
Language-Based Methods for
Software Security

George Necula
EECS Department

University of California, Berkeley

2

Roadmap

• Static checking vs. dynamic checking

• Dynamic: Enforcing memory safety for C programs

• Static: Proof-carrying code

– Type checking Java bytecodes

– Type checking assembly language

– Proof-carrying code tools and techniques

3

Motivation

• Extensible systems can be more flexible and more
efficient than client-server interaction

client
server

client-server

extensible
systems

extension

host

4

extensible
system

Motivation

• Extensible systems can be more flexible and more
efficient than client-server interaction

client
server

client-server

extension

hostMust make sure extension
does not bypass the interface

5

Examples of Extensible Systems

Device driver Operating system

Applet Web browser

Stored procedure Database server

COM Component COM host

…

Host

Code

6

Concerns Regarding Extensibility

• Safety and reliability concerns
è How to protect the host from the extensions ?

Extensions of unknown origin) potentially malicious

Extensions of known origin) potentially erroneous

• Complexity concerns
è How can we do this without having to trust a complex

infrastructure?

• Performance concerns
è How can we do this without compromising performance?

• Other concerns (not addressed here)
– How to ensure privacy and authenticity?

– How to protect the component from the host?

7

Existing Approaches to Component Safety

• Based on digital signatures

• Based on hardware protection

• Language-based mechanisms

8

Assurance Support: Digital Signatures

Host

• Trust some code producers

• Ensures extrinsic properties (authorship, freshness)

L Not a behavioral assurance

L Does not scale well to many code producers

Code

Checker

9

Run-Time Monitoring and Checking

Host

• A monitor detects attempts to violate the safety
policy and stops the execution
– Hardware-enforced memory protection

– Software fault isolation (sandboxing)

J Simple, tried-out idea

Code

10

Disadvantages of Run-Time Checking Alone

• High run-time cost
– Crossing the protection boundary is expensive

• Sometimes it is hard to detect the “bad” event
– “A pointer does not point to a NULL-terminated string”

– “A pointer does not point to a file data structure”

– Data abstraction is hard to check at run-time

• Sometimes stopping the execution is not a solution
– We cannot (easily) stop a program that has acquired a

critical resource

– Time cannot be stopped

– E.g., “code must shutdown the reactor in at most 500ms”

11

Static Checking

• Advantages:
– No run-time cost

– Can consider hard-to-test scenarios

• Disadvantages:
– Must trust complex certification tools

– Undecidable unless enough restrictions are placed

Host

Code

Static
checker

Static vs. Dynamic Checking

correct programs incorrect programs

trivially

correct

trivially

incorrect

subtly

correct

subtly

incorrect

LinuxHello,

World!

Crash Now

*((int *) 0) = 0;

Static vs. Dynamic Checking

correct programs incorrect programs

The Dynamic Checker

accept reject

Static vs. Dynamic Checking

correct programs incorrect programs

Purely static checking

accept reject

+ No run-time checks

– Unsuitable for existing code

Linux

15

Hybrid Checking

• Check statically, insert dynamic checks where
necessary

• Advantages:
– Reduced run-time cost

• Disadvantages:
– Still some run-time checking

– Complex tools ?

Host

Safety
certification

tool
Code Code

Static vs. Dynamic Checking

correct programs incorrect programs

accept reject

accept with

run-time checks

Hybrid Checking

(static + dynamic)

+ Suitable for existing code

– Some errors delayed

checks

succeed

checks

fail
Linux

17

Roadmap

• Static checking vs. dynamic checking

 Dynamic: Enforcing memory safety for C programs

• Static: Proof-carrying code

– Type checking Java bytecodes

– Type checking assembly language

– Proof-carrying code tools and techniques

Memory Safety

• Essential component of a security infrastructure
– Isolates modules in extensible systems

– 85% of Windows crashes caused by drivers

– 50% of reported attacks are due to buffer overruns

• 1988: Robert Morris’s internet worm

• 2000: Code Red, SQL Slammer

• Recent exploitable bugs:

• Software engineering advantages
– Memory bugs are hard to find

– Foundation for most other software analyses

Windows

(4/3/07)
Quicktime

(1/5/07)

Java Runtime

(1/16/07)

Type and Memory Safety

C and C++ does not enforce type and memory safety.

We can do better!

Type Safety:

Run-time values correspond

to compile-time types

Memory Safety:

No illegal or out-of-bounds

memory accesses

cheese c;

wine w = (wine) c;

drink(w);

int array[42];

array[100] = 0;

Definition Example Error

The Legacy of C

• Millions of lines of safety-critical C code
– Huge investment!

• These systems are unsafe and unreliable due to C’s lack of
type and memory safety

• Need an incremental transition to safer and more reliable
systems!

Deputy goals

• Modular, fine-grained safety and isolation
enforces type and memory safety
– Works on existing C programs (including Linux)

– Dependent types enable modular approach

• Efficiency: 0-50% slowdown
– vs. Purify or Valgrind 10+x slowdown

• More effective and efficient than Purify
– Because it leverages existing type information in source

Enforcing Safety

struct buffer {

int *data;

for (i = 0; i < b.len; i++) {

// verify that b.data[i] is safe

int len;

} b;

int *data_b; // lower bound (base)

int *data_e; // upper bound (end)

assert(data_b <= b.data + i < data_e);... b.data[i] ...

}

Previous source-based approach (Cyclone, CCured, SafeC)

Enforcing Safety

struct buffer {

int * data;

int len;

} b;

for (i = 0; i < b.len; i++) {

... b.data[i] ...

} Advantages:

1. No change in data layout

2. Easier to optimize

3. Contract is in the code!

count(len)

assert(0 <= i < b.len);

Deputy’s Approach

Deputy

struct buffer {

int * count(len) data;

int len;

} b;

Key Insight:

Most pointers’ bounds information is already

present in the program in some form--just not

in a form the compiler understands!

Deputy

Dependent Types:

Types whose meaning depends on the

run-time value of a program expression.

Dependent types enable

modular checking!

struct buffer {

int * count(len) data;

int len;

} b;

Modularity

Alternative to whole-program analysis
and instrumentation

– Source code unavailable

– Source code cannot be recompiled

Incremental improvements

– Improve program module by module

– Improve overall code quality gradually

Isolating Extensions

Problems:

• Driver bug can

corrupt kernel
Kernel

Driver Driver

Kernel

Driver

Isolating Extensions

Problems:

Driver bug can’t

corrupt kernel

• Driver can still

corrupt itself

• Isolation layer

is complicated!

22 KLOC!

Nooks [Swift et al., SOSP 03]

Driver

Isolation

Isolating Extensions

Problems:

Driver bug can’t

corrupt kernel

Driver can’t

corrupt itself

• Adapter is

complicated!

CCured [PLDI 03], Cyclone [Jim et al., USENIX 02]

Kernel

Driver
Adapter

Driver


 Isolation layer

not needed

Kernel

Driver

Misbehaving Extensions

Problems:

Driver bug can’t

corrupt kernel

Driver can’t

corrupt itself

No adapter

required

Deputy [ESOP 07, OSDI 06]

Driver
 Annotated interface

Need driver source Need source annotations

Deputy Outline

Overview

• Deputy

• Applications

• Related & Future Work

Why Dependent Types?

struct buffer {

char * data;

int len;

};

struct message {

int tag;

union {

int num;

char *str;

} u;

};

int strlcpy(char * dst,

char * src,

int n);

Used by many

common idioms

in C code

Why Dependent Types?

struct buffer {

char * count(len) data;

int len;

};

struct message {

int tag;

union {

int num when(tag == 1);

char *str when(tag == 2);

} u;

};

int strlcpy(char * nt count(n) dst,

char * nt count(0) src,

int n);

Used by many

common idioms

in C code

If we annotate

these idioms,

we can check

for correct use!

Challenges

Previous dependent type systems were
not designed for use with existing code

– Static checking is difficult

) Hybrid checking (i.e., with run-time checks)

– Mutation is heavily used

) Use ideas from axiomatic semantics

– Annotation burden is high

) Automatic dependencies & inference

Static vs. Hybrid Checking

struct buffer {

int * count(len) data;

int len;

} b;

int limit = get_limit();

for (i = 0; i < limit; i++) {

assert(0 <= i < b.len);

... b.data[i] ...

}

Hard to prove statically!

Deputy Checking

correct programs incorrect programs

accept reject

accept with

run-time checks

Hybrid Checking

(static + dynamic)

+ Suitable for existing code

– Some errors delayed

checks

succeed

checks

may fail
Linux

Compiler Overview

code with

programmer

annotations

infer annotations

add run-time checks

optimize checks

safe

executable

Adding Checks

Dereference:

int * count(n) p;

... *p ...

p

n

assert(n > 0);

Adding Checks

Arithmetic:

p

n

p+e
int * count(n) p;

... p + e ...

assert(0 <= e <= n);

Mutation

int * bound(end, end) end;

int * bound(data,end) data;

...

assert(data <= data + 1 <= end);

data = data + 1;

data



end

Local Expressions

Dependencies can refer to variables in the

immediately enclosing scope

Memory references and function calls are

disallowed

int * count(get_len()) data;

int * count(*len_ptr) data;

int * count(n + m) data; 

Usability

Type checker expects every pointer to
be annotated) inference required!

Three inference mechanisms:

– Automatic dependencies

– Pointer graph

– Assumptions

Automatic Dependencies

For unannotated locals, we can add

annotations that use fresh variables

void foo(int * count(p_len) p, int p_len,

int * count(q_len) q, int q_len) {

int *

if (...) {

else {

assert(0 <= 42 <);

... x[42] ...

}

x_len is updated

when x is updated

x;count(x_len)

x_len = p_len;

x_len = q_len;

x = p; }

x = q; }

???x_len

C Features

Deputy handles:

• Bounded pointers

• Null termination

• Tagged unions

• Polymorphic functions

• Allocations

• Calls to memset, memcpy

Deputy trusts:

• Deallocation & concurrency

• External library code

• User-specified trusted code

45

Roadmap

• Static checking vs. dynamic checking

 Dynamic: Enforcing memory safety for C programs

• Static: Proof-carrying code

– Type checking Java bytecodes

– Type checking assembly language

– Proof-carrying code tools and techniques

The Deputy Compiler

code with

programmer

annotations

safe

executable

Insufficient

annotations

Type mismatch

Assertion failure

(compile-time)

Assertion failure

(run-time)

infer annotations

add run-time checks

optimize checks

Outline

Overview

Deputy

• Applications

• Related & Future Work

Deputy Applications

Three categories of applications

– Small programs (SPEC, Olden, Ptrdist)

– Linux device drivers (SafeDrive)

– Linux kernel

Evaluate Deputy on each application

– Annotation burden

– Performance impact

Small Programs (1)

Benchmark Total Lines
Lines

Changed

Deputy

Exec. Ratio

CCured

Exec. Ratio

go 29339 0.6% 1.12 1.06

gzip 8678 3.5% 1.12 -

li 7431 9.1% 1.47 1.45

bh 1907 30.0% 1.09 1.25

bisort 679 13.8% 0.95 0.98

em3d 358 19.0% 1.53 1.95

health 605 4.5% 1.21 1.04

mst 417 14.9% 1.31 1.00

power 768 4.0% 1.02 2.03

treeadd 127 11.0% 1.79 1.11

tsp 565 1.8% 1.03 1.03

s
p
e
c
9
5

o
ld

e
n

SafeDrive Architecture

Linux Kernel

Recovery

Subsystem

SafeDrive

Resource

Tracker

Deputized

Drivers

Other

Drivers

Deputized

Drivers
Deputized

Drivers

Other

Drivers
Other

Drivers

Deputized Drivers

Used Deputy on Linux 2.6 drivers

– Network, sound, video, USB (10-20 KLOC each)

Approximately 1-4% of lines annotated

Lines

Changed

Bounds Strings Tagged

Unions

Trusted

Code

All 6

drivers

1544 379 83 2 390

Kernel

headers

1866 187 260 8 140

Evaluation: Recovery

Injected bugs at compile time:

– 140 tests over 7 different categories

– Corrupt parameter, off-by-one, etc.

– Run e1000 driver with & without SafeDrive

• Without SafeDrive:

– 44 crashes

– 21 failure

– 75 test passes

With SafeDrive:

: 10 static err., 34 dyn. err.

: 2 dyn. err., 19 no err

: 3 st. err, 5 dyn. err., 67 no err.

Evaluation: Performance

0 5 10 15 20 25

e1000 TCP recv

e1000 UDP recv

e1000 TCP send

e1000 UDP send

tg3 TCP recv

tg3 TCP send

usb-storage untar

emu10k aplay

intel8x0 aplay

nvidia xinit

0 5 10 15 20

% CPU Overhead % Throughput Overhead

Nooks CPU Overhead:

(Linux 2.4)

e1000 TCP recv:

e1000 TCP send:

46% (vs. 4%)

111% (vs. 12%)

The Language Advantage

Deputy & SafeDrive provide:

– Fine-grained safety checks

– Better performance

Next Step: The Kernel Itself!

Applied Deputy to a full kernel

– 435 KLOC configuration

– Memory, file systems, network, drivers

Manageable amount of work

– 2627 lines annotated (0.6%)

– 3273 lines trusted (0.8%)

– 7 person-weeks of effort required

Kernel Performance

Three categories of performance tests

– Microbenchmarks: HBench-OS

– End-to-end: Large compile

– End-to-end: Web server performance

Test machine:

– 2.33 GHz Intel Xeon processor

– 1 GB RAM, 4 MB cache

Microbenchmarks

Bandwidth Tests Ratio Latency Tests Ratio

bzero 0.99 connect 1.03

file_rd 0.98 ctx 1.08

mem_cp 0.98 ctx2 1.01

mem_rd 0.99 fs 1.17

mem_wr 0.99 fslayer 1.02

mmap_rd 0.87 mmap 1.51

pipe 0.98 pipe 1.16

tcp 0.92 proc 1.00

rpc 1.27

sig 1.33

syscall 1.04

tcp 1.20

udp 1.29

HBench-OS

kernel

benchmarks

[Brown ‘97]

Kernel Build Benchmark

Measure time to build a large system

– Test: Linux 2.6.15.5 built with GCC 4.1.3

– Same test machine as before

129.6

128.7

126.8

16

16.1

23.5

0 40 80 120 160

GCC

Deputy (F)

Deputy (V)

User

System

SPEC Web Benchmark

Measure HTTP bandwidth and latency

– Test: SPEC Web 99

– Same test machine as before

Latency (ms/op)

315.2

321

323.5

0 100 200 300 400

GCC

Deputy (F)

Deputy (V)

Bandwidth (Kbits/s)

380.1

374.7

371.9

0 100 200 300 400 500

Deputy Conclusions

• Many C programs are close to being

memory safe

• With some compiler help and user

annotations we can have efficient

dynamic checking for memory safety

61

Roadmap

• Static checking vs. dynamic checking

• Dynamic: Enforcing memory safety for C programs

 Static: Proof-carrying code

– Type checking Java bytecodes

– Type checking assembly language

– Proof-carrying code tools and techniques

62

Static Checking Made Easy

• Static checking is key to safety and performance

• Static checking is possible (and in fact easy) if the
client supplies evidence attesting code safety

• For an important class of properties, the evidence
can be produced by a client-side tool

Host

Checker

Code

Safety
certification

tool

Source
code

evidence

63

Proof-Carrying Code: An Analogy

Legend: code
proof

64

Good Things About PCC

1. Someone else does the really hard work
• Hard to prove safety but easy to check a proof

2. Requires minimal trusted infrastructure
• Trust proof checker but not the compiler

3. Agnostic to how the code and proof are produced
• Hand-optimized code is Ok

4. Flexible and general
• One checker for many policies

• “if you can prove it PCC can check it!”

5. Coexists peacefully with cryptography
• Signatures are a syntactic checksum

• Proofs are a semantic checksum

65

What PCC Does Not Do

• PCC is useful when proving is hard
– Because it requires human assistance

– Because it requires a long time

– Because it requires a complex tool

• … and checking is comparatively easy
– With an automatic and simple proof checker

– Think of the definition of NP

• PCC cannot be used to prove things about code

• PCC is a transport mechanism, to use after you
proved something about your code

66

Roadmap

• Static checking vs. dynamic checking

• Dynamic: Enforcing memory safety for C programs

• Hybrid: Enforcing resource bounds usage

• Static: Proof-carrying code

 Type checking Java bytecodes

– Type checking assembly language

– Proof-carrying code tools and techniques

67

Java Virtual Machine (JVM)

• The first successful attempt to bring type safety to
a lower-level language

• Difficulties with low-level languages:
– Variables (registers) not used consistently with same type

– High-level operations are “unbundled”

• allocation and initialization

• array access and bounds checking

– Must deal with concrete implementation details

• stack allocation of locals, calling conventions

• exception implementation

• JVM tackles some of the above and avoids others by
not going too low level

68

Overview of the JVM

• JVML programs are in .class files

• A .class file contains the implementation of a class
– Tables describing the class

• name, attributes, superclass, interfaces, referenced
classes

– Tables describing the fields and methods

• name, type, attributes (public, private, etc.)

– The code for the methods in the form of bytecodes

• Before methods in a class are executed, a
bytecode verifier checks the type safety of the
code

69

Java Bytecode Verification

• Theorem: if BV succeeds then the JVML code is
(type) safe to execute

Host

Bytecode
verifier

JVML
Code

Java
Compiler

Java
source

JVML
types

70

JVM Runtime Data Structures

• Java heap
– Used for allocating objects, garbage collected

• Java stack
– One per thread, used for method activation frames

– Activation frames containing:

• Local variables (a.k.a., registers)

• An operand stack, used for operator arguments and
results

– Example: iadd adds two integers on the top of stack

...
n2

n1

n1 + n2

...
iadd

71

Typed Instructions

• Most JVM instructions are typed !

Example:

• “xload v” (x 2 {a, i, l, f, d})
– Loads (i.e. pushes) a variable v on the stack

– The prefix specifies the type

– If x = l (long) or x = d (double) then two words are
pushed

– Otherwise, the type annotation is only for type checking

72

Built-In Support

• Objects
– Code does not access objects directly
– “getfield name” for reading fields
– “invokevirtual name” for invoking methods
– “invokeinterface name” for invoking methods in

interfaces
– “invokespecial name” for constructors

• Arrays
– Bounds checking
– Run-time type checking for aastore (due to covariance)

• Exceptions
– JVM handles the stack unwinding

• This way JVM side-steps many difficult issues
– But also kills many opportunities for optimization

73

Example of JVM Verification

1. new P

2. pop p

3. new C

4. pop c

5. push p

6. getfield P.f

7. pop f

8. push c

9. invokevirtual P.m

class P {
int f;
int m() { … }

}
class C extends P {

int m() { … }
}

…
P p = new P();
P c = new C();
int f = p.f;
c.m();

74

Errors in JVML Programs

• We’d like to know that the JVML program is
obtained by correct compilation from well-typed
Java programs

• Instead verify that the JVML program is safe

• None of the following are allowed:
– Type errors

– Operand stack overflow or underflow

– Access control violations (e.g., private fields and
methods)

– Reading of uninitialized variables

– Use of uninitialized objects

– Wild jumps

• How do we prevent all these?

75

The Java Bytecode Verifier

• Helps prevent errors by checking untrusted JVML
code before execution

• Essentially a system for type inference for
programs with unstructured control flow

76

JVML Verification Strategy

• Evaluate the program symbolically, remembering
only the types of registers and stack slots

• Evaluation state:

<pc, F, S>
– where pc is the program counter

– F is a mapping from register names to types

– Types are the class names along with primitive types

– S is a stack of types: Stack ::= empty |  :: S

• Example:

<1, [x:=int; f:=C], P :: C :: _ >
– means: program counter is 1, x has type int, f has type C,

the stack contains at least two elements of type P and C,
respectively (P is on top of stack)

77

JVML Typechecking Rules

I(pc) = getfield P.f

P’ subtype of P

P has field f of type 

<pc, F, P’ :: S> ! <pc+1, F,  :: S>

I(pc) = invokevirtual P.m

P’ subtype of P

P has method m

of type 1 £ … £ n ! 

S = 1’ :: … :: n’ :: S’

For each i, i’ subtype of i

<pc, F, P’ :: S> ! <pc+1, F,  :: S’>

I(pc) = new P

<pc, F, S> ! <pc+1, F, P :: S>

I(pc) = pop x

<pc, F,  :: S> ! <pc+1, F[x:=], S>

78

Example of JVM Verification

1. new P

2. pop p

3. new C

4. pop c

5. push p

6. getfield P.f

7. pop f

8. push c

9. invokevirtual P.m

class P {
int f;
int m() { … }

}
class C extends P {

int m() { … }
}

…
P p = new P();
P c = new C();
int f = p.f;
c.m();

<1, F, S>

<2, F, P :: S>

<3, F[p:P], S>

<4, F[p:P], C :: S>

<5, F[p:P,c:C], S>

<6, F[p:P,c:C], P :: S>

<7, F[p:P,c:C], int ::S>

<8, F[p:P,c:C,f:int], S>

<9, F[p:P,c:C,f:int], C :: S>

79

Join Points

• Continue checking unless result is the same as the
previous state at the join point
– Terminates because of finite class hierarchy

<pc,
[r1:1,…,rn:n],
1 :: … :: m>

<pc,
[r1:’1,…,rn:’n],
’1 :: … :: ’m>

<pc,
[r1:’’1,…,rn:’’n],
’’1 :: … :: ’’m>

’’i = least common ancestor
of i and ’i in the
class hierachy

80

Join Points: Subtleties

• May need to verify some code fragments multiple
times
– An O(n2) complexity bound (some bad implementations

even worse)

– This is not true for Java, only Java bytecode !

– KVM avoids this with type declarations

• Verification is sound and guaranteed to terminate

• Denial-of-service attack: an adversary sends you a
worst-case bytecode program
– Your browser will hang trying to verify the code (15

minutes on a 3GHz machine)

81

Java Exceptions

• Java has typed exceptions

• Exceptions can be handled with catch and/or
finally
int test (int i) {

try {

if (i == 3) return foo ();

} finally {

bar ();

}

i ++;

return i;

}

82

JVML Subroutines

• A simple solution is to duplicate the “finally” code

• To avoid this, the finally body is compiled into a
subroutine
– The subroutine is called from each escape point

– A subroutine executes in the same activation frame as
the host

– Has access to, and can modify all local variables

• Typing challenges
– Call points of subroutines need not agree on the type of

all local variables; only the ones used in suroutine

– Polymorphism is needed

– Subroutines need not be LIFO

83

JVML Subroutines

Subroutines are the most difficult part of the verifier
– several bugs and inconsistencies in the implementation

– 14 of 26 proof invariants

– 50 of 120 lemmas

– 70 of 150 pages of proof

• Subroutines save space?
– About 200 subroutines in 650 Klines of Java (mostly in JDK)

– No subroutines calling other subroutines

– Subroutines save 2427 bytes of 8.7 Mbytes (0.02%)!

– Changing the name Java to Oak saves 13 times more space!

– Latest version of javac does not use subroutines anymore

84

Roadmap

• Static checking vs. dynamic checking

• Dynamic: Enforcing memory safety for C programs

• Static: Proof-carrying code

– Type checking Java bytecodes

 Type checking assembly language

– Proof-carrying code tools and techniques

85

Bytecode -> Assembly language

• Bytecode verification is quite powerful
– Requires few annotations

– Derives its simplicity from carefully crafted high-level
bytecode language

• Can we apply similar ideas for the assembly
language output of a just-in-time compiler?
– Why is this interesting?

86

Compilation of JVML to Assembly

• We must work with the concrete object layout:

dynamic type

lock

dispatch table

field1

field2

method1

method2

…

…

offset:

0

4

8

12

16

0

4

8

87

Checking Method Invocation

class P {
int f;
int m() { … }

}
class C extends P {

int m() { … }
}

…
P p = new P();
P c = new C();
c.m();
…

push c
invokevirtual P.m()

branch (= rc 0) Labort

rtmp := m[rc + 8]

rtmp := m[rtmp + 12]

rarg0 := rc

rra := &Lret

jump [rtmp]

Lret:

push c
invokevirtual P.m()

88

Checking Method Invocation

• We must give types to intermediate results

• Idea: invent types for intermediate results
– after doing the null check for an object of type P

nonnull(P)

– result of fetching dispatch table of object of type P

disp(P)

– result of fetching kth method from table of class P

method(P, k)

– pointer to a field of type F

ptr(F)

– …

• We write appropriate typing rules

89

Checking Method Invocation

…
P p = new P();
P c = new C();
c.m();
…

invokevirtual P.m()

branch (= rc 0) Labort

rtmp := m[rc + 8]

rtmp := m[rtmp + 12]

rarg0 := rc

rra := &Lret

jump [rtmp]

Lret:

hrc : P, … i

hrc : nonnull P, …i

hrtmp : disp(P), …i

r : nonnull P

m[r + 8] : disp(P)

Typing rule:

90

Checking Method Invocation

…
P p = new P();
P c = new C();
c.m();
…

invokevirtual P.m()

branch (= rc 0) Labort

rtmp := m[rc + 8]

rtmp := m[rtmp + 12]

rarg0 := rc

rra := &Lret

jump [rtmp]

Lret:

hrc : P, … i

hrc : nonnull P, …i

hrtmp : disp(P), …i

hrtmp : meth(P,3), …i

r : disp(P)

m[r + 4k] : meth(P, k)

Typing rule:

91

Checking Method Invocation

…
P p = new P();
P c = new C();
c.m();
…

invokevirtual P.m()

branch (= rc 0) Labort

rtmp := m[rc + 8]

rtmp := m[rtmp + 12]

rarg0 := rc

rra := &Lret

jump [rtmp]

Lret:

hrc : P, … i

hrc : nonnull P, …i

hrtmp : disp(P), …i

hrtmp : meth(P,3), …i

hrarg0 : P, …i

hrrv : int, …i

r : meth(P, k)

kth method in class P has
arg. D and return R

rarg0: P

rarg1: D

rra : &L (next instr)

(Jump [r]; L:)) rrv : R

Typing rule:

92

Compiling Virtual Method Dispatch

• Regular compilation of c.m()

pfunc = kth method in table of c

call pfunc(c)
– The called method needs to take the “host” object as

argument

– Or another object of the same dynamic type

• What if the compiler passes “p” as host argument?

93

Unsoundness

…
P p = new P();
P c = new C();
c.m();
…

invokevirtual P.m()

branch (= rc 0) Labort

rtmp := m[rc + 8]

rtmp := m[rtmp + 12]

rarg0 := rp

rra := &Lret

jump [rtmp]

Lret:

hrc : P, … i

hrc : nonnull P, …i

hrtmp : disp(P), …i

hrtmp : meth(P,3), …i

hrarg0 : P, …i

hrrv : int, …i

unsound

r : meth(C, k)

kth method in class C has
arg. D and return R

rarg0: C

rarg1: D

rra : &L (next instr)

(Jump [r]; L:) rrv : R

Typing rule:

94

More Challenges

class P {
int f;
int m() { … }

}
class C extends P {

int m() { … }
}

…
P p = new P();
P c = new C();
int f = p.f;
p.m();
x = f + 1;

branch (= rp 0) Labort

rtmp := rp + 12

rf := m[rtmp]

branch (= rp 0) Labort

rtmp := m[rp + 8]

rtmp := m[rtmp + 12]

rarg0 := rp

rra := &Lret

jump [rtmp]

Lret:

rx := rf + 1

reordering

and

optimization

hrtmp : ptr(int), … i

95

More Challenges

branch (= rp 0) Labort

rtmp := rp + 12

rf := m[rtmp]

rx := rf + 1

branch (= rp 0) Labort

rtmp := m[rtmp - 4]

rtmp := m[rtmp + 12]

rarg0 := rp

rra := &Lret

jump [rtmp]

Lret:

hrtmp : ptr(int), … i

“funny”

pointer

arithmetic

class P {
int f;
int m() { … }

}
class C extends P {

int m() { … }
}

…
P p = new P();
P c = new C();
int f = p.f;
p.m();
x = f + 1;

96

Low-level Type Checking

• We must keep track of dependencies
– E.g., carry equality information

• We must deal with compiler optimizations
– E.g., carry arithmetic equalities

• Solution: instead of simple types, use dependent
types:
“register rtmp contains the dispatch table of object in

register rc”

rtmp : disp(rc)

97

Summary: Typechecking Assembly Language

• We have a typechecker for assembly output of
Java compiler
– Same type safety as for JVML

– But works at lower level and in presence of optimizations

– We needed more care

– We needed to extend types with dependencies

– Type inference becomes more complicated

– Same idea works for assembly output of other compilers

98

Overview of the Lectures

 Proof-carrying code: motivation and overview

 Type checking Java bytecodes

 Type checking assembly language

• Proof-carrying code: design and implementation

– Verification-condition generation based PCC

– Foundational proof-carrying code

– Open Verifier infrastructure for PCC

99

Limitations of Type Safety

• So far the annotations are just hints for type
inference
– Requires few annotations

– Applicable only when type inference is decidable

• What if we want to allow complex optimizations
(e.g., array bounds checking elimination)
– Complex types and checking (keep track of inequalities)

– Complex or impossible inference

• We need to:
– Step beyond simple types (use logic)

– Get more checking help through annotations (use proofs)

100

Certifying

VC
Generator

Invar

SP

.

Safety policy

Compiler

ProducerConsumer

UntrustedTrusted

Code Source

General Proof-Carrying Code

Code

Theorem
Prover

Proof

Logic

Proof
Checker

Complex
Slow

Simple
Fast

101

VC Generator: Overview

• Performs simple syntactic checks on the code
– E.g., verifies that all jump targets are valid

• Produces the safety predicate (SP)
– For each safety-related operation emits a verification

condition (VC) that is provable only if the operation is
safe to execute

– The safety predicate is a “set” of verification conditions

• One pass through the code
– Needs function specifications and loop invariants

• An old idea from program verification
– e.g., Floyd, King, Hoare, Dijkstra, etc. ,

102

VCGen

• VCGen can be viewed as a symbolic evaluator:
– This is not the traditional formulation of VCGen

– Traditional view of VCGen is as a backward substitution
constructing the weakest precondition

• The symbolic language (for a type-based policy):
E := x | n | E1 + E2

(expressions)

P := E1 = E2 | E1  E2 | P1  P2 | P1  P2 | x. P1 (formulas)
| saferd(E) | safewr(E1, E2) (memory safety formulas)

| E : T (typing formulas)

T ::= int | bool | array(T,E) | pointer(T) (types)

103

VCGen: Memory Safety

• For a memory read at symbolic address E the
verification condition is:

saferd(E)

• For a memory write of symbolic value E2 at
symbolic address E1 is:

safewr(E1, E2)

• It is up to the safety policy to define the meaning
of “saferd” and “safewr”
– VCGen does not depend on a particular safety policy

104

VCGen: Function Call Safety

• Preconditions
– Checked at call site and assumed at function start

– Which registers contain the arguments ?

– What are the relationships between the arguments ?

– What can be assumed of the state of memory ?

– When VCGen sees a function call it emits its precondition
as a verification condition

• Postconditions
– Checked at return and assumed at call site

– Properties of the return value and the state of memory

– When VCGen sees “ret” it emits the postcondition as a
verification condition

105

A Simple Example

• Consider the following function:
// Compute a conjunction of the booleans from an array

bool forall(bool a[]) {

for(int i=0; i<a.length; i++) {

if (! a[i]) return false; }

return true; }

• Safety policy:
– Memory accesses are allowed between a and a + a.length - 1

• Only reads are allowed from these addresses

– If the function returns, it must return a boolean

– 0 and 1 are the only representations of booleans

106

Safety Policy  Axiomatization

saferd(A + I)

A : array(T, L) I  0 I < L
rd

M[A + I] : T

A : array(T, L) I  0 I < L
typerd

I + 1 ¸ E

I ¸ E I < L A : array(T, L)
inc

E ¸ E
geqid

I + 1 ¸ E

I ¸ E
inc

0 : bool
bool0

1 : bool
bool1

E : int
int

107

r  0

i  0

L0 :

if i >= n goto L1

t  a + i

t  M[t]

if not t goto L2

i  i + 1

goto L0

L1: r Ã 1

L2: return r

PRE a : array(bool, n)

POST r : bool

An Example: Type-Based Memory Safety

• Safety policy expressed as
preconditions and
postconditions

INV= i : int  i ¸ 0, REG = { m, a, n, r }

108

Verification Condition Generation

PRE a : array(bool, n)

r  0

i  0

L0 : INV= i : int  i ¸ 0, REG = { m, a, n, r }

if i >= n goto L1

t  a + i

t  M[t]

if not t goto L2

i  i + 1

goto L0

L1: r Ã 1

L2: return r

POST r : bool

a a0

n n0

m m0

i i0

r r0

t t0

Assumptions:

Symbolic register file:

109

Verification Condition Generation

PRE a : array(bool, n)

r  0

i  0

L0 : INV= i : int  i ¸ 0, REG = { m, a, n, r }

if i >= n goto L1

t  a + i

t  M[t]

if not t goto L2

i  i + 1

goto L0

L1: r Ã 1

L2: return r

POST r : bool

a a0

n n0

m m0

i i0

r r0

t t0

Assumptions:
a0 : array(bool, n0)

Symbolic register file:

110

Verification Condition Generation

PRE a : array(bool, n)

r  0

i  0

L0 : INV= i : int  i ¸ 0, REG = { m, a, n, r }

if i >= n goto L1

t  a + i

t  M[t]

if not t goto L2

i  i + 1

goto L0

L1: r Ã 1

L2: return r

POST r : bool

a a0

n n0

m m0

i i0

r 0

t t0

Assumptions:
a0 : array(bool, n0)

Symbolic register file:

111

Verification Condition Generation

PRE a : array(bool, n)

r  0

i  0

L0 : INV= i : int  i ¸ 0, REG = { m, a, n, r }

if i >= n goto L1

t  a + i

t  M[t]

if not t goto L2

i  i + 1

goto L0

L1: r Ã 1

L2: return r

POST r : bool

a a0

n n0

m m0

i 0

r 0

t t0

Assumptions:
a0 : array(bool, n0)

Symbolic register file:

Check: 0 : int
0 ¸ 0

112

Verification Condition Generation

PRE a : array(bool, n)

r  0

i  0

L0 : INV= i : int  i ¸ 0, REG = { m, a, n, r }

if i >= n goto L1

t  a + i

t  M[t]

if not t goto L2

i  i + 1

goto L0

L1: r Ã 1

L2: return r

POST r : bool

a a0

n n0

m m0

i i1

r 0

t t1

Assumptions:
a0 : array(bool, n0)
i1 : int
i1 ¸ 0

Symbolic register file:

113

Verification Condition Generation

PRE a : array(bool, n)

r  0

i  0

L0 : INV= i : int  i ¸ 0, REG = { m, a, n, r }

if i >= n goto L1

t  a + i

t  M[t]

if not t goto L2

i  i + 1

goto L0

L1: r Ã 1

L2: return r

POST r : bool

a a0

n n0

m m0

i i1

r 0

t t1

Assumptions:
a0 : array(bool, n0)
i1 : int
i1 ¸ 0
i1 < n0

Symbolic register file:

114

Verification Condition Generation

PRE a : array(bool, n)

r  0

i  0

L0 : INV= i : int  i ¸ 0, REG = { m, a, n, r }

if i >= n goto L1

t  a + i

t  M[t]

if not t goto L2

i  i + 1

goto L0

L1: r Ã 1

L2: return r

POST r : bool

a a0

n n0

m m0

i i1

r 0

t a0 + i1

Assumptions:
a0 : array(bool, n0)
i1 : int
i1 ¸ 0
i1 < n0

Symbolic register file:

Check: saferd(a0 + i1)

115

Verification Condition Generation

PRE a : array(bool, n)

r  0

i  0

L0 : INV= i : int  i ¸ 0, REG = { m, a, n, r }

if i >= n goto L1

t  a + i

t  M[t]

if not t goto L2

i  i + 1

goto L0

L1: r Ã 1

L2: return r

POST r : bool

a a0

n n0

m m0

i i1

r 0

t m0[a0 + i1]

Assumptions:
a0 : array(bool, n0)
i1 : int
i1 ¸ 0
i1 < n0

Symbolic register file:

116

Verification Condition Generation

PRE a : array(bool, n)

r  0

i  0

L0 : INV= i : int  i ¸ 0, REG = { m, a, n, r }

if i >= n goto L1

t  a + i

t  M[t]

if not t goto L2

i  i + 1

goto L0

L1: r Ã 1

L2: return r

POST r : bool

a a0

n n0

m m0

i i1

r 0

t m0[a0 + i1]

Assumptions:
a0 : array(bool, n0)
i1 : int
i1 ¸ 0
i1 < n0
m0[a0+i1] = true

Symbolic register file:

117

Verification Condition Generation

PRE a : array(bool, n)

r  0

i  0

L0 : INV= i : int  i ¸ 0, REG = { m, a, n, r }

if i >= n goto L1

t  a + i

t  M[t]

if not t goto L2

i  i + 1

goto L0

L1: r Ã 1

L2: return r

POST r : bool

a a0

n n0

m m0

i i1 + 1

r 0

t m0[a0 + i1]

Assumptions:
a0 : array(bool, n0)
i1 : int
i1 ¸ 0
i1 < n0
m0[a0+i1] = true

Symbolic register file:

118

Verification Condition Generation

PRE a : array(bool, n)

r  0

i  0

L0 : INV= i : int  i ¸ 0, REG = { m, a, n, r }

if i >= n goto L1

t  a + i

t  M[t]

if not t goto L2

i  i + 1

goto L0

L1: r Ã 1

L2: return r

POST r : bool

a a0

n n0

m m0

i i1 + 1

r 0

t m0[a0 + i1]

Assumptions:
a0 : array(bool, n0)
i1 : int
i1 ¸ 0
i1 < n0
sel(m0,a0+i1) = true

Symbolic register file:

Check: i1 + 1 : int Æ i1 + 1 ¸ 0

119

Verification Condition Generation (Backtrack)

PRE a : array(bool, n)

r  0

i  0

L0 : INV= i : int  i ¸ 0, REG = { m, a, n, r }

if i >= n goto L1

t  a + i

t  M[t]

if not t goto L2

i  i + 1

goto L0

L1: r Ã 1

L2: return r

POST r : bool

a a0

n n0

m m0

i i1

r 0

t m0[a0 + i1]

Assumptions:
a0 : array(bool, n0)
i1 : int
i1 ¸ 0
i1 < n0

Symbolic register file:

120

Verification Condition Generation

PRE a : array(bool, n)

r  0

i  0

L0 : INV= i : int  i ¸ 0, REG = { m, a, n, r }

if i >= n goto L1

t  a + i

t  M[t]

if not t goto L2

i  i + 1

goto L0

L1: r Ã 1

L2: return r

POST r : bool

a a0

n n0

m m0

i i1

r 0

t m0[a0 + i1]

Assumptions:
a0 : array(bool, n0)
i1 : int
i1 ¸ 0
i1 < n0
m0[a0+i1] = false

Symbolic register file:

Check: 0 : bool

121

The Safety Predicate

Assumptions Verification conditions

a0 : array(bool, n0)
0 : int Æ 0 ¸ 0 (INV0)

i1 : int
i1 ¸ 0

i1 < n0
saferd(a0+i1) (READ)

m0[a0+i1] = true
i1 + 1 : int Æ i1 + 1 ¸ 0 (INV1)

m0[a0+i1] = false
0 : bool (POST)

i1 ¸ n0
1 : bool (POST)

PCC Client-Side Tools

123

Certifying

VC
Generator

Invar

VC

.

Safety policy

Compiler

ProducerConsumer

UntrustedTrusted

Code Source

Proof-Carrying Code. Design Details

Code

Theorem
Prover

Proof

Logic

Proof
Checker

Complex
Slow

Simple
Fast

124

A Certifier Compiler for Java

Java source

Exec. content Type decls

Java Type checker

Prog. analysis

Code gen.

VCGen

IL

ASM

+ Inv

+ Inv

Inv.

Don’t loose the
types
Remember what
was inferred

Only as smart as
the type checker
and analyzer

Prover

125

The Kettle Theorem Prover

• Automatic prover for
– linear arithmetic, uninterpreted functions

– quantifiers are handled with heuristics

– Parameterized by typing rules (specific to type system)

• Constructs proofs upon success
– In terms of natural deduction rules for FOL and typing

rules

e =  + 8

 `  : nonnull C

 ` e : ptr(disp())

Proof Engineering

127

Proof Engineering

• Important for practical use of PCC
– Must transport and check proofs

• Also important in other applications using explicit
proof representations
– Proof-generating theorem provers

128

Desired Characteristics

• General framework
– Applicable to many logics

– Allows high-level description of the logic

• Simple and fast proof checking
– Parameterized by the logic (so we don’t have to rewrite it

over and over)

• Compact representations of proofs
– Reduces bandwidth needed in Proof-Carrying Code

– Reduces space required for storage of proofs

– Speeds-up proof validation

129

Proof Representation Strategies

1. A proof is a proof script for a proof assistant
– You get the checker for free, proofs are small

– The checker is unnecessarily large and complex

2. Or, design an ad-hoc proof representation
language
– Proofs are trees, nodes are labeled with proof rules,

children correspond to premises of a rule

– Must be careful with hypothetical judments

– Proofs are small

– Size of proof checker is linear in the # of proof rules

130

3. Oracle-based PCC

oracle bits

Legend: code
proof

131

Proof Representation. Conclusion

• There is a wide range of proof representation
strategies

• Usually, the simpler the checker, the larger the
proof must be
– But there are some nice compromise points

• There are variants of PCC where the proof size does
not matter that much

132

Overview of the Lectures

 Proof-carrying code: motivation and overview

 Type checking Java bytecodes

 Type checking assembly language

• Proof-carrying code: design and implementation

 Verification-condition generation based PCC

– Foundational proof-carrying code

– Open Verifier infrastructure for PCC

133

Foundational Proof Carrying Code

K
a
ff

e

B
ul
le
tT

ra
in

F
PC

C

S
pe

ci
a
lJ

.

0

20

40

60

80

100

120

140

160

180
10

0
0

s
of

 l
in

es

.

Untrusted

Compiler

Trusted Compiler

(or checker)

Core Runtime

Memory Mgmt

Courtesy of
Andrew Appel

134

What About Proof Generation ?

• The focus so far has been on the infrastructure
– Touchstone: scalable to large programs, but large TCB

– FPCC: very small TCB, very difficult to produce proofs

– Can we get the best of both ?

• Often overlooked detail:

Must have proofs to have PCC !

• Most of the cost of PCC is in proof generation

• Find low-cost strategies to generate the proofs

135

Common Safety Checking Tools

• Theorem proving
– For complex properties on small codes

• Model checking

• Type checking, data-flow analysis and
instrumentation
– JVML, MSIL, TAL, CQual, Stackguard, Deputy, …

– Includes virtually all PCC experiments to date

• Must be easy to obtain proofs from such tools

136

Certified Analysis Tools

• Examples:
– Type inference + type checking

– Model checker + invariant checking

– Java compilation + bytecode verification

code

proof
Analysis

Tool Certifier

annotations

• We separate the certification from analysis tool
– Analysis tool emits annotations to help the certifier

137

Certified Program Analysis Tools

• Certifier and annotations customized for each
analysis tool

• Advantages:
– Easy debugging of analysis/instrumentation tools

– Reduces soundness of tool to certifier soundness

• For PCC, we need proof-generating certifiers
– We assume we know how to write certifiers

– How to write proof-generating certifiers ?

138

Writing Certifiers

• Method 1: Proof-generating certifiers
– Extend each certification step with proof generation

– Glue together the proofs for individual steps

– Experience: 2x code size increase, 25x slow-down

• Method 2: Verified certifiers
– Prove statically the soundness of the certifier

code

annotations
Analysis

Tool Certifier

Soundness
Verifier

139

Verified Certifiers

• How can we prove soundness of a certifier?
– Harder than proving safety of each program

• But needs to be done only once

• We can use a generic framework and tools for
abstract-interpretation based certifiers
– Write the certifier in Ocaml

– Generate automatically a few Coq theorems to prove

“You write the type checker and we generate the
soundness statement for the typing rules it uses”

140

A Flexible Variant of PCC

• We do not need proofs for each program
– Send the certifier with its soundness proof

– Then send annotations for each program

– Certification is simpler and faster

• Advantages:
– No need to worry about building proofs, proof sizes,

proof encoding, for individual programs

• Speed up of 25x, code size reduction 2x

– Subsumes old PCC: Annotations may contain proofs

141

Untrusted Certifiers Architecture

Soundness
proof

OCaml-> Coq
Coq

Proof Assistant

Coq
Proof Checker

Soundness
proof

OCaml-> Coq

OCaml
compiler

Certifier

Certifier

Certifier

Mobile
Code

Annotations

Certifier

1. code producer
proves certifier

2. code consumer
downloads
the certifier
and its proof

3. code consumer
downloads the code

142

Custom Verification

• Today’s VM have hard-coded verifiers
– Force a type system, compilation strategy, even source

language

– Thus, fix the safety mechanism not just the policy

• Users should be able to
– Pick source language, compilation strategy, and safety

enforcement tool

– Upload a certifier

– Essentially, customize the verification

• Doable with the strategy outlined here

143

PCC Conclusions

• Software must be executable and checkable

– Powerful safety checkers are kept simple by allowing them
to consult proofs/oracles

• PCC is automatic and practical for type safety

– More of less inference can be done at the receiver

• More research is needed before we can automate
PCC beyond type safety

– Type systems, specification logics and decision procedures

144

PCC Conclusions (II)

• Bridge the gap between PCC and source-level
analysis tools

• Infrastructure must facilitate the interfacing to
standard safety tools
– Write custom untrusted certifiers

• Customizable verifiers
– Maximum of flexibility for code producer, without loss of

safety

