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Roadmap

• Static checking vs. dynamic checking

• Dynamic: Enforcing memory safety for C programs

• Static: Proof-carrying code

– Type checking Java bytecodes

– Type checking assembly language

– Proof-carrying code tools and techniques
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Motivation

• Extensible systems can be more flexible and more 
efficient than client-server interaction

client
server

client-server

extensible
systems

extension

host
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extensible
system

Motivation

• Extensible systems can be more flexible and more 
efficient than client-server interaction

client
server

client-server

extension

hostMust make sure extension 
does not bypass the interface 
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Examples of Extensible Systems

Device driver                   Operating system

Applet                              Web browser

Stored procedure            Database server

COM Component              COM host

…

Host

Code
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Concerns Regarding Extensibility

• Safety and reliability concerns
è How to protect the host from the extensions ?

Extensions of unknown origin ) potentially malicious

Extensions of known origin ) potentially erroneous

• Complexity concerns
è How can we do this without having to trust a complex 

infrastructure?

• Performance concerns
è How can we do this without compromising performance?

• Other concerns (not addressed here)
– How to ensure privacy and authenticity?

– How to protect the component from the host?
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Existing Approaches to Component Safety

• Based on digital signatures

• Based on hardware protection

• Language-based mechanisms
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Assurance Support: Digital Signatures

Host

• Trust some code producers

• Ensures extrinsic properties (authorship, freshness) 

L Not a behavioral assurance

L Does not scale well to many code producers

Code

Checker
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Run-Time Monitoring and Checking

Host

• A monitor detects attempts to violate the safety 
policy and stops the execution
– Hardware-enforced memory protection

– Software fault isolation (sandboxing)

J Simple, tried-out idea

Code
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Disadvantages of Run-Time Checking Alone

• High run-time cost
– Crossing the protection boundary is expensive

• Sometimes it is hard to detect the “bad” event
– “A pointer does not point to a NULL-terminated string”

– “A pointer does not point to a file data structure”

– Data abstraction is hard to check at run-time

• Sometimes stopping the execution is not a solution
– We cannot (easily) stop a program that has acquired a 

critical resource

– Time cannot be stopped 

– E.g., “code must shutdown the reactor in at most 500ms”
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Static Checking

• Advantages:
– No run-time cost

– Can consider hard-to-test scenarios

• Disadvantages:
– Must trust complex certification tools

– Undecidable unless enough restrictions are placed

Host

Code

Static
checker



Static vs. Dynamic Checking

correct programs incorrect programs

trivially

correct

trivially

incorrect

subtly

correct

subtly

incorrect

LinuxHello,

World!

Crash Now

*((int *) 0) = 0;



Static vs. Dynamic Checking

correct programs incorrect programs

The Dynamic Checker

accept reject



Static vs. Dynamic Checking

correct programs incorrect programs

Purely static checking

accept reject

+ No run-time checks

– Unsuitable for existing code

Linux
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Hybrid Checking

• Check statically, insert dynamic checks where 
necessary

• Advantages:
– Reduced run-time cost

• Disadvantages:
– Still some run-time checking

– Complex tools ?

Host

Safety 
certification

tool
Code Code



Static vs. Dynamic Checking

correct programs incorrect programs

accept reject

accept with

run-time checks

Hybrid Checking

(static + dynamic)

+ Suitable for existing code

– Some errors delayed

checks

succeed

checks

fail
Linux
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Roadmap

• Static checking vs. dynamic checking

 Dynamic: Enforcing memory safety for C programs

• Static: Proof-carrying code

– Type checking Java bytecodes

– Type checking assembly language

– Proof-carrying code tools and techniques



Memory Safety

• Essential component of a security infrastructure
– Isolates modules in extensible systems

– 85% of Windows crashes caused by drivers

– 50% of reported attacks are due to buffer overruns

• 1988: Robert Morris’s internet worm

• 2000: Code Red, SQL Slammer

• Recent exploitable bugs:

• Software engineering advantages
– Memory bugs are hard to find

– Foundation for most other software analyses

Windows

(4/3/07)
Quicktime

(1/5/07)

Java Runtime

(1/16/07)



Type and Memory Safety

C and C++ does not enforce type and memory safety.

We can do better!

Type Safety:

Run-time values correspond 

to compile-time types

Memory Safety:

No illegal or out-of-bounds 

memory accesses

cheese c;

wine w = (wine) c;

drink(w);

int array[42];

array[100] = 0;

Definition Example Error



The Legacy of C

• Millions of lines of safety-critical C code
– Huge investment!

• These systems are unsafe and unreliable due to C’s lack of 
type and memory safety

• Need an incremental transition to safer and more reliable 
systems!



Deputy goals

• Modular, fine-grained safety and isolation 
enforces type and memory safety
– Works on existing C programs (including Linux)

– Dependent types enable modular approach

• Efficiency: 0-50% slowdown
– vs. Purify or Valgrind 10+x slowdown

• More effective and efficient than Purify
– Because it leverages existing type information in source



Enforcing Safety

struct buffer {

int *data;

for (i = 0; i < b.len; i++) {

// verify that b.data[i] is safe

int len;

} b;

int *data_b;  // lower bound (base)

int *data_e;  // upper bound (end)

assert(data_b <= b.data + i < data_e);... b.data[i] ...

}

Previous source-based approach (Cyclone, CCured, SafeC)



Enforcing Safety

struct buffer {

int * data;

int len;

} b;

for (i = 0; i < b.len; i++) {

... b.data[i] ...

} Advantages:

1. No change in data layout

2. Easier to optimize

3. Contract is in the code!

count(len)

assert(0 <= i < b.len);

Deputy’s Approach



Deputy

struct buffer {

int * count(len) data;

int len;

} b;

Key Insight:

Most pointers’ bounds information is already 

present in the program in some form--just not 

in a form the compiler understands!



Deputy

Dependent Types:

Types whose meaning depends on the 

run-time value of a program expression.

Dependent types enable 

modular checking!

struct buffer {

int * count(len) data;

int len;

} b;



Modularity

Alternative to whole-program analysis 
and instrumentation

– Source code unavailable

– Source code cannot be recompiled

Incremental improvements

– Improve program module by module

– Improve overall code quality gradually



Isolating Extensions

Problems:

• Driver bug can 

corrupt kernel
Kernel

Driver Driver



Kernel

Driver

Isolating Extensions

Problems:

Driver bug can’t 

corrupt kernel

• Driver can still 

corrupt itself

• Isolation layer 

is complicated!

22 KLOC!

Nooks [Swift et al., SOSP 03]

Driver

Isolation



Isolating Extensions

Problems:

Driver bug can’t 

corrupt kernel

Driver can’t 

corrupt itself

• Adapter is 

complicated!

CCured [PLDI 03], Cyclone [Jim et al., USENIX 02]

Kernel

Driver
Adapter

Driver


 Isolation layer 

not needed



Kernel

Driver

Misbehaving Extensions

Problems:

Driver bug can’t 

corrupt kernel

Driver can’t 

corrupt itself

No adapter 

required

Deputy [ESOP 07, OSDI 06]

Driver
 Annotated interface

Need driver source Need source annotations



Deputy Outline

Overview

• Deputy

• Applications

• Related & Future Work



Why Dependent Types?

struct buffer {

char * data;

int len;

};

struct message {

int tag;

union {

int num;

char *str;

} u;

};

int strlcpy(char * dst,

char * src,

int n);

Used by many

common idioms

in C code



Why Dependent Types?

struct buffer {

char * count(len) data;

int len;

};

struct message {

int tag;

union {

int num   when(tag == 1);

char *str when(tag == 2);

} u;

};

int strlcpy(char * nt count(n) dst,

char * nt count(0) src,

int n);

Used by many

common idioms

in C code

If we annotate

these idioms,

we can check

for correct use!



Challenges

Previous dependent type systems were 
not designed for use with existing code

– Static checking is difficult

) Hybrid checking (i.e., with run-time checks)

– Mutation is heavily used

) Use ideas from axiomatic semantics

– Annotation burden is high

) Automatic dependencies & inference



Static vs. Hybrid Checking

struct buffer {

int * count(len) data;

int len;

} b;

int limit = get_limit();

for (i = 0; i < limit; i++) {

assert(0 <= i < b.len);

... b.data[i] ...

}

Hard to prove statically!



Deputy Checking

correct programs incorrect programs

accept reject

accept with

run-time checks

Hybrid Checking

(static + dynamic)

+ Suitable for existing code

– Some errors delayed

checks

succeed

checks

may fail
Linux



Compiler Overview

code with

programmer

annotations

infer annotations

add run-time checks

optimize checks

safe

executable



Adding Checks

Dereference:

int * count(n) p;

... *p ...

p

n

assert(n > 0);



Adding Checks

Arithmetic:

p

n

p+e
int * count(n) p;

... p + e ...

assert(0 <= e <= n);



Mutation

int * bound(end, end) end;

int * bound(data,end) data;

...

assert(data <= data + 1 <= end); 

data = data + 1;

data



end



Local Expressions

Dependencies can refer to variables in the 

immediately enclosing scope

Memory references and function calls are 

disallowed

int * count(get_len()) data;

int * count(*len_ptr) data;

int * count(n + m) data; 



Usability

Type checker expects every pointer to 
be annotated ) inference required!

Three inference mechanisms:

– Automatic dependencies

– Pointer graph

– Assumptions



Automatic Dependencies

For unannotated locals, we can add 

annotations that use fresh variables

void foo(int * count(p_len) p, int p_len,

int * count(q_len) q, int q_len) {

int *

if (...) {

else     {

assert(0 <= 42 <      );

... x[42] ...

}

x_len is updated 

when x is updated

x;count(x_len)

x_len = p_len;

x_len = q_len;

x = p; }

x = q; }

???x_len



C Features

Deputy handles:

• Bounded pointers

• Null termination

• Tagged unions

• Polymorphic functions

• Allocations

• Calls to memset, memcpy

Deputy trusts:

• Deallocation & concurrency

• External library code

• User-specified trusted code
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Roadmap

• Static checking vs. dynamic checking

 Dynamic: Enforcing memory safety for C programs

• Static: Proof-carrying code

– Type checking Java bytecodes

– Type checking assembly language

– Proof-carrying code tools and techniques



The Deputy Compiler

code with

programmer

annotations

safe

executable

Insufficient

annotations

Type mismatch

Assertion failure

(compile-time)

Assertion failure

(run-time)

infer annotations

add run-time checks

optimize checks



Outline

Overview

Deputy

• Applications

• Related & Future Work



Deputy Applications

Three categories of applications

– Small programs (SPEC, Olden, Ptrdist)

– Linux device drivers (SafeDrive)

– Linux kernel

Evaluate Deputy on each application

– Annotation burden

– Performance impact



Small Programs (1)

Benchmark Total Lines
Lines 

Changed

Deputy  

Exec. Ratio

CCured 

Exec. Ratio

go 29339 0.6% 1.12 1.06

gzip 8678 3.5% 1.12 -

li 7431 9.1% 1.47 1.45

bh 1907 30.0% 1.09 1.25

bisort 679 13.8% 0.95 0.98

em3d 358 19.0% 1.53 1.95

health 605 4.5% 1.21 1.04

mst 417 14.9% 1.31 1.00

power 768 4.0% 1.02 2.03

treeadd 127 11.0% 1.79 1.11

tsp 565 1.8% 1.03 1.03

s
p
e
c
9
5

o
ld

e
n



SafeDrive Architecture

Linux Kernel

Recovery

Subsystem

SafeDrive

Resource

Tracker

Deputized

Drivers

Other

Drivers

Deputized

Drivers
Deputized

Drivers

Other

Drivers
Other

Drivers



Deputized Drivers

Used Deputy on Linux 2.6 drivers

– Network, sound, video, USB (10-20 KLOC each)

Approximately 1-4% of lines annotated

Lines 

Changed

Bounds Strings Tagged 

Unions

Trusted 

Code

All 6 

drivers

1544 379 83 2 390

Kernel 

headers

1866 187 260 8 140



Evaluation: Recovery

Injected bugs at compile time:

– 140 tests over 7 different categories

– Corrupt parameter, off-by-one, etc.

– Run e1000 driver with & without SafeDrive

• Without SafeDrive: 

– 44 crashes 

– 21 failure

– 75 test passes

With SafeDrive:

: 10 static err., 34 dyn. err.

: 2 dyn. err., 19 no err

: 3 st. err, 5 dyn. err., 67 no err.  



Evaluation: Performance

0 5 10 15 20 25

e1000 TCP recv

e1000 UDP recv

e1000 TCP send

e1000 UDP send

tg3 TCP recv

tg3 TCP send

usb-storage untar

emu10k aplay

intel8x0 aplay

nvidia xinit

0 5 10 15 20

% CPU Overhead % Throughput Overhead

Nooks CPU Overhead:

(Linux 2.4)

e1000 TCP recv:

e1000 TCP send:

46% (vs. 4%)

111% (vs. 12%)



The Language Advantage

Deputy & SafeDrive provide:

– Fine-grained safety checks

– Better performance



Next Step: The Kernel Itself!

Applied Deputy to a full kernel

– 435 KLOC configuration

– Memory, file systems, network, drivers

Manageable amount of work

– 2627 lines annotated (0.6%)

– 3273 lines trusted (0.8%)

– 7 person-weeks of effort required



Kernel Performance

Three categories of performance tests

– Microbenchmarks: HBench-OS

– End-to-end: Large  compile

– End-to-end: Web server performance

Test machine:

– 2.33 GHz Intel Xeon processor

– 1 GB RAM, 4 MB cache



Microbenchmarks

Bandwidth Tests Ratio Latency Tests Ratio

bzero 0.99 connect 1.03

file_rd 0.98 ctx 1.08

mem_cp 0.98 ctx2 1.01

mem_rd 0.99 fs 1.17

mem_wr 0.99 fslayer 1.02

mmap_rd 0.87 mmap 1.51

pipe 0.98 pipe 1.16

tcp 0.92 proc 1.00

rpc 1.27

sig 1.33

syscall 1.04

tcp 1.20

udp 1.29

HBench-OS

kernel 

benchmarks

[Brown ‘97]



Kernel Build Benchmark

Measure time to build a large system

– Test: Linux 2.6.15.5 built with GCC 4.1.3

– Same test machine as before

129.6

128.7

126.8

16

16.1

23.5

0 40 80 120 160

GCC

Deputy (F)

Deputy (V)

User

System



SPEC Web Benchmark

Measure HTTP bandwidth and latency

– Test: SPEC Web 99

– Same test machine as before

Latency (ms/op)

315.2

321

323.5

0 100 200 300 400

GCC

Deputy (F)

Deputy (V)

Bandwidth (Kbits/s)

380.1

374.7

371.9

0 100 200 300 400 500



Deputy Conclusions

• Many C programs are close to being 

memory safe

• With some compiler help and user 

annotations we can have efficient 

dynamic checking for memory safety
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Roadmap

• Static checking vs. dynamic checking

• Dynamic: Enforcing memory safety for C programs

 Static: Proof-carrying code

– Type checking Java bytecodes

– Type checking assembly language

– Proof-carrying code tools and techniques



62

Static Checking Made Easy

• Static checking is key to safety and performance

• Static checking is possible (and in fact easy) if the 
client supplies evidence attesting code safety

• For an important class of properties, the evidence 
can be produced by a client-side tool

Host

Checker

Code

Safety 
certification

tool

Source
code

evidence
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Proof-Carrying Code: An Analogy

Legend:             code
proof
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Good Things About PCC

1. Someone else does the really hard work
• Hard to prove safety but easy to check a proof 

2. Requires minimal trusted infrastructure
• Trust proof checker but not the compiler

3. Agnostic to how the code and proof are produced
• Hand-optimized code is Ok

4. Flexible and general
• One checker for many policies

• “if you can prove it PCC can check it!” 

5. Coexists peacefully with cryptography
• Signatures are a syntactic checksum

• Proofs are a semantic checksum 
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What PCC Does Not Do

• PCC is useful when proving is hard
– Because it requires human assistance

– Because it requires a long time

– Because it requires a complex tool

• … and checking is comparatively easy
– With an automatic and simple proof checker

– Think of the definition of NP

• PCC cannot be used to prove things about code

• PCC is a transport mechanism, to use after you 
proved something about your code
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Roadmap

• Static checking vs. dynamic checking

• Dynamic: Enforcing memory safety for C programs

• Hybrid: Enforcing resource bounds usage

• Static: Proof-carrying code

 Type checking Java bytecodes

– Type checking assembly language

– Proof-carrying code tools and techniques
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Java Virtual Machine (JVM)

• The first successful attempt to bring type safety to 
a lower-level language

• Difficulties with low-level languages:
– Variables (registers) not used consistently with same type

– High-level operations are “unbundled”

• allocation and initialization

• array access and bounds checking

– Must deal with concrete implementation details

• stack allocation of locals, calling conventions

• exception implementation

• JVM tackles some of the above and avoids others by 
not going too low level
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Overview of the JVM

• JVML programs are in .class files

• A .class file contains the implementation of a class
– Tables describing the class

• name, attributes, superclass, interfaces, referenced 
classes

– Tables describing the fields and methods

• name, type, attributes (public, private, etc.)

– The code for the methods in the form of bytecodes

• Before methods in a class are executed, a 
bytecode verifier checks the type safety of the 
code
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Java Bytecode Verification

• Theorem: if BV succeeds then the JVML code is 
(type) safe to execute

Host

Bytecode
verifier

JVML
Code

Java 
Compiler

Java
source

JVML 
types
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JVM Runtime Data Structures

• Java heap
– Used for allocating objects, garbage collected

• Java stack
– One per thread, used for method activation frames

– Activation frames containing:

• Local variables (a.k.a., registers)

• An operand stack, used for operator arguments and 
results

– Example: iadd adds two integers on the top of stack

...
n2

n1 

n1 + n2

...
iadd
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Typed Instructions

• Most JVM instructions are typed !

Example: 

• “xload v” (x 2 {a, i, l, f, d})
– Loads (i.e. pushes) a variable v on the stack

– The prefix specifies the type

– If x = l (long) or x = d (double) then two words are 
pushed

– Otherwise, the type annotation is only for type checking
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Built-In Support

• Objects
– Code does not access objects directly
– “getfield name” for reading fields
– “invokevirtual name” for invoking methods
– “invokeinterface name” for invoking methods in 

interfaces
– “invokespecial name” for constructors

• Arrays
– Bounds checking
– Run-time type checking for aastore (due to covariance)

• Exceptions
– JVM handles the stack unwinding

• This way JVM side-steps many difficult issues
– But also kills many opportunities for optimization
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Example of JVM Verification

1. new P

2. pop p

3. new C

4. pop c

5. push p

6. getfield P.f

7. pop f

8. push c

9. invokevirtual P.m

class P {
int f;
int m() { … }

}
class C extends P {

int m() { … }
}

…
P p = new P();
P c = new C();
int f = p.f;
c.m();
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Errors in JVML Programs

• We’d like to know that the JVML program is 
obtained by correct compilation from well-typed 
Java programs

• Instead verify that the JVML program is safe

• None of the following are allowed:
– Type errors

– Operand stack overflow or underflow

– Access control violations (e.g., private fields and 
methods)

– Reading of uninitialized variables

– Use of uninitialized objects

– Wild jumps

• How do we prevent all these?
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The Java Bytecode Verifier

• Helps prevent errors by checking untrusted JVML 
code before execution

• Essentially a system for type inference for 
programs with unstructured control flow
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JVML Verification Strategy

• Evaluate the program symbolically, remembering 
only the types of registers and stack slots

• Evaluation state:

<pc, F, S>
– where pc is the program counter

– F is a mapping from register names to types

– Types are the class names along with primitive types

– S is a stack of types: Stack ::= empty |  :: S

• Example: 

<1,    [x:=int; f:=C],    P :: C :: _ >
– means: program counter is 1, x has type int, f has type C, 

the stack contains at least two elements of type P and C, 
respectively (P is on top of stack)
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JVML Typechecking Rules

I(pc) = getfield P.f

P’ subtype of P

P has field f of type 

<pc, F, P’ :: S> ! <pc+1, F,  :: S>

I(pc) = invokevirtual P.m

P’ subtype of P

P has method m 

of type 1 £ … £ n ! 

S = 1’ :: … :: n’ :: S’

For each i, i’ subtype of i

<pc, F, P’ :: S> ! <pc+1, F,  :: S’>

I(pc) = new P

<pc, F, S> ! <pc+1, F, P :: S>

I(pc) = pop x

<pc, F,  :: S> ! <pc+1, F[x:=], S>



78

Example of JVM Verification

1. new P

2. pop p

3. new C

4. pop c

5. push p

6. getfield P.f

7. pop f

8. push c

9. invokevirtual P.m

class P {
int f;
int m() { … }

}
class C extends P {

int m() { … }
}

…
P p = new P();
P c = new C();
int f = p.f;
c.m();

<1, F, S>

<2, F, P :: S>

<3, F[p:P], S> 

<4, F[p:P], C :: S>

<5, F[p:P,c:C], S>

<6, F[p:P,c:C], P :: S>

<7, F[p:P,c:C], int ::S>

<8, F[p:P,c:C,f:int], S>

<9, F[p:P,c:C,f:int], C :: S>
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Join Points

• Continue checking unless result is the same as the 
previous state at the join point
– Terminates because of finite class hierarchy

<pc,
[r1:1,…,rn:n],
1 :: … :: m>

<pc,
[r1:’1,…,rn:’n],
’1 :: … :: ’m>

<pc,
[r1:’’1,…,rn:’’n],
’’1 :: … :: ’’m>

’’i = least common ancestor 
of i and ’i in the 
class hierachy



80

Join Points: Subtleties

• May need to verify some code fragments multiple 
times
– An O(n2) complexity bound (some bad implementations 

even worse)

– This is not true for Java, only Java bytecode !

– KVM avoids this with type declarations

• Verification is sound and guaranteed to terminate

• Denial-of-service attack: an adversary sends you a 
worst-case bytecode program
– Your browser will hang trying to verify the code (15 

minutes on a 3GHz machine)
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Java Exceptions

• Java has typed exceptions

• Exceptions can be handled with catch and/or 
finally
int test (int i) {

try {

if (i == 3) return foo ();

} finally { 

bar ();

} 

i ++;

return i;

}
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JVML Subroutines

• A simple solution is to duplicate the “finally” code

• To avoid this, the finally body is compiled into a 
subroutine
– The subroutine is called from each escape point

– A subroutine executes in the same activation frame as 
the host

– Has access to, and can modify all local variables

• Typing challenges
– Call points of subroutines need not agree on the type of 

all local variables; only the ones used in suroutine

– Polymorphism is needed

– Subroutines need not be LIFO
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JVML Subroutines

Subroutines are the most difficult part of the verifier
– several bugs and inconsistencies in the implementation

– 14 of 26 proof invariants

– 50 of 120 lemmas

– 70 of 150 pages of proof

• Subroutines save space?
– About 200 subroutines in 650 Klines of Java (mostly in JDK)

– No subroutines calling other subroutines

– Subroutines save 2427 bytes of 8.7 Mbytes (0.02%)!

– Changing the name Java to Oak saves 13 times more space!

– Latest version of javac does not use subroutines anymore



84

Roadmap

• Static checking vs. dynamic checking

• Dynamic: Enforcing memory safety for C programs

• Static: Proof-carrying code

– Type checking Java bytecodes

 Type checking assembly language

– Proof-carrying code tools and techniques
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Bytecode -> Assembly language

• Bytecode verification is quite powerful
– Requires few annotations

– Derives its simplicity from carefully crafted high-level 
bytecode language

• Can we apply similar ideas for the assembly 
language output of a just-in-time compiler?
– Why is this interesting?
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Compilation of JVML to Assembly

• We must work with the concrete object layout:

dynamic type

lock

dispatch table

field1

field2

method1

method2

…

…

offset:

0

4

8

12

16

0

4

8
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Checking Method Invocation

class P {
int f;
int m() { … }

}
class C extends P {

int m() { … }
}

…
P p = new P();
P c = new C();
c.m();
…

push c
invokevirtual P.m()

branch (= rc 0) Labort

rtmp := m[rc + 8]

rtmp := m[rtmp + 12]

rarg0 := rc

rra := &Lret

jump [rtmp]

Lret:

push c
invokevirtual P.m()
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Checking Method Invocation

• We must give types to intermediate results

• Idea: invent types for intermediate results
– after doing the null check for an object of type P

nonnull(P)

– result of fetching dispatch table of object of type P

disp(P)

– result of fetching kth method from table of class P

method(P, k)

– pointer to a field of type F

ptr(F)

– …

• We write appropriate typing rules
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Checking Method Invocation

…
P p = new P();
P c = new C();
c.m();
…

invokevirtual P.m()

branch (= rc 0) Labort

rtmp := m[rc + 8]

rtmp := m[rtmp + 12]

rarg0 := rc

rra := &Lret

jump [rtmp]

Lret:

hrc : P, … i

hrc : nonnull P, …i

hrtmp : disp(P), …i

r : nonnull P

m[r + 8] : disp(P)

Typing rule:
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Checking Method Invocation

…
P p = new P();
P c = new C();
c.m();
…

invokevirtual P.m()

branch (= rc 0) Labort

rtmp := m[rc + 8]

rtmp := m[rtmp + 12]

rarg0 := rc

rra := &Lret

jump [rtmp]

Lret:

hrc : P, … i

hrc : nonnull P, …i

hrtmp : disp(P), …i

hrtmp : meth(P,3), …i

r : disp(P)

m[r + 4k] : meth(P, k)

Typing rule:
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Checking Method Invocation

…
P p = new P();
P c = new C();
c.m();
…

invokevirtual P.m()

branch (= rc 0) Labort

rtmp := m[rc + 8]

rtmp := m[rtmp + 12]

rarg0 := rc

rra := &Lret

jump [rtmp]

Lret:

hrc : P, … i

hrc : nonnull P, …i

hrtmp : disp(P), …i

hrtmp : meth(P,3), …i

hrarg0 : P, …i

hrrv : int, …i

r : meth(P, k)

kth method in class P has 
arg. D and return R

rarg0: P

rarg1: D

rra : &L (next instr)

(Jump [r]; L: ) ) rrv : R

Typing rule:
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Compiling Virtual Method Dispatch

• Regular compilation of c.m()

pfunc = kth method in table of c

call pfunc(c)
– The called method needs to take the “host” object as 

argument

– Or another object of the same dynamic type

• What if the compiler passes “p” as host argument?
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Unsoundness

…
P p = new P();
P c = new C();
c.m();
…

invokevirtual P.m()

branch (= rc 0) Labort

rtmp := m[rc + 8]

rtmp := m[rtmp + 12]

rarg0 := rp

rra := &Lret

jump [rtmp]

Lret:

hrc : P, … i

hrc : nonnull P, …i

hrtmp : disp(P), …i

hrtmp : meth(P,3), …i

hrarg0 : P, …i

hrrv : int, …i

unsound

r : meth(C, k)

kth method in class C has 
arg. D and return R

rarg0: C

rarg1: D

rra : &L (next instr)

(Jump [r]; L: )  rrv : R

Typing rule:
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More Challenges

class P {
int f;
int m() { … }

}
class C extends P {

int m() { … }
}

…
P p = new P();
P c = new C();
int f = p.f;
p.m();
x = f + 1;

branch (= rp 0) Labort

rtmp := rp + 12

rf := m[rtmp]

branch (= rp 0) Labort

rtmp := m[rp + 8]

rtmp := m[rtmp + 12]

rarg0 := rp

rra := &Lret

jump [rtmp]

Lret:

rx := rf + 1

reordering

and

optimization

hrtmp : ptr(int), … i
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More Challenges

branch (= rp 0) Labort

rtmp := rp + 12

rf := m[rtmp]

rx := rf + 1

branch (= rp 0) Labort

rtmp := m[rtmp - 4]

rtmp := m[rtmp + 12]

rarg0 := rp

rra := &Lret

jump [rtmp]

Lret:

hrtmp : ptr(int), … i

“funny”

pointer 

arithmetic

class P {
int f;
int m() { … }

}
class C extends P {

int m() { … }
}

…
P p = new P();
P c = new C();
int f = p.f;
p.m();
x = f + 1;
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Low-level Type Checking

• We must keep track of dependencies
– E.g., carry equality information 

• We must deal with compiler optimizations
– E.g., carry arithmetic equalities

• Solution: instead of simple types, use dependent 
types: 
“register rtmp contains the dispatch table of object in 

register rc”

rtmp : disp(rc)
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Summary: Typechecking Assembly Language

• We have a typechecker for assembly output of 
Java compiler
– Same type safety as for JVML

– But works at lower level and in presence of optimizations

– We needed more care

– We needed to extend types with dependencies

– Type inference becomes more complicated

– Same idea works for assembly output of other compilers
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Overview of the Lectures

 Proof-carrying code: motivation and overview 

 Type checking Java bytecodes

 Type checking assembly language

• Proof-carrying code: design and implementation

– Verification-condition generation based PCC

– Foundational proof-carrying code

– Open Verifier infrastructure for PCC
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Limitations of Type Safety

• So far the annotations are just hints for type 
inference
– Requires few annotations

– Applicable only when type inference is decidable

• What if we want to allow complex optimizations 
(e.g., array bounds checking elimination)
– Complex types and checking (keep track of inequalities)

– Complex or impossible inference 

• We need to:
– Step beyond simple types (use logic)

– Get more checking help through annotations (use proofs)
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VC Generator: Overview

• Performs simple syntactic checks on the code
– E.g., verifies that all jump targets are valid

• Produces the safety predicate (SP)
– For each safety-related operation emits a verification 

condition (VC) that is provable only if the operation is 
safe to execute

– The safety predicate is a “set” of verification conditions

• One pass through the code
– Needs function specifications and loop invariants

• An old idea from program verification 
– e.g., Floyd, King, Hoare, Dijkstra, etc. , 
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VCGen

• VCGen can be viewed as a symbolic evaluator:
– This is not the traditional formulation of VCGen

– Traditional view of VCGen is as a backward substitution 
constructing the weakest precondition

• The symbolic language (for a type-based policy):
E := x | n | E1 + E2                                                                         

(expressions)

P := E1 = E2 | E1  E2 | P1  P2 | P1  P2 | x. P1 (formulas)
| saferd(E) |  safewr(E1, E2)        (memory safety formulas)

| E : T                                                       (typing formulas)

T ::= int | bool | array(T,E) | pointer(T)                      (types)
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VCGen: Memory Safety

• For a memory read at symbolic address E the 
verification condition is:

saferd(E)

• For a memory write of symbolic value E2 at 
symbolic address E1 is:

safewr(E1, E2)

• It is up to the safety policy to define the meaning 
of “saferd” and “safewr”
– VCGen does not depend on a particular safety policy
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VCGen: Function Call Safety

• Preconditions
– Checked at call site and assumed at function start

– Which registers contain the arguments ?

– What are the relationships between the arguments ?

– What can be assumed of the state of memory ?

– When VCGen sees a function call it emits its precondition 
as a verification condition

• Postconditions
– Checked at return and assumed at call site

– Properties of the return value and the state of memory

– When VCGen sees “ret” it emits the postcondition as a 
verification condition
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A Simple Example

• Consider the following function:
// Compute a conjunction of the booleans from an array

bool forall(bool a[]) {

for(int i=0; i<a.length; i++) {

if (! a[i]) return false; } 

return true; }

• Safety policy:
– Memory accesses are allowed between a and a + a.length - 1

• Only reads are allowed from these addresses

– If the function returns, it must return a boolean

– 0 and 1 are the only representations of booleans
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Safety Policy   Axiomatization

saferd(A + I) 

A : array(T, L)     I  0     I < L
rd

M[A + I] : T

A : array(T, L)     I  0     I < L
typerd

I + 1 ¸ E

I ¸ E       I < L     A : array(T, L) 
inc

E ¸ E
geqid

I + 1 ¸ E

I ¸ E
inc

0 : bool
bool0

1 : bool
bool1

E : int
int
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r  0

i  0

L0 :  

if i >= n goto L1

t  a + i

t  M[t]

if not t goto L2

i  i + 1

goto L0

L1:   r Ã 1 

L2:   return r

PRE a : array(bool, n)

POST r : bool

An Example: Type-Based Memory Safety

• Safety policy expressed as 
preconditions and 
postconditions

INV= i : int  i ¸ 0, REG = { m, a, n, r }
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Verification Condition Generation

PRE a : array(bool, n)

r  0

i  0

L0 :  INV= i : int  i ¸ 0, REG = { m, a, n, r }

if i >= n goto L1

t  a + i

t  M[t]

if not t goto L2

i  i + 1

goto L0

L1:   r Ã 1 

L2:   return r

POST r : bool

a a0

n n0

m m0

i i0

r r0

t t0

Assumptions:

Symbolic register file:
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Verification Condition Generation

PRE a : array(bool, n)

r  0

i  0

L0 :  INV= i : int  i ¸ 0, REG = { m, a, n, r }

if i >= n goto L1

t  a + i

t  M[t]

if not t goto L2

i  i + 1

goto L0

L1:   r Ã 1 

L2:   return r

POST r : bool

a a0

n n0

m m0

i i0

r r0

t t0

Assumptions:
a0 : array(bool, n0)

Symbolic register file:
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Verification Condition Generation

PRE a : array(bool, n)

r  0

i  0

L0 :  INV= i : int  i ¸ 0, REG = { m, a, n, r }

if i >= n goto L1

t  a + i

t  M[t]

if not t goto L2

i  i + 1

goto L0

L1:   r Ã 1 

L2:   return r

POST r : bool

a a0

n n0

m m0

i i0

r 0

t t0

Assumptions:
a0 : array(bool, n0)

Symbolic register file:
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Verification Condition Generation

PRE a : array(bool, n)

r  0

i  0

L0 :  INV= i : int  i ¸ 0, REG = { m, a, n, r }

if i >= n goto L1

t  a + i

t  M[t]

if not t goto L2

i  i + 1

goto L0

L1:   r Ã 1 

L2:   return r

POST r : bool

a a0

n n0

m m0

i 0

r 0

t t0

Assumptions:
a0 : array(bool, n0)

Symbolic register file:

Check: 0 : int 
0 ¸ 0
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Verification Condition Generation

PRE a : array(bool, n)

r  0

i  0

L0 :  INV= i : int  i ¸ 0, REG = { m, a, n, r }

if i >= n goto L1

t  a + i

t  M[t]

if not t goto L2

i  i + 1

goto L0

L1:   r Ã 1 

L2:   return r

POST r : bool

a a0

n n0

m m0

i i1

r 0

t t1

Assumptions:
a0 : array(bool, n0)
i1 : int
i1 ¸ 0

Symbolic register file:
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Verification Condition Generation

PRE a : array(bool, n)

r  0

i  0

L0 :  INV= i : int  i ¸ 0, REG = { m, a, n, r }

if i >= n goto L1

t  a + i

t  M[t]

if not t goto L2

i  i + 1

goto L0

L1:   r Ã 1 

L2:   return r

POST r : bool

a a0

n n0

m m0

i i1

r 0

t t1

Assumptions:
a0 : array(bool, n0)
i1 : int
i1 ¸ 0
i1 < n0

Symbolic register file:
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Verification Condition Generation

PRE a : array(bool, n)

r  0

i  0

L0 :  INV= i : int  i ¸ 0, REG = { m, a, n, r }

if i >= n goto L1

t  a + i

t  M[t]

if not t goto L2

i  i + 1

goto L0

L1:   r Ã 1 

L2:   return r

POST r : bool

a a0

n n0

m m0

i i1

r 0

t a0 + i1

Assumptions:
a0 : array(bool, n0)
i1 : int
i1 ¸ 0
i1 < n0 

Symbolic register file:

Check: saferd(a0 + i1)
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Verification Condition Generation

PRE a : array(bool, n)

r  0

i  0

L0 :  INV= i : int  i ¸ 0, REG = { m, a, n, r }

if i >= n goto L1

t  a + i

t  M[t]

if not t goto L2

i  i + 1

goto L0

L1:   r Ã 1 

L2:   return r

POST r : bool

a a0

n n0

m m0

i i1

r 0

t m0[a0 + i1]

Assumptions:
a0 : array(bool, n0)
i1 : int
i1 ¸ 0
i1 < n0 

Symbolic register file:
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Verification Condition Generation

PRE a : array(bool, n)

r  0

i  0

L0 :  INV= i : int  i ¸ 0, REG = { m, a, n, r }

if i >= n goto L1

t  a + i

t  M[t]

if not t goto L2

i  i + 1

goto L0

L1:   r Ã 1 

L2:   return r

POST r : bool

a a0

n n0

m m0

i i1

r 0

t m0[a0 + i1]

Assumptions:
a0 : array(bool, n0)
i1 : int
i1 ¸ 0
i1 < n0 
m0[a0+i1] = true

Symbolic register file:
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Verification Condition Generation

PRE a : array(bool, n)

r  0

i  0

L0 :  INV= i : int  i ¸ 0, REG = { m, a, n, r }

if i >= n goto L1

t  a + i

t  M[t]

if not t goto L2

i  i + 1

goto L0

L1:   r Ã 1 

L2:   return r

POST r : bool

a a0

n n0

m m0

i i1 + 1

r 0

t m0[a0 + i1]

Assumptions:
a0 : array(bool, n0)
i1 : int
i1 ¸ 0
i1 < n0 
m0[a0+i1] = true

Symbolic register file:
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Verification Condition Generation

PRE a : array(bool, n)

r  0

i  0

L0 :  INV= i : int  i ¸ 0, REG = { m, a, n, r }

if i >= n goto L1

t  a + i

t  M[t]

if not t goto L2

i  i + 1

goto L0

L1:   r Ã 1 

L2:   return r

POST r : bool

a a0

n n0

m m0

i i1 + 1

r 0

t m0[a0 + i1]

Assumptions:
a0 : array(bool, n0)
i1 : int
i1 ¸ 0
i1 < n0 
sel(m0,a0+i1) = true

Symbolic register file:

Check: i1 + 1 : int Æ i1 + 1 ¸ 0



119

Verification Condition Generation (Backtrack)

PRE a : array(bool, n)

r  0

i  0

L0 :  INV= i : int  i ¸ 0, REG = { m, a, n, r }

if i >= n goto L1

t  a + i

t  M[t]

if not t goto L2

i  i + 1

goto L0

L1:   r Ã 1 

L2:   return r

POST r : bool

a a0

n n0

m m0

i i1

r 0

t m0[a0 + i1]

Assumptions:
a0 : array(bool, n0)
i1 : int
i1 ¸ 0
i1 < n0 

Symbolic register file:
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Verification Condition Generation

PRE a : array(bool, n)

r  0

i  0

L0 :  INV= i : int  i ¸ 0, REG = { m, a, n, r }

if i >= n goto L1

t  a + i

t  M[t]

if not t goto L2

i  i + 1

goto L0

L1:   r Ã 1 

L2:   return r

POST r : bool

a a0

n n0

m m0

i i1

r 0

t m0[a0 + i1]

Assumptions:
a0 : array(bool, n0)
i1 : int
i1 ¸ 0
i1 < n0
m0[a0+i1] = false 

Symbolic register file:

Check: 0 : bool
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The Safety Predicate

Assumptions                      Verification conditions

a0 : array(bool, n0)
0 : int Æ 0 ¸ 0 (INV0)

i1 : int
i1 ¸ 0

i1 < n0
saferd(a0+i1) (READ)

m0[a0+i1] = true
i1 + 1 : int Æ i1 + 1 ¸ 0 (INV1)

m0[a0+i1] = false
0 : bool (POST)

i1 ¸ n0
1 : bool (POST)



PCC Client-Side Tools
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A Certifier Compiler for Java

Java source

Exec. content  Type decls

Java Type checker

Prog. analysis

Code gen.

VCGen

IL 

ASM 

+ Inv 

+ Inv

Inv.

Don’t loose the 
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The Kettle Theorem Prover

• Automatic prover for 
– linear arithmetic, uninterpreted functions

– quantifiers are handled with heuristics

– Parameterized by typing rules (specific to type system)

• Constructs proofs upon success 
– In terms of natural deduction rules for FOL and typing 

rules

e =   + 8

 `  : nonnull C 

 ` e : ptr(disp())



Proof Engineering
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Proof Engineering

• Important for practical use of PCC
– Must transport and check proofs

• Also important in other applications using explicit 
proof representations
– Proof-generating theorem provers
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Desired Characteristics

• General framework
– Applicable to many logics

– Allows high-level description of the logic

• Simple and fast proof checking
– Parameterized by the logic (so we don’t have to rewrite it 

over and over)

• Compact representations of proofs
– Reduces bandwidth needed in Proof-Carrying Code

– Reduces space required for storage of proofs

– Speeds-up proof validation
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Proof Representation Strategies

1. A proof is a proof script for a proof assistant
– You get the checker for free, proofs are small

– The checker is unnecessarily large and complex 

2. Or, design an ad-hoc proof representation 
language
– Proofs are trees, nodes are labeled with proof rules, 

children correspond to premises of a rule

– Must be careful with hypothetical judments

– Proofs are small

– Size of proof checker is linear in the # of proof rules
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3. Oracle-based PCC

oracle bits 

Legend:             code
proof
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Proof Representation. Conclusion

• There is a wide range of proof representation 
strategies

• Usually, the simpler the checker, the larger the 
proof must be
– But there are some nice compromise points

• There are variants of PCC where the proof size does 
not matter that much
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Overview of the Lectures

 Proof-carrying code: motivation and overview 

 Type checking Java bytecodes

 Type checking assembly language

• Proof-carrying code: design and implementation

 Verification-condition generation based PCC

– Foundational proof-carrying code

– Open Verifier infrastructure for PCC
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Foundational Proof Carrying Code
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What About Proof Generation ?

• The focus so far has been on the infrastructure
– Touchstone: scalable to large programs, but large TCB 

– FPCC: very small TCB, very difficult to produce proofs

– Can we get the best of both ?

• Often overlooked detail: 

Must have proofs to have PCC !

• Most of the cost of PCC is in proof generation

• Find low-cost strategies to generate the proofs
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Common Safety Checking Tools

• Theorem proving
– For complex properties on small codes

• Model checking

• Type checking, data-flow analysis and 
instrumentation
– JVML, MSIL, TAL, CQual, Stackguard, Deputy, …

– Includes virtually all PCC experiments to date

• Must be easy to obtain proofs from such tools
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Certified Analysis Tools

• Examples: 
– Type inference + type checking

– Model checker + invariant checking

– Java compilation + bytecode verification

code

proof
Analysis

Tool Certifier

annotations

• We separate the certification from analysis tool
– Analysis tool emits annotations to help the certifier
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Certified Program Analysis Tools 

• Certifier and annotations customized for each 
analysis tool

• Advantages: 
– Easy debugging of analysis/instrumentation tools

– Reduces soundness of tool to certifier soundness

• For PCC, we need proof-generating certifiers
– We assume we know how to write certifiers

– How to write proof-generating certifiers ?
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Writing Certifiers

• Method 1: Proof-generating certifiers
– Extend each certification step with proof generation

– Glue together the proofs for individual steps

– Experience: 2x code size increase, 25x slow-down

• Method 2: Verified certifiers
– Prove statically the soundness of the certifier

code

annotations
Analysis

Tool Certifier

Soundness
Verifier
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Verified Certifiers

• How can we prove soundness of a certifier?
– Harder than proving safety of each program 

• But needs to be done only once

• We can use a generic framework and tools for 
abstract-interpretation based certifiers
– Write the certifier in Ocaml

– Generate automatically a few Coq theorems to prove

“You write the type checker and we generate the 
soundness statement for the typing rules it uses”
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A Flexible Variant of PCC

• We do not need proofs for each program
– Send the certifier with its soundness proof

– Then send annotations for each program

– Certification is simpler and faster

• Advantages:
– No need to worry about building proofs, proof sizes, 

proof encoding, for individual programs

• Speed up of 25x, code size reduction 2x

– Subsumes old PCC: Annotations may contain proofs
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Untrusted Certifiers Architecture

Soundness
proof

OCaml-> Coq
Coq

Proof Assistant

Coq
Proof Checker

Soundness
proof

OCaml-> Coq

OCaml
compiler

Certifier

Certifier

Certifier

Mobile
Code

Annotations

Certifier

1. code producer 
proves certifier

2. code consumer
downloads
the certifier
and its proof

3. code consumer
downloads the code
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Custom Verification

• Today’s VM have hard-coded verifiers
– Force a type system, compilation strategy, even source 

language

– Thus, fix the safety mechanism not just the policy 

• Users should be able to 
– Pick source language, compilation strategy, and safety 

enforcement tool

– Upload a certifier

– Essentially, customize the verification

• Doable with the strategy outlined here
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PCC Conclusions

• Software must be executable and checkable

– Powerful safety checkers are kept simple by allowing them 
to consult proofs/oracles

• PCC is automatic and practical for type safety

– More of less inference can be done at the receiver  

• More research is needed before we can automate 
PCC beyond type safety

– Type systems, specification logics and decision procedures 
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PCC Conclusions (II)

• Bridge the gap between PCC and source-level 
analysis tools

• Infrastructure must facilitate the interfacing to 
standard safety tools
– Write custom untrusted certifiers

• Customizable verifiers
– Maximum of flexibility for code producer, without loss of 

safety


