
−−−→ P ′1 s.t. P ′1 ∼B Q1BQ2 ∼B P ′2.

In order for P1 ∼B P2 it is sufficient to find a strong bisimulation
up to ∼B that contains (P1, P2).

Examples:

a . 0 + a . 0 ∼B a . 0 as witnessed by the symmetric closure of:

B = {(a . 0 + a . 0, a . 0),
(0, 0)}

a . 0 ‖∅ b . 0 ∼B a . b . 0 + b . a . 0 as witnessed by the symm. closure of:

B = {(a . 0 ‖∅ b . 0, a . b . 0 + b . a . 0),
(0 ‖∅ b . 0, b . 0),
(a . 0 ‖∅ 0, a . 0),
(0 ‖∅ 0, 0)}

a . 0 ‖{a} a . 0 ∼B a . 0 as witnessed by the symmetric closure of:

B = {(a . 0 ‖{a} a . 0, a . 0),
(0, 0)}

recX : (a .X+ a . 0) 6∼B recX : a .X [≈Tr]
=⇒ ∼B is sensitive to deadlock.

a . b . 0 + a . c . 0 6∼B a . (b . 0 + c . 0) [≈Tr] as well as
a . b . c . 0 + a . b . d . 0 6∼B a . (b . c . 0 + b . d . 0) [≈Te,≈Tr]
=⇒ ∼B is very sensitive to branching points.

Examples:

a . 0 + a . 0 ∼B a . 0 as witnessed by the symmetric closure of:

B = {(a . 0 + a . 0, a . 0),
(0, 0)}

a . 0 ‖∅ b . 0 ∼B a . b . 0 + b . a . 0 as witnessed by the symm. closure of:

B = {(a . 0 ‖∅ b . 0, a . b . 0 + b . a . 0),
(0 ‖∅ b . 0, b . 0),
(a . 0 ‖∅ 0, a . 0),
(0 ‖∅ 0, 0)}

a . 0 ‖{a} a . 0 ∼B a . 0 as witnessed by the symmetric closure of:

B = {(a . 0 ‖{a} a . 0, a . 0),
(0, 0)}

recX : (a .X+ a . 0) 6∼B recX : a .X [≈Tr]
=⇒ ∼B is sensitive to deadlock.

a . b . 0 + a . c . 0 6∼B a . (b . 0 + c . 0) [≈Tr] as well as
a . b . c . 0 + a . b . d . 0 6∼B a . (b . c . 0 + b . d . 0) [≈Te,≈Tr]
=⇒ ∼B is very sensitive to branching points.

Examples:

a . 0 + a . 0 ∼B a . 0 as witnessed by the symmetric closure of:

B = {(a . 0 + a . 0, a . 0),
(0, 0)}

a . 0 ‖∅ b . 0 ∼B a . b . 0 + b . a . 0 as witnessed by the symm. closure of:

B = {(a . 0 ‖∅ b . 0, a . b . 0 + b . a . 0),
(0 ‖∅ b . 0, b . 0),
(a . 0 ‖∅ 0, a . 0),
(0 ‖∅ 0, 0)}

a . 0 ‖{a} a . 0 ∼B a . 0 as witnessed by the symmetric closure of:

B = {(a . 0 ‖{a} a . 0, a . 0),
(0, 0)}

recX : (a .X+ a . 0) 6∼B recX : a .X [≈Tr]
=⇒ ∼B is sensitive to deadlock.

a . b . 0 + a . c . 0 6∼B a . (b . 0 + c . 0) [≈Tr] as well as
a . b . c . 0 + a . b . d . 0 6∼B a . (b . c . 0 + b . d . 0) [≈Te,≈Tr]
=⇒ ∼B is very sensitive to branching points.

Examples:

a . 0 + a . 0 ∼B a . 0 as witnessed by the symmetric closure of:

B = {(a . 0 + a . 0, a . 0),
(0, 0)}

a . 0 ‖∅ b . 0 ∼B a . b . 0 + b . a . 0 as witnessed by the symm. closure of:

B = {(a . 0 ‖∅ b . 0, a . b . 0 + b . a . 0),
(0 ‖∅ b . 0, b . 0),
(a . 0 ‖∅ 0, a . 0),
(0 ‖∅ 0, 0)}

a . 0 ‖{a} a . 0 ∼B a . 0 as witnessed by the symmetric closure of:

B = {(a . 0 ‖{a} a . 0, a . 0),
(0, 0)}

recX : (a .X+ a . 0) 6∼B recX : a .X [≈Tr]
=⇒ ∼B is sensitive to deadlock.

a . b . 0 + a . c . 0 6∼B a . (b . 0 + c . 0) [≈Tr] as well as
a . b . c . 0 + a . b . d . 0 6∼B a . (b . c . 0 + b . d . 0) [≈Te,≈Tr]
=⇒ ∼B is very sensitive to branching points.

Examples:

a . 0 + a . 0 ∼B a . 0 as witnessed by the symmetric closure of:

B = {(a . 0 + a . 0, a . 0),
(0, 0)}

a . 0 ‖∅ b . 0 ∼B a . b . 0 + b . a . 0 as witnessed by the symm. closure of:

B = {(a . 0 ‖∅ b . 0, a . b . 0 + b . a . 0),
(0 ‖∅ b . 0, b . 0),
(a . 0 ‖∅ 0, a . 0),
(0 ‖∅ 0, 0)}

a . 0 ‖{a} a . 0 ∼B a . 0 as witnessed by the symmetric closure of:

B = {(a . 0 ‖{a} a . 0, a . 0),
(0, 0)}

recX : (a .X+ a . 0) 6∼B recX : a .X [≈Tr]
=⇒ ∼B is sensitive to deadlock.

a . b . 0 + a . c . 0 6∼B a . (b . 0 + c . 0) [≈Tr] as well as
a . b . c . 0 + a . b . d . 0 6∼B a . (b . c . 0 + b . d . 0) [≈Te,≈Tr]
=⇒ ∼B is very sensitive to branching points.

∼B is a congruence with respect to all dynamic and static operators
as well as recursion.

Substituting equals for equals does not alter the overall behavior
in any process context (compositional manipulation).

Let P1, P2 ∈ P. If P1 ∼B P2 then:

a . P1 ∼B a . P2 for all a ∈ A.
P1 + P ∼B P2 + P, P + P1 ∼B P + P2 for all P ∈ P.
P1 ‖S P ∼B P2 ‖S P, P ‖S P1 ∼B P ‖S P2 for all P ∈ P, S ⊆ Av.
P1 /H ∼B P2 /H for all H ⊆ Av.
P1 \L ∼B P2 \L for all L ⊆ Av.
P1[ϕ] ∼B P2[ϕ] for all ϕ ∈ Relab.

∼B is a congruence with respect to all dynamic and static operators
as well as recursion.

Substituting equals for equals does not alter the overall behavior
in any process context (compositional manipulation).

Let P1, P2 ∈ P. If P1 ∼B P2 then:

a . P1 ∼B a . P2 for all a ∈ A.
P1 + P ∼B P2 + P, P + P1 ∼B P + P2 for all P ∈ P.
P1 ‖S P ∼B P2 ‖S P, P ‖S P1 ∼B P ‖S P2 for all P ∈ P, S ⊆ Av.
P1 /H ∼B P2 /H for all H ⊆ Av.
P1 \L ∼B P2 \L for all L ⊆ Av.
P1[ϕ] ∼B P2[ϕ] for all ϕ ∈ Relab.

Recursion: extend ∼B to open process terms by replacing all variables
freely occurring outside rec binders with every closed process term.

Let P1, P2 be guarded process terms having free occurrences
of at most k ∈ N process variables X1, . . . , Xk ∈ Var .

Then we define P1 ∼B P2 iff for all Q1, . . . , Qk ∈ P:

P1{Qi ↪→ Xi | 1 ≤ i ≤ k} ∼B P2{Qi ↪→ Xi | 1 ≤ i ≤ k}

If P1 ∼B P2 then recX : P1 ∼B recX : P2.

Recursion: extend ∼B to open process terms by replacing all variables
freely occurring outside rec binders with every closed process term.

Let P1, P2 be guarded process terms having free occurrences
of at most k ∈ N process variables X1, . . . , Xk ∈ Var .

Then we define P1 ∼B P2 iff for all Q1, . . . , Qk ∈ P:

P1{Qi ↪→ Xi | 1 ≤ i ≤ k} ∼B P2{Qi ↪→ Xi | 1 ≤ i ≤ k}

If P1 ∼B P2 then recX : P1 ∼B recX : P2.

Recursion: extend ∼B to open process terms by replacing all variables
freely occurring outside rec binders with every closed process term.

Let P1, P2 be guarded process terms having free occurrences
of at most k ∈ N process variables X1, . . . , Xk ∈ Var .

Then we define P1 ∼B P2 iff for all Q1, . . . , Qk ∈ P:

P1{Qi ↪→ Xi | 1 ≤ i ≤ k} ∼B P2{Qi ↪→ Xi | 1 ≤ i ≤ k}

If P1 ∼B P2 then recX : P1 ∼B recX : P2.

∼B has a sound and complete axiomatization over the set Pnrec

of nonrecursive process terms of P.

Equational laws usable as rewriting rules.

Basic laws (associativity, commutativity, and neutral element of +):

(AB,1) (P1 + P2) + P3 = P1 + (P2 + P3)
(AB,2) P1 + P2 = P2 + P1

(AB,3) P + 0 = P

Characterizing law (idempotency of +):

(AB,4) P + P = P

We can reduce any nonrecursive process in sum normal form,
which is either 0 or

∑
i∈I

ai . Pi with every Pi in sum normal form.

How does a . 0 ‖∅ b . 0 reduce to a . b . 0 + b . a . 0?

∼B has a sound and complete axiomatization over the set Pnrec

of nonrecursive process terms of P.

Equational laws usable as rewriting rules.

Basic laws (associativity, commutativity, and neutral element of +):

(AB,1) (P1 + P2) + P3 = P1 + (P2 + P3)
(AB,2) P1 + P2 = P2 + P1

(AB,3) P + 0 = P

Characterizing law (idempotency of +):

(AB,4) P + P = P

We can reduce any nonrecursive process in sum normal form,
which is either 0 or

∑
i∈I

ai . Pi with every Pi in sum normal form.

How does a . 0 ‖∅ b . 0 reduce to a . b . 0 + b . a . 0?

∼B has a sound and complete axiomatization over the set Pnrec

of nonrecursive process terms of P.

Equational laws usable as rewriting rules.

Basic laws (associativity, commutativity, and neutral element of +):

(AB,1) (P1 + P2) + P3 = P1 + (P2 + P3)
(AB,2) P1 + P2 = P2 + P1

(AB,3) P + 0 = P

Characterizing law (idempotency of +):

(AB,4) P + P = P

We can reduce any nonrecursive process in sum normal form,
which is either 0 or

∑
i∈I

ai . Pi with every Pi in sum normal form.

How does a . 0 ‖∅ b . 0 reduce to a . b . 0 + b . a . 0?

Expansion law (interleaving view of concurrency; I and J nonempty and finite):

(AB,5)
∑
i∈I

ai . Pi ‖S
∑
j∈J

bj . Qj =
∑

k∈I,ak /∈S
ak .

(
Pk ‖S

∑
j∈J

bj . Qj

)
+

∑
h∈J,bh /∈S

bh .

(∑
i∈I

ai . Pi ‖S Qh
)

+

∑
k∈I,ak∈S

∑
h∈J,bh=ak

ak . (Pk ‖S Qh)

(AB,6)
∑
i∈I

ai . Pi ‖S 0 =
∑

k∈I,ak /∈S
ak . Pk

(AB,7) 0 ‖S
∑
j∈J

bj . Qj =
∑

h∈J,bh /∈S
bh . Qh

(AB,8) 0 ‖S 0 = 0

Distribution laws (for unary static operators):

(AB,9) 0 /H = 0
(AB,10) (a . P) /H = τ . (P /H) if a ∈ H
(AB,11) (a . P) /H = a . (P /H) if a /∈ H
(AB,12) (P1 + P2) /H = P1 /H + P2 /H

(AB,13) 0 \ L = 0
(AB,14) (a . P) \ L = 0 if a ∈ L
(AB,15) (a . P) \ L = a . (P \ L) if a /∈ L
(AB,16) (P1 + P2) \ L = P1 \ L+ P2 \ L

(AB,17) 0 [ϕ] = 0
(AB,18) (a . P) [ϕ] = ϕ(a) . (P [ϕ])
(AB,19) (P1 + P2) [ϕ] = P1 [ϕ] + P2 [ϕ]

Ded(AB) is a deduction system based on all previous axioms plus:

Reflexivity: AB ` P = P .
Symmetry: AB ` P1 = P2 =⇒ AB ` P2 = P1.
Transitivity: AB ` P1 = P2 ∧ AB ` P2 = P3 =⇒ AB ` P1 = P3.
Substitutivity: AB ` P1 = P2 =⇒ AB ` a . P1 = a . P2 ∧ . . .

Remember that ∼B is an equivalence relation and a congruence.

Ded(AB) is sound and complete for ∼B over Pnrec, i.e.,
AB ` P1 = P2 ⇐⇒ P1 ∼B P2 for all P1, P2 ∈ Pnrec.

There is another deduction system that is sound and complete
over the set of possibly recursive, sequential process terms of P
(no static operators).

Ded(AB) is a deduction system based on all previous axioms plus:

Reflexivity: AB ` P = P .
Symmetry: AB ` P1 = P2 =⇒ AB ` P2 = P1.
Transitivity: AB ` P1 = P2 ∧ AB ` P2 = P3 =⇒ AB ` P1 = P3.
Substitutivity: AB ` P1 = P2 =⇒ AB ` a . P1 = a . P2 ∧ . . .

Remember that ∼B is an equivalence relation and a congruence.

Ded(AB) is sound and complete for ∼B over Pnrec, i.e.,
AB ` P1 = P2 ⇐⇒ P1 ∼B P2 for all P1, P2 ∈ Pnrec.

There is another deduction system that is sound and complete
over the set of possibly recursive, sequential process terms of P
(no static operators).

Ded(AB) is a deduction system based on all previous axioms plus:

Reflexivity: AB ` P = P .
Symmetry: AB ` P1 = P2 =⇒ AB ` P2 = P1.
Transitivity: AB ` P1 = P2 ∧ AB ` P2 = P3 =⇒ AB ` P1 = P3.
Substitutivity: AB ` P1 = P2 =⇒ AB ` a . P1 = a . P2 ∧ . . .

Remember that ∼B is an equivalence relation and a congruence.

Ded(AB) is sound and complete for ∼B over Pnrec, i.e.,
AB ` P1 = P2 ⇐⇒ P1 ∼B P2 for all P1, P2 ∈ Pnrec.

There is another deduction system that is sound and complete
over the set of possibly recursive, sequential process terms of P
(no static operators).

∼B has a modal logic characterization based on a logic known as
HML – Hennessy-Milner logic.

Basic truth values and logical connectives, plus modal operators
expressing how to behave after executing certain actions.

Syntax of HML (a ∈ A):

φ ::= true basic truth value
| ¬φ negation
| φ ∧ φ conjunction
| 〈a〉φ possibility

plus derived logical operators:

false ≡ ¬true basic truth value
φ1 ∨ φ2 ≡ ¬(¬φ1 ∧ ¬φ2) disjunction

[a]φ ≡ ¬〈a〉¬φ necessity

∼B has a modal logic characterization based on a logic known as
HML – Hennessy-Milner logic.

Basic truth values and logical connectives, plus modal operators
expressing how to behave after executing certain actions.

Syntax of HML (a ∈ A):

φ ::= true basic truth value
| ¬φ negation
| φ ∧ φ conjunction
| 〈a〉φ possibility

plus derived logical operators:

false ≡ ¬true basic truth value
φ1 ∨ φ2 ≡ ¬(¬φ1 ∧ ¬φ2) disjunction

[a]φ ≡ ¬〈a〉¬φ necessity

∼B has a modal logic characterization based on a logic known as
HML – Hennessy-Milner logic.

Basic truth values and logical connectives, plus modal operators
expressing how to behave after executing certain actions.

Syntax of HML (a ∈ A):

φ ::= true basic truth value
| ¬φ negation
| φ ∧ φ conjunction
| 〈a〉φ possibility

plus derived logical operators:

false ≡ ¬true basic truth value
φ1 ∨ φ2 ≡ ¬(¬φ1 ∧ ¬φ2) disjunction

[a]φ ≡ ¬〈a〉¬φ necessity

Interpretation of HML over P:

P |= true
P |= ¬φ if P 6|= φ
P |= φ1 ∧ φ2 if P |= φ1 and P |= φ2

P |= 〈a〉φ if there exists P ′ ∈ P such that P
a

−−−→ P ′ and P ′ |= φ

plus derived logical operators:

P 6|= false
P |= φ1 ∨ φ2 if P |= φ1 or P |= φ2

P |= [a]φ if for all P ′ ∈ P, whenever P
a
−−−→ P ′, then P ′ |= φ

P1 ∼B P2 ⇐⇒ (∀φ ∈ HML. P1 |= φ⇐⇒ P2 |= φ) for all P1, P2 ∈ P.

All HML-expressible properties are preserved by bisimilarity.

If two processes are not bisimilar then they can be distinguished by
at least one HML formula (explaining inequivalence).

Interpretation of HML over P:

P |= true
P |= ¬φ if P 6|= φ
P |= φ1 ∧ φ2 if P |= φ1 and P |= φ2

P |= 〈a〉φ if there exists P ′ ∈ P such that P
a

−−−→ P ′ and P ′ |= φ

plus derived logical operators:

P 6|= false
P |= φ1 ∨ φ2 if P |= φ1 or P |= φ2

P |= [a]φ if for all P ′ ∈ P, whenever P
a
−−−→ P ′, then P ′ |= φ

P1 ∼B P2 ⇐⇒ (∀φ ∈ HML. P1 |= φ⇐⇒ P2 |= φ) for all P1, P2 ∈ P.

All HML-expressible properties are preserved by bisimilarity.

If two processes are not bisimilar then they can be distinguished by
at least one HML formula (explaining inequivalence).

Interpretation of HML over P:

P |= true
P |= ¬φ if P 6|= φ
P |= φ1 ∧ φ2 if P |= φ1 and P |= φ2

P |= 〈a〉φ if there exists P ′ ∈ P such that P
a

−−−→ P ′ and P ′ |= φ

plus derived logical operators:

P 6|= false
P |= φ1 ∨ φ2 if P |= φ1 or P |= φ2

P |= [a]φ if for all P ′ ∈ P, whenever P
a
−−−→ P ′, then P ′ |= φ

P1 ∼B P2 ⇐⇒ (∀φ ∈ HML. P1 |= φ⇐⇒ P2 |= φ) for all P1, P2 ∈ P.

All HML-expressible properties are preserved by bisimilarity.

If two processes are not bisimilar then they can be distinguished by
at least one HML formula (explaining inequivalence).

Interpretation of HML over P:

P |= true
P |= ¬φ if P 6|= φ
P |= φ1 ∧ φ2 if P |= φ1 and P |= φ2

P |= 〈a〉φ if there exists P ′ ∈ P such that P
a

−−−→ P ′ and P ′ |= φ

plus derived logical operators:

P 6|= false
P |= φ1 ∨ φ2 if P |= φ1 or P |= φ2

P |= [a]φ if for all P ′ ∈ P, whenever P
a
−−−→ P ′, then P ′ |= φ

P1 ∼B P2 ⇐⇒ (∀φ ∈ HML. P1 |= φ⇐⇒ P2 |= φ) for all P1, P2 ∈ P.

All HML-expressible properties are preserved by bisimilarity.

If two processes are not bisimilar then they can be distinguished by
at least one HML formula (explaining inequivalence).

∼B has a temporal logic characterization based on CTL*
(Browne, Clarke, Grümberg).

State formulae with atomic propositions and logical connectives.

Path formulae including temporal operators about the future.

A path π is a sequence of states s0s1s2 . . . such that si−−−→ si+1.

CTL* is interpreted over Kripke structures, hence we redefine ∼B

(propositions labeling states instead of actions labeling transitions).

A binary relation B over a Kripke structure (S,L, −−−→) is a strong
bisimulation iff, whenever (s1, s2) ∈ B, then L(s1) = L(s2) and:

For each s1−−−→ s′1 there exists s2−−−→ s′2 such that (s′1, s
′
2) ∈ B.

For each s2−−−→ s′2 there exists s1−−−→ s′1 such that (s′1, s
′
2) ∈ B.

Strong bisimilarity ∼B is the union of all strong bisimulations.

∼B has a temporal logic characterization based on CTL*
(Browne, Clarke, Grümberg).

State formulae with atomic propositions and logical connectives.

Path formulae including temporal operators about the future.

A path π is a sequence of states s0s1s2 . . . such that si−−−→ si+1.

CTL* is interpreted over Kripke structures, hence we redefine ∼B

(propositions labeling states instead of actions labeling transitions).

A binary relation B over a Kripke structure (S,L, −−−→) is a strong
bisimulation iff, whenever (s1, s2) ∈ B, then L(s1) = L(s2) and:

For each s1−−−→ s′1 there exists s2−−−→ s′2 such that (s′1, s
′
2) ∈ B.

For each s2−−−→ s′2 there exists s1−−−→ s′1 such that (s′1, s
′
2) ∈ B.

Strong bisimilarity ∼B is the union of all strong bisimulations.

Syntax of CTL*:

φ ::= p atomic proposition
| ¬φ state formula negation
| φ ∧ φ state formula conjunction
| Eψ existential path quantifier

ψ ::= φ state formula
| ¬ψ path formula negation
| ψ ∧ ψ path formula conjunction
| Xψ next operator
| ψUψ until operator

plus derived logical operators:

Aψ ≡ ¬E¬ψ universal path quantifier
Fψ ≡ trueUψ eventually operator
Gψ ≡ ¬F¬ψ globally operator

Syntax of CTL*:

φ ::= p atomic proposition
| ¬φ state formula negation
| φ ∧ φ state formula conjunction
| Eψ existential path quantifier

ψ ::= φ state formula
| ¬ψ path formula negation
| ψ ∧ ψ path formula conjunction
| Xψ next operator
| ψUψ until operator

plus derived logical operators:

Aψ ≡ ¬E¬ψ universal path quantifier
Fψ ≡ trueUψ eventually operator
Gψ ≡ ¬F¬ψ globally operator

Given a path π = s0s1s2 . . . , we denote by π[0] its initial state s0

while πk is its subpath starting at state sk.

Interpretation of CTL* over Kripke structure (S,L, −−−→):

s |= p if p ∈ L(s)
s |= ¬φ if s 6|= φ
s |= φ1 ∧ φ2 if s |= φ1 and s |= φ2

s |= Eψ if there exists a path π starting from s such that π |= ψ

π |= φ if π[0] |= φ
π |= ¬ψ if π 6|= ψ
π |= ψ1 ∧ ψ2 if π |= ψ1 and π |= ψ2

π |= Xψ if π1 |= ψ
π |= ψ1 Uψ2 if πk |= ψ2 for some k ≥ 0 and πi |= ψ1 for all 0 ≤ i < k

s1 ∼B s2 ⇐⇒ (∀φ ∈ CTL∗. s1 |= φ⇐⇒ s2 |= φ) for all s1, s2 ∈ S.

Given a path π = s0s1s2 . . . , we denote by π[0] its initial state s0

while πk is its subpath starting at state sk.

Interpretation of CTL* over Kripke structure (S,L, −−−→):

s |= p if p ∈ L(s)
s |= ¬φ if s 6|= φ
s |= φ1 ∧ φ2 if s |= φ1 and s |= φ2

s |= Eψ if there exists a path π starting from s such that π |= ψ

π |= φ if π[0] |= φ
π |= ¬ψ if π 6|= ψ
π |= ψ1 ∧ ψ2 if π |= ψ1 and π |= ψ2

π |= Xψ if π1 |= ψ
π |= ψ1 Uψ2 if πk |= ψ2 for some k ≥ 0 and πi |= ψ1 for all 0 ≤ i < k

s1 ∼B s2 ⇐⇒ (∀φ ∈ CTL∗. s1 |= φ⇐⇒ s2 |= φ) for all s1, s2 ∈ S.

∼B is decidable in polynomial time over the set Pfin of finite-state
terms of P through Kanellakis-Smolka partition refinement algorithm.

It is based on the fact that ∼B can be characterized as the limit of
a sequence of successively finer equivalence relations:

∼B =
⋂
i∈N
∼B,i

∼B,0 = P× P thus inducing the trivial partition {P}.
∼B,1 refines {P} by creating an equivalence class for each set of
process terms that satisfy the necessary condition for ∼B.

Whenever P1 ∼B,i P2, i ∈ N≥1, then for all actions a ∈ A:

For each P1

a
−−−→ P ′1 there exists P2

a
−−−→ P ′2 such that P ′1 ∼B,i−1 P

′
2.

For each P2

a
−−−→ P ′2 there exists P1

a
−−−→ P ′1 such that P ′1 ∼B,i−1 P

′
2.

∼B is decidable in polynomial time over the set Pfin of finite-state
terms of P through Kanellakis-Smolka partition refinement algorithm.

It is based on the fact that ∼B can be characterized as the limit of
a sequence of successively finer equivalence relations:

∼B =
⋂
i∈N
∼B,i

∼B,0 = P× P thus inducing the trivial partition {P}.
∼B,1 refines {P} by creating an equivalence class for each set of
process terms that satisfy the necessary condition for ∼B.

Whenever P1 ∼B,i P2, i ∈ N≥1, then for all actions a ∈ A:

For each P1

a
−−−→ P ′1 there exists P2

a
−−−→ P ′2 such that P ′1 ∼B,i−1 P

′
2.

For each P2

a
−−−→ P ′2 there exists P1

a
−−−→ P ′1 such that P ′1 ∼B,i−1 P

′
2.

Steps of the algorithm for checking whether P1 ∼B P2 (P1, P2 ∈ Pfin):
1 Build an initial partition with a single class including

all the states of [[P1]] and all the states of [[P2]].
2 Initialize a list of splitters with the above class as its only element.
3 While the list of splitters is not empty, select a splitter and remove it

from the list after refining the current partition for all a ∈ AP1,P2
:

a. Split each class of the current partition by comparing its states
when executing actions of name a that lead to the selected splitter.

b. For each class that has been split, insert its smallest subclass
into the list of splitters (“process the smaller half”).

4 Return yes/no depending on whether the initial states of [[P1]] and [[P2]]
belong to the same class of the final partition or not.

The time complexity is O(m · log n), where n is the number of states
and m is the number of transitions of [[P1]] and [[P2]] as a whole.

Also useful for state space minimization before model checking.

Steps of the algorithm for checking whether P1 ∼B P2 (P1, P2 ∈ Pfin):
1 Build an initial partition with a single class including

all the states of [[P1]] and all the states of [[P2]].
2 Initialize a list of splitters with the above class as its only element.
3 While the list of splitters is not empty, select a splitter and remove it

from the list after refining the current partition for all a ∈ AP1,P2
:

a. Split each class of the current partition by comparing its states
when executing actions of name a that lead to the selected splitter.

b. For each class that has been split, insert its smallest subclass
into the list of splitters (“process the smaller half”).

4 Return yes/no depending on whether the initial states of [[P1]] and [[P2]]
belong to the same class of the final partition or not.

The time complexity is O(m · log n), where n is the number of states
and m is the number of transitions of [[P1]] and [[P2]] as a whole.

Also useful for state space minimization before model checking.

Running example (strong bisimilarity):

Concurrent implementation with two independent one-position buffers:

PC conc,2
∆
= Prod ‖{deposit} (Buff ‖∅ Buff) ‖{withdraw} Cons

Prod
∆
= deposit .Prod

Buff
∆
= deposit .withdraw .Buff

Cons
∆
= withdraw .Cons

Strong bisimulation proving PC conc,2 ∼B ProdCons0/2:

||∅||{d} ||{w}

||∅||{d} ||{w} ||∅||{d} ||{w}

||∅||{d} ||{w}

deposit

deposit deposit withdraw

deposit withdraw

ProdCons1/2

ProdCons2/2

ProdCons0/2

deposit

deposit

withdraw withdraw

withdrawwithdraw

BB()P C

BB()P C BB()P C

BB()P C

Running example (strong bisimilarity):

Concurrent implementation with two independent one-position buffers:

PC conc,2
∆
= Prod ‖{deposit} (Buff ‖∅ Buff) ‖{withdraw} Cons

Prod
∆
= deposit .Prod

Buff
∆
= deposit .withdraw .Buff

Cons
∆
= withdraw .Cons

Strong bisimulation proving PC conc,2 ∼B ProdCons0/2:

||∅||{d} ||{w}

||∅||{d} ||{w} ||∅||{d} ||{w}

||∅||{d} ||{w}

deposit

deposit deposit withdraw

deposit withdraw

ProdCons1/2

ProdCons2/2

ProdCons0/2

deposit

deposit

withdraw withdraw

withdrawwithdraw

BB()P C

BB()P C BB()P C

BB()P C

6.7 Weak Bisimilarities and Their Properties

∼B does not abstract from invisible actions: a . b . 0 6∼B a . τ . b . 0.

Two processes should be deemed equivalent in the bisimulation game
when they are able to mimic each other’s visible behavior stepwise.

Need to extend the transition relation −−−→ to action sequences.

P
a1... an====⇒ P ′ iff:

either n = 0 and P = P ′, meaning that P stays idle;
or n ≥ 1 and there exist P0, P1, . . . , Pn ∈ P such that:

P = P0;

Pi−1

ai
−−−→ Pi for all 1 ≤ i ≤ n;

Pn = P ′.

τ∗ denotes a possibly empty, finite sequence of τ -actions.

τ∗a τ∗ denotes an a-action possibly preceded and followed
by finitely many τ -actions.

6.7 Weak Bisimilarities and Their Properties

∼B does not abstract from invisible actions: a . b . 0 6∼B a . τ . b . 0.

Two processes should be deemed equivalent in the bisimulation game
when they are able to mimic each other’s visible behavior stepwise.

Need to extend the transition relation −−−→ to action sequences.

P
a1... an====⇒ P ′ iff:

either n = 0 and P = P ′, meaning that P stays idle;
or n ≥ 1 and there exist P0, P1, . . . , Pn ∈ P such that:

P = P0;

Pi−1

ai
−−−→ Pi for all 1 ≤ i ≤ n;

Pn = P ′.

τ∗ denotes a possibly empty, finite sequence of τ -actions.

τ∗a τ∗ denotes an a-action possibly preceded and followed
by finitely many τ -actions.

A binary relation B over P is a weak bisimulation iff,
whenever (P1, P2) ∈ B, then:

For each P1

τ
−−−→ P ′1 there exists P2

τ∗
====⇒ P ′2 such that (P ′1, P

′
2) ∈ B.

For each P2

τ
−−−→ P ′2 there exists P1

τ∗
====⇒ P ′1 such that (P ′1, P

′
2) ∈ B.

For all visible actions a ∈ Av:

For each P1

a
−−−→ P ′1 there exists P2

τ∗a τ∗
====⇒ P ′2 such that (P ′1, P

′
2) ∈ B.

For each P2

a
−−−→ P ′2 there exists P1

τ∗a τ∗
====⇒ P ′1 such that (P ′1, P

′
2) ∈ B.

Weak bisimulation equivalence or weak bisimilarity ≈B

is the union of all weak bisimulations.

If P1 ∼B P2 then P1 ≈B P2 (the vice versa does not hold in general).

The necessary condition for ∼B is too restrictive for ≈B.

The sufficient condition for ∼B generalizes to ≈B provided that

weak bisimulation up to ≈B uses
τ∗a τ∗

====⇒ on the challenger side too.

A binary relation B over P is a weak bisimulation iff,
whenever (P1, P2) ∈ B, then:

For each P1

τ
−−−→ P ′1 there exists P2

τ∗
====⇒ P ′2 such that (P ′1, P

′
2) ∈ B.

For each P2

τ
−−−→ P ′2 there exists P1

τ∗
====⇒ P ′1 such that (P ′1, P

′
2) ∈ B.

For all visible actions a ∈ Av:

For each P1

a
−−−→ P ′1 there exists P2

τ∗a τ∗
====⇒ P ′2 such that (P ′1, P

′
2) ∈ B.

For each P2

a
−−−→ P ′2 there exists P1

τ∗a τ∗
====⇒ P ′1 such that (P ′1, P

′
2) ∈ B.

Weak bisimulation equivalence or weak bisimilarity ≈B

is the union of all weak bisimulations.

If P1 ∼B P2 then P1 ≈B P2 (the vice versa does not hold in general).

The necessary condition for ∼B is too restrictive for ≈B.

The sufficient condition for ∼B generalizes to ≈B provided that

weak bisimulation up to ≈B uses
τ∗a τ∗

====⇒ on the challenger side too.

Examples:

a . b . 0 ≈B a . τ . b . 0 as witnessed by the symmetric closure of:

B = {(a . b . 0, a . τ . b . 0),
(b . 0, τ . b . 0),
(b . 0, b . 0),
(0, 0)}

Note that:

The response to b . 0
b

−−−→ 0 is τ . b . 0
τ
−−−→

b
−−−→ 0.

If τ . b . 0
τ
−−−→ b . 0 then b . 0 responds by staying idle.

τ . a . 0 + b . 0 6≈B a . 0 + b . 0 when a 6= b because if τ . a . 0 + b . 0
performs τ thereby evolving into a . 0, which enables only a, then
a . 0 + b . 0 can only respond by staying idle but it enables both a and b
hence at that point the weak bisimulation game cannot proceed further.

Examples:

a . b . 0 ≈B a . τ . b . 0 as witnessed by the symmetric closure of:

B = {(a . b . 0, a . τ . b . 0),
(b . 0, τ . b . 0),
(b . 0, b . 0),
(0, 0)}

Note that:

The response to b . 0
b

−−−→ 0 is τ . b . 0
τ
−−−→

b
−−−→ 0.

If τ . b . 0
τ
−−−→ b . 0 then b . 0 responds by staying idle.

τ . a . 0 + b . 0 6≈B a . 0 + b . 0 when a 6= b because if τ . a . 0 + b . 0
performs τ thereby evolving into a . 0, which enables only a, then
a . 0 + b . 0 can only respond by staying idle but it enables both a and b
hence at that point the weak bisimulation game cannot proceed further.

≈B is a congruence with respect to all behavioral operators
except for alternative composition (not a problem in practice).

Additional τ -laws highlighting its abstraction capabilities:

τ . P = P
a . τ . P = a . P

P + τ . P = τ . P
a . (P1 + τ . P2) + a . P2 = a . (P1 + τ . P2)

Weak modal operators replacing those of HML (a ∈ Av):

P |= 〈〈τ〉〉φ if there exists P ′ ∈ P such that P
τ∗

====⇒ P ′ and P ′ |= φ

P |= 〈〈a〉〉φ if there exists P ′ ∈ P such that P
τ∗a τ∗

====⇒ P ′ and P ′ |= φ

Temporal logic characterization based on CTL* without X.

≈B is a congruence with respect to all behavioral operators
except for alternative composition (not a problem in practice).

Additional τ -laws highlighting its abstraction capabilities:

τ . P = P
a . τ . P = a . P

P + τ . P = τ . P
a . (P1 + τ . P2) + a . P2 = a . (P1 + τ . P2)

Weak modal operators replacing those of HML (a ∈ Av):

P |= 〈〈τ〉〉φ if there exists P ′ ∈ P such that P
τ∗

====⇒ P ′ and P ′ |= φ

P |= 〈〈a〉〉φ if there exists P ′ ∈ P such that P
τ∗a τ∗

====⇒ P ′ and P ′ |= φ

Temporal logic characterization based on CTL* without X.

P1≈BP2 can be decided in O(n2 ·m · log n) time with the verification
algorithm for ∼B preceded by the following preprocessing step:

0. Build the reflexive and transitive closure of
τ
−−−→ in [[Pi]] for i = 1, 2:

a. Add a looping τ -transition to each state.
b. Add a τ -transition between the initial state and the final state of

any sequence of at least two τ -transitions, if the two states are distinct
and all the transitions in the sequence are distinct and nonlooping.

c. Add an a-transition between the initial state and the final state of
any sequence of at least two transitions in which one is labeled with
a ∈ Av, if all the other transitions in the sequence are labeled with τ ,
distinct, and nonlooping.

The fact that ≈B is not a congruence with respect to the alternative
composition operator stems from τ . P = P (abstraction from initial τ -actions).

This τ -law cannot be freely used when P does not enable τ -actions:
τ . a . 0 ≈B a . 0 but τ . a . 0 + b . 0 6≈B a . 0 + b . 0 if a 6= b.

Congruence w.r.t. the alternative composition operator can be
restored by enforcing a matching on initial τ -actions in the game.

P1 ∈ P is weakly bisimulation congruent to P2 ∈ P,
written P1 ≈c

B P2, iff for all actions a ∈ A (hence including τ):

For each P1

a
−−−→ P ′1 there exists P2

τ∗a τ∗
====⇒ P ′2 such that P ′1 ≈B P ′2.

For each P2

a
−−−→ P ′2 there exists P1

τ∗a τ∗
====⇒ P ′1 such that P ′1 ≈B P ′2.

≈c
B is strictly finer than ≈B: τ . a . 0 6≈c

B a . 0.

≈c
B is the largest congruence with respect to + contained in ≈B.

The fact that ≈B is not a congruence with respect to the alternative
composition operator stems from τ . P = P (abstraction from initial τ -actions).

This τ -law cannot be freely used when P does not enable τ -actions:
τ . a . 0 ≈B a . 0 but τ . a . 0 + b . 0 6≈B a . 0 + b . 0 if a 6= b.

Congruence w.r.t. the alternative composition operator can be
restored by enforcing a matching on initial τ -actions in the game.

P1 ∈ P is weakly bisimulation congruent to P2 ∈ P,
written P1 ≈c

B P2, iff for all actions a ∈ A (hence including τ):

For each P1

a
−−−→ P ′1 there exists P2

τ∗a τ∗
====⇒ P ′2 such that P ′1 ≈B P ′2.

For each P2

a
−−−→ P ′2 there exists P1

τ∗a τ∗
====⇒ P ′1 such that P ′1 ≈B P ′2.

≈c
B is strictly finer than ≈B: τ . a . 0 6≈c

B a . 0.

≈c
B is the largest congruence with respect to + contained in ≈B.

≈B and ≈c
B may not fully respect the branching structure of processes

when abstracting from τ -actions.

Given P1 ≈B P2, for each P1

a
−−−→ P ′1 with a ∈ Av there must exist

P2
τ∗

====⇒ P̄2

a
−−−→ P̄ ′2

τ∗
====⇒ P ′2 with P ′1 ≈B P ′2, but we do not know

whether any relation exists between P1 and P̄2 as well as P ′1 and P̄ ′2.

A symmetric binary relation B over P is a branching bisimulation iff,

whenever (P1, P2) ∈ B, then for each P1

a
−−−→ P ′1:

either a = τ and (P ′1, P2) ∈ B;

or there is P2
τ∗

====⇒ P̄2

a
−−−→ P ′2 s.t. (P1, P̄2) ∈ B and (P ′1, P

′
2) ∈ B.

Branching bisimulation equivalence or branching bisimilarity ≈B,b is
the union of all branching bisimulations (Van Glabbeek & Weijland).

Requiring P2
τ∗

====⇒ P̄2

a
−−−→ P̄ ′2

τ∗
====⇒ P ′2 s.t. (P1, P̄2) ∈ B and

(P ′1, P̄
′
2) ∈ B would not change the distinguishing power of ≈B,b.

≈B and ≈c
B may not fully respect the branching structure of processes

when abstracting from τ -actions.

Given P1 ≈B P2, for each P1

a
−−−→ P ′1 with a ∈ Av there must exist

P2
τ∗

====⇒ P̄2

a
−−−→ P̄ ′2

τ∗
====⇒ P ′2 with P ′1 ≈B P ′2, but we do not know

whether any relation exists between P1 and P̄2 as well as P ′1 and P̄ ′2.

A symmetric binary relation B over P is a branching bisimulation iff,

whenever (P1, P2) ∈ B, then for each P1

a
−−−→ P ′1:

either a = τ and (P ′1, P2) ∈ B;

or there is P2
τ∗

====⇒ P̄2

a
−−−→ P ′2 s.t. (P1, P̄2) ∈ B and (P ′1, P

′
2) ∈ B.

Branching bisimulation equivalence or branching bisimilarity ≈B,b is
the union of all branching bisimulations (Van Glabbeek & Weijland).

Requiring P2
τ∗

====⇒ P̄2

a
−−−→ P̄ ′2

τ∗
====⇒ P ′2 s.t. (P1, P̄2) ∈ B and

(P ′1, P̄
′
2) ∈ B would not change the distinguishing power of ≈B,b.

≈B and ≈c
B may not fully respect the branching structure of processes

when abstracting from τ -actions.

Given P1 ≈B P2, for each P1

a
−−−→ P ′1 with a ∈ Av there must exist

P2
τ∗

====⇒ P̄2

a
−−−→ P̄ ′2

τ∗
====⇒ P ′2 with P ′1 ≈B P ′2, but we do not know

whether any relation exists between P1 and P̄2 as well as P ′1 and P̄ ′2.

A symmetric binary relation B over P is a branching bisimulation iff,

whenever (P1, P2) ∈ B, then for each P1

a
−−−→ P ′1:

either a = τ and (P ′1, P2) ∈ B;

or there is P2
τ∗

====⇒ P̄2

a
−−−→ P ′2 s.t. (P1, P̄2) ∈ B and (P ′1, P

′
2) ∈ B.

Branching bisimulation equivalence or branching bisimilarity ≈B,b is
the union of all branching bisimulations (Van Glabbeek & Weijland).

Requiring P2
τ∗

====⇒ P̄2

a
−−−→ P̄ ′2

τ∗
====⇒ P ′2 s.t. (P1, P̄2) ∈ B and

(P ′1, P̄
′
2) ∈ B would not change the distinguishing power of ≈B,b.

Stuttering property: the branching bisimulation equivalence class
does not change while performing τ -actions, i.e., all processes

along P2
τ∗

====⇒ P̄2 are branching bisimilar to each other.

≈B,b is strictly finer than ≈B: τ . a . 0 + b . 0 and τ . a . 0 + a . 0 + b . 0
are identified by ≈B and told apart by ≈B,b.

≈B,b coincides with ≈B on any pair of weakly bisimilar processes
such that at most one of them reaches a process enabling τ -actions.

Same compositionality issue with respect to +.

A single τ -law: a . (τ . (P1 + P2) + P1) = a . (P1 + P2).

A single weak modality: φ1 〈〈a〉〉φ2 is satisfied by P iff either a = τ

with P satisfying φ2, or P
τ∗

====⇒ P̄
a

−−−→ P ′ with every process

along P
τ∗

====⇒ P̄ satisfying φ1 and P ′ satisfying φ2 (reminiscent of until).

Can be decided more efficiently: O(m · log n) time (Groote et al).

Stuttering property: the branching bisimulation equivalence class
does not change while performing τ -actions, i.e., all processes

along P2
τ∗

====⇒ P̄2 are branching bisimilar to each other.

≈B,b is strictly finer than ≈B: τ . a . 0 + b . 0 and τ . a . 0 + a . 0 + b . 0
are identified by ≈B and told apart by ≈B,b.

≈B,b coincides with ≈B on any pair of weakly bisimilar processes
such that at most one of them reaches a process enabling τ -actions.

Same compositionality issue with respect to +.

A single τ -law: a . (τ . (P1 + P2) + P1) = a . (P1 + P2).

A single weak modality: φ1 〈〈a〉〉φ2 is satisfied by P iff either a = τ

with P satisfying φ2, or P
τ∗

====⇒ P̄
a

−−−→ P ′ with every process

along P
τ∗

====⇒ P̄ satisfying φ1 and P ′ satisfying φ2 (reminiscent of until).

Can be decided more efficiently: O(m · log n) time (Groote et al).

Stuttering property: the branching bisimulation equivalence class
does not change while performing τ -actions, i.e., all processes

along P2
τ∗

====⇒ P̄2 are branching bisimilar to each other.

≈B,b is strictly finer than ≈B: τ . a . 0 + b . 0 and τ . a . 0 + a . 0 + b . 0
are identified by ≈B and told apart by ≈B,b.

≈B,b coincides with ≈B on any pair of weakly bisimilar processes
such that at most one of them reaches a process enabling τ -actions.

Same compositionality issue with respect to +.

A single τ -law: a . (τ . (P1 + P2) + P1) = a . (P1 + P2).

A single weak modality: φ1 〈〈a〉〉φ2 is satisfied by P iff either a = τ

with P satisfying φ2, or P
τ∗

====⇒ P̄
a

−−−→ P ′ with every process

along P
τ∗

====⇒ P̄ satisfying φ1 and P ′ satisfying φ2 (reminiscent of until).

Can be decided more efficiently: O(m · log n) time (Groote et al).

Running example (weak/branching bisimilarity):

Pipeline implementation with two communicating one-position buffers:

PC pipe,2
∆
= Prod ‖{deposit} (LBuff ‖{pass}RBuff)/{pass} ‖{withdraw} Cons

Prod
∆
= deposit .Prod

LBuff
∆
= deposit . pass .LBuff

RBuff
∆
= pass .withdraw .RBuff

Cons
∆
= withdraw .Cons

Weak/branching bisimulation identifying PC pipe,2 and ProdCons0/2:

||{d} ||{w}||{ }p

||{d} ||{w}||{ }p

||{d} ||{w}||{ }p ||{d} ||{w}||{ }p(P LB RB)/{p} C
τ

(P LB RB)/{p} C

(P LB RB)/{p} C

(P LB RB)/{p} C ProdCons1/2

ProdCons2/2

ProdCons0/2

deposit

deposit

withdraw

withdraw

withdraw deposit

withdrawdeposit

Running example (weak/branching bisimilarity):

Pipeline implementation with two communicating one-position buffers:

PC pipe,2
∆
= Prod ‖{deposit} (LBuff ‖{pass}RBuff)/{pass} ‖{withdraw} Cons

Prod
∆
= deposit .Prod

LBuff
∆
= deposit . pass .LBuff

RBuff
∆
= pass .withdraw .RBuff

Cons
∆
= withdraw .Cons

Weak/branching bisimulation identifying PC pipe,2 and ProdCons0/2:

||{d} ||{w}||{ }p

||{d} ||{w}||{ }p

||{d} ||{w}||{ }p ||{d} ||{w}||{ }p(P LB RB)/{p} C
τ

(P LB RB)/{p} C

(P LB RB)/{p} C

(P LB RB)/{p} C ProdCons1/2

ProdCons2/2

ProdCons0/2

deposit

deposit

withdraw

withdraw

withdraw deposit

withdrawdeposit

6.8 Truly Concurrent Semantics via Petri Nets

Petri nets (1962) are bipartite graphs yielding truly concurrent models
whose vertices are respectively called places and transitions.

A labeled Petri net is a tuple N = (Pl ,A,Tr ,M0) where:

Pl is a set of places.
Tr ⊆Mufin(Pl)×A×Mufin(Pl) is a set of labeled transitions.
M0 ∈Mufin(Pl) is the initial marking.

The notion of state is distributed among places marked with tokens,
while transitions correspond to activities or events.

A place marking is a function M : Pl → N (token multiplicity),
which belongs to Mufin(Pl) iff {p ∈ Pl |M(p) > 0} is finite.

Places are drawn as circles, transitions are drawn as boxes.

M(p) black dots are drawn inside p ∈ Pl if M is the current marking.

6.8 Truly Concurrent Semantics via Petri Nets

Petri nets (1962) are bipartite graphs yielding truly concurrent models
whose vertices are respectively called places and transitions.

A labeled Petri net is a tuple N = (Pl ,A,Tr ,M0) where:

Pl is a set of places.
Tr ⊆Mufin(Pl)×A×Mufin(Pl) is a set of labeled transitions.
M0 ∈Mufin(Pl) is the initial marking.

The notion of state is distributed among places marked with tokens,
while transitions correspond to activities or events.

A place marking is a function M : Pl → N (token multiplicity),
which belongs to Mufin(Pl) iff {p ∈ Pl |M(p) > 0} is finite.

Places are drawn as circles, transitions are drawn as boxes.

M(p) black dots are drawn inside p ∈ Pl if M is the current marking.

6.8 Truly Concurrent Semantics via Petri Nets

Petri nets (1962) are bipartite graphs yielding truly concurrent models
whose vertices are respectively called places and transitions.

A labeled Petri net is a tuple N = (Pl ,A,Tr ,M0) where:

Pl is a set of places.
Tr ⊆Mufin(Pl)×A×Mufin(Pl) is a set of labeled transitions.
M0 ∈Mufin(Pl) is the initial marking.

The notion of state is distributed among places marked with tokens,
while transitions correspond to activities or events.

A place marking is a function M : Pl → N (token multiplicity),
which belongs to Mufin(Pl) iff {p ∈ Pl |M(p) > 0} is finite.

Places are drawn as circles, transitions are drawn as boxes.

M(p) black dots are drawn inside p ∈ Pl if M is the current marking.

Each transition t ∈ Tr can be written as •t
a

−−−→ t• where:
•t is the weighted preset of t (no. tokens consumed in each place).
t• is the weighted postset of t (no. tokens produced in each place).

An arrow-headed arc is drawn from every place in •t to t as well as
from t to every place in t•, each labeled with its token multiplicity.

Transition t is enabled at marking M ∈Mufin(Pl) iff •t ⊆M .

The firing of t enabled at M produces marking M ′ = (M \ •t) ∪ t•,
written M [a〉M ′ if t is labeled with a.

The reachability set RS (M) of marking M ∈Mufin(Pl)
is the smallest subset of Mufin(Pl) such that:

M ∈ RS (M).
If M1 ∈ RS (M) and M1 [a〉M2, then M2 ∈ RS (M).

The reachability graph (or interleaving marking graph) of N
is the LTS RG[[N]] = (RS (M0),A, [〉,M0).

Each transition t ∈ Tr can be written as •t
a

−−−→ t• where:
•t is the weighted preset of t (no. tokens consumed in each place).
t• is the weighted postset of t (no. tokens produced in each place).

An arrow-headed arc is drawn from every place in •t to t as well as
from t to every place in t•, each labeled with its token multiplicity.

Transition t is enabled at marking M ∈Mufin(Pl) iff •t ⊆M .

The firing of t enabled at M produces marking M ′ = (M \ •t) ∪ t•,
written M [a〉M ′ if t is labeled with a.

The reachability set RS (M) of marking M ∈Mufin(Pl)
is the smallest subset of Mufin(Pl) such that:

M ∈ RS (M).
If M1 ∈ RS (M) and M1 [a〉M2, then M2 ∈ RS (M).

The reachability graph (or interleaving marking graph) of N
is the LTS RG[[N]] = (RS (M0),A, [〉,M0).

Each transition t ∈ Tr can be written as •t
a

−−−→ t• where:
•t is the weighted preset of t (no. tokens consumed in each place).
t• is the weighted postset of t (no. tokens produced in each place).

An arrow-headed arc is drawn from every place in •t to t as well as
from t to every place in t•, each labeled with its token multiplicity.

Transition t is enabled at marking M ∈Mufin(Pl) iff •t ⊆M .

The firing of t enabled at M produces marking M ′ = (M \ •t) ∪ t•,
written M [a〉M ′ if t is labeled with a.

The reachability set RS (M) of marking M ∈Mufin(Pl)
is the smallest subset of Mufin(Pl) such that:

M ∈ RS (M).
If M1 ∈ RS (M) and M1 [a〉M2, then M2 ∈ RS (M).

The reachability graph (or interleaving marking graph) of N
is the LTS RG[[N]] = (RS (M0),A, [〉,M0).

Examples:

Sequentiality/causality:

a b

ba

a b

Choice/conflict:

b

a

b

a

b

a

Examples:

Sequentiality/causality:

a b

ba

a b

Choice/conflict:

b

a

b

a

b

a

Examples:

Concurrency:

b

a

b

a

b

a

b

a

Synchronization:

s s

Examples:

Concurrency:

b

a

b

a

b

a

b

a

Synchronization:

s s

Examples:

Fork:

f f

Join:

j j

Examples:

Fork:

f f

Join:

j j

Classification of Petri nets based on tokens:

Condition/event nets: every place can contain at most one token
(occurrence nets).
Place/transition nets: every place can contain several tokens
that are indistinguishable.
Predicate/event nets: every place can contain several tokens
of different kinds (colored Petri nets).

Petri nets have the same computational power as Turing machines
if inhibitor arcs are admitted (inhibit transitions when tokens are present in their presets).

Concurrent variants of the reachability graph are also possible.

Step semantics: several transitions can fire simultaneously in one step
as long as their presets and their postsets are pairwise disjoint.

ST semantics: the beginning of each transition firing (t+) is separate
from the end of the corresponding transition firing (t−), so as to gain
real-time consistency (Van Glabbeek & Vaandrager 1987).

Classification of Petri nets based on tokens:

Condition/event nets: every place can contain at most one token
(occurrence nets).
Place/transition nets: every place can contain several tokens
that are indistinguishable.
Predicate/event nets: every place can contain several tokens
of different kinds (colored Petri nets).

Petri nets have the same computational power as Turing machines
if inhibitor arcs are admitted (inhibit transitions when tokens are present in their presets).

Concurrent variants of the reachability graph are also possible.

Step semantics: several transitions can fire simultaneously in one step
as long as their presets and their postsets are pairwise disjoint.

ST semantics: the beginning of each transition firing (t+) is separate
from the end of the corresponding transition firing (t−), so as to gain
real-time consistency (Van Glabbeek & Vaandrager 1987).

Examples:
Step semantics:

b

a

b

a

b

a

b

a

ST semantics:

b

a

ab

a

b

a b

a
b

ab

a

b
+ +

+

+

+

+

− −

−

−

−

−

Examples:
Step semantics:

b

a

b

a

b

a

b

a

ST semantics:

b

a

ab

a

b

a b

a
b

ab

a

b
+ +

+

+

+

+

− −

−

−

−

−

The Petri net semantics N (Degano, De Nicola, Montanari 1988)
associates a place with any state of a sequential subprocess of P ∈ P.

The syntax of places V is the same as the one of process terms, but
binary parallel composition is replaced by unary ‖S id and id ‖S .

Decomposition dec : P→Mufin(V) of process terms into places:

dec(0) = {| 0 |}
dec(a . P) = {| a . P |}

dec(P1 + P2) = {|V1 + V2 | V1∈dec(P1), V2∈dec(P2) |}
dec(P1 ‖S P2) = {|V ‖S id | V∈dec(P1) |} ∪ {| id ‖S V | V∈dec(P2) |}

dec(P /H) = {|V /H | V∈dec(P) |}
dec(P \ L) = {|V \ L | V∈dec(P) |}
dec(P [ϕ]) = {|V [ϕ] | V∈dec(P) |}

dec(B) = dec(P) if B
∆
= P

Transitions T stem from operational semantic rules like those for P.

Retrievability: RG[[N [[P]]]] with initial marking dec(P) is isomorphic to [[P]].

The Petri net semantics N (Degano, De Nicola, Montanari 1988)
associates a place with any state of a sequential subprocess of P ∈ P.

The syntax of places V is the same as the one of process terms, but
binary parallel composition is replaced by unary ‖S id and id ‖S .

Decomposition dec : P→Mufin(V) of process terms into places:

dec(0) = {| 0 |}
dec(a . P) = {| a . P |}

dec(P1 + P2) = {|V1 + V2 | V1∈dec(P1), V2∈dec(P2) |}
dec(P1 ‖S P2) = {|V ‖S id | V∈dec(P1) |} ∪ {| id ‖S V | V∈dec(P2) |}

dec(P /H) = {|V /H | V∈dec(P) |}
dec(P \ L) = {|V \ L | V∈dec(P) |}
dec(P [ϕ]) = {|V [ϕ] | V∈dec(P) |}

dec(B) = dec(P) if B
∆
= P

Transitions T stem from operational semantic rules like those for P.

Retrievability: RG[[N [[P]]]] with initial marking dec(P) is isomorphic to [[P]].

The Petri net semantics N (Degano, De Nicola, Montanari 1988)
associates a place with any state of a sequential subprocess of P ∈ P.

The syntax of places V is the same as the one of process terms, but
binary parallel composition is replaced by unary ‖S id and id ‖S .

Decomposition dec : P→Mufin(V) of process terms into places:

dec(0) = {| 0 |}
dec(a . P) = {| a . P |}

dec(P1 + P2) = {|V1 + V2 | V1∈dec(P1), V2∈dec(P2) |}
dec(P1 ‖S P2) = {|V ‖S id | V∈dec(P1) |} ∪ {| id ‖S V | V∈dec(P2) |}

dec(P /H) = {|V /H | V∈dec(P) |}
dec(P \ L) = {|V \ L | V∈dec(P) |}
dec(P [ϕ]) = {|V [ϕ] | V∈dec(P) |}

dec(B) = dec(P) if B
∆
= P

Transitions T stem from operational semantic rules like those for P.

Retrievability: RG[[N [[P]]]] with initial marking dec(P) is isomorphic to [[P]].

{| a . P |}
a

−−−→ dec(P)

V1 ∪ V2

a
−−−→V ′ V1 ∩ V2 = ∅ V full

V1 ∪ (V2 + V)
a

−−−→V ′
V1 ∪ V2

a
−−−→V ′ V1 ∩ V2 = ∅ V full

V1 ∪ (V + V2)
a

−−−→V ′

V
a

−−−→V ′ a /∈ S

V ‖S id
a

−−−→V ′ ‖S id

V
a

−−−→V ′ a /∈ S

id ‖S V
a

−−−→ id ‖S V ′

V1

a
−−−→V ′1 V2

a
−−−→V ′2 a ∈ S

V1 ‖S id ∪ id ‖S V2

a
−−−→V ′1 ‖S id ∪ id ‖S V ′2

V
a

−−−→V ′ a ∈ H

V /H
τ
−−−→V ′ /H

V
a

−−−→V ′ a /∈ H

V /H
a

−−−→V ′ /H

V
a

−−−→V ′ a /∈ L

V \ L
a

−−−→V ′ \ L

V
a

−−−→V ′

V [ϕ]
ϕ(a)

−−−→V ′ [ϕ]

“V full” means V = dec(P) for some P ∈ P.

Consider again the two process terms:

a . b . 0 + b . a . 0
a . 0 ‖∅ b . 0

They are indistinguishable according to their interleaving semantics:

b

ab

a

Their Petri net semantics show that they are structurally different:

a b

b a

a b

The two underlying reachability graphs are isomorphic to the LTS.

Consider again the two process terms:

a . b . 0 + b . a . 0
a . 0 ‖∅ b . 0

They are indistinguishable according to their interleaving semantics:

b

ab

a

Their Petri net semantics show that they are structurally different:

a b

b a

a b

The two underlying reachability graphs are isomorphic to the LTS.

6.9 Truly Concurrent Semantics via Event Structures

Winskel event structures (1980) are models in which to represent
causality, conflict, concurrency more abstractly than in Petri nets.

Relationships with domain theory and category theory.

The basic entities of these models are called events.

Events describe occurrences of actions and are labeled with them.

States are called configurations.

Configurations are defined as conflict-free sets of events containing
all the events causing the ones in the sets (only causality and concurrency).

Configurations specify the occurrences of events in system runs and
determine the remaining behavior in terms of events not yet occurred
and not excluded because of conflicts with already occurred events.

6.9 Truly Concurrent Semantics via Event Structures

Winskel event structures (1980) are models in which to represent
causality, conflict, concurrency more abstractly than in Petri nets.

Relationships with domain theory and category theory.

The basic entities of these models are called events.

Events describe occurrences of actions and are labeled with them.

States are called configurations.

Configurations are defined as conflict-free sets of events containing
all the events causing the ones in the sets (only causality and concurrency).

Configurations specify the occurrences of events in system runs and
determine the remaining behavior in terms of events not yet occurred
and not excluded because of conflicts with already occurred events.

6.9 Truly Concurrent Semantics via Event Structures

Winskel event structures (1980) are models in which to represent
causality, conflict, concurrency more abstractly than in Petri nets.

Relationships with domain theory and category theory.

The basic entities of these models are called events.

Events describe occurrences of actions and are labeled with them.

States are called configurations.

Configurations are defined as conflict-free sets of events containing
all the events causing the ones in the sets (only causality and concurrency).

Configurations specify the occurrences of events in system runs and
determine the remaining behavior in terms of events not yet occurred
and not excluded because of conflicts with already occurred events.

A labeled prime event structure is a tuple E = (E,<,#, `) where:

E is a set of events.
< ⊆ E × E is the causality relation, which satisfies:

Irreflexivity, antisymmetry, transitivity.
Principle of finite causes: {d ∈ E | d < e} is finite for all e ∈ E.

⊆ E × E is the conflict relation, which satisfies:

Irreflexivity and symmetry.
∩ < = ∅.
Principle of conflict heredity: d < e ∧ d # f =⇒ e # f for all d, e, f .

` : E → A is the labeling function.

The concurrency relation is derived as co = (E × E) \ (≤ ∪ ≥ ∪ #).

X ⊆ E is a configuration of E iff it is:

Finite.
Left closed: e ∈ X ∧ d < e =⇒ d ∈ X for all d, e ∈ E.
Conflict free: # ∩ (X ×X) = ∅.

A labeled prime event structure is a tuple E = (E,<,#, `) where:

E is a set of events.
< ⊆ E × E is the causality relation, which satisfies:

Irreflexivity, antisymmetry, transitivity.
Principle of finite causes: {d ∈ E | d < e} is finite for all e ∈ E.

⊆ E × E is the conflict relation, which satisfies:

Irreflexivity and symmetry.
∩ < = ∅.
Principle of conflict heredity: d < e ∧ d # f =⇒ e # f for all d, e, f .

` : E → A is the labeling function.

The concurrency relation is derived as co = (E × E) \ (≤ ∪ ≥ ∪ #).

X ⊆ E is a configuration of E iff it is:

Finite.
Left closed: e ∈ X ∧ d < e =⇒ d ∈ X for all d, e ∈ E.
Conflict free: # ∩ (X ×X) = ∅.

A labeled prime event structure is a tuple E = (E,<,#, `) where:

E is a set of events.
< ⊆ E × E is the causality relation, which satisfies:

Irreflexivity, antisymmetry, transitivity.
Principle of finite causes: {d ∈ E | d < e} is finite for all e ∈ E.

⊆ E × E is the conflict relation, which satisfies:

Irreflexivity and symmetry.
∩ < = ∅.
Principle of conflict heredity: d < e ∧ d # f =⇒ e # f for all d, e, f .

` : E → A is the labeling function.

The concurrency relation is derived as co = (E × E) \ (≤ ∪ ≥ ∪ #).

X ⊆ E is a configuration of E iff it is:

Finite.
Left closed: e ∈ X ∧ d < e =⇒ d ∈ X for all d, e ∈ E.
Conflict free: # ∩ (X ×X) = ∅.

The event structure semantics E is defined denotationally:

E [[0]] = (∅, ∅, ∅, ∅).
E [[a . P]] = (E ∪ {ea}, < ∪{(ea, e) | e ∈ E},#, ` ∪ {(ea, a)})

where E [[P]] = (E,<,#, `) and ea /∈ E.
E [[P1 + P2]] = (E1 ∪ E2, <1 ∪ <2,#1 ∪#2 ∪ (Ei × Ej), `1 ∪ `2)

where E [[Pk]] = (Ek, <k,#k, `k) for k ∈ {1, 2} and E1 ∩ E2 = ∅.
E [[P /H]] = (E,<,#, ` \ {(e, `(e)) | `(e) ∈ H} ∪ {(e, τ) | `(e) ∈ H})

where E [[P]] = (E,<,#, `).
E [[P \ L]] = (E′, < ∩ (E′ × E′),# ∩ (E′ × E′), ` ∩ (E′ × E′))

where E [[P]] = (E,<,#, `)
and E′ = {e ∈ E | `(e) /∈ L ∧ @d ∈ E. d < e ∧ `(d) ∈ L}.

E [[P [ϕ]]] = (E,<,#, {(e, ϕ(a)) | (e, a) ∈ `})
where E [[P]] = (E,<,#, `).

Parallel composition over prime event structures may not simply be
the cartesian product of the events that have to synchronize and
the union of the other events (unless some events are duplicated).

The event structure semantics E is defined denotationally:

E [[0]] = (∅, ∅, ∅, ∅).
E [[a . P]] = (E ∪ {ea}, < ∪{(ea, e) | e ∈ E},#, ` ∪ {(ea, a)})

where E [[P]] = (E,<,#, `) and ea /∈ E.
E [[P1 + P2]] = (E1 ∪ E2, <1 ∪ <2,#1 ∪#2 ∪ (Ei × Ej), `1 ∪ `2)

where E [[Pk]] = (Ek, <k,#k, `k) for k ∈ {1, 2} and E1 ∩ E2 = ∅.
E [[P /H]] = (E,<,#, ` \ {(e, `(e)) | `(e) ∈ H} ∪ {(e, τ) | `(e) ∈ H})

where E [[P]] = (E,<,#, `).
E [[P \ L]] = (E′, < ∩ (E′ × E′),# ∩ (E′ × E′), ` ∩ (E′ × E′))

where E [[P]] = (E,<,#, `)
and E′ = {e ∈ E | `(e) /∈ L ∧ @d ∈ E. d < e ∧ `(d) ∈ L}.

E [[P [ϕ]]] = (E,<,#, {(e, ϕ(a)) | (e, a) ∈ `})
where E [[P]] = (E,<,#, `).

Parallel composition over prime event structures may not simply be
the cartesian product of the events that have to synchronize and
the union of the other events (unless some events are duplicated).

More liberal family of event structures (Boudol & Castellani 1988)
in which only direct causes are formalized and cycles are expressible.

A labeled flow event structure is a tuple E = (E,≺,#, `) where:

E is a set of events.
≺ ⊆ E × E is the flow relation, which is irreflexive.
⊆ E × E is the conflict relation, which is symmetric.
` : E → A is the labeling function.

The concurrency relation is co = (E × E) \ (�+ ∪ �+ ∪ #)
where + is the transitive closure operator over relations.

Some constraints are recovered in the notion of configuration.

X ⊆ E is a configuration of E iff it is:

Finite.
Left closed up to conflicts: for all d, e ∈ E
e ∈ X ∧ d ≺ e ∧ d /∈ X =⇒ ∃f ∈ X. f ≺ e ∧ d # f .
Causality cycle free: (≺ ∩ (X ×X))+ is irreflexive.
Conflict free: # ∩ (X ×X) = ∅.

More liberal family of event structures (Boudol & Castellani 1988)
in which only direct causes are formalized and cycles are expressible.

A labeled flow event structure is a tuple E = (E,≺,#, `) where:

E is a set of events.
≺ ⊆ E × E is the flow relation, which is irreflexive.
⊆ E × E is the conflict relation, which is symmetric.
` : E → A is the labeling function.

The concurrency relation is co = (E × E) \ (�+ ∪ �+ ∪ #)
where + is the transitive closure operator over relations.

Some constraints are recovered in the notion of configuration.

X ⊆ E is a configuration of E iff it is:

Finite.
Left closed up to conflicts: for all d, e ∈ E
e ∈ X ∧ d ≺ e ∧ d /∈ X =⇒ ∃f ∈ X. f ≺ e ∧ d # f .
Causality cycle free: (≺ ∩ (X ×X))+ is irreflexive.
Conflict free: # ∩ (X ×X) = ∅.

More liberal family of event structures (Boudol & Castellani 1988)
in which only direct causes are formalized and cycles are expressible.

A labeled flow event structure is a tuple E = (E,≺,#, `) where:

E is a set of events.
≺ ⊆ E × E is the flow relation, which is irreflexive.
⊆ E × E is the conflict relation, which is symmetric.
` : E → A is the labeling function.

The concurrency relation is co = (E × E) \ (�+ ∪ �+ ∪ #)
where + is the transitive closure operator over relations.

Some constraints are recovered in the notion of configuration.

X ⊆ E is a configuration of E iff it is:

Finite.
Left closed up to conflicts: for all d, e ∈ E
e ∈ X ∧ d ≺ e ∧ d /∈ X =⇒ ∃f ∈ X. f ≺ e ∧ d # f .
Causality cycle free: (≺ ∩ (X ×X))+ is irreflexive.
Conflict free: # ∩ (X ×X) = ∅.

E [[P1 ‖S P2]] = (E,≺,#, `) where:

Let E [[Pk]] = (Ek,≺k,#k, `k) for k ∈ {1, 2}.
E = {(e, ∗) | e ∈ E1 ∧ `1(e) /∈ S} ∪

{(∗, e) | e ∈ E2 ∧ `2(e) /∈ S} ∪
{(e1, e2) ∈ E1 × E2 | `1(e1) = `2(e2) ∈ S}.

e ≺1 d =⇒ (e, e′) ≺ (d, d′) where e′, d′ ∈ E2 ∪ {∗},
e ≺2 d =⇒ (e′, e) ≺ (d′, d) where e′, d′ ∈ E1 ∪ {∗}.
e #1 d =⇒ (e, e′) # (d, d′) where e′, d′ ∈ E2 ∪ {∗},
e #2 d =⇒ (e′, e) # (d′, d) where e′, d′ ∈ E1 ∪ {∗}.
` = {((e, ∗), `1(e)) | e ∈ E1 ∧ `1(e) /∈ S} ∪
{((∗, e), `2(e)) | e ∈ E2 ∧ `2(e) /∈ S} ∪
{((e1, e2), `1(e1)) | (e1, e2) ∈ E1 × E2 ∧ `1(e1) = `2(e2) ∈ S}.

Every configuration of E [[P1 ‖S P2]] must be such that
its projection on Ek is a configuration of E [[Pk]] for k ∈ {1, 2}.

A notion of transition between configurations is missing.

E [[P1 ‖S P2]] = (E,≺,#, `) where:

Let E [[Pk]] = (Ek,≺k,#k, `k) for k ∈ {1, 2}.
E = {(e, ∗) | e ∈ E1 ∧ `1(e) /∈ S} ∪

{(∗, e) | e ∈ E2 ∧ `2(e) /∈ S} ∪
{(e1, e2) ∈ E1 × E2 | `1(e1) = `2(e2) ∈ S}.

e ≺1 d =⇒ (e, e′) ≺ (d, d′) where e′, d′ ∈ E2 ∪ {∗},
e ≺2 d =⇒ (e′, e) ≺ (d′, d) where e′, d′ ∈ E1 ∪ {∗}.
e #1 d =⇒ (e, e′) # (d, d′) where e′, d′ ∈ E2 ∪ {∗},
e #2 d =⇒ (e′, e) # (d′, d) where e′, d′ ∈ E1 ∪ {∗}.
` = {((e, ∗), `1(e)) | e ∈ E1 ∧ `1(e) /∈ S} ∪
{((∗, e), `2(e)) | e ∈ E2 ∧ `2(e) /∈ S} ∪
{((e1, e2), `1(e1)) | (e1, e2) ∈ E1 × E2 ∧ `1(e1) = `2(e2) ∈ S}.

Every configuration of E [[P1 ‖S P2]] must be such that
its projection on Ek is a configuration of E [[Pk]] for k ∈ {1, 2}.

A notion of transition between configurations is missing.

The relevant behavior of an event structure is determined by its set
of configurations and their transitions (Van Glabbeek & Goltz 2001).

A labeled configuration structure is a tuple C = (E, C, `) where:

E is a set of events.
C ⊆ Pfin(E) is a set of configurations.
` :
⋃
X∈C X → A is the labeling function.

A configuration structure C is stable iff it is:

Rooted: ∅ ∈ C.
Connected: ∀X ∈ C \ {∅}.∃e ∈ X.X \ {e} ∈ C.
Closed under bounded unions and intersections:
∀X,Y, Z ∈ C. X ∪ Y ⊆ Z =⇒ X ∪ Y ∈ C ∧X ∩ Y ∈ C.

The causality relation over X ∈ C is defined by letting e1 <X e2

for e1, e2 ∈ X s.t. e1 6= e2 iff ∀Y ∈ C. Y ⊆ X ∧ e2 ∈ Y =⇒ e1 ∈ Y .

The concurrency relation over X is coX = (X ×X) \ (≤X ∪ ≥X).

X
a

−−−→X ′ for X,X ′ ∈ C iff X ⊆ X ′ ∧X ′ \X = {e} ∧ `(e) = a.

The relevant behavior of an event structure is determined by its set
of configurations and their transitions (Van Glabbeek & Goltz 2001).

A labeled configuration structure is a tuple C = (E, C, `) where:

E is a set of events.
C ⊆ Pfin(E) is a set of configurations.
` :
⋃
X∈C X → A is the labeling function.

A configuration structure C is stable iff it is:

Rooted: ∅ ∈ C.
Connected: ∀X ∈ C \ {∅}.∃e ∈ X.X \ {e} ∈ C.
Closed under bounded unions and intersections:
∀X,Y, Z ∈ C. X ∪ Y ⊆ Z =⇒ X ∪ Y ∈ C ∧X ∩ Y ∈ C.

The causality relation over X ∈ C is defined by letting e1 <X e2

for e1, e2 ∈ X s.t. e1 6= e2 iff ∀Y ∈ C. Y ⊆ X ∧ e2 ∈ Y =⇒ e1 ∈ Y .

The concurrency relation over X is coX = (X ×X) \ (≤X ∪ ≥X).

X
a

−−−→X ′ for X,X ′ ∈ C iff X ⊆ X ′ ∧X ′ \X = {e} ∧ `(e) = a.

The relevant behavior of an event structure is determined by its set
of configurations and their transitions (Van Glabbeek & Goltz 2001).

A labeled configuration structure is a tuple C = (E, C, `) where:

E is a set of events.
C ⊆ Pfin(E) is a set of configurations.
` :
⋃
X∈C X → A is the labeling function.

A configuration structure C is stable iff it is:

Rooted: ∅ ∈ C.
Connected: ∀X ∈ C \ {∅}.∃e ∈ X.X \ {e} ∈ C.
Closed under bounded unions and intersections:
∀X,Y, Z ∈ C. X ∪ Y ⊆ Z =⇒ X ∪ Y ∈ C ∧X ∩ Y ∈ C.

The causality relation over X ∈ C is defined by letting e1 <X e2

for e1, e2 ∈ X s.t. e1 6= e2 iff ∀Y ∈ C. Y ⊆ X ∧ e2 ∈ Y =⇒ e1 ∈ Y .

The concurrency relation over X is coX = (X ×X) \ (≤X ∪ ≥X).

X
a

−−−→X ′ for X,X ′ ∈ C iff X ⊆ X ′ ∧X ′ \X = {e} ∧ `(e) = a.

The relevant behavior of an event structure is determined by its set
of configurations and their transitions (Van Glabbeek & Goltz 2001).

A labeled configuration structure is a tuple C = (E, C, `) where:

E is a set of events.
C ⊆ Pfin(E) is a set of configurations.
` :
⋃
X∈C X → A is the labeling function.

A configuration structure C is stable iff it is:

Rooted: ∅ ∈ C.
Connected: ∀X ∈ C \ {∅}.∃e ∈ X.X \ {e} ∈ C.
Closed under bounded unions and intersections:
∀X,Y, Z ∈ C. X ∪ Y ⊆ Z =⇒ X ∪ Y ∈ C ∧X ∩ Y ∈ C.

The causality relation over X ∈ C is defined by letting e1 <X e2

for e1, e2 ∈ X s.t. e1 6= e2 iff ∀Y ∈ C. Y ⊆ X ∧ e2 ∈ Y =⇒ e1 ∈ Y .

The concurrency relation over X is coX = (X ×X) \ (≤X ∪ ≥X).

X
a

−−−→X ′ for X,X ′ ∈ C iff X ⊆ X ′ ∧X ′ \X = {e} ∧ `(e) = a.

Consider once more the two process terms:

a . b . 0 + b . a . 0
a . 0 ‖∅ b . 0

E [[a . b . 0 + b . a . 0]] = (E1,≺1,#1, `1) where:

E1 = {ea,l, eb,l, eb,r, ea,r}.
`1 = {(ea,l, a), (eb,l, b), (eb,r, b), (ea,r, a)}.
≺1 = {(ea,l, eb,l), (eb,r, ea,r)}.
#1 = {(ea,l, eb,r), (ea,l, ea,r), (eb,l, eb,r), (eb,l, ea,r)} up to symmetry.
co1 = ∅.
C1 = {∅, {ea,l}, {ea,l, eb,l}, {eb,r}, {eb,r, ea,r}}.

E [[a . 0 ‖∅ b . 0]] = (E2,≺2,#2, `2) where:

E2 = {ea, eb}.
`2 = {(ea, a), (eb, b)}.
≺2 = ∅.
#2 = ∅.
co2 = {(ea, eb)}.
C2 = {∅, {ea}, {eb}, {ea, eb}}.

The two configuration structures are not isomorphic.

Consider once more the two process terms:

a . b . 0 + b . a . 0
a . 0 ‖∅ b . 0

E [[a . b . 0 + b . a . 0]] = (E1,≺1,#1, `1) where:

E1 = {ea,l, eb,l, eb,r, ea,r}.
`1 = {(ea,l, a), (eb,l, b), (eb,r, b), (ea,r, a)}.
≺1 = {(ea,l, eb,l), (eb,r, ea,r)}.
#1 = {(ea,l, eb,r), (ea,l, ea,r), (eb,l, eb,r), (eb,l, ea,r)} up to symmetry.
co1 = ∅.
C1 = {∅, {ea,l}, {ea,l, eb,l}, {eb,r}, {eb,r, ea,r}}.

E [[a . 0 ‖∅ b . 0]] = (E2,≺2,#2, `2) where:

E2 = {ea, eb}.
`2 = {(ea, a), (eb, b)}.
≺2 = ∅.
#2 = ∅.
co2 = {(ea, eb)}.
C2 = {∅, {ea}, {eb}, {ea, eb}}.

The two configuration structures are not isomorphic.

Consider once more the two process terms:

a . b . 0 + b . a . 0
a . 0 ‖∅ b . 0

E [[a . b . 0 + b . a . 0]] = (E1,≺1,#1, `1) where:

E1 = {ea,l, eb,l, eb,r, ea,r}.
`1 = {(ea,l, a), (eb,l, b), (eb,r, b), (ea,r, a)}.
≺1 = {(ea,l, eb,l), (eb,r, ea,r)}.
#1 = {(ea,l, eb,r), (ea,l, ea,r), (eb,l, eb,r), (eb,l, ea,r)} up to symmetry.
co1 = ∅.
C1 = {∅, {ea,l}, {ea,l, eb,l}, {eb,r}, {eb,r, ea,r}}.

E [[a . 0 ‖∅ b . 0]] = (E2,≺2,#2, `2) where:

E2 = {ea, eb}.
`2 = {(ea, a), (eb, b)}.
≺2 = ∅.
#2 = ∅.
co2 = {(ea, eb)}.
C2 = {∅, {ea}, {eb}, {ea, eb}}.

The two configuration structures are not isomorphic.

6.10 Truly Concurrent Bisimilarities

Truly concurrent bisimilarity spectrum for finitely-branching processes
with no τ -actions (Van Glabbeek & Goltz 2001; Fecher 2004):

~B

~SB

~WHPPB

~HPB

~HHPB

~WHPB ~PB

All defined over stable configuration structures.

Step semantics allows multiple concurrent events, possibly labeled
with the same action, to take place in one step (Pomello 1985).

X
A
−−−→X ′ for X,X ′ ∈ C iff X ⊆ X ′ ∧X ′ \X = G ∧ `(G) = A ∧

A ∈ NA ∧ ∀e, d ∈ G. e coX′ d.

Two stable configuration structures Ck = (Ek, Ck, `k) for k ∈ {1, 2}
are step bisimilar, written C1 ∼SB C2,
iff there exists a relation B ⊆ C1 × C2 such that:

(∅, ∅) ∈ B.
Whenever (X1, X2) ∈ B, then for all action multisets A ∈ NA:

For each X1

A
−−−→C1 X

′
1 there exists X2

A
−−−→C2 X

′
2

such that (X ′1, X
′
2) ∈ B, and vice versa.

∼SB reduces to ∼B when considering only individual actions.

a . 0 ‖∅ b . 0 and a . b . 0 + b . a . 0 are ∼B-equivalent but ∼SB-inequiv
(likewise a . 0 ‖∅ a . 0 and a . a . 0 are ∼B-equivalent but ∼SB-inequiv).

Step semantics allows multiple concurrent events, possibly labeled
with the same action, to take place in one step (Pomello 1985).

X
A
−−−→X ′ for X,X ′ ∈ C iff X ⊆ X ′ ∧X ′ \X = G ∧ `(G) = A ∧

A ∈ NA ∧ ∀e, d ∈ G. e coX′ d.

Two stable configuration structures Ck = (Ek, Ck, `k) for k ∈ {1, 2}
are step bisimilar, written C1 ∼SB C2,
iff there exists a relation B ⊆ C1 × C2 such that:

(∅, ∅) ∈ B.
Whenever (X1, X2) ∈ B, then for all action multisets A ∈ NA:

For each X1

A
−−−→C1 X

′
1 there exists X2

A
−−−→C2 X

′
2

such that (X ′1, X
′
2) ∈ B, and vice versa.

∼SB reduces to ∼B when considering only individual actions.

a . 0 ‖∅ b . 0 and a . b . 0 + b . a . 0 are ∼B-equivalent but ∼SB-inequiv
(likewise a . 0 ‖∅ a . 0 and a . a . 0 are ∼B-equivalent but ∼SB-inequiv).

Step semantics allows multiple concurrent events, possibly labeled
with the same action, to take place in one step (Pomello 1985).

X
A
−−−→X ′ for X,X ′ ∈ C iff X ⊆ X ′ ∧X ′ \X = G ∧ `(G) = A ∧

A ∈ NA ∧ ∀e, d ∈ G. e coX′ d.

Two stable configuration structures Ck = (Ek, Ck, `k) for k ∈ {1, 2}
are step bisimilar, written C1 ∼SB C2,
iff there exists a relation B ⊆ C1 × C2 such that:

(∅, ∅) ∈ B.
Whenever (X1, X2) ∈ B, then for all action multisets A ∈ NA:

For each X1

A
−−−→C1 X

′
1 there exists X2

A
−−−→C2 X

′
2

such that (X ′1, X
′
2) ∈ B, and vice versa.

∼SB reduces to ∼B when considering only individual actions.

a . 0 ‖∅ b . 0 and a . b . 0 + b . a . 0 are ∼B-equivalent but ∼SB-inequiv
(likewise a . 0 ‖∅ a . 0 and a . a . 0 are ∼B-equivalent but ∼SB-inequiv).

Generalization to partially ordered multisets of events that are
concurrent or causally related (Boudol & Castellani 1988).

X
U
−−−→X ′ for X,X ′ ∈ C iff X ⊆ X ′ ∧X ′ \X = G ∧ `(G) = U ∧

U = [(G,<X′ ∩ (G×G), ` ∩ (G×A)]iso.

Two stable configuration structures Ck = (Ek, Ck, `k) for k ∈ {1, 2}
are pomset bisimilar, written C1 ∼PB C2,
iff there exists a relation B ⊆ C1 × C2 such that:

(∅, ∅) ∈ B.
Whenever (X1, X2) ∈ B, then for all pomsets U over A:

For each X1

U
−−−→C1 X

′
1 there exists X2

U
−−−→C2 X

′
2

such that (X ′1, X
′
2) ∈ B, and vice versa.

a . 0 ‖∅ b . 0 and (a . 0 ‖∅ b . 0) + a . b . 0 are identified by ∼SB

but told apart by ∼PB.

Generalization to partially ordered multisets of events that are
concurrent or causally related (Boudol & Castellani 1988).

X
U
−−−→X ′ for X,X ′ ∈ C iff X ⊆ X ′ ∧X ′ \X = G ∧ `(G) = U ∧

U = [(G,<X′ ∩ (G×G), ` ∩ (G×A)]iso.

Two stable configuration structures Ck = (Ek, Ck, `k) for k ∈ {1, 2}
are pomset bisimilar, written C1 ∼PB C2,
iff there exists a relation B ⊆ C1 × C2 such that:

(∅, ∅) ∈ B.
Whenever (X1, X2) ∈ B, then for all pomsets U over A:

For each X1

U
−−−→C1 X

′
1 there exists X2

U
−−−→C2 X

′
2

such that (X ′1, X
′
2) ∈ B, and vice versa.

a . 0 ‖∅ b . 0 and (a . 0 ‖∅ b . 0) + a . b . 0 are identified by ∼SB

but told apart by ∼PB.

Generalization to partially ordered multisets of events that are
concurrent or causally related (Boudol & Castellani 1988).

X
U
−−−→X ′ for X,X ′ ∈ C iff X ⊆ X ′ ∧X ′ \X = G ∧ `(G) = U ∧

U = [(G,<X′ ∩ (G×G), ` ∩ (G×A)]iso.

Two stable configuration structures Ck = (Ek, Ck, `k) for k ∈ {1, 2}
are pomset bisimilar, written C1 ∼PB C2,
iff there exists a relation B ⊆ C1 × C2 such that:

(∅, ∅) ∈ B.
Whenever (X1, X2) ∈ B, then for all pomsets U over A:

For each X1

U
−−−→C1 X

′
1 there exists X2

U
−−−→C2 X

′
2

such that (X ′1, X
′
2) ∈ B, and vice versa.

a . 0 ‖∅ b . 0 and (a . 0 ‖∅ b . 0) + a . b . 0 are identified by ∼SB

but told apart by ∼PB.

Variant going back to actions that imposes configuration isomorphism
(Degano, De Nicola, Montanari 1986).

Two stable configuration structures Ck = (Ek, Ck, `k) for k ∈ {1, 2}
are weak history-preserving bisimilar, written C1 ∼WHPB C2,
iff there exists a relation B ⊆ C1 × C2 such that:

(∅, ∅) ∈ B.
Whenever (X1, X2) ∈ B, then there exists a bijection from X1 to X2

that preserves labeling and causality and for all actions a ∈ A:

For each X1

a
−−−→C1 X

′
1 there exists X2

a
−−−→C2 X

′
2

such that (X ′1, X
′
2) ∈ B, and vice versa.

a . 0 ‖∅ b . 0 and (a . 0 ‖∅ b . 0) + a . b . 0 are identified by ∼SB

but told apart by ∼WHPB.

a.(b.0 + c.0) + (a.0 ‖∅ b.0) + a.b.0 and a.(b.0 + c.0) + (a.0 ‖∅ b.0)
are identified by ∼PB but told apart by ∼WHPB.

It is finer than ∼PB in the absence of autoconcurrency, i.e., when
no occurrences of the same action are concurrent to each other.

Variant going back to actions that imposes configuration isomorphism
(Degano, De Nicola, Montanari 1986).

Two stable configuration structures Ck = (Ek, Ck, `k) for k ∈ {1, 2}
are weak history-preserving bisimilar, written C1 ∼WHPB C2,
iff there exists a relation B ⊆ C1 × C2 such that:

(∅, ∅) ∈ B.
Whenever (X1, X2) ∈ B, then there exists a bijection from X1 to X2

that preserves labeling and causality and for all actions a ∈ A:

For each X1

a
−−−→C1 X

′
1 there exists X2

a
−−−→C2 X

′
2

such that (X ′1, X
′
2) ∈ B, and vice versa.

a . 0 ‖∅ b . 0 and (a . 0 ‖∅ b . 0) + a . b . 0 are identified by ∼SB

but told apart by ∼WHPB.

a.(b.0 + c.0) + (a.0 ‖∅ b.0) + a.b.0 and a.(b.0 + c.0) + (a.0 ‖∅ b.0)
are identified by ∼PB but told apart by ∼WHPB.

It is finer than ∼PB in the absence of autoconcurrency, i.e., when
no occurrences of the same action are concurrent to each other.

Variant going back to actions that imposes configuration isomorphism
(Degano, De Nicola, Montanari 1986).

Two stable configuration structures Ck = (Ek, Ck, `k) for k ∈ {1, 2}
are weak history-preserving bisimilar, written C1 ∼WHPB C2,
iff there exists a relation B ⊆ C1 × C2 such that:

(∅, ∅) ∈ B.
Whenever (X1, X2) ∈ B, then there exists a bijection from X1 to X2

that preserves labeling and causality and for all actions a ∈ A:

For each X1

a
−−−→C1 X

′
1 there exists X2

a
−−−→C2 X

′
2

such that (X ′1, X
′
2) ∈ B, and vice versa.

a . 0 ‖∅ b . 0 and (a . 0 ‖∅ b . 0) + a . b . 0 are identified by ∼SB

but told apart by ∼WHPB.

a.(b.0 + c.0) + (a.0 ‖∅ b.0) + a.b.0 and a.(b.0 + c.0) + (a.0 ‖∅ b.0)
are identified by ∼PB but told apart by ∼WHPB.

It is finer than ∼PB in the absence of autoconcurrency, i.e., when
no occurrences of the same action are concurrent to each other.

Variant going back to actions that imposes configuration isomorphism
(Degano, De Nicola, Montanari 1986).

Two stable configuration structures Ck = (Ek, Ck, `k) for k ∈ {1, 2}
are weak history-preserving bisimilar, written C1 ∼WHPB C2,
iff there exists a relation B ⊆ C1 × C2 such that:

(∅, ∅) ∈ B.
Whenever (X1, X2) ∈ B, then there exists a bijection from X1 to X2

that preserves labeling and causality and for all actions a ∈ A:

For each X1

a
−−−→C1 X

′
1 there exists X2

a
−−−→C2 X

′
2

such that (X ′1, X
′
2) ∈ B, and vice versa.

a . 0 ‖∅ b . 0 and (a . 0 ‖∅ b . 0) + a . b . 0 are identified by ∼SB

but told apart by ∼WHPB.

a.(b.0 + c.0) + (a.0 ‖∅ b.0) + a.b.0 and a.(b.0 + c.0) + (a.0 ‖∅ b.0)
are identified by ∼PB but told apart by ∼WHPB.

It is finer than ∼PB in the absence of autoconcurrency, i.e., when
no occurrences of the same action are concurrent to each other.

Variant combining pomsets and configuration isomorphism
(Van Glabbeek, Goltz 2001).

Two stable configuration structures Ck = (Ek, Ck, `k) for k ∈ {1, 2}
are weak history-preserving pomset bisimilar, written C1 ∼WHPPB C2,
iff there exists a relation B ⊆ C1 × C2 such that:

(∅, ∅) ∈ B.
Whenever (X1, X2) ∈ B, then there exists a bijection from X1 to X2

that preserves labeling and causality and for all pomsets U over A:

For each X1

U
−−−→C1 X

′
1 there exists X2

U
−−−→C2 X

′
2

such that (X ′1, X
′
2) ∈ B, and vice versa.

∼WHPPB is finer than both ∼PB and ∼WHPB.

Variant combining pomsets and configuration isomorphism
(Van Glabbeek, Goltz 2001).

Two stable configuration structures Ck = (Ek, Ck, `k) for k ∈ {1, 2}
are weak history-preserving pomset bisimilar, written C1 ∼WHPPB C2,
iff there exists a relation B ⊆ C1 × C2 such that:

(∅, ∅) ∈ B.
Whenever (X1, X2) ∈ B, then there exists a bijection from X1 to X2

that preserves labeling and causality and for all pomsets U over A:

For each X1

U
−−−→C1 X

′
1 there exists X2

U
−−−→C2 X

′
2

such that (X ′1, X
′
2) ∈ B, and vice versa.

∼WHPPB is finer than both ∼PB and ∼WHPB.

Variant combining pomsets and configuration isomorphism
(Van Glabbeek, Goltz 2001).

Two stable configuration structures Ck = (Ek, Ck, `k) for k ∈ {1, 2}
are weak history-preserving pomset bisimilar, written C1 ∼WHPPB C2,
iff there exists a relation B ⊆ C1 × C2 such that:

(∅, ∅) ∈ B.
Whenever (X1, X2) ∈ B, then there exists a bijection from X1 to X2

that preserves labeling and causality and for all pomsets U over A:

For each X1

U
−−−→C1 X

′
1 there exists X2

U
−−−→C2 X

′
2

such that (X ′1, X
′
2) ∈ B, and vice versa.

∼WHPPB is finer than both ∼PB and ∼WHPB.

Finer variant imposing that configuration isomorphism is incremental
(Rabinovich & Trakhtenbrot 1988).

Its distinguishing power does not change if instead of actions
we consider action multisets or pomsets as transition labels.

Two stable configuration structures Ck = (Ek, Ck, `k) for k ∈ {1, 2}
are history-preserving bisimilar, written C1 ∼HPB C2,
iff there exists a relation B ⊆ C1 × C2 × P(E1 × E2) such that:

(∅, ∅, ∅) ∈ B.
Whenever (X1, X2, f) ∈ B, then f is a bijection from X1 to X2

that preserves causality and labeling and for all actions a ∈ A:

For each X1

a
−−−→C1 X

′
1 there exist X2

a
−−−→C2 X

′
2 and f ′

such that (X ′1, X
′
2, f
′) ∈ B and f ′ ∩ (X1 ×X2) = f , and vice versa.

(a . 0 ‖∅(b . 0 + c . 0)) + (a . 0 ‖∅ b . 0) + ((a . 0 + c . 0) ‖∅ b . 0) and
(a . 0 ‖∅(b . 0 + c . 0)) + ((a . 0 + c . 0) ‖∅ b . 0) is a non-trivial example
of processes identified by ∼HPB (absorption law).

Finer variant imposing that configuration isomorphism is incremental
(Rabinovich & Trakhtenbrot 1988).

Its distinguishing power does not change if instead of actions
we consider action multisets or pomsets as transition labels.

Two stable configuration structures Ck = (Ek, Ck, `k) for k ∈ {1, 2}
are history-preserving bisimilar, written C1 ∼HPB C2,
iff there exists a relation B ⊆ C1 × C2 × P(E1 × E2) such that:

(∅, ∅, ∅) ∈ B.
Whenever (X1, X2, f) ∈ B, then f is a bijection from X1 to X2

that preserves causality and labeling and for all actions a ∈ A:

For each X1

a
−−−→C1 X

′
1 there exist X2

a
−−−→C2 X

′
2 and f ′

such that (X ′1, X
′
2, f
′) ∈ B and f ′ ∩ (X1 ×X2) = f , and vice versa.

(a . 0 ‖∅(b . 0 + c . 0)) + (a . 0 ‖∅ b . 0) + ((a . 0 + c . 0) ‖∅ b . 0) and
(a . 0 ‖∅(b . 0 + c . 0)) + ((a . 0 + c . 0) ‖∅ b . 0) is a non-trivial example
of processes identified by ∼HPB (absorption law).

Finer variant imposing that configuration isomorphism is incremental
(Rabinovich & Trakhtenbrot 1988).

Its distinguishing power does not change if instead of actions
we consider action multisets or pomsets as transition labels.

Two stable configuration structures Ck = (Ek, Ck, `k) for k ∈ {1, 2}
are history-preserving bisimilar, written C1 ∼HPB C2,
iff there exists a relation B ⊆ C1 × C2 × P(E1 × E2) such that:

(∅, ∅, ∅) ∈ B.
Whenever (X1, X2, f) ∈ B, then f is a bijection from X1 to X2

that preserves causality and labeling and for all actions a ∈ A:

For each X1

a
−−−→C1 X

′
1 there exist X2

a
−−−→C2 X

′
2 and f ′

such that (X ′1, X
′
2, f
′) ∈ B and f ′ ∩ (X1 ×X2) = f , and vice versa.

(a . 0 ‖∅(b . 0 + c . 0)) + (a . 0 ‖∅ b . 0) + ((a . 0 + c . 0) ‖∅ b . 0) and
(a . 0 ‖∅(b . 0 + c . 0)) + ((a . 0 + c . 0) ‖∅ b . 0) is a non-trivial example
of processes identified by ∼HPB (absorption law).

Even finer variant considering not only outgoing transitions
but also incoming transitions (Bednarczyk 1991).

Its distinguishing power does not change if instead of actions
we consider action multisets or pomsets as transition labels.

Two stable configuration structures Ck = (Ek, Ck, `k) for k ∈ {1, 2}
are hereditary history-preserving bisimilar, written C1 ∼HHPB C2,
iff there exists a relation B ⊆ C1 × C2 × P(E1 × E2) such that:

(∅, ∅, ∅) ∈ B.
Whenever (X1, X2, f) ∈ B, then f is a bijection from X1 to X2

that preserves causality and labeling and for all actions a ∈ A:

For each X1

a
−−−→C1 X

′
1 there exist X2

a
−−−→C2 X

′
2 and f ′

such that (X ′1, X
′
2, f
′) ∈ B and f ′ ∩ (X1 ×X2) = f , and vice versa.

For each X ′1
a

−−−→C1 X1 there exist X ′2
a

−−−→C2 X2 and f ′

such that (X ′1, X
′
2, f
′) ∈ B and f ∩ (X ′1 ×X ′2) = f ′, and vice versa.

(a . 0 ‖∅(b . 0 + c . 0)) + (a . 0 ‖∅ b . 0) + ((a . 0 + c . 0) ‖∅ b . 0) and
(a . 0 ‖∅(b . 0 + c . 0)) + ((a . 0 + c . 0) ‖∅ b . 0) are not ∼HHPB-equiv.

Even finer variant considering not only outgoing transitions
but also incoming transitions (Bednarczyk 1991).

Its distinguishing power does not change if instead of actions
we consider action multisets or pomsets as transition labels.

Two stable configuration structures Ck = (Ek, Ck, `k) for k ∈ {1, 2}
are hereditary history-preserving bisimilar, written C1 ∼HHPB C2,
iff there exists a relation B ⊆ C1 × C2 × P(E1 × E2) such that:

(∅, ∅, ∅) ∈ B.
Whenever (X1, X2, f) ∈ B, then f is a bijection from X1 to X2

that preserves causality and labeling and for all actions a ∈ A:

For each X1

a
−−−→C1 X

′
1 there exist X2

a
−−−→C2 X

′
2 and f ′

such that (X ′1, X
′
2, f
′) ∈ B and f ′ ∩ (X1 ×X2) = f , and vice versa.

For each X ′1
a

−−−→C1 X1 there exist X ′2
a

−−−→C2 X2 and f ′

such that (X ′1, X
′
2, f
′) ∈ B and f ∩ (X ′1 ×X ′2) = f ′, and vice versa.

(a . 0 ‖∅(b . 0 + c . 0)) + (a . 0 ‖∅ b . 0) + ((a . 0 + c . 0) ‖∅ b . 0) and
(a . 0 ‖∅(b . 0 + c . 0)) + ((a . 0 + c . 0) ‖∅ b . 0) are not ∼HHPB-equiv.

Even finer variant considering not only outgoing transitions
but also incoming transitions (Bednarczyk 1991).

Its distinguishing power does not change if instead of actions
we consider action multisets or pomsets as transition labels.

Two stable configuration structures Ck = (Ek, Ck, `k) for k ∈ {1, 2}
are hereditary history-preserving bisimilar, written C1 ∼HHPB C2,
iff there exists a relation B ⊆ C1 × C2 × P(E1 × E2) such that:

(∅, ∅, ∅) ∈ B.
Whenever (X1, X2, f) ∈ B, then f is a bijection from X1 to X2

that preserves causality and labeling and for all actions a ∈ A:

For each X1

a
−−−→C1 X

′
1 there exist X2

a
−−−→C2 X

′
2 and f ′

such that (X ′1, X
′
2, f
′) ∈ B and f ′ ∩ (X1 ×X2) = f , and vice versa.

For each X ′1
a

−−−→C1 X1 there exist X ′2
a

−−−→C2 X2 and f ′

such that (X ′1, X
′
2, f
′) ∈ B and f ∩ (X ′1 ×X ′2) = f ′, and vice versa.

(a . 0 ‖∅(b . 0 + c . 0)) + (a . 0 ‖∅ b . 0) + ((a . 0 + c . 0) ‖∅ b . 0) and
(a . 0 ‖∅(b . 0 + c . 0)) + ((a . 0 + c . 0) ‖∅ b . 0) are not ∼HHPB-equiv.

In the true concurrency spectrum of bisimilarity, ∼HPB and ∼HHPB

respectively are the coarsest and the finest behavioral equivalences:

Capable of respecting causality, branching, and their interplay
while abstracting from choices between identical alternatives (a+ a = a).
Preserved under action refinement (substituting processes for actions).

Similar properties are valid for ST-bisimilarity, which does not rely
on a partial order semantics (Van Glabbeek & Vaandrager 1987;
Aceto & Hennessy 1993).

∼HHPB can be obtained as a special case of a categorical definition
of bisimilarity on concurrency models (Joyal, Nielsen, Winskel 1996).

∼HHPB is akin to other bisimilarities defined over reversible systems
(De Nicola, Montanari, Vaandrager 1990; Danos & Krivine 2004;
Phillips & Ulidowski 2007, 2012; Aubert & Cristescu 2020).

∼HHPB coincides with forward-reverse bisimilarity enriched with
backward ready multiset equality (Bernardo et al 2025).

In the true concurrency spectrum of bisimilarity, ∼HPB and ∼HHPB

respectively are the coarsest and the finest behavioral equivalences:

Capable of respecting causality, branching, and their interplay
while abstracting from choices between identical alternatives (a+ a = a).
Preserved under action refinement (substituting processes for actions).

Similar properties are valid for ST-bisimilarity, which does not rely
on a partial order semantics (Van Glabbeek & Vaandrager 1987;
Aceto & Hennessy 1993).

∼HHPB can be obtained as a special case of a categorical definition
of bisimilarity on concurrency models (Joyal, Nielsen, Winskel 1996).

∼HHPB is akin to other bisimilarities defined over reversible systems
(De Nicola, Montanari, Vaandrager 1990; Danos & Krivine 2004;
Phillips & Ulidowski 2007, 2012; Aubert & Cristescu 2020).

∼HHPB coincides with forward-reverse bisimilarity enriched with
backward ready multiset equality (Bernardo et al 2025).

Modal logics by Baldan & Crafa and Phillips & Ulidowski (2014).

What about axiomatizations of truly concurrent bisimilarities?

In the interleaving semantics the expansion law is used to identify
processes such as a . 0 ‖∅ b . 0 and a . b . 0 + b . a . 0.

In the truly concurrent semantics it is used instead to distinguish
processes like the aforementioned two.

This requires an extension of the syntax of action prefix with
suitable discriminating information.

Pomset bisimilarity: instead of a single action, a prefix may contain
the combination of concurrent or causally related actions, so that
the former process expands to a . b . 0 + b . a . 0 + (a ‖ b) . 0.

FR and HHP bisimilarities: every action is enriched with the backward
ready set or multiset of the process reached by executing that action,
so we obtain <a, {a}> .<b, {a, b}> . 0 +<b, {b}> .<a, {b, a}> . 0
as opposed to <a, {a}> .<b, {b}> . 0 +<b, {b}> .<a, {a}> . 0.

Modal logics by Baldan & Crafa and Phillips & Ulidowski (2014).

What about axiomatizations of truly concurrent bisimilarities?

In the interleaving semantics the expansion law is used to identify
processes such as a . 0 ‖∅ b . 0 and a . b . 0 + b . a . 0.

In the truly concurrent semantics it is used instead to distinguish
processes like the aforementioned two.

This requires an extension of the syntax of action prefix with
suitable discriminating information.

Pomset bisimilarity: instead of a single action, a prefix may contain
the combination of concurrent or causally related actions, so that
the former process expands to a . b . 0 + b . a . 0 + (a ‖ b) . 0.

FR and HHP bisimilarities: every action is enriched with the backward
ready set or multiset of the process reached by executing that action,
so we obtain <a, {a}> .<b, {a, b}> . 0 +<b, {b}> .<a, {b, a}> . 0
as opposed to <a, {a}> .<b, {b}> . 0 +<b, {b}> .<a, {a}> . 0.

Modal logics by Baldan & Crafa and Phillips & Ulidowski (2014).

What about axiomatizations of truly concurrent bisimilarities?

In the interleaving semantics the expansion law is used to identify
processes such as a . 0 ‖∅ b . 0 and a . b . 0 + b . a . 0.

In the truly concurrent semantics it is used instead to distinguish
processes like the aforementioned two.

This requires an extension of the syntax of action prefix with
suitable discriminating information.

Pomset bisimilarity: instead of a single action, a prefix may contain
the combination of concurrent or causally related actions, so that
the former process expands to a . b . 0 + b . a . 0 + (a ‖ b) . 0.

FR and HHP bisimilarities: every action is enriched with the backward
ready set or multiset of the process reached by executing that action,
so we obtain <a, {a}> .<b, {a, b}> . 0 +<b, {b}> .<a, {b, a}> . 0
as opposed to <a, {a}> .<b, {b}> . 0 +<b, {b}> .<a, {a}> . 0.

Modal logics by Baldan & Crafa and Phillips & Ulidowski (2014).

What about axiomatizations of truly concurrent bisimilarities?

In the interleaving semantics the expansion law is used to identify
processes such as a . 0 ‖∅ b . 0 and a . b . 0 + b . a . 0.

In the truly concurrent semantics it is used instead to distinguish
processes like the aforementioned two.

This requires an extension of the syntax of action prefix with
suitable discriminating information.

Pomset bisimilarity: instead of a single action, a prefix may contain
the combination of concurrent or causally related actions, so that
the former process expands to a . b . 0 + b . a . 0 + (a ‖ b) . 0.

FR and HHP bisimilarities: every action is enriched with the backward
ready set or multiset of the process reached by executing that action,
so we obtain <a, {a}> .<b, {a, b}> . 0 +<b, {b}> .<a, {b, a}> . 0
as opposed to <a, {a}> .<b, {b}> . 0 +<b, {b}> .<a, {a}> . 0.

Causal bisimilarity corresponds to history-preserving bisimilarity
(Darondeau & Degano 1990).

Every action is enriched with the set of its causing actions,
each expressed as a backward pointer.

The former expands to <a, ∅> .<b, ∅> . 0 +<b, ∅> .<a, ∅> . 0
while the latter gets <a, ∅> .<b, {1}> . 0 +<b, ∅> .<a, {1}> . 0.

Location bisimilarity corresponds to local history-preserving bisim.
(Boudol, Castellani, Hennessy, Kiehn 1994; Castellani 1995)
and distributed bisimilarity in the absence of synchronization
(Castellani 1988; Castellani & Hennessy 1989).

Every action is enriched with the name of the location
in which it is executed.

The former expands to <a, la> .<b, lb> . 0 +<b, lb> .<a, la> . 0
while the latter gets <a, la> .<b, lalb> . 0 +<b, lb> .<a, lbla> . 0.

Causal bisimilarity corresponds to history-preserving bisimilarity
(Darondeau & Degano 1990).

Every action is enriched with the set of its causing actions,
each expressed as a backward pointer.

The former expands to <a, ∅> .<b, ∅> . 0 +<b, ∅> .<a, ∅> . 0
while the latter gets <a, ∅> .<b, {1}> . 0 +<b, ∅> .<a, {1}> . 0.

Location bisimilarity corresponds to local history-preserving bisim.
(Boudol, Castellani, Hennessy, Kiehn 1994; Castellani 1995)
and distributed bisimilarity in the absence of synchronization
(Castellani 1988; Castellani & Hennessy 1989).

Every action is enriched with the name of the location
in which it is executed.

The former expands to <a, la> .<b, lb> . 0 +<b, lb> .<a, la> . 0
while the latter gets <a, la> .<b, lalb> . 0 +<b, lb> .<a, lbla> . 0.

