today

Course outline: the four hours

Language-Based Security: motivation
Language-Based Security: the big picture

Confidentiality for sequential and
multithreaded programs (on the board)

Mechanisms for safe information release

Confidentiality: preventing

information leaks J—

e Untrusted/buggy code should not ~—
leak sensitive information o

ke A
e But some applications depend on info
iIntended information leaks

— password checking
— information purchase
— spreadsheet computation

e Some leaks must be allowed: need
information release (or declassification)

Confidentiality vs. intended leaks

e Allowing

compromise confidentialitys"“-_
e Noninterference is violated info

e How do we know secrets

Y
leaks might —

are not laundered
via release mechanisms?

e Little or no assurance for declassification

construc

'S in many security-typed

languages

Leveraging assurance in presence
of declassification

TN
N~
Two approaches: .
* Delimited release [I1SSS'03] 24
— Syntactic "escape hatches” for specifying \I'ﬁTO/
exactly what information is released
— Guarantee: a program might not release/leak

more information than released via escape hatches

» Robust declassification [CSFW'01,CSFW’04]

— An active attacker may not learn more sensitive information
than a passive attacker

e As noninterference, both are end-to-end properties
e Provably enforceable by security-type systems

Security lattice and
noninterference - H

Security lattice: e.g.:

1 L

Noninterference: flow from [to |’ allowed
when L C

Noninterference

e Noninterference [Goguen & Meseguer]: as high
input varied, low-level outputs unchanged

/4

2

| — — | — — |

h1—> —»h — —»h

e Language-based noninterference for C;
vM{,M,. M= M, = <M11C> ~ (My,C)

Low-memory Configuration || LOW VIew ~;:
equality: with M, and ¢ || M=M; whenever
My = M, iff My [=M, |,

M,#1#M,=M,= M,

Average salary

e Intention: release average

avg:=declassify((h;+...+h.)/n,low);

e Flatly rejected by noninterference

e If accepting, how do we know declassify does
not release more than intended?

e Essence of the problem: what is released?

e "Only declassified data and no further
information”

o Expressions under declassify: “escape hatches”

7

through all e,...

Delimited release @?gt?n”gdufﬁﬁ:gf;]
e Command c contains expressions /

declassify(e,L;); c is secure if:

vL,M{,M, (M;=M,).Vi (LCL).eval(M,,e;)=eval(M,,e)=
[CIM; ~ [C]M,

* Nonlnter_ference ...then entire program
= Security may not distinguish M,

e For programs with no and M,
declassification:

Security = noninterference

Average salary revisited

e Accepted by delimited release:

avg:=declassify((h;+...+h_)/n,low);

temp:=h;; hy:=h,; hy,:=temp;
avg:=declassify((h;+...+h_)/n,low);

e Laundering attack rejected:

h,:=hy;...; h,:=hy;

~| avg:=h;

avg:=declassify((h;+...+h)/n,low);

9

Electronic wallet

o If enough money then purchase

if declassify(h>k,low) then (h:=h-k; l:=l+k);

[a mou nttj cost spent

in walle

e Accepted by delimited release

10

Electronic wallet attack

e |Laundering bit-by-bit attack (h is an n-
bit integer)

1:=0;
while(n>0) do
k=2 ~ | I:=h
if declassify(h>k,low)
then (h:=h-k; [:=l+k);
n:=n-1;

e Rejected by delimited release

Security type system

e Basic idea: prevent new information
from flowing into variables used in
escape hatch expressions

/may not use il q
h:=...; other (than h) || WhII€ ... dO
ngh variables declassify(h,low)

declassify(h,low) h _ 421% rng_th grs;eh)
Q\igh variables

e Theorem:
C is typable = c is secure

12

Delimited release in password
checking

e Password+salt are hashed in a (public)
image database

hash(pwd, salt): L,,4 % Legy — low
= declassify(buildHash(pwd||salt), low)

e User query+salt is matched with the
image

match(pwdImg, salt, query): L, 4img X Lsatt X Luery = Lowdimg L IOW
= pwdImg==hash(query, salt)

13

Delimited release in password
checking

o Password updated with newPwd if
hashing oldPwd+salt matches the image

update(pwdImg, salt, oldPwd, newPwd) (low C L;41mg)
= if match(pwdImg, salt, oldPwd)
then pwdImg:=hash(newPwd, salt)

e hash, match, and update are typable and
thus secure

14

Delimited release in password
checking: instantiation

Honest user hashing password:
hash(pwd, salt): high x low — low

Attacker hashing password (with user’s salt):
hash(pwd, salt): low x low — low

Honest user matching his password:
match(pwdImg, salt, query): low x low x high — low

Attacker guessing a password (with user’s salt):
match(pwdImg, salt, query): low x low x low — low

15

Delimited release in password
checking: instantiation

e Honest user updating password:

update(pwdImg, salt, oldPwd, newPwd):
low x low x highx high

o Attacker attempting to update the honest
users’s password:

update(pwdImg, salt, oldPwd, newPwd):
low x low x low x low

Rationale for security:
to succeed the attacker needs to guess secrets

16

Password checking laundering

l:=0;
while(n>0) do ~ h>k

K:=2n-1:

if hash(sign(h-k+1),salt)=hash(1,salt)
then (h:=h-k; l:=1+k);
n:=n-1;

o Attack rejected by type system

e Average salary and electronic wallet are

accepted; respective laundering attacks are
rejected

17

Programming with delimited release

e Program intended to release the parity of h":
n:=parity(h’);

if declassify(h=1,low) then |:=1 else |:=0;
e ...insecure and rejected by type system

e Programmer forced to rewrite:

n:=parity(h’);
if declassify(parity(h’),low) then |:=1 else |:=0;

e ...Secure and typable
e Potential for automated transformation

18

Security ordering

|,:=declassify(h,); ...leaks as much as:
l,:=declassify((h;+h,)/2); | |l;:=declassify(h;);

l,:=declassify(h);
e In other words: C; ~; C, under
e C,C. G if forall L, M, M, (M;=M,)
whenever [C,]M, ~, [C,]M, then
[C,IM; =~ [C,]M;,
» ~~c Can be decidably approximated
=~ different from semantic equivalence

19

Conditional delimited release and

robust declassification
e Only one of h, or h, is released:

if | then |:=declassify(h,,low) else |:=declassify(h,,low)

e ...yet both h, and h, are considered
released

e Generally: need to prevent the attacker
to control when information is released

e Robust declassification: attacker’s
actions may not influence observations
about secrets [zdancewic & Myers'01]

20

Combining confidentiality and

integrity E=m
confidentiality
Attacker can modify /\

H L HL

X — HH LL

L H . N
% Attacker can read A
Integrity Product ,
Eb General Attacker’s
Confidentiality |lattice integrity

21

Confidentiality guarantee:
Robust declassification

>
e Attacker may not affect .
what is released Ry
e Zdancewic & Myers [CSFWO01]: 8@ el
An active attacker may not learn

more sensitive information than a
passive attacker

o Unresolved questions:
— What is robust declassification for code?
— How to represent untrusted code?
— How to provably enforce robust declassification?

— How to grant untrusted code a limited ability to
control declassification?

22

Fair attacks

e A command a is a fair attack if it may
only read and write variables at | € LL

e A program c is high-integrity code
interspersed with fair attacks

e High-integrity code c[e] with holes
whose contents controlled by attacker

e Can fair attacks lead to laundering?

23

Robust declassification

e Command c[e] has robustness if

VMllMZIala’- <M11C[a]> ~| <M21C[a]> =
<M11C[a’]> ~| <M21C[a’]>

up to high-confidentiality stuttering |

e If a cannot distinguish bet. M, and M, through c
then no other a’ can distinguish bet. fVI and M,

e Noninterference = robustness

24

Robust declassification: examples

o Flatly rejected by noninterference, but
secure programs satisfy robustness:

[e]; X, ,:=declassify(y,.,LH)

e Insecure program:

Yy, - =declassify(z,.,LH)

[e]; if X, then y,, :=declassify(z.,,LH)

IS rejected by robustness

25

Enforcing robustness

e Security typing
for declassification:

C context
must be data must
high- be high-
. integrity) integrity

LHFe: HH
LH + declassify(e,l): LH

26

Security typing assures

e C typable and no declassification in ¢
= noninterference

e C typable = noninterference for

integrity (no downward flows along the
integrity axis)
e C typable = robustness

27

Password checking security

e Password+salt are hashed in a (public)
image database

LH F hash(pwd, salt): HH x LH — LH
= declassify(buildHash(pwd||salt), LH)

e User query+salt is matched with the
iImage

LH F match(pwdImg, salt, query): LH x LH x HH — LH
= pwdImg==hash(query, salt)

= Typable and thus secure 28

Password laundering attack

e Program leaking the parity of x,,

[e]; match(hash(parity(x,,),salt), salt, y,,)

iS rejected by type system

e Password updated with newPwd if hashing
oldPwd+salt matches the image:

LH + update(pwdImg, salt, oldPwd, newPwd) :
LH x LH x HH x HH
= if match(pwdImg, salt, oldPwd)
then pwdImg:=hash(newPwd, salt)

= Typable and thus secure

29

Endorsement and qualified robustness

e Need to give untrusted code limited
ability to affect declassification

[e]; if X =1 then y,:=declassify(z,,,LH)
else vy, :=declassify(z’,,,LH)

e Introduce endorse to upgrade trust
e Semantic treatment of endorse:
(M, endorse(e,l)) — val (for some val)

e This qualifies robustness: insensitive to
how endorsed expressions evaluate

30

Enforcing qualified robustness

e Qualified robustness:

VMllMZIala’- <M11C[a]> ~| <M21C[a]> =
<M11C[a’]> ~| <M21C[a’]>

possibilistic high-indistinguishability |

e Typing rule for endorse: confidentiality
unchanged

pct e:l" lupc C Level(v) C(1)=C(l")
pc - v:=endorse(e,l)

31

Security typing assures

e ¢ typable and no declassification or endorsement in ¢
= noninterference

e ¢ typable and no declassify in c
= noninterference for confidentiality

e C typable = qualified robustness
e Example of breaking qualified robustness:

[e]; if X, then y,, ,:=endorse(z ,LH);
if y,, then v, ,:=declassify(w,,,,LH)

rightfully rejected by type system

32

Battleship game security

e Players place their ships| while not_done do
on their grid boards in | [e,]; m’,:=endorse(m,,LH);

secret s,:=apply(s;,m%,);
e Take turn in firing at m’;:=get_move(s,);
locations of the m,:=declassify(m’;,LH);

opponent’s grid ot o e e

* Locations disclosed one | gelassify(not_final(s,),LH);
at a time -

[e2.
e Malicious opponent 2
should not hijack Level(s,,m’;) € HH
control over Level(m,,m’,,not_done) € LH
declassification Level(m,) € LL

= Typable and thus secure
33

Related work on information release

e \What? Partial release: noninterference within

high subdomains [Cohen’78, Joshi & Leino’00, Sabelfeld
& Sands’00, Giacobazzi & Mastroeni’04]

e Where? Intransitive (non)interference: to be

declassified data must pass a downgrader

[Rushby92, Pinsky95, Roscoe & Goldsmith’99, Mantel01,
Mantel & Sands’03]

e Who? Decentralized label model: only owner

has authority to declassify data [Myers &
Liskov'97,"98]

Robust declassification: active attacker may
not learn more information that passive
attacker [zdancewic & Myers'01, Zdancewic’03]

34

Related work on information release

e How much? Quantitative information
flow [Denning’82, Clark et al.’02, Lowe’02]

e Relative to what?

— probabilistic attacker [Volpano & Smith’00,
Volpano’00, Di Pierro’02]

— complexity-bound attacker [Laud’01,’03]

— specification-bound attacker [Dam &
Giambiagi‘00,’03]

35

Ongoing/future work
[jointly with David Sands]

Grand theory of declassification

Scrambling to connect delimited release,
intransitive noninterference, and qualified
robustness

Basic principles of declassification

— Security monotonicity of release: removing
declassification from an insecure program should
not make the program secure

— Undercover release: Replacing a subprogram with
no declassify by a semantically equivalent
program should not change the (in)security

36

Conclusions:
delimited release g’sec

Delimited release model
e provides policies for what can be leaked
e prevents information laundering

e |ine of defense in addition to
compartmentalization

e opportunities for wrapping security-typed
code (e.qg., Jif) into conventional code (e.g.,
Java) with no additional leaks

37

Conclusions:
robust declassification g’sec

Enforcing robust declassification

e Language-level characterization and
enforcement

o Explicit attackers — untrusted code

e Qualified robustness — limited ability for
untrusted code to affect declassification

e Non-dual view — integrity represents whether
code has enough authority to declassify

38

today

Course outline: the four hours

Language-Based Security: motivation
Language-Based Security: the big picture

Confidentiality for sequential and
multithreaded programs (on the board)

Mechanisms for safe information release

39

