
Closing Internal Timing Channels
by Code Transformation

Alejandro Russo1

(Andrei Sabelfeld1, David Naumann2, and John Hughes1)

Work-in-progress!

FOSAD ’06

1Chalmers University of Technology, Gothenborg, Sweden
2Stevens Institute of Technology, Hoboken, New Jersey, USA.

Jun 27th, 2006 – p.1

Language-based security

• Field in computer science that deals with
security related problems (how?)

• By analyzing the code of the program!
• In particular, we would like to guarantee the

confidentiality of our data
• Traditional run-time mechanisms are not

enough (access control, etc) (why?)

Jun 27th, 2006 – p.2

Language-based security

• Field in computer science that deals with
security related problems

(how?)
• By analyzing the code of the program!
• In particular, we would like to guarantee the

confidentiality of our data
• Traditional run-time mechanisms are not

enough (access control, etc) (why?)

Jun 27th, 2006 – p.2

Language-based security

• Field in computer science that deals with
security related problems (how?)

• By analyzing the code of the program!
• In particular, we would like to guarantee the

confidentiality of our data
• Traditional run-time mechanisms are not

enough (access control, etc) (why?)

Jun 27th, 2006 – p.2

Language-based security

• Field in computer science that deals with
security related problems (how?)

• By analyzing the code of the program!

• In particular, we would like to guarantee the
confidentiality of our data

• Traditional run-time mechanisms are not
enough (access control, etc) (why?)

Jun 27th, 2006 – p.2

Language-based security

• Field in computer science that deals with
security related problems (how?)

• By analyzing the code of the program!
• In particular, we would like to guarantee the

confidentiality of our data

• Traditional run-time mechanisms are not
enough (access control, etc) (why?)

Jun 27th, 2006 – p.2

Language-based security

• Field in computer science that deals with
security related problems (how?)

• By analyzing the code of the program!
• In particular, we would like to guarantee the

confidentiality of our data
• Traditional run-time mechanisms are not

enough (access control, etc)

(why?)

Jun 27th, 2006 – p.2

Language-based security

• Field in computer science that deals with
security related problems (how?)

• By analyzing the code of the program!
• In particular, we would like to guarantee the

confidentiality of our data
• Traditional run-time mechanisms are not

enough (access control, etc) (why?)

Jun 27th, 2006 – p.2

Information Flow

• Our programs manage public and secret data
(input/output)

• The attacker can only see public output
when run the program

• Our goal: we want programs where the
attacker cannot infer anything about the
secret data by looking the public output

• Those kind of programs are called
non-interferent!

Jun 27th, 2006 – p.3

Information Flow

• Our programs manage public and secret data
(input/output)

• The attacker can only see public output
when run the program

• Our goal: we want programs where the
attacker cannot infer anything about the
secret data by looking the public output

• Those kind of programs are called
non-interferent!

Jun 27th, 2006 – p.3

Information Flow

• Our programs manage public and secret data
(input/output)

• The attacker can only see public output
when run the program

• Our goal: we want programs where the
attacker cannot infer anything about the
secret data by looking the public output

• Those kind of programs are called
non-interferent!

Jun 27th, 2006 – p.3

Information Flow

• Our programs manage public and secret data
(input/output)

• The attacker can only see public output
when run the program

• Our goal: we want programs where the
attacker cannot infer anything about the
secret data by looking the public output

• Those kind of programs are called
non-interferent!

Jun 27th, 2006 – p.3

Information Flow

• Our programs manage public and secret data
(input/output)

• The attacker can only see public output
when run the program

• Our goal: we want programs where the
attacker cannot infer anything about the
secret data by looking the public output

• Those kind of programs are called
non-interferent!

Jun 27th, 2006 – p.3

Information Flow II

• How can a program reveal information to the
attacker? (two cases)

l := h; h = 10 ; l = 10

h = 5 ; l = 5 Explicit flow

if h > 10 h > 10 ; l = 1

then l := 1; h ≤ 10 ; l = 0 Implicit flow

else l := 0;

Jun 27th, 2006 – p.4

Information Flow II

• How can a program reveal information to the
attacker?

(two cases)

l := h; h = 10 ; l = 10

h = 5 ; l = 5 Explicit flow

if h > 10 h > 10 ; l = 1

then l := 1; h ≤ 10 ; l = 0 Implicit flow

else l := 0;

Jun 27th, 2006 – p.4

Information Flow II

• How can a program reveal information to the
attacker? (two cases)

l := h; h = 10 ; l = 10

h = 5 ; l = 5 Explicit flow

if h > 10 h > 10 ; l = 1

then l := 1; h ≤ 10 ; l = 0 Implicit flow

else l := 0;

Jun 27th, 2006 – p.4

Information Flow II

• How can a program reveal information to the
attacker? (two cases)

l := h;

h = 10 ; l = 10

h = 5 ; l = 5 Explicit flow

if h > 10 h > 10 ; l = 1

then l := 1; h ≤ 10 ; l = 0 Implicit flow

else l := 0;

Jun 27th, 2006 – p.4

Information Flow II

• How can a program reveal information to the
attacker? (two cases)

l := h; h = 10 ; l = 10

h = 5 ; l = 5 Explicit flow

if h > 10 h > 10 ; l = 1

then l := 1; h ≤ 10 ; l = 0 Implicit flow

else l := 0;

Jun 27th, 2006 – p.4

Information Flow II

• How can a program reveal information to the
attacker? (two cases)

l := h; h = 10 ; l = 10

h = 5 ; l = 5

Explicit flow

if h > 10 h > 10 ; l = 1

then l := 1; h ≤ 10 ; l = 0 Implicit flow

else l := 0;

Jun 27th, 2006 – p.4

Information Flow II

• How can a program reveal information to the
attacker? (two cases)

l := h; h = 10 ; l = 10

h = 5 ; l = 5 Explicit flow

if h > 10 h > 10 ; l = 1

then l := 1; h ≤ 10 ; l = 0 Implicit flow

else l := 0;

Jun 27th, 2006 – p.4

Information Flow II

• How can a program reveal information to the
attacker? (two cases)

l := h; h = 10 ; l = 10

h = 5 ; l = 5 Explicit flow

if h > 10

h > 10 ; l = 1

then l := 1;

h ≤ 10 ; l = 0 Implicit flow

else l := 0;

Jun 27th, 2006 – p.4

Information Flow II

• How can a program reveal information to the
attacker? (two cases)

l := h; h = 10 ; l = 10

h = 5 ; l = 5 Explicit flow

if h > 10 h > 10 ; l = 1

then l := 1;

h ≤ 10 ; l = 0 Implicit flow

else l := 0;

Jun 27th, 2006 – p.4

Information Flow II

• How can a program reveal information to the
attacker? (two cases)

l := h; h = 10 ; l = 10

h = 5 ; l = 5 Explicit flow

if h > 10 h > 10 ; l = 1

then l := 1; h ≤ 10 ; l = 0

Implicit flow

else l := 0;

Jun 27th, 2006 – p.4

Information Flow II

• How can a program reveal information to the
attacker? (two cases)

l := h; h = 10 ; l = 10

h = 5 ; l = 5 Explicit flow

if h > 10 h > 10 ; l = 1

then l := 1; h ≤ 10 ; l = 0 Implicit flow

else l := 0;

Jun 27th, 2006 – p.4

Internal Timing Covert Channel

• Framework: concurrent systems

• New covert channels are introduced (ways to
leak information)

• Number of created threads, internal timing,
etc.

• Our focus: internal timing covert channel
(why?)

• Motivating example: mobile devices
(Geo-localization)

Jun 27th, 2006 – p.5

Internal Timing Covert Channel

• Framework: concurrent systems
• New covert channels are introduced (ways to

leak information)

• Number of created threads, internal timing,
etc.

• Our focus: internal timing covert channel
(why?)

• Motivating example: mobile devices
(Geo-localization)

Jun 27th, 2006 – p.5

Internal Timing Covert Channel

• Framework: concurrent systems
• New covert channels are introduced (ways to

leak information)
• Number of created threads, internal timing,

etc.

• Our focus: internal timing covert channel
(why?)

• Motivating example: mobile devices
(Geo-localization)

Jun 27th, 2006 – p.5

Internal Timing Covert Channel

• Framework: concurrent systems
• New covert channels are introduced (ways to

leak information)
• Number of created threads, internal timing,

etc.
• Our focus: internal timing covert channel

(why?)
• Motivating example: mobile devices

(Geo-localization)

Jun 27th, 2006 – p.5

Internal Timing Covert Channel

• Framework: concurrent systems
• New covert channels are introduced (ways to

leak information)
• Number of created threads, internal timing,

etc.
• Our focus: internal timing covert channel

(why?)

• Motivating example: mobile devices
(Geo-localization)

Jun 27th, 2006 – p.5

Internal Timing Covert Channel

• Framework: concurrent systems
• New covert channels are introduced (ways to

leak information)
• Number of created threads, internal timing,

etc.
• Our focus: internal timing covert channel

(why?)
• Motivating example: mobile devices

(Geo-localization)

Jun 27th, 2006 – p.5

Internal Timing Leak: Example
c1 : if h then skip; skip else skip;

l := 1

‖

c2 : skip; skip; l := 0

• Both threads are secure in isolation (c1 ‖ c2?)

• One-step RR scheduler (starting at c1):
• h ≥ 0 ; l = 1 (l := 0, then l := 1)
• h < 0 ; l = 0 (l := 1, then l := 0)

• The low race is affected by the secret!
(how?)

Jun 27th, 2006 – p.6

Internal Timing Leak: Example
c1 : if h then skip; skip else skip;

l := 1

‖

c2 : skip; skip; l := 0

• Both threads are secure in isolation

(c1 ‖ c2?)

• One-step RR scheduler (starting at c1):
• h ≥ 0 ; l = 1 (l := 0, then l := 1)
• h < 0 ; l = 0 (l := 1, then l := 0)

• The low race is affected by the secret!
(how?)

Jun 27th, 2006 – p.6

Internal Timing Leak: Example
c1 : if h then skip; skip else skip;

l := 1

‖

c2 : skip; skip; l := 0

• Both threads are secure in isolation (c1 ‖ c2?)

• One-step RR scheduler (starting at c1):
• h ≥ 0 ; l = 1 (l := 0, then l := 1)
• h < 0 ; l = 0 (l := 1, then l := 0)

• The low race is affected by the secret!
(how?)

Jun 27th, 2006 – p.6

Internal Timing Leak: Example
c1 : if h then skip; skip else skip;

l := 1

‖

c2 : skip; skip; l := 0

• Both threads are secure in isolation (c1 ‖ c2?)
• One-step RR scheduler (starting at c1):

• h ≥ 0 ; l = 1 (l := 0, then l := 1)
• h < 0 ; l = 0 (l := 1, then l := 0)

• The low race is affected by the secret!
(how?)

Jun 27th, 2006 – p.6

Internal Timing Leak: Example
c1 : if h then skip; skip else skip;

l := 1

‖

c2 : skip; skip; l := 0

• Both threads are secure in isolation (c1 ‖ c2?)
• One-step RR scheduler (starting at c1):

• h ≥ 0 ; l

= 1 (l := 0, then l := 1)
• h < 0 ; l = 0 (l := 1, then l := 0)

• The low race is affected by the secret!
(how?)

Jun 27th, 2006 – p.6

Internal Timing Leak: Example
c1 : if h then skip; skip else skip;

l := 1

‖

c2 : skip; skip; l := 0

• Both threads are secure in isolation (c1 ‖ c2?)
• One-step RR scheduler (starting at c1):

• h ≥ 0 ; l = 1

(l := 0, then l := 1)
• h < 0 ; l = 0 (l := 1, then l := 0)

• The low race is affected by the secret!
(how?)

Jun 27th, 2006 – p.6

Internal Timing Leak: Example
c1 : if h then skip; skip else skip;

l := 1

‖

c2 : skip; skip; l := 0

• Both threads are secure in isolation (c1 ‖ c2?)
• One-step RR scheduler (starting at c1):

• h ≥ 0 ; l = 1 (l := 0, then l := 1)

• h < 0 ; l = 0 (l := 1, then l := 0)

• The low race is affected by the secret!
(how?)

Jun 27th, 2006 – p.6

Internal Timing Leak: Example
c1 : if h then skip; skip else skip;

l := 1

‖

c2 : skip; skip; l := 0

• Both threads are secure in isolation (c1 ‖ c2?)
• One-step RR scheduler (starting at c1):

• h ≥ 0 ; l = 1 (l := 0, then l := 1)
• h < 0 ; l

= 0 (l := 1, then l := 0)

• The low race is affected by the secret!
(how?)

Jun 27th, 2006 – p.6

Internal Timing Leak: Example
c1 : if h then skip; skip else skip;

l := 1

‖

c2 : skip; skip; l := 0

• Both threads are secure in isolation (c1 ‖ c2?)
• One-step RR scheduler (starting at c1):

• h ≥ 0 ; l = 1 (l := 0, then l := 1)
• h < 0 ; l = 0

(l := 1, then l := 0)

• The low race is affected by the secret!
(how?)

Jun 27th, 2006 – p.6

Internal Timing Leak: Example
c1 : if h then skip; skip else skip;

l := 1

‖

c2 : skip; skip; l := 0

• Both threads are secure in isolation (c1 ‖ c2?)
• One-step RR scheduler (starting at c1):

• h ≥ 0 ; l = 1 (l := 0, then l := 1)
• h < 0 ; l = 0 (l := 1, then l := 0)

• The low race is affected by the secret!
(how?)

Jun 27th, 2006 – p.6

Internal Timing Leak: Example
c1 : if h then skip; skip else skip;

l := 1

‖

c2 : skip; skip; l := 0

• Both threads are secure in isolation (c1 ‖ c2?)
• One-step RR scheduler (starting at c1):

• h ≥ 0 ; l = 1 (l := 0, then l := 1)
• h < 0 ; l = 0 (l := 1, then l := 0)

• The low race is affected by the secret!

(how?)

Jun 27th, 2006 – p.6

Internal Timing Leak: Example
c1 : if h then skip; skip else skip;

l := 1

‖

c2 : skip; skip; l := 0

• Both threads are secure in isolation (c1 ‖ c2?)
• One-step RR scheduler (starting at c1):

• h ≥ 0 ; l = 1 (l := 0, then l := 1)
• h < 0 ; l = 0 (l := 1, then l := 0)

• The low race is affected by the secret! (how?)

Jun 27th, 2006 – p.6

Internal Timing leak: Magnified

p := 0;

while n ≥ 0 do

k := 2n−1;

fork(skip; skip; l := 0);

if h ≥ k then skip; skip else skip;

l := 1;

if l = 1 then h := h − k; p := p + k

else skip;

n := n − 1

Jun 27th, 2006 – p.7

Internal Timing Leak: Transformation

Low Code

Low Code

High Code

l:=0;

if ...

↪→

Low Code

Low Code

l:=0;

if ...

High Codefork

Jun 27th, 2006 – p.8

Internal Timing Leak: Transformation

Low Code

Low Code

High Code

l:=0;

if ...

↪→

Low Code

Low Code

l:=0;

if ...

High Codefork

Jun 27th, 2006 – p.8

Internal Timing Leak: Transformation

Low Code

Low Code

High Code

l:=0;

if ...

↪→

Low Code

Low Code

l:=0;

if ...

High Codefork

Jun 27th, 2006 – p.8

Transformation: Example I

c1 :

fork(

if h then skip; skip else skip

)

;

l := 1

‖

c2 : skip; skip; l := 0

• Spawn high computations in dedicated
threads
• Good news: no internal timing leaks!
• Bad news: it may introduce new races

between variables!

Jun 27th, 2006 – p.9

Transformation: Example I

c1 :

fork(

if h then skip; skip else skip

)

;

l := 1

‖

c2 : skip; skip; l := 0

• Spawn high computations in dedicated
threads

• Good news: no internal timing leaks!
• Bad news: it may introduce new races

between variables!

Jun 27th, 2006 – p.9

Transformation: Example I

c1 : fork(if h then skip; skip else skip);

l := 1

‖

c2 : skip; skip; l := 0

• Spawn high computations in dedicated
threads

• Good news: no internal timing leaks!
• Bad news: it may introduce new races

between variables!

Jun 27th, 2006 – p.9

Transformation: Example I

c1 : fork(if h then skip; skip else skip);

l := 1

‖

c2 : skip; skip; l := 0

• Spawn high computations in dedicated
threads
• Good news: no internal timing leaks!

• Bad news: it may introduce new races
between variables!

Jun 27th, 2006 – p.9

Transformation: Example I

c1 : fork(if h then skip; skip else skip);

l := 1

‖

c2 : skip; skip; l := 0

• Spawn high computations in dedicated
threads
• Good news: no internal timing leaks!
• Bad news: it may introduce new races

between variables!

Jun 27th, 2006 – p.9

Transformation: Example II

{h2 = 0, l = 0}

(if h1 then h2 := 2 ∗ h2 + l; skip else skip); l := 1 ‖ c2

• Final value of h2 = 0

fork((λl̂.if h1 then h2 := 2 ∗ h2 + l̂l; skip else skip)@l); l := 1

‖ c2

• Final value of h2 ∈ {0, 1} (why?) (solution?)

• Take snapshots of low variables when fork

Jun 27th, 2006 – p.10

Transformation: Example II

{h2 = 0, l = 0}

(if h1 then h2 := 2 ∗ h2 + l; skip else skip); l := 1 ‖ c2

• Final value of h2 = 0

fork((λl̂.if h1 then h2 := 2 ∗ h2 + l̂l; skip else skip)@l); l := 1

‖ c2

• Final value of h2 ∈ {0, 1} (why?) (solution?)

• Take snapshots of low variables when fork

Jun 27th, 2006 – p.10

Transformation: Example II

{h2 = 0, l = 0}

(if h1 then h2 := 2 ∗ h2 + l; skip else skip); l := 1 ‖ c2

• Final value of h2 = 0

fork(

(λl̂.

if h1 then h2 := 2 ∗ h2 + l

l̂

; skip else skip

)@l

); l := 1

‖ c2

• Final value of h2 ∈ {0, 1} (why?) (solution?)

• Take snapshots of low variables when fork

Jun 27th, 2006 – p.10

Transformation: Example II

{h2 = 0, l = 0}

(if h1 then h2 := 2 ∗ h2 + l; skip else skip); l := 1 ‖ c2

• Final value of h2 = 0

fork(

(λl̂.

if h1 then h2 := 2 ∗ h2 + l

l̂

; skip else skip

)@l

); l := 1

‖ c2

• Final value of h2 ∈ {0, 1}

(why?) (solution?)

• Take snapshots of low variables when fork

Jun 27th, 2006 – p.10

Transformation: Example II

{h2 = 0, l = 0}

(if h1 then h2 := 2 ∗ h2 + l; skip else skip); l := 1 ‖ c2

• Final value of h2 = 0

fork(

(λl̂.

if h1 then h2 := 2 ∗ h2 + l

l̂

; skip else skip

)@l

); l := 1

‖ c2

• Final value of h2 ∈ {0, 1} (why?)

(solution?)

• Take snapshots of low variables when fork

Jun 27th, 2006 – p.10

Transformation: Example II

{h2 = 0, l = 0}

(if h1 then h2 := 2 ∗ h2 + l; skip else skip); l := 1 ‖ c2

• Final value of h2 = 0

fork(

(λl̂.

if h1 then h2 := 2 ∗ h2 + l

l̂

; skip else skip

)@l

); l := 1

‖ c2

• Final value of h2 ∈ {0, 1} (why?) (solution?)

• Take snapshots of low variables when fork

Jun 27th, 2006 – p.10

Transformation: Example II

{h2 = 0, l = 0}

(if h1 then h2 := 2 ∗ h2 + l; skip else skip); l := 1 ‖ c2

• Final value of h2 = 0

fork(

(λl̂.

if h1 then h2 := 2 ∗ h2 + l

l̂

; skip else skip

)@l

); l := 1

‖ c2

• Final value of h2 ∈ {0, 1} (why?) (solution?)
• Take snapshots of low variables when fork

Jun 27th, 2006 – p.10

Transformation: Example II

{h2 = 0, l = 0}

(if h1 then h2 := 2 ∗ h2 + l; skip else skip); l := 1 ‖ c2

• Final value of h2 = 0

fork((λl̂.if h1 then h2 := 2 ∗ h2 + l̂l; skip else skip)@l); l := 1

‖ c2

• Final value of h2 ∈ {0, 1} (why?) (solution?)
• Take snapshots of low variables when fork

Jun 27th, 2006 – p.10

Transformation: Example III

{h2 = 0, l = 0}

(if h1 then h2 := 2 ∗ h2 + l; skip else skip); l := 1;

h2 := h2 + 1; l := 3 ‖ c2

• Final value of h2 = 1
w := newSem(1); s := newSem(0);

fork((λŵ ŝ l̂.P(ŵ);if h1 then h2 := 2 ∗ h2 + l̂; skip else skip; V(ŝ))@wsl);

w := s; l := 1;

s := newSem(0);

fork((λŵ ŝ l̂.P(ŵ);h2 := h2 + 1; V(ŝ))@wsl);

w := s; l := 3 ‖ c2

• Final value of h2 ∈ {1, 2} (why?) (solution?)
• Synchronize the spawned dedicated threads

Jun 27th, 2006 – p.11

Transformation: Example III

{h2 = 0, l = 0}

(if h1 then h2 := 2 ∗ h2 + l; skip else skip); l := 1;

h2 := h2 + 1; l := 3 ‖ c2

• Final value of h2 = 1

w := newSem(1); s := newSem(0);

fork((λŵ ŝ l̂.P(ŵ);if h1 then h2 := 2 ∗ h2 + l̂; skip else skip; V(ŝ))@wsl);

w := s; l := 1;

s := newSem(0);

fork((λŵ ŝ l̂.P(ŵ);h2 := h2 + 1; V(ŝ))@wsl);

w := s; l := 3 ‖ c2

• Final value of h2 ∈ {1, 2} (why?) (solution?)
• Synchronize the spawned dedicated threads

Jun 27th, 2006 – p.11

Transformation: Example III

{h2 = 0, l = 0}

(if h1 then h2 := 2 ∗ h2 + l; skip else skip); l := 1;

h2 := h2 + 1; l := 3 ‖ c2

• Final value of h2 = 1

w := newSem(1); s := newSem(0);

fork((λ

ŵ ŝ

l̂.

P(ŵ);

if h1 then h2 := 2 ∗ h2 + l̂; skip else skip;

V(ŝ)

)@

ws

l);

w := s;

l := 1;

s := newSem(0);

fork((λ

ŵ ŝ

l̂.

P(ŵ);

h2 := h2 + 1;

V(ŝ)

)@

ws

l);

w := s;

l := 3 ‖ c2

• Final value of h2 ∈ {1, 2} (why?) (solution?)
• Synchronize the spawned dedicated threads

Jun 27th, 2006 – p.11

Transformation: Example III

{h2 = 0, l = 0}

(if h1 then h2 := 2 ∗ h2 + l; skip else skip); l := 1;

h2 := h2 + 1; l := 3 ‖ c2

• Final value of h2 = 1

w := newSem(1); s := newSem(0);

fork((λ

ŵ ŝ

l̂.

P(ŵ);

if h1 then h2 := 2 ∗ h2 + l̂; skip else skip;

V(ŝ)

)@

ws

l);

w := s;

l := 1;

s := newSem(0);

fork((λ

ŵ ŝ

l̂.

P(ŵ);

h2 := h2 + 1;

V(ŝ)

)@

ws

l);

w := s;

l := 3 ‖ c2

• Final value of h2 ∈ {1, 2}

(why?) (solution?)
• Synchronize the spawned dedicated threads

Jun 27th, 2006 – p.11

Transformation: Example III

{h2 = 0, l = 0}

(if h1 then h2 := 2 ∗ h2 + l; skip else skip); l := 1;

h2 := h2 + 1; l := 3 ‖ c2

• Final value of h2 = 1

w := newSem(1); s := newSem(0);

fork((λ

ŵ ŝ

l̂.

P(ŵ);

if h1 then h2 := 2 ∗ h2 + l̂; skip else skip;

V(ŝ)

)@

ws

l);

w := s;

l := 1;

s := newSem(0);

fork((λ

ŵ ŝ

l̂.

P(ŵ);

h2 := h2 + 1;

V(ŝ)

)@

ws

l);

w := s;

l := 3 ‖ c2

• Final value of h2 ∈ {1, 2} (why?)

(solution?)
• Synchronize the spawned dedicated threads

Jun 27th, 2006 – p.11

Transformation: Example III

{h2 = 0, l = 0}

(if h1 then h2 := 2 ∗ h2 + l; skip else skip); l := 1;

h2 := h2 + 1; l := 3 ‖ c2

• Final value of h2 = 1

w := newSem(1); s := newSem(0);

fork((λ

ŵ ŝ

l̂.

P(ŵ);

if h1 then h2 := 2 ∗ h2 + l̂; skip else skip;

V(ŝ)

)@

ws

l);

w := s;

l := 1;

s := newSem(0);

fork((λ

ŵ ŝ

l̂.

P(ŵ);

h2 := h2 + 1;

V(ŝ)

)@

ws

l);

w := s;

l := 3 ‖ c2

• Final value of h2 ∈ {1, 2} (why?) (solution?)

• Synchronize the spawned dedicated threads

Jun 27th, 2006 – p.11

Transformation: Example III

{h2 = 0, l = 0}

(if h1 then h2 := 2 ∗ h2 + l; skip else skip); l := 1;

h2 := h2 + 1; l := 3 ‖ c2

• Final value of h2 = 1
w := newSem(1); s := newSem(0);

fork((λŵ ŝ l̂.P(ŵ); if h1 then h2 := 2 ∗ h2 + l̂; skip else skip; V(ŝ))@wsl);

w := s; l := 1;

s := newSem(0);

fork((λ

ŵ ŝ

l̂.

P(ŵ);

h2 := h2 + 1;

V(ŝ)

)@

ws

l);

w := s;

l := 3 ‖ c2

• Final value of h2 ∈ {1, 2} (why?) (solution?)

• Synchronize the spawned dedicated threads

Jun 27th, 2006 – p.11

Transformation: Example III

{h2 = 0, l = 0}

(if h1 then h2 := 2 ∗ h2 + l; skip else skip); l := 1;

h2 := h2 + 1; l := 3 ‖ c2

• Final value of h2 = 1
w := newSem(1); s := newSem(0);

fork((λŵ ŝ l̂.P(ŵ); if h1 then h2 := 2 ∗ h2 + l̂; skip else skip; V(ŝ))@wsl);

w := s; l := 1;

s := newSem(0);

fork((λŵ ŝ l̂.P(ŵ); h2 := h2 + 1; V(ŝ))@wsl);

w := s; l := 3 ‖ c2

• Final value of h2 ∈ {1, 2} (why?) (solution?)

• Synchronize the spawned dedicated threads

Jun 27th, 2006 – p.11

Transformation: Example III

{h2 = 0, l = 0}

(if h1 then h2 := 2 ∗ h2 + l; skip else skip); l := 1;

h2 := h2 + 1; l := 3 ‖ c2

• Final value of h2 = 1
w := newSem(1); s := newSem(0);

fork((λŵ ŝ l̂.P(ŵ); if h1 then h2 := 2 ∗ h2 + l̂; skip else skip; V(ŝ))@wsl);

w := s; l := 1;

s := newSem(0);

fork((λŵ ŝ l̂.P(ŵ); h2 := h2 + 1; V(ŝ))@wsl);

w := s; l := 3 ‖ c2

• Final value of h2 ∈ {1, 2} (why?) (solution?)
• Synchronize the spawned dedicated threads

Jun 27th, 2006 – p.11

Transformation: Example III

Low Code

High Code

High Code

↪→

Low Code

fork

fork
w1

w2

w2
High Code

w3

High Code

Jun 27th, 2006 – p.12

Transformation: Example III

Low Code

High Code

High Code

↪→

Low Code

fork

fork
w1

w2

w2
High Code

w3

High Code

Jun 27th, 2006 – p.12

Transformation: Example III

Low Code

High Code

High Code

↪→

Low Code

fork

fork
w1

w2

w2
High Code

w3

High Code

Jun 27th, 2006 – p.12

Results... but technically

• Security: If Γ ` c ↪→t c′ then c′ is secure
under round-robin scheduling.

• Refinement: Suppose Γ ` c ↪→t c′ and g′
1

and
g′

2
are global memories for c′ such that

(c′, g′
1
) ⇓ g′

2
using the nondeterministic

scheduler ND . Let g1 and g2 be the
restrictions of g′

1
and g′

2
to the globals of c.

Then (c, g1) ⇓ g2 using ND .

Jun 27th, 2006 – p.13

Results... but technically

• Security: If Γ ` c ↪→t c′ then c′ is secure
under round-robin scheduling.

• Refinement: Suppose Γ ` c ↪→t c′ and g′
1

and
g′

2
are global memories for c′ such that

(c′, g′
1
) ⇓ g′

2
using the nondeterministic

scheduler ND . Let g1 and g2 be the
restrictions of g′

1
and g′

2
to the globals of c.

Then (c, g1) ⇓ g2 using ND .

Jun 27th, 2006 – p.13

Results... but technically

• Security: If Γ ` c ↪→t c′ then c′ is secure
under round-robin scheduling.

• Refinement: Suppose Γ ` c ↪→t c′ and g′
1

and
g′

2
are global memories for c′ such that

(c′, g′
1
) ⇓ g′

2
using the nondeterministic

scheduler ND . Let g1 and g2 be the
restrictions of g′

1
and g′

2
to the globals of c.

Then (c, g1) ⇓ g2 using ND .

Jun 27th, 2006 – p.13

To sum up...

• Transformation that closes internal timing
channels

• Dynamic thread creation in the source
language

• No need to change the environment
(schedulers, etc)

• Transformation only reject programs with
illegal flows inherent to sequential
computations

Jun 27th, 2006 – p.14

	Language-based security
	Information Flow
	Information Flow II
	Internal Timing Covert Channel
	Internal Timing Leak: Example
	Internal Timing leak: Magnified
	Internal Timing Leak: Transformation
	Transformation: Example I
	Transformation: Example II
	Transformation: Example III
	Transformation: Example III
	Results... but technically
	To sum up...

