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Outline of Lecture

Motivation
- Can we use automata theory for security?

Formal methods for security
- Overview of techniques

Probabilistic automata
- Introduction to the model

A case study
- MACI protocol of Bellare and Rogaway
- Approximated simulation relations

* Some open problems
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Verification of Security Protocols

Our Question

- Can we use Probabilistic Automata?
- Hierarchical verification
- Compositional analysis

- Simulation method
* Local arguments to derive global properties
» Rigorous proofs

- Potentials for automatic verification
- Potentials to draw connections to other areas
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Nondeterminism and Probability

* Nondeterminism
- User behavior (adversary in Dolev-Yao)
- Relative speeds of agents
- Agent behavior (usually deterministic)
- Abstraction of details

* Probability

- Users and agents flip coins
- Nonces, keys, random protocols

* Quantitative analysis
- Probability of attack (negligible)
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Formal Methods for Security: How?

Provable security [GM84]

- Based on Turing Machines (computational model)
- Proofs by reduction to known difficult problems

Dolev-Yao model [DY83]

- Based on automata theory
- Perfect cryptography

Universally composable security [Can01]
- Based on Interactive Turing Machines
- Specification includes accepted attacks

Reactive Simulatability [PWO01]
- Based on Probabilistic I/0 Automata
- Similar to UC framework
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Provable Security

Let h be a computationally hard function

Let C be a cryptographic primitive
- Collection of PPT algorithms that compute some functions

State correctness of C as follows
- There is no PPT algorithm A that computes some function f

Prove correctness of C as follows

- Suppose for the sake of contradiction that A exists
- Build a PPT algorithm for h that uses A as a black box
- This contradicts the hardness of h

Correctness of C relies on hardness of h
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Dolev-Yao Model

AL A, AL AL A A,

Adversarial Network

+ Agents communicate through adversarial network
- Network remembers everything
- Network may block or reroute messages
- Network may cast new messages
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Dolev-Yao Model: Assumptions

» Symbolic (typical use of the model)
- Messages are symbols
- Cryptography is perfect
- Adversary power limited by a deduction system

* Nonces are always fresh
* No ability to decrypt without decryption key

- Adversary is nondeterministic

» Computational
- Messages are bit strings
- Adversary governed by PPT functions

ANEST

[ £2
A\ G
!

i <
5
\

Foundations of Security Analysis and Design Roberto Segala
Bertinoro, September 10, 2007 University of Verona



Symbolic Dolev-Yao Model

» Analysis is simple
- The system is described by an automaton
- Show that no path leads to failure or attack

- Plenty of techniques from concurrency theory
* Invariants
- Compositional analysis
- Language properties
* Model checking

- Sound with respect to computational [AROO]
- Attack in computational model yields attack in symbolic model

- Need some assumptions on underlying cryptoprimitives
- Non malleability
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Symbolic Dolev-Yao

Deductions
Al-X, A=Y — A |-(X,Y)
Al- (X,Y) — A |- X
Al- (X,Y) —SAl-Y
Al-X,  Al-k = A |-{X},
Al-{X}, Ak — A |- X

Automaton transitions

- Agents add messages to adversary

- Adversary casts messages according to deductions
Invariants

- Signature deducible only if it exists already
Property

- Answers always generated by correct agents
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UC [Can01] and RSim [PWO01]
Motivation

Secrecy Authentication Secrecy and Authentication
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UC-Framework [Canetti]

Environment

\"4

Ideal Simulator
functionality

=
Real protocol Adversary

\Y
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Reactive Simulatability
[Pfitzmann Waidner]

+ Similar to UC Framework
+ Based on PIOAs rather than ITMs
* More elaborated on verification techniques

* Large collection of definitions
- Crypto library [BPWO3]
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Fine, but how do we prove Facts?

Provable security
- Semi-formal arguments
- A lot of wording

Dolev-Yao
- Semi-formal arguments
- .. or typical arguments from concurrency theory

UC Framework
- Semi-formal arguments

Reactive simulatability

- Semi-formal arguments

- "Simulation” up to “"error sets”

- Negligible probability of error sets
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Can we be More Rigorous?

Use Dolev-Yao and Soundness
- Concurrency theory has plenty of techniques

Use Process Algebraic formalisms [MRSTO6 and earlier]
- Expressions denote PPT computable functions
- Equivalence denotes indistinguishability
- Axiomatic reasoning

Use game transformations [ShoO4,Bla05]
- Correctness in provable security expressed as a game
- Transform games preserving correctness

Use Automata Theory [CCKLLPS06,STO7]

- Add computational assumptions
- Extend known techniques (simulation method)
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UC-Security with PIOAs

[Canetti, Cheung, Kaynar, Liskov, Lynch, Pereira, Segala]

Ideal Simulator
functionality

- |
| ? Environment
~ v

Real protocol AR

\Y4
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Nondeterminism: why There?

+ If we have several components
- Who moves first (nondeterminism)?
- Can the order of operations reveal secrets?

+ If we expect input
- What input do we receive?

» If we have partial specification
- How do we implement (nondeterminism)?

* Nondeterminism resolved by a "scheduler”
- Not all resolutions are safe
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Example of Nondeterminism

* Order of messages may reveal one bit of sto E
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Approaches to Nondeterminism

+ UC framework
- ITMs have a token passing mechanism
- No nondeterminism

Reactive simulatability
- Again token passing mechanism
- Nondeterminism based on local information only

*  Process Algebras
- Scheduler sees only enabled action type

Task PIOAs

- Define equivalence classes of states and actions
- Scheduler sees only equivalence classes, not elements

- Symbolic Dolev-Yao
- No probability
- Symbols hide information

Careful specifications
- Avoid dangerous nondeteminism in the specification
- Isit always possible?
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let's concentrate on ...

Automata
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Automata

Transition relation
DcQx(EUH) xQ

Internal (hidden) actions
External actions: ENH =
Initial state: q, € Q
States
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Probabilistic Automata

AR LS

Transition relation
D c Q x (EuUH) x Disc(Q)

Internal (hidden) actions

External actions: ENH = &

Initial state: q, € Q
States
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Example: Automata

A:(Qqu’E’H1D)

choc
-0,

g - 0P
ONq/
e

ok

>q5

coffee

Execution: q,nqg,ng, g, coffee g

Trace: n n coffee
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Example: Probabilistic Automata

flip  1/2 beep |
i 1 s Os
2/3
Jo
m \ 1/2
b g 15 Y4
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Example: Probabilistic Automata

Z
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Example: Probabilistic Automata

o
Jo

ol

P

flip 1/2
. s
213
1/2
A .
flip  1/3 ds

beep

>q5

What is the probability of beeping?
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Example: Probabilistic Executions

fair flip 172, beep 1/2
Jo o0 U3 Us
1/2
u(beep) = 1/2 dy
beep 2/3
w(beep) = 2/3 2/3% Os
Jo unfair >qz flip 1/3= oy

4y Foundations of Security Analysis and Design Roberto Segala
@&  Bertinoro, September 10, 2007 University of Verona 27



Example: Probabilistic Executions
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Measure Theory

* Sample set hy not FE = 299
- Seft of objects O %\Y/_axnp e: set of exec]u’rions ,
lip a"fair coin infinitely many times
- Sigma-field (c-field) O = {ht}”
- Subset F of 29 satisfying Stusy prebaiditissef
- Inclusion of Q S cutions
» Closure under complement ﬁ*fis.%%ﬁs@?‘s_ CIA% T meaégf‘e"
- Closure under countable union Theorem: there is no c-additive

function p on 29 such that
- w(w) = O for each weQ, and
- u(Q)>0.

- Closure under countable intersection

»  Measure on (Q,F)

- Function p from F to R0
* For each countable collection {X;}, of pairwise disjoint sets of F, u(u,X;) = Z,u(X;)

- (Sub-)probability measure
- Measure p such that p(Q) = 1 (u(Q) <1)

- Sigma-field generated by C c 2°
- Smallest o-field that includes C

e Foundations of Security Analysis and Design Roberto Segala
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Cones and Measures

Cone of «
- Set of executions with prefix o
- Represent event "o occurs”

Measure of a cone
- Product edges of a

/2q3 beep Us
<1
J4
o
unfair /Zq <Q@Jeep U5 extends uniQUeIY
2 .
iy, o-field generated by cones
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Examples of Events

+ Eventually action a occurs
- Union of cones where action a occurs once

- Action a occurs at least n times
- Union of cones where action a occurs n times

 Action a occurs at most n times
- Complement of action a occurs at least n+1 times

» Action a occurs exactly n times
- Intersection of previous two events

» Action a occurs infinitely many times
- Intersection of action a occurs at least n times for all n
+ Execution o occurs and nothing is scheduled after
- Set consisting of a only
- C, intersected complement of cones that extend o
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Schedulers - Probabilistic Executions

Scheduler

Function

o . exec*(A) — SubDisc(D)

if o(a)((g,a,v))>0 then q=Istate(a)

Probabilistic execution  generated by o from state r

Measure

Hor

Ho(C) =0 if r=s

He(Cr) =1

iy (Crag) = 14, (C,) [ > o(a)(s.a, V))V(q)]
(s,a,v)eD

T,

A 7
/\" £
= =
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Other Models

 Reactive and generative systems
- Restricted forms of transitions

- Labeled Concurrent Markov Chains
- Restricted forms of transitions

Rabin's Probabilistic Automata
- Introduced in the context of language theory
- Extended by our Probabilistic Automata

* Unlabeled systems [Var85,BA95,BK98]

- Can be Probabilistic Automata with a single invisible action
- Labels may be associated with states
- The theory does not change

*  Markov Chains
- Unlabeled systems that enable one transition from each state

»  Probabilistic Input/Output Automata
- Add Input/Output distinction on actions
- Useful to handle composition of generative PAs

Foundations of Security Analysis and Design Roberto Segala
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Composition of Probabilistic Automata

A; = (Q4,01,E4,H;,Dy) A, = (Qy,0,,E5,H,,Dy)

~

AllA;, = (QxQy, (04,0,) » E;UE, , HiUH,, D)

D= {(q’a’(slﬂsZ))

if a € EjuH; then (m(q),a,s)eD;
if a ¢ EjUH; then s;=x(q) '€ {1’2}}

D= {(q,a,ulxuz) tacEUH then (m(@).a, 1) <D | € {1,2}}

if a¢ EUH; then = 3(m(0))

/” Foundations of Security Analysis and Design Roberto Segala
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Example: Composition of Automata

E = {n,d,choc,coffee} E = {n,d,choc,coffee}
d . choc
: ~ Q4

q C2 S
Qj}\\\ /)}///, choc 2
d
01 Sh— S
S 0 i

0 . coffee
3 coffee Us

S3

d

- (0,,51) choe (04.S,)

|

(03,51) cottee__, (05,S3)

(do:So)
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Ex. Composition of Probabilistic Automata

fair flip 172 beep
S1 > S3 W‘h Os
1/2
0 1/2 q(\A
X unfair ) X
32 unfair 54 Q2 flip 11344
fai b
(S1,00) —— (S3.04) 1,2(53’%) P, (S5,05)
1/2 flip\llz( \
(S0:0) 53,04
bee
.
(S5,00) ——— (S4,0y) 13(84,004)
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Projections

Let a b2 an exoc"’ri“ m“l | A,

o = (0p,Sp) d (02,8;)  (d3,5,) coffee (Qs,S3)
What are the contributions of A; and A,?

10C
_ —(
M) =Qodd,  ggCoffeeds | aoer® (@)
d s, coff & Sl<
TCZ(OL) = 5p U S, COTIEE Sq coffed 5, = Us (9s,S3)

Theorem
o € exeCS(A1||A2) iff A 1,2} TCi(OL) < eXeCS(Ai)

et
/\'*“ =
4 2
! y

) Foundations of Security Analysis and Design Roberto Segala
IIGIX”}_'-_‘-_‘Q!

Bertinoro, September 10, 2007 University of Verona 37




Measure Theory: Image Measure

* Measurable function from (Q, F,) to (0, F,)
- Function f from Q, to Q,
- For each element X of F,, f1(X) e F,

- Image measure f(u)

= f(p)(X) = u(F4(X))

Foundations of Security Analysis and Design Roberto Segala
Bertinoro, September 10, 2007 University of Verona
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Projections

The projection function is measurable
n(w) : image measure under n of p

Theorem
If uis a probabilistic execution of A || A,
then
(1) is a probabilistic execution of A,
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Example: Projection

beep

(51,00) 25 (S3,01,) 7> (S3,03) —==> (S5,05)
1/210 31&%3 3) 3145
(So:%o) S53.04)
ee
Projection onto e flip 1(54,(13)—9»(84,%)
f'ighT componen‘r (S2,0g) —(S4,0) 3(54,CI4)

flip 1/2 beep

fli s q 2q .q
0y 1/2 qo\
1/2
12 q4 unfair d, q

fair

%5 2
1= =}
i =
W) &
% 3
\”lg : \_‘y

Jo flip 13
unfair “\1/2 2/93 beep Us
oy s Note that the scheduler
flip is randomized
Foundations of Security Analysis and Design Roberto Segala
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Trace Distributions

The trace function is measurable

Trace distribution of p
tdist(u) : image measure under trace of p

Trace distribution inclusion preorder
A, <;p A, iff tdists(A,) < tdists(A,)

Foundations of Security Analysis and Design Roberto Segala
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Summing Up

Automata Probabilistic Automata
@ schedulers @
Executions Probabilistic Executions

(measures over executions)

@ trace function @

Traces Trace distributions
(measures over traces)

@ implementation relation @

Trace inclusion Trace distribution inclusion

e Foundations of Security Analysis and Design Roberto Segala
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Trace Distribution Inclusion
IS not Compositional

o So Co

d
Q1M2 asl1 Cl/%‘cZ

b| c AN e| |f
0z U4 S2‘/\‘53 C; G

Solution: close under all czn'rex
51,C1) (51,C5) +(52,C5)

('§ro§e)djs‘ir:(gt11:r¢oo econgr'uence
AccB iff (86.CA) I =(S, B S+(S5.Cy)

Foundations of Security Analysis and Design Roberto Segala
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Quantitative Extension of Trace
Distribution Inclusion

- A<B iff VvC
- If vis a trace distribution of A||C, then
- There exists a trace distribution v' of B||C
- Such that v and v’ are PPT indistinguishable

- Technical detail
- Need to parameterize PAs by security value k
- Need to ensure PAs are PPT constructable

/” Foundations of Security Analysis and Design Roberto Segala
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... yet, Proving Language Inclusion
IS Difficult

* Language inclusion is a global property

- Need to see the whole result of
resolving nondeterminism

* We seek local proof techniques
- Local arguments are easier

- We use simulation relations
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Strong Bisimulation on Automata

Strong bisimulation between A, and A,

Relation R = Q x Q, Va,saq3s
Q=Q,+Q,, such that s 2 -q’

/” Foundations of Security Analysis and Design Roberto Segala
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Strong Bisimulation on
Probabilistic Automata

Strong bisimulation between A, and A,

Relation R < Q x Q,

Q=Q,+Q,, such that

vVa,s a uduy

q s -
R R
S a ol
N—

VCeQR. u(C)=u (C)

:‘%,, ,\\:; Bertinoro, September 10, 2007
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Weak Bisimulation on Automata

Weak bisimulation between A, and A,

Relation R < Q x Q,

Q=Q,wQ,, such that

Vag,s,aq3s

a /
S=S
—

Jdou: trace(a)=a, fstate(a)=s, Istate(a)=s’

et
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Weak bisimulation on
Probabilistic Automata

Weak bisimulation between A, and A,

Relation R < Q x Q,
Q=Q,+Q,, such that

vVa,s a uduy

q 4 -
R R
S 4 ; ﬂ’
&

VCeQR. u(C)=u (C)

Foundations of Security Analysis and Design
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Weak Transition

q > P

There is a probabilistic execution p such that

- u(exec*) =1 (it is finite)

- trace(u) = 8(a) (its trace is a)

- fstate(un) = 8(q) (it starts from q)
- Istate(p) = p (it leads to p)

q3s iff  Ja:trace(o)=a, fstate(c)=q, Istate(c)=s

Foundations of Security Analysis and Design Roberto Segala
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Simulations (Automata)

Forward simulation from A, to A, (A, < A)
Relation R < Q, x Q, such that

Vaq,saq3s

O Q4 53 Sy
; / Foundations of Security Analysis and Design Roberto Segala
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Simulations on Probabilistic Automata

Simulation from A; to A, (A; < A))
Relation R < Q, x Q, such that

S a ’H,

R R
a

q M

Lifting of R

/” Foundations of Security Analysis and Design Roberto Segala
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...and now ...

.. we move to a...

Case Study
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Bellare and Rogaway MAP1 Protocol

R,

[B.AR,R,].

[A.R;],

v

Nonces are generated randomly

The key s is the secret for a Message Authentication Code
- Specifically, MAC based on pseudo-random functions

Foundations of Security Analysis and Design Roberto Segala
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Nonces

- Number ONCE
- Typically drawn randomly

» Claim
- For each constant ¢ and polynomial p
- There exists k such that for each k > k
- If ny,n,,....ny are random nonces from {0,1}
- Then Pr[3;; nj=n;Kk*®

1= ]

Foundations of Security Analysis and Design Roberto Segala
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Message Authentication Code

. Triple (6.A,V)

- Goninput 1 generates s € {0,1}*

- For each s and each a
* Pr[V(s,a,A(s,a))=1]-1

 Forger
- On input 1% obtains MAC of strings of its choice
- Outputs a pair (a,b)
- Successful if V(s,a,b)=1 and a different from previous queries

« Secure MAC
- Every feasible forger succeeds with negligible probability

et
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MAP1: Matching Conversations

* Matching conversation between A and B

- Every message from A to B delivered unchanged
» Possibly last message lost
* Response from B returned to A

- Every message received by A generated by B
* Messages generated by B delivered 1o A
» Possibly last message lost

» Correctness condition
- Matching conversation implies acceptance

- Negligible probability of acceptance without
matching conversation
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MAP1: Correctness Proof

Let A be a PPT machine that interacts with the agents

Show that A induces "no-match” with negligible probability
- Argue that repeated nonces occur with negligible probability
- Argue that A is an attack against a message authentication code

Features
- Relies on underlying pseudo-random functions
- Proves correctness assuming truly random functions
- Builds a distinguisher for PRFs if an attack exists

Criticism
- The arguments are semi-formal and not immediate
- Three different concepts intermixed
* Nonces

* Message authentication codes
* Matching conversations
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MAP1: Hierarchical Analysis

Key
generator

Nonce
generator

(coin flip)

OSSN

Al ALl Al ALl Ag

Adversary
Keeps history
(PPT function f)

Nonce Nonce
Key Key
enerator generator enerator generator
g (ideal) 9 (ideal)
Al ALl AS| AL As || e || A, |[AL|AS || ALl As
Adversary Adversary
Keeps history Keep history
(PPT function f) (no forged signatures)

+ Agents indexed by X, Y, t
- Need to find suitable simulations

- Step conditions lead to local arguments
- Yet transitions cannot be matched exactly

(AT,
1 7
ﬁ‘ 2
1= =}
1A <l
5 =)
% 3
\’{\__.-x_a/
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Nonce Generators

- State
— valuey y, initially L
— FreshNonces initially {0,1}

- Transitions

Input NonceRequesti(/ [
Effect

+ Let v e, {0,123k
* valueyy, =V
* FreshNonces = FreshNonces-{v}

Output NonceResponsey y (n)

Precondition
* n=value,y,

Effect

 valueyy, = 1

Coin flip Ideal

- Let v e, FreshNonces

Foundations of Security Analysis and Design
Bertinoro, September 10, 2007

Roberto Segala
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Adversary

+ Keeps a variable history
- Holds all previous messages

* Real adversary

- Runs a cycle where
+ Computes the next message to send using a PPT function f
- Sends the message
» Waits for the answer if expected

» Ideal adversary
- Highly nondeterministic
- Stores all input
- Sends messages that do not contain forged authentications

Foundations of Security Analysis and Design Roberto Segala
Bertinoro, September 10, 2007 University of Verona
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Problems with Simulations

* Problem
- Consider a transition of the real nonce generator
- With some probability there is a repeated nonce
- The ideal nonce generator does not repeat nonces
- Thus, we cannot match the step

» Solution
- Match transitions up to some error

P
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Convex Combination of Measures

* Let y; and p, be probability measures
* Let p; and p, be reals in [0,1] such that p;+p,=1
+ Define a new measure p = p;u+p,u, as follows

= VX, WX) = pyug(X)+pora(X)

* Theorem: p is a proability measure

- Same result extends to countable summation

VAT

[ £2
/‘\ 2
!

» .
i <
B

\
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Approximate Simulations [STO7}

» Change equivalence on measures

(1-¢) €
. H2 by -
- WM =M 'ff
= (1-e)uy + epy” -
= 1_ ' . n :
Mo ( 'S)Hz e, . "
H1 =H2

» Add parameterizations
- Consider families of PIOA parameterized by k

* Require ¢ smaller than any polynomial in k
- ..provided that computations are of polynomial length

Foundations of Security Analysis and Design Roberto Segala
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Example: Approximated Lifting

era i - R

v e=1/3

/35,135,735, - NS
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Approximate Simulations

{AJ (R} {BJ

For each constant ¢ and polynomial p
There exists k such that for each k > k

Whenever
- v, reached within p(k) steps in A,
= v; LR.Y) v,

- vy oV,
There exists v, such that Vs -V
- VoV,
-C
- v, LR.y+k®) v, V| 7K
Vl . Vl
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Approximate Simulations
Step Condition

Foundations of Security Analysis and Design Roberto Segala
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Execution Correspondence under
Approximated Simulations

If {A} (R} {B} then

For each constant ¢ and polynomial p
There exists k such that for each k > k

For each scheduler o,

- v, reached within p(k) steps in A,with o,
There exists ¢, such that

- v, reached within p(k) steps in B,with o,
= vi LRp(K)K®) v,

Observation
— p(k)k*can be smaller than any k" by choosing c=c’+degree(p)

T,

(8 i
I e
1= =}
I"'—l \_ |

-,

L o5
\‘\\._J '_\_y
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Example: Approximate Simulations
Bellare-Rogaway MAP1 Protocol

Ke Nl Ke Nonce Ke Nonce
enerzfor generator ene r‘Z‘r or| |9&nerator energ‘ror generator
9 (coin flip) 9 (ideal) 9 (ideal)

A ANI I A< AN B A —<(AN

Al A AS AL As || e | A |[AL|AS|| ALl A5 || e || A, || AL || AS]| ALl AS

Adversary Adversary Adversary
Keeps history Keeps history Keep history
(PPT function f) (PPT function f) (no forged signatures)

* Negation of the step condition
- 1. Two random nonces are equal with high probability
- 2: Function f defines a forger for a signature scheme

AALS T
y: >
=} =
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Negation of Step Condition

Ad R (B)

. . v, DKkl
* There exists constant ¢ and polynomial p /’
* For each k there exists k > k o m
+ There exists -
- v, reached within p(k) steps in A, v @) W
-V L(Rk:,y) \Z, \
- Vl —> Vl i 1_y_ - k"
+ There is no v, such that 1
-V, >V, / : /
= vy L(Ry,y+k®) v, V2 / ' VZ
- Nigmod usplfioatied in vy’ V 7k
- Probability at least k= v X Vl’
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Nonces

- Number ONCE
- Typically drawn randomly

» Claim
- For each constant ¢ and polynomial p
- There exists k such that for each k > k
- If ny,n,,....ny are random nonces from {0,1}
- Then Pr[3;; nj=n;Kk*®

1= ]
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Applicability

- Dolev-Yao Model

- Soundness w.r.t. indistinguishability
- How about correspondence of computations?

» Cryptographic library
- More rigorous/local proofs?
- Alternative to error sets?

- Game transformations
- Proof method?

Foundations of Security Analysis and Design Roberto Segala
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Problems with Nondeterminism
MAP1 Protocol [BR93]

Key Nonce
generator gene ra‘(or
(coin flip)

AL\

Al Al AS|| ALl As

» Authentication protocol
- Symmetric key signature schema
- Computational Dolev-Yao
- Adversary queries agents

» Potential problems
- Let s be the shared key

Adversary - Adversary queries k agents
Keeps history : SRS S :
(PPT funcrionif) - Agent i replies if ith bit of sis 1
- The adversary knows the shared key
+ Solution
- One query at a time
- Wait for the answer (agents as oracles)
!/‘f"'"""*f Foundations of Security Analysis and Design Roberto Segala
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Current Status

- What we have

- A notion of task PIOA with restricted schedulers
- Task: equivalence relation on actions

» Equivalence relation on states
- Preserve task enabledness
- Each state enables at most one action for each task
- Each transition reaches only one task

- A notion of approximated language inclusion

» For each trace distribution of A there exists an
indistinguishable trace distribution of B

- A notion of exact simulation safe for language inclusion
+ Works on task PTOAs

- A notion of aproximated simulation
- Works for PAs

e Foundations of Security Analysis and Design Roberto Segala
@@  Bertinoro, September 10, 2007 University of Verona
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Current Status

- ... what we have

- Analysis of oblivious transfer in UC framework
- Task PIOAs as model
* Hierarchical verification via simulations
- Crypto-steps via approximated language inclusion

- Analysis of MAP1 protocol
» PAs as model
- Approximated simulations as technique
* Mixture of Dolev-Yao and computational

* No restriction of nondeterminism
- Yet accurate description of objects
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Current Status

- What we do not have

- Connections

- Approximated simulations with
- Approximated language inclusion
- Restricted schedulers

- Semantics
- Metrics and exact equivalences

- Flexibility on restrictions

- Task PIOAs are very restrictive
- ... though they work
- Chatzikokolakis and Palamidessi may help (ConcurQ7)

- Understanding of restrictions
+ Are we restricting too much?

Foundations of Security Analysis and Design Roberto Segala
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What Else?

* A lot to understand on approximated simulations
- Are they connected to metrics?

- Can we define them incrementally
- How far can we go without polynomial bounds?
- How about approximated language inclusion?

 Need more techniques
- Can we have a uniform view?
- Can we relate better computational and symbolic approaches?
- Any crucial differences between crypto-primitives and protocols?
- How about cross migration of techniques?

- Need more automation
- ... but we need to understand what we automate
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