

Formal Models for Trust in **Global Computing**

Mogens Nielsen mn@brics.dk University of Aarhus, Denmark FOSAD'05 Bertinoro, September 2005

BRICS

2

5

Vision of Global Computing

- Billions of autonomous mobile networked entities Mobile users
 - Mobile software agents
 - Mobile networked devices:
 - Mobile communication devices (phones, pagers, ...)
 - Mobile computing devices (laptops, palmtops, ...) Commodity products (embedded devices)
- Entities will collaborate with each other
- · Resource sharing
- Ad hoc networks, computational grids, ... Information sharing
- Collaborative applications, recommendation systems, ...

New Security Challenges

- Security properties of global computing environment Large number of autonomous entities
- Large number of administrative domains
- No common trusted computing base
- No global system trust
- Virtual anonymity
 Properties exclude the use of current security mechanisms used in large distributed systems
- ONE alternative approach: Trust based security

A few good references

2

- ITRUST
 - anIST/FET working group started in 2002 itrust.uoc.gr iit.cnr.it/iTrust2006
- T. Grandison, M. Sloman: A Survey of Trust in Internet Applications, IEEE Communications Surveys, 2000
- A. Jøsang, R. Ismail, C. Boyd: A Survey of Trust and Reputation for online service provision, to appear, available from Jøsang's home page

Plan of talks

- Motivation
- · Goal: illustrate role of TCS in
 - Towards a foundation for the web of trust
 - Towards a foundation for reputation based systems
 - Techniques for reasoning about properties of trust based systems

Joint work within the IST/FET GC project SECURE with Vladimiro Sassone, Karl Krukow, Marco Carbone,...

Some Publications

- Krukow, Nielsen, Sassone: A Framework for Concrete Reputation-Systems with Applications to History-Based Access Control, Computer and Communications Security, CCS'05, ACM Press 2005 Krukow, Twigg: Distributed Approximation of Fixed-Points in Trust Structures, proceedings of ICDCS'05, 2005 Carbone, Nielsen, Sassone: A Calculus for Trust Management, FSTTCS'04, Springer LNCS 3328, 2004

- Nielsen, Krukow: On the Formal Modeling of Trust in Reputation-Based Systems, Springer LNCS 3113, 2004 Nielsen, Krukow: Towards a Formal Notion of Trust, PPDP'03, IEEE, 2003
- Carbone, Nielsen, Sassone: A Formal Model for Trust in Dynamic Networks, SEFM, IEEE, 2003
- Networks, SEFM, IEEE, 2003 Cahill, Shand, Gray, Dimmock, Twigg, Bacon, English, Wagaella, Terzis, Nixon, Bryce, Seigneur, Carbone, Krukow, Jensen, Chen, Nielsen: *Using trust for Secure Collaboration in Uncertain Environments*, IEEE Pervasive Computing, 2003

1

On Trust – Social Sciences

- "...trust is a term with many meanings" Oliver Williamson
- "Trust is itself a term for a clustering of meanings" Harrison White
- "...researchers...purposes may be better served...if they focus on specific components of trust rather than the generalised case"
 Robert Kaplan

On Trust - Social Sciences

D. H. McKnight, N.L. Chervany: The Meaning of Trust

Springer LNAI 2246 Trust in Cyber-societies, pp 27-54 2001

McKnight and Chervany

- TRUST
- Disposition
- Structural
- Affect/Attitude
- Belief/Expectancy
 Intention
- Behaviour
- BenevolenceIntegrity

TRUSTEE

Competence

- Predictability
 - Openness, carefulness,...
 - People, Institutions,...

Trust-based security-related decisions

- · Security-related decisions:
 - Passive: e.g. should I allow principal P to access my resource r?
 - Active: e.g. which of principals P, Q, R will provide the best service for me?
 - Trust-based decisions:
 - Decisions made based on principals' behaviour, reputation
 - Principals collaborate: recommendations,...Principals are networked, decisions made
 - autonomously
 - · Decisions made based on partial information

10

Applications

A peer to peer distributed file system A telephone-based micro-payment system An agent controlled information portal A distributed SPAM filter A smart space environment Collaborative PDA environment

Trust Based Systems - Components

- Entity Recognition
- Collaboration Model
- Trust Model
- Risk Model

11

Entity Recognition

- Definition of an entity recognition scheme Central abstraction in the framework
- Concept of entity itself Assuming virtual anonymity
 - Ability to establish the identity of a given entity in absolute terms, e.g. through globally unique and meaningful names, is not required
- Recognition of previously encountered entities provides the basis for the use of trust

Collaboration Model

- Trust formation Personal experience
- Recommendation from known (trusted) third parties Reputation (recommendation from many strangers)
- External events (help build reputation) Trust evolution
- Incorporating new trust formation data Expiration of old trust values As a function of time As a reaction to betrayal
- Trust exploitation
- Risk analysis
- Feedback based on experience Context dependence

13

15

Trust management elements

- Language for Actions .
- Naming scheme for Principals .
- Language for Trust-Policies . Language for Credentials
- Compliance checker and interface
- Blaze, Feigenbaum, Lacy: KeyNote: Trust Management for Public-Key Infrastructure, Springer LNCS 1550, 56-63, 1999

17

Towards a formal model

- Motivation
- · Goal: illustrate role of TCS in
 - Towards a foundation for the web of trust
 - Towards a foundation for reputation based systems
 - Techniques for reasoning about properties of trust based systems

Towards a formal model

- Motivation
- · Goal: illustrate role of TCS in
 - · Towards a foundation for the web of trust
 - Towards a foundation for reputation based systems
 Techniques for reasoning about properties of trust based systems

Stephen Weeks:

Understanding Trust Management Systems IEEE Symposium on Security and Privacy, 2001

Modeling Trust

- Scenario with
 - A set *P* of principals (ranged over by *a,b,c*)
 A set *T* of trust values
 - Trust information of a system represented by
- trust-state: $P \rightarrow P \rightarrow T$
 - trust-state(A)(B): represents A's trust in B

Trust policies

- Each principal defines a trust policy which declares how it computes its trust in every other principal
- A small policy language could have constructs like
 - Refer to the information gathered locally
 - Refer to information that principal P has personally observed
 - Refer to the information P would obtain if it were to compute its trust
 - Other operations...

19

21

23

Example: A simple trust setting

20

22

• Let \mathcal{T} be {N, R, W, RW}

Example tr	ust policies
b: $\lambda x. (x=c \Rightarrow W,)$ a: $\lambda x. ([b]x \lor R)$	abstraction referencing
a: λx . (([a]b \land [b]x) \land	✓ R) discounting
a: λx. ([b]x) b: λx. ([a]x)	cyclic delegation

	A Small Policy Language	
	$\begin{bmatrix} \tau \end{bmatrix} : \begin{bmatrix} \mathcal{P} \to \mathcal{P} \to \mathcal{T} \end{bmatrix} \to \mathcal{T}$ $\begin{bmatrix} C \\ _{om} &= c \\ [\pi(\mathcal{P})]_{om} &= [\pi]_{om} [\mathcal{P}]_{om} \\ [\mathcal{P} \to \tau, \tau']_{om} &= \text{if } [\mathcal{P}]_{om} \text{ then } [\tau]_{om} \text{ else } [\tau']_{om} \\ [op(\tau_1, \dots, \tau_n)]_{om} &= op([\tau_1]_{om}, \dots, [\tau_n]_{om}) \end{bmatrix}$	
	$ \begin{bmatrix} \pi \end{bmatrix} : \begin{bmatrix} \mathcal{P} \to \mathcal{P} \to \mathcal{T} \end{bmatrix} \to \begin{bmatrix} \mathcal{P} \to \mathcal{T} \end{bmatrix} \\ \begin{bmatrix} [\rho] \end{bmatrix}_{om} &= m([\rho])_{om} \\ \begin{bmatrix} \lambda x : \mathcal{P} \cdot \tau \end{bmatrix}_{om} &= \lambda \rho : \mathcal{P} \cdot \begin{bmatrix} \tau \end{bmatrix}_{o[\rho/x]m} $	
	$\sigma: Vars \to \mathcal{P} \qquad m: \ \mathcal{P} \to \mathcal{P} \to \mathcal{T}$	
ist 🌒		25

Modeling the web of Trust

Each Principal specifies a *policy* which is a local contribution to the global trust

Given principals a with policies π_a :

$$\pi_{a} \colon \left[\mathcal{P} \to \mathcal{P} \to \mathcal{T} \right] \to \left[\mathcal{P} \to \mathcal{T} \right]$$

The collection of $\pi_{a}{}^{\prime}s$ induces a global trust function:

$$\Pi \colon \left[\ \mathcal{P} \to \mathcal{P} \to \mathcal{T} \right] \to \left[\mathcal{P} \to \mathcal{P} \to \mathcal{T} \right]$$

Definition of Trust

Assume T is a lattice/cpo, given a \leq -continuous global trust function

 $\Pi \colon \left[\ \mathcal{P} \to \mathcal{P} \to \mathcal{T} \right] \to \left[\mathcal{P} \to \mathcal{P} \to \mathcal{T} \right]$

TRUST is defined as the least fixed-point of $\boldsymbol{\Pi}$

Lattices and continuity

In a complete lattice T = (D, \leq) all subsets X of D have a least upper bound $\cup X$ and a greatest lower bound $\cap X$

- $\mathsf{F}:\mathsf{D}\to\mathsf{D}\text{ is }\leq\text{-continuous }\text{iff }\mathsf{F}(\cup\mathsf{X})\ =\ \cup\mathsf{F}(\mathsf{X})$
- implying that F is \leq -monotone F : D \rightarrow D is \leq -monotone iff $x \leq y \Rightarrow F(x) \leq F(y)$

For F : D \to D $\,\leq\,$ continuous, the least fixed point of F exists and is equal to $\cup\,$ F^i(1)

26

27

29

Example (1)

Suppose we have the following policies:

	а	b	С
d	[f] V W	[e] ∧ W	N
е	R	R	[<i>f</i>]
f	[e]	N	[e]

Example (2)

The computation:

		а	b	с
	d	[<i>f</i>] V W	[e] ∧ W	N
	е	R	R	[<i>f</i>]
	f	[e]	Ν	[e]
	а	b	с	7
d	N	N	N	1
	N	N	N	1
е	1			

Example (3)

The computation:

		а	b	с
	d	[<i>f</i>] V W	[e] A W	N
	е	R	R	[<i>f</i>]
	f	[e]	N	[e]
	а	b	с	
d	W	N	N	
е	R	R	N	1
f	N	N	N	1
				-

32

Example (4) The computation:

		а	b	С
	d	[<i>f</i>] V W	[e] ∧ W	N
	е	R	R	[<i>f</i>]
	f	[e]	Ν	[e]
	а	b	С	
d	W	N	N	
е	R	R	N	
f	R	N	N	
				_

Classical Trust Management

- Existing, classical TM-systems has been well explained in a mathematical framework of Stephen Weeks:

 - Define a lattice of 'authorisations'

 i.e. trust values = access-rights
 T ordered by ≤ is a lattice, where t ≤ t', means that t' allows more than t.

 Principals express their trust with "licenses" which are monotone endo-functions on T
 - At any given instant there is a well-defined unique
 - trust-state expressing how principals trust (least fixed point).

31

33

Example (5)

The computation:

		а	b	с
	d	[<i>f</i>] V W	[e] / W	N
	е	R	R	[<i>f</i>]
	f	[e]	N	[e]
	а	b	с	7
d	RW	N	N	-
P	D	D	N	-
<u>ر</u>	ĸ	ĸ	IN .	_
f	R	N	N	

34

.

Trust-based security-related decisions

- Security-related decisions:
- Passive: e.g. should I allow principal P to access my resource r?
- Active: e.g. which of principals P, Q, R will provide the best service for me? Trust-based decisions:
- Decisions made based on principals' behaviour, reputation Principals collaborate: recommendations,...
- Principals are networked, decisions made autonomously
- Decisions made based on partial information

A GC Formal Model for the web of Trust

- Similar to the approach of Weeks
- A principal A's trust in principal B is modelled simply as an element t of a set T of possible "trust values"
- At an instant in time the trusting relationships between principals can be modeled as a function, trust-state:Prin \rightarrow Prin \rightarrow T,
- trust-state(A)(B) : is the value of T that expresses A's trust in B
- A principal defines it's trust in other principals by means of a "trust policy"
- Need a distinction between information and trust...

A Constructive Method

 $I(D) = \{ [d_0, d_1] \mid d_0, d_1 \in D, d_0 \le d_1 \}$

Consider now the orderings \leq and \leq on I(D) defined as:

•
$$[d_0, d_1] \leq [d'_0, d'_1]$$

iff $d_0 \leq d'_0$ and $d'_1 \leq d_1$
• $[d_0, d_1] \leq [d'_0, d'_1]$
iff $d_0 \leq d'_0$ and $d_1 \leq d'_1$

37

39

41

Policies: Banks

- Any phone p requires the bank to perform certain transactions on account a
- The bank may look at the owners' trust on the phone

 $t = \land \{ [q](p) \mid q \in \text{owners}(a) \}$

 The bank will perform the transactions depending on the value of t

Continuity of Operations

- · Theorem
- Given a complete lattice (D, \leq) and a continuous function f: $D^n \rightarrow D$
- then the pointwise extension F of f is continuous in $(I(D), \leq)$ and $(I(D), \leq)$
- Example: addition and multiplication on the reals Example: glb and lub on (D, \leq)

Structured Trust Domains

• Theorem Given complete lattices D and D' then

 $I(D \times D')$ is isomorphic to $I(D) \times I(D')$ A $\rightarrow I(D)$ is isomorphic to $I(A \rightarrow D)$

with respect to both orderings

Algorithmic issues

- Efficient distributed algorithms for computing lfp
- Approximations often suffice!
- Policy reduction
- Abstract interpretation
- Proof carrying requests!

45

47

A chaotic lfp algorithm

- Assume we have a trust-referencing graph already computed
- Principal a:
 - Compute local trust state m_a(based on no info from other principals), and send it to all b's referencing a
 - Whenever a new local trust state is received, compute a new local trust state based on this - if different from previous local trust state, send it to all b's referencing a

Some properties

Lemma For all local trust states m_a sent by $a m_a \leq |fp_{\leq} \Pi(a)|$

Assume that \leq is \leq -continuous and that Π is \leq -monotone

 $\begin{array}{l} \textit{Lemma} \\ \textit{If for a particular snapshot } \lambda a.m_a \\ \lambda a.m_a &\leq \Pi \left(\lambda a.m_a\right) \\ \textit{then } \lambda a.m_a &\leq \textsf{Ifp}_{\leq} \Pi \end{array}$

Example: Proof carrying requests

• Idea: Assume *r* sending a request to *a*, requiring *high* trust

a: λx . ([b]x V) b: λx . ($x=r \Rightarrow high$,....)

Example: Proof carrying request

Theorem

Assume that \leq is \leq -continuous and that Π is \leq -monotone

Given $m: \mathcal{P} \to \mathcal{P} \to \mathcal{T}$, if $\cdot m \leq \bot_{\leq}$ $\cdot m \leq \Pi(m)$

then $m \leq \mathsf{lfp}_{\leq} \Pi$

Plan of talk

- Motivation
 - Goal: illustrate role of TCS in
 - Towards a foundation for the web of trust
 - Towards a foundation for reputation based systems
 Towards a foundation for reputation based systems
 - Techniques for reasoning about properties of trust based systems!
- Trust formation
- Trust evolution
- Trust exploitation

53

51

Example: Proof carrying request

- Idea: Requester provides m along with his request (sufficient for the request to be met) as an argument for m ≤ lfp Π
- Send *m* to all principals *a* for which m(a) is different from $\lambda p. \bot_{\leq}$, and ask *a* to check (locally!) that $m \leq \pi_a(m)$ - if this is the case, conclude $m \leq \Pi(m)$, and hence $m \leq |\text{fp}_{<} \Pi$

52

50

Reputation Systems

- Kamwar, Schlosser, Garcia-Molina: The Eigentrust Algorithm for Reputation Management i P2P networks, 12th International Conference on WWW, 2003
- Jøsang, Ismail: *The Beta Reputation System*, 15th Conference on Electronic Commerce, 2002
- Shmatikov, Talcott: Reputation-Based Trust Management, Journal of Computer Security, 2005

Reputation Systems

- Kamwar, Schlosser, Garcia-Molina: The Eigentrust Algorithm for Reputation Management i P2P networks, 12th International Conference on WWW, 2003
- Jøsang, Ismail: *The Beta Reputation System*, 15th Conference on Electronic Commerce, 2002
- Shmatikov, Talcott: Reputation-Based Trust Management, Journal of Computer Security, 2005
- Edjlali, Acharya, Chaudary: History-based Access Control for Mobile Code, CCS'98, 1998

Risk - Trust - Collaboration

- A decision involving another entity may have a number of outcomes o₁,o₂,...,o_n
 Each outcome has an associated cost/benefit, cost (0₁)
- The likelihood of the outcomes depends on the trustworthiness of the entity in question.
 - One simple strategy would be to choose the alternative which minimises the expected cost:

 $\exp = \sum_{i} \operatorname{cost}(o_i) * \operatorname{likelihood}(o_i)$

55

57

Trust/Risk Based Decisions

Implications of the Framework

- Requirements:
 - Trust values should allow for assessment of the likelihood of outcomes
 - The update of trust information based on observing behaviour should be easy (and this trust information should reflect that behaviour)
 - A general formal definition of the notion of
 Observation
 - Outcome
- Need more concrete versions of abstract lattices!

59

Trust/Risk Based Decisions

- · Requests/actions are mapped to Decisions
- Decisions are mapped to possible Outcomes
 Each outcome has an associated cost / benefit to the principal
 - Trust model determines the Likelihood of each outcome
- Decisions based on costs, likelihoods and local security policy
- Goal: find additional structure on T in such a way that T can provide information of the form . Outcomes \rightarrow Likelihood

60

E-Purse Scenario

Example: E-Purse

Consider a situation where a user is considering requesting an amount m of e-cash from a bank. Seen from the point of view of the user there are various possible events that may occur:

- The request may be denied
- . E.g.because the bank server is down for maintenance The request may be granted - transferring *m* units
- The bank may withdraw an amount different from m from users account
- The bank may withdraw the correct amountThe transferred e-money may be forged
- The transferred e-money may be authentic

62

Observations on events

- Events may be in conflict:
 For example the observation of "granted" excludes the observation of "denied" since both can't occur within the same transaction
- Events may be dependent:
 - For example an observation of "forged" money only makes sense in a scenario where the transfer was "granted"
- Events may be independent:
 - The observation of bank account withdrawal and whether or not the money is forged can be made independently in any order

63

61

Modelling (part of) E-Purse

- One can model the possible observations as an event structure
 - Formally a set of "events" E and two relations # (conflict) and \rightarrow (causality or necessity) + some properties

64

Event structure for E-Purse

#

c # w

65

- For event structure:
 - d # g Configurations model the information a principal has about an interaction

Generally

• The general approach:

d

- To model each *transaction* by an event structure $ES = (E, \le, \#)$
- Each principal maintains an interaction history:
 - A sequence, $H \in Conf(ES)^*$, where each configuration h_i in H models information from a particular transaction
 - . H is extended by either adding an event to one of the h_i 's or by adding a new h

Event Structures as Frames

- Event Structures as a *common* frame for interactions representing *observations* and *outcomes*
- Evidence History

 recording of observations (event structure configurations) based on interactions
- Evidence Trust
 a derived (more abstract)evidence function on outcomes (event structure configurations)

Event structure for E-Purse

- For event structure:
- d # g Configurations model the information a principal has about an interaction {g, مِردَ (هِ.مِ.w) (ه.f. د) (ه.f. w)

67

Modeling E-Purse: Monitoring Interaction

- For event structure:
- Observe event w

Deriving Trust Values

- We can transform such an *H* into a piece of trust information
- eval(H): Conf(ES) → N³ (local trust information)
 eval(H)(o) = (s,i,c) means out of s+i+c interactions
 - s interactions support o
 - i interactions are inconclusive about o
 - c interactions contradict o

72

68

c #

w

An information ordering on N³

- We can define an information ordering on N^3 : . (s,i,c) \leq (s',i',c') iff
 - $s \leq s'$, $c \leq c'$ and $s+i+c \leq s'+i'+c'$
- Adjoining a top element makes (N³, \leq) a complete lattice
- This ordering lifts (point-wise) to the function space Conf(ES) \rightarrow N^3
- On derived values (eval(H)), the order ≤ corresponds to either refining or adding new interactions some number of times

73

A trust ordering on N³

- We can define a trust ordering on N³: • $(s,i,c) \leq (s',i',c')$ iff
 - $s \le s'$, $c' \le c$ and $s + i + c \le s' + i' + c'$
 - (N^3, \leq) is a lattice.
- This ordering lifts (point-wise) to the function space Conf(ES) $\rightarrow N^3$
- On derived values (eval(H)), the order ≤ is one way of expressing "more evidence in favour of"

74

Event Structure Approach

- Used as basic ingredient in implementation of SECURE Kernel
- Substantial experiments with instantiated spam filter
- For details see papers from Ciaran Bryce and colleagues, University of Geneva

SPAM Example

- The set of decisions is X = {mark, pass}
- The set of outcomes is S = {spam, not_spam}
- The risk function *c*(*x*, *s*)

X/S	Spam	Not_spam
mark	?	-?
pass	-?	?

Conclusions

- SECURE model can be implemented and deployed in global computing systems
- SECURE allows principal to act on evidence; key to preventing global attack from succeeding
- Trust-based approach complements traditional mechanisms

Reputation Systems Summary

- A Principal's behaviour in the past determines its privileges in the future - as e.g. in History Based Access Control!
- Reputation information often undergoes heavy abstraction (Eigentrust, Beta, Ebay,...)
- including timing issues,....

83

79

81

.

Plan of talk

- Goal: illustrate role of TCS in
- \cdot $\,$ Towards a foundation for the web of trust
- Towards a foundation for reputation based systems
- Techniques for reasoning about properties of trust based systems!

 $\cdot\,$ A Logical Approach to Reputation Based Policies

.

Generally

- The general approach: To model each *transaction* by an event structure $ES = (E, \le, \#)$
- · Each principal maintains an interaction history: • A sequence, $H \in \text{Conf}(\text{ES})^*$
 - A sequence, $H \in Conf(ES)^*$ H is extended by either adding an event to one of the c_i 's or by adding a new empty c. update: Conf(ES)* $\times E \times N \rightarrow Conf(ES)^*$ update (h=c_1c_2...c_n, e, i) = c_1 ... $c_i \cup \{e\}$... c_n . new: Conf(ES)* $\rightarrow Conf(ES)^*$ new(h) = h•Ø

85

A past-time temporal logic

- In the E-purse example, the following property could be part of reputation-information for a bank: it has always been the case, that if a request was granted in a transaction, then the e-cash provided was not forged
- In a mobile computing scenario, a "browser-like" application could be code, which only opens files it has created itself, and

	A Specification Logic	
• Syntax		
φ::=	e φ e φ ν φ' ¬ φ χ φ φ S φ'	

/> ₃ ♠	A Specification Logic
	Semantics - interpreted over a history (of event structure configurations) $h = c_1 c_2 \dots c_n$
	$\begin{array}{llllllllllllllllllllllllllllllllllll$
)	$ h = \phi$ iff $(h,n) = \phi$

Some derived logical operators

- Sometime (in the past) • $P \phi = true S \phi$
- Always (in the past) • $A \phi = \neg P(\neg \phi)$

89

Expressiveness

In the E-purse example, the following property could be part of a phone's reputation-information for a bank:

it has always been the case, that if a request was granted in a transaction, then the e-cash provided was not forged

A (granted \rightarrow \diamond authentic)

90

86

•

Expressiveness

In the Ebay example, the following property could be part of a customer's reputation-information for a seller:

seller has never failed to deliver \neg P (time-out)

seller has never provided negative feedback, when payment was made A (negative \rightarrow ignore)

Expressiveness

- Our logic can express a range of common policies
 - Chinese Wall policies
 One-Out-of-k policies

- Implementation question
- Given a history *h* and a logical formula ϕ *h* | = ϕ ?
- Dynamic Model-Checking!

Dynamic Model-Checking

- Given a history h and a logical formula ϕ
- Check (h, ϕ)
- Check $(h, \phi) = h \mid = \phi$ • Update(h, e, i)
- Update $(h=c_1c_2...c_n, e, i) = c_1...c_i \cup \{e\} ...c_n$ New(h)
- New(h) = $h \bullet \emptyset$

95

93

Array Based DMC

• Subformulas (A (granted $\rightarrow \diamond$ authentic)) =

{A (granted → ◊ authentic), granted → ◊ authentic, granted, ◊ authentic, authentic } 92

Array Based DMC

- Given a history h and a logical formula ϕ
- Check(*h*, *φ*)
- 0(1)
 Update(*h*, *e*, *i*)
- . . ,
- New(*h*)

Array Based DMC

- Given a history h and a logical formula ϕ
- Check(h, φ)
 . O(1)
- Update(h, e, i)
 O((n-i+1)× |φ|)
- New(*h*)
 . O(|*φ*|)

97

Array Based DMC

- Given a history h and a logical formula ϕ
- Check(*h*, *φ*)
- 0(1) • Update(*h*, *e*, *i*)
- O($(n-i+1) \times |\phi|$) • New(h)
- · O(|*φ*|)
- Space complexity: O(k × (|φ|+|E|))
 k is the number of active c's in h

98

Automata Based DMC

- Given a history h and a logical formula ϕ
 - Check(h, ϕ)
 - 0(1) Update(*h*, *e*, *i*)
 - O(n-i+1)
 - New(h)
- · O(1)
- Space complexity: O(k × |E| + 2^{|φ|+|E|})
 k is the number of active c's in h

101

Quantified Logic

- In a mobile computing scenario, a "browser-like" application could be code, which only opens files it has created itself, and....
 - $\mathsf{A} \quad (\forall n. \; (\mathsf{open}(n) \rightarrow \mathsf{P} \; (\mathsf{create}(n) \;)$

Quantified Logic

- In a mobile computing scenario, a "browser-like" application could be code, which only opens files it has created itself, and.....
 - A $(\forall n. (open(n) \rightarrow P (create(n)))$
- Dynamic Model-Checking for the Quantified Logic is still decidable
- but becomes PSPACE-complete,
- but a version of our algorithm is exponential only in the number of quantifiers in the logical formula!!!

103

Reputation Papers

- Nielsen, Krukow: Towards a Formal Notion of Trust, PPDP'03, IEEE, 2003
- Nielsen, Krukow: On the Formal Modeling of Trust in Reputation-Based Systems, Springer LNCS 3113, 2004
- Krukow, Nielsen, Sassone: A Framework for Concrete Reputation-Systems with Applications to History-Based Access Control, Computer and Communications Security, CCS'05, ACM Press 2005
- Carbone, Nielsen, Sassone: A Calculus for Trust Management, FSTTCS'04, Springer LNCS 3328, 2004

105

Plan of talk

Web of trust papers

Cahill, Shand, Gray, Dimmock, Twigg, Bacon, English, Wagaella, Terzis, Nixon, Bryce, Seigneur, Carbone, Krukow, Jensen, Chen, Nielsen: Using trust for Secure Collaboration in Uncertain Environments, IEEE

Krukow, Twigg: Distributed Approximation of Fixed-Points in Trust Structures, proceedings of ICDCS'05, 2005

Carbone, Nielsen, Sassone: A Formal Model for Trust in Dynamic Networks, SEFM, IEEE, 2003

Motivation Goal: illustrate role of TCS in

Pervasive Computing, 2003

- Towards a foundation for the web of trust
- · Towards a foundation for reputation based systems
- Techniques for reasoning about properties of trust based systems!
- But there is lots and lots of good problems and things to do in the area of trust based security!!!

106

104

THANK YOU

- very much for being such an active and positive audience - and of course for your attention
- Interested in visiting BRICS in Aarhus for a while? You may find some information (outdated soon to be updated) on
 - brics.dk
- and you are always welcome to contact me on
 - mn@brics.dk