Quantitative Analysis of Security (with Probabilistic Automata)

Roberto Segala
University of Verona

Outline of Lecture

- Motivation
- Can we use automata theory for security?
- Formal methods for security
- Overview of techniques
- Probabilistic automata
- Introduction to the model
- A case study
- MAC1 protocol of Bellare and Rogaway
- Approximated simulation relations
- Some open problems

Verification of Security Protocols

Our Question

- Can we use Probabilistic Automata?
- Hierarchical verification
- Compositional analysis
- Simulation method
- Local arguments to derive global properties
- Rigorous proofs
- Potentials for automatic verification
- Potentials to draw connections to other areas

Nondeterminism and Probability

- Nondeterminism
- User behavior (adversary in Dolev-Yao)
- Relative speeds of agents
- Agent behavior (usually deterministic)
- Abstraction of details
- Probability
- Users and agents flip coins
- Nonces, keys, random protocols
- Quantitative analysis
- Probability of attack (negligible)

Formal Methods for Security: How?

- Provable security [GM84]
- Based on Turing Machines (computational model)
- Proofs by reduction to known difficult problems
- Dolev-Yao model [DY83]
- Based on automata theory
- Perfect cryptography
- Universally composable security [Can01]
- Based on Interactive Turing Machines
- Specification includes accepted attacks
- Reactive Simulatability [PW01]
- Based on Probabilistic I/O Automata
- Similar to UC framework

Provable Security

- Let h be a computationally hard function
- Let C be a cryptographic primitive
- Collection of PPT algorithms that compute some functions
- State correctness of C as follows
- There is no PPT algorithm A that computes some function f
- Prove correctness of C as follows
- Suppose for the sake of contradiction that A exists
- Build a PPT algorithm for h that uses A as a black box
- This contradicts the hardness of h
- Correctness of C relies on hardness of h

Dolev-Yao Model

- Agents communicate through adversarial network
- Network remembers everything
- Network may block or reroute messages
- Network may cast new messages

Dolev-Yao Model: Assumptions

- Symbolic (typical use of the model)
- Messages are symbols
- Cryptography is perfect
- Adversary power limited by a deduction system
- Nonces are always fresh
- No ability to decrypt without decryption key
- Adversary is nondeterministic
- Computational
- Messages are bit strings
- Adversary governed by PPT functions

Symbolic Dolev-Yao Model

- Analysis is simple
- The system is described by an automaton
- Show that no path leads to failure or attack
- Plenty of techniques from concurrency theory
- Invariants
- Compositional analysis
- Language properties
- Model checking
- Sound with respect to computational [AROO]
- Attack in computational model yields attack in symbolic model
- Need some assumptions on underlying cryptoprimitives
- Non malleability

Symbolic Dolev-Yao Deductions

- A|-X, $A|-Y \quad \Rightarrow A|-(X, Y)$
- $A \mid-(X, Y)$
- $A \mid-(X, Y)$
- $A|-X, \quad A|-k$
$\Rightarrow A \mid-X$

$$
\Rightarrow A \mid-Y
$$

$$
\Rightarrow A \mid-\{X\}_{k}
$$

- $A \mid-\{X\}_{k}$,

A $\mid-k$
$\Rightarrow A \mid-X$

- Automaton transitions
- Agents add messages to adversary
- Adversary casts messages according to deductions
- Invariants
- Signature deducible only if it exists already
- Property
- Answers always generated by correct agents

UC [Can01] and RSim [PW01] Motivation

UC-Framework [Canetti]

Reactive Simulatability [Pfitzmann Waidner]

- Similar to UC Framework
- Based on PIOAs rather than ITMs
- More elaborated on verification techniques
- Large collection of definitions
- Crypto library [BPW03]

Fine, but how do we prove Facts?

- Provable security
- Semi-formal arguments
- A lot of wording
- Dolev-Yao
- Semi-formal arguments
- ... or typical arguments from concurrency theory
- UC Framework
- Semi-formal arguments
- Reactive simulatability
- Semi-formal arguments
- "Simulation" up to "error sets"
- Negligible probability of error sets

Can we be More Rigorous?

- Use Dolev-Yao and Soundness
- Concurrency theory has plenty of techniques
- Use Process Algebraic formalisms [MRST06 and earlier]
- Expressions denote PPT computable functions
- Equivalence denotes indistinguishability
- Axiomatic reasoning
- Use game transformations [Sho04,Bla05]
- Correctness in provable security expressed as a game
- Transform games preserving correctness
- Use Automata Theory [CCKLLPS06,ST07]
- Add computational assumptions
- Extend known techniques (simulation method)

UC-Security with PIOAs

[Canetti, Cheung, Kaynar, Liskov, Lynch, Pereira, Segala]

Nondeterminism: why There?

- If we have several components
- Who moves first (nondeterminism)?
- Can the order of operations reveal secrets?
- If we expect input
- What input do we receive?
- If we have partial specification
- How do we implement (nondeterminism)?
- Nondeterminism resolved by a "scheduler"
- Not all resolutions are safe

Example of Nondeterminism

- Order of messages may reveal one bit of s to E

Approaches to Nondeterminism

- UC framework
- ITMs have a token passing mechanism
- No nondeterminism
- Reactive simulatability
- Again token passing mechanism
- Nondeterminism based on local information only
- Process Algebras
- Scheduler sees only enabled action type
- Task PIOAs
- Define equivalence classes of states and actions
- Scheduler sees only equivalence classes, not elements
- Symbolic Dolev-Yao
- No probability
- Symbols hide information
- Careful specifications
- Avoid dangerous nondeteminism in the specification
- Is it always possible?

So
 let's concentrate on ...

Automata

Automata

$$
A=\left(Q, q_{0}, E, H, D\right)
$$

Transition relation

$$
D \subseteq Q \times(E \cup H) \times Q
$$

Internal (hidden) actions

External actions: $E \cap H=\varnothing$
Initial state: $q_{0} \in Q$
States

Probabilistic Automata

$$
P A=\left(Q, q_{0}, E, H, D\right)
$$

Transition relation $D \subseteq Q \times(E \cup H) \times \operatorname{Disc}(Q)$

Internal (hidden) actions
External actions: $E \cap H=\varnothing$
Initial state: $q_{0} \in Q$
States

Example: Automata

$$
A=\left(Q, q_{0}, E, H, D\right)
$$

Execution:
 $q_{0} n q_{1} n q_{2} q_{3}$ coffee q_{5}
 Trace:
 $n n$ coffee

Example: Probabilistic Automata

Example: Probabilistic Automata

Example: Probabilistic Automata

What is the probability of beeping?

Example: Probabilistic Executions

Example: Probabilistic Executions

Measure Theory

- Sample set
- Set of objects Ω
- Sigma-field (σ-field)
- Subset F of 2^{Ω} satisfying
- Inclusion of Ω
- Closure under complement
- Closure under countable union
- Closure under countable intersection
- Measure on (Ω, F)

Why not $F=2^{\Omega}$? Example: set of executions Flip a fair coin infinitely many times
$\Omega=\{h, t\}^{\infty}$
Stuqy Erobataiditiessof
sets of expcutions
which sets can I measure?
Theorem: there is no σ-additive
function μ on 2^{Ω} such that
$-\mu(\omega)=0$ for each $\omega \in \Omega$, and
$-\mu(\Omega)>0$.

- Function μ from F to $\mathfrak{R} \geq 0$
- For each countable collection $\left\{X_{i}\right\}_{I}$ of pairwise disjoint sets of $F, \mu\left(\cup_{I} X_{i}\right)=\Sigma_{I} \mu\left(X_{i}\right)$
- (Sub-)probability measure
- Measure μ such that $\mu(\Omega)=1(\mu(\Omega) \leq 1)$
- Sigma-field generated by $C \subseteq 2^{\Omega}$
- Smallest σ-field that includes C

Cones and Measures

- Cone of α
- Set of executions with prefix α
- Represent event " α occurs"
- Measure of a cone
- Product edges of α

Examples of Events

- Eventually action a occurs
- Union of cones where action a occurs once
- Action a occurs at least n times
- Union of cones where action a occurs n times
- Action a occurs at most n times
- Complement of action a occurs at least $n+1$ times
- Action a occurs exactly n times
- Intersection of previous two events
- Action a occurs infinitely many times
- Intersection of action a occurs at least n times for all n
- Execution α occurs and nothing is scheduled after
- Set consisting of α only
- C_{α} intersected complement of cones that extend α

Schedulers - Probabilistic Executions

Scheduler

Function

$$
\sigma: \operatorname{exec}^{*}(A) \rightarrow \operatorname{SubDisc}(D)
$$

$$
\text { if } \sigma(\alpha)((q, a, v))>0 \text { then } q=\text { Istate }(\alpha)
$$

Probabilistic execution generated by σ from state r

$$
\begin{array}{c|l|}
\cline { 2 - 3 } \begin{array}{cl}
\text { Measure } & \mu_{\sigma, r}\left(\mathrm{C}_{s}\right)=0 \\
\mu_{\sigma, r} & \mu_{\sigma, r}\left(\mathrm{C}_{r}\right)=1 \\
& \mu_{\sigma, r}\left(C_{\alpha a q}\right)=\mu_{\sigma, r}\left(C_{\alpha}\right) \cdot\left(\sum_{(s, a, v) \in D} \sigma(\alpha)((s, a, v)) v(q)\right)
\end{array}
\end{array}
$$

Other Models

- Reactive and generative systems
- Restricted forms of transitions
- Labeled Concurrent Markov Chains
- Restricted forms of transitions
- Rabin's Probabilistic Automata
- Introduced in the context of language theory
- Extended by our Probabilistic Automata
- Unlabeled systems [Var85,BA95,BK98]
- Can be Probabilistic Automata with a single invisible action
- Labels may be associated with states
- The theory does not change
- Markov Chains
- Unlabeled systems that enable one transition from each state
- Probabilistic Input/Output Automata
- Add Input/Output distinction on actions
- Useful to handle composition of generative PAs

Composition of Probabilistic Automata

$$
\begin{gathered}
A_{1}=\left(Q_{1}, q_{1}, E_{1}, H_{1}, D_{1}\right) \\
A_{1} \| A_{2}=\left(Q_{1} \times Q_{2},\left(q_{1}, q_{2}\right), E_{1} \cup E_{2}, H_{1} \cup H_{2}, D\right)
\end{gathered}
$$

$$
D=\left\{\left(q, a,\left(s_{1}, s_{2}\right)\right) \left\lvert\, \begin{array}{l}
\text { if } a \in E_{i} \cup H_{i} \text { then }\left(\pi_{i}(q), a, s_{i}\right) \in D_{i} \\
\text { if } a \notin E_{i} \cup H_{i} \text { then } s_{i}=\pi_{i}(q)
\end{array} \quad i \in\{1,2\}\right.\right\}
$$

$$
D=\left\{\left(q, a, \mu_{1} \times \mu_{2}\right) \left\lvert\, \begin{array}{l}
\text { if } a \in E_{i} \cup H_{i} \text { then }\left(\pi_{i}(q), a, \mu_{i}\right) \in D_{i} \\
\text { if } a \notin E_{i} \cup H_{i} \text { then } \mu_{i}=\delta\left(\pi_{i}(q)\right)
\end{array} \quad i \in\{1,2\}\right.\right\}
$$

Example: Composition of Automata

$$
E=\{n, d, c h o c, c o f f e e\}
$$

$$
\begin{array}{r}
\left(q_{0}, s_{0}\right) \xrightarrow{d}\left(q_{2}, s_{1}\right) \xrightarrow{\text { choc }}\left(q_{4}, s_{2}\right) \\
\left(q_{3}, s_{1}\right) \xrightarrow{\text { coffee }}\left(q_{5}, s_{3}\right)
\end{array}
$$

Ex. Composition of Probabilistic Automata

Projections

Let α ho. an exocritian of $A_{1} \| A_{2}$

$$
\alpha=\left(q_{0}, s_{0}\right) d\left(q_{2}, s_{1}\right)\left(q_{3}, s_{1}\right) \operatorname{coffee}\left(q_{5}, s_{3}\right)
$$

What are the contributions of A_{1} and A_{2} ?

$$
\begin{aligned}
& \pi_{1}(\alpha) \equiv q_{0} d q_{2} \quad q_{3} \text { coffee } q_{5} \\
& \pi_{2}(\alpha) \equiv s_{0} d s_{1} \text { coffee } s_{3}
\end{aligned}
$$

Theorem

$\alpha \in \operatorname{execs}\left(A_{1} \| A_{2}\right)$ iff $\forall_{i \in\{1,2\}} \pi_{i}(\alpha) \in \operatorname{execs}\left(A_{i}\right)$

Measure Theory: Image Measure

- Measurable function from $\left(\Omega_{1}, F_{1}\right)$ to $\left(\Omega_{2}, F_{2}\right)$
- Function f from Ω_{1} to Ω_{2}
- For each element X of $F_{2}, f^{-1}(X) \in F_{1}$
- Image measure $f(\mu)$

$$
-\mathrm{f}(\mu)(\mathrm{X})=\mu\left(\mathrm{f}^{-1}(\mathrm{X})\right)
$$

Projections

The projection function is measurable $\pi(\mu)$: image measure under π of μ

Theorem

If μ is a probabilistic execution of $A_{1} \| A_{2}$ then $\pi_{i}(\mu)$ is a probabilistic execution of A_{i}

Example: Projection

Projection onto right component

Note that the scheduler is randomized

Trace Distributions

The trace function is measurable

Trace distribution of μ

$\operatorname{tdist}(\mu)$: image measure under trace of μ

Trace distribution inclusion preorder

$$
A_{1} \leq_{\mathrm{TD}} A_{2} \text { iff } \operatorname{tdists}\left(A_{1}\right) \subseteq \operatorname{tdists}\left(A_{2}\right)
$$

Summing Up

Automata

Executions

Traces

Trace inclusion

Probabilistic Automata

schedulers

Probabilistic Executions (measures over executions)
trace function

Trace Distribution Inclusion is not Compositional

Solution: close under all contexts
$\left(s_{0}, \epsilon_{0}\right)$ distribution precongruence

$$
A \leq \text { TDC } B \quad \text { iff } \quad(\$ \&, C A) \mid \mathcal{C}^{f} \leq\left(\$_{B 1}, B_{4}\right) C^{C} \rightarrow\left(s_{3}, C_{4}\right)
$$

Quantitative Extension of Trace Distribution Inclusion

- $A \leq B$ iff $\forall C$
- If v is a trace distribution of $A \| C$, then
- There exists a trace distribution v^{\prime} of $B \| C$
- Such that v and v^{\prime} are PPT indistinguishable
- Technical detail
- Need to parameterize PAs by security value k
- Need to ensure PAs are PPT constructable
... yet, Proving Language Inclusion is Difficult
- Language inclusion is a global property
- Need to see the whole result of resolving nondeterminism
- We seek local proof techniques
- Local arguments are easier
- We use simulation relations

Strong Bisimulation on Automata

Strong bisimulation between A_{1} and A_{2}
Relation $R \subseteq Q \times Q$, $Q=Q_{1} \uplus Q_{2}$, such that

Strong Bisimulation on Probabilistic Automata

Strong bisimulation between A_{1} and A_{2} Relation $R \subseteq Q \times Q$, $Q=Q_{1} \uplus Q_{2}$, such that

$$
\begin{array}{|c}
\mu R \mu^{\prime} \quad[\text { LS89] } \\
\Leftrightarrow \Leftrightarrow \\
\forall C \in Q / R \cdot \mu(C)=\mu^{\prime}(C) \\
\hline
\end{array}
$$

Weak Bisimulation on Automata

Weak bisimulation between A_{1} and A_{2}

Relation $R \subseteq Q \times Q$, $Q=Q_{1} \uplus Q_{2}$, such that

$$
\forall q, s, a, q^{\prime} \exists s^{\prime}
$$

R

$$
s \stackrel{a}{\Rightarrow} s^{\prime}
$$

$\exists \alpha: \operatorname{trace}(\alpha)=a, f$ state $(\alpha)=s$, Istate $(\alpha)=s^{\prime}$

Weak bisimulation on Probabilistic Automata

Weak bisimulation between A_{1} and A_{2}

Relation $R \subseteq Q \times Q$, $Q=Q_{1} \uplus Q_{2}$, such that

$\forall q, s, a, \mu \exists \mu^{\prime}$

$$
\begin{array}{|c}
\mu R \mu^{\prime} \quad[\text { LS89 }] \\
\forall C \in Q / R \cdot \mu(C)=\mu^{\prime}(C) \\
\hline
\end{array}
$$

Weak Transition

There is a probabilistic execution μ such that

$$
\begin{array}{lll}
-\mu\left(\text { exec }^{*}\right)=1 & & \text { (it is finite) } \\
- & & \text { (its trace }(\mu)=\delta(a) \\
- & \text { fstate }(\mu)=\delta(q) & \text { (it starts from } q) \\
- & \text { Istate }(\mu)=\rho & \text { (it leads to } \rho) \\
q \stackrel{a}{\Rightarrow} s \text { iff } \quad \exists \alpha: \operatorname{trace}(\alpha)=a, \text { fstate }(\alpha)=q, \text { Istate }(\alpha)=s
\end{array}
$$

Simulations (Automata)

Forward simulation from A_{1} to $A_{2}\left(A_{1} \leq_{F} A_{2}\right)$ Relation $R \subseteq Q_{1} \times Q_{2}$ such that

$\forall q, s, a, q^{\prime} \exists s^{\prime}$

Simulations on Probabilistic Automata

Simulation from A_{1} to $A_{2}\left(A_{1} \leq_{\mathrm{F}} A_{2}\right)$ Relation $R \subseteq Q_{1} \times Q_{2}$ such that

... and now ...

... we move to a...

Case Study

Bellare and Rogaway MAP1 Protocol

- Nonces are generated randomly
- The key s is the secret for a Message Authentication Code
- Specifically, MAC based on pseudo-random functions

Nonces

- Number ONCE
- Typically drawn randomly
- Claim
- For each constant c and polynomial p
- There exists \boldsymbol{k} such that for each $k \geq \boldsymbol{k}$
- If $n_{1}, n_{2}, \ldots, n_{p(k)}$ are random nonces from $\{0,1\}^{k}$
- Then $\operatorname{Pr}\left[\exists_{i \neq j} n_{i}=n_{j}\right] k^{c}$

Message Authentication Code

- Triple (G, A, V)
- G on input 1^{k} generates $s \in\{0,1\}^{k}$
- For each s and each a
- $\operatorname{Pr}[V(s, a, A(s, a))=1]=1$
- Forger
- On input 1^{k} obtains MAC of strings of its choice
- Outputs a pair (a, b)
- Successful if $\mathrm{V}(s, a, b)=1$ and a different from previous queries
- Secure MAC
- Every feasible forger succeeds with negligible probability

MAP1: Matching Conversations

- Matching conversation between A and B
- Every message from A to B delivered unchanged
- Possibly last message lost
- Response from B returned to A
- Every message received by A generated by B
- Messages generated by B delivered to A
- Possibly last message lost
- Correctness condition
- Matching conversation implies acceptance
- Negligible probability of acceptance without matching conversation

MAP1: Correctness Proof

- Let A be a PPT machine that interacts with the agents
- Show that A induces "no-match" with negligible probability
- Argue that repeated nonces occur with negligible probability
- Argue that A is an attack against a message authentication code
- Features
- Relies on underlying pseudo-random functions
- Proves correctness assuming truly random functions
- Builds a distinguisher for PRFs if an attack exists
- Criticism
- The arguments are semi-formal and not immediate
- Three different concepts intermixed
- Nonces
- Message authentication codes
- Matching conversations

MAP1: Hierarchical Analysis

- Agents indexed by X, Y, \dagger
- Need to find suitable simulations
- Step conditions lead to local arguments
- Yet transitions cannot be matched exactly

Nonce Generators

- State
- value ${ }_{X, Y, t}$ initially \perp
- FreshNonces initially $\{0,1\}^{k}$
- Transitions
- Input NonceRequest ${ }_{X, Y, t}$
- Effect
- Let $v \in_{R}\{0,1\}^{k}$

Coin flip

- value $_{X, Y, t}=v$
- FreshNonces $=$ FreshNonces- $\{v\}$
- Output NonceResponse $X_{X, Y, t}(n)$
- Precondition
- $n=$ value $_{X, Y, t}$
- Effect
- value $_{X, Y, t}=\perp$

Adversary

- Keeps a variable history
- Holds all previous messages
- Real adversary
- Runs a cycle where
- Computes the next message to send using a PPT function f
- Sends the message
- Waits for the answer if expected
- Ideal adversary
- Highly nondeterministic
- Stores all input
- Sends messages that do not contain forged authentications

Problems with Simulations

- Problem
- Consider a transition of the real nonce generator
- With some probability there is a repeated nonce
- The ideal nonce generator does not repeat nonces
- Thus, we cannot match the step
- Solution
- Match transitions up to some error

Convex Combination of Measures

- Let μ_{1} and μ_{2} be probability measures
- Let p_{1} and p_{2} be reals in $[0,1]$ such that $p_{1}+p_{2}=1$
- Define a new measure $\mu=p_{1} \mu_{1}+p_{2} \mu_{2}$ as follows
- $\forall X, \mu(X)=p_{1} \mu_{1}(X)+p_{2} \mu_{2}(X)$
- Theorem: μ is a proability measure
- Same result extends to countable summation

Approximate Simulations [ST07]

- Change equivalence on measures
- $\mu_{1} \equiv_{\varepsilon} \mu_{2}$ iff
- $\mu_{1}=(1-\varepsilon) \mu_{1}{ }^{\prime}+\varepsilon \mu_{1}{ }^{\prime \prime}$
- $\mu_{2}=(1-\varepsilon) \mu_{2}{ }^{\prime}+\varepsilon \mu_{2}{ }^{\prime \prime}$
- $\mu_{1}{ }^{\prime} \equiv \mu_{2}{ }^{\prime}$

- Add parameterizations
- Consider families of PIOA parameterized by k
- Require ε smaller than any polynomial in k
- ...provided that computations are of polynomial length

Example: Approximated Lifting

Approximate Simulations

$$
\left\{A_{k}\right\}\left\{R_{k}\right\}\left\{B_{k}\right\}
$$

- For each constant c and polynomial p
- There exists \boldsymbol{k} such that for each $k \geq \boldsymbol{k}$
- Whenever
- v_{1} reached within $p(k)$ steps in A_{k}
- $v_{1} L\left(R_{k}, \gamma\right) v_{2}$
- $v_{1} \rightarrow v_{1}{ }^{\prime}$
- There exists $v_{2}{ }^{\prime}$ such that
- $v_{2} \rightarrow v_{2}^{\prime}$
- $v_{1}^{\prime} L\left(R_{k}, \gamma+k^{c}\right) v_{2}^{\prime}$

Approximate Simulations Step Condition

Execution Correspondence under Approximated Simulations

If $\left\{A_{k}\right\}\left\{R_{k}\right\}\left\{B_{k}\right\}$ then

- For each constant c and polynomial p
- There exists \boldsymbol{k} such that for each $k \geq \boldsymbol{k}$
- For each scheduler σ_{1}
- v_{1} reached within $p(k)$ steps in A_{k} with σ_{1}
- There exists σ_{2} such that
- v_{2} reached within $p(k)$ steps in B_{k} with σ_{2}
- $v_{1} L\left(R_{k} p(k) k^{-c}\right) v_{2}$
- Observation
- $p(k) k^{-c}$ can be smaller than any $k^{-c^{\prime}}$ by choosing $c=c^{\prime}+\operatorname{degree}(p)$

Example: Approximate Simulations Bellare-Rogaway MAP1 Protocol

- Negation of the step condition
- 1: Two random nonces are equal with high probability
- 2: Function f defines a forger for a signature scheme

Negation of Step Condition

$$
\left\{A_{k}\right\}\left\{R_{k}\right\}\left\{B_{k}\right\}
$$

- There exists constant c and polynomial p
- For each \boldsymbol{k} there exists $k \geq \boldsymbol{k}$
- There exists
- v_{1} reached within $p(k)$ steps in A_{k}
- $v_{1} L\left(R_{k}, \gamma\right) v_{2}$
- $v_{1} \rightarrow v_{1}$
- There is no v_{2}^{\prime} such that
- $v_{2} \rightarrow v_{2}^{\prime}$
- $v_{1}^{\prime} L\left(R_{k}, \gamma+k^{-c}\right) v_{2}^{\prime}$
- Sligmectuneeplfoaged in $\mathbf{v}_{11}{ }^{\prime \prime}$
- Probability at least k^{c}

Nonces

- Number ONCE
- Typically drawn randomly
- Claim
- For each constant c and polynomial p
- There exists \boldsymbol{k} such that for each $k \geq \boldsymbol{k}$
- If $n_{1}, n_{2}, \ldots, n_{p(k)}$ are random nonces from $\{0,1\}^{k}$
- Then $\operatorname{Pr}\left[\exists_{i \neq j} n_{i}=n_{j}\right] k^{c}$

Applicability

- Dolev-Yao Model
- Soundness w.r.t. indistinguishability
- How about correspondence of computations?
- Cryptographic library
- More rigorous/local proofs?
- Alternative to error sets?
- Game transformations
- Proof method?

Problems with Nondeterminism MAP1 Protocol [BR93]

- Authentication protocol
- Symmetric key signature schema
- Computational Dolev-Yao
- Adversary queries agents
- Potential problems
- Let s be the shared key
- Adversary queries k agents
- Agent i replies if $i^{\text {th }}$ bit of s is 1
- The adversary knows the shared key
- Solution
- One query at a time
- Wait for the answer (agents as oracles)

Current Status

- What we have
- A notion of task PIOA with restricted schedulers
- Task: equivalence relation on actions
- Equivalence relation on states
- Preserve task enabledness
- Each state enables at most one action for each task
- Each transition reaches only one task
- A notion of approximated language inclusion
- For each trace distribution of A there exists an indistinguishable trace distribution of B
- A notion of exact simulation safe for language inclusion
- Works on task PIOAs
- A notion of aproximated simulation
- Works for PAs

Current Status

- ... what we have
- Analysis of oblivious transfer in UC framework
- Task PIOAs as model
- Hierarchical verification via simulations
- Crypto-steps via approximated language inclusion
- Analysis of MAP1 protocol
- PAs as model
- Approximated simulations as technique
- Mixture of Dolev-Yao and computational
- No restriction of nondeterminism
- Yet accurate description of objects

Current Status

- What we do not have

- Connections
- Approximated simulations with
- Approximated language inclusion
- Restricted schedulers
- Semantics
- Metrics and exact equivalences
- Flexibility on restrictions
- Task PIOAs are very restrictive
- ... though they work
- Chatzikokolakis and Palamidessi may help (Concur07)
- Understanding of restrictions
- Are we restricting too much?

What Else?

- A lot to understand on approximated simulations
- Are they connected to metrics?
- Can we define them incrementally
- How far can we go without polynomial bounds?
- How about approximated language inclusion?
- Need more techniques
- Can we have a uniform view?
- Can we relate better computational and symbolic approaches?
- Any crucial differences between crypto-primitives and protocols?
- How about cross migration of techniques?
- Need more automation
- ... but we need to understand what we automate

