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Coordination

Coordination is the theory and practice of assembling software systems 
out of independently developed components

Coordination languages are intended to provide the glue around a set of, 
potentially heterogeneous, components

Coordination languages have been used successfully to compose 
applications parallel and distributed application for more than twenty 
years

 



Course Overview

“programming secure systems is easy;  secure distributed systems are hard''

Goal: overview of security challenges and approaches in the field
of coordination,  focusing on data-centric languages of the Linda 
family 

Two parts

Part 1 

Coordination:: 

family of coordination languages; design space; use cases

Part 2

Security::

explore the space of security threats and potential responses



Part I
COORDINATION



Linda is a data-centric coordination language invented by David Gelernter 
(Yale) around 1982. The language has been widely successful sparking 
hundreds of papers, with a devoted conference, several commercial 
implementations and many research projects.

Originally designed for programming parallel computers, Linda has been 
adapted to weakly distributed systems, and more recently to wide area 
networks

The basic data structure, called tuple space, underlying any Linda 
implementation is a multiset of “tuples”.  Tuples are ordered (finite) 
sequences of values.

Linda must be embedded in an expression language. Originally the 
expression language was meant to express the sequential parts of a 
computation while Linda would specify the concurrent composition of the 
sequential fragments. Current hosts include C, C++, Fortran, Eiffel, Java.

The main innovation of Linda is the choice of a simple and elegant set of 
atomic operations for accessing tuple spaces based on pattern matching.

Introducing Linda
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Middleware and Coordination

Middelware is the software that serves as the glue between two applications, sometimes called 
plumbing because it connects two sides of an application and passes data between them

www.cren.net

Middleware provides a layer insulating applications against change. In 
large and complex distributed environments: client and server codes are 
updated, interfaces evolve, implementation languages change, hosts are 
added, failures occur, connectivity fluctuates.

Linda-based coordination languages provides:

1. language neutrality (interoperability)

2. simple and stable interface (usability)

3. undirected communication (~anonymity)

4. uncoupled communication (persistent location transparent store)

Contrast with widely used message-based middleware such as CORBA 
Main differences are RPC style directed/synchronous communication (3, 4) 
and complex interface (2).



Case study 1: computational farms

A Computation Farm for Distributed Computing

Distributed computing is usually concerned with taking advantage of CPU, 
memory and other network resources by performing a computational task 
in parallel between all of them. It is a specific type of Peer to Peer 
application.

A user writes a set of commands into a space on the tuple spaces 
network. On the network are a number of workers that run on multiple 
computers and use their aggregated processing power. Each worker takes 
a task from the space and executes the 
related processing procedure. When
processing is completed, the 
output is written back to the space. 
The final output is read by the
mobile  device from the space as 
a set of combined outputs.

(from the Gigaspaces web site)



Case study II: message bus

A Messaging Bus for Clustering and Load Balancing

To support high availability and fault tolerance, the ideal solution is to 
build an adaptive server that can shrink or expand according to specific 
needs and budgets. This can be done by creating a network bus through 
which servers are hooked together and act as one to the outside world. 
Load is balanced simply by adding or removing servers. 

The tuple space acts as a communication bus. Each server takes the 
appropriate packet, executes it and responds. Since the space provides 
the means for associative  retrieval, different types of load-balancing 
topologies can be easily applied. 
For example, in one topology, all
the servers are mirrored so that 
the first one available takes the 
request. This provides automatic 
load balancing; each request is
sent to the most available server
....



Case Study III: distributed repository

A Distributed Repository for Distributed Session Sharing 

A distributed repository stores and retrieves data for distributed components. 
The data may be configuration data and/or session information. 
vices. 

A customer wants to order a car  from one agency and a flight  from another. 
The car and flight  reservation systems are located  in separate servers. Both 
systems need to be able to  share the user session, so that from the 
customer's point of  view it is a 
single transaction.  Since these 
services are  distributed, we 
cannot use the session 
information in each of the 
servers, but instead use the 
space as a distributed session 
server accessible to both the 
reservation services.



Historical perspective

A subjective, partial view of the history of coordination with a bias towards papers and systems 
that will be covered in the course.

1982 - First documented version of Linda

1985 - Gelernter, Generative communication in Linda, TOPLAS

1993 - Arbab. Herman, Spilling, An Overview of Manifold and its 
           Implementation, C - P&E  (control-centric coordination)

1996 - Ciancarini, Knoche, Tolksdorf, Vitali, PageSpace: An Architecture to 
           Coordinate Distributed  Applications on the Web, WWW

1996 - First COORDINATION conference

1998 - de Nicola, Ferrari, Pugliese, Klaim: a Kernel Language for Agents 
          Interaction and Mobility, TSE

 1998 - Busi, Gorrieri, Zavattaro, A process algebraic view of Linda 
           coordination  primitives, TCS

1999 - JavaSpaces

1999 - Bryce, Oriol, Vitek, A Coordination Model for Agents Based on Secure    
           Spaces, Coordination

1999 - Picco, Murphy Roman, Lime: Linda Meets Mobility, MA

2005 (february?) - next COORDINATION -- Submit, submit early, submit often



Linda

Linda’s simplicity can be contrasted to the complexity of language such as 
Ada.

Little know fact: Does Linda means Linda Is Not aDA? No. The name of the language and some 
of the primitive was inspired by the ‘actress’  Linda Lovelace with no relation to  Ada Lovelace, 
Byron’s daughter and “founder of scientific computing”.

Linda has only four atomic primitive operations:

in(t)    find a tuple matching t, remove it from the space, 
            perform any bindings of formal to actuals

out(t)   output tuple t into the space

rd(t)     non destructive version of in

eval(P)  start a new parallel task to evaluate P

Plus two non blocking variants inp and rdp



Linda

Access to the tuple space is termed associative because tuples are 
retrieved using a simple but powerful form of pattern matching

A tuple is a sequence of values (actuals) of type int, bool, char, string, ...

out(”string”, 42, true)

A template is a tuple where some fields are unbound variables (formals)

in(”string”, ?x, ?b)

Matching a tuple to a template succeeds if the tuples have the same 
length, the actuals of the template are equal to the corresponding actuals 
in the tuple

The result of a successful match binds the formals in the template, e.g.

  out(”string”, 42, true);  
  in (”string”, ?x, ?b  );
  if ( x == 42 && b)
           print(”okay”);



Linda example: sempaphores

A simple counting semaphore can be implemented simply.

Thread 1:

out( ”semaphore” );

out( ”semaphore” );

Thread 2:

in( ”semaphore” ); 

proceed_to_do_something_meaningful();

sempaphore

sempaphore



Linda example: Linked list

out( ”list”, 0, 1, 
     “this is the head”);

out( ”list”, 1, -1,
     ”this is the end of the list”);

next = 0;

while ( next != -1 ) {

in( ”list”, next, ?tail, ?val);

print val;

next = tail;

}

possibly not the best way to construct data structures



Implementing Linda

Obtaining an efficient implementation requires optimizing the storage 
requirements of tuple, and ensuring fast associative access.

Unlike a database, Linda has no fixed index fields - any combination of 
fields can be used as a key to retrieve values. Moreover the values of the 
actuals of a key are typically not know at compile time. Databases are 
made up of table which can have different implementations, a Linda 
system is made up of a single tuple space shared by many applications 
for different purposes.

Parallel Linda can be optimized under closed world assumption. E.g. it is 
possible analyze the program to discover all tuple types and the signature 
of all templates; different tuple types can be treated differently. The same 
is not possible for distributed systems.

In distributed implementations, the matching is not costly. 
Synchronization and communication are slower by orders of magnitude. 
Adaptive optimizations such as proactive routing and caching can win big.



Basic Architectures

HOST C HOST D

HOST A HOST B

Centralized

HOST C HOST D

HOST A HOST B

Push

 "x", 3

HOST C

HOST A HOST B

Pull

 "x", 3

Implementations of the tuple space abstraction 
have some basic infrastructures. Tradeoffs are 
related to the choice of location of the tuple 
space (centralized implies a bottleneck and 
single point of failure, while distributed means 
high synchronization costs)



Implementing Linda

Assume a client-provider 
relationship between processes 
located on two distinct nodes 
for tuple of shape (”x”, ?). 

A proactive routing 
optimization tries to push the 
tuples to the local store on 
host B. The system can adapt 
to changes in communication 
patterns by discontinuing the 
routing. 

(This is meant to be a 
semantics preserving 
optimization, but is it? See the 
next slide on mem models)

NB: Synchronization is 
required whenever a 
destructive operation is 
performed (in())

tuple space

 "x", 3
"x" ?

 "x", 3

 "x", 3

 "x", 3

HOST A HOST B



Implementation: Memory Model

What kind of memory model should be 
exposed to the programmer? When is 
the tuple space implementation 
obligated to 
make an operation visible? There is 
tension between performance and being 
faithful to the semantics.

Provide some form of global sequential 
consistency? Then if “y” is visible 
so must “x”. (this prevents any form of 
“active routing” which breaks this 
illusion)

Looser consistency (e.g. within a 
thread)? Then if “y” is visible so  must 
“x”. (This only prevents active routing 
within a thread, but allows it across 
threads. A reasonable choice. But high-
level semantics is breached)

Ideally we want some form a 
serializability... (as discussed by 
Jagannathan  in transactional linda 
[COORDINATION04]

out "x"

out "y"thread1

thread2

thread3

t1 t2 t3 t4

inp "y" inp "x"

hb

out "x" out "y"thread1

thread3

t1 t2 t3 t4

inp "y" inp "x"



Core Linda

Formal semantics will help us gain a better understanding of the design 
space of coordination language. Many security vulnerabilities are apparent 
in the semantics!

Core Linda is a simple extension of Milner’s polyadic asynchronous pi-
calculus with a small-step operational semantics

Difference with Linda are:

• no eval(), it is subsumed by the inherent parallelism in pi

• inp() and rdp() operators are omitted for simplicity; they introduce 
interesting complication which are out of the scope of this talk



Core Linda
void element. Tuple values are denoted 〈 v 〉, where v stands for the finite
sequence v1 v2 . . . vn.

e ::= x | v | 〈 e 〉 | e.i

v ::= ? | x

P ::= 0 | !P | P | Q | in e x . P | out e | (ν x)P

Table 1: Core Language Syntax.

Expressions. ranged over by e, include basic values, tuples and selection ex-
pressions. Processes, ranged over by P and Q, includes the empty process 0
which has no behavior, parallel composition of processes P | Q, replication of
processes !P , as well as the basic Linda two communication primitives. The
input operation in e x . P matches the template e against an output offer and
bind the result to variable x. The operation is blocking, P cannot execute until
the match succeeds. The second operation is the asynchronous output out e
which deposits the expression denoted by e in the data space. Finally, The
restriction operator (ν x) generates a fresh name x. The calculus is lexically
scoped, so (ν x)P means that x is visible only in process P .

2.2 Operational Semantics

The operational semantics of LindaC is given in Table ??. The one step re-
duction relation on processes is written P → P ′. Structural congruence ≡
is the least congruence on processes satisfying the axioms and rules given in
Table ??. The evaluation relation ↓ denotes the result of field selection and
object extension expressions. The reduction relation → is the least relation
on processes that satisfies the axioms and rules defined in Table ??. The term
P{e/x} represents process P in which all free occurrences of x are replaced by
e. Trailing inert processes are removed; thus in e x .0 becomes in e x. The free
names of a term are denoted by fn( ), and defined in Table ??.

The pattern matching relation ≤ is a relation on values with ? as minimum
element. Objects are matched by pair-wise field comparison. Selection, e.i,
extracts a value v from e if evaluates to a tuple and i is the offset of v. An
error occurs in case the key is not present and the execution gets stuck.

The communication rule determines when an an input request can consume
an output offer. If the output term evaluates to a tuple 〈 v 〉, the input to a
tuple 〈 v′ 〉, and the tuples match, then the output offer is consumed and the
continuation P can execute.

4

Reduction

P → Q
(ν x)P → (ν x)Q

P → Q
P | R → Q | R

P ≡ P ′ P ′ → Q
P → Q

e ↓ 〈 v 〉 e′ ↓ 〈 v′ 〉 〈 v′ 〉 ≤ 〈 v 〉
out e | in e′ x . P → P{〈 v 〉/x}

Evaluation

v ↓ v e1 ↓ v1 . . . en ↓ vn

〈 e1 . . . en 〉 ↓ 〈 v1 . . . vn 〉
e ↓ 〈 v1 . . . vi . . . vn 〉

e.i ↓ vi

Structural Congruence Rules

P | Q ≡ Q | P P | 0 ≡ P !P ≡ P | !P

(P | Q) | R ≡ P | (Q | R) (ν x)(ν y)P ≡ (ν y)(ν x)P

(ν x)(P | Q) ≡ P | (ν x)Q if x '∈ fn(P )

Pattern Matching Rules

? ≤ v v ≤ v
v1 ≤ v′

1 . . . vn ≤ v′
n

〈 v 〉 ≤ 〈 v′ 〉

Table 2: Operational Semantics of LindaC.

fn(0) = fn(?) = {}, fn(x) = {x}, fn(〈 e 〉) = fn(e1) ∪ · · · ∪ fn(e′
n)

fn(P | Q) = fn(P ) ∪ fn(Q), fn(!P ) = fn(P ),

fn(out e) = fn(e), fn(in e x . P ) = fn(e) ∪ fn(P )− {x},
fn((ν x)P ) = fn(P )− {x}
Table 3: Free names.

3 Labeled Linda

3.1 Syntax

The syntax of labeled Linda (LindaL) is summarized in Table ??. The syntax
for processes is identical to LindaC (Table ??). The main difference between the

5
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Core Linda: Semaphores

Semaphores can be represented by a tuple of the shape out(). The 
following gives the reduction sequence of a program with two semaphores.

   out() | out() | in()x.out(a) | in(a)x.in()y.0

= out() | in()x.out(a) | out() | in(a)x.in()y.0

out() | out(a) | in(a)x.in()y.0

= out(a) | in(a)x.in()y.0 | out()

out() | in().0         

0

Notice that the state and control are merged; there is no difference 
between the command out(a) and the tuple (a) in the tuple space.



Core Linda: Lists

A list can be represented by a tuple of the shape out(hd,tl,val). The following 
gives the reduction sequence of a program with a list of length two.

   ((new a) out(0,1,a)) | out(1,0,b) | in(0,?,?)x.in(x.2,?,?)z.0
=

   (new a)( out(0,1,a)  | out(1,0,b) | in(0,?,?)x.in(x.2,?,?)z.0)
=

   (new a)( out(0,1,a)  | in(0,?,?)x.in(x.2,?,?)z.0 | out(1,0,b))

   (new a)( in((0,1,a).2,?,?)z.0 | out(1,0,b))
=

   (new a)( in(1,?,?)z.0 | out(1,0,b))

   (new a)( [(1,0,b)/z]0 )
=

  (new a)( 0 )



Core Linda: Observations

Unlike in Linda, the definition of pattern matching in CoreLinda treats 
tuples and templates uniformly. Thus we have the following, where a 
template is output:

    out( a,?,1 ) | in( ?,b,1 )x . out( x.1 )

  out( (a,?,1).1 )

 =  out( a 

This treatment of templates was adopted in SECOS [Bryce,Vitek02] and 
simplifies the implementation. Pattern matching is implemented by 
unification of the two tuples.



Core Linda: Observations

Non blocking operations (inp/rdp) can be specified by adding rules that 
fire in the absence of matching tuples.

These operations introduce interesting complications as it is possible to 
observe the absence of a value.

Without non-blocking operations, the discussion of memory model would 
be irrelevant.



Core Linda: Semaphores

Semaphores can be represented by a tuple of the shape out(). The 
following gives the reduction sequence of a program with two semaphores.

   out() | out() | in()x.out(a) | in(a)x.in()y.0

= out() | in()x.out(a) | out() | in(a)x.in()y.0

out() | out(a) | in(a)x.in()y.0

= out(a) | in(a)x.in()y.0 | out()

out() | in().0         

0

Deja vu, all over again. Consider using this implementation of semaphores 
as component all over a large system. Problem? (hint: how can we have 
two distinct semaphores)



Interference

The shared tuple space’s main advantage is that independent applications 
can coordinate. The problem is that it is very easy for applications to 
interfere with one another by accident (or malice).

The semaphore is a prototypical example where there is a need for 
controlled sharing. 

Assume to different components want to uses semaphores independently.  
With the current definition of semaphores, they would modify each other’s 
semaphores.

The solution is to add information to differentiate them. (one extra level 
of indirection)

((new a) out(semaphore, a) |  P )  | ((new b) out(semaphore, b) |  P ) 

This only helps a bit, what if a third process does 

in(?,?)x.P

this results in random corruption of the state space of unrelated 
applications



Labeled Linda

Labeled Linda is designed to address the problem of interference by 
allowing users to partition the tuple space without loosing the desirable 
sharing properties.

SECOS implements most of the semantics of Labeled Linda.

In Labeled Linda a tuple is a map from labels to values. Labels can be 
names or integers. Values include tuples, labels and the distinguished ?.

The lexical order of appearance of labels is irrelevant.

Tuples with disjoint label sets can be composed into a new tuple that is the 
union of the two original ones.

Positional notation can be encoded by using integer labels, a Core Linda 
tuple (”a”, 1, true) can be encoded as (1:“a”, 2:1, 3:true)



Labeled Linda
two language is that fields of tuples are labeled by names and that tuples can be
used as values. A tuple is written 〈 l : v 〉 (or equivalently 〈 l1 : v1 . . . ln : vn 〉.
Labels, denoted by l, range over names x and integers i.

The tuple extension expression 〈 l : v 〉 ⊕ 〈 l′ : v′ 〉 denotes 〈 l : v l
′ : v′ 〉.

e ::= x | v | 〈 e : e 〉 | e.e | e⊕ e

v ::= ? | l | 〈 l : v 〉
l ::= x | i

Table 4: Core Language Syntax.

3.2 Operational Semantics

The operational semantics of the calculus is given in Table ??. The reduction
relation of LindaC (Table ??) requires only minor changes. Structural congru-
ence remains as before. The definition of free names needs only be extended
to include labels (not shown here).

The pattern matching relation ≤ is a transitive and reflexive relation on values.
The void element ? matches any name. Tuples are matched by pair-wise field
comparison. For two tuples to match they must have the same set of labels
(not that ordering is not important and we assume that labels of a tuple are
unique).

6



Labeled Linda
Reduction

e ↓ v e′ ↓ v′ v′ ≤ v

out e | in e′ x . P → P{v/x}
Evaluation

v ↓ v e1 : e′
1 ↓ l1 : v1 . . . en : e′

n ↓ ln : vn

〈 e1 : e′
1 . . . en : e′

n 〉 ↓ 〈 l1 : v1 . . . ln : vn 〉

e ↓ 〈 l : v l : v 〉
e ↓ 〈 l : v l : v 〉

e ↓ 〈 l : v l : v 〉 e′ ↓ l
e.e′ ↓ v

e ↓ 〈 l : v 〉 e′ ↓ 〈 l′ : v′ 〉 l ∩ l
′ = ∅

e⊕ e′ ↓ 〈 l : v l
′ : v′ 〉

Pattern Matching Rules

? ≤ x v ≤ v
v1 ≤ v′

1 . . . vn ≤ v′
n

〈 l : v 〉 ≤ 〈 l : v′ 〉

Table 5: Operational Semantics.
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Labeled Linda: Semaphores

Semaphores can be represented by a tuple of the shape out(sem:a) where a 
is the name of the component owning the semaphore. The following gives the 
reduction sequence of a program with two components.

(new a)(out(sem:a) | in(sem:a)x.out(42)) | (new b)(out(sem:b)|P)

(new a)(out(42)) | (new b)(out(sem:b)|P)



Strict Match

Even with labels it is still possible to write  in(sem:?)x.P which defeats 
the purpose of Labeled Linda.

Extend Label linda with a strict match constructor #, such that 
l#v < l’#v’ only if l = l’ and v = v’

With the strict match we have the guarantee that if we write

out(sem#a) | in(sem: ?)x.out(42)

the term will not be reduced further.

The syntax and semantic extensions are omitted (small changes to the 
definition of match)



Multiple tuple spaces

JavaSpaces, and most distributed implementations of Linda allow for 
multiple distinct tuple spaces. 

Multiple tuple spaces have advantages as they can improve locality (e.g. 
it is more efficient for  two colocated processes to communicate over a 
shared tuple space located on the same host rather than have to go on 
the network.) 

Multiple tuples limit the potential for unwanted interferences between 
applications.

Locations can  be expressed with labels:

out( loc# here, 1: 59, ...)

Nested tuple spaces simply use several locations fields:

out( loc# here, subloc# x, 1: 59, ...)

Creation of a tuple space in Labeled Linda boils down to creating a fresh 
name ((new a)out( loc# a))



Example: Reactive Programming

Suppose that you want to ensure that every tuple which is emitted has a 
default location appended. Can we express this in Labeled Linda?

! ( in( 1:? )x. out x+(loc#here) )

What about ensuring that all input request be located?



Reactive Linda
Reactive Linda allows to specify actions that are performed as soon and  
every time a particular tuple is inserted in the space.

Reactive capacities are part of GigaSpaces, JavaSpaces, Lime, etc.

A reaction is a process which is registered with a template with a 
guarantee that the process is run when the tuple is inserted in the space. 

Some design choices:

• reaction allow modifications of the tuple (i.e. interposition)

• reactions are atomic

• reactions are executed once / multiple times

• reactions can be chained

• reactions can be registered for all tuple space operations

Reactions reify the tuple space, same as Aspects.

Reactions generalize the concept of event handlers.



Reactive Linda

Reactive Linda is a simplified reactive langauge. Reactions can be 
registered only on output operations.

Implemented with the following convention. Two virtual tuple spaces are 
used. All input operations operate over tuples label with (r:r). 

Reactions operate over the unadorned space.

A reaction is triggered whenever an unadorned tuple is inserted in the 
space. It consumes the tuple and can output it as a labeled tuple (or not).

4 Reactive Linda

4.1 Syntax

The syntax of the Reactive Linda (LindaR) is summarized in Table ??, the only
difference with LindaL is the addition of an expression to register a reaction
(react e x . P ).

P ::= . . . | react e x . P

Table 6: Core Language Syntax.

4.2 Operational Semantics

The operational semantics of LindaR (Table ??) is identical to that of LindaL
(Table ??) except for the communication rule and a new reaction rule.

A reaction is triggered when a matching tuple is output to the space. The
restriction on labels is intended to avoid triggering reactions several times for
the same tuple.

The communication rule will only fire for tuple that have already been pro-
cessed (they are marked with a label r : r). The marking label is stripped
from the tuple.

Reduction

e ↓ v e′ ↓ v′ v′ ≤ v r #∈ labels(v)

react e x . P | out e′ → P{v/x}
e ↓ v e′ ↓ v′ v′ ⊕ 〈 r : r 〉 ≤ v

out e | in e′ x . P → P{v/x}
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Reactive Linda: Observations

 out( 1:a ) | react( 1:?)x.out x+(r#r) | in( 1:? )z.P

 out (1:a)+(r#r) | in( 1:? )z.P

 [(1:a,r#r)/z]P

Note that this is a cooperative model, anyone can output a tuple adorned 
wit (r#r).

Not really usable because there is no chaining and no defaulting

Also not that reactions are not atomic, thus there can be out of order 
delivery of out()s

NB: reactive Linda falls short of a full reactive system; there is no major 
difficulty in extending the semantics to support, e.g. Lime reactions.



Distribution

Labeled Linda is not terribly convenient to express distributed process.

In a distributed setting, processes have locations

Design choice: location awareness vs. location transparency

 (old debate in distributed systems: everyone wants transparency, 
  but no one wants to pay for it)



Located Linda
Located Linda is a distributed language where processes and tuples have 
locations

The semantics enforces multiple disjoint tuple spaces

Changes to Located Linda include a new syntactic category for named 
location executing processes, and tuples

Top level tuples are adorned with a location label

in() and out() are extended with location annotations

5 Located Linda

5.1 Syntax

The syntax of Located Linda (LindacalK) extends LindaL with a new top level
syntactic category for configurations. A configuration L is can be either empty
0, a composite L | L′, a location with name a executing process P (denoted
a[ P ]). Location names are ranged over by a, b.

Input and output operations are annotated with location identifiers, thus
out e@e′ outputs the tuple obtained by evaluating e at the location obtained
by evaluating e′.

L ::= 0 | L | L | a[P ] | v

P ::= . . . | in e@e x . P | out e@e

Table 8: Core Language Syntax.

5.2 Operational Semantics

Reduction

P → P ′
a[P ] | L → a[P ′] | L

L ≡ a[ in e@ ex . P | P ′ ] | v ⊕ 〈 loc : b 〉 | L′

e ↓ v′ e′ ↓ b v′ ≤ v

L′′ = a[ P{〈 v 〉/x} | P ′ ] | L′

L → L′′

e ↓ v e′ ↓ b L′ = v ⊕ 〈 loc : b 〉 | L

a[ out e@e′ | P ] | L → a[ P ] | L′

Table 9: Operational Semantics.
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Summary: JavaSpace

JavaSpace is the SUN implementation of Linda which has been 
incorporated in the JINI infrastructure; GigaSpace and TSpaces (IBM) are 
commercial products with similar features 

JavaSpaces has:

locations and multiple tuple spaces

concurrency is provided by the host language (e.g. no eval)

reactions

transactions (did not discuss it here see Busi et.al, and Jagannathan)



Mobile Linda

Mobility allows to express computations that adapt to locality

Better usage of resources as the computation can be co-located to the 
resource, where ever the resource happens to be

Inspired by Ambients [CardelliGordon] and the work on Mobile Agents

Mobile Linda is an extension of Located Linda in which agents have names 
and execute on a single location

Explicit move operation 

6 Mobile Linda

6.1 Syntax

The syntax of Mobile Linda (LindaM) follows LindacalK with two exceptions
(see Table ??). Location are label by a location name a and an agent name h
and written ah[ P ]. The expression move a will move the enclosing agent to
location a.

L ::= . . . | ah[P ]

P ::= . . . | move a

Table 10: Core Language Syntax.

6.2 Operational Semantics

Reduction

L ≡ ah[ in e@ ex . P | P ′ ] | v ⊕ 〈 loc : b own : g 〉 | L′

e ↓ v′ e′ ↓ b v′ ≤ v

L′′ = ah[ P{〈 v 〉/x} | P ′ ] | L′

L → L′′

e ↓ v e′ ↓ b L′ = v ⊕ 〈 loc : b own : h 〉 | L

ah[ out e@e′ | P ] | L → ah[ P ] | L′

L′ = L{v⊕〈 loc:b own:h 〉/v⊕〈 loc:a own:h 〉}
ah[ move b | P ] | L → bh[ P ] | L′

Table 11: Operational Semantics.

10



Mobile Linda

6 Mobile Linda

6.1 Syntax

The syntax of Mobile Linda (LindaM) follows LindacalK with two exceptions
(see Table ??). Location are label by a location name a and an agent name h
and written ah[ P ]. The expression move a will move the enclosing agent to
location a.

L ::= . . . | ah[P ]

P ::= . . . | move a

Table 10: Core Language Syntax.

6.2 Operational Semantics

Reduction

L ≡ ah[ in e@ ex . P | P ′ ] | v ⊕ 〈 loc : b own : g 〉 | L′

e ↓ v′ e′ ↓ b v′ ≤ v

L′′ = ah[ P{〈 v 〉/x} | P ′ ] | L′

L → L′′

e ↓ v e′ ↓ b L′ = v ⊕ 〈 loc : b own : h 〉 | L

ah[ out e@e′ | P ] | L → ah[ P ] | L′

L′ = L{v⊕〈 loc:b own:h 〉/v⊕〈 loc:a own:h 〉}
ah[ move b | P ] | L → bh[ P ] | L′

Table 11: Operational Semantics.

10



Roaming Consumer

 a_h[ in(1:?)x.(move j|in(1:?)y) ] | (1:1,loc#h) | (1:2,loc#j)

 a_h[ move j | in(1:?)y ] | (1:2,loc#j)

 a_j[ in(1:?)y.0 ] | (1:2,loc#j)

 a_j[ 0 ]



Summary: Lime

Lime was developed by Picco, Murphy and Roman at WUSTL

It is a Java-based mobile agent/coordination language

Lime has:

• locations and mobility

• global and local tuple spaces

• atomic reaction

• engagement/disengagement 

• CoreLime [Carbunar,Valent,Vitek] a simplified semantics



Part II
SECURITY



Threats
Threats can be categorized with respect to their target and their initiator.

Malicious Users

Attacker is a process with access to the tuple space, targets are other 
processes and the coordination middleware itself

Secrecy & Integrity: subvert the coordination language to obtain 
secrets or damage other computations

Quality of Service: affect non-functional characteristics of the 
coordination middleware in order to degrade performance

Network

Secrecy & Integrity: traditional distributed system issues which can be 
addressed with cryptographic techniques; not discussed further as 
they not specific to coordination languages

Malicious Host

Attacker is the environment, either at the level of the machine, 
operating system, runtime system or coordination middleware; targets 
are the programs that are sent to execute on the compromised 
environment



Secrecy

Secrecy can be compromised by a process accessing another’s process 
data

Basically any input primitive can be used:

rd(?,?)x.P  lets an attacker non-deterministically poke in the state of 
the tuple space, and retrieve data that does not belong to it

in( ? )x.P similar to rd, except the data is removed from the space

rdp( ? )x.P similar to rd, and lets the attacker observe the absence 
of a datum, and witness intermediate steps in a protocol

react( ? )x.P stronger than rd/in because it guarantees that all 
tuple will be witness

out(x) | in(?)y.P | in(?)y.Attack

out(x) | in(?)y.P | react(?)y.Attack

In the first line, the attacker is picked non-deterministically, while in 
the second the reaction is always triggered



Integrity

The integrity of a computation can be attacked with any operation that 
modifies the tuple space

in(sem:a)x.P can be used to remove a datum, here a semaphore, used 
by another computation

out(sem:a) can be used to corrupt another computation’s state, here by 
misleading it about the availability of a resource

in(2,1)x.out(2,3) can be used to modify data in arbitrary ways; note 
however that due to non-determinism the attacker is not guaranteed to 
succeed in grabbing the tuple, and that the attack can be observed by the 
victim with rdp(2,?), as the non-blocking read may observed the 
disappearance of (2,1).

transact[in(2,1)x.out(2,3)] the transactional facilities of JavaSpaces 
can be used to ensure that victim can not observe the intermediary state 
during the attack

react(2,1)x.out(2,3) ensure that the attacker will get access to the 
tuple; depending on the semantics of react this may happen atomically



Quality of Service
Denial of Service Attacks:

A runaway task may easily fill the tuple space with garbage. An 
associative communication model has no provisions for garbage collection 
of tuples, because, it is, in general, not possible to determine that a tuple 
is not “reachable”.

JavaSpaces supports the specification of tuple “lifetimes” to prevent tasks 
from accidentally generating garbage.

Possible Solutions: 

• Resource limits – these may limit legitimate applications and do not 
provide strong guarantees against a number of tasks colluding to fill 
up the space.

• Mandatory tuple expiration – complicates the programming model as  
programmers must worry about relative timings of ins and outs.

• Static space analysis – impose restrictions on untrusted code via 
types and or static analysis.

while ( true )
out( i++ )



Quality of Service

Implementation Knowledge:

Denial of service attacks can be mounted with knowledge of the 
implementation of the tuple space. 

Case Study: SECOS [Bryce,Vitek02] an implementation of Labeled Linda

Tuples are sequences of label - value pairs, (l:v,...,l’:v’). A 
fingerprint is a (K,V) is a 128 bit vector such that for tuples t and t’ we 
have fp(t) ⊄ fp(t’) ⇒  t ≤ t’. A summary is a 16 bit vector computed 
as the union of K and V.

Associative search is performed over a lazily computed binary search tree, 
leaves contain tuples and templates and are searched exhaustively in 
FIFO order.



Quality of Service

The first step to making the secure space operations efficient is to have a fast
inequality test. Since for any given query we expect most objects not to match
the template, it is essential to be able to prune the search space efficiently. To
achieve this, each SObject has two associated fingerprints. Fingerprints are
bit strings with the property that if two objects match, o ≤ o′, then fp(o) is a
subset of fp(o′). We use one 64 bit fingerprint to summarize an object’s keys
and another for its values. The fingerprints are computed by compacting every
key and value down to a single bit. The implementation uses the hashCode()
function. Both fingerprints are thus computed as follows,

for (int j = 0; j < keys.length; j++) {
keysFP = keysFP | (1 << (keys[j].hashCode() %64));

if ( val[j] != null)

valsFP = valsFP | (1 << (val[j].hashCode() %64));

}

An SObject contains two arrays, one with keys and the other with values.
Values can be null if the field was set to the wild card (? in the calculus).

The fast inequality test for an object sobj and a template templ is thus simply,

( templ.keysFP == ( templ.keysFP & sobj.keysFP ) ) &&

( templ.valsFP == ( templ.valsFP & sobj.valsFP ) )

If the test is negative then we know for sure that template templ cannot
match with object sobj. A positive answer only indicates that there might be
a match.

The second objective for efficiency is to avoid having to compare a template
against all objects in the space. The SecOS implementation uses a binary
search tree to prune the search space. Each object is associated with a 16 bit
summary, computed as the union of the keys and values fingerprints,

short summary(long vfp, long kfp) {
short sum = 0;

for (int i = 0, j = 0; i < 64; i += 4, j++)

sum = sum | (((7<<i)& vfp) << j) |

(((7<<i)& kfp) << j);

return sum;

}

This 16 bit value is used to choose a leaf in the search tree where to store the
object (it prescribes a path in the binary tree). The search tree is built lazily
and empty branches are removed when detected in queries.

For any given query, with a template object templ, the search algorithm first
computes the summary of templ. This summary will be used to prune the
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summaries: 
      S1 ⊂ S2, ...
      S3 ⊆ sum(t)...

⊂

⊂ ⊂

⊂

⊂

S1

S4S2

S3

t

Search Tree
computing fingerprints:

computing summaries:

Exploits include:

large numbers of different fingerprints to artificially increase the size of the 
tree; degenerate cases will search times due to implementation restrictions

large numbers of identical fingerprints and issuing queries that perform 
exhaustive searches on buckets, blocking legitimate queries due to 
synchronization

Information Flow: knowledge of lookup algorithm allows timing information 
leaks



Quality of Service: React

In Lime and JavaSpaces reactions are performed atomically as part of the 
procedure of inserting a tuple in the space.

A non-terminating reaction is an example of denial of service attack in 
which an unprivileged users gets to execute with privileges and consume 
a finite resource. (Similar attacks can be mounted on Java virtual 
machines, e.g. with finalizers)

The only good response is to execute reaction in a non-atomic fashion, 
but thus potentially loosing ordering of output events.

Alternatively, reactions can be restricted to trusted processes.



Quality of Service: Eq

Value comparison is at the heart of the pattern matching process. In 
many object-oriented Linda languages, arbitrary objects can be 
compared.

While this is desirable from the point of view of expressiveness, the 
question the security issue is how does one compare them.

Using equals() and  hashCode() amounts to running user code within the 
kernel and is subject to denial of service attacks.

Alternatives:

- use built trusted in functions such as identityHashCode() does not 
work as they are collision prone.

- replace equals() with comparison of UIDs as in GigaSpaces where a 
UID is a value provided by the user and computed outside of the 
kernel. This runs the risk of collisions.

- restrict matching to primitive values.



Threats: Summary

To summarize:

secrecy and integrity attacks can be mounted by taking advantage of 
the open nature of tuple space communication; these threats are 
obvious in the semantics and require changes to the programming 
model

quality of service attacks can be mounted by misusing particular 
implementation details, these threats are typically not apparent in the 
semantics; to address them one needs to be able to

- bound resource usage of processes

- ensure that untrusted code is not run with kernel privileges

- avoid optimizations that are based on some expected 
characteristics of computations if these can be used to degrade 
system performance



Capabilities

Discretionary access control (DAC) mechanisms restrict a subject's access 
to an object. It is generally used to limit a user's access to resources such 
as files. In this type of access control it is the owner of the file who 
controls other users' accesses to the resource.

In coordination language using capabilities for DAC is quite natural and 
has been explored by many systems (JavaSpace, SECOS, Klaim,...).

A capability is a software token describing the rights of its owner; any 
entity in possession of a given capability may exercise that capability.

Capabilities are managed by a reference monitor which enforces the 
associated access rights.

Assumptions: 

the reference manager is part of the trusted base, thus we require 
trust in the middleware, operating system and hardware. 

If capabilities are allowed to span hosts on the network the reference 
manager must either use encryption or assume a trusted network.



Design Space (1/2)

1) Explicit v. implicit policies

An explicit policy is expressed declaratively outside of the program, while 
an implicit policy is part of the program code itself.

Explicit policies are easier to reason about, but typically limited by the 
expressiveness of the policy language (for example a type system), 
implicit policies are turing complete (they are embodied  by the code) but 
much harder to validate.

2) Capability transfer

Can capabilities be given away or copied? (e.g. nothing prevents a user 
from revealing a password) 

Transfer is needed to implement many applications, e.g. a user level load 
balancing task manager which needs to give appropriate access to the 
tasks. 

Transfer makes reasoning about the overall system mode difficult.



Design Space (2/2)

3) Capability revocation.

Can the access rights associated to a capability be revoked, if yes can it 
happen while a task is exercising that capability?

Revocation requires tracking of capabilities which can be cause added 
runtime overhead.

4) Static v. dynamic reference monitors

A dynamic reference monitor will flag access violation at runtime, while a 
static monitor will prevent the release of a task that can potentially 
violate the security policy

Static checking is preferable and there is no runtime cost and errors are 
caught earlier, but it is limited by the expressive power of the checker 
(types or static analysis), dynamic checks are less restrictive (i.e. more 
correct programs are allowed under dynamic checks than static checks)



Coarse-grained Capabilities

Coarse-grained Capabilities (CgC) control access to a tuple space via 
password or digital signatures. The infrastructure grants access to a 
program by releasing a reference to a tuple space object.

With a CgC a program gains full access to the tuple space. No further 
restriction can be applied.

Revocation can be implemented by deactivating a CgC if it has an identity.

Transfer is usually not allowed - most implementation do not allow CgCs 
to be transmitted on the network thus eschewing the need for trusted 
network communication.

• JavaSpaces, GigaSpaces



Coarse-grained Capabilities
Labeled Linda supports CgC in a straightforward and natural way:

((new x) ( out( 1:x ) | out( loc#x , 2:42 ) )) |
 

                      in (1:?)v. in(loc#(v.1), 1:?)v’.P

Reductions:

((new x)(out(1:x)|out(loc#x,2:42)))| in(1:?)v.in(loc#(v.1),1:?)v’.P

(new x)(out(loc#x,2:42))| in(loc#((1:x).1),1:?)v’.P)

(new x)([(loc#x,2:42)/v’]P)

defines a new tuple 
space named x and 
outputs 42 to it.

reads a one elem tuple, use first 
field as tuple space name

42

x

x



Coarse-grained Capabilities

CgCs in JavaSpaces are implemented by object references, the following

   JavaSpaces jspace = SpaceFinder.find(”jini://”+host+”/Js”);

returns a reference to a named space. 

The jspace variable acts as a capability and the Java VM is the reference 
monitor.

Note however that in above example (just as in Labeled Linda), there are 
no restrictions on capability transfer and revocation of individual 
capabilities is not possible.



Coarse-grained Capabilities

CgCs can be viewed as partitioning the tuple space.

Structured CgCs provide nested partitions for finer 
granularity control. In Labeled Linda this is simply 
achieved by multiple location fields, e.g.

out(loc#x, 1:41),  
out(loc#x, subloc#y, 1:42),...

The labels loc and subloc are user defined, 
any label can be used thus allowing multiple 
levels of nesting.

41

x

43

42

30

39

45

44

39

y



Asymmetric CgC

Labeled Linda CgCs grant full access to a tuple space to all users.

SECOS introduced “co-names” as a simple way to get more control on the 
use of spaces.

The expression  (new a,b) creates two  fresh names such that, when used 
as labels,  a < b and b < a, but but b (resp. a) does not match b (resp. 
a).

Thus it is possible to mimic asymmetric crypto with:

((new a,b) out(1:a) | out(b:2) | out(a:1)) 

                                  | in(1:?)x.in( (x.1) : ?)

Similarly, we can use co-names to implement read/write restricted tuple 
space. Given (new a,b), if we pick a to be the name of the tuple space, 
then a is the capability needed for writing and b is the one needed for 
reading the new tuple space



Crypto Linda
Using cryptographic operation in a coordination middleware allows to protect data 
from inspection while in transfer. CryptoKlava and SecureSpaces provide support 
for encrypted tuples. CryptoKlava allows:

• encrypt tuple fields with specific keys

• use variants of the operations in and read (ink and readk) to atomically 
retrieve a tuple and decrypt its contents.

The modified versions of the retrieving operations, ink and readk, are based on the 
following procedure: 

1. look for and possibly retrieve a matching tuple,

2. attempt a decryption of the encrypted fields of the retrieved tuple

3. if the decryption fails: (a) if the operation was an ink then put the retrieved 
tuple back in the tuple space, (b) look for alternative matching tuples

4. if all these attempts fail, then block until another matching tuple is available.

Basically the original Linda pattern matching mechanism is not modified: encrypted 
fields are seen as ordinary fields that have type KCipher. For efficiency reasons, 
could one use something like the SECOS fingerprints to avoid spurious decryption 
attempts? (what about info leakage). In a mobile agent context, agents should not 
roam the network with keys (cf. “clueless agents”).



Fine grained Capabilities: Roles

A role is a capability that grants restricted access to a tuple space. 

Multiple distinct roles can be created for the same tuple space.

Roles can be revoked.

class Role_IR implement In, Rd {
JavaSpace space;
Role_IR(JavaSpace s ) {...}
Object in(Pattern p) {...}
Object rd(Pattern p) {...}
void revoke() { space = null; }

}



Fine grained Capabilities: Roles w. Filters

A fine grained access mechanism could extend the notion of roles with 
filters.

A filter pair (t,f) such that t is a template and f is a function that take a 
tuple and returns a tuple.

The semantics of Role is that before performing any of the allowed 
operations, all filters will be executed. The value delivered is that returned 
by the filter

InFilter in = (”list”, ?, ?, ?),
              fun(s,i,j,val) = if val=“foo” then (s,i,j,“fum”)
                                            else (s,i,j,val)
Role_I list_role = new Role_IT( space, in )
...
list_role.in(?, 0, ?, ?);



Types as Capabilities

Klaim supports agent mobility; there is a need to prevent agents from 
moving to a host and misusing the local resources

SecureKlaim is an example of a coordination language with a mixture of 
static and dynamic reference monitor.

Agents are statically typed, which has the advantage of making security 
policies explicit and catching errors early.

The main drawback of the approach is the expressiveness of the type 
system

(following slides from a Klaim presentation)



Klaim Overview
Ingredients
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Klaim: Example

Example: Access Policy Specification

• Capabilities: r stands for read

i stands for in

o stands for out

e stands for eval

n stands for newloc

• The access policy specification δs of node s

δs = s : {n} !→ ⊥,

s1 : {i, e} !→ δs1 ,

s2 : {r} !→ ⊥,

s3 : {i, o} !→ ⊥

• A graphical interpretation: access types are graphs
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Klaim
Syntax of Secure Klaim

Types

δ ::= ⊥ (empty type)

| " (universal type)

| " : π #→ δ (locality-labelled arrow type)

| δ1, δ2 (union type)

| ν (type variable)

| µν.δ (recursive type)

π ⊆ {r, i, o, e, n} (π &= ∅) set of capabilities
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Syntax of Secure Klaim

Nets N ::= s ::δρ P | N1 ‖ N2

Processes P ::= nil | a.P | P1 | P2 | X

| A〈P̃ , !̃, ẽ〉

(Definition A(X̃ : δ, ˜u : 〈λ, δ〉, x̃) def= P )

Actions a ::= out(t)@! | in(t)@! | read(t)@!

| eval(P )@! | newloc( ˜u : 〈λ, δ〉)

AccLists λ ::= [!1 : π1, . . . , !n : πn]

Tuples t ::= f | f, t

Fields f ::= V | x | X | u : 〈λ, δ〉 | !Z

Values V ::= v | P | s : 〈λ, δ〉

Variables Z ::= x | X : δ | u : 〈λ, δ〉
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Information Flow
• Mandatory access control tries to enforce constraint on the flow of 

information

• Programming language-based information techniques based on type 
systems have been investigated for Java, different of the pi-calculus 
have been studied for info flow in a concurrent language

• Coordination Languages have two specific problems over and above 
known issues in the pi-calculus (implicit flows, timing channels, etc)

• rdp/inp allow low level programs to observe the absence of values; 
pi does not have equivalent operations

• type systems for associative matching remain an open issue. 
Consider the following:

in( y,? )x:T.P  

should the type of x be high or low? If we have

out(12, h) : H  | out(11, l) : L

then it could be either depending on the value of “y”. In general to be 
safe one should use the least upper bound of all two tuple output 
statements. But this will quickly push everything to high.



Conclusions

• Linda is a powerful coordination language; it’s power comes from a 
flexible associative access to memory which enables independently 
developed applications to communicate easily

• Security, in the presence of untrusted processes, is endangered by the 
very nature of coordination languages

• Most approaches to secure tuple spaces are based on restrictions to the  
associative access primitives; capabilities can be used to restrict the set 
of primitives allowed to a process as well as the portion of the space 
that is addressable

• Static type systems show promise for explicit and verifiable security 
policies, the expressiveness of existing system must be extended to 
allow checking of protocols rather than simple access


