Signal integrity in deep-sub-micron integrated circuits

Alessandro Bogliolo
abogliolo@ing.unife.it

Outline

• Introduction
 – General signaling scheme

• Noise sources and effects in DSM ICs
 – Supply noise
 – Synchronization noise
 – Cross talk
 – Inter-symbol interference

• Design for signal integrity
 – Power distribution network
 – Clock distribution network
 – Cross-talk immune/aware design
 – Noise margins
 – Binary encodings
Introduction

• Trends in DSM ICs
 – Chip size
 – Component size
 – Supply voltage
 – Voltage threshold
 – Performance

• Communication issues in DSM SoC
 – Routability
 – Performance
 – Power
 – Reliability

Signaling scheme (1)

©Alessandro Bogliolo
Signaling scheme (2)

Outline

• Introduction
 – General signaling scheme

• Noise sources and effects in DSM ICs
 – Supply noise
 – Synchronization noise
 – Cross talk
 – Inter-symbol interference

• Design for signal integrity
 – Power distribution network
 – Clock distribution network
 – Cross-talk immune/aware design
 – Noise margins
 – Binary encodings
Common-mode supply noise

\[V_{dd} + V_{nd}(t) \]
\[Gnd + V_{ng}(t) \]
\[V_{in} \rightarrow V_{out} \]

\[V_{dd} \]
\[V_{nd}(t) = V_{ng}(t) = V_n(t) \]

\[V_n \] directly affects \[V_{in} \] and \[V_{out} \]

\[V_{out} = F(V_{in} - V_n) + V_n \]

\[t_r \neq t_f \]

©Alessandro Bogliolo

Differential supply noise

\[V_{dd} + V_{nd}(t) \]
\[Gnd + V_{ng}(t) \]
\[V_{in} \rightarrow V_{out} \]

\[V_{dd} \]
\[V_{nd}(t) = -V_{ng}(t) = V_n(t) \]

\[V_n \] affects performance and swing

©Alessandro Bogliolo
Supply noise sources (1)

\[V_{ddR} = V_{ddT} - Z_d I_d = V_{ddT} - V_n \]
\[Gnd_R = Gnd_T - Z_g I_g = Gnd_T - V_n \]

[Equation]

\[V_{out} = F(V_{in} + V_n) - V_n \]
\[t_r < t_f \]
\[V_{ltR} = V_{ltT} - V_n \]
\[t_{p1-0} > t_{p0-1} \]

©Alessandro Bogliolo

Supply noise sources (2)

\[V_{ddR} = V_{ddT} + Z_d I_d = V_{ddT} + V_n \]
\[Gnd_R = Gnd_T + Z_g I_g = Gnd_T + V_n \]

[Equation]

\[V_{out} = F(V_{in} - V_n) + V_n \]
\[t_{raise} > t_{fall} \]
\[V_{ltR} = V_{ltT} + V_n \]
\[t_{p1-0} < t_{p0-1} \]

©Alessandro Bogliolo
Supply noise sources (3)

\[V_{ddR} = V_{ddT} - Z_d I_d = V_{ddT} - V_n \]
\[Gnd_R = Gnd_T + Z_g I_g = Gnd_T + V_n \]

\[t_{raise} = t_{fall} < t_{rf-nom} \]
\[V_{lt} R = V_{lt} T \]
\[t_{p1-0} = t_{p0-1} \]

Supply noise sources (4)

\[V_{ddR} = V_{ddT} + Z_d I_d = V_{ddT} + V_n \]
\[Gnd_R = Gnd_T + Z_g I_g = Gnd_T - V_n \]

\[t_{raise} = t_{fall} > t_{rf-nom} \]
\[V_{lt} R = V_{lt} T \]
\[t_{p1-0} = t_{p0-1} \]
Outline

- Introduction
 - General signaling scheme
- Noise sources and effects in DSM ICs
 - Supply noise
 - Synchronization noise
 - Cross talk
 - Inter-symbol interference
- Design for signal integrity
 - Power distribution network
 - Clock distribution network
 - Cross-talk immune/aware design
 - Noise margins
 - Binary encodings

Nominal condition
Clock skew

Clock jitter
Outline

- Introduction
 - General signaling scheme

- Noise sources and effects in DSM ICs
 - Supply noise
 - Synchronization noise
 - Cross talk
 - Inter-symbol interference

- Design for signal integrity
 - Power distribution network
 - Clock distribution network
 - Cross-talk immune/aware design
 - Noise margins
 - Binary encodings

Cross talk

\[C = \frac{K \varepsilon_0 A}{d} \]

©Alessandro Bogliolo
Cross talk (scaling)

Victim
Constant (Gnd)
Aggressor

STM 0.18µm

<table>
<thead>
<tr>
<th></th>
<th>W_min</th>
<th>T</th>
<th>S_min</th>
<th>H</th>
<th>KL</th>
<th>KV</th>
<th>p/H</th>
</tr>
</thead>
<tbody>
<tr>
<td>M6</td>
<td>0.64</td>
<td>0.92</td>
<td>0.64</td>
<td>4.3</td>
<td>4.3</td>
<td>0.035</td>
<td></td>
</tr>
<tr>
<td>M5</td>
<td>0.64</td>
<td>0.92</td>
<td>0.64</td>
<td>4.3</td>
<td>4.3</td>
<td>0.035</td>
<td></td>
</tr>
<tr>
<td>M4</td>
<td>0.32</td>
<td>0.5</td>
<td>0.32</td>
<td>0.7</td>
<td>3.1</td>
<td>4.2</td>
<td>0.067</td>
</tr>
<tr>
<td>M3</td>
<td>0.32</td>
<td>0.5</td>
<td>0.32</td>
<td>0.7</td>
<td>3.1</td>
<td>4.2</td>
<td>0.067</td>
</tr>
<tr>
<td>M2</td>
<td>0.32</td>
<td>0.5</td>
<td>0.32</td>
<td>0.7</td>
<td>3.1</td>
<td>4.2</td>
<td>0.067</td>
</tr>
<tr>
<td>M1</td>
<td>0.32</td>
<td>0.5</td>
<td>0.32</td>
<td>0.7</td>
<td>3.1</td>
<td>4.2</td>
<td>0.067</td>
</tr>
</tbody>
</table>

©Alessandro Bogliolo
Cross talk: floating victim

\[\Delta V_v = \Delta V_a \cdot \frac{C_c}{C_g + C_c} \]

Cross talk: driven quiet victim

\[\Delta V_v = \Delta V_a \cdot \frac{C_c}{C_g + C_c} \]

\[C_a = C_c + C_g \]
Cross talk: switching victim (1)

Cross talk: switching victim (2)
Outline

- Introduction
 - General signaling scheme

- Noise sources and effects in DSM ICs
 - Supply noise
 - Synchronization noise
 - Cross talk
 - Inter-symbol interference

- Design for signal integrity
 - Power distribution network
 - Clock distribution network
 - Cross-talk immune/aware design
 - Noise margins
 - Binary encodings

©Alessandro Bogliolo

Inter-symbol interference (ISI): LC

\[K_{rT} = \frac{Z_r - Z_o}{Z_r + Z_o} \]

\[K_{rS} = \frac{Z_s - Z_o}{Z_s + Z_o} \]

©Alessandro Bogliolo
Inter-symbol interference (ISI): LC

- $Z_S = 0, \ Z_T = Z_O$
- $Z_S > 0, \ Z_T = Z_O$
- $Z_S < Z_O, \ Z_T = \infty$
- $Z_S = Z_O, \ Z_T = \infty$

Inertial delay: time required by a node/line of a logic circuit to reach its steady state value.

Inter-symbol interference (ISI): RC

- Inertial delay: time required by a node/line of a logic circuit to reach its steady state value.
- There is ISI whenever the cycle time (i.e., the symbol time) is lower than the inertial delay of a node/line.

©Alessandro Bogliolo
Outline

- Introduction
 - General signaling scheme
- Noise sources and effects in DSM ICs
 - Supply noise
 - Synchronization noise
 - Cross talk
 - Inter-symbol interference
- Design for signal integrity
 - Power distribution network
 - Clock distribution network
 - Cross-talk immune/aware design
 - Noise margins
 - Binary encodings

Power distribution network

\[
R_p = \frac{I_p r_{n_s}}{2N W_p} \\
A_p = \frac{L_p W_p}{2N k_p} \\
I_{pk} = \frac{C_{dd} Vdd}{t_c} \\
I_p = I_{pk} N_{space} \frac{A_p}{A} \\
V_{drop} = \sum_{i=1}^{N/2} I_p R_p \\
\]

©Alessandro Bogliolo
Clock distribution tree

- Circuit partitioning
- Buffer tree
- Balanced paths
- Meshing
- Transitions:
 - fast for jitter
 - slow for crosstalk

Cross-talk-aware design

- Careful routing
- Regular fabrics
 - Signal
 - Power
 - Ground
- Compensation
 - Symmetric aggressors
- As slow as possible transitions
- Reduced use of floating nodes
Eye opening

Noise margins

©Alessandro Bogliolo
NSR of V_{Rout}

Back prop. of NSR from V_{Rout} to V_{Rin}
Back prop. of NSR from V_{Rout} to V_{Rin}

NSR of V_{Rin}

©Alessandro Bogliolo
Limiting bit rate

The bit rate is limited by:
1. the size (and shape) of the NSR of each bit
2. the maximum slope of V_{Rin}, determined in its turn by the RC product

Receivers with hysteresis:
Schmitt trigger
Back propagation with hysteresis (1)

\[V_{H_{\text{min}}} - A_{V_H} + dA_{V_H} + V_{\text{noise}} \]
\[V_{L_{\text{max}}} + A_{V_{LL}} - dA_{V_{LL}} - V_{\text{noise}} \]

\[t_0 - T_{\text{prop}} - T_{NS} - T_{NR} - T_{NC} \]

Back propagation with hysteresis (2)

\[V_{H_{\text{min}}} - A_{V_{HH}} + dA_{V_{HH}} + V_{\text{noise}} \]
\[V_{L_{\text{max}}} + A_{V_{LL}} - dA_{V_{LL}} - V_{\text{noise}} \]

\[t_0 - T_{\text{prop}} + T_{NS} + T_{NR} + T_{NC} \]
The bit rate is limited by:
1. the size (and shape) of the NSR of each bit
2. the maximum slope of V_{Rin}, determined in its turn by the RC product

©Alessandro Bogliolo
A physical channel can be used at twice its limiting bit rate to transmit bit streams with no isolated bits.
Bit-level encodings

- **Error-detecting codes**
 - Allow the receiver to detect a given set of random errors on the received stream
 - Possibly combined with re-transmission protocols
- **Error-correcting codes**
 - Allow the receiver to correct a given set of random errors possibly affecting the received stream
- **Low-power encodings**
 - Reduce the average switching activity on long interconnects
- **Constrained encodings**
 - Avoid noise-sensitive conditions and ISI

Bibliography