Authentication Tests and the Structure of Bundles

Joshua D. Guttman F. Javier Thayer

September 2000

MITRE

Today's Lecture

+

- Authentication Tests:
 - How to find out what a protocol achieves
 - How to prove it achieves that
 - Methods to establish
 - Secrecy (especially of keys)
 - Authentication
- Justifying authentication tests
 - Equivalence of bundles
 - Graph operations to simplify bundles
 - Well-behaved bundles
 - Paths through bundles
 - Transforming edges and pedigrees
 - The secrecy theorem
 - Authentication test theorems

MITRE

Needham-Schroeder-Lowe Protocol

 $\mathsf{NSLInit}[A, B, N_1, N_2]$

 $NSLResp[A, B, N_1, N_2]$

MITRE

2000.9.27

+

Secrecy of Keys in Needham-Schroeder-Lowe

- ullet Some keys $K_{\mathcal{P}}$ are known initially to penetrator
 - Any public key
 - Private keys of malicious principals
 - Private keys carelessly disclosed or stored in compromised devices
- No keys are disclosed in protocol

$$K \sqsubseteq t$$
 implies $t \neq \operatorname{term}(n)$ for any regular node n

- What the penetrator does not know, he cannot learn
 - Any key not in $K_{\mathcal{P}}$
 - All other keys immediately safe, called S_0

MITRE

Carlsen Protocol

+

S's behavior: $CServ[A, B, N_a, N_b, K]$ A's behavior: $CInit[A, B, N_a, K, N_b']$

B's behavior: CResp $[A, B, N_a, N_b, K, N_b', H]$

with trace

$$-A N_a + A N_a B N_b - \{|K N_b A|\}_{K_B} H$$
$$+H \{|N_a|\}_K N_b' - \{|N_b'|\}_K$$

MITRE

+ 2000.9.27

Secrecy in Carlsen, I Safety

- ullet Some keys $K_{\mathcal{P}}$ known initially to penetrator
 - Long-term keys: malice or compromise
 - Old compromised session keys
- Protocol disclosures on regular nodes
 - Long-term keys never disclosed in protocol $K_A \in S_0$ unless $K_A \in \mathcal{K}_{\mathcal{P}}$
 - H terms: No new disclosureRetransmission preserves safety
 - Session keys packed via long-term keys
- Keys in new context: protection by safe key gives derivative safety

```
If K occurs new only in \{|\cdots K\cdots|\}_{K_A} and K_A\in\mathcal{S}_i then K\in\mathcal{S}_{i+1}
```

MITRE

Components, "New"

ullet Term t_0 is a component of t, written $|t_0| \sqsubset t$

If
$$t \in T \cup K$$
, then $\boxed{t} \sqsubseteq t$
If $t = \{|h|\}_K$, then $\boxed{t} \sqsubseteq t$
 $\boxed{t_0} \sqsubseteq g$ implies $\boxed{t_0} \sqsubseteq g$ h

$$t_0 \sqsubset h \text{ implies } t_0 \sqsubset g h$$

Largest non-concatenated part

• E.g.: $N_b \{ |K| N_b A \}_{K_B} \{ |N_a| B K \}_{K_A}$

$$\boxed{\{|K\ N_b\ A|\}_{K_B}} \boxed{\{|N_a\ B\ K|\}_{K_A}}$$

$$[\{N_a \ B \ K]\}_{K_A}$$

- Penetrator controls concatenation fully
- $\bullet \boxed{t_0}^{\mathsf{new}} \sqsubseteq \mathsf{term}(n) \mathsf{means}$
 - $|t_0| \sqsubset \operatorname{term}(n)$
 - If $n' \Rightarrow^+ n$ then $t_0 \not\sqsubset term(n')$

MITRE

Carlsen: New Components with Keys as Subterms

- Key server (probabilistically) chooses session keys
 - Never used previously
 - Disjoint from long-term keys K_A
 - Not in $K_{\mathcal{P}}$
- \bullet CServ[**, K] has at most one strand
- \bullet $K_A, K_B \in S_0$ implies $K \in S_1$

MITRE

2000.9.27

Key Safety

+

- ullet K unsafe if $K \not\in S_i$ for all i
 - Define $S = \bigcup_i S_i$
- For almost all protocols, either
 - $K \in \mathcal{S}_0$, or
 - $K \in S_1$, or
 - $K \not\in S$ K unsafe
- Theorem (proof later):

If n a node in bundle $\mathcal C$ and $\operatorname{term}(n) = K$ then $K \not \in \mathcal S$

- "Syntactic" property of protocol entails dynamic property of executions (bundles)
 - S depends on individual regular strands

MITRE

Authentication Tests

MITRE

+ 2000.9.27

NSL: Responder's Guarantee

Suppose:

+

$$K_A^{-1}$$
 safe N_2 uniquely originating

- \bullet Responder's edge $\{\mid\! N_1 \mid\! N_2 \mid\! B\mid\!\}_{K_A} \Rightarrow \{\mid\! N_2\mid\!\}_{K_B}$ is a test
 - Penetrator can't decrypt $\{|N_1 N_2 B|\}_{K_A}$
 - Super-encrypting does no good
 - Penetrator's only choice: discard it or deliver it?
- ullet If responder receives $\{|N_2|\}_{K_B}$ then test value was delivered
 - But to whom? Which regular strands will receive, change $\{|N_1 N_2 B|\}_{K_A}$?
 - Only regular strand $NSLInit[A, B, N_1, N_2]$, at node 2

MITRE

The Anatomy of the Case, I

- Find values originating uniquely on $s_r \in \mathsf{NSLResp}[A, B, N_a, N_b]$
 - N_b only, on node $n_0 = s_r \downarrow 2$ in component $\{|N_a \ N_b \ B|\}_{K_A}$
- Find negative (receiving) nodes containing N_b $n_1 = s_r \downarrow 3$ with term $\{|N_b|\}_{K_B}$
- Check:

+

- K_A^{-1} is safe
- $\{|\tilde{N}_a|N_b|B\}_{K_A}$ not a subterm of a regular node
- N_b occurs in only one component of n_0
- ullet Therefore, $n_0 \Rightarrow n_1$ is an "outgoing test"

MITRE

Outgoing Test

a uniquely originates at \star t means a component

MITRE

+ 2000.9.27

NSL Responder Test

MITRE

+ 2000.9.27

Transforming Edge

- $n \Rightarrow + n'$ is a transforming edge for a if:
 - n negative
 - n' positive
 - $a \sqsubset \boxed{t} \sqsubset \mathsf{term}(n')$
 - t new at n'
- A transforming edge does cryptographic work
 - Creates, transmits new component
- Outgoing test entails regular transforming edge

MITRE

The Anatomy of the Case, II

- ullet Since $n_0 \Rightarrow n_1$ is an outgoing test, there's a regular transforming edge $m_0 \Rightarrow m_1$ such that
 - $\begin{array}{c|c} & \hline{\{|N_a\;N_b\;B|\}_{K_A}} \sqsubset \mathsf{term}(m_0) \\ & m_0\;\mathsf{negative} \end{array} \quad (\mathsf{receiving})$

 - m_1 contains N_b in a new component
- Inspecting protocol, $m_0 = s_i \downarrow 2$, where $s_i \in \mathsf{NSLInit}[A, B, N_a, N_b]$, so
 - $-m_1=s_i\downarrow 3$
 - s_i has C-height 3
- This is the NSL responder's guarantee

MITRE

Outgoing test Authentication

$$\star a \sqsubseteq \boxed{\{ |h| \}_K} \quad K^{-1} \in \mathcal{S}$$

"•" means the test shows this regular node exists† this node depends on extra conditions

MITRE

NSL Responder Authentication

Outgoing test establishes

nodes present and non-penetrator

MITRE

- 2000.9.27

+

Original Needham-Schroeder

 $NSInit[A, B, N_1, N_2]$

 $NSResp[A, B, N_1, N_2]$

MITRE

+ 2000.9.27

+

Original NS Responder's Guarantee

- Suppose again:
 - K_A^{-1} safe N_2 uniquely originating
- ullet Responder's edge $\{|N_1 \ N_2|\}_{K_A} \Rightarrow \{|N_2|\}_{K_B}$ is a test
 - Penetrator can't decrypt $\{|N_1 N_2|\}_{K_A}$
 - Super-encrypting does no good
 - Penetrator's only choice: discard it or deliver it?
- If responder receives $\{|N_2|\}_{K_B}$, then test value was delivered
 - But to whom?
 - Only regular strand NSInit[$A, *, N_1, N_2$] can receive $\{|N_1, N_2|\}_{K_A}$ and change it
- Whoops: What if $* \neq B$?
 - Unintended service!

MITRE

Anatomy of Original NS

- Part I identifies outgoing test, as in NSL
- Since $n_0 \Rightarrow n_1$ is an outgoing test, there's a regular $m_0 \Rightarrow m_1$ such that
 - $\overline{\{|N_a N_b|\}_{K_A}} \sqsubset \operatorname{term}(m_0)$
 - $\overline{m_0}$ negative (receiving)
- Inspecting protocol, $m_0 = s_i \downarrow 2$, where $s_i \in \mathsf{NSInit}[A, *, N_a, N_b]$, so
 - $m_1 = s_i \downarrow 3$
 - s_i has \mathcal{C} -height 3
- This is the NS responder's guarantee;
 B unconstrained

MITRE

NSL Initiator's Guarantee, I

Suppose:

+

$$K_B^{-1}$$
 safe

 N_1 uniquely originating

- \bullet Initiator's edge $\{\mid\!N_1\;A\mid\!\}_{K_B}\Rightarrow \{\mid\!N_1\;N_2\;B\mid\!\}_{K_A}$ is a test
 - Penetrator can't decrypt $\{|N_1|A|\}_{K_B}$
 - Super-encrypting does no good
 - Penetrator's only choice: discard it or deliver it?
- ullet If initiator receives $\{|N_1\;N_2\;B|\}_{K_A}$ then it was delivered
 - But to whom? Which regular strands will receive, change $\{|N_1|A|\}_{K_B}$?
 - Only regular strand $s_r \in \mathsf{NSResp}[A,B,N_1,*],$ at node 1

MITRE

NSL Initiator Authentication, I

MITRE

23

2000.9.27

NSL Initiator's Guarantee, II

- Suppose K_A^{-1} also safe
- Penetrator choice: discard or deliver $\{|N_1 * B|\}_{K_A}$
 - Must have delivered it to a regular strand, an initiator strand $NSInit[A, B, N_1, *]$
 - But N_1 originates uniquely on a strand in NSInit[A, B, N_1, N_2]
- So $* = N_2$ and $s_r \in \mathsf{NSResp}[A, B, N_1, N_2]$
- Uses additional node in Outgoing Test Authentication

MITRE

NSL Initiator Authentication, II

because of unique origination of N_a

MITRE

25

Exercise: Otway-Rees

+

$$M_{1} = M A B \{ |N_{a} M A B| \}_{K_{AS}}$$

$$M_{2} = M A B \{ |N_{a} M A B| \}_{K_{AS}} \{ |N_{b} M A B| \}_{K_{BS}}$$

$$M_{3} = M \{ |N_{a} K_{AB}| \}_{K_{AS}} \{ |N_{b} K_{AB}| \}_{K_{BS}}$$

$$M_{4} = M \{ |N_{a} K_{AB}| \}_{K_{AS}}$$

What authentication properties does this protocol achieve?

MITRE

The Server's Guarantee

Unsolicited Test:

In Otway-Rees

Suppose $s_s \in \text{Serv}[A, B, M, N_a, N_b, *]$ has C-height 1:

- $K_A \not\in \mathcal{K}_{\mathcal{P}}$ implies some $s_i \in \operatorname{Init}[A, B, M, N_a, *]$ has \mathcal{C} -height 1
- $ullet K_B
 ot\in \mathcal{K}_{\mathcal{P}} \text{ implies}$ some $s_r \in \operatorname{Resp}[A,B,M,N_b,*]$ has $\mathcal{C}\text{-height }1$

MITRE

27

Incoming Test Authentication

MITRE

28

+ 2000.9.27

Justifying Authentication Tests

MITRE

29

+ 2000.9.27

Goals for this Hour

- Justify authentication test method
 - Use three ideas
 - Use equivalence relation on bundles Security goals invariant under equivalence
 - Focus on "well-behaved" bundles
 For every bundle, an equivalent
 well-behaved bundle exists
 - Consider paths through bundles
- Tomorrow: Apply same proof methods to protocol mixing

MITRE

Definition: Bundles

A subgraph C of G_{Σ} is a *bundle* if C is finite and causally well-grounded, which means:

- 1. If $n_2 \in \mathcal{C}$ negative, there is a unique $n_1 \to n_2$ in \mathcal{C} (everything heard was said)
- 2. If $s \downarrow i + 1 \in \mathcal{C}$, then $s \downarrow i \Rightarrow s \downarrow i + 1$ in \mathcal{C} (everyone starts at the beginning)
- 3. C is acyclic (time never flows backward)

Causal partial ordering $n_1 \preceq_{\mathcal{C}} n_2$ means n_2 reachable from n_1 via arrows in \mathcal{C}

Induction: If $S \subset \mathcal{C}$ is a non-empty set of nodes, it contains $\preceq_{\mathcal{C}}$ -minimal members

MITRE

Equivalent Bundles

- ullet Bundles $\mathcal{C}, \mathcal{C}'$ are equivalent iff they have the same regular nodes
 - Written $C \equiv C'$
 - Penetrator nodes may differ arbitrarily
 - Ordering ≤ may differ arbitrarily
- Authentication goals invariant under equivalence
- ullet Secrecy goals may be expressed in invariant form Define v "uncompromised" in $\mathcal C$ to mean:

```
 \text{if} \quad \text{for all } \mathcal{C}' \equiv \mathcal{C} \text{ and } n \in \mathcal{C}', \\ \text{then} \quad v \not\sqsubset_{\emptyset} \text{term}(n)
```

• "Regular nodes" means non-penetrator nodes $v \sqsubseteq_{\emptyset} t$ concatenating v to other terms yields t (v is visible in t, not protected by encryption)

MITRE

Paths and Normality

MITRE

2000.9.27

+

Graph Operations

- A graph operation may:
 - Delete penetrator strands
 - Add edges $n \to n'$ with term(n) = +a, term(n') = -a
 - Delete edges $n \to n'$
- ullet A graph operation yields graph \mathcal{C}'
 - C' not necessarily a bundle
 - But if it is a bundle, then $\mathcal{C}' \equiv \mathcal{C}$

MITRE

Loneliness

+

- A lonely node in a graph has no edge
 - No incoming edge if negative
 - No outgoing edge if positive
- In definition of bundle:
 - Lonely negative nodes are ruled out:
 You can't hear something if nobody says it
 - Lonely positive nodes are allowed:
 Nobody hears what you say

MITRE

Gregariousness

+

- A gregarious node in a graph has
 - Several incoming edges if negative
 - Several outgoing edges if positive
- In definition of bundle:
 - Gregarious negative nodes are ruled out:
 Hear the soloists, not the choir
 - Gregarious positive nodes are allowed:
 Many people hear your words

MITRE

When are Graph Operations OK?

Suppose \mathcal{C}' is obtained from bundle \mathcal{C} by a graph operation such that

- ullet For any edge new $n\mapsto n'$ of \mathcal{C}' , $n\preceq_{\mathcal{C}} n'$
- ullet \mathcal{C}' has no lonely or gregarious negative nodes

Then

+

- \bullet \mathcal{C}' is a bundle
- $\bullet C' \equiv C$
- ullet The ordering $\preceq_{\mathcal{C}'}$ on \mathcal{C}' weakens the ordering $\preceq_{\mathcal{C}}$ on \mathcal{C}

E-D Redundancies

MITRE

+ 2000.9.27

+

c-s Redundancies

MITRE

+ 2000.9.27

+

Redundancy Elimination

- ullet Any bundle ${\mathcal C}$ is equivalent to a bundle ${\mathcal C}'$ with no redundancies. Moreover,
 - Penetrator nodes of \mathcal{C}' is a subset of penetrator nodes of \mathcal{C}
 - The ordering $\prec_{\mathcal{C}'}$ weakens the ordering $\prec_{\mathcal{C}}$
- Proof: Next two slides
- Consequence: Can assume attacker always

First Takes things apart

Next Puts things together

Then Delivers results

MITRE

E-D Redundancy Elimination

Discarded message

MITRE

c-s Redundancy Elimination

Discarded message

MITRE

42

Paths

+

- $m \Rightarrow ^+ n$ means n occurs after m on the same strand
- $m \longmapsto n$ means either 1 or 2:
 - 1. $m \rightarrow n$
 - 2. $m \Rightarrow ^+ n$ where term(m) negative and term(n) positive
- ullet Path p through \mathcal{C} : sequence $p_1 \longmapsto p_2 \longmapsto \cdots \longmapsto p_k$
 - Typically assume p_1 positive node, p_k negative node
 - Notation: |p| = k, $\ell(p) = p_k$
- ullet Penetrator path: p_j penetrator node, except possibly j=1 or j=k

A Penetrator Path

+

$$\begin{array}{c}
 & \times \\
 & \times \\$$

MITRE

+ 2000.9.27 44

Construction and Destruction

- \bullet A \Rightarrow +-edge between penetrator nodes is
 - Constructive if part of a E or C strand
 - Destructive if part of a D or S strand
 - Initial if part of a K or M strand
- Constructive edge followed by a destructive edge Possible forms:
 - Node on $\mathsf{E}_{h,K}$ immediately followed by node on $\mathsf{D}_{h,K}$ (for some h,K)
 - Node on $C_{g,h}$ immediately followed by node on $S_{g,h}$ (for some g,h)
- This uses freeness of term algebra

MITRE

Normality

+

- ullet Bundle ${\mathcal C}$ normal iff No penetrator path p has constructive \Rightarrow edge before destructive \Rightarrow edge
- Any bundle is equivalent to a normal one
 - Eliminate redundancies
 - No other constructive/destructive pairs by freeness

Rising and Falling Paths

- Definitions: (p a penetrator path)Rising $\operatorname{term}(p_i) \sqsubset \operatorname{term}(p_{i+1})$ Falling $\operatorname{term}(p_{i+1}) \sqsubset \operatorname{term}(p_i)$
- Destructive paths may not be falling:

Constructive paths may not be rising:

MITRE

47

Another Penetrator Path

+

MITRE

48

+ 2000.9.27

Paths that Avoid Key Edges

ullet If p is destructive and p never traverses D-key edge then p is falling

$$\mathsf{term}(\ell(p)) \sqsubseteq \mathsf{term}(p_1)$$

ullet If p is constructive and p never traverses E-key edge then p is rising

$$\operatorname{term}(p_1) \sqsubset \operatorname{term}(\ell(p))$$

ullet If bundle normal and p avoids key edges

$$p = q \rightarrow q'$$
 q falling
 q' rising

• $\operatorname{term}(\ell(q)) = \operatorname{term}(q'_1) = \operatorname{pbt}(p)$ called "path bridge term"

$$\mathsf{pbt}(p) \sqsubseteq p_1$$

 $\mathsf{pbt}(p) \sqsubseteq \ell(p)$

MITRE

Classifying Penetrator Paths

Let p penetrator path; traverse backward.
 It may either:

Reach an initial penetrator node (M, K) or Reach a non-initial E- or D-key edge or p_1 is regular

ullet If penetrator path p is useful, then either:

$$\ell(p)$$
 is regular or $\ell(p)$ is a key edge

ullet All penetrator activity divides into paths p where p never traverses key edge

```
p_1,\ell(p) both regular p_1 initial, \ell(p) reg. * \operatorname{term}(p_1) \sqsubset \operatorname{term}(\ell(p)) p_1 regular p_1 = \lim_{n \to \infty} K = \operatorname{term}(\ell(p)) * p_1 = \lim_{n \to \infty} F_1 = \lim_{n \to \infty} F_2
```

* If bundle $\mathcal C$ normal

MITRE

Falling Penetrator Paths

• Suppose p_i negative with 1 < i < |p|Then $term(p_i)$ not atomic and

either
$$term(p_i) = \{|h|\}_K$$
 and p_i on D or $term(p_i) = g \ h$ and p_i on S

- If p_i positive, $term(p_i) = term(p_{i+1})$
- ullet Suppose p traverses D with key edge K^{-1} only if $K \in \mathfrak{K}$

Then $term(\ell(p)) \sqsubseteq_{\mathfrak{K}} term(p_1)$

- Definition: $t_0 \sqsubseteq_{\mathfrak{K}} t$ iff t can be built from t_0 using only
 - concatenation (with anything)
 - encryption using $K \in \mathfrak{K}$

$$\cdots \{ | \cdots t_0 \cdots | \}_K \cdots$$

MITRE

Well-Behaved Bundles

MITRE

2000.9.27

+

Well-Behaved: Definition

- A bundle is well-behaved if
 - Normal
 - Efficient
 - Has simple bridges
- Will define "efficient," "simple bridges"
- Every bundle is equivalent to a well-behaved bundle

MITRE

An Inefficient Bundle

Note: This protocol is fictitious!

MITRE

| 2000.9.27

+

An Efficient Bundle

MITRE

| 2000.9.27

+

Efficient Bundles

- In efficient bundle, penetrator avoids unnecessary regular nodes
- ullet C is an efficient bundle iff: If m, n are nodes

n negative penetrator node every component of n is a component of m

Then there are no regular nodes m' such that $m \prec m' \prec n$

ullet For all \mathcal{C} , there exists \mathcal{C}' where

$$\mathcal{C} \equiv \mathcal{C}'$$

 \mathcal{C}' efficient, normal

MITRE

Simple Bridges

+

Simple term is either

An atomic value K, N_a , etc. An encryption $\{|h|\}_K$

Anything but a concatenation

- ullet $\mathcal C$ has simple bridges iff whenever p a penetrator path $\mathsf{pbt}(p)$ is simple
- ullet Every $\mathcal C$ has an equivalent $\mathcal C'$ with simple bridges

MITRE

+ 2000.9.27

Transforming Edges, Transformation Paths, Pedigree

Transformed and Transforming Edges

 $n_1 \Rightarrow^+ n_2$ is a transformed edge for $a \in A$ if $[n_1 \Rightarrow^+ n_2$ is a transforming edge for $a \in A$ if

- 1. n_1 is positive $[n_1$ is negative]
- 2. n_2 is negative $[n_2 \text{ is positive}]$
- 3. $a \sqsubset \operatorname{term}(n_1)$
- 4. There is a new component t_2 of n_2 such that $a \sqsubset t_2$
 - Penetrator transforming edge: either D or E

MITRE

Transformation Paths

ullet Path p with p_i labelled by component \mathcal{L}_i of p_i where $\mathcal{L}_i = \mathcal{L}_{i+1}$ unless $p_i \Rightarrow^+ p_{i+1}$ and

$$p_i \Rightarrow p_{i+1}$$
 and \mathcal{L}_{i+1} is new at p_{i+1}

- ullet \mathcal{L}_i is the "component of interest" at node p_i
- Example:

$$\langle (\pi_{1}, \{ \{N_{a} A\} \}_{K_{P}}), (\pi_{2}, \{ \{N_{a} A\} \}_{K_{P}}), (\pi_{3}, N_{a}), (\pi_{4}, N_{a}), (\pi_{5}, \{ \{N_{a} A\} \}_{K_{B}}), (\pi_{6}, \{ \{N_{a} A\} \}_{K_{B}}) \rangle$$

MITRE

Separated Transformation Paths

Theorem:

+

- Suppose $\mathcal C$ well-behaved and $(p,\mathcal L), \quad (p',\mathcal L')$ transformation paths $\ell(p) \prec m \prec p_1' \qquad m$ regular $p_1, \, \ell(p')$ simple
 - (not concatenated)
- \bullet Then $\mathcal{L}_i \neq \mathcal{L}_j'$ for all i,j where $1 \leq i \leq |p|$, $1 \leq j \leq |p'|$
- That means:

Never repeat component of interest when penetrator paths separated by regular nodes

Pedigree Path for *a*

ullet Transformation path p, \mathcal{L} where

```
a originates at p_1

a \sqsubseteq \mathcal{L}_i for all i

p does not traverse any D, E key edges
```

- Whenever $a \sqsubseteq \operatorname{term}(n)$, exists pedigree path with $\ell(p) = n$
 - Proof idea:
 Keep tracing backward,
 selecting components containing a
- Authentication test proof idea: Check which steps on pedigree path must occur on regular edges

MITRE

Key Safety, Authentication Tests Justified

Penetrable Keys, Safe Keys

$$P_0 = \mathcal{K}_{\mathcal{P}}$$
 $K \in P_{i+1}$ iff
exists n regular, positive, with
$$K \sqsubseteq_{\mathfrak{K}} \boxed{t}^{\mathsf{new}} \sqsubseteq \mathsf{term}(n), \text{ and}$$
for all $K_0 \in \mathfrak{K}, \quad K_0^{-1} \in P_i$
 $P = \bigcup_i P_i$

ullet Let $\mathcal C$ be a bundle

$$\begin{array}{ll} \text{If} & n \in \mathcal{C} \\ \text{and} & \operatorname{term}(n) = K \\ \text{then} & K \in P \end{array}$$

- Proof idea:
 - Use "Classifying Penetrator Paths"
 - Use "Falling Penetrator Paths"
- \bullet $S \cap P = \emptyset$

MITRE

64

Outgoing test Authentication

The test shows the β regular nodes exist. Proof:

ullet Exists pedigree path p, \mathcal{L} where

$$p_1 = \alpha_1$$
 (a uniquely originates) $\{|h|\}_K = \mathcal{L}_1 \neq \ell(\mathcal{L}) = t$

- Must be first transforming edge $n_1 \Rightarrow + n_2$
 - Penetrator D impossible
 - Penetrator E contradicts normalcy
 - Otherwise regular strand, QED

MITRE

Summary of this Lecture

- Authentication tests:
 Methods to establish
 - Secrecy (especially of keys)
 - Authentication
- Justifying the authentication tests
 - Bundles, equivalence
 - Normal and well-behaved bundles
 - Paths through bundles
 - Transformation paths
 - Pedigree paths
- Tomorrow:
 - Protocol independence through disjoint encryption
 - Authentication tests as a design strategy

MITRE