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A FOSAD 2005 short course on:
SECURITY 

in 
(certain)

Wireless Communication

Professor Gene Tsudik
Associate Dean for Research & Graduate Studies
Bren School of Information & Computer Science

University of California, Irvine

gts (at) ics.uci.edu
www.ics.uci.edu/~gts
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OUTLINE of this course (0)

4-hour 2-day short course:

1. Overview, 802.11, etc. 
2. Wireless Device Pairing
3. RFID security
4. WSN security
5. MANET security ?

Why this particular order?
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Course Material Attributions:

• Adrian Perrig
• Yongdae Kim
• Jeong Yi
• Ari Juels
• David Wagner 
• Claude Castelluccia
• Srdjan Capcun
• etc.
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My Background in Brief
EDUCATION
• PhD in Computer Science, University of Southern California, March 1991. 
• MS in Computer Science, University of Southern California, May 1987. 
• BS in Computer Science, University of Houston, May 1985. 

PROFESSIONAL EXPERIENCE
• 07/02 - today Associate Dean of Research and Graduate Studies, School of ICS, UC Irvine
• 07/03 - today  Full Professor, Computer Science Department, UC Irvine
• 01/00 - 06/03 Associate Professor, Information and Computer Science, UC Irvine. 
• 08/98 - 12/99 Research Associate Professor, Computer Science Department, USC.
• 04/96 - 12/99 Project Leader, USC Information Sciences Institute. 
• 01/95 - 03/96 Project Leader, IBM Research Laboratory, Zurich. 
• 04/91 - 01/95 Research Staff Member, IBM Research Laboratory, Zurich.
• 08/87 - 04/91 Research Assistant, USC Computer Networks Laboratory. 
• 06/85 - 05/90 Member of Technical Staff, IBM Scientific Center, Los Angeles.

Current/Recent Areas of Research:
• Group signatures, secret handshakes, private authentication
• Group key management, secure group membership, etc.
• Privacy/Integrity for Outsourced Databases
• Networks: reliable broadcast in MANETs
• RFID privacy
• Human-assisted security

Some Past “Achievements”:
• Visa Scheme pre-cursor to firewalls
• Inter-Domain Policy Routing 
• IBM KryptoKnight NetSP
• iKP SET
• CDPD/GSM security
• CLIQUES Secure SPREAD
• SEM Architecture Mediated Security Services, id-based crypto
• Admission in MANETs and P2Ps Bouncer toolkit
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Some of my relevant work

Secure Mobility:
• R. Molva and G. Tsudik, Authentication Method with Impersonal Token Cards, 1993 IEEE 

Symposium on Security and Privacy.
• A. Herzberg, H. Krawczyk and G. Tsudik, On Traveling Incognito, 1994 IEEE Mobile Computing 

Systems and Applications. 
• R. Molva, D. Samfat and G. Tsudik, Authentication of Mobile Users, IEEE Network, Vol. 8, No. 2, 

pp. 26-34, March-April 1994. 
• G. Ateniese, A. Herzberg, H. Krawczyk and G. Tsudik, Untraceable Mobility: How to Travel 

Incognito, Computer Networks, Vol. 31, No. 8, pp. 871-884, April 1999.

Reliable Broadcast/Multicast in MANETs:
• K. Obraczka, G. Tsudik and K.  Viswanath, Flooding for Reliable Multicast in Multi-Hop Ad Hoc 

Networks, ACM Wireless Networks, Vol. 7, No. 6, December 2001.
• K. Obraczka, G. Tsudik and K. Viswanath, Exploring Mesh- and  Tree Based Multicast Routing 

Protocols for MANETs, IEEE Transactions on Mobile Computing, to appear in 2005.
• K. Obraczka, G. Tsudik and K. Viswanath, Pushing the Limit of Multicast in Ad Hoc Networks, 

IEEE ICDCS'2001.

WSN Security:
• C. Castelluccia, E. Mykletun and G. Tsudik, Efficient Aggregation of Encrypted Data in Wireless 

Sensor Networks, IEEE Mobiquitous'05, July 2005.
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Some of my relevant work

Admission Control in MANETs and P2Ps
• M. Narasimha, G. Tsudik and J. Yi, On the Utility of Distributed Cryptography in P2P 

Settings and MANETs, IEEE ICNP'03, November 2003.
• N. Saxena, G. Tsudik and J. Yi, Admission Control in Peer-to-Peer: Design and 

Performance Evaluation}, ACM SASN '03, November 2003. 
• N. Saxena, G. Tsudik and J. Yi, Experimenting with Peer Group Admission Control, 

International Workshop on Advanced Developments in Software and Systems 
Security (WADIS'03), December 2003.

• N. Saxena, G. Tsudik and J. Yi, Identity-based Access Control for Ad Hoc Groups, 
ICISC'04, December 2004. 

• N. Saxena, G. Tsudik and J. Yi, Efficient Node Admission for Short-lived Mobile Ad 
Hoc Networks, IEEE ICNP'05, November 2005.

MANET/Vehicular Security
• J. Kim and G. Tsudik, Securing Route Discovery in DSR, IEEE Mobiquitous'05, July 

2005.
• M. El Zarki, S. Mehrotra, G. Tsudik and N. Venkatasubramanian, Security Issues in 

a Future Vehicular Network, EuroWireless 2002.



4

7

Expectations

• Learn about security in wireless communication:
– Last-hop wireless (e.g., 802.11)
– MANETs
– WSNs
– RFIDs and the like

• Understand the state-of-the-art
• Much of the material has to do with 

cryptography and its applications
• Disclaimer: 4 hours is not enough!!!
• I might not cover your favorite topic, e.g., 

Bluetooth security

8

Helpful Background

• Basic Networking
– TCP/IP, IP Multicast, 802.11, 

• Network Security 
– Authentication, Key distribution, Protocols, 

Certification/Revocation, e.g., TLS/SSL, 
Kerberos, etc.

• Cryptography
– Basic concepts, public key, signatures, key 

management, hash chains/merkle trees, etc.
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Some heretical statements to start with

• Wireless-ness does not cause brand new 
security problems
– Most advances in wireless security aren’t 

specific to wireless
• Mobility does!
• Ad-hoc-ness does!
• Most sensors don’t network 

10

Cryptography primer
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Symmetric Cryptography

• also known as: conventional, shared-key or 
single-key

• 2 parties (sender/recipient or Alice/Bob) share a 
common key

• key used to encrypt and/or authenticate some 
(or all) of their communication

• all “classical” encryption algorithms are 
symmetric

• the only encryption type prior to invention of 
public-key in 1970’s

12

Basic Terminology

• plaintext - the original message 
• ciphertext - the encrypted message 
• cipher - algorithm for transforming plaintext to ciphertext 
• key – secret info used in cipher, known only to appropriate 

parties (e.g., sender/receiver)
• encipher (encrypt) - convert plaintext to ciphertext 
• decipher (decrypt) - recover ciphertext from plaintext
• cryptography - study of encryption principles/methods
• cryptanalysis (codebreaking) - the study of principles/ 

methods of deciphering ciphertext without knowing key
• cryptology - cryptography + cryptanalysis
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Symmetric Cipher Model

14

Open vs. closed cipher design

• Open design:  algorithm, protocol,  system 
design (and even possible plaintext) may be 
public information.  The only secret is/are 
the key(s)

• Closed design:  as much information as 
possible (including the algorithm) is kept 
secret



8

15

Encryption Encryption PrinciplesPrinciples

• A cipher/cryptosystem has (at least) five 
ingredients:
– Plaintext
– Secret Key(s)
– Ciphertext
– Encryption algorithm
– Decryption algorithm

• Security usually depends on the secrecy 
of the key, not the secrecy of the 
algorithm

16

Requirements
• two requirements for secure use of 

symmetric encryption:
– a strong encryption algorithm
– a secret key known only to sender/receiver

Y = EK(X)
X = DK(Y)

• assume encryption algorithm is known to 
everyone (including the adversary)

• need secure channel to distribute keys!
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Cryptography

• can characterize by:
– type of encryption operations used

• substitution / transposition / product
– number of keys used

• single-key or private / two-key or public
– way in which plaintext is processed

• block  / stream

18

Adversary’s Goal

• Attack  cipher/cryptosystem to
– obtain/read ALL plaintext
– forge authenticity checks (inject data)

• This usually requires obtaining the KEY(s)
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Types of Cryptanalytic Attacks:

• ciphertext only
– only knows algorithm and lots of ciphertext

but not the matching plaintext
• known plaintext

– knows a number of (n) plaintext/ciphertext
pairs  

• chosen plaintext
– selects n plaintexts and obtains 

corresponding ciphertexts
• chosen ciphertext

– selects n ciphertexts and obtains 
corresponding plaintexts

20

Types of Cryptanalytic Attacks: most 
dangerous/sophisticated attacks

• adaptive chosen plaintext
– selects  n plaintexts and obtains 

corresponding ciphertexts
– repeat above a number of times

• adaptive chosen ciphertext
– selects n ciphertexts and obtains 

corresponding plaintexts
– repeat above a number of times
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Alice, Bob and Eve

Encrypt decrypt

22

More Definitions

• unconditional security
– no matter how much computer power is available, the 

cipher cannot be broken since the ciphertext provides 
insufficient information to uniquely determine the 
corresponding plaintext 

• computational security
– given limited computing resources (e.g., time needed 

for calculations is greater than age of universe), the 
cipher cannot be broken 

• ad hoc security
– the cipher is claimed secure. Often encountered in 

“snake oil” products
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Message Authentication

24

Message Authentication

• Goal: offer protection against active attacks
– Impersonation
– Modification of contents
– Replay
– Interruption and denial of service

• Requirements
– Message is authentic - has not been altered
– Message source is authentic
– Optional

• Message arrived in correct sequence
• Non-repudiation
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Message Authentication Approaches

• Conventional encryption
– Assumes that only the correct parties should 

have access to key
• Message authentication without 

encryption
– Authentication tag is attached to message to 

verify its integrity and the integrity of the 
source

• Message Authentication Code (MAC)
– MAC=F(Message,Key)

26

Message Authentication Code
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MAC Properties

• Message is authentic
– If the attacker modified the message, the MAC will most likely 

not match the one calculated by the receiver
• Source is authentic

– No one else has the key to generate the same MAC
– Hence, also non-repudiation

• Message is in sequence
– Should add timestamp or other nonce to the message before 

calculating the MAC

• Any encryption algorithm can be used to generate MAC 

28

Cryptographic HASH Functions

• Purpose: produce a fingerprint or digest of input 
data

• Properties of a “good” HASH function H():
1. H() takes on input of any size
2. H() produces fixed-length output
3. H(x) is easy to compute (efficient)
4. Given any h, it is computationally infeasible to find x 

such that H(x) = h
5. For any x, it is computationally infeasible to find           

y such that H(y) = H(x) and y<>x
6. It is computationally infeasible to find any (x, y) such 

that H(x) = H(y) and x<>y

Observation: don’t need “decryption” for MAC
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HASH Functions properties restated:
Cryptographic properties of a “good” HASH 
function:

– One-way-ness (#4)
– Weak Collision-Resistance (#5)
– Strong Collision-Resistance (#6)
Non-cryptographic properties of a “good” HASH 
function

– Fixed output (#1)
– Arbitrary-length input (#2)
– Efficiency (#3)

30

Message Authentication with 
a Hash Function

1. Using a symmetric secret / key

2. Using symmetric encryption
• Generate H(M), which is small in size
• Use EK(H(M)) as the MAC
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Well-known HASH Algorithms

160 (5 
paired 
rounds of 
16)

64 (4 
rounds of 
16)

80 (4 
rounds of 
20)

Number of 
steps

unlimitedunlimited264-1 bitsMaximum 
message size

512 bits512 bits512 bitsBasic unit of 
processing

160 bits128 bits160 bitsDigest length

RIPEMDMD5SHA-1

32

Hash Function MAC (HMAC)

• HMAC Idea: Use a MAC derived from any 
cryptographic hash function
– Note that hash functions do not use a key, and 

therefore cannot serve directly as a MAC
• Motivations for HMAC:

– Cryptographic hash functions execute faster in 
software than encryption algorithms such as DES

– No need for the reverseability of encryption
– No export restrictions from the US

• Status: designated as mandatory for IP security
– Also used in Transport Layer Security (TLS), which 

will replace SSL, and in SET
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HMAC Algorithm

• Compute H1= H of the 
concatenation of M and K1

• To prevent an “additional 
block” attack, compute 
again H2= H of the 
concatenation of H1 and K2

• K1 and K2 each use half 
the bits of K

• Notation:
– K+ =K padded with 0’s
– ipad=00110110 x b/8
– opad=01011100 x b/8

• Execution:
– Same as H(M), plus 2 

blocks

34

Public Key Crypto
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Public-Key Cryptography
• Each user has a unique public-private key  pair

Alice - KApriv, KApub
Bob - KBpriv, KBpub

• The public key can be given to anyone

• The private key is not shared with anyone, including a 
trusted third party (authentication server)

• The public key is a one-way function of the private-key 
(hard to compute private key from public one)

• Used for key distribution/agreement, message 
encryption, and digital signatures

36

Origins of Public Key

• Concept credited to Diffie and Hellman, 1976 “New 
Directions in Cryptography”

• Motivation - wanted a scheme whereby Alice could send a 
message to Bob without the need for Alice and Bob to share 
a secret or for a Trusted Third Party -- called “public-key” 
because Alice & Bob need only exchange public keys to set 
up a secret channel

• Invented earlier by British at CESG 
http://www.cesg.gov.uk/about/nsecret.htm
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Public-Key Agreement
• Method whereby Alice and Bob can agree on a 

secret key to use with DES, AES, or some other 
symmetric encryption algorithm
– Need a shared secret

• They do this after exchanging only public keys

• They each compute a secret session key K 
derived from their own private key and the 
other’s public key. They both arrive at the same 
K independently
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Diffie-Hellman Method

1) Shared prime p and generator g

Alice: private xa and public ya = gXa mod p
Bob: private xb and public yb = gXb mod p

xa = logg ya mod p (hard to compute)

2) They exchange public keys

Alice computes: K = yb
Xa mod p = gXb Xa mod p

Bob computes:   K = ya
Xb mod p = gXa Xb mod p

What can K be used for?

40

Security/Strength
• Depends on the difficulty of computing the 

discrete logarithm

• Best-known methods are exponentially hard

• Need to use numbers on the order of 768 bits 
(230 digits) or bigger

• Implementations typically use 512 (155), 1024 
(310) or 2048 (621) bits (digits).
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On-The-Fly Approach

• Alice and Bob generate xa, xb, ya, yb on-
the-fly

• They exchange ya and yb and compute K

• Drawbacks?
• What applications are appropriate?

42

Permanent
• Alice and Bob generate permanent keys and 

deposit ya and yb in public database (key center)

• Alice initially gets yb from public database (or 
from Bob)

• Alice computes K = yb
Xa mod p = gXb Xa mod p 

• Alice -> Bob: ya, C = EK(M)
(or Bob could get ya from database)

• Bob computes K = ya
xb mod p = gXa Xb mod p 

• Bob decrypts C with K to get M

• Drawbacks?
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Hybrid Approach

• Alice & Bob generate xa, xb and deposit/publish 
their public keys ya, yb

• Alice gets yb from database (or from Bob)
• Alice generates temporary pair xt, yt

• Alice computes K = yb
Xt mod p = gXb Xt mod p 

• Alice -> Bob: yt, EK(M)

• Bob computes K = yt
Xb mod p = gXt Xb mod p 

and decrypts M

44

Public-Key Encryption

• The public and private keys are used for 
message encryption and decryption for purpose 
of secrecy

• Alice encrypts message to Bob with Bob’s 
public key 

• Bob decrypts incoming messages with his 
private key

• In practice, public-key encryption is used to 
encrypt and decrypt messages that contain 
symmetric keys (e.g., for DES/AES), and the 
symmetric keys are used to encrypt/decrypt bulk 
data
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Sending Messages

To send message M to Bob, only Bob’s keys used
Alice Bob: C = EBpub(M)
Bob decrypts: M = DBpriv(C)

In practice, use to distribute symmetric key K
Alice Bob: CK = EBpub(K), CM = EK(M) 
Bob decrypts: K = DBpriv(CK), M = DK(CM)

Alice and Bob then use K to encrypt/decrypt 
messages

E.g., that’s how PGP/GPG and SSL work…

46

RSA

Ron Rivest, Adi Shamir, Leonard Adleman
1977 -- all at MIT at the time

Basic idea: a modular exponentiation-based 
cipher where the modulus is the product of two 
large primes

Mathematical strength is derived from the 
“conjectured” difficulty of factoring a large 
composite number into its 2 (also large) prime 
factors
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S              R           A
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RSA
Pick two large (about 512-bit and up) primes p and q 

and compute n = p * q

Pick e, d such that: 
e * d = 1 mod φ(n)

where: φ(n) = (p-1) * (q-1)

(e, n) is the public key
(d, [p,q]) is the private key 

Encrypt: C = Me mod n
Decrypt: M = Cd mod n
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Example

p = 53, q = 61, n = 53 * 61 = 3233

Pick e = 71

Compute d such that 
71 * d  = 1 mod (52 * 60) 
get d = 791

Let M = 1704

Encrypt: C = 170471 mod 3233 = 3106
Decrypt: M = 3106791 mod 3233 = 1704

50

Theory

Proof sketch for φ(n) = (p-1) * (q-1)

φ(n) = # primes < n relatively prime to n
Consider the n=pq numbers 0, 1, ..., pq-1
All are relatively prime to n except for 0 and

p-1 elements: q, 2q, 3q, ..., (p-1)q
q-1 elements: p, 2p, 3p, ..., (q-1)p

so φ(n) = pq - [(p-1) + (q-1) + 1]
= pq - p - q + 1 = (p-1)*(q-1)
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Factoring
Given a number n, find primes p1, p2, ..., pk such that n = p1 

* p2 * ... * pk

For RSA, there are known to be only 2 factors:
n = p * q

Factoring arbitrary numbers is harder than factoring special 
types of numbers, e.g., numbers of the form      n = 2s - 1 
(Mersenne primes) 

Strength of RSA – relation to factoring
1) If factoring easy breaking RSA is easy 

find plaintext?
2) If breaking RSA is easy factoring made easy ?

Breaking RSA can be no harder than factoring, but could 
be easier

52

Digital Signatures: Objectives

• Message integrity and authenticity
detect tampering and bogus messages

• Source/sender authenticity
detect forgeries

• Non-repudiation
sender cannot repudiate signing a message
trusted 3rd party (court?) can resolve disputes 
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Public-Key Signatures

• Signer has a public-private key pair

• A signature is produced with the private key
– Only the real signer can do this

• A signature is verified with the public key
– Anyone can do this, including the intended 

recipient and a trusted 3rd third party

• No keys of the receiver/verifier are used

54

Sending a Signed Message

• Alice sends a signed message to Bob using her private key.  
Bob validates with her public key

1) Alice Bob: (M, S) where 
S = signApriv(h(M))  
and h() is a “good” hash function

2) Bob checks: validateApub(M, S)

• Hash function h is public and not keyed, but:
– h() is hard to invert
– Practical examples: MD5, SHA

• S is function of entire message M
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RSA Signatures
• Let (e, n) be Alice’s public key and (d, n) her 

private key

• Alice Bob: (M, S) where 
S = signApriv(h(M)) = [ h(M) ] d mod n

• Bob checks: validateApub(M, S):
1. h1 = h(M)
2. h2 = Se mod n  

Note: Se =  [ h(M) ] d*e mod n = h(M)

3. if h1 = h2 then accept, else reject

56

Digital Signature Standard (DSS)

• FIPS PUB 186, adopted 1994
• Uses variant of methods invented by 

ElGamal and Schnorr, which in turn were 
based on Diffie-Hellman

• Uses exponentiations in modular 
arithmetic where security is based on 
difficulty of computing the discrete log (as 
for DH)

• Uses SHA for hashing
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DSS

• Global public values (shared by group which can 
be as large as needed)

p - prime number (512-1024 bits)
q - 160-bit value (most computation mod q)
g = h(p-1)/q mod p where h < (p-1) and g > 1

• User’s private key
x - any number less than q

• User’s public key
y = gx mod p

58
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Notes

• Signing (can be) faster than in RSA

• Verification is slower than with RSA

• Signature size: 320 (DSS) vs 1024 (RSA) bits

• Both RSA and DSS are used extensively --
many products support both

• DSS not designed for encryption – use together 
with Diffie-Hellman key exchange or El Gamal
PKCS

60

Other “tools”

We might need other crypto techniques in the course; 
to be covered later…

• One-time signatures, hash chains & trees
• Id-based crypto
• Threshold (and maybe proactive) crypto
• Group signatures (maybe)


