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Outline of Lecture
• Motivation

– Can we use automata theory for security?

• Formal methods for security
– Overview of techniques

• Probabilistic automata
– Introduction to the model

• A case study
– MAC1 protocol of Bellare and Rogaway
– Approximated simulation relations

• Some open problems
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Verification of Security Protocols

Our Question
• Can we use Probabilistic Automata?

– Hierarchical verification
– Compositional analysis
– Simulation method

• Local arguments to derive global properties
• Rigorous proofs

– Potentials for automatic verification
– Potentials to draw connections to other areas
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Nondeterminism and Probability

• Nondeterminism
– User behavior (adversary in Dolev-Yao)
– Relative speeds of agents
– Agent behavior (usually deterministic)
– Abstraction of details

• Probability
– Users and agents flip coins

• Nonces, keys, random protocols

• Quantitative analysis
– Probability of attack (negligible)
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Formal Methods for Security: How?
• Provable security [GM84]

– Based on Turing Machines (computational model)
– Proofs by reduction to known difficult problems

• Dolev-Yao model [DY83]
– Based on automata theory
– Perfect cryptography

• Universally composable security [Can01]
– Based on Interactive Turing Machines
– Specification includes accepted attacks

• Reactive Simulatability [PW01]
– Based on Probabilistic I/O Automata
– Similar to UC framework



Foundations of Security Analysis and Design
Bertinoro, September 10, 2007

Roberto Segala
University of Verona 6

Provable Security
• Let h be a computationally hard function
• Let C be a cryptographic primitive

– Collection of PPT algorithms that compute some functions

• State correctness of C as follows
– There is no PPT algorithm A that computes some function f

• Prove correctness of C as follows
– Suppose for the sake of contradiction that A exists
– Build a PPT algorithm for h that uses A as a black box
– This contradicts the hardness of h

• Correctness of C relies on hardness of h
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Dolev-Yao Model

• Agents communicate through adversarial network
– Network remembers everything
– Network may block or reroute messages
– Network may cast new messages

A1 A2 A3 A4 A5 A6

Adversarial Network
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Dolev-Yao Model: Assumptions

• Symbolic (typical use of the model)
– Messages are symbols
– Cryptography is perfect
– Adversary power limited by a deduction system

• Nonces are always fresh
• No ability to decrypt without decryption key

– Adversary is nondeterministic

• Computational
– Messages are bit strings
– Adversary governed by PPT functions
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Symbolic Dolev-Yao Model

• Analysis is simple
– The system is described by an automaton
– Show that no path leads to failure or attack
– Plenty of techniques from concurrency theory

• Invariants
• Compositional analysis
• Language properties
• Model checking

• Sound with respect to computational [AR00]
– Attack in computational model yields attack in symbolic model
– Need some assumptions on underlying cryptoprimitives

• Non malleability
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Symbolic Dolev-Yao
Deductions

• A |− X, A |− Y    ⇒ A |−(X,Y)
• A |− (X,Y) ⇒ A |− X
• A |− (X,Y) ⇒ A |− Y
• A |− X, A |− k ⇒ A |−{X}k
• A |− {X}k, A |− k ⇒ A |− X

• Automaton transitions
– Agents add messages to adversary
– Adversary casts messages according to deductions

• Invariants
– Signature deducible only if it exists already

• Property
– Answers always generated by correct agents
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UC [Can01] and RSim [PW01] 
Motivation
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UC-Framework [Canetti]

Ideal 
functionality

AdversaryReal protocol

Environment

Simulator

∀

∃

? ∀
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Reactive Simulatability
[Pfitzmann Waidner]

• Similar to UC Framework

• Based on PIOAs rather than ITMs

• More elaborated on verification techniques

• Large collection of definitions
– Crypto library [BPW03]
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Fine, but how do we prove Facts?
• Provable security

– Semi-formal arguments
– A lot of wording

• Dolev-Yao
– Semi-formal arguments
– … or typical arguments from concurrency theory

• UC Framework
– Semi-formal arguments

• Reactive simulatability
– Semi-formal arguments
– “Simulation” up to “error sets”
– Negligible probability of error sets
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Can we be More Rigorous?
• Use Dolev-Yao and Soundness

– Concurrency theory has plenty of techniques

• Use Process Algebraic formalisms [MRST06 and earlier]
– Expressions denote PPT computable functions
– Equivalence denotes indistinguishability
– Axiomatic reasoning

• Use game transformations [Sho04,Bla05]
– Correctness in provable security expressed as a game
– Transform games preserving correctness

• Use Automata Theory [CCKLLPS06,ST07]
– Add computational assumptions
– Extend known techniques (simulation method)
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UC-Security with PIOAs
[Canetti, Cheung, Kaynar, Liskov, Lynch, Pereira, Segala]

Ideal 
functionality

Real protocol

Environment

Adversary

∀

Simulator

∃

? ∀

Adversary

∀
Simulator

∃

Adversary

∀
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Nondeterminism: why There?

• If we have several components
– Who moves first (nondeterminism)?
– Can the order of operations reveal secrets?

• If we expect input
– What input do we receive?

• If we have partial specification
– How do we implement (nondeterminism)?

• Nondeterminism resolved by a “scheduler”
– Not all resolutions are safe
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Example of Nondeterminism

• Order of messages may reveal one bit of s to E

A

C

B
EKB(s)

EKC(s)

E
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Approaches to Nondeterminism
• UC framework

– ITMs have a token passing mechanism
– No nondeterminism

• Reactive simulatability
– Again token passing mechanism
– Nondeterminism based on local information only

• Process Algebras
– Scheduler sees only enabled action type

• Task PIOAs
– Define equivalence classes of states and actions
– Scheduler sees only equivalence classes, not elements

• Symbolic Dolev-Yao
– No probability
– Symbols hide information

• Careful specifications
– Avoid dangerous nondeteminism in the specification
– Is it always possible?
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….. So …….

let’s concentrate on …

Automata
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Automata

A = (Q , q0 , E , H , D)
Transition relation
D ⊆ Q × (E∪H) × Q

Internal (hidden) actions

External actions: E∩H = ∅

Initial state: q0 ∈ Q

States



Foundations of Security Analysis and Design
Bertinoro, September 10, 2007

Roberto Segala
University of Verona 22

Probabilistic Automata

PA = (Q , q0 , E , H , D)
Transition relation
D ⊆ Q × (E∪H) × Disc(Q)

Internal (hidden) actions

External actions: E∩H = ∅

Initial state: q0 ∈ Q

States
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Example: Automata

A = (Q , q0 , E , H , D)

coffee

q0 q2

q1

q4

q3 q5

d

n

n

n

choc

ch

Execution: q0 n q1 n q2 ch q3 coffee q5

Trace: n n coffee
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Example: Probabilistic Automata

q0

q1

q2

q3

q4

q5fair

unfair

flip

flip

1/2

1/2

2/3

1/3

beep
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Example: Probabilistic Automata

q0

qh

qt

qpflip

flip

1/2
1/2

2/3

1/3

beep

qz
buzz
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Example: Probabilistic Automata

q0

q1

q2

q3

q4

q5fair

unfair

flip

flip

1/2

1/2

2/3

1/3

beep

What is the probability of beeping?
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Example: Probabilistic Executions

q0 q1 q3

q4

q5
1/2

1/2

q0 q2

q3

q4

q5

unfair flip

2/3

1/3

beep
µ(beep) = 2/3

µ(beep) = 1/2

fair beepflip 1/2

2/3
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Example: Probabilistic Executions

q0

q1

q2

q3

q4

q3

q4

q5

q5

fair

unfair

flip

flip

beep

beep

1/2
1/2

2/3

1/3

1/2

1/2

1/4

2/6

7/12
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• Sample set
– Set of objects Ω

• Sigma-field (σ-field)
– Subset F of 2Ω satisfying

• Inclusion of Ω
• Closure under complement
• Closure under countable union
• Closure under countable intersection

• Measure on (Ω,F)
– Function µ from F to ℜ≥0

• For each countable collection {Xi}I of pairwise disjoint sets of F, µ(∪IXi) = ΣIµ(Xi)

• (Sub-)probability measure
– Measure µ such that µ(Ω) = 1 (µ(Ω) ≤ 1)

• Sigma-field generated by C ⊆ 2Ω

– Smallest σ-field that includes C

Measure Theory

Why not F = 2Ω ?
Flip a fair coin infinitely many times
Ω = {h,t}∞

µ(ω) = 0 for each ω∈Ω

µ(first coin h) = 1/2
Theorem: there is no σ-additive 

function µ on 2Ω such that            
- µ(ω) = 0 for each ω∈Ω, and
- µ(Ω)>0.

Example: set of executions

Study probabilities of 
sets of executions

which sets can I measure?
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Theorem
A measure on cones extends uniquely
to a measure on the σ-field generated by cones

q0

q1

q2

q3

q4

q3

q4

q5

q5

fair

unfair

flip

flip

beep

beep

1/2
1/2

2/3
1/3

1/2

1/2

Cones and Measures
• Cone of α

– Set of executions with prefix α
– Represent event “α occurs”

• Measure of a cone
– Product edges of α

Cα
α
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Examples of Events
• Eventually action a occurs

– Union of cones where action a occurs once
• Action a occurs at least n times

– Union of cones where action a occurs n times
• Action a occurs at most n times

– Complement of action a occurs at least n+1 times
• Action a occurs exactly n times

– Intersection of previous two events
• Action a occurs infinitely many times

– Intersection of action a occurs at least n times for all n
• Execution α occurs and nothing is scheduled after

– Set consisting of α only
– Cα intersected complement of cones that extend α
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Schedulers - Probabilistic Executions
Scheduler

Function σ : exec*(A) → SubDisc(D)

if σ(α)((q,a,ν)) > 0 then q = lstate(α)

Probabilistic execution generated by σ from state r 

Measure µσ,r(Cs) = 0                if r ≠ s

µσ,r µσ,r(Cr) = 1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅= ∑

∈Das
raqr qasCC

),,(
,, )()),,)((()()(

ν
ασασ ννασµµ
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Other Models
• Reactive and generative systems

– Restricted forms of transitions

• Labeled Concurrent Markov Chains
– Restricted forms of transitions

• Rabin’s Probabilistic Automata
– Introduced in the context of language theory
– Extended by our Probabilistic Automata

• Unlabeled systems [Var85,BA95,BK98]
– Can be Probabilistic Automata with a single invisible action
– Labels may be associated with states
– The theory does not change

• Markov Chains
– Unlabeled systems that enable one transition from each state

• Probabilistic Input/Output Automata
– Add Input/Output distinction on actions
– Useful to handle composition of generative PAs
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Composition of Probabilistic Automata

D = (q,a,µ1×µ2){ }if a ∈ Ei∪Hi then (πi(q) , a , µi ) ∈ Di

if a ∉ Ei∪Hi then µi = δ(πi(q)) i ∈ {1,2}

||
A1 = (Q1,q1,E1,H1,D1) A2 = (Q2,q2,E2,H2,D2)

A1 || A2 = (Q1×Q2 , (q1,q2) , E1∪E2 , H1∪H2 , D)

D = (q,a,(s1,s2)){ }if a ∈ Ei∪Hi then (πi(q) , a , si ) ∈ Di

if a ∉ Ei∪Hi then si = πi(q) i ∈ {1,2}
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Example: Composition of Automata

d choc

coffee

q0 q2

q1

q4

q3 q5

n

n

n
ch s0 s1

s2

s3

d
choc

coffee

(q0,s0) (q2,s1)

(q3,s1)

(q4,s2)

(q5,s3)

d

ch

choc

coffee

E = {n,d,choc,coffee} E = {n,d,choc,coffee}



Foundations of Security Analysis and Design
Bertinoro, September 10, 2007

Roberto Segala
University of Verona 36

Ex. Composition of Probabilistic Automata

q0

q1

q2

q3

q4

q5fair

unfair

flip

flip

1/2

1/2

2/3

1/3

beep

s0

s1

s2

s3

s4

ch
fair

unfair

1/2

1/2

(s0,q0)

(s1,q0)

(s2,q0)

(s3,q1)

(s4,q2)

(s3,q3)

(s3,q4)
(s4,q3)

(s4,q4)

(s3,q5)

(s4,q5)

ch

fair

unfair

flip

flip

beep

beep

1/2
1/2

2/3
1/3

1/2

1/2
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Projections

(q0,s0) (q2,s1)

(q3,s1)

(q4,s2)

(q5,s3)

d

ch
choc

coffee

Let α be an execution of A1 || A2

α = (q0,s0) d (q2,s1) ch (q3,s1) coffee (q5,s3)

What are the contributions of A1 and A2? 
π1(α) ≡ q0 d q2 ch q3 coffee q5

π2(α) ≡ s0 d s1 coffee s3

Theorem 
α ∈ execs(A1||A2) iff ∀i ∈ {1,2} πi(α) ∈ execs(Ai) 

d choc

coffee

q0 q2

q1

q4

q3 q5

n

n

n
chs0 s1

s2

s3

d
choc

coffee
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Measure Theory: Image Measure

• Measurable function from (Ω1,F1) to (Ω2,F2)
– Function f from Ω1 to Ω2

– For each element X of F2, f-1(X) ∈ F1

• Image measure f(µ)
– f(µ)(X) = µ(f-1(X))

Ω1 Ω2
Xf-1(X) f

µ f(µ)
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Projections

The projection function is measurable
π(µ) : image measure under π of µ

Theorem
If µ is a probabilistic execution of A1 || A2

then
πi (µ) is a probabilistic execution of Ai
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Example: Projection

Projection onto
right component

Note that the scheduler
is randomized

q0

q1

q2

q3

q4

q3

q4

q5

q5

fair

unfair

flip

flip

beep

beep

1/2
1/2

2/3

1/3

1/2

1/2

(s0,q0)

(s1,q0)

(s2,q0)

(s3,q1)

(s4,q2)

(s3,q3)

(s3,q4)
(s4,q3)

(s4,q4)

(s3,q5)

(s4,q5)

ch
fair

unfair

flip

flip

beep

beep

1/2
1/2

2/3
1/3

1/2

1/2

q0

q1

q2

q3

q4

q5fair

unfair

flip

flip

1/2

1/2

2/3

1/3

beep
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Trace Distributions

The trace function is measurable

Trace distribution of µ
tdist(µ) : image measure under trace of µ

Trace distribution inclusion preorder
A1 ≤TD A2 iff tdists(A1) ⊆ tdists(A2)
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Summing Up
Automata Probabilistic Automata

Executions Probabilistic Executions
(measures over executions)

Traces Trace distributions
(measures over traces)

Trace inclusion Trace distribution inclusion

schedulers

trace function

implementation relation
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Trace Distribution Inclusion 
is not Compositional

q0

q1

q3

q2

q4

s0

s1

s2 s3

c0

c1 c2

c4c3

a a d

cb

a

b c fe

(s0,c0) (s1,c0)
(s1,c2) (s1,c4) (s3,c4)

(s2,c3)(s1,c3)(s1,c1)

cf

be
da

Solution: close under all contexts

Trace distribution precongruence

A ≤TDC B        iff ∀C  A||C  ≤TD B||C
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Quantitative Extension of Trace
Distribution Inclusion

• A ≤ B  iff ∀C
– If ν is a trace distribution of A||C, then
– There exists a trace distribution ν’ of B||C
– Such that ν and ν’ are PPT indistinguishable

• Technical detail
– Need to parameterize PAs by security value k
– Need to ensure PAs are PPT constructable
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… yet, Proving Language Inclusion
is Difficult

• Language inclusion is a global property
– Need to see the whole result of 

resolving nondeterminism

• We seek local proof techniques
– Local arguments are easier

• We use simulation relations
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Strong Bisimulation on Automata

Strong bisimulation between A1 and A2

Relation R ⊆ Q x Q, 
Q=Q1∪Q2, such that

q0

q1

q3

q2

q4

s0

s1

s3

a a

b

a

b b

s s′

q q′a

a
R R

∀ q, s, a, q′ ∃ s′

+
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Strong Bisimulation on 
Probabilistic Automata

Strong bisimulation between A1 and A2

Relation R ⊆ Q x Q, 
Q=Q1∪Q2, such that

q0

q1

q3

q2

q4

s0

s1

s3

a

b

a

b b11

∀C ∈Q/R . µ (C ) = µ′ (C )

s µ′

q µa

a
R R

∀ q, s, a, µ ∃ µ′

1

1

⇔
µ R µ′

+

[LS89]
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Weak Bisimulation on Automata

Weak bisimulation between A1 and A2

Relation R ⊆ Q x Q, 
Q=Q1∪Q2, such that

q0

q1

q3

q2

q4

s1

s3

τ τ

bb b

s s′

q q′a

a
R R

∀ q, s, a, q′ ∃ s′

+

s ⇒ s′

⇔

∃α: trace(α)=a, fstate(α)=s, lstate(α)=s′

a
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Weak bisimulation on
Probabilistic Automata

q0

q1

q3

q2

q4

s1

s3

τ

bb b

Weak bisimulation between A1 and A2

Relation R ⊆ Q x Q, 
Q=Q1∪Q2, such that

s µ′

q µa

a
R R

∀ q, s, a, µ ∃ µ′

11 1

∀C ∈Q/R . µ (C ) = µ′ (C )
⇔

µ R µ′

+

[LS89]
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Weak Transition

There is a probabilistic execution µ such that
– µ(exec*) = 1

– trace(µ) = δ(a)

– fstate(µ) = δ(q)

– lstate(µ) = ρ

q ρa

(it is finite)

(its trace is a)

(it starts from q)

(it leads to ρ)

q ⇒ s iff ∃α: trace(α)=a, fstate(α)=q, lstate(α)=sa
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Simulations (Automata)

Forward simulation from A1 to A2  (A1 ≤F A2)
Relation R ⊆ Q1 x Q2 such that

q q′

s s′a

a
R R

∀ q, s, a, q′ ∃ s′

q0

q1

q3

q2

q4

s0

s1

s3 s4

a a

cb

a

b c
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Simulations on Probabilistic Automata

Simulation from A1 to A2  (A1 ≤F A2)
Relation R ⊆ Q1 x Q2 such that

q µ

s µ′a

a
R R

∀ q, s, a, µ ∃ µ′

q1

q2

s1

s2

s3

1/2

1/2

1/3

1/3

1/3

1/3

1/6

1/6

1/3

Lifting of R
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… and now …

… we move to a…

Case Study
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Bellare and Rogaway MAP1 Protocol

• Nonces are generated randomly
• The key s is the secret for a Message Authentication Code

– Specifically, MAC based on pseudo-random functions

A BRA

[B.A.RA.RB]s

[A.RB]s
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Nonces

• Number ONCE
– Typically drawn randomly

• Claim
– For each constant c and polynomial p
– There exists k such that for each k ≥ k
– If n1,n2,…,np(k) are random nonces from {0,1}k

– Then  Pr[∃i≠ j ni= nj]<k-c
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Message Authentication Code

• Triple (G,A,V)
– G on input 1k generates s ∈ {0,1}k

– For each s and each a
• Pr[V(s,a,A(s,a))=1]=1

• Forger
– On input 1k obtains MAC of strings of its choice
– Outputs a pair (a,b)
– Successful if V(s,a,b)=1 and a different from previous queries

• Secure MAC
– Every feasible forger succeeds with negligible probability
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MAP1: Matching Conversations

• Matching conversation between A and B
– Every message from A to B delivered unchanged

• Possibly last message lost
• Response from B returned to A

– Every message received by A generated by B
• Messages generated by B delivered to A
• Possibly last message lost

• Correctness condition
– Matching conversation implies acceptance
– Negligible probability of acceptance without 

matching conversation
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MAP1: Correctness Proof
• Let A be a PPT machine that interacts with the agents

• Show that A induces “no-match” with negligible probability
– Argue that repeated nonces occur with negligible probability
– Argue that A is an attack against a message authentication code

• Features
– Relies on underlying pseudo-random functions
– Proves correctness assuming truly random functions
– Builds a distinguisher for PRFs if an attack exists

• Criticism
– The arguments are semi-formal and not immediate
– Three different concepts intermixed

• Nonces
• Message authentication codes
• Matching conversations
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MAP1: Hierarchical Analysis

• Agents indexed by X, Y, t
• Need to find suitable simulations

– Step conditions lead to local arguments
– Yet transitions cannot be matched exactly

Adversary
Keep history

(no forged signatures)

A1 A2 A3 A4

Key
generator

Nonce
generator

(ideal)

A5

Adversary
Keeps history

(PPT function f)

A1 A2 A3 A4

Key
generator

Nonce
generator

(ideal)

A5

Adversary
Keeps history

(PPT function f)

A1 A2 A3 A4

Key
generator

Nonce
generator
(coin flip)

A5
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Nonce Generators
• State

– valueX,Y,t initially ⊥
– FreshNonces initially {0,1}k

• Transitions
– Input NonceRequestX,Y,t
– Effect

• Let v ∈R {0,1}k

• valueX,Y,t = v
• FreshNonces = FreshNonces-{v}

– Output NonceResponseX,Y,t(n)
– Precondition

• n = valueX,Y,t
– Effect

• valueX,Y,t = ⊥

• Let v ∈R FreshNonces

IdealCoin flip
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Adversary

• Keeps a variable history
– Holds all previous messages

• Real adversary
– Runs a cycle where

• Computes the next message to send using a PPT function f
• Sends the message
• Waits for the answer if expected

• Ideal adversary
– Highly nondeterministic
– Stores all input
– Sends messages that do not contain forged authentications
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Problems with Simulations

• Problem
– Consider a transition of the real nonce generator
– With some probability there is a repeated nonce
– The ideal nonce generator does not repeat nonces
– Thus, we cannot match the step

• Solution
– Match transitions up to some error
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Convex Combination of Measures

• Let µ1 and µ2 be probability measures
• Let p1 and p2 be reals in [0,1] such that p1+p2=1
• Define a new measure µ = p1µ1+p2µ2 as follows

– ∀X, µ(X) = p1µ1(X)+p2µ2(X) 

• Theorem: µ is a proability measure

• Same result extends to countable summation
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Approximate Simulations [ST07]

• Change equivalence on measures

– µ1 ≡ε µ2 iff
• µ1 = (1-ε)µ1’ + εµ1’’
• µ2 = (1-ε)µ2’ + εµ2’’
• µ1’ ≡ µ2’

• Add parameterizations
– Consider families of PIOA parameterized by k

• Require ε smaller than any polynomial in k
– …provided that computations are of polynomial length

µ1’ µ1’’

µ2’ µ2’’

(1-ε) ε

≡

µ1

µ2
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Example: Approximated Lifting

{2/3 q1, 1/3 q2}             =   2/3 {1/2 q1, 1/2 q2} + 1/3{1 q1}

{1/3 s1, 1/3 s2, 1/3 s3}   =   2/3 {1/2 s1, 1/2 s2} + 1/3{1 s3}

? ε = 1/3



Foundations of Security Analysis and Design
Bertinoro, September 10, 2007

Roberto Segala
University of Verona 66

Approximate Simulations

{Ak}  {Rk}  {Bk}

• For each constant c and polynomial p
• There exists k such that for each k ≥ k
• Whenever

– ν1 reached within p(k) steps in Ak

– ν1 L(Rk,γ) ν2

– ν1 → ν1’
• There exists ν2’ such that

– ν2 → ν2’
– ν1’ L(Rk,γ+k-c) ν2’ 

ν1 ν1′

ν2 ν2’
γ γ+k-c
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Approximate Simulations
Step Condition

(1-γ) γ

≡

ν1

ν2

(1-γ-k-c) γν2’

γν1’ (1-γ-k-c)

k-c

k-c

γ(1-γ)
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Execution Correspondence under 
Approximated Simulations

If     {Ak}  {Rk}  {Bk}   then

• For each constant c and polynomial p
• There exists k such that for each k ≥ k
• For each scheduler σ1

– ν1 reached within p(k) steps in Ak with σ1

• There exists σ2 such that
– ν2 reached within p(k) steps in Bk with σ2
– ν1 L(Rk,p(k)k-c) ν2

• Observation
– p(k)k-c can be smaller than any k-c’ by choosing c=c’+degree(p)
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Example: Approximate Simulations
Bellare-Rogaway MAP1 Protocol

• Negation of the step condition
– 1: Two random nonces are equal with high probability
– 2: Function f defines a forger for a signature scheme

Adversary
Keep history

(no forged signatures)

A1 A2 A3 A4

Key
generator

Nonce
generator

(ideal)

A5

Adversary
Keeps history

(PPT function f)

A1 A2 A3 A4

Key
generator

Nonce
generator

(ideal)

A5

Adversary
Keeps history

(PPT function f)

A1 A2 A3 A4

Key
generator

Nonce
generator
(coin flip)

A5

1 2
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Negation of Step Condition
{Ak}  {Rk}  {Bk}

• There exists constant c and polynomial p
• For each k there exists k ≥ k
• There exists

– ν1 reached within p(k) steps in Ak
– ν1 L(Rk,γ) ν2
– ν1 → ν1’

• There is no ν2’ such that
– ν2 → ν2’
– ν1’ L(Rk,γ+k-c) ν2’ 

ν1 ν1′

ν2 ν2’
γ γ+k-c

• Signature forged in ν1’
– Probability at least k-c

• Nonce replicated in ν1’
– Probability at least k-c

(1-γ) γ

≡
ν1

ν2

(1-γ-k-c) γν2’

γν1’ (1-γ-k-c)

k-c

k-c

γ(1-γ)
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Nonces

• Number ONCE
– Typically drawn randomly

• Claim
– For each constant c and polynomial p
– There exists k such that for each k ≥ k
– If n1,n2,…,np(k) are random nonces from {0,1}k

– Then  Pr[∃i≠ j ni= nj]<k-c
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Applicability

• Dolev-Yao Model
– Soundness w.r.t. indistinguishability
– How about correspondence of computations?

• Cryptographic library
– More rigorous/local proofs?
– Alternative to error sets?

• Game transformations
– Proof method?
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Problems with Nondeterminism
MAP1 Protocol [BR93]

• Authentication protocol
– Symmetric key signature schema
– Computational Dolev-Yao
– Adversary queries agents

• Potential problems
– Let s be the shared key
– Adversary queries k agents
– Agent i replies if ith bit of s is 1
– The adversary knows the shared key

• Solution
– One query at a time
– Wait for the answer (agents as oracles)

Adversary
Keeps history

(PPT function f)

A1 A2 A3 A4

Key
generator

Nonce
generator
(coin flip)

A5
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Current Status
• What we have

– A notion of task PIOA with restricted schedulers
• Task: equivalence relation on actions
• Equivalence relation on states

– Preserve task enabledness
– Each state enables at most one action for each task
– Each transition reaches only one task

– A notion of approximated language inclusion
• For each trace distribution of A there exists an

indistinguishable trace distribution of B

– A notion of exact simulation safe for language inclusion
• Works on task PIOAs

– A notion of aproximated simulation
• Works for PAs
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Current Status

• … what we have

– Analysis of oblivious transfer in UC framework
• Task PIOAs as model
• Hierarchical verification via simulations
• Crypto-steps via approximated language inclusion

– Analysis of MAP1 protocol
• PAs as model
• Approximated simulations as technique
• Mixture of Dolev-Yao and computational
• No restriction of nondeterminism

– Yet accurate description of objects
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Current Status
• What we do not have

– Connections
• Approximated simulations with

– Approximated language inclusion
– Restricted schedulers

• Semantics
– Metrics and exact equivalences

– Flexibility on restrictions
• Task PIOAs are very restrictive

– … though they work
– Chatzikokolakis and Palamidessi may help (Concur07)

– Understanding of restrictions
• Are we restricting too much?
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What Else?
• A lot to understand on approximated simulations

– Are they connected to metrics?
– Can we define them incrementally

• How far can we go without polynomial bounds?
– How about approximated language inclusion?

• Need more techniques
– Can we have a uniform view?
– Can we relate better computational and symbolic approaches?
– Any crucial differences between crypto-primitives and protocols?
– How about cross migration of techniques?

• Need more automation
– … but we need to understand what we automate


