Ad Hoc (Wireless) Key Establishment

Problem Definition

- **Goal:** Secure, authenticated communication between devices that share no prior context
- No prior context:
 - No CAs or other trusted authorities
 - No PKI
 - No shared secrets
 - No common history
- Problem: key establishment
- Diffie-Hellman shows how to share secrets...

Diffie-Hellman Key Agreement

- Public values: large prime p, generator g
- Alice has secret value a, Bob has secret b
- $A \rightarrow B$: $g^a \mod p$
- $B \rightarrow A$: $g^b \mod p$
- Bob: $(g^a \mod p)^b \mod p = g^{ab} \mod p$
- Alice: $(g^b \mod p)^a \mod p = g^{ab} \mod p$
- Eve cannot compute g^{ab} mod p

Are we done?

Problem: Man-in-the-middle Attack

Mallory can impersonate Alice to Bob, and impersonate Bob to Alice!

$$-A \rightarrow M$$
: g^a mod p

$$-M \rightarrow A$$
: g^m mod p

$$-M \rightarrow B$$
: g^m mod p

- $-B \rightarrow M: g^b \mod p$
- -Bob: $(g^m \mod p)^b \mod p = g^{bm} \mod p$
- -Alice: $(g^m \mod p)^a \mod p = g^{am} \mod p$

The Resurrecting Duckling

- Life cycle "similarities" between devices and ducklings
 - Life cycle of a device
 - Buy device in store
 - Unpack at home and use it
 - Device breaks or gets a new owner
 - Life cycle of a duckling
 - Duckling is in egg
 - When duckling hatches, first object is viewed as mother: imprinting
 - Duckling dies
 - Device ownership similar to duck's "soul"

The Resurrecting Duckling

- Device life cycle
 - Device imprinted by master when it wakes up
 - Reincarnation:
 - Device dies and gets new owner
 - Escrowed suicide:
 - Manufacturer can "kill" device to enable renewed imprinting
- Physical contact establishes secure key during imprinting phase
 - MitM 'impossible' over physical contact channel
 - Diffie-Hellman can be safely performed

Talking to Strangers

- Balfanz et al. NDSS '02
- Addresses practical shortcomings of Duckling
 - Devices have no interfaces for physical contact
 - Cables are cumbersome
- Propose Infrared as a "Location-Limited Side Channel"
 - Assumed to be immune to MitM attack
 - Many of today's devices equipped with IR
 - Want demonstrative identification of devices

Key Agreement in P2P Wireless Networks

- M. Cagalj, et al.
 Proc. of IEEE, Special Issue on Security and Cryptography, '05
- Avoids use of side-channels
- Uses Diffie-Hellman to establish keys
- Presents three techniques to combat MitM
 - Visual comparison of short strings
 - Distance bounding
 - Integrity codes
- All 3 authenticate public DH parameters g^A and g^B

Commitment Schemes

- All 3 techniques use commitment schemes
- Commitment semantics:
 - Binding
 - Hiding
- $(c,d) \leftarrow commit(m)$
- m message
- c commitment value
- d opening value
- It is infeasible to find d' such that (c, d') reveals $m' \neq m$

Reminder: Desired (cryptographic) Hash Function Properties

- Pre-image resistance (one-way-ness)
 - Given y = h(x) it is difficult to find x
- Second Pre-image resistance
 - A.k.a. "weak" collision resistance
 - For a given x, it is difficult to find x' such that h(x) = h(x')
 - Attacker chooses only one input
 - Used in digital signatures
- Collision resistance
 - A.k.a. "strong" collision resistance
 - It is difficult to find x and x' such that h(x) = h(x')
 - Attacker chooses both inputs

- No interference from other sw on devices...

DH-IC Analysis
User requirements
 Alice must make sure Bob's device is listening before pressing a button on her device
 Bob then presses a button on his device
 Radio system requirements
 It is not possible to block emitted signals without being detected, except with negligible probability
 Multiple waveforms to send a '1'
 No rigorous treatment of its feasibility

N. Asokan and P. Ginzboorg, "Key Agreement in Ad-hoc Networks," *Computer Communications*, vol. 23, no. 17, pp. 1627–1637, 2000.

- Problem: how to set up a session key between a group of people/devices their who meet and have no prior context
- Shared password approach
- No PKI, no TTP
- Fresh password is chosen and manually shared among those present in the room (e.g., by writing on blackboard)
- Password used to derive a strong shared session key using either group DH or group-EKE
- · Requires each user to type in the password

FYI: See paper on keyboard snooping from S&P'04

Seeing-is-Believing (SiB)

McCune et al. IEEE Security & Privacy '05

- Difficult to achieve **demonstrative identification** of devices communicating wirelessly with no prior context
- Prior work proposes the use of a **location-limited sidechannel** to authenticate devices
 - Infrared, ultrasound, physical contact
- Proposals to-date too cumbersome for non-expert users
 - None of them convince the user that they are really communicating with *the target* device

Bidirectional Authentication (SiB)

- · Both parties perform the basic SiB protocol
- Both parties get an authenticated copy of the other party's public key
- SiB serves the same purpose as certificates in an SSL/TLS session
- The keys used can be freshly generated for privacy reasons
 - Users may not want a single public key broadcast every time they're using their device
 - Avoids problems of user-tracking

Loud and Clear (L&C) Security M. Goodrich, et al. 2005

What if:

- Visually impaired user ۲
- Not enough ambient light •
- No camera-equipped device •
- Afraid of barcode stickers being replaced?

L&C Security Solution: use audio channel Human-assisted vocalized string comparison Exchange DH (or RSA) keys via any wireless (or wired) channel Hash other party's key and convert to MadLib sentence: non-sensical but grammatically-correct construction, e.g., 70-bit string represented as: DONALD the FORTUNATE BLUE-JAY FRAUDULENTLY CRUSH-ed over the CREEPY ARCTIC-TERN.

Row	Use Type	Personal Device		Target Device	
		Display	Speaker	Display	Speaker
1	1	no	yes	no	yes
2	3	no	yes	yes	no
3	3 or 1	no	yes	yes	yes
4	2	yes	no	no	yes
5	4	yes	no	yes	no
6	2 or 1	yes	yes	no	yes
7	3 or 4	yes	yes	yes	no
8	1,2,3 or 4	yes	yes	yes	yes
9	n.a.	no	no	*	*
10	n.a.	*	*	no	no

Other Solutions (2) Physical Contact (imprinting) - Duckling establish a key via physical contact by linking devices with a wire.... not always practical and requires additional hardware.. InfraRed channel - Strangers IR is difficult to intercept since requires line-of-sight links. most sensors do not have IR interface! Faraday Cage Devices could be placed into a Faraday cage It is clearly impractical to ask users to lug around a metal box ;-)

	Goals
•	Design a secure pairing protocols that:
	 Does not rely on PK cryptography
	 Does not rely on pre-configured information
	 Does not increase the complexity (and cost) of the sensors by requiring additional hardware such as a display, keyboard, IR channel
	 Does not require special equipment (cable, faraday cage)
•	Security Model
	 protocol must ensure that active or passive attackers do not learn the exchanged key
	 must provide some DoS protection, i.e. prevent an attacker from disrupting the key exchange and exhausting the devices' resources.

Wireless Anonymous Communication (2)

- Timing
 - This is quite trivial in TDMA based scheme since devices always transmit during their allocated slots
 - However Timing does not provide any information if a random access MAC protocol, such as CSMA, is used since each device access the channel at a random time!
- => Protocol only works with CSMAbased technologies, such 802.11,802.15.4

Wireless Anonymous Communication (3)

- Reception Power
 - If Eve is closer to Alice than Bob, she will receive Alice's message which a higher power!
 - Note: assume A and B transmit at the same power level.

What can be done? (1)

- Can randomly change Alice and Bob's transmission power
 - Some bits will still be revealed
 - If Eve has a directional antenna she can aim it at one of the devices!

What can be done? (2)

- We can bring the devices together and move them (shake them up) one around the other!
 - The reception power of A's and B's messages will be similar...
 - Eve cannot use a directional antenna since the devices are moving!
- In summary, shaking 2 devices prevents using power to identify source!

Frequency Fingerprinting

- Even though standard specify one frequency, each device uses a different frequency.
- Difference due to the crystal oscillator and clock drift, resulting from aging, temperature and so on.
- Typically an error of 25ppm (parts per million) is allowed
- So, if transmitting frequency is 2.4GHz, a frequency offset of up to 120kHz is allowed.
- Possibly, a (well-equipped) Eve can use this frequency difference to identify the source and retrieve the secret...

Performance: Energy Consumption

- In STU, each device
 - processes N small messages, where N is # of bits of the secret (total number of bits sent: 2016)
 - ...but performs almost no computation.
- In a DH-based scheme,
 - each node sends only one large message (>1024 bits)...
 - but performs a lot of computation...i.e. 4.12x10⁸ single precision multiplications (if N=72).
- By using the heuristic that transmitting one bit consumes as much energy as executing 800 instructions...
 - this scheme is ca. 100 times more energy efficient than a plain DH-based scheme

