
Authentication Tests

and the

Normal Penetrator
�

Joshua D. Guttman F. Javier Thayer F�abrega

The MITRE Corporation

fguttman, jtg@mitre.org

February, 2000

Abstract

Suppose a principal in a cryptographic protocol creates and transmits

a message containing a new value v, later receiving v back in a di�erent

cryptographic context. It can conclude that some principal possessing the

relevant key has received and transformed the message emitting v. In

some circumstances, this principal must be a regular participant of the

protocol, not the penetrator.

An inference of this kind is an authentication test. We introduce two

main kinds of authentication test. An outgoing test is one in which the

new value v is transmitted in encrypted form, and only a regular partici-

pant can extract it from that form. An incoming test is one in which v is

received back in encrypted form, and only a regular participant can put

it in that form. We combine these two tests with a supplementary idea,

the unsolicited test, and a related method for checking that certain values

remain secret. Together, these techniques determine what authentication

properties are achieved by a wide range of cryptographic protocols.

In this paper we introduce authentication tests and prove their sound-

ness. We illustrate their power by giving new and straightforward proofs

of security goals for several protocols. We also illustrate how to use the

authentication tests as a heuristic for �nding attacks against incorrect

protocols. Finally, we suggest a protocol design process.

We express these ideas in the strand space formalism [24], which pro-

vides a convenient context to prove them correct.

�This work was supported by the National Security Agency through US Army CECOM

contract DAAB07-99-C-C201. A shorter version of this paper (without proofs) appeared as [8].

The present version is identical to MITRE Technical Report MTR 00B04.

i



ii



Contents

1 Introduction 1

1.1 Strand Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 New Components . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Bundle Equivalences and Graph Operations 6

2.1 Bundle Equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Graph Operations . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Redundancies and Paths 7

3.1 Redundancies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2 Penetrator Paths and Normal Bundles . . . . . . . . . . . . . . . 9

3.3 Rising and Falling Paths . . . . . . . . . . . . . . . . . . . . . . . 11

3.4 Bridges and Bridge Terms . . . . . . . . . . . . . . . . . . . . . . 13

3.5 Transforming Edges and Transformation Paths . . . . . . . . . . 15

3.6 EÆcient Bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 A Method for Authentication 19

4.1 Penetrable Keys and Safe Keys . . . . . . . . . . . . . . . . . . . 20

4.2 The Authentication Tests . . . . . . . . . . . . . . . . . . . . . . 22

4.2.1 The Outgoing Authentication Test . . . . . . . . . . . . . 22

4.2.2 The Incoming Authentication Test . . . . . . . . . . . . . 26

4.2.3 The Unsolicited Authentication Test . . . . . . . . . . . . 27

4.3 Proving the Method for Authentication Correct . . . . . . . . . . 27

4.3.1 Keys Available to the Penetrator are Penetrable . . . . . 27

4.3.2 Proofs of the Authentication Tests . . . . . . . . . . . . . 28

5 Protocol Correctness and Protocol Failure 29

5.1 The Otway-Rees Protocol . . . . . . . . . . . . . . . . . . . . . . 30

5.1.1 Strand Spaces for Otway-Rees . . . . . . . . . . . . . . . 30

5.1.2 Otway-Rees Authentication . . . . . . . . . . . . . . . . . 32

5.1.3 The Constraint on Uninterpreted Terms . . . . . . . . . . 33

5.2 Neuman-Stubblebine . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.3 The Woo-Lam Protocol . . . . . . . . . . . . . . . . . . . . . . . 37

6 Designing a Protocol: A Rational Reconstruction 39

A Strands, Bundles, and the Penetrator 43

A.1 Strand Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

A.2 Bundles and Causal Precedence . . . . . . . . . . . . . . . . . . . 44

A.3 Terms, Encryption, and Freeness Assumptions . . . . . . . . . . 45

A.4 Penetrator Strands . . . . . . . . . . . . . . . . . . . . . . . . . . 46

iii



List of Figures

1 A Bundle: Intended Run of Needham-Schroeder . . . . . . . . . 4

2 A Bundle: Penetrated Run of Needham-Schroeder . . . . . . . . 4

3 Penetrator Strands for Needham-Schroeder Attack . . . . . . . . 5

4 E-D Redundancy . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

5 C-S Redundancy . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

6 E-D Redundancy Elimination . . . . . . . . . . . . . . . . . . . . 9

7 C-S Redundancy Elimination . . . . . . . . . . . . . . . . . . . . 10

8 Entering a D strand through a key edge . . . . . . . . . . . . . . 12

9 Entering a E strand through a key edge . . . . . . . . . . . . . . 12

10 Entry Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

11 Exit Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

12 External Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

13 Internal Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

14 An IneÆcient Bundle for a Fictitious Protocol . . . . . . . . . . . 18

15 Outgoing and Incoming Tests . . . . . . . . . . . . . . . . . . . . 23

16 Authentication Provided by an Outgoing Test . . . . . . . . . . . 24

17 Authentication Provided by an Incoming Test . . . . . . . . . . . 26

18 Message Exchange in Otway-Rees . . . . . . . . . . . . . . . . . . 30

19 Neuman-Stubblebine Part I (Authentication) . . . . . . . . . . . 36

20 Neuman-Stubblebine, Part II (Re-authentication) . . . . . . . . . 37

21 Woo-Lam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

22 Woo-Lam In�ltrated . . . . . . . . . . . . . . . . . . . . . . . . . 38

iv



1 Introduction

One reason why cryptographic protocol analysis is hard is that the attacker

has so many choices. He may apply a repertory of actions in any order to any

message he observes, and he may submit the results in place of any legitimate

message. In addition, the attacker may initiate new sessions of the protocol, or

await sessions initiated by regular participants [6]. Consequently, even though

cryptographic protocols are simple �nite state activities in the absence of an

attacker, the analysis of possible attacks is not necessarily decidable; indeed,

even if the protocols are restricted so that the problem is decidable, it may not

be tractable [2].

In this paper we use the strand space formalism [24] to restrict the order

in which the penetrator applies the operations available to him (Section 3).

Anything the penetrator can do at all, he can do carrying out operations in this

restricted order. There are two ingredients in the restriction, a normal form

lemma (Section 3.2, Proposition 3.8), and an eÆciency condition (Section 3.6,

Proposition 3.22). The normal form lemma is not new [4, 2], although the

eÆciency condition appears to be.

The main novelty in this paper are some very simple-to-apply methods for

authentication and secrecy results, which the penetrator restrictions justify. An

important consequence of the restrictions is that, for certain encrypted com-

ponents of messages, the penetrator cannot take any signi�cant action. Those

components may be discarded, but if they are delivered to a regular participant,

they can only be delivered unaltered. Only the regular participants can change

these encrypted components in the way demanded by the protocol.

Therefore this kind of component may be regarded as an authentication test

component : if the contents are later received in transformed form, then only a

regular participant, not the penetrator, can have transformed them. In favorable

circumstances, it can only be one regular participant, the intended one, who has

thereby been authenticated.

We embody these ideas in three authentication results (Section 4.2, Authen-

tication Tests 1{3). These results allow us to establish many authentication

results without any consideration of the dynamic execution of protocols, involv-

ing the activity of several principals. Instead, it suÆces to consider the forms

of the possible behaviors of the principals independently. We use the Needham-

Schroeder-Lowe protocol [16, 12] in explaining the ideas. In Section 5, we illus-

trate the authentication tests by proving the authentication properties of some

familiar protocols and identifying counter-examples to others. The protocols we

consider are Otway-Rees [18], Neuman-Stubblebine [17], and Woo-Lam [25, 26].

It is routine to apply the method to new protocols, whether they use public

keys or shared symmetric keys.

However, not every protocol can be veri�ed using these methods. In par-

ticular, for the authentication theorems to apply, the protocol must not allow

the authentications tests to be proper sub-messages of other messages manip-

ulated by the regular participants. We end (Section 6) by suggesting it as a

design principle that protocols avoid this sort of nesting, and concentrate the

1



crucial parameters to be authenticated in a small number of authentication test

components.

The authentication tests themselves are easy to apply, but the proofs justify-

ing them are more complicated. We would compare the authentication tests to

the interface to a module; the implementation internal to the module is complex,

but the interface makes it easy to use its services without worrying about the

internals. For some purposes it would be helpful to enlarge the interface. There

are additional services, or ways of drawing conclusions about authentication

protocols, that the proof methods of Sections 3 and 4 can o�er. For instance,

one addition would be to make explicit the order in which events have occurred,

which gives a convenient way to reason about whether a key has been generated

recently. An enrichment of the message algebra would explicitly model the way

a key may be generated by hashing other values (as is used e.g. in the SSL

and TLS protocols [5]). However, the authentication tests currently exported in

Section 4 already apply to a wide range of protocols, and give a highly intuitive

explanation for why they are right, or where they go wrong.

The proof methods of Section 3 can be used for other purposes also; in [9]

we use them to study when di�erent protocols may be safely combined.

1.1 Strand Spaces

We very brie
y summarize the ideas behind the strand space model [24]; see

also Appendix A.

A is the set of messages that can be sent between principals. We call elements

of A terms. A is freely generated from two disjoint sets, T (representing texts

such as nonces or names) and K (representing keys) by means of concatenation

and encryption. The concatenation of terms g and h is denoted g h, and the

encryption of h using key K is denoted fjhjgK . (See Appendix A.3.)

For example, in the Needham-Schroeder protocol [16], the initiator A sends

a term of the form fjNaAjgKB
to start an exchange intended for B. This is

a ciphertext created using B's public key KB ; the plaintext is the result of

concatenating a nonce (random bitstring) Na and A's name.

A term t is a subterm of another term t0, written t @ t0, if starting with t we

can reach t0 by repeatedly concatenating with arbitrary terms and encrypting

with arbitrary keys. Hence, K 6@ fjtjgK , except in case K @ t. The subterms of

t are the values that are uttered when t is sent; in fjtjgK , K is not uttered but

used. (See De�nition A.7.)

For instance, the subterms of fjNaAjgKB
are Na, A, the concatenated mes-

sage NaA, and fjNaAjgKB
itself. The key KB is not part of what is uttered, it

just contributes to how the message is constructed.

A strand is a sequence of message transmissions and receptions, where trans-

mission of a term t is represented as +t and reception of term t is represented

as �t. A strand element is called a node. If s is a strand, hs; ii is the ith node

on s. The relation n ) n0 holds between nodes n and n0 if n = hs; ii and
n0 = hs; i+ 1i. Hence, n )+ n0 means that n = hs; ii and n0 = hs; ji for some

2



j > i. The relation n ! n0 represents inter-strand communication; it means

that term(n1) = +t and node term(n2) = �t.

Continuing with the Needham-Schroeder protocol as our pedagogical illus-

tration, an initiator strand o�ers a sequence of events of the form

h+fjNaAjgKB
; �fjNaNbjgKA

; +fjNbjgKB
i

In this strand si, the initiator A sends a term fjNaAjgKB
intended for the

responder B, and expects to receive back a term of the form fjNaNbjgKA
, after

which it will send fjNbjgKB
. The reception is hsi; 2i and the �nal transmission is

hsi; 3i. The responder strands o�er a sequence of events of the complementary

form

h�fjNaAjgKB
; +fjNaNbjgKA

; �fjNbjgKB
i

When the data values match Na, A, : : : , match between an initiator strand si
and a responder strand sr, then we have hsi; 1i ! hsr; 1i and hsr; 2i ! hsi; 2i.
An initiator or responder strand has four parameters (or degrees of freedom),

namely the two nonces Na and Nb and the two names A and B. For this

illustration, we regard the public keys KA and KB to be reliably determined

from A and B, possibly by some public key infrastructure. When we write

si 2 NSInit[A;B;Na; Nb] in this illustration, we will mean that si is an initiator

strand using the particular values shown as parameters, and similarly for sr 2
NSResp[A;B;Na; Nb]. The principal active in NSInit[A;B;Na; Nb] as initiator

is A, while the principal active in NSResp[A;B;Na; Nb] as responder is A.

A strand space � is a set of strands. � typically will not contain strands

of every possible kind NSInit[A;B;Na; Nb] and NSResp[A;B;Na; Nb], modeling

the fact that nonces are chosen from a large set and are used very sparsely, even

over substantial periods. The two relations ) and ! jointly impose a graph

structure on the nodes of �. The vertices of this graph are the nodes, and the

edges are the union of ) and !.

We say that a term t originates at a node n = hs; ii if the sign of n is

positive; t @ term(n); and t 6@ term(hs; i0i) for every i0 < i. Thus, n represents

a message transmission that includes t, and it is the �rst node in s including

t. For instance, if si 2 NSInit[A;B;Na; Nb], then Na and A both originate at

hsi; 1i. If sr 2 NSResp[A;B;Na; Nb], then Nb originates at hsr; 2i, assuming
that Nb is distinct from Na and A, which have already been received at hsr; 1i.

If a value originates on only one node in the strand space, we call it uniquely

originating ; uniquely originating values are desirable as nonces and session keys.

In a particular strand space, a nonce Na may originate uniquely on hsi; 1i, in
which case there is at most one strand in NSInit[A;B;Na; Nb]. A is unlikely to

originate uniquely, because the same name will be used in many runs with many

partners. When we assume that a value like Na originates uniquely in some

strand space �, we are e�ectively assuming that � is not unrealistically large,

so large as to have independent events in which the same value is repeatedly

chosen at random from a large set.

3



A
fjNaAjgKB ! B

�

�
w

 
fjNaNbjgKA �

�
w

�

�
w

fjNbjgKB ! �

�
w

Figure 1: A Bundle: Intended Run of Needham-Schroeder

A
fjNaAjgKP ! P

�

�
w

fjNaAjgKB! B

�

�

wwwwww

 
fjNaNbjgKA �

�
w

�

�
w

fjNbjgKP ! P

�

�
w

fjNbjgKB! �

�

wwwwww

Figure 2: A Bundle: Penetrated Run of Needham-Schroeder

A bundle is a causally well-founded collection of nodes and arrows of both

kinds. In a bundle, when a strand receives a message m, there is a unique

node transmitting m from which the message was immediately received. By

contrast, when a strand transmits a message m, many strands (or none) may

immediately receive m. (See De�nition A.3.) The height of a strand in a bundle

is the number of nodes on the strand that are in the bundle. Authentication

theorems generally assert that a strand has at least a given height in some

bundle, meaning that the principal must have engaged in at least that many

steps of its run. Two illustrative bundles are shown in Figures 1{2. In Figure 1,

initiator and responder match strands in the expected way, while in Figure 2

a penetrator manipulates B into believing that A is having a session with B,

whereas in fact A intends to have a session with P [11, 12]. More formally, the

strand on the left side is in the set NSInit[A;P;NaNb], not NSInit[A;B;Na; Nb].

Given any bundle C, there is a natural partial ordering on the nodes of

C, which we refer to as �C, according to which n1 �C n2 if there is a path

from n1 to n2 using zero or more arrows of either kind (De�nition A.5). This

relation expresses the fact that n1 causally contributes to n2 occurring in C. In
Figures 1 and 2, the relation happens to be a linear ordering, but this is not

true in Figure 3, where neither K node is accessible from the other.

A strand represents the local view of a participant in a run of a protocol.

For a legitimate participant, it represents the messages that participant would

send or receive as part of one particular run of his side of the protocol. We call

4



D
K

�
K�1

P ! �

�1
fjNaAjgKP ! �2

�
w

E K

 2  
KB

 1

�3

�

wwwwwwwwww

NaA
! �4

�
w
w

�5

�
w
w

fjNaAjgKB! �6

Figure 3: Penetrator Strands for Needham-Schroeder Attack

a strand representing a legitimate participant a regular strand. For the pene-

trator, the strand represents an atomic deduction. More complex actions can

be formed by connecting several penetrator strands. While regular principals

are represented only by what they say and hear, the behavior of the penetrator

is represented more explicitly, because the values he deduces are treated as if

they had been said publicly.

We partition penetrator strands according to the operations they exemplify.

E-strands encrypt when given a key and a plaintext; D-strands decrypt when

given a decryption key and matching ciphertext; C-strands and S-strands con-

catenate and separate terms, respectively; K-strands emit keys from a set of

known keys; and M-strands emit known atomic texts or guesses. (See De�ni-

tion A.9.)

As an example, the compound behavior of the penetrator P , shown at the

center top in Figure 2, can be realized using several of our oÆcial penetrator

strands as shown in Figure 3, in which nodes �1 and �6 represent the nodes

shared with Figure 2. This �gure should be regarded as a part of Figure 2, shown

separately simply to reduce its complexity. Some nodes have been labelled for

later use.

In Figure 3, the penetrator emits a private keyK�1

P that is known to himself,

and uses the result on a D strand to decrypt the incoming message. He emits

a public key KB known (presumably) to everyone, using it in an encryption

strand to produce the term fjNaAjgKB
, needed to start the process of duping

B. The other penetrator action shown in Figure 2 may be expanded in a similar

manner.

5



1.2 New Components

When a node transmits or receives a concatenated message, the penetrator|

using C-strands and S-strands|has full power over how the parts are concate-

nated together. Thus, the important units for protocol correctness are what we

call the components. A term t0 is a component of t if t0 @ t, t0 is not a con-

catenated term, and every t1 6= t0 such that t0 @ t1 @ t is a concatenated term.

Components are either atomic values or encryptions. (See De�nition A.8.) For

instance, the term fjNaAjgKB
consists of a single component, while NaA has

two components, the atomic values Na and A. We say t is a component of a

node n if t is a component of term(n).

A term t is new at n = hs; ii if t is a component of term(n), but t is not a

component of node hs; ji for every j < i (De�nition A.8). A component is new

even if it has occurred earlier as a nested subterm of some larger component

� � � fj � � � t � � � jgK � � � . For instance, fjNaAjgKP
is new on the top left node of

Figure 2, and Na is new on the last node of the D strand in Figure 3.

When a component occurs new on a regular node, then the principal exe-

cuting that strand has done some cryptographic work to produce the new com-

ponent. The idea of emphasizing components and the regular nodes at which

they occur new is due to Song [21].

2 Bundle Equivalences and Graph Operations

2.1 Bundle Equivalence

De�nition 2.1 Bundles C; C0 on a strand space � are equivalent i� they have

the same regular nodes.

A set � of bundles is invariant under bundle equivalences if whenever bundles

C and C0 are equivalent, C 2 �) C0 2 �.

Agreement and non-injective agreement properties [14, 24, 27] are invariant

under bundle equivalences in this sense. For instance, a non-injective agreement

property, expressed in our framework, asserts that whenever a bundle contains a

protocol strand (for instance, a responder strand) of a certain height, then it also

contains a matching strand (for instance, an initiator strand using the same data

values) of suitable height. As such, it always concerns what nodes, representing

regular activity of the protocol, must be present in bundles. Penetrator activity

may or may not be present.

Secrecy properties may also be expressed in a form that is invariant under

bundle equivalences. We say (temporarily) that a value t is uncompromised in

C if for every C0 equivalent to C, there is no node n 2 C0 such that term(n) = t.

In this form, a value is uncompromised if the penetrator cannot extract it in

explicit form without further cooperation of regular strands. When stated in

this form, the assertion that a value is uncompromised is invariant under bundle

equivalences.

6



2.2 Graph Operations

A graph operation on a bundle C consists of a sequence of one or more of the

following:

1. Deletion of any set of penetrator strands from the bundle.

2. Addition of edges n! n0 with term(n) = +a, term(n0) = �a.

3. Deletion of edges n! n0.

A graph operation yields a new graph C0. However, the graph C0 is not neces-
sarily a bundle. For instance, if n ! n0 is an edge of C with n a penetrator

node, removal of the strand that contains n is a graph operation which causes

the resulting graph to have a negative node with no in-arrow.

A lonely node in a strand space graph is a node with no incoming edge (if the

node is negative) or no outgoing edge (if the node is positive). Lonely negative

nodes are ruled out by the de�nition of bundle, whereas lonely positive nodes

are allowed. Similarly call a node in a strand space graph gregarious if it has

more than one edge leaving or entering it. Gregarious negative nodes are ruled

out, whereas gregarious positive ones are allowed. In applying graph operations

on bundles, we must be careful not to create lonely or gregarious negative nodes.

Proposition 2.2 Suppose C is a bundle and C0 is obtained from C by a graph

operation such that

1. For any edge n 7! n0 of C0 there is a sequence of nodes and bundle edges

n = n1 7! � � � 7! nk = n0 in C.

2. C0 has no lonely or gregarious negative nodes.

Then C0 is a bundle. Moreover, C0 is equivalent to C and the ordering on C0 is
a restriction of the ordering on C.

Proof. The nodes in any connected sequence in C0 is a subsequence of the

nodes of a connected sequence in C. To show C0 is acyclic, notice that by

assumption 1, for any non-trivial cycle in C0 there is a non-trivial cycle in C.
Thus C0 is a bundle. It is equivalent to C because a graph operation modi�es

only the set of penetrator nodes included in the bundle. �

3 Redundancies and Paths

We turn our attention to the portions of a bundle that contain penetrator ac-

tivity, and the ways that we can simplify those portions.

7



E

Æ
K
! �

D

Æ
h
! �

�
w

�  
K
�1

Æ

�

�
w

fjhjgK
! �

�
w

sL

�

�
w

h
! Æ

sR

Figure 4: E-D Redundancy

C

Æ
g
! �

Æ
h
! �

�
w

S

�

�
w

gh
! �

sL

�

�
w

g
! Æ

�

�
w

h
! Æ

sR

Figure 5: C-S Redundancy

3.1 Redundancies

De�nition 3.1 A redundancy in a bundle C is any labeled subgraph of C that

has one of the forms given in Figures 4-5.

Each redundancy contains nodes on two penetrator strands, indicated by the

symbol �, and a number of \fringe" nodes indicated by the symbol Æ. The nodes
are connected by inward edges Æ ! �, outward edges � ! Æ and internal edges

� ! �. The fringe nodes Æ may be either regular nodes or penetrator nodes.

The presence of redundancies in a bundle makes it more diÆcult to see what

the penetrator can actually do, and in particular whether any attacks can be

crafted by a circuitous combination of strands. The purpose of this section is to

show redundancies can be eliminated without any weakening of the penetrator's

capability.

Proposition 3.2 Given any bundle C there exists an equivalent bundle C0 with
no redundancies. Moreover, the penetrator nodes of C0 is a subset of the pen-

etrator nodes of C and the ordering �C0 is a restriction of the ordering �C . If

there exists n 2 C such that term(n) = t, then there exists n0 2 C0 such that

term(n0) = t.

8



Æ
K
! �

Æ
h
! �

�
w

 
K
�1
|

Æ

�

�
w

fjhjgK |
!

Æ

h
-

Figure 6: E-D Redundancy Elimination

Proof. Consider each one of the redundancy types shown in �gures 4-5. Each

one of these redundancies is a subgraph of C consisting of two penetrator strands
sL and sR, some arrows into the subgraph and some arrows out of the subgraph.

Notice that by suitably replicating the strand sR in each one of the redundancy

cases, we can assume the positive nodes of sR are not gregarious, that is, have

exactly one outgoing arrow. For each such subgraph,

1. Add the edges indicated by the dotted lines as shown in �gures 6-7. In

the case of C-S elimination, two new edges are added; in the case of

E-D elimination only one new edge is added. For each such new edge

n ! n0, there is clearly a path n 7! n1 7! � � � 7! nk = n0 in C. Note that
the addition of this edge creates some gregarious positive and negative

nodes. In the next step we will remove the redundant edges leading to the

gregarious negative nodes.

2. Delete the right penetrator strand sR. As a result of removing sR, those

edges m! n0 going out of sR are removed as well. In step 1, we added an

arrow into n0 so that removal of m ! n0 does not leave us with a lonely

negative node.

3. As a result of the previous step, some positive nodes may have no outgoing

arrows. These are shown by | in the �gure. However, the presence of

lonely positive nodes does not violate the bundle property so no further

action is necessary to deal with these.

Note that the graph operation above satis�es the conditions of Proposition 2.2.

Hence, the resulting graph is bundle equivalent to C, and its ordering is a re-

striction of the ordering of C. Note also that for each of the deleted nodes on

sR, there is another node with the same term that does not lie on sR. �

3.2 Penetrator Paths and Normal Bundles

m )+ n means that m;n are nodes on the same strand with n occuring after

m (De�nition A.2, Clause 4). The notation m 7�! n means:

� either m)+ n with term(m) negative and term(n) positive, or else

9



sL

Æ
g
! �

Æ
h
! �

�
w

sR

�

�
w

gh|
!

Æ

g

-

Æ

h

-

Figure 7: C-S Redundancy Elimination

� m! n.

A path p through C is any �nite sequence of nodes and edges n1 7�! n2 7�!
� � � 7�! nk. Clearly, n �C n

0 whenever there is a path n = n1 7�! n2 7�! � � � 7�!
nk = n0. We assume all paths begin on a positive node, and end on a negative

node.

We refer to the ith node of the path p as pi. The length of p will be jpj, and
we will write `(p) to mean pjpj, i.e. the last node in p.

A penetrator path is one in which all nodes other than possibly the �rst

or the last node are penetrator nodes. As an example of a penetrator path,

in which the �rst and last nodes are in fact regular, consider again the partial

bundle shown in Figure 3. The path � =

�1 ! �2 )
+ �3 ! �4 )

+ �5 ! �6

is a path that traverses penetrator nodes, connecting A's �rst transmission

fjNaAjgKP
to B's �rst reception fjNaAjgKB

. By contrast, the path  =

 1 !  2 )
+ �5 ! �6

starts on a penetrator node and ends on a regular node.

De�nition 3.3 Given a path p, one)+
edge immediately precedes another)+

edge in p i� they are separated in p by a single ! edge.

For instance, �2 )
+ �3 immediately precedes �4 )

+ �5 in �.

Consider a )+-edge between penetrator nodes. There are four penetrator

strand types with a negative node followed by a positive node, namely E, D, C,

and S strands.

De�nition 3.4 A )+
-edge is constructive if it is part of a E or C strand. It

is destructive if it is part of a D or if it is part of a S strand.

A penetrator node n is initial if it is a K or M node.

Any penetrator path that begins at a regular node contains only constructive

and destructive)+-edges, because initial nodes can occur only at the beginning

of a path.

10



Proposition 3.5 In a bundle, a constructive edge immediately followed by a

destructive edge has one of the following two forms:

1. Part of a Eh;K immediately followed by part of a Dh;K strand for some

h;K

2. Part of a Cg;h immediately followed by part of a Sg;h strand for some g; h.

Proof. This follows immediately from freeness of the message algebra.

Proposition 3.6 If the bundle C has no redundancies of type C-S and E-D, then
for any penetrator path of C, every destructive edge precedes every constructive

edge.

Proof. If some constructive edge precedes a destructive one, then some con-

structive edge immediately precedes a destructive one. However, if the bundle

has no redundancies, then by Proposition 3.5, a constructive edge cannot im-

mediately precede a destructive one. �

Since the property just introduced is very important, we give it a name, stressing

the analogy with Prawitz's notion of normal derivation [20]:

De�nition 3.7 A bundle C is normal if, for any penetrator path of C, every
destructive edge precedes every constructive edge.

Clarke et al. [4] �rst observed the analogy between penetrator activities and

natural deduction inferences. By Propositions 3.2 and 3.6, we may infer:

Proposition 3.8 (Penetrator Normal Form Lemma) For any bundle C
there exists an equivalent normal bundle C0.

Moreover, the penetrator nodes of C0 form a subset of the penetrator nodes

of C and the ordering �C0 is a restriction of the ordering �C. If there exists

n 2 C such that term(n) = t, then there exists n0 2 C0 such that term(n0) = t.

3.3 Rising and Falling Paths

De�nition 3.9 A penetrator path is falling if for all adjacent nodes n 7�! n0

on the path term(n0) @ term(n).

A penetrator path is rising if for all adjacent nodes n 7�! n0 on the path

term(n) @ term(n0).

The path � from Figure 3 contains a falling subpath �1 7�! � � � 7�! �4 and a

rising subpath �3 7�! � � � 7�! �6.

A path containing only destructive edges may not be falling, since a destruc-

tive path may traverse a decryption strand entering through the key transmis-

sion edge (Figure 8). Call the edge labeled K�1 in Figure 8 a D-key edge. The

other incoming edge into a D strand is a D-cyphertext edge.

In a symmetrical way, a constructive path may traverse an encryption strand

entering through the key transmission edge (Figure 9). Call the edge labeled

11



D

�
K
�1

! �

Æ
fjhjgK

- �

�
w

�

�
w

h
!

Figure 8: Entering a D strand through a key edge

E

�
K
! �

Æ
h
- �

�
w

�

�
w

fjhjgK
!

Figure 9: Entering a E strand through a key edge

K in Figure 9 a E-key edge. The other incoming edge into an E strand is an

E-plaintext edge. However, in this case we are entitled to a stronger conclusion,

because a constructive p can traverse a E-key edge only once, along the edge

p1 ! p2, and only if term(p1) 2 K. After that we have a compound term, not

an atomic key.

The path � from Figure 3 traverses no key edges, while path  traverses an

E-key edge.

Proposition 3.10 A destructive path that enters decryption strands only through

D-cyphertext edges is falling.

A constructive path that enters encryption strands only through E-plaintext

edges is rising, and this is the case for any constructive p such that term(p1) 62 K.

Moreover, the sequence of penetrator strands traversed on a falling path is

constrained by the structure of term(p1). We use the relation t0 @K t, which

means that t0 occurs somewhere in t such that every surrounding encryption

uses a key K 2 K (De�nition A.8).

Proposition 3.11 Suppose that p is a falling penetrator path; suppose pi is a

negative penetrator node; and suppose 1 < i < jpj. Then term(pi) is either an

encryption or a concatenation, and:

1. If term(pi) = fjhjgK , then pi lies on a D-strand, and term(pi+1) = h; and

2. If term(pi) = g h, then pi lies on a S-strand, and either term(pi+1) = g

or term(pi+1) = h.

If pi is a positive node with 1 � i < jpj, then term(pi) = term(pi+1).

12



Suppose p is a falling penetrator path, and for every D-strand s that p tra-

verses, with key edge K�1
, where K 2 K. Then term(`(p)) @K term(p1).

Proof. The assertion for a positive node pi is immediate from the de�nition

of paths. So consider a negative node pi.

Since i < jpj, there is a node pi+1 on this penetrator path, so pi is a pene-

trator node. The strand on which pi lies is neither a K-strand nor an M-strand,

as these lack negative nodes. It is neither a C-strand nor an E-strand because

p is a falling path. Hence only D-strands and S-strands remain, and the rest

follows from the freeness of the message algebra A.

To see that term(`(p)) @K term(p1) when there exists a falling path travers-

ing only D-strands with decryption keys in K
�1, consider the strands in p in

reverse order starting at `(p) with term(`(p)). For each S-strand, perform a

concatenation with the term on the other positive node of that strand (i.e. the

positive node not belonging to p). For each D-strand, perform an encryption

with the inverse of the decryption key on that strand. The resulting term is

term(p1). �

Hence, as we traverse a falling penetrator path, we take successive subterms of

the term at the start, with each successive strand determined by the topmost

operator of the current term. Observe also that if term(`(p)) = K, then there

must be some i with 1 � i � jpj and term(pi) a component of p1; simply

proceed along the path past all (contiguous) S-strands; if this is `(p) then K is

the component, while otherwise it is some t0 with K @ t0.

Symmetrically, the sequence of penetrator strands traversed on a rising path

is constrained by the structure of term(`(p)), although we will not need this

fact.

One curlicue is useful. A bundle may contain a penetrator D-strand s in

which a key K is used to decrypt fjKjgK�1 , thereby obtaining K. Clearly, we

may use a graph operation to splice s out of the bundle, connecting the incoming

key edge with term K to the outgoing plaintext edge with term K.

Proposition 3.12 If C is any bundle, there is an equivalent bundle C0 contain-
ing no D-strands of the form �fjKjgK�1 ) �K ) +K. The resulting bundle

C0 is normal if C is.

3.4 Bridges and Bridge Terms

Of special interest are the message transmission edges that come after all de-

structive edges and before all constructive edges in a normal penetrator path.

We call them bridges.

De�nition 3.13 A bridge in a bundle C is a message transmission edge m! n

embedded in a subgraph of one the types shown in Figures 10{13.

If m! n is a bridge, then its bridge term is term(m), which equals term(n).

A bridge is simple i� its bridge term is simple, that is, is not of the form

g h.

13



Regular Constructive

Æ
h

! �

�
�

Figure 10: Entry Bridge

Destructive Regular
�

�

�
w

h
! Æ

Figure 11: Exit Bridge

Regular Regular

Æ
h
! Æ

Figure 12: External Bridge

Destructive Constructive
�

�

�
w

h
! �

�
�

Figure 13: Internal Bridge

14



Any edge between regular nodes is an external bridge. The source m of a bridge

m ! n is never on a constructive penetrator strand, and the target n is never

on a destructive penetrator strand. The edge �3 ! pi4 is the only bridge on �.

Proposition 3.14 Suppose that C is a normal bundle, and p is any penetrator

path in C. Then p traverses exactly one bridge. Any destructive edge along p

precedes the bridge of p, and any constructive edge on p follows the bridge of p.

Any bundle C can be replaced by an equivalent bundle C0 in which all bridges

are simple; moreover if C is normal so is C0.

Proof. Consider a bridge Æ
g h
�! Æ that transmits a concatenated term g h from

a node on a destructive penetrator node or regular node to a constructive or

regular node. Replace the bridge by a graph consisting of two bridges:

Æ
g h

! �

�

�
w

g
! �

�

�
w

h
! �

�
w

�

�
w

g h
! Æ

These graph operations do not create lonely or gregarious negative nodes and

do not introduce cycles in the graph. Moreover if the original bundle is normal,

that is contains no C-S or E-D redundancies, the new bundle is also normal. �

By this proposition, there is a function pbt(�) from paths to terms that is well-

de�ned on every penetrator path in normal bundles. Given a penetrator path

p, pbt(p) is the path bridge term of p, which is the bridge term of the (unique)

bridge on p. We may assume that pbt(p) is always simple, which is to say either

an atomic value or an encryption.

The bridge �3 ! �4 carries the term NaA, so it is not simple. Applying

the construction just given in the proof, we obtain two paths; they share their

nodes except those bordering the bridges. One path has bridge term Na, and

the other has bridge term A.

A bundle with simple bridges is a kind of worst case scenario, because the

penetrator separates and re-concatenates every message between regular nodes.

However, simple bridges lead to simple proofs.

3.5 Transforming Edges and Transformation Paths

Our strategy for proving the authentication test results, concerning a test of the

form n)+ n0 is to consider the paths leading from n to n0. Because there is a

value a originating uniquely at n, and it is received back at n0, there must be a

path leading from n to n0 (apart from the trivial path that follows the strand

from n to n0). Moreover, since a is received in a new form at n0, there must be

a step along the path that changes its form; this is a transforming edge.

15



The incoming and outgoing authentication test results codify conditions un-

der which we can infer that a transforming edge lies on a regular strand. Thus,

our proofs focus on the transformation paths leading from n to n0 that keep

track of a \relevant" component containing a. The relevant component changes

only when a transforming edge is traversed, and a occurs in a new component.

We regard the edge n)+ n0 as a transformed edge, because the same value

a occurs in both nodes, but in transformed form.

De�nition 3.15 The edge n1 )
+ n2 is a transformed edge for a 2 A [re-

spectively, a transforming edge for a 2 A] if n1 is positive and n2 is negative

[respectively, n1 is negative and n2 is positive], a @ term(n1), and there is a

new component t2 of n2 such that a @ t2.

Thus, a transformed edge emits a and later tests for its presence in a new form.

A transforming edge receives a and later emits it in transformed form. We

have chosen to interpret a \form" in which a occurs as a component in which it

occurs. Considering again si 2 NSInit[A;B;Na; Nb], the �rst two nodes

+fjNaAjgKB
) �fjNaNbjgKA

are a transformed edge for Na, while the second and third nodes

�fjNaNbjgKA
) +fjNbjgKB

are a transforming edge for Nb. Conversely, for sr 2 NSResp[A;B;Na; Nb], the

�rst two nodes are a transforming edge for Na, while the second and third nodes

are a transformed edge for Nb.

De�nition 3.16 A transformation path is a path for which each node ni is

labelled by a component Li of ni in such a way that Li = Li+1 unless ni )
+ ni+1

and Li+1 is new on the strand of ni+1.

We can regard a transformation path as a sequence of pairs (ni;Li) consisting
of a node and a component Li of that node. If Li 6= Li+1 and a @ Li and
a @ Li+1, then ni )

+ ni+1 is a transforming edge (De�nition 3.15) for a. This

is the explanation for the name, transformation path. The sequence

h (�1; fjNaAjgKP
); (�2; fjNaAjgKP

); (�3; Na);

(�4; Na); (�5; fjNaAjgKB
); (�6; fjNaAjgKB

) i

is a transformation path for Na. We could also choose a longer example from

Figures 2 and 3, because the path p need not be a penetrator path, and need

not terminate when a regular node is reached.

By inspecting the forms of penetrator strand (De�nition A.9), we observe:

Proposition 3.17 If (p;L) is a transformation path in which Li 6= Li+1, and pi
is a penetrator node, then pi )

+ pi+1 lies either on a D-strand or an E-strand.

16



The next proposition states that given a node such as �6, it is possible to

construct a transformation path like the one we have just given, leading back

to a node at which Na originates.

Proposition 3.18 Suppose C is a bundle in � with n0 2 C. If a @ t where t is

a component of n0, then there is a transformation path p in C with `(p) = n0,

Ljpj = t, a @ Li for all i and such that a originates at p1.

We may choose p so as not to traverse the key edge of a D- or E-strand.

Proof. We will construct the path p backwards. Let n1 = n0, let L1 = t, and

suppose that (inductively) we have a transformation path

(nk+1;Lk+1) 7�! (nk;Lk) 7�! � � � 7�! (n1;L1)

such that a @ Lj for all j in the path. If a originates at nk+1 then p is complete.
So suppose nk+1 does not originate at nk+1.

If nk+1 is negative, then C contains a unique nk+2 such that nk+2 ! nk+1.

Extend p backwards to (nk+2;Lk+1).
Suppose nk+1 is positive. If Lk+1 is new, then there exists a node nk+2 )

+

nk+1 such that a @ term(nk+2) since a does not originate at nk+1. Extend p

backwards to contain some such nk+2 and let Lk+2 be any component of nk+2
which contains a. If Lk+1 is not new, then there is a node nk+2 )

+ nk+1 such

that term(nk+2) has a component Lk+1. Extend p backwards to (nk+2;Lk+1).
Observe that if nk+1 is the positive (ciphertext) node on a E-strand, then

we may select the plaintext node as nk+2, because it does contain a, and the

ciphertext is new. If nk+1 is the positive (plaintext) node on a D-strand, then

we may select the ciphertext node as nk+2, because it does contain a, and the

plaintext is new (by 3.12). Thus, p never traverses a key edge.

Because �C is a well-founded relation (Proposition A.6) and i < j implies

nj �C ni, eventually nj = n. �

Proposition 3.19 Suppose p is a transformation path such that a @ Li for

every i and L1 6= Ln. Then p has a transforming edge for a.

Proof. Argue by contradiction. If there is no transforming edge for a in

the path, then for every edge (pi;Li) )
+ (pi+1;Li+1) in p, there is no new

component in pi+1 containing a. By de�nition of transformation path, this

means Li = Li+1. So in particular, L1 = Ln. �

In the case of our path �, the edges �2 ) p3 and �4 ) p5 are transforming

edges. Note that p3 lies on a D strand and p5 lies on a E strand; they are the

values p� and p� mentioned in the next proposition (respectively).

Proposition 3.20 Suppose C be a normal bundle.If (p;L) is a transformation

path in C where p is a penetrator path with term(p1) simple, then there is smallest

index � such that term(p�) = Li = Ljpj whenever jpj � i � �. Moreover, if L
is not constant then p� is the positive node of an E-strand.

17



A
fjNaAjgKP ! P

�

�

www

fjNaAjgKB! B

�

�

wwwwwwww

 
fjNaNbjgKA �

�
w

�

�
w

| fjNaAjgKP ! n

fjN
a Ajg

K
P

-

�

�
w

fjNaAjgKB! �

�

wwwwww

Figure 14: An IneÆcient Bundle for a Fictitious Protocol

Similarly, if (p;L) is a transformation path in C where p is a penetrator path

with term(`(p)) simple, then either L is constant or there is a smallest index �

such that L� 6= L1. p� is a positive node of a D-strand and term(p��1) = L��1.
In either case, there is always an index � such that term(p�) = L1.

Proof. New components of penetrator strands occur only on D-strands or

E-strands. Since p is a penetrator path, Li+1 6= Li if and only if pi+1 is the

positive node of an E-strand or the positive node of a D-strand. If pi+1 is the

positive node of a E-strand, then term(pi+1) is an encrypted term and therefore

term(pi+1) has only one component. Therefore, term(pi+1) = Li+1. If pi+1 is

the positive node of a D-strand, then pi is an encrypted term so that similarly

term(pi) = Li.

Notice that if L is constant and term(pi) is simple, then term(pi) consists of

a single component, and Li = term(pi). Hence, L1 = Ljpj = term(pi). �

3.6 EÆcient Bundles

De�nition 3.21 A bundle is eÆcient if and only if, for every node m and

negative penetrator node n, if every component of n is a component of m, then

there is no regular node m0
such that m � m0 � n.

We call a bundle of this kind eÆcient because the penetrator does the most with

what he has rather than making use of additional regular nodes.

The bundles we show in Figure 1 and Figures 2{3 are eÆcient. Whenever

the penetrator node handles a term, there is no earlier node that has all the

same components, and a regular node has been traversed in between. However,

in the case of the nonsensical variant of the Needham-Schroeder protocol shown

in Figure 14, the edge marked | would need to be removed, and replaced with

the dashed diagonal. The negative penetrator node n must not receive its term

from the third initiator node, when it can be obtained directly from the �rst

initiator node.

18



Proposition 3.22 Any bundle C is equivalent to an eÆcient bundle C0. C0 may

be chosen such that n 2 C implies n 2 C0. If a bundle is eÆcient, then it has an

equivalent normal bundle which is also eÆcient.

Proof. Consider a negative penetrator node n and a node m such that every

component of n is a component of m. For each component t0 of m, add an arrow

m! into a cluster St0 of S strands to extract the term t0. This is possible since

t0 @; term(m). We refer to the positive S node whose term is t0 as m
0
t0
.

We can now add arrows from the nodes m0
t0
into a cluster of C of C nodes

from which emerges an arrow whose term is term(n). Observe that we have not

omitted nodes, but have simply added penetrator nodes on S and C strands.

Since n is negative, there is a unique incoming arrow ! n. By graph oper-

ations we can replace ! n with the arrow emerging from the cluster Ct. The

resulting graph has no cycles, and no lonely or gregarious positive nodes are

created by this graph operation. In the new bundle, the nodes m and n are not

connected by any path which has an intermediate regular node. These opera-

tions add a new set of nodes A to the graph, but each of these new nodes can

only be reached from below by paths which traverse m.

To show that any eÆcient bundle has an equivalent eÆcient normal bundle,

it suÆces to show that the graph operations used to eliminate redundancies

in Proposition 3.2 preserve eÆciency. The only graph operation which might

destroy eÆciency is adding a message transmission edge between two nodes.

However, these nodes are connected in the original bundle by a path which only

traverses penetrator nodes. Thus no new paths connecting a regular node to a

shadowed node can appear in the modi�ed graph. �

Proposition 3.23 Suppose C is a normal eÆcient bundle and (p;L) and (p0;L0)
are transformation paths in C. Assume p is a penetrator path which starts at a

simple term, p0 is a penetrator path which ends at a simple term, and there is

some regular node m such that `(p) � m � p01. Then for all i with 1 � i � jpj
and j with 1 � i � jp0j, Li 6= L

0
j .

Proof. By considering the transformation path (p;L) restricted to the integer

interval [1 : : : i] and the transformation path (p0;L0) restricted to the integer

interval [j : : : jp0j] we may assume without loss of generality that i = jpj and
j = 1.

By Proposition 3.20, there are indices �, � such that term(p�) = Ljpj and
term(p0�) = L

0
1. In particular, p� � m � p0� and term(p�), term(p

0
�) both have

single components. Therefore, by bundle eÆciency, term(p�) 6= term(p0�). In

particular, L01 6= Ljpj. �

4 A Method for Authentication

In this section we describe our method for establishing authentication results.

We �rst show how to establish whether keys are accessible to the penetrator or

not (Section 4.1). We then introduce the notion of a transformed edge, in which

19



a value is sent out and later received in a new component, and the notion of

a transforming edge, in which a value is received and later sent out in a new

component. We de�ne three kinds of authentication tests, and state a theorem

about each one, showing what other regular nodes must exist in a bundle, if

that bundle contains an example of an authentication test. We will illustrate

the �rst authentication test result using the Needham-Schroeder and Needham-

Schroeder-Lowe protocols. Proofs are gathered in Section 4.3, after the main

ideas have been explained and illustrated.

In the next section (Section 5), we will apply these authentication test the-

orems to additional examples. A surprising amount of protocol veri�cation and

discovery of counterexamples can be derived directly from the results of the

current section.

4.1 Penetrable Keys and Safe Keys

Given a strand space �, we can inductively de�ne the set of keys that may

become known to the penetrator. We use the relation @K de�ned in De�ni-

tion A.8; t0 @K t means that t0 occurs as a subterm of t in a position where all

encryptions surrounding it use keys K 2 K. Thus, either t can be constructed

from t0 simply by (possibly repeated) concatenation, or else t can be written in

the form

� � � fj � � � t0 � � � jgK � � �

where K 2 K and the dots hide only concatenations and other encryptions

with keys in K. The set K�1 means the set of inverses of keys in K. For

instance, let S = fKBg = fK
�1

B g
�1. Then Na @S Nb fjNaAjgKB

. Moreover,

Nb @; Nb fjNaAjgKB
.

In the base case of this de�nition we refer to KP , which is the set of keys

known to the penetrator initially, apart from any protocol activity (De�ni-

tion A.9).

De�nition 4.1 Let P0 = KP .

Let Pi+1 = Pi [Y , where K 2 Y if and only if there exists a positive regular

node n 2 � and a term t such that:

1. t is a new component of n, and

2. K @Pi
�1 t

P =
S
i Pi.

Thus, either a penetrable key is already penetrated (KP), or else some regu-

lar strand puts it in a form that could allow it to be penetrated, because for

each key protecting it, the matching decryption key is already penetrable. The

justi�cation for this de�nition is that any key that becomes available to the

penetrator in any bundle is in fact a member of P.

Proposition 4.2 Let C be a bundle with n 2 C and term(n) = K. Then K 2 P.

20



The proof is contained in Section 4.3.1. P is a conservative approximation.

It may be larger than the set of keys that the penetrator can really capture,

because the strand that would put the key in danger may not be contained in

any bundle.

De�nition 4.3 Let S0 be the set of keys K such that K 62 KP and there is no

positive regular node n 2 � and term t such that t is a new component of n and

K @ t.

Let Si+1 be the set of keys K such that K 62 KP , and for every positive

regular node n 2 � and new component t of n, every occurrence of K in t lies

within an encryption using some key K0 where K�1
0
2 Si:

� � � fj � � � K � � � jgK0
� � �

S =
S
i Si. When K 2 S, we say that K is safe in �.

Evidently, the set of safe keys is disjoint from P. However, there are strand

spaces � in which there are keys K such that K 62 P [ S.

In practice, protocol secrecy goals frequently amount to showing that cer-

tain keys are in either S0 or S1. Larger values of i seem rarely to occur in

these protocols. Showing that a private key or a long-term symmetric key is

in S0 typically reduces to checking that it is assumed not to be in KP , because

protocols generally avoid emitting terms containing these keys.

For instance, in the Needham-Schroeder protocol, if n is a regular node, then

K 6@ term(n). Hence, S0 = K nKP , which says that any key not initially known

to the penetrator is permanently safe.

Many protocols expect session keys to be generated by a key server, which

sends them encrypted in the long-term keys of two principals, and no principal

ever re-encrypts a session key under a new key. In a particular session, a session

key K may be sent encrypted with long term keys are not in KP (or, if they

are asymmetric, their inverses are not in KP). If the server never re-sends the

same session key K in a di�erent session, we can infer that K 2 S1. This idea
is illustrated in Sections 5.1 and 5.2.

There also exist protocols in which the session key is translated, in the sense

that it is sent out originally encrypted with one key and is later re-encrypted by

another principal under a new key. These protocols can also be correct, although

they demand special care. The TMN protocol is a (
awed) example [22]. In

the case of a correct protocol of this form, it may be necessary to show that the

session key is in S2. However, the fact that S0 and S1 cover typical protocols

makes this method for proving secrecy particularly easy to use.

It is also easy to prove that a non-key data value such as a nonce is kept

secret in some run of a protocol; one simply shows that every term containing

it is of the form fjhjgK where K�1 2 Si. Again, typically i = 0 or 1. The

case i = 0 is suÆcient to show that the Needham-Schroeder nonces Na and Nb

remain secret, assuming that they are uniquely originating, and assuming that

the private keys K�1

A ;K�1

B 62 KP .

21



4.2 The Authentication Tests

Fix some strand space �. We identify segments of regular strands called tests

whose presence will guarantee the existence of other regular strands in the bun-

dle; they are strands with transforming edges operating on the test component.

De�nition 4.4 t = fjhjgK is a test component for a in n if:

1. a @ t and t is a component of n;

2. The term t is not a proper subterm of a component of any regular node

n0 2 �.

The edge n0 )
+ n1 is a test for a if a uniquely originates at n0 and n0 )

+ n1
is a transformed edge for a.

Clause 2 in the de�nition of test component ensures that the penetrator cannot

get any bene�t from building a larger term to send to a regular participant, who

might then emit some new message of value to the penetrator.

For instance, in the Needham-Schroeder protocol, if sr 2 NSResp[A;B;Na; Nb],

then fjNaNbjgKA
is a test component for Nb in hsr; 2i, because term(hsr; 2i) =

fjNaNbjgKA
and this component does not occur as a proper subterm of any

other regular node. Assuming that the responder B chooses Nb to be uniquely

originating at hsr; 2i, the edge hsr; 2i ) hsr; 3i is a test for Nb.

Tests can use their test components in at least two di�erent ways. If the

uniquely originating value is sent in encrypted form, and the challenge is to

decrypt it, then that is an outgoing test. If it is received back in encrypted

form, and the challenge is to produce that encrypted form, then that is an

incoming test. These two kinds of test are illustrated in Figure 15.

De�nition 4.5 The edge n0 )
+ n1 is an outgoing test for a in t = fjhjgK if

it is a test for a in which: K�1 62 P; a does not occur in any component of n0
other than t; and t is a test component for a in n0.

The edge n0 )
+ n1 is an incoming test for a in t1 = fjhjgK if it is a test

for a in which K 62 P and t1 is a test component for a in n1.

If K�1

A 62 KP (hence K�1

A 2 S0), then the edge hsr; 2i ) hsr; 3i is an outgoing

test for Nb in fjNaNbjgKA
. It is not an incoming test for Nb in fjNbjgKB

, because

the public key KB is presumably in KP .

The three authentication test results that follow give a powerful method for

establishing the authentication goals of protocols. The results with their proofs

appear in Section 4.3.2 as Propositions 4.9{4.11.

4.2.1 The Outgoing Authentication Test

Authentication Test 1 Let C be a bundle with n0 2 C, and let n)+ n0 be an

outgoing test for a in t.

1. There exist regular nodes m;m0 2 C such that t is a component of m and

m)+ m0
is a transforming edge for a.

22



Æ
? a @ fjhjgK = t K�1 62 P

-

Æ

�

wwwwww

�

a @ t0
new

Æ
?a @ t

-

Æ

�

wwwwwwwwww

�

a @ fjhjgK
new

K 62 P

? means a originates uniquely here

t means t is a component of this node

Figure 15: Outgoing and Incoming Tests

23



Æ
? a @ fjhjgK = t K�1 62 P

- �

Æ

�

wwwwwwwwwwww

�

a @ t0
new

� y� �
a @ t1

new

�

�

wwwwwwwwwwww

� means this regular node must exist

y with assumptions on t1

Figure 16: Authentication Provided by an Outgoing Test

2. Suppose in addition that a occurs only in component t1 = fjh1jgK1
of m0

,

that t1 is not a proper subterm of any regular component, and that K�1
1
62

P. Then there is a negative regular node m00
with t1 as a component.

The meaning of this assertion is illustrated in Figure 16. In this diagram, the

two nodes marked Æ represent n and n0. The result assumes that a originates

uniquely here (shown by the ?), and that the decryption key K�1 is safe. The

diagram does not represent the assumption that t not be a proper subterm

of any regular component, which being non-local is hard to display. The test

establishes that C also contains regular nodes m and m0 (marked � at right)
with a transforming edge for a. With the assumptions on t1 given in clause 2,

there is also a negative regular node m00, shown with a � on the bottom line, of

which t1 is a component.

Outgoing Tests: The Needham-Schroeder Illustration We may illus-

trate the outgoing authentication tests by Needham-Schroeder. Assume that C
is a bundle, and the C-height of sr 2 NSResp[A;B;Na; Nb] is 3, which means

that all three nodes of sr belong to C. Assume that K�1

A 62 KP . Finally, as-

sume that Nb originates uniquely, and Nb 6= Na (which together mean that Nb

originates uniquely at hsr; 2i).
It follows that the edge hsr; 2i ) hsr; 3i is an outgoing test for Nb in

fjNaNbjgKA
. By Authentication Test 1, there exist regular nodes m;m0 2 C

such that fjNaNbjgKA
is a component of m and m )+ m0 is a transforming

edge for a. The only negative regular node containing a component of this

form is hsi; 2i for si 2 NSInit[A;B0; Na; Nb] and some responder B0. Thus, the

transforming edge m)+ m0 must be hsi; 2i )
+ hsi; 3i, and si has C-height 3.

Unfortunately, we have not proved that si 2 NSInit[A;B;Na; Nb] for the

expected responder B, rather than some other responder B0. And Figure 2 is a

counterexample in which B0 = P 6= B. Hence we have uncovered a limitation in

the authentication achieved by Needham-Schroeder, �rst noted by Lowe [11, 12],

24



which led Lowe to amend the protocol to contain the responder's name B in

the second message fjNaNbBjgKA
.

Needham-Schroeder-Lowe Let us next consider a strand space � in which

the regular strands are:

� For si 2 NSLInit[A;B;Na; Nb], traces of the form:

h+fjNaAjgKB
; �fjNaNbBjgKA

; +fjNbjgKB
i

� For sr 2 NSLResp[A;B;Na; Nb], traces of the form:

h�fjNaAjgKB
; +fjNaNbBjgKA

; �fjNbjgKB
i

To be precise, let Tname be a distinguished set within A with Tname � T.

NSLInit[A;B;Na; Nb] and NSLResp[A;B;Na; Nb] are empty unlessA;B 2 Tname,

Na; Nb 2 T butNa; Nb 62 Tname. In addition, we assume that NSLResp[A;B;Na; Nb]

is empty unless Nb 6= Na. The correctness of the protocol depends on the as-

sumption that the \public key of" mapping f : A 7! KA is injective.

Assume that C is a bundle, and the C-height of sr 2 NSLResp[A;B;Na; Nb]

is 3. Assume that K�1

A 62 KP . Finally, assume that Nb originates uniquely, and

Nb 6= Na (which together mean that Nb originates uniquely at hsr; 2i).
As before, it follows that the edge hsr; 2i ) hsr; 3i is an outgoing test for Nb

in fjNaNbBjgKA
. By Authentication Test 1, there exist regular nodesm;m0 2 C

such that fjNaNbBjgKA
is a component of m and m )+ m0 is a transforming

edge for a. The only negative regular node containing a component of this form

is hsi; 2i for si 2 NSLInit[A;B;Na; Nb].

Thus, the transforming edge m )+ m0 must be hsi; 2i )
+ hsi; 3i, and si

has C-height 3. This proves that the responder successfully authenticates the

initiator in Needham-Schroeder-Lowe.

We will also prove the initiator's authentication guarantee. The proof is

very similar, except that it is necessary to use the second part of Authentication

Test 1 as well as the �rst part of it. We include it to illustrate the use of this

proof method.

Let C be a bundle in �, and si be an initiator's strand in NSLInit[A;B;Na; Nb]

with C-height 3. AssumeK�1

A ;K�1

B 62 KP , and suppose that Na is uniquely orig-

inating.

The edge hsi; 1i ) hsi; 2i is an outgoing test for Na in fjNaAjgKB
, so it fol-

lows (by Authentication Test 1) that there is a regular transforming edge m)+

m0 in C with fjNaAjgKB
a component of the negative node m. This implies that

m;m0 are the �rst two nodes of a responder strand sr 2 NSLInit[A;B;Na; N ].

In this step, we used the assumption that K�1

B 62 KP , from which it follows that

K�1

B 62 P.
However, we cannot yet be sure whether N = Nb. To infer that B has

sent out the same nonce Nb that A eventually receives, we use Part 2 of Au-

thentication Test 1. It implies that fjNaN BjgKA
is a component of some

25



Æ
?a @ t

-

a @ t1
- �

Æ

�

wwwwwwwwww

�

a @ fjhjgK
new

K 62 P
�

t0 = fjhjgK
new

�

�

wwwwwwwwww

Figure 17: Authentication Provided by an Incoming Test

negative regular node m00. However, m00 can only be hs0i; 2i for some s0i 2
NSLInit[A;B;Na; N ], since only the second node of an initiator strand receives

a component of this form. By the form of an initiator strand, Na originates

at hs0i; 1i. Since Na is uniquely originating, it follows that hs0i; 1i = hsi; 1i, so
s0i = si and N = Nb. In this step, we used the assumption that K�1

A 62 KP ,

from which it follows that K�1

A 62 P.
Thus, we have shown that C contains a responder strand

sr 2 NSLResp[A;B;Na; Nb]

with C-height 2. This proves that the initiator successfully authenticates the

responder in Needham-Schroeder-Lowe.

4.2.2 The Incoming Authentication Test

An authentication test result for incoming tests can be used to infer the exis-

tence of a regular transforming edge in protocols in which a nonce is emitted in

plaintext, for instance as a challenge, and later received in encrypted form.

Authentication Test 2 Let C be a bundle with n0 2 C, and let n)+ n0 be an

incoming test for a in t0. Then there exist regular nodes m;m0 2 C such that t0

is a component of m0
and m)+ m0

is a transforming edge for a.

The meaning of this assertion is illustrated in Figure 17 using the same con-

ventions as in Figure 16. We will apply the incoming authentication test in

Sections 5.2 and 5.3.

Although in this paper we will make no use of it, the outgoing and incoming

authentication tests also establish an ordering on the nodes, as n occurs before

m and m0, while n0 occurs after. The nodes are ordered n � m � m0 � n0 in the

causal ordering given in De�nition A.5. The principal executing n and n0 can

regard a session key generated at m0 as \fresh," because it was created more

recently than the beginning of his current run.

The authentication tests are also valid when n and n0 are not actually on

the same strand, but n is a node known to be in a bundle and to have uniquely

originated the test value a, and n0 is a node on a di�erent strand that later

receives a in transformed form.

26



4.2.3 The Unsolicited Authentication Test

The authentication property achieved by an unsolicited test is less informative,

but frequently useful, for instance when a key server authenticates its clients.

We will illustrate authentication via unsolicited tests in Sections 5.1{5.3.

De�nition 4.6 A negative node n is an unsolicited test for t = fjhjgK if t is a

test component for any a in n and K 62 P.

Authentication Test 3 Let C be a bundle with n 2 C, and let n be an unso-

licited test for t = fjhjgK . Then there exists a positive regular node m 2 C such

that t is a component of m.

4.3 Proving the Method for Authentication Correct

In this section we will justify our method for establishing authentication results.

We �rst prove Proposition 4.2, justifying our treatment of secrecy. We then

prove theorems establishing the three kinds of authentication test which so

many protocols use. Each authentication test establishes the existence of regular

nodes, typically forming a transforming edge (Section 4.3.2).

4.3.1 Keys Available to the Penetrator are Penetrable

Proposition 4.7 Let C be a bundle with n 2 C and term(n) = K. Then K 2 P.

Proof. By Propositions 3.8, 3.14, and 3.22, we may assume that C is normal,
that it has simple bridges, and that it is eÆcient. We may assume that n is

positive. We argue by induction on the well-founded relation �C. Our induction

hypothesis is that, for all n0 �C n, term(n
0) 2 K implies term(n0) 2 P.

By Proposition 3.18, we may let (p;L) be a transformation path such that

`(p) = n, K originates at p1, and K @ Li for all i with 1 � i � jpj. If jpj = 1

and n is a penetrator node, then n is a K node, so K 2 KP . Otherwise, because

C is normal and eÆcient, p1 is not a penetrator node (which could only be a K

node).

Let p� be the last regular node on p. The penetrator path

p� 7�! � � � 7�! `(p)

is a falling path traversing no D strand key edges. By the induction hypothesis,

if p traverses a D strand s, then the key edge entering contains a keyK0 2 P. By
Proposition 3.11, K @P�1 L�, where L� is the distinguished component of p�.

By Proposition 3.20, there is a j such that � � j � jpj such that pj = Lj = L�.
Since p� is a positive regular node, it remains to be shown that L� occurs new

on some positive regular node.

Let � be the least index such that Li = L� for all i for � � i � �. By

de�nition, p� is positive. By the eÆciency of C and Proposition 3.23, there is

no i with � � i < � such that pi is simple. By Proposition 3.20, p� is not

a penetrator node, which would be a D or E strand and thus have a simple

positive node. Therefore p� is a regular node. L� is a new component of p� by

the choice of �. �

27



4.3.2 Proofs of the Authentication Tests

Proposition 4.8 Suppose (p;L) is a key edge free transformation path such

that p1 and `(p) are regular and L1 6= Ljpj.

1. Let L1 = fjh1jgK1
. Suppose that L1 is not a proper subterm of any regular

component, and suppose that K�1
1
62 P. Then the smallest index � such

that L� 6= L�+1 is such that p� is regular. Moreover, p� )
+ p�+1 is a

transforming edge.

2. Let Ljpj = fjh�jgK�
. Suppose that Ljpj is not a proper subterm of any

regular component, and suppose that K� 62 P. Then the largest index �

such that L� 6= L��1 is such that p� is regular. Moreover, p��1 )
+ p�

is a transforming edge.

Proof. We prove item 1. The proof of 2 is analogous. Suppose p� is not

regular. Then p� )
+ p�+1 lies either on a D-strand or an E-strand.

In the D-strand case term(p�) = fjh1jgK1
. But p� )

+ p�+1 cannot lie on a

D-strand because we have assumed that K�1
1
62 P.

So suppose that p� )
+ p�+1 lies on an E-strand, in which case L� is a

proper subterm of L�+1 = term(p�+1). Since C is normal and p� )
+ p�+1 is

constructive, every penetrator edge between p� and the next regular node p�
on p, which exists since `(p) is regular, is constructive.

By Proposition 3.10, the path p� 7�! � � � 7�! p� is rising, so L1 = L� is a

proper subterm of L�+1 which in turn is a subterm of term(p�). This contradicts

the assumption that L1 is not a proper subterm of any regular component.

p� )
+ p�+1 is a transforming edge because L�+1 is a new component on

the strand of p�+1. �

Proposition 4.9 Let C be a normal bundle with n0 2 C, and let n)+ n0 be an

outgoing test for a in t. Then there exist regular nodes m;m0 2 C such that t is

a component of m and m)+ m0
is a transforming edge for a.

Suppose in addition that a occurs only in component t1 = fjh1jgK1
of m0

.

Suppose that t1 is not a proper subterm of any regular component, and suppose

that K�1
1
62 P. Then there is a negative regular node with t1 as a component.

Proof. Because n)+ n0 is a transformed edge for a, there is a new component

t0 of n0 with a @ t0.

By Proposition 3.18, there is a transformation path (p;L) in C with p1 = n,

`(p) = n0, Ljpj = t0, and a @ Li for all i. Since t0 is new in n0, L1 6= t0. In

fact, because a occurs in no component of n other than t, L1 = t. In particular,

L1 6= Ljpj.
By the �rst part of Proposition 4.8, the smallest index � such that L� 6=

L�+1 is such that p� is regular. Moreover, p� )
+ p�+1 is a transforming edge.

It follows that t = L1 = L� is a component of m = p�.

Consider now the additional assumptions on the components of m0 = p�+1.

Since L�+1 is a component of term(m
0) that contains a as subterm and a occurs

only in component t1 = fjh1jgK1
, L�+1 = t1.

28



If t1 = t0, then n0 itself is a negative regular node with t1 as a component.

Otherwise, apply Proposition 4.8 again to conclude that smallest index � > �+1

such that L� 6= L�+1 is such that p� regular. Now t1 = L�+1 = L� is a

component of p� . �

Proposition 4.10 Let C be a normal bundle with n0 2 C, and let n )+ n0 be

an incoming test for a in t0. Then there exist regular nodes m;m0 2 C such that

t0 is a component of m0
and m)+ m0

is a transforming edge for a.

Proof. By Proposition 3.18, there is a transformation path (p;L) in C with

p1 = n, `(p) = n0, Ljpj = t0, and a @ Li for all i. Since t
0 is new in n0, L1 6= t0.

In particular, L1 6= Ljpj.
By the second part of Proposition 4.8 , the largest index � such that L� 6=

L��1 is such that p��1 is regular. Moreover, p��1 )
+ p� is a transforming

edge. In particular t0 = Ljpj = L� is a component of m0 = p�.�

Proposition 4.11 Let C be a normal bundle with n 2 C, and let n be an unso-

licited test for t = fjhjgK . Then there exists a positive regular node m 2 C such

that t is a component of m.

Proof. By Proposition 3.18, there is a key edge free transformation path (p;L)
in C with p1 = n, `(p) = n0, Ljpj = t, t @ Li for all i and such that t originates

at p1.

Since t originates at p1, p1 is a positive node. We claim p1 is a regular node.

Suppose otherwise. Since t @ pk, pk is neither an M-node nor a K-node. Since

t originates at p1, p1 cannot be a S-node, a C-node nor a D-node.

If p1 is a E-node, then p1 is the positive ciphertext (last) node on a E-strand.

Since K 62 P, t is a proper subterm of term(p1). Hence t is a subterm of the

plaintext (�rst) node on the strand, so t cannot originate at p1 in this case

either.

Therefore, p1 must be a regular node as claimed. By the de�nition of test

component, t is not a proper subterm of any component of p1, so t is a component

of p1. �

5 Protocol Correctness and Protocol Failure

In this section we apply the authentication theorems of Section 4.2 to sev-

eral additional examples. They are the Otway-Rees protocol [18, 1, 24], the

Neuman-Stubblebine protocol [17, 23], and the Wool-Lam protocol [25, 26]. We

do so to illustrate the ease and directness with which these theorems lead to

authentication results.

It is remarkably easy to �nd the outgoing, incoming, and unsolicited tests

that provide a protocol's authentication guarantees, assuming that the protocol

does not allow its test components to occur in nested contexts. That would

violate Clause 2 of the de�nition of test component (De�nition 4.4). The method

works for public-key protocols, and for shared symmetric key protocols also.

29



A B S

�
M1
- �

�

�
w

M2
- �

�

�
w

�

M3

�

�
w

�

�

w
w
w
w
w
w
w
w
w
w
w
w

�

M4

�

�
w

M1 =M AB fjNaM ABjgKAS

M2 =M AB fjNaM ABjgKAS fjNbM ABjgKBS

M3 =M fjNaKABjgKAS fjNbKABjgKBS

M4 =M fjNaKABjgKAS

Figure 18: Message Exchange in Otway-Rees

In the Otway-Rees protocol, each of the initiator and the responder uses an

outgoing test to authenticate a server strand. The server uses an unsolicited

test to establish that the initiator and responder have each sent a message.

The Neuman-Stubblebine protocol uses a combination of incoming tests and

unsolicited tests. It is a two-part protocol: in the �rst part the initiator and

responder use a key distribution server to authenticate one another and acquire

a session key. In the second part the key distribution server is not involved; the

initiator re-presents a ticket obtained in a run of part I, and the initiator and

responder re-authenticate one another. The �rst part is valid in itself [23] (ig-

noring an implausible type-
aw attack [10]). The second part is 
awed, both in

itself [10] and in undermining the guarantees that part I provide in isolation [23].

We will use the authentication test results to explain both why the �rst part

works in isolation, and also why the addition of the second part undermines its

guarantees.

5.1 The Otway-Rees Protocol

The Otway-Rees protocol (Figure 18) uses long-term symmetric keys shared

with a key server to distribute a new session key for a conversation between two

clients. The protocol does not establish that the same key is delivered to both

A and B [24], only that if either A or B reaches the end of its strand, then the

other has submitted the expected matching original request fjNbM ABjgKBS
or

fjNaM ABjgKAS
. Also, K is not disclosed, assuming that the server chooses a

uniquely originating session key K.

5.1.1 Strand Spaces for Otway-Rees

The regular strands are de�ned to be of the form:

30



1. \Initiator strands" in Init[A;B;N;M;K], which have trace:

h+M AB fjN M ABjgKAS
;�M fjN KjgKAS

i

2. `Responder strands" in Resp[A;B;N;M;K;H;H 0], which have trace:

h � M ABH;

+ M ABH fjNM ABjgKBS
;

� M H 0 fjN KjgKBS
;

+ M H 0i

3. `Server strands" in Serv[A;B;Na; Nb;M;K] with trace:

h � M AB fjNaM ABjgKAS
fjNbM ABjgKBS

;

+ M fjNaKjgKAS
fjNbKjgKBS

i

The principal active in Init[A;B;N;M;K] is A, while the active principal in

Resp[A;B;N;M;K; ��] is B.1 We de�ne LT to be the set of long-term keys,

i.e. the range of the injective function KAS for A 2 Tname. All long-terms keys

are symmetrical: K 2 LT implies K = K�1.

We will use three side assumptions.

1. We assume that the responder's nonce originates on that strand, which

implies that Resp[A;B;N;M;K;H;H 0] = ; if N @ H .

2. We assume that the terms H and H 0, which are simply forwarded by

the responder with no interpretation or processing, contain no proper

encrypted subterms. That is, fjgjgK @ H and fjgjgK 6= H implies

Resp[A;B;N;M;K;H;H 0] = ;;

and likewise for H 0. We point out below (Section 5.1.3) that this assump-

tion does not mask any possible failure of the protocol.

3. We assume that the server generates keys in a reasonable manner, in the

sense that Serv[��;K] = ; unless: K 62 KP ; K = K�1; K is uniquely orig-

inating; and K 62 LT. It follows from the unique origination assumption

that the cardinality jServ[��;K]j � 1 for every K.

Let � be a strand space satisfying these conditions.

1We sometimes use an asterisk to indicate a union over a particular argument position,

and a double asterisk to indicate a union over all remaining argument positions. Thus,

for instance, Serv[�; �; �; �; �;K] is the set of all server strands emitting the session key K;

Resp[A;B;N;M;K; ��] is the set of all responder strands with initiator A, responder B,

nonce N , round number M , session key K, and any value of the remaining parameters. We

will also abbreviate a form like Serv[�; �; �; �; �;K] to Serv[��;K].

31



5.1.2 Otway-Rees Authentication

Structurally, Otway-Rees achieves its authentication guarantees in three steps.

1. The long-term keys LT are not disclosed by the protocol. Thus, if K 2 LT
and K 62 KP , then K 2 S0. Hence, if the server distributes a session key

K 0 to principals with uncompromised keys, then K 0 2 S1.

2. The server strand receives an unsolicited test that authenticates the initial

positive node of the initiator and responder.

3. The initiator strand contains an outgoing test for Na in fjNaM ABjgKAS
;

this authenticates the server strand. Likewise, the responder strand con-

tains an outgoing test for Nb in fjNbM ABjgKBS
, which authenticates the

server strand.

The initiator authenticates the responder only in that it authenticates the server

strand, which has authenticated the occurrence of the responder's initial pos-

itive node. The situation is symmetrical for the responder authenticating the

initiator.

Because K 6@ term(n) for long-term keys K 2 LT and regular nodes n,

De�nition 4.3 immediately entails LT � S0 [ KP . Because the initiator and

responder strands emit no new components in which keys occur, a session key

can be compromised only if the server sends it out encrypted with a compromised

long term key. By the unique origination assumption on session keys, if it is

sent out under uncompromised long term keys, then the server will never re-use

it with compromised long term keys. Summarizing this, we have:

Proposition 5.1 LT � S0[KP . If KAS;KBS 62 KP and Serv[A;B; �; �; �;K] 6=
; then K 2 S1.

Turning now to the server's authentication guarantee, we use unsolicited tests.

Proposition 5.2 Suppose that C is a bundle in �; A 6= B; KAS ;KBS 62 KP ;

and s 2 Serv[A;B;Na; Nb;M; �] has C-height 1.
Then there exist si 2 Init[A;B;Na;M; �] and sr 2 Resp[A;B;Nb;M; ��]

such that si has C-height 1 and sr has C-height 2.

Proof. The terms fjNaM ABjgKAS
and fjNbM ABjgKBS

are unsolicited tests,

and therefore (Authentication Test 3) occur on positive regular nodes in C.
When A 6= B, the latter occurs positively only on a node hsr; 2i where sr 2
Resp[A;B;Nb;M; ��].

As for fjNaM ABjgKAS
, it may occur positively either on a strand si 2

Init[A;B;Na;M; �] or asH orH 0 in a strand s0r 2 Resp[��; H; �] or Resp[��; H
0].

Let S be the set of all regular nodes in C having fjNaM ABjgKAS
as a compo-

nent. Since S is non-empty, it has a �C-minimal member n0 (Proposition A.6).

Since neither H nor H 0 occurs new on a responder strand, n0 can only be of

the form hsi; 1i for si 2 Init[A;B;Na;M; �]. �

32



If A = B, then fjNM ABjgKAS
= fjNM ABjgKBS

, so the server can no longer

be sure that both an initiator strand and a responder strand are present. This is

the explanation for the odd attack, attributed to Michael Goldsmith, in which

\the responder thinks he wants to talk to himself, but he really doesn't."

1. P (B) �! B: BBM H ;

2. B �! P (S): BBM H fjNbM BBjgKBS

3. P (B) �! S: BBMfjNbM BBjgKBS
fjNbM BBjgKBS

which causes a normal server strand, despite the non-existence of any active

initiator.

Proposition 5.3 Suppose that C is a bundle in �; A 6= B; KAS 62 KP ; and

si 2 Init[A;B;Na;M;K] has C-height 2.
Then there exists s 2 Serv[A;B;Na; �;M;K] with C-height 2.

Proof. hsi; 1i )
+ hsi; 2i is an outgoing test forNa in fjNaM ABjgKAS

. There-

fore there is a regular transforming edge for Na (Authentication Test 1). By

inspection, this can only lie on a server strand s 2 Serv[A;B;Na; �;M;K]. �

Proposition 5.4 Suppose that C is a bundle in �; A 6= B; KBS 62 KP ; and

sr 2 Resp[A;B;Nb;M;K; ��] has C-height 3.
Then there exists s 2 Serv[A;B; �; Nb;M;K] with C-height 2.

Proof. hsr; 2i )
+ hsr; 3i is an outgoing test forNb in fjNbM ABjgKBS

. There-

fore there is a regular transforming edge for Nb (Authentication Test 1). By

inspection, this can only lie on a server strand s 2 Serv[A;B; �; Nb;M;K]. �

These three theorems exhaust the authentication that this protocol actually

achieves. Consider, for example, the initiator's guarantee that the responder

has been active in a bundle C containing a strand si in Init[A;B;Na;M;K]. It

follows from Proposition 5.3, which establishes that the bundle contains some

s0 2 Serv[A;B;Na; �;M;K], together with Proposition 5.2, which further shows

that some sr 2 Resp[A;B; �;M; ��] has C-height 2. Observe that the Otway-

Rees protocol cannot possibly guarantee that the responder strand (even if

completed) will receive the same session key [24].

5.1.3 The Constraint on Uninterpreted Terms

In Section 5.1.1, we assumed (Clause 2) that the terms H and H 0 contain no en-

crypted proper subterms for a responder strand in Resp[A;B;N;M;K;H;H 0].

However, the responder B cannot enforce this constraint, because in the in-

tended case, these are terms encrypted in A's long-term key, which are unintel-

ligible to B.

In this section we will check that this unenforceable constraint does not hide

any attacks. In particular, if the penetrator can succeed without our restrictive

assumption, then he can also succeed if it is in force.

33



To this end, we modify the speci�cation of the Otway-Rees protocol by re-

moving the restriction in Clause 2 that the termsH andH 0 contain no encrypted

proper subterms. Let us call this new protocol \unconstrained Otway-Rees" to

distinguish it form the original protocol, which we will refer to (in this section

only) as \constrained Otway-Rees". Note that any constrained Otway-Rees

bundle is also an unconstrained Otway-Rees bundle. We then show any uncon-

strained Otway-Rees bundle C0 is nearly equivalent (in a sense de�ned below)

to a constrained Otway-Rees bundle C.
To facilitate the following discussion, we will refer to the locations of the H

and H 0 subterms of Resp[A;B;N;M;K;H;H 0] nodes as insigni�cant locations

and the terms at those locations as insigni�cant terms.

De�nition 5.5 A near equivalence of unconstrained Otway-Rees strand spaces

C on � and C0 on �0
is a bijection I from the regular nodes of C to those of C0

satisfying

1. I preserves the strand structure, that is m)+ n if and only if I(m))+

I(n).

2. For any regular node n 2 C, term(n) and term(I(n)) are identical except

for insigni�cant locations of term(n) and term(I(n)).

3. A simple term originates uniquely on regular nodes in � i� it originates

uniquely on regular nodes in �0
.

This de�nition is clearly weaker than the notion of equivalence (De�nition 2.1)

in that the underlying strand spaces of the bundles may be di�erent. Moreover,

for regular nodes n and I(n), the corresponding terms term(n) and term(I(n))
may be di�erent.

Proposition 5.6 Any unconstrained Otway-Rees bundle C0 is nearly equivalent
to a constrained Otway-Rees bundle C.

Proof. Let H0; H
0
0 2 T be �xed values, chosen so that neither originates

uniquely in �0. Let � contain the same initiator and server strands as �0, and

the same penetrator strands, together with countably many M-strands emitting

the term H0 and countably many M-strands emitting the term H 0
0. Let the

responder strands of � be synthesized from those of �0 be replacing the values

of the parametersH andH 0 byH0 and H
0
0; hence we have a bijection correlating

the strands of Resp[A;B;Nb;M;K; ��] in �0 and Resp[A;B;Nb;M;K;H0; H
0
0]

in �. By the way we selected H0 and H
0
0, � satis�es Clause 2.

A term t uniquely originates on a regular strand in �0 i� it uniquely originates

on a regular strand in �; likewise, the two strand spaces have the same value

for KP . Hence, clauses 1 and 3 are also satis�ed, so � satis�es all the conditions

for an Otway-Rees strand space.

We may now synthesize a bundle C in � from C0. We include the same

initiator, server, and penetrator strands (with the same height). For each re-

sponder strand in Resp[A;B;Nb;M;K;H;H 0] contained in C0, we include the

34



correlated strand in Resp[A;B;Nb;M;K;H0; H
0
0], with the same height. We

cannot connect these strands directly to the expected sender or recipient, be-

cause they require H0 in place of H and H 0
0 in place of H 0. However, we may

use M-strands to emit the newly required values, and S- and C-strands to splice

them in the required positions. Similarly, we use S- and C-strands to splice them

out again and re-insert the values used in C0 between each responder strand and

the rest of the bundle. The resulting bundle C is a counterexample to the same
property in �, because these properties are independent of the values of H , H 0

occurring in their responder strands. The other regular strands are unchanged.

�

Hence we may conclude that a strand space �0 satis�es the same authenti-

cation properties, even if Clause 2 fails in �0.

This technique may be applied more generally to prove authentication results

for protocols which contain unconstrained terms. Suppose � is strand space in

which the regular strands are given as traces in parametric form

P[�; ~A; H ] = hP1[�; ~A; H ]; : : : ;Pn[�; ~A; H ]i

where ~A and H range over terms and � indicates a protocol role such as server

or responder. Assume further that

1. For each i, H occurs only as a component of the term Pi[�; ~A; H ],

2. H is allowed to assume any value in the message algebra.

Under these hypotheses, to prove any authentication results we may impose

the following constraint on H : H 2 T and H does not occur anywhere else on

regular strands.

5.2 Neuman-Stubblebine

The Neuman-Stubblebine protocol [17] contains two sub-protocols. We will call

the �rst sub-protocol the authentication protocol and the second sub-protocol

the re-authentication protocol. In the authentication sub-protocol, a key dis-

tribution center generates a session key for an initiator (a network client) and

a responder (a network server); the message exchange is shown in Figure 19.

This session key is embedded in encrypted form in a re-usable ticket of the form

fjAK T jgKBS
.

Strands of the form shown in the columns labelled A, B, and S in Fig-

ure 19 will be called Init[A;B;Na; Nb; tb;K;H ], Resp[A;B;Na; Nb; tb;K], and

Serv[A;B;Na; Nb; tb;K], respectively.

As in Section 5.1, we de�ne LT to be the set of long-term keys, i.e. the

range of the injective function KAS for A 2 Tname. All long-terms keys are

symmetrical: K 2 LT implies K = K�1. We likewise assume that the server

generates keys in a reasonable way, meaning that that Serv[��;K] = ; unless:
K 62 KP ; K = K�1; K is uniquely originating; and K 62 LT. Because of the

unique origination assumption, it follows that the cardinality jServ[��;K]j � 1

for every K.

35



A S B

�
M1

- �

� �
M2

�

�
w

�

�

wwwwww

�

M3
�

�
w

�

�
w

M4
- �

�

wwwwww

M1 = ANa

M2 = B fjANa tbjgKBS
Nb

M3 = fjBNaK tbjgKAS
fjAK tbjgKBS

Nb

M4 = fjAK tbjgKBS
fjNbjgK

Figure 19: Neuman-Stubblebine Part I (Authentication)

The overall strategy for showing the responder's guarantee, assuming given

a strand sr 2 Resp[A;B;Na; Nb; tb;K] with KAS;KBS 62 KP , is the following:

1. As with Otway-Rees, LT � S0 [ KP . So for all K 0, K 0 2 S1 whenever

Serv[A;B; �; �; �;K 0] 6= ;.

2. fjAK tbjgKBS
is an unsolicited test, which can originate only on a regu-

lar strand. This can only be a server strand ss 2 Serv[A;B; �; �; tb;K].

Therefore K 2 S1.

3. M2 )M4 is an incoming test for Nb in fjNbjgK . Hence there is a regular
transforming edge producing fjNbjgK . This can lie only on the second and

third nodes of an initiator strand si 2 Init[A0; B0; N 0
a; Nb; t

0
b;K; �].

4. Since hsi; 2i contains fjB
0N 0

aK t0bjgKA0S
andK 2 S1, it follows thatK

�1

A0S 62

P. Moreover K�1

A0S = KA0S .

So fjB0N 0
aK t0bjgKA0S

is an unsolicited test, which can originate only on a

regular strand. This can only be a server strand s0s 2 Serv[A
0; B0; N 0

a; �; t
0
b;K].

5. Since server strands construct uniquely originating keys, and K originates

on both ss and s0s, it follows that ss = s0s. Hence, A0 = A, B0 = B,

and t0b = tb. Therefore, si 2 Init[A;B; �; Nb; tb;K; �], and this strand has

height at least three.

The initiator's guarantee is simpler to establish. The edge M1 ) M3 on an

initiator strand is an incoming test for Na in fjBNaK tbjgKAS
. It shows there is

a server strand ss 2 Serv[A;B;Na; �; tb;K]. The �rst node of ss is an unsolicited

test, showing the existence of a responder strand sr 2 Resp[A;B;Na; �; tb; �].

36



�
N 0
a fjAK T jgKBS

- B

�

�
w

�

N 0
b fjN

0
ajgK �

�
w

�

�
w

fjN 0
bjgK

- �

�
w

Figure 20: Neuman-Stubblebine, Part II (Re-authentication)

A B S

�
A

! �

�

�
w

 
Nb

�

�
w

�

�
w

fjNbjgKAS ! �

�
w

�

�
w

fjA; fjNbjgKAS
jgKBS ! �

�

�
w

 
fjNbjgKBS �

�
w

Figure 21: Woo-Lam

In the re-authentication sub-protocol, the key distribution center no longer

needs to be involved; the initiator again presents the same ticket to the re-

sponder, as shown in Figure 20. However, in the presence of this additional

sub-protocol, step 3 in the responder's guarantee can no longer be completed.

There is certainly still a transforming edge producing fjNbjgK , but this edge may
lie either on an initiator strand for Part I of the protocol, or on (conceivably)

either type of strand for Part II. By contrast, the initiator's guarantee for Part I

is una�ected, because we have not added any strand with a transforming edge

producing a term of the form fjBNaK tbjgKAS
.

5.3 The Woo-Lam Protocol

The Woo-Lam one-way authentication protocol [25] also uses an incoming test,

although in a 
awed way [26, 3, 7]. It is intended to allow an initiator (client)

A to authenticate his presence to a responder (networked service) B, by means

of long-term keys shared with a key server. A receives no authenticating infor-

mation about B. The behavior of the protocol is given in Figure 21.

It is clear from Figure 21 how this is intended to work. The )+ edge from

B's �rst transmission of Nb to its �nal reception of fjNbjgKBS
is intended to

serve as an incoming test with that term as test component. The server's edge

fjA; fjNbjgKAS
jgKBS

) fjNbjgKBS
is intended as the corresponding transforming

edge. It \authenticates" that the server has found Nb inside A's encrypted

37



B P B S

�
X
! �

�
A
! �

�  
Nb

�

�
w

�

�

wwwwwwwww

 
Nb

�

�
w

�
G
! �

�

wwwwww

�

�
w

fjA;GjgKBS ! �

�

�

wwwwwwwwwww

fjNbjgKBS ! �

�
w

�

�
w

fjG0jgKBS!

Figure 22: Woo-Lam In�ltrated

message.

Unfortunately this description is enough to see what is wrong with this

protocol. There is another type of transforming edge that produces a term of

the same form as the incoming test component. This is the initiator's encrypting

edge, in the case in which the initiator is B. Thus, the attacker can wait until B

needs to authenticate itself to any responder, and can then execute the attack

shown in Figure 22. Woo and Lam state that they assume that a principal

can detect when it receives an encrypted unit that it has constructed itself; so

perhaps this attack is not entirely \fair." See [3] for additional discussion.

Yet another problem (also discussed in [3]) exists. Even when the server

constructs the term fjNbjgKBS
, this term does not fully determine the parameters

to the server strand. A second attack on Woo-Lam exploits this. The attacker

starts two sessions with the responder B. In one he purports to be A; in the

other he uses some identity C he has somehow captured, so that KCS 2 KP .

He then switches the nonce Nb that B generates, intended to authenticate A,

into the session with C, so that B sends fjC; fjNbjgKCS
jgKBS

to the server. The

server then generates fjNbjgKBS
, which is the test component for B's session

with A. The attacker then makes this appear to belong to that session. The

auxiliary session with C fails to complete.

The Woo-Lam example is included here to illustrate how useful the authen-

tication tests are as a heuristic used to �nd problems in protocols. They may

be used for this purpose even in a case in which some of the oÆcial constraints

on the authentication test are not satis�ed. For instance, in the Woo-Lam pro-

tocol, the test component fjNbjgKBS
could also occur as a proper subterm of a

regular node, namely the message from a responder to the server. However, the

authentication tests still model the reasoning of a protocol designer well enough

to suggest where failures will lie.

38



6 Designing a Protocol: A Rational Reconstruc-

tion

The outgoing, incoming, and unsolicited tests, and the authentication results

that apply to them, suggest a protocol design process. At our level of abstrac-

tion, authentication protocol design is largely a matter of selecting authentica-

tion tests, and constructing a unique regular transforming edge to satisfy each.2

We will illustrate this process by an example, a possible rational reconstruction

leading to the Needham-Schroeder-Lowe protocol.

It is important to start by deciding the goals to be achieved. Let us assume

that we intend to construct a protocol in which the initiator A and responder B

each generate a fresh, secret value, Na and Nb respectively. They want to share

these values between themselves without disclosing them to any other party.

Each should learn that the other has proceeded far enough in the protocol to

have received the values. Perhaps the principals intend to hash the two values

together to produce a session key for an encrypted conversation. We will try to

accomplish our goals without using excessive messages.

We must also stipulate the cryptographic conditions under which the proto-

col will operate. In our case, the relevant assumption is that each principal has

an asymmetric key pair, and can reliably obtain the other's public key. Perhaps

some public key infrastructure is already in place.

From the goal it follows that A can use an authentication test using Na,

while B can use an authentication test using Nb. Given the assumption that the

principals hold each other's public keys, this can be an outgoing test. A can use

a test component of the form fj � � �Na � � � jgKB
assuming K�1

B is uncompromised.

Only B will be able to extract Na from this encrypted form.

By contrast, an incoming test is not suitable. For instance, an incoming

component of the form fj � � �Na � � � jgK�1

B

would ensure that the transforming

edge lies on a strand of principal B, but would sacri�ce the secrecy of Na.

Similarly, an incoming component of the form fj � � �Na � � � jgKA
would preserve

secrecy, but would not ensure that the transforming edge lies on a regular strand,

much less a strand of principal B. Nested encryption might yield a usable

incoming test, but is more computationally demanding and more fragile.

The value A receives back in the outgoing test must be encrypted in a

key whose inverse is uncompromised, presumably KA, to preserve secrecy. In

addition, the �rst term must contain A's name, as otherwise B does not know

which public key to use for the return message. Thus, the �rst steps for A will

be of the form

+ fjNaAjgKB
) �fj � � �Na � � � jgKA

) � � �

2Of course, at other levels of abstraction there are other issues, concerning how to negotiate

cryptographic algorithms, how to evaluate whether cryptography has been used safely, how

to format messages, how to distribute certi�cates, how to align key streams, and so on, that

are not considered at the current level of abstraction.

39



A similar argument shows that B will use an outgoing test of the form:

� � � ) + fj � � �Nb � � � jgKA
) �fj � � �Nb � � � jgKB

) � � �

We save a message by observing that B's outgoing message can be combined

with A's incoming message. Hence, B's behavior can take the form:

� fjNaAjgKB
)

+ fjNaNb � � � jgKA
) �fj � � �Nb � � � jgKB

) � � �

If we try to be clever, we may guess that the presence of Na will identify the

run to A. In that case, we discard the ellipsis in B's outgoing message. Since

there is no need to add anything to the third message or after it, we obtain the

Needham-Schroeder protocol:

�fjNaAjgKB
) + fjNaNbjgKA

) �fjNbjgKB

A more systematic approach is to check whether the values contained in B's

outgoing test component suÆce to identify a unique initiator strand as the

transforming edge for Nb. They do not, because B's identity is not determined.

This establishes that we need a correction like Lowe's:

�fjNaAjgKB
) + fjNaNbBjgKA

) �fjNbjgKB

We have now selected the complete message structure for the protocol. We must

now check that we have done so correctly. There are �ve questions that need to

be answered:

1. Is the set of penetrable keys P disjoint from the decryption keys for outgo-

ing components, and disjoint from the encryption keys for incoming and

unsolicited components?

2. Is any test component a proper subterm of a component of term(n) for

any regular node n?

3. Are there ever two types of transforming edge that transform the same

outgoing component, or produce the same incoming component?

4. Do the parameters contained in the test components completely determine

the data values contained in the desired authentication guarantee?

5. If a data value is intended to remain secret, is it always protected by at

least one key K whose corresponding decryption key K�1 is not penetra-

ble?

The �rst two questions must be answered aÆrmatively to apply Authentication

Tests 1{3, which then entail that there exist matching regular transforming

edges.

But must those regular transforming edges lie on the strands that we expect

them to (Question 3)? A common cause of authentication failure arises when

40



there is also another edge that can transform the same value (e.g. Neuman-

Stubblebine with re-authentication and Woo-Lam). Alternatively, we may know

that a transforming edge of the kind desired is present, but it may not determine

all of the parameters that we would like to agree on (Question 4). This was the

reason for the failure of the original Needham-Schroeder protocol, and for the

second Woo-Lam failure.

If the third and fourth questions are answered aÆrmatively, then the authen-

tication goals of the protocol will have been met. Finally, question 5 assures

that the protocol's secrecy goals will also be met.

Protocol designers need to be alert when Question 3 and Question 4 receive

negative answers. Then there are unintended services, situations in which the

protocol itself o�ers a transformation that can be abused by the penetrator.

We recommend that protocol designers, even when working without any formal

framework, ask themselves whether their protocols o�er any unintended services

to assist the penetrator in achieving what the protocol regards as establishing

authentication. Unintended services are easy to recognize, and they are a strong

clue where an attack on a protocol may lie.

Acknowledgments We are grateful to Sylvan Pinsky and Al Maneki for

encouragement, support, and many technical discussions. We are grateful to

Jonathan Herzog for suggesting that we develop these ideas from the germinal

form they had in another paper. He and Lenore Zuck also helped us to improve

the content of the paper.

References

[1] Michael Burrows, Mart��n Abadi, and Roger Needham. A logic of authentication.

Proceedings of the Royal Society, Series A, 426(1871):233{271, December 1989.

Also appeared as SRC Research Report 39 and, in a shortened form, in ACM

Transactions on Computer Systems 8, 1 (February 1990), 18-36.

[2] I. Cervesato, N. A. Durgin, P. D. Lincoln, J. C. Mitchell, and A. Scedrov. A meta-

notation for protocol analysis. In Proceedings, 12th IEEE Computer Security

Foundations Workshop. IEEE Computer Society Press, June 1999.

[3] John Clark and Jeremy Jacob. A survey of authentication protocol literature:

Version 1.0. University of York, Department of Computer Science, November

1997.

[4] Edmund Clarke, Somesh Jha, and Will Marrero. Using state space exploration

and a natural deduction style message derivation engine to verify security pro-

tocols. In Proceedings, IFIP Working Conference on Programming Concepts and

Methods (Procomet), 1998.

[5] T. Dierks and C. Allen. The TLS protocol. RFC 2246, January 1999.

[6] D. Dolev and A. Yao. On the security of public-key protocols. IEEE Transactions

on Information Theory, 29:198{208, 1983.

[7] Antonio Durante, Riccardo Focardi, and Roberto Gorrieri. CVS: A compiler for

the analysis of cryptographic protocols. In 12th Computer Security Foundations

Workshop Proceedings, pages 203{212. IEEE Computer Society Press, June 1999.

41



[8] Joshua D. Guttman and F. Javier Thayer F�abrega. Authentication tests. In Pro-

ceedings, 2000 IEEE Symposium on Security and Privacy. May, IEEE Computer

Society Press, 2000.

[9] Joshua D. Guttman and F. Javier Thayer F�abrega. Protocol independence

through disjoint encryption. In Proceedings, 13th Computer Security Foundations

Workshop. IEEE Computer Society Press, July 2000.

[10] Tzonelih Hwang, Narn-Yoh Lee, Chuang-Ming Li, Ming-Yung Ko, and Yung-

Hsiang Chen. Two attacks on Neuman-Stubblebine authentication protocols.

Information Processing Letters, 53:103{107, 1995.

[11] Gavin Lowe. An attack on the Needham-Schroeder public key authentication

protocol. Information Processing Letters, 56(3):131{136, November 1995.

[12] Gavin Lowe. Breaking and �xing the Needham-Schroeder public-key protocol

using FDR. In Proceeedings of tacas, volume 1055 of Lecture Notes in Computer

Science, pages 147{166. Springer Verlag, 1996.

[13] Gavin Lowe. Casper: A compiler for the analysis of security protocols. In 10th

Computer Security Foundations Workshop Proceedings, pages 18{30. IEEE Com-

puter Society Press, 1997.

[14] Gavin Lowe. A heirarchy of authentication speci�cations. In 10th Computer Se-

curity Foundations Workshop Proceedings, pages 31{43. IEEE Computer Society

Press, 1997.

[15] Will Marrero, Edmund Clarke, and Somesh Jha. A model checker for authentica-

tion protocols. In Cathy Meadows and Hilary Orman, editors, Proceedings of the

DIMACS Workshop on Design and Veri�cation of Security Protocols. DIMACS,

Rutgers University, September 1997.

[16] Roger Needham and Michael Schroeder. Using encryption for authentication in

large networks of computers. Communications of the ACM, 21(12), December

1978.

[17] B. Cli�ord Neuman and Stuart G. Stubblebine. A note on the use of timestamps

as nonces. Operating Systems Review, 27(2):10{14, April 1993.

[18] D. Otway and O. Rees. EÆcient and timely mutual authentication. Operating

Systems Review, 21(1):8{10, January 1987.

[19] Lawrence C. Paulson. Proving properties of security protocols by induction. In

10th IEEE Computer Security Foundations Workshop, pages 70{83. IEEE Com-

puter Society Press, 1997.

[20] Dag Prawitz. Natural Deduction: A Proof-Theoretic Study. Almqvist and Wiksel,

Stockholm, 1965.

[21] Dawn Xiaodong Song. Athena: a new eÆcient automated checker for security pro-

tocol analysis. In Proceedings of the 12th IEEE Computer Security Foundations

Workshop. IEEE Computer Society Press, June 1999.

[22] M. Tatebayashi, N. Matsuzaki, and D. Newman. Key distribution protocol for

digital mobile communication systems. In G. Brassard, editor, Advances in Cryp-

tology: crypto '89, volume 435 of Lecture Notes in Computer Science, pages

324{331. Springer Verlag, 1990.

[23] F. Javier Thayer F�abrega, Jonathan C. Herzog, and Joshua D. Guttman. Mixed

strand spaces. In Proceedings of the 12th IEEE Computer Security Foundations

Workshop. IEEE Computer Society Press, June 1999.

42



[24] F. Javier Thayer F�abrega, Jonathan C. Herzog, and Joshua D. Guttman.

Strand spaces: Proving security protocols correct. Journal of Computer Secu-

rity, 7(2/3):191{230, 1999.

[25] T. Y. C. Woo and S. S. Lam. Authentication for distributed systems. Computer,

25(1):39{52, January 1992.

[26] T. Y. C. Woo and S. S. Lam. A lesson on authentication protocol design. Operating

Systems Review, pages 24{37, 1994.

[27] Thomas Y. C. Woo and Simon S. Lam. Verifying authentication protocols:

Methodology and example. In Proc. Int. Conference on Network Protocols, Oc-

tober 1993.

A Strands, Bundles, and the Penetrator

In this appendix, we will introduce the basic strand space notions to be used in

the remainder of the paper. This material is derived from [24], with a few small

changes. For instance, the penetrator strands of type T and F were unnecessary

and have now been eliminated from De�nition A.9.

A.1 Strand Spaces

Consider a set A, the elements of which are the possible messages that can be

exchanged between principals in a protocol. We will refer to the elements of A

as terms. We assume that a subterm relation is de�ned on A. t0 @ t1 means

t0 is a subterm of t1. We constrain the set A further below in Section A.3, and

de�ne a subterm relation there.

In a protocol, principals can either send or receive terms. We represent

transmission of a term as the occurrence of that term with positive sign, and

reception of a term as its occurrence with negative sign.

De�nition A.1 A signed term is a pair h�; ai with a 2 A and � one of the

symbols +;�. We will write a signed term as +t or �t. (�A)� is the set of

�nite sequences of signed terms. We will denote a typical element of (�A)� by

h h�1; a1i; : : : ; h�n; ani i.
A strand space over A is a set � together with a trace mapping tr : � !

(�A)�.

By abuse of language, we will still treat signed terms as ordinary terms. For

instance, we shall refer to subterms of signed terms. We will usually represent

a strand space by its underlying set of strands �.

De�nition A.2 Fix a strand space �.

1. A node is a pair hs; ii, with s 2 � and i an integer satisying 1 � i �
length(tr(s)). The set of nodes is denoted by N . We will say the node

hs; ii belongs to the strand s. Clearly, every node belongs to a unique

strand.

43



2. If n = hs; ii 2 N then index(n) = i and strand(n) = s. De�ne term(n) to

be (tr(s))i, i.e. the ith signed term in the trace of s. Similarly, uns term(n)

is ((tr(s))i)2, i.e. the unsigned part of the ith signed term in the trace of

s.

3. There is an edge n1 ! n2 if and only if term(n1) = +a and term(n2) = �a
for some a 2 A. Intuitively, the edge means that node n1 sends the message
a, which is received by n2, recording a potential causal link between those

strands.

4. When n1 = hs; ii and n2 = hs; i+ 1i are members of N , there is an edge

n1 ) n2. Intuitively, the edge expresses that n1 is an immediate causal

predecessor of n2 on the strand s. We write n0 )+ n to mean that n0

precedes n (not necessarily immediately) on the same strand.

5. An unsigned term t occurs in n 2 N i� t @ term(n).

6. Suppose I is a set of unsigned terms. The node n 2 N is an entry point for

I i� term(n) = +t for some t 2 I , and whenever n0 )+ n, term(n0) 62 I .

7. An unsigned term t originates on n 2 N i� n is an entry point for the set

I = ft0 : t @ t0g.

8. An unsigned term t is uniquely originating i� t originates on a unique

n 2 N .

If a term t originates uniquely in a particular strand space, then it can play the

role of a nonce or session key in that structure.

N together with both sets of edges n1 ! n2 and n1 ) n2 is a directed graph

hN ; (! [ ))i.

A.2 Bundles and Causal Precedence

A bundle is a �nite subgraph of the graph hN ; (! [ ))i, for which we can

regard the edges as expressing the causal dependencies of the nodes.

De�nition A.3 Suppose!C �!; suppose)C �); and suppose C = hNC ; (!C

[ )C)i is a subgraph of hN ; (! [ ))i. C is a bundle if:

1. NC and !C [ )C are �nite.

2. If n2 2 NC and term(n2) is negative, then there is a unique n1 such that

n1 !C n2.

3. If n2 2 NC and n1 ) n2 then n1 )C n2.

4. C is acyclic.

44



In conditions 2 and 3, it follows that n1 2 NC , because C is a graph.
For our purposes, it does not matter whether communication is regarded as

a synchronizing event or as an asynchronous activity. The de�nition of bundle

formalizes a process communication model with three properties:

� A strand (process) may send and receive messages, but not both at the

same time;

� When a strand receives a message t, there is a unique node transmitting

t from which the message was immediately received;

� When a strand transmits a message t, many strands may immediately

receive t.

Notational Convention A.4 A node n is in a bundle C = hNC ;!C [ )Ci,
written n 2 C, if n 2 NC; a strand s is in C if all of its nodes are in NC.

If C is a bundle, then the C-height of a strand s is the largest i such that

hs; ii 2 C. C-trace(s) = htr(s)(1); : : : ; tr(s)(m)i, where m = C-height(s).

De�nition A.5 If S is a set of edges, i.e. S �! [ ), then �S is the transitive

closure of S, and �S is the re
exive, transitive closure of S.

The relations �S and �S are each subsets of NS �NS , where NS is the set of

nodes incident with any edge in S.

Proposition A.6 Suppose C is a bundle. Then �C is a partial order, i.e. a re-


exive, antisymmetric, transitive relation. Every non-empty subset of the nodes

in C has �C-minimal members.

We regard�C as expressing causal precedence, because n �S n
0 holds only when

n's occurrence causally contributes to the occurrence of n0. When a bundle C is
understood, we will simply write�. Similarly, \minimal" will mean�C-minimal.

A.3 Terms, Encryption, and Freeness Assumptions

We will now specialize the set of terms A. In particular we will assume given:

� A set T � A of texts (representing the atomic messages).

� A set K � A of cryptographic keys disjoint from T, equipped with a unary

operator inv : K ! K. We assume that inv is an inverse mapping each

member of a key pair for an asymmetric cryptosystem to the other, and

each symmetric key to itself.

� Two binary operators encr : K� A! A and join : A� A! A.

We follow custom and write inv(K) asK�1, encr(K;m) as fjmjgK , and join(a; b)
as a b. If K is a set of keys, K�1 denotes the set of inverses of elements of K. We

assume, like many others (e.g. [13, 15, 19]), that A is freely generated, which is

crucial for the results in this paper.

45



Axiom 1 A is freely generated from T and K by encr and join.

De�nition A.7 The subterm relation @ is de�ned inductively, as the smallest

relation such that a @ a; a @ fjgjgK if a @ g; and a @ g h if a @ g or a @ h.

By this de�nition, for K 2 K, we have K @ fjgjgK only if K @ g already.

De�nition A.8 1. If K � K, then t0 @K t if t is in the smallest set contain-

ing t0 and closed under encryption with K 2 K and concatenation with

arbitrary terms t1.

2. A term t0 is a visible subterm of t if t0 @; t.

3. A term t is simple if it is not of the form g h.

4. A term t0 is a component of t if t0 is simple and t0 @; t.

We say that t0 is a component of a node n if t0 is a component of term(n).

A.4 Penetrator Strands

The atomic actions available to the penetrator are encoded in a set of penetrator

traces. They summarize his ability to generate known messages, piece messages

together, and apply cryptographic operations using keys that become available

to him. A protocol attack typically requires hooking together several of these

atomic actions.

The actions available to the penetrator are relative to the set of keys that the

penetrator knows initially. We encode this in a parameter, the set of penetrator

keys KP .

De�nition A.9 A penetrator trace relative to KP is one of the following:

Mt Text message: h+ti where t 2 T.

KK Key: h+Ki where K 2 KP .

Cg;h Concatenation: h�g; �h; +g hi

Sg;h Separation: h�g h; +g; +hi

Eh;K Encryption: h�K; �h; +fjhjgKi.

Dh;K Decryption: h�K�1; �fjhjgK ; +hi.

P� is the set of all strands s 2 � such that tr(s) is a penetrator trace.

A strand s 2 � is a penetrator strand if it belongs to P�, and a node is a

penetrator node if the strand it lies on is a penetrator strand. Otherwise we will

call it a non-penetrator or regular strand or node. A node n is M, K, etc. node

if n lies on a penetrator strand with a trace of kind M, K, etc.

We assume that all strand spaces have an adequate supply of C, S, E, and D

strands; by contrast, M and K strands vary, thus modeling the set of values the

penetrator may know or be able to guess.

46


