
Foundations of Attack Trees

Sjouke Mauw1 and Martijn Oostdijk2

1 Eindhoven University of Technology (sjouke@win.tue.nl)
2 Radboud University Nijmegen (martijno@cs.ru.nl)

Abstract. Attack trees have found their way to practice because they have
proved to be an intuitive aid in threat analysis. Despite, or perhaps thanks
to, their apparent simplicity, they have not yet been provided with an unam-
biguous semantics. We argue that such a formal interpretation is indispens-
able to precisely understand how attack trees can be manipulated during
construction and analysis. We provide a denotational semantics, based on a
mapping to attack suites, which abstracts from the internal structure of an
attack tree, we study transformations between attack trees, and we study
the attribution and projection of an attack tree.

Keywords: attack trees, semantics, threat analysis.

1 Introduction

Attack trees (the term is introduced by Schneier in [10,11]) form a convenient way
to systematically categorize the different ways in which a system can be attacked.
The graphical, structured tree notation is appealing to practitioners, yet also seems
promising for tool builders attempting to partially automate the threat analysis pro-
cess. As such, attack trees may turn out to be of interest to the security community
at large as a standard notation for threat analysis documents.

An attack tree is a tree in which the nodes represent attacks. The root node of the
tree is the global goal of an attacker. Children of a node are refinements of this goal,
and leafs therefore represent attacks that can no longer be refined. A refinement can
be conjunctive (aggregation) or disjunctive (choice). Figure 1 shows an example of
an attack tree. In this tree, the goal of the attacker is to obtain a free lunch. The
tree lists three possible ways to reach this goal. Lower levels in the tree explain how
these sub-goals are refined as well. For instance, the “Eat-n-run” attack requires
the attacker to order a meal and to leave the restaurant without paying. The arc
connecting these two components expresses that this is a conjunctive refinement,
which means that all sub-goals have to be fulfilled. Refinements without such a
connecting arc are disjunctive, expressing that satisfying one sub-goal suffices.

Once the possible attacks on a system have been modeled in an attack tree, the
tree can be used to analyze attributes of the security of the system. Schneier suggests
several such attributes, for example the (im)possibility, the cost, and whether special
tools are needed. The analysis proceeds in two steps: First, the value for each leaf
node is determined. Second, the value in non-leaf nodes is synthesized from the value
of its children. Thus, creativity on the part of the analyst is only needed in figuring
out good values for the leaf nodes, as the rules for synthesis in both the conjunctive
and the disjunctive case is usually determined by the nature of the attribute.

2 Sjouke Mauw and Martijn Oostdijk

Promise to

pay back later

“Man-in-middle” attack

(aka “Dumb & Dumber”)

to buy you lunch

Get legit customer

Free Lunch

“Eat-n-run”

Leave restaurantOrder meal,

ask for bill

Sneak out through

bathroom window

at restaurant

Pretend to work

Wait on

customers

Find quiet

place to eat

“Salami”

attack

Ask the chef to

prepare a meal

for table n

Just run...

Go to counter

tell waiter legit

customer will

pay for you
Wave at

customer

(will wave back

in agreement)

you will pick up

their bill

Tell customer
Collect from

each customer’s plate

a little bit of food

Fig. 1. Example attack tree.

The result of an analysis can be the value of an attribute in the root node (for
example the cost of the cheapest attack), but it could also be a sub-tree consisting
of nodes adhering to some predicate (for example those attacks costing less than
100K Euro or those attacks that do not require use of special equipment). Also,
values of different attributes can be defined (for example to determine the cheapest
attack not using special equipment).

At a conceptual level attack trees are well understood and the above description
is enough to work with them and even develop tool support. However, there are some
questions that require a more fundamental answer: What is an attack? Is it just a
collection of steps that should be performed or does it have some internal structure?
Which conditions should an attribute satisfy before it allows to be synthesized
bottom-up? Under what conditions may a projection of a predicate be executed
bottom-up? When do two attack trees represent the same set of attacks? How
should combined attributes be treated? And which extensions of the formalism
(forests, directed acyclic graphs, attack graphs) are possible?

In order to be able to answer these questions, and in order to determine what
computer aided threat analysis tools could look like, it is necessary to provide attack
trees with foundations. Specifically, this paper provides attack trees with a semantics
in terms of attack suites and defines valuations and projections in a formal way.
Furthermore we show which algebraic conditions on attributes are sufficient to allow
correct inference of values.

Related work. While the foundations of other sub-disciplines of computer se-
curity have had plenty of attention from formal methods researchers (e.g. access
control [4], cryptographic protocols [7]), the sub-discipline of threat analysis has
had little attention thus far. Attack trees are usually attributed to Schneier. They
seem, however, to have a much longer tradition. Witnessed, for instance, by work on
fault trees [16,2]. Other research considers attack graphs [9,13], in which event se-
quences are the central topic of research, rather than event abstractions. This seems
to be an entirely different field with no cross-references to the kind of structures
we study in the current paper. This field has its own set of tools (reachability anal-
ysis, etc.) In fact, the risk analysis community seems to have brought forth many

Foundations of Attack Trees 3

such event based formalisms, for example cause-effect diagrams. Although mostly
used to describe system-internal events, these can be applied to active external at-
tacker scenarios as well. See for instance [3]. In [12] attack trees are compared to
attack nets (a threat analysis formalism based on petri nets, described in [6]) with
regard to sharing of security knowledge between collaborators. As far as collabora-
tive attack modeling is concerned, the authors prefer attack nets over attack trees.
Much of their criticism on attack trees seems to be based on a lack of semantics of
the formalism. Tidwell et al. extend the attack tree formalism with parameters in
[15], and successfully apply these trees to model multi-stage Internet attacks. The
trees are used inside intrusion detection systems. A commercial tool [5] and some
rudimentary tools [1,8] are already available for Schneier’s attack trees.

Outline. This paper is structured as follows. In Section 2 we introduce the no-
tions of attack suites and attack trees and define a mapping from attack trees to
attack suites, expressing the semantics of an attack tree. Section 3 provides an alter-
native characterization of the semantics through rewriting. This makes it possible
to transform equivalent attack trees into each other. In Section 4 we define at-
tributes on attack trees and discuss under which conditions they can be synthesized
bottom-up. Finally, we consider how attacks can be singled out that satisfy some
given property. Such projections are discussed in Section 5.

Acknowledgments. We thank Alexander Opel, Leon Schrijvers and Martijn Wolfs
for performing some initial studies with respect to implementation, use and analysis
of attack trees. Hans Zantema is acknowledged for suggesting the norm used in the
termination proof.

2 Attack suites and attack trees

The purpose of an attack tree is to define and analyze possible attacks on a system in
a structured way. This structure is expressed in the node hierarchy, allowing one to
decompose an abstract attack or attack goal into a number of more concrete attacks
or sub-goals. Although this structure carries information on the interpretation and
grouping of attacks, we will discard it when determining the meaning of an attack
tree. An attack tree simply defines a collection of possible attacks which we call
an attack suite. Each attack consists of the components required to perform this
attack. A component may occur more than once in an attack, so an attack is a
multi-set of attack components. These attack components are at the lowest level of
abstraction that we consider and thus have no internal structure. By describing an
attack as a set of attack components we will also abstract from any causal relations
between the components, such as being ordered in time.

First we introduce some common notation. We use P(V) to denote the power
set of a set V and P+(V) to denote the set of all non-empty subsets of V . Likewise,
we use M(V) and M+(V) for multi-sets. The multi-set consisting of elements a, a
and b is denoted by {|a, a, b|}. The difference of (multi-)sets V and W is denoted by
V \ W . The substitution of element x for y in (multi-)set V is denoted by V [x/y].
The distributed product of two sets of multi-sets V and W is the set defined by
V ⊗W = {v]w | v ∈ V,w ∈ W}, where] denotes multi-set union. The operator

4 Sjouke Mauw and Martijn Oostdijk

⊗

i∈I is the generalization of ⊗ (with unit element {∅}). The set of end nodes of a
tree T is denoted by E(T).

Definition 1. Let C denote a set of attack components. An attack is a finite non-
empty multi-set of C and an attack suite is a finite set of attacks. The universe of
attacks is denoted by A = M+(C) and the universe of attack suites is denoted by
S = P(A).

Example 1. If we have C = {open door, steal key, force lock, pick lock} then the fol-
lowing attack suite defines three ways to illegally enter a building
{{|steal key, open door|}, {|force lock, open door|}, {|pick lock, open door|}}.

Attack trees as defined by Schneier have two types of nodes: and-nodes and
or-nodes. The children of an and-node should all be executed to reach the goal
represented by the and-node, while execution of any child of an or-node suffices to
reach the goal of the or-node. By considering only one type of nodes, we will follow
a slightly different, but equivalent, approach. Rather than considering edges from a
node to its children, we consider connections from a node to a multi-set of nodes.
Such a connection is called a bundle. A node may contain several such bundles.
The nodes in a bundle must all be executed to form an attack. Execution of any
bundle of a node will suffice to reach the goal of that node. Our approach differs
in one more aspect from Schneier’s attack trees. We allow sharing of nodes as a
means to express that a sub-attack occurs more than once. Although a node may
be contained in several bundles, we will not allow the construction of cycles. So,
formally speaking, we study rooted directed acyclic bundle graphs, but we will still
call them attack trees.

Definition 2. An attack tree is a 3-tuple (N,→, n0), where N is a finite set of
nodes, → is a finite acyclic relation of type →⊆ N × M+(N) and n0 ∈ N is the
root node, such that every node in N is reachable from n0. The universe of attack
trees is denoted by T.

We will use the informal terminology “A is a bundle of m” to express that
m → A. Whenever we speak of attack suites in the context of some attack tree T ,
we will identify the universe of attack components C with T ’s end nodes, E(T).

Next, we define the semantics of attack trees by interpreting them in the domain
of attack suites. As stated before, the internal branching structure of an attack
tree will not be expressed in the attack suite. The semantics only expresses which
combinations of attack components (i.e. end nodes of the tree) form an attack.
The attack suite defined by a node in the tree can be determined recursively from
its bundles. Since the bundles define alternative attacks, the attack suite defined
by a node consists of the union of the attack suites defined by its bundles. The
attack suite defined by a single bundle is determined by the attack suites of the
nodes contained in the bundle. In order to construct an attack in a bundle, we
must take an attack from each of the nodes in the bundle and join these together.
The definition below formalizes this recursive construction. We use the distributed
product, as defined above, to join the attacks within a bundle and we use the normal
set union to join the bundles. The base case of the recursive definition considers the

Foundations of Attack Trees 5

end nodes of the tree. They define an attack suite consisting of one attack which
contains a single attack component.

Definition 3. Let T be an attack tree (N,→, n0), then the semantics of a node
[[]] : N → S is defined recursively by

[[n]] =















{{|n|}} if n ∈ E(T)

⋃

n→A

⊗

m∈A

[[m]] if n 6∈ E(T)

The semantics of an attack tree is defined as the semantics of its root node, [[T]] =
[[n0]].

3 Transformations

Figure 2 illustrates that two structurally different attack trees may intuitively cap-
ture the same information. The difference in structuring can arise from a different
approach towards partitioning the attacks. One may also want to simplify or rebal-
ance an attack tree in order to change the view on the described attack suite, without
changing its meaning. These two observations lead to the definition of semantics-
preserving transformations of attack trees. The class of allowed transformations can

surfing

shoulder

surfing

shoulder

victim

prepare

victim

approach
shorttalk

some

keystrokes

observe

victim

approach

password

collect

shorttalk

some

keystrokes

observe

Fig. 2. Two equivalent trees.

be characterized by just two reduction rules. These rules are illustrated in Figure 3
and formalized in Definition 4. In the figure we consider a node which has a bundle
A and possibly some other bundles (illustrated by W). Bundle A contains node m,
which has a bundle B. We make a distinction between the two cases that B is the
only bundle of m and that m has more bundles.

The first rule is based on the associativity of conjunction. If a bundle contains
a node with only one sub-bundle, then this node can be deleted and its sub-bundle
can be lifted one level, so as to become part of the bundle. Intuitively, this captures
the fact that if we want to perform an attack that contains one sub-attack, we can
simply take the components of the sub-attack and add them to the attack.

The second rule is based on the distributivity of conjunction over disjunction. If
a bundle contains a node with two (or more) sub-bundles, then we can replace the

6 Sjouke Mauw and Martijn Oostdijk

bundle by two copies with the difference that the first copy only contains the first
sub-bundle and the second copy only contains the second sub-bundle. Intuitively,
this captures the fact that if we want to perform an attack that contains a sub-attack
which can be performed in two ways, we have actually described two attacks. Please
notice that the duplication of attack A in the figure is displayed in a somewhat
misleading way. The picture suggests that the nodes in bundle A are also copied,
but it is our intention that common nodes are shared, without duplicating nodes.

W

W

A

A

B

m

W1

A

B

m

B

A
A

B

m
′

W1

m
′′

W

W

�

�

Fig. 3. Two reduction rules for attack trees (cf. Definition 4).

The next definition of an Abstract Reduction System on attack trees formally
captures this intuition. We use the function reachable to remove all nodes and bun-
dles that through rewriting become unreachable from the root node. The definition
of this function is straightforward and will be omitted.

Definition 4. The reduction relation �: T → T is defined by the following two
reduction rules. Let T be an attack tree (N,→, n0), n,m ∈ N and A,B ∈ M+(N)
such that n → A, m ∈ A, m → B.

1. if B is the only bundle in m (i.e. ∀C:m→C · C = B), then
(N,→, n) � reachable(N,→′, n), where

→′ = (→ \{(n,A)}) ∪
{

(n, (A \ {|m|})]B)
}

Foundations of Attack Trees 7

2. if B is not the only bundle in m (i.e. ∃C:m→C · B 6= C), then
(N,→, n) � reachable(N ′,→′, n), where

→′ =
(

→ \{(n,A)}
)

∪
{

(n,A[m′/m]), (n,A[m′′/m]), (m′, B)
}

∪{(m′′, B′) | m → B′, B 6= B′},

N ′ = N ∪ {m′,m′′} where m′,m′′ 6∈ N

Because we are interested in transformations (without a preferred direction), we
introduce the reflexive, transitive, symmetric closure of �, denoted by ≡.

Later we will prove that these reduction rules are sound with respect to the
semantics. Interestingly enough, the rules turn out to be complete as well. Therefore,
the reduction rules defined above are not only useful for manipulating attack trees;
they also provide an alternative characterization of the semantics of an attack tree.
It can be easily seen that the normal forms are the “one-level attack trees” which
are in one-to-one correspondence to the universe of attack suites. In order to obtain
these results, we first we have to show that the reduction rules are well-behaved,
i.e. that there are no infinite reduction sequences and, roughly speaking, that any
two diverging reductions can be reduced to a common attack tree.

Lemma 1. The reduction relation on attack trees is strongly terminating.

Proof. In order to prove termination we define a weight function w on attack trees
which decreases strictly after every reduction step. This function is defined induc-
tively on all nodes of a tree.

w(n) =



















1 if n ∈ E(T)

∑

n→A

(

3(
∏

m∈A

w(m)) − 1

)

if n 6∈ E(T)

Because there are no empty bundles, we have w(n) ≥ 1 for every node n. We
prove that w is strictly decreasing after every reduction step by considering the
two reduction rules. For the first reduction rule, we assume that the left-hand side
considers a bundle {|x1, . . . , xn,m|}, where node m has a single bundle {|y1, . . . , yk|},
so that the right-hand side considers a bundle {|x1, . . . , xn, y1, . . . , yk|}. Setting X =
w(x1) × . . . × w(xn) and Y = w(y1) × . . . × w(yk), we have to verify that 3(X ×
(3Y − 1)) − 1 > 3(X × Y) − 1. This follows because for positive Y we have that
3Y −1 > Y . For the second reduction rule, we have the same notational convention,
but in addition we have extra bundles W1 from node m. Abusing notation, we will
denote the weight of the bundles in W1 by w(W1). Then we have to verify that
3(X × (3Y − 1 + w(W1))) − 1 > 3(X × (3Y − 1)) − 1 + 3(X × w(W1)) − 1, which
follows easily by comparing the summands.

Lemma 2. The reduction relation on attack trees is weakly confluent.

Proof. This follows by observing that all critical pairs are convergent. (The rules
are not overlapping anyway.)

8 Sjouke Mauw and Martijn Oostdijk

As a standard corollary of the above lemmas we have the unique normal forms
property (see e.g. [14]). The set of normal forms can be determined easily.

Lemma 3. If we denote the set of attack trees with depth ≤ d by T≤d, then the set
of normal forms of � is T≤1.

Proof. This follows easily by inspection of the left-hand sides of the reduction rules.
An attack tree with depth ≥ 2 still has a redex and, conversely, to have a redex an
attack tree must have depth ≥ 2.

Example 2. The tree presented in Figure 1 has a normal form consisting of six
bundles, each of depth one, corresponding to the following attack suite. (The lengthy
attack component descriptions of Figure 1 have been replaced by mnemonic names.)

{{|promise pay later |}, {|tell victim, go counter ,wave|}, {|order , bathroom|},

{|order , just run|}, {|ask chef |}, {|wait , collect little, quiet place|}}

By verifying that the reduction rules preserve the semantics of an attack tree,
we obtain their soundness. However, we will postpone the soundness proof until
Section 4, where we will prove a more general soundness property of which this is
an instantiation.

Theorem 1 (Soundness). If T1 ≡ T2, then [[T1]] = [[T2]].

Proof. Postponed until Corollary 1.

The following lemma helps in proving completeness. It establishes the one-to-one
correspondence between normal forms and attack suites.

Lemma 4. Let T1, T2 ∈ T≤1 such that [[T1]] = [[T2]] then T1 = T2.

Proof. It follows easily from the definitions that an attack suite has a unique rep-
resentation in T≤1. Every attack in the attack suite gives rise to a bundle from the
root node.

Theorem 2 (Completeness). If [[T1]] = [[T2]], then T1 ≡ T2.

Proof. If we have [[T1]] = [[T2]], then we can reduce T1 and T2 to normal form,
denoted by nf(T1) and nf(T2), and obtain

[[nf(T1)]] = [[T1]] = [[T2]] = [[nf(T2)]]

Now, Lemma 4 yields equality of the normal forms: nf(T1) = nf(T2). So, T1 ≡ T2.

4 Attributes

In order to calculate e.g. the cost or impact of an attack, an attack tree can be
decorated with attributes. The attribute value of an attack tree can be calculated
by first determining the semantics of the tree followed by calculating the attribute
value of the defined attack suite. However, under some conditions it is possible to

Foundations of Attack Trees 9

synthesize the attribute value of the attack tree without first having to reduce the
tree to normal form. This can be done by calculating the attribute values of the
nodes in a bottom-up way.

Before defining attributes in an attack tree, we will first define the attribution
of attack suites.

Given a set V of attribute values, an attribute α is a function that assigns a
value to every attack component, α : C → V . An attack consists of a number of
attack components that must all be executed, so we assume that the attribution
of an attack can be calculated from the attributions of its attack components.
Therefore, we extend α to attacks, α : M+(C) → V . In the same way, because
an attack suite consists of a number of attacks, we extend attributions to attack
suites, α : P(M+(C)) → V . In order to calculate the attribution of an attack from
the attributions of its attack components we use a conjunctive combinator M, while
for determining the value of an attack suite from its attacks we use a disjunctive
combinator O. We require that the combinators are associative and commutative
and that the conjunctive combinator distributes over the disjunctive combinator.
These properties follow from the structure of attack trees.

Definition 5. Let C be a set of attack components. An attribute domain is a struc-
ture (V,O,M) where V is the set of attribute values, O : V ×V → V is the disjunctive
combinator for attribute values and M : V ×V → V is the conjunctive combinator for
attribute values. We require that the combinators are associative and commutative:

(x O y) O z = x O (y O z)

x O y = y O x

(x M y) M z = x M (y M z)

x M y = y M x

Given an attribute domain (V,O,M), an attribute α is a function from C to V . An
attribute domain is distributive if the following property holds:

x M (y O z) = (x M y) O (x M z)

Generalization of the combinators to M+(V) → V is defined in the usual way.
An attribute domain is often called a semi-ring. However in published literature,
the notion of a semi-ring often occurs with the additional requirement of a unit
element for one or both operators. In the setting of attack trees this is not required,
since we assumed that bundles are not empty.

Definition 6. Let S be an attack suite and α an attribute with attribute domain
(V,O,M) then the value attributed by α to S is

α(S) =
h

A∈S

i

c∈A

α(c)

Example 3. The structure (N,min,+) is an example of a distributive attribute do-
main. An attribute with this attribute domain could be interpreted as “cost of the
cheapest attack”. Other examples: (N,max,+) “maximal damage”, (N,min,max)

10 Sjouke Mauw and Martijn Oostdijk

“minimum skill level required to perform attack”, (B,∧,∨) “is the attack possible”,
(B,∨,∧) “special equipment needed”.

It is interesting to see that there are also examples of attributes that do not
satisfy the requirements. Consider, for instance, the structure (N,+,min). This
could express the costs to defend against all attacks from an attack suite: to defend
against one attack one only has to find the cheapest defense against any of its attack
components, and to defend against an attack suite, one has to add the defense costs
to all its attacks. However, this structure is not a distributive attribute domain
because it does not satisfy the required distribution property. At the end of this
section we will come back to this counter example.

Now that we have defined the calculation of an attribute for attack suites, we
will define the attribution of an attack tree.

Definition 7. Let T be an attack tree (N,→, n0) and let α : E(T) → V be an
attribute with a distributive attribute domain. Then we define the extension of α to
the nodes of the attack tree, α : N → V , inductively by

α(n) =
h

n→A

i

m∈A

α(m) for n 6∈ E(T).

The value of an attack tree is determined by the value of its root node: α(T) = α(n0).

This clearly defines a unique attribution of the attack tree. Moreover, the value
attributed to an attack tree is respected by the rewrite rules.

Theorem 3. Let T1 and T2 be attack trees and let α : E(T) → V be an attribute
with distributive attribute domain, then T1 ≡ T2 implies that α(T1) = α(T2).

Proof. By inspecting the rules for � we see that the value of each redex remains
unchanged after reduction. For ease of reasoning we will ignore the context W
(cf. Figure 3) and we will assume that α is extended to (sets of) bundles.

1. For the first rewrite rule we use commutativity and associativity of M.

lhs = α(n) =
i

x∈A

α(x) =
i

x∈A\{m}

α(x) M α(m)

= (
i

x∈A\{m}

α(x)) M (
i

y∈B

α(y)) = rhs

Trivial using commutativity and associativity laws.
2. For the second rewrite rule we first manipulate both sides, which requires com-

mutativity and associativity of M.

lhs = α(n) =
i

x∈A

α(x) =
i

x∈A\{m}

α(x) M α(m)

=
i

x∈A\{m}

α(x) M (α(B) O α(W))

rhs = α(n) =
(

i

x∈A\{m}∪{m′}

α(x)
)

O

(

i

y∈A\{m}∪{m′′}

α(y)
)

=
(

i

x∈A\{m}

α(x) M α(B)
)

O

(

i

x∈A\{m}

α(x) M α(W)
)

Foundations of Attack Trees 11

Equality now follows by the distributivity law.

It is notable that Definition 7 looks similar to Definition 3. In fact semantics can
be seen as an attribute, since (P(M+(C)),∪,⊗) is a distributive attribute domain.
Associativity and commutativity are standard, while x⊗(y ∪ z) = (x⊗ y) ∪ (x⊗ z)
can be verified easily. Thus, the postponed soundness proof of Theorem 1 is a
corollary of Theorem 3.

Corollary 1. The reduction rules are sound with respect to the semantics, i.e. if
T1 ≡ T2, then [[T1]] = [[T2]].

Finally, we observe that the value of a tree is equal to the value of the attack suite
that is formed by taking the semantics of the tree.

Corollary 2. Given attribute α and attack tree T , we have α(T) = α([[T]]).

Proof. From Theorem 3 it follows that α(T) = α(nf(T)). The required equality now
follows from the observed correspondence between normal forms and attack suites
(Lemma 4), and by comparing Definitions 6 and 7.

Clearly, all reasonable attributes encountered in practice satisfy the require-
ments. However, as shown in Example 3, there are also attributes that make sense
at first sight, but which are not consistent with the semantics. The inconsistency
shows when comparing the value of the attribute calculated on the original tree to
the value of the attribute calculated on the normal form of this tree. These values
can differ if e.g. the law of distributivity does not hold. Thus we can conclude that
there are attributes which cannot be synthesized bottom up. The counter example
shows the usefulness of our formalization. We are now able to make the distinction
between sound attributes and attributes that are inconsistent with the algorithms
intuitively sketched by Schneier (which form the basis of our semantics).

5 Projections

By manipulating attack trees one can get answers to questions like “Show all attacks
that do not require special equipment”, or “Which attacks incur a damage over
1000 dollars”? The last question e.g. requires an attribute incurred damage and a
predicate on its domain, P (n) ≡ n ≥ 1000. Taking the projection of an attack suite
boils down to selecting the attacks that satisfy the predicate.

Definition 8. Let α be an attribute with distributive attribute domain (V,O,M) and
let P ⊆ V be a predicate. Then the projection of attack suite S ∈ S onto P is defined
by Πα

P (S) = {A ∈ S | P (α(A))}.

The definition of projections on attack trees follows from the algorithm sketched
by Schneier: remove all attacks that do not satisfy the predicate.

Definition 9. Let α be an attribute with distributive attribute domain (V,O,M) and
let P ⊆ V be a predicate. Then the projection of attack tree T = (N,→, n0) onto P is
defined by Πα

P (T) = reachable((N ′,→′, n0)), where N ′ = {n ∈ N | P (α(n))}∪{n0}
and →′= {(n,A) ∈→| P (α(A))}.

12 Sjouke Mauw and Martijn Oostdijk

Again we want to know under which conditions these two definitions are con-
sistent with each other. More precisely, we want to know if the projection of the
semantics of an attack tree is equal to the semantics of the projection of that tree.
Phrased in terms of the rewriting rules, we want to know if rewriting and projection
commute.

A simple example shows that this does not hold in general. Consider the at-
tribute domain (N,min,+) to calculate the cost of an attack and look at the first
tree of Figure 2. Suppose that all leafs have cost 5, which implies cost 10 for the in-
termediate node and cost 15 for the root. Now, if we take predicate P (n) ≡ n 6= 10,
then for the projection of this tree we have to remove the intermediate node (and
its dangling leaf nodes) which gives a tree with a single attack component. However,
if we first reduce the tree to normal form, the projection would not affect the tree.
Clearly, this cannot be a reduct of the first projected tree.

Monotonicity of predicate P suffices to prevent such problems. We say that
predicate P ⊆ V is monotonic with respect to attribute domain (V,O,M) iff

P (x M y) ⇒ P (x) ∧ P (y)

P (x O y) ⇒ P (x) ∨ P (y)

We first prove an auxiliary lemma, where we denote a sequence of zero or more
reductions by �

∗. After that, we state the main result for projections.

Lemma 5. Let α be an attribute with distributive attribute domain (V,O,M) and
let P ⊆ V be a monotonic predicate. If T and T ′ are attack trees such that T � T ′,
then Πα

P (T) �
∗ Πα

P (T ′).

Proof. The proof proceeds by inspecting the two rewrite rules, while looking at the
possible values of P for the nodes of interest. If P is false in the top node, then
the sub-trees are all removed and the lemma trivially holds. If P is true in the top
node of the first redex, then monotonicity with respect to conjunction implies that
the predicate is also true in all sub-nodes, making the same reduction step possible
on the projected trees. If P is true in the top node of the second redex, then
monotonicity with respect to conjunction and disjunction yields the same reasoning
as for the first redex.

Theorem 4. Let α be an attribute with distributive attribute domain (V,O,M) and
let P ⊆ V be a monotonic predicate. Then we have for T ∈ T that [[Πα

P (T)]] =
Πα

P ([[T]]).

Proof. Due to the correspondence between attack suites and normal forms, it suffices
to prove that nf(Πα

P (T)) = Πα
P (nf(T)). Now, suppose that T reduces to nf(T) via

the sequence T � T ′
� . . . � nf(T). Then by applying Lemma 5 we obtain

the reduction sequence Πα
P (T) �

∗ Πα
P (T ′) �

∗ . . . �
∗ Πα

P (nf(T)). From the fact
that nf(T) is a normal form, we can derive that Πα

P (nf(T)) is a normal form as
well. Because normal forms are unique, we have the desired property nf(Πα

P (T)) =
Πα

P (nf(T)).

Foundations of Attack Trees 13

Summarizing, we have found that the projection algorithm informally presented
by Schneier can only be applied to a restricted class of predicates. Monotonicity of
predicate P suffices, but it is easy to see that monotonicity of ¬P is also sufficient.

6 Conclusions

The main result of our work is a formalization of the concepts informally intro-
duced by Schneier. This formalization clarifies which manipulations of attack trees
are allowed under which conditions. Such an understanding is a prerequisite for
building adequate tool support. A simple experiment with building a prototype
tool confirmed the feasibility of our approach.

Central to our work is the observation that an attack tree describes an attack
suite. We argue that the structural information that we loose in this way is a residual
of the modeling strategy, rather than an intrinsic property of the described set of
attacks. Therefore, attack suites form the appropriate level of abstraction. This
semantics can be characterized in two ways: by traversing the tree from the leaves
to the root and by rewriting the tree to normal form. Both strategies can be easily
implemented, but in practice it is more interesting to build and manipulate attack
trees than to calculate their semantics. Rewriting is more suited for this purpose.
The rewrite rules can be used e.g. to add structure to an unstructured attack suite
or to rebalance an attack tree.

It turns out that in order to recursively calculate attributes and projections,
as introduced by Schneier, certain conditions have to be met. The condition for
attributes (the combination operators form a semi-ring) is rather natural and no
serious restriction. The condition for sound projections is somewhat stronger, but
still satisfied by Schneier’s examples. As mentioned before, our formalization mo-
tivates why certain attributes and predicates are not compatible with the informal
algorithms presented by Schneier.

Having formalized the basic concepts of attack trees, it is of interest to study
the extension with e.g. cycles, ordered attacks and pre- and post-conditions. Fur-
thermore, our experience with using attack trees in practice indicated the need for
defense trees and attack forests (i.e. attack libraries). Finally, we mention that al-
though we have represented an attack as a multi-set, we could have used normal sets
as well. The main difference would be the following extra requirement for attributes:
x M x = x.

14 Sjouke Mauw and Martijn Oostdijk

References

1. TANAT – Threat ANd Attack Tree Modeling plus Simulation, 2004. http://www13.

informatik.tu-muenchen.de:8080/tanat/.
2. ARES corporation. Risk techniques, fault trees. Technical report. Available from

http://www.arescorporation.com/.
3. Stefán Einarsson and Marvin Rausand. An approach to vulnerability analysis of com-

plex industrial systems. Risk Analysis, 18(5):535 – 545, 1998.
4. Carl E. Landwehr. Formal models for computer security. Computing Surveys, 13(3):247

– 277, September 1981.
5. Amaneza Technologies Limited. A quick tour of attack tree based risk analysis using

SecurITree. Technical report, 2002.
6. J.P. McDermott. Attack net penetration testing. In Proc. 2000 workshop on New

Security Paradigm, pages 15–20. ACM, 2001.
7. Catherine Meadows. Open issues in formal methods for cryptographic protocol anal-

ysis. In DARPA Information Survivability Conference & Exposition, volume 1, pages
237 – 250, 2000.

8. Alexander Opel. Design and implementation of a support tool for attack trees, 2005.
9. Cynthia Phillips and Laura Painton Swiler. A graph-based system for network-

vulnerability analysis. In Proc. New Security Paradigms Workshop, pages 71–79, 1998.
10. Bruce Schneier. Attack trees: Modeling security threats. Dr. Dobb’s journal, December

1999.
11. Bruce Schneier. Secrets & Lies: Digital Security in a Networked World. Wiley, 2000.
12. Jan Stefan and Markus Schumacher. Collaborative attack modeling. In Proc. SAC

2002, pages 253–259. ACM, 2002.
13. L.P. Swiler, C. Philips, D. Ellis, and S. Chakarian. Computer-attack graph generation

tool. In Proc. DARPA Information Survivability Conference and Exposition, volume 2,
pages 307–321, June 2001.

14. Terese. Term Rewriting Systems, volume 55 of Cambridge Tracts in Theoretical Com-

puter Science. Cambridge University Press, 2003.
15. T. Tidwell, R. Larson, K. Fitch, and J. Hale. Modeling internet attacks. In Proc. of

the 2001 IEEE Workshop on Information Assurance and Security, 2001.
16. W.E. Vesely et al. Fault tree handbook. Technical Report NUREG-0492, U.S. Nuclear

Regulatory Commission, January 1981.

