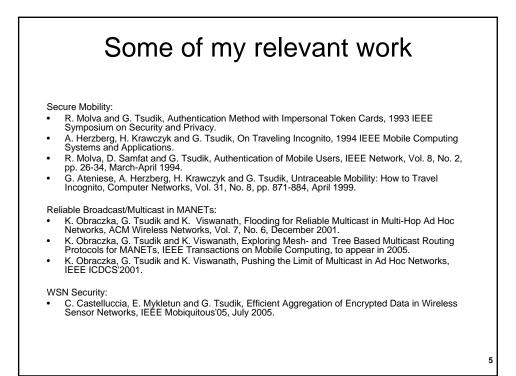
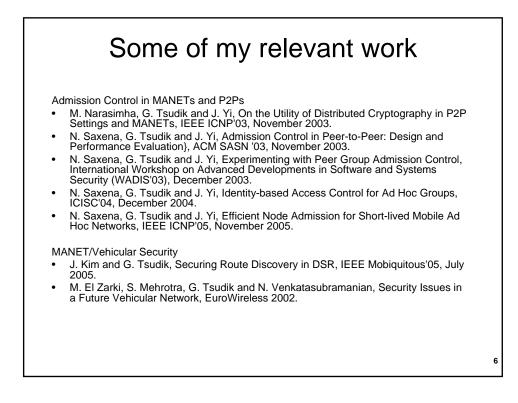


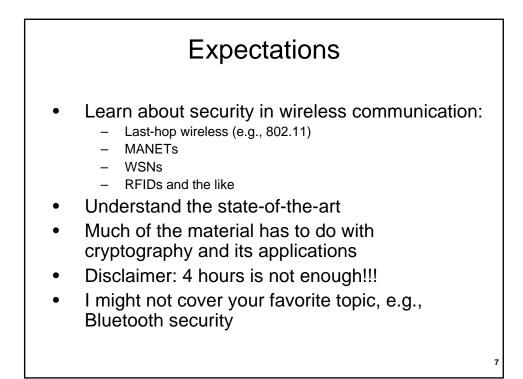
Course Material Attributions:

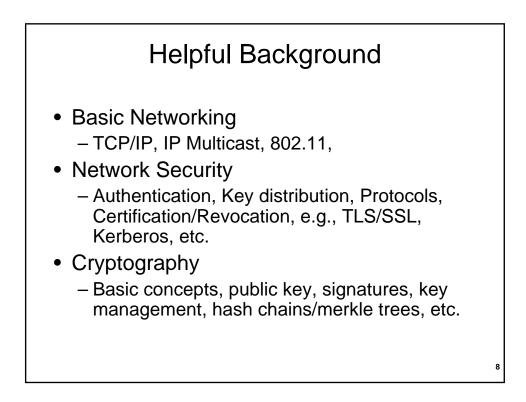
- Adrian Perrig
- Yongdae Kim
- Jeong Yi
- Ari Juels
- David Wagner
- Claude Castelluccia
- Srdjan Capcun
- etc.

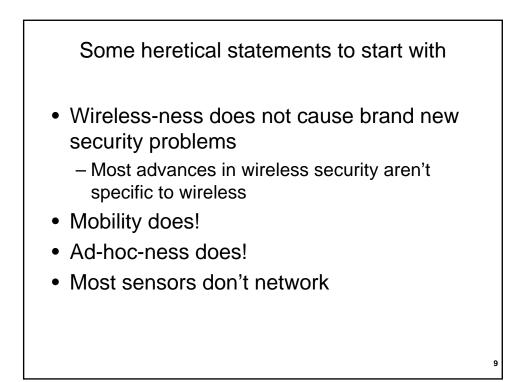
<section-header><section-header><section-header><section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item><section-header><section-header><section-header><list-item><list-item><list-item><list-item><section-header><section-header><section-header><list-item><list-item><list-item><list-item><section-header><section-header>

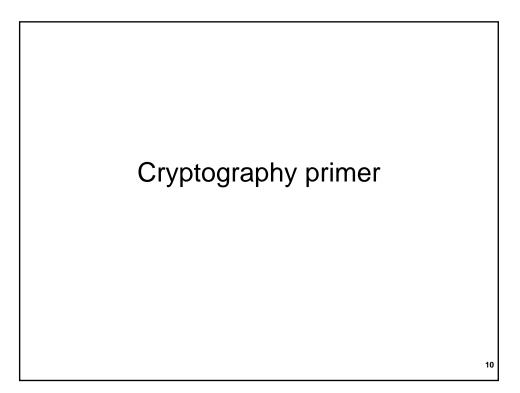


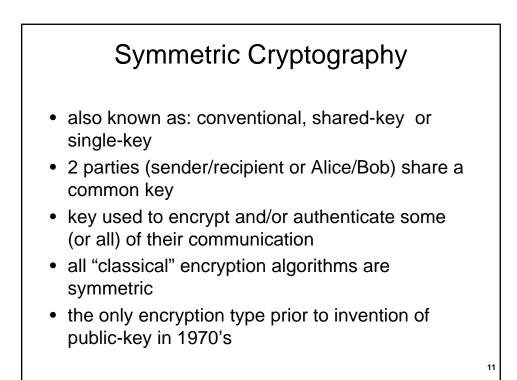


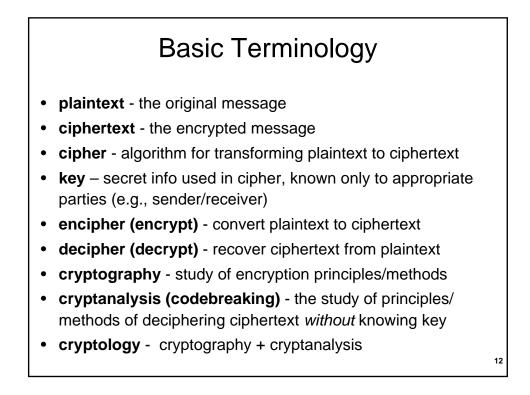


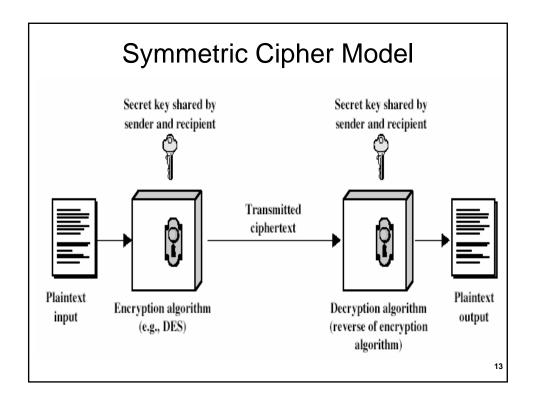


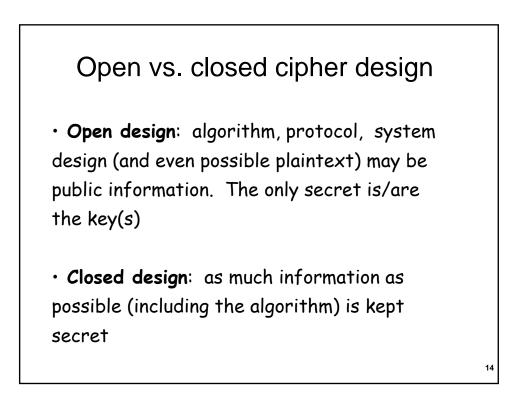


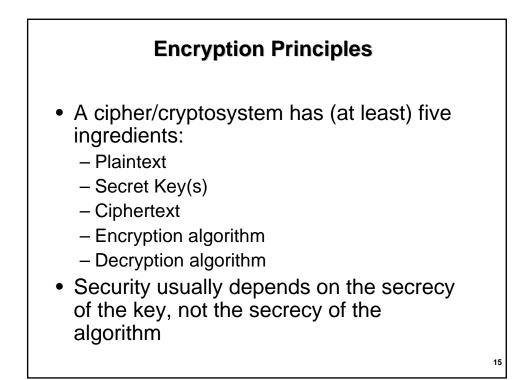


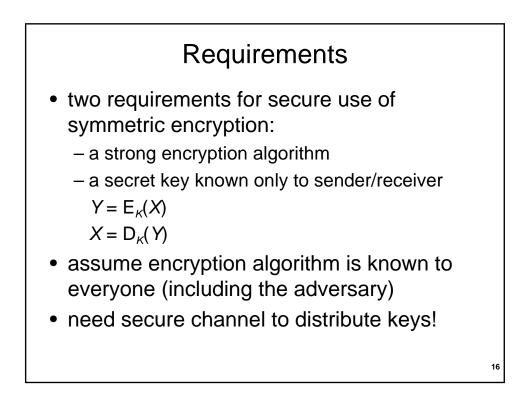


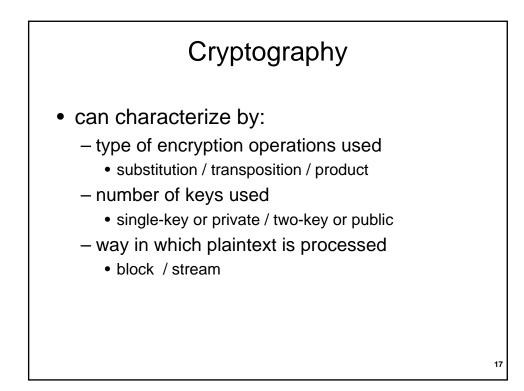


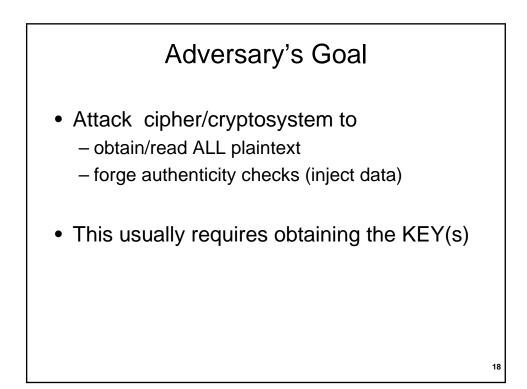


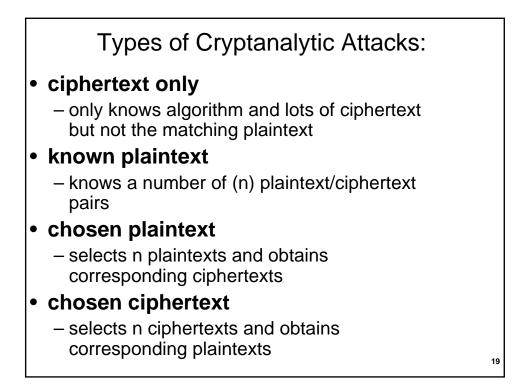


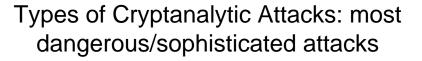






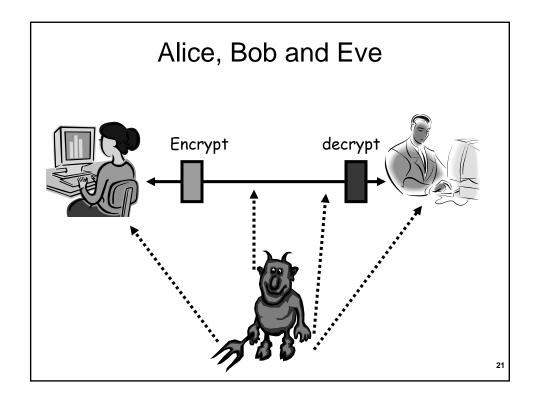


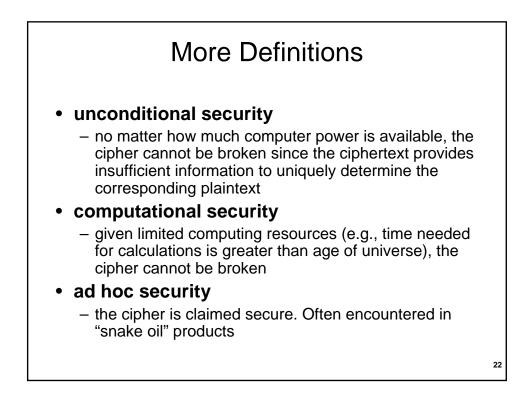


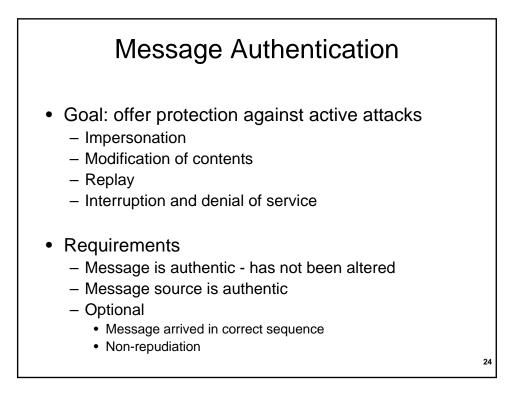


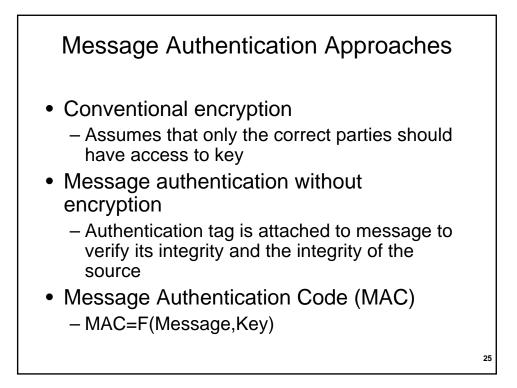
- adaptive chosen plaintext
 - selects n plaintexts and obtains corresponding ciphertexts
 - repeat above a number of times
- adaptive chosen ciphertext
 - selects n ciphertexts and obtains corresponding plaintexts
 - repeat above a number of times

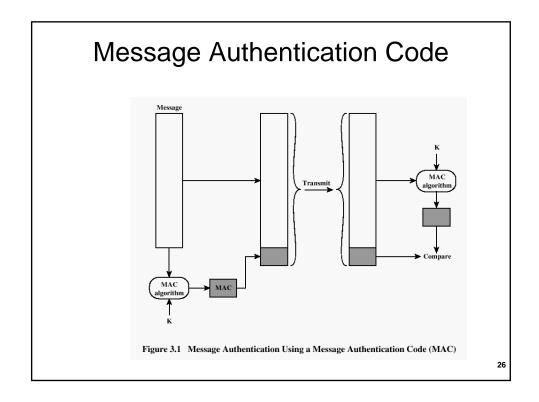
20

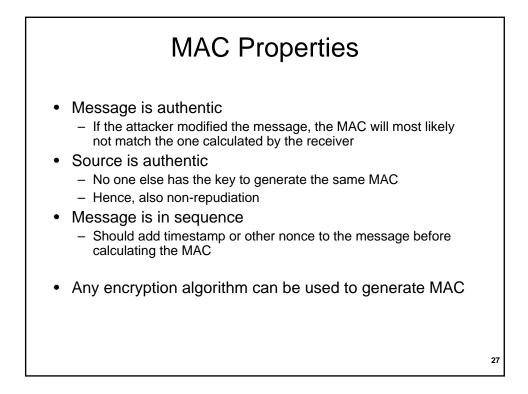


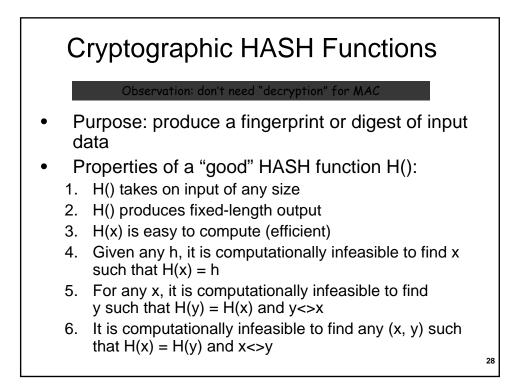


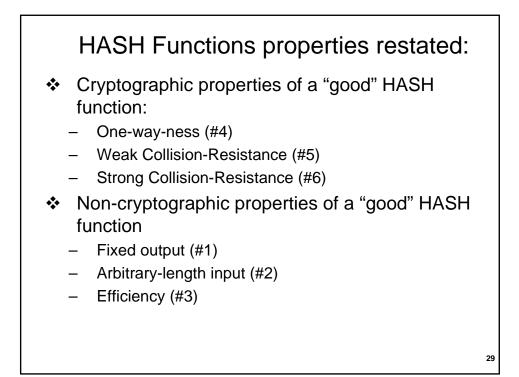


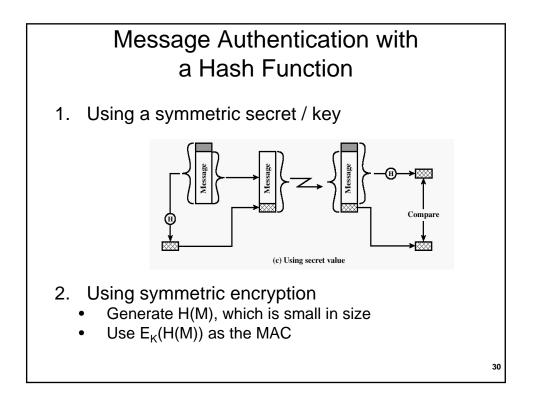




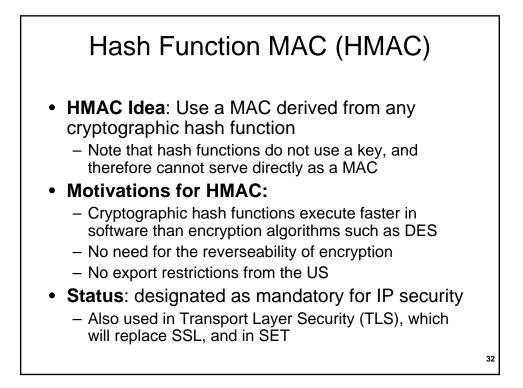


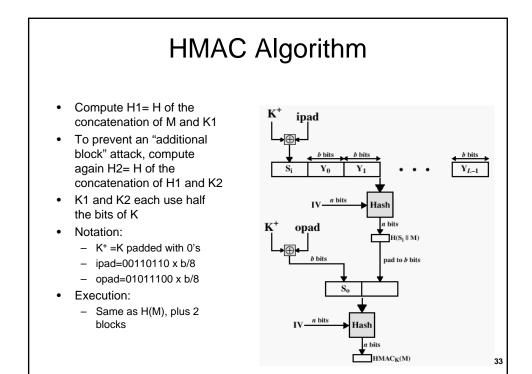


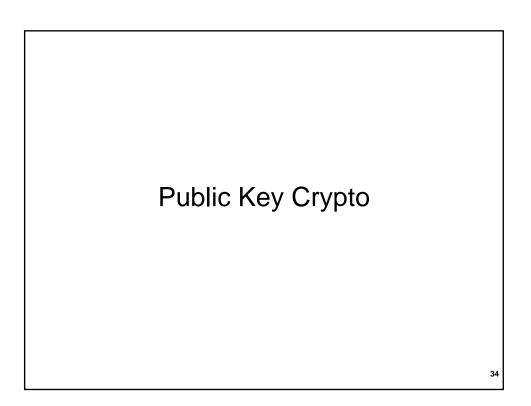


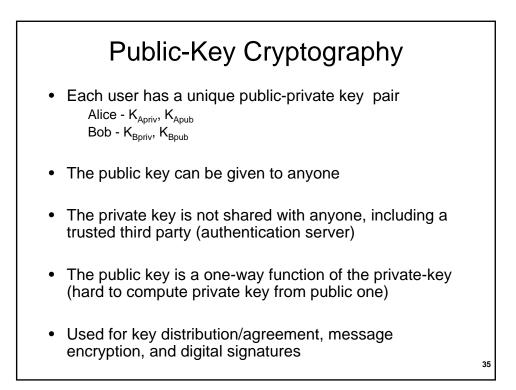


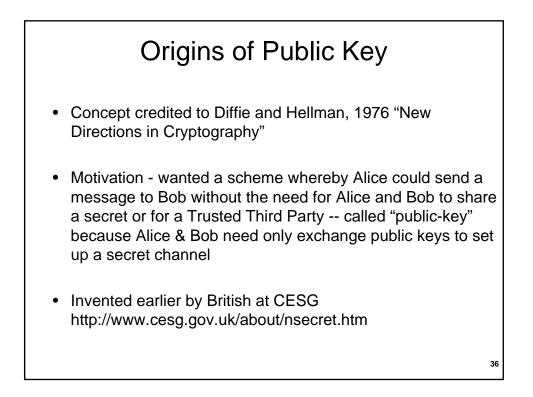
			jorithms
	SHA-1	MD5	RIPEMD
Digest length	160 bits	128 bits	160 bits
Basic unit of processing	512 bits	512 bits	512 bits
Number of steps	80 (4 rounds of 20)	64 (4 rounds of 16)	160 (5 paired rounds of 16)
Maximum message size	2 ⁶⁴ -1 bits	unlimited	unlimited

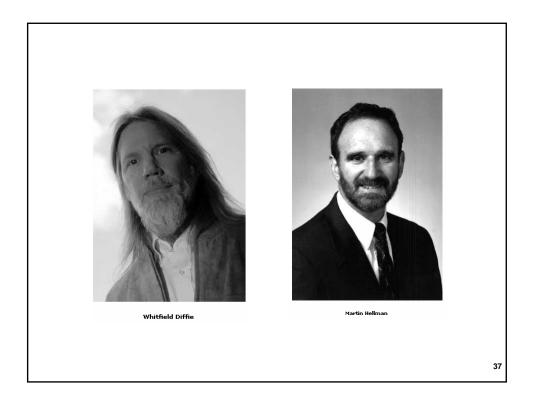


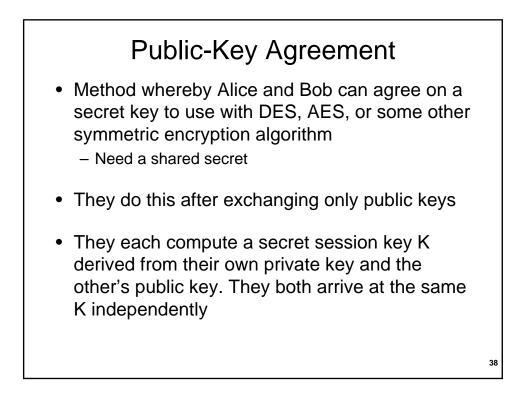


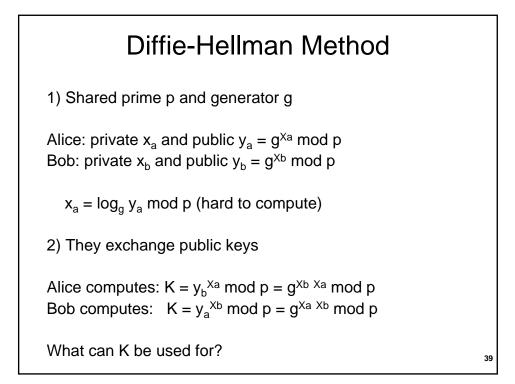


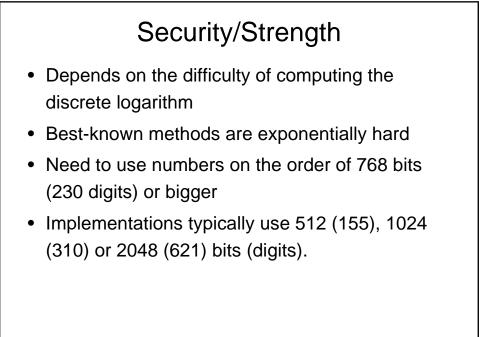


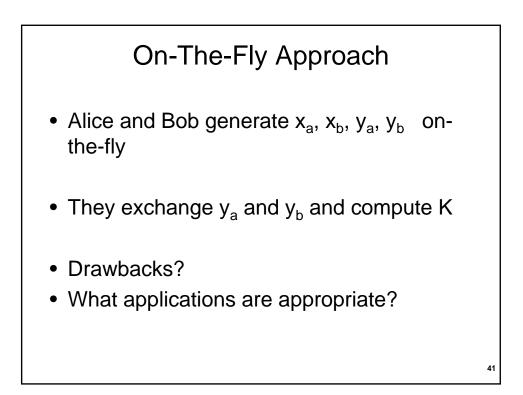


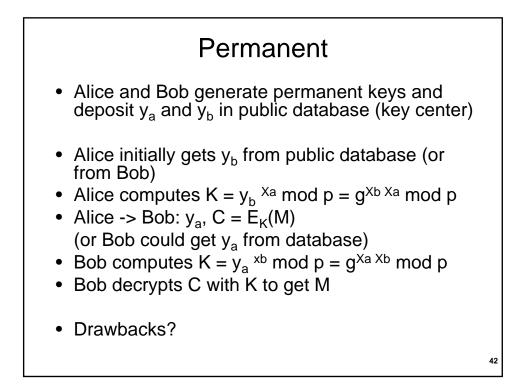


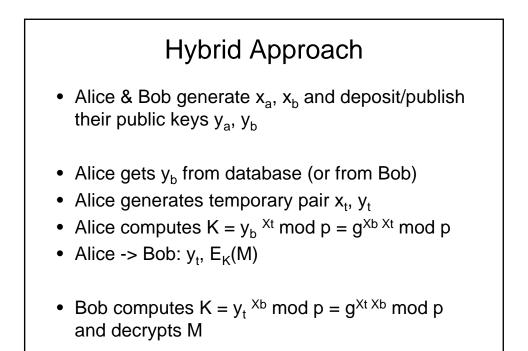


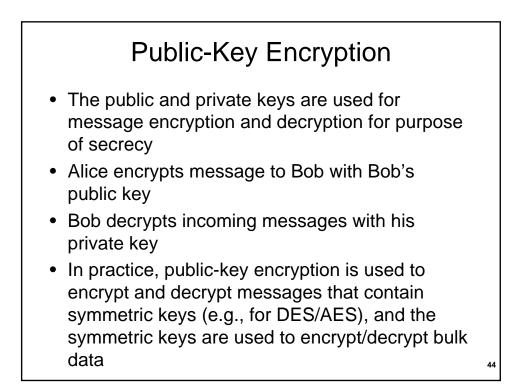


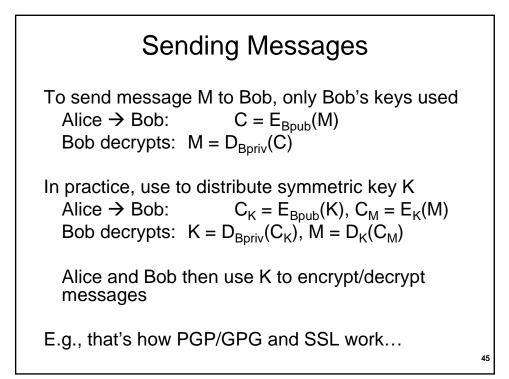




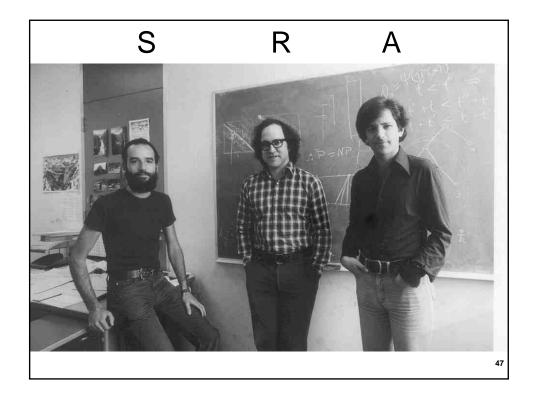








RSA	
Ron Rivest, Adi Shamir, Leonard Adleman 1977 all at MIT at the time	
Basic idea: a modular exponentiation-based cipher where the modulus is the product of two large primes	
Mathematical strength is derived from the "conjectured" difficulty of factoring a large composite number into its 2 (also large) prime factors	
	46



RSAPick two large (about 512-bit and up) primes p and q
and compute n = p * qPick e, d such that:
 $e * d = 1 \mod \phi(n)$
where: $\phi(n) = (p-1) * (q-1)$ (e, n) is the public key
(d, [p,q]) is the private keyEncrypt: $C = M^e \mod n$
Decrypt: $M = C^d \mod n$

Example

```
p = 53, q = 61, n = 53 * 61 = 3233

Pick e = 71

Compute d such that

71 * d = 1 mod (52 * 60)

get d = 791

Let M = 1704

Encrypt: C = 1704^{71} \mod 3233 = 3106

Decrypt: M = 3106^{791} \mod 3233 = 1704
```

Theory Proof sketch for $\phi(n) = (p-1)^* (q-1)$ $\phi(n) = \#$ primes < n relatively prime to n Consider the n=pq numbers 0, 1, ..., pq-1 All are relatively prime to n except for 0 and p-1 elements: q, 2q, 3q, ..., (p-1)q q-1 elements: p, 2p, 3p, ..., (q-1)p (p-1) = pq - [(p-1) + (q-1) + 1] $= pq - p - q + 1 = (p-1)^*(q-1)$

49

