
Low-level Software Security:
Attacks and Defenses

Úlfar Erlingsson

Microsoft Research, Silicon Valley
and

Reykjavík University, Iceland

FOSAD’07

An example of a real-world attack

FOSAD'07: Low-level Software Security2

 Exploits a
vulnerability in
the GDI+
rendering of
JPEG images

 Seen in the
wild in 2002

 (Seen before in
the late 1990’s
in Linux and
Netscape)

What exactly happened here? (part 1)

FOSAD'07: Low-level Software Security3

1. A “comment field” in the JPEG appeared to be too long

 The attacker chose the comment data, and its field encoding

2. Heap overflow

 When copied, the comment overflowed the heap

 The heap metadata was corrupted in the overflow

 The overflow also caused an exception to be thrown

3. Overwriting of arbitrary memory

 The exception was caught to invoke a cleanup handler

 A heap operation was performed using corrupt metadata

Attacker-chosen data written to an arbitrary address

 Attacker overwrote the vtable-pointer of a global C++ object

What exactly happened here? (part 2)

FOSAD'07: Low-level Software Security4

 Heap metadata is based on doubly-linked lists

 To unlink, must do: node->prev->next = node->next

 Can allow arbitrary writes in exploits: *(addr+4) = val

4. Attack payload is executed

 Later in the cleanup, the global C++ object instance is deleted

 The object’s vtable points to attacker-chosen code pointers

 Calling the virtual destructor actually calls the attacker’s code

nextprev nextprevnextprev nextprev valaddr

Machine code attacks & defenses

FOSAD'07: Low-level Software Security5

 Until recently, the majority of CERT/CC advisories dealt with
subversion of expected behavior at the level of machine code

 E.g., overflow buffer
to overwrite return
address on the stack

 Other vulnerabilities
can also be exploited
to hijack execution

Defenses

NX prevents
data memory

execution

/GS checks
return pointer

hasn’t been
overwritten

Previous function’sPrevious function’s
stack framestack frame

Return addressReturn address

LocalLocal

BufferBuffer

LocalLocal

GarbageGarbage

Can be anythingCan be anything

Attack CodeAttack Code

Hijacked PC pointerHijacked PC pointer

Attack CodeAttack Code

Particular defenses for heap metadata

FOSAD'07: Low-level Software Security6

 Check invariants for doubly-linked lists
 To unlink, must do: node->prev->next = node->next

 Only do if node->prev->next node node->next->prev

 (Check deployed in Windows since XP SP2)

 Other, more generic defenses possible (and in use)
 E.g., can encrypt the pointers somehow, or add a checksum

 What are the principles behind such defenses?

nextprev nextprevnextprev

Assumptions are vulnerabilities

FOSAD'07: Low-level Software Security7

 How to successfully attack a system
 1) Discover what assumptions were made

 2) Craft an exploit outside those assumptions

 Two assumptions often exploited:
 A target buffer is large enough for source data

 Computer integers behave like math integers

 (i.e., buffer overflows & integer overflows)

Assumptions about control flow

FOSAD'07: Low-level Software Security8

 We write our code in high-level languages

 Naturally, our execution model assumes:
 Functions start at the beginning

 They (typically) execute from beginning to end

 And, when done, they return to their call site

 Only the code in the program can be executed

 The set of executable instructions is limited to
those output during compilation of the program

Assumptions about control flow

FOSAD'07: Low-level Software Security9

 We write our code in high-level languages

 But, actually, at the level of machine code
 Can start in the middle of functions

 A fragment of a function may be executed

 Returns can go to any program instruction

 All the data has usually been executable

 On the x86, can start executing not only in the
middle of functions, but middle of instructions!

Protection alternatives

FOSAD'07: Low-level Software Security10

 Safer, higher-level languages: ML, Java, CCured, etc.

 Need porting, source access, and runtime support

 In particular, need garbage collection, fat pointers, etc.

 Mostly based on static checking with little or no redundancy

 Hardware protection or software binary interpretation

 Applies to legacy code, but typically with coarse protection

 Finer-grained protection requires complex, slow interpreters

 Unobtrusive, language-based defenses for legacy code

 Low-level (runtime) guarantee for certain high-level properties

 Specific to vulnerabilities/attacks; offer limited defenses

Unobtrusive defenses for legacy code

FOSAD'07: Low-level Software Security11

 In practice, we focus on defenses that

 Operate at the lowest level (machine-code)

 Involve no source-code changes; at most re-compilation

 Have zero false positives (and close to zero overhead)

 All defenses discussed here fall into this class

 Typically, runtime checks to guarantee high-level properties

 Vulnerabilities may still exist in the high-level source code

 Hence, these defenses are often called mitigations

 Active topic of research, including at Microsoft Research

 CFI & XFI in project Gleipnir, also DFI, Vigilante, Shield, etc.

Characterizing unobtrusive defenses

FOSAD'07: Low-level Software Security12

 All defenses are limited (correct software is better)

 Only prevent some exploits: e.g., DoS still possible

 Often unclear what vulnerabilities are covered & what remain

 Defenses are in tension with other system aspects

 Defenses can require pervasive code modification or
refactorization, reduce overall performance, cause
incompatibilities, conflict with system mechanisms, and
impede debugging, servicing, etc.

 Hence focus on unobtrusive, near-zero-cost defenses

 The balance changes over time

 And so do the defenses that are deployed in practice

Assumptions of low-level attacks

FOSAD'07: Low-level Software Security13

 Low-level attacks are, by definition, dependent on the
particulars of the low-level execution environment

 For example, the 1988 Internet Worm depended on the
precise particulars of VAX hardware, the 4BSD OS, and a then-
commonly-deployed version of the fingerd service

 Indeed, low-level attacks are typically incredibly fragile:
a single implementation bit flip will foil the attack
(although a Denial-of-Service attack may remain)

 This helps when designing unobtrusive defenses !

Overview of tutorial lecture & paper

FOSAD'07: Low-level Software Security14

 Context of low-level software attacks

 Possible whenever high-level languages are translated down

 Detailed exposition of low-level attacks and defenses

 Using the particulars of x86 (IA-32) and Windows

 Four examples of attacks

 Representative of the most important low-level attack classes

 (Notably, we skip format-string attacks and integer overflow)

 Six examples of defenses

 Some of the most important, practical low-level defenses

 Five out of six already deployed (in Windows Vista)

Security in programming languages

 Languages have long been related to security

 Modern languages should enhance security:

 Constructs for protection (e.g., objects)

 Techniques for static analysis

 In particular, type systems and run-time systems that ensure
the absence of buffer overruns and other vulnerabilities

 A useful, sophisticated theory

15 FOSAD'07: Low-level Software Security

Secure programming platforms

FOSAD'07: Low-level Software Security16

Java source

JVML (bytecodes)

C# C++ Visual Basic

CIL CIL CIL

Java compiler C# compiler C++
compiler

VB
compiler

JVM
(Java Virtual
Machine)

.NET CLR
(Common Language Runtime)

Executed on Executed on

Caveats about high-level languages

 Mismatch in characteristics:

 Security requires simplicity and minimality

 Common programming languages and their
implementations are complex

 Mismatch in scope:

 Language descriptions rarely specify security

 Implementations may or may not be secure

 Security is a property of systems

 Systems typically include much security machinery beyond
language definitions

17 FOSAD'07: Low-level Software Security

An ideal: full abstraction

18

 Ensure that all abstractions of the programming
language are enforced by the runtime

 programmers don’t have to know what’s underneath

 if they understand the programming language, they
understand the low-level platform programming model

 Ensure that translation from C# to IL is fully abstract

C# program

IL program

Properties that hold here...

...also hold here

FOSAD'07: Low-level Software Security

Full abstraction

19

 Two programs are equivalent if they have the same
behaviour in all contexts of the language e.g.

 A translation is “fully abstract” if it respects equivalence

 For example:
 the “translation” is from source language (C# etc) to MSIL

 if there exist contexts (e.g. other code) in MSIL that can
distinguish equivalent source programs, then the translation
fails to be fully abstract

class Secret {
public Secret(int fv) { }
public Set(int fv) { }

}

class Secret {
private int f;
public Secret(int fv) { f = fv; }
public Set(int fv) { f = fv; }

}

≈

FOSAD'07: Low-level Software Security

Full abstraction for Java

20

 Translation from Java to JVML is not quite fully abstract
(Abadi, 1998)

 At least one failure: access modifiers in inner classes

 a late addition to the language

 not directly supported by the JVM

 compiled by translation => impractical to make fully-abstract
without changing the JVM

FOSAD'07: Low-level Software Security

An example in C#
class Widget {
// No checking of argument
virtual void Operation(string s);
…
}
class SecureWidget : Widget {
// Validate argument and pass on
// Could also authenticate the caller
override void Operation(string s) {
Validate(s);
base.Operation(s);

}
}
…
SecureWidget sw = new SecureWidget();

 Methods can completely mediate access to object internals
 In particular, there are no buffer overruns that could somehow

circumvent this mediation
 References cannot be forged

21 FOSAD'07: Low-level Software Security

An example in C# (cont.)

 In C#, overridden methods cannot be invoked directly
except by the overriding method

 But this property may not be true in IL:
class Widget {

// No checking of argument
virtual void Operation(string s);
…
}
class SecureWidget : Widget {
// Validate argument and pass on
// Could also authenticate the caller
override void Operation(string s) {

Validate(s);
base.Operation(s);

}
}
…
SecureWidget sw = new SecureWidget();
// We can avoid validation of Operation arguments, can‟t we?

// In IL (pre-2.0), make a direct
// call on the superclass:
ldloc sw
ldstr “Invalid string”
call void Widget::Operation(string)

22 FOSAD'07: Low-level Software Security

Further examples for C# and more

 Many reasonable programmer expectations have
sometimes been false in the CLR (and in JVMs).

 Methods are always invoked on valid objects.

 Instances of types whose API ensures immutability are
always immutable.

 Exceptions are always instances of System.Exception.

 The only booleans are “true” and “false”.

 …

 (.NET CLR 2.0 fixes some of these discrepancies)

23 FOSAD'07: Low-level Software Security

Defense: Cross-site scripting attack thwarted by server-side data sanitation

Browser session to
Web application

Attacker session

Attacker client

Current Web app attacks & defenses

FOSAD'07: Low-level Software Security24

 Web applications display rich data of untrusted origin

 Set of client scripts may be fixed in server-side language

 Attack: Malicious data may embed scripts to control client

 Web browsers run all scripts, by default

 Defense: Servers try to sanitize data and remove scripts

Server StorageClient

Victim browser
application session

Rich data
w/attack

Rich data
w/attack

Rich data
w/attackS

an
it

at
io

n

S
an

it
at

io
n

o

f
ri

ch
 d

at
a

o
f

ri
ch

 d
at

a

Rich data
that’s safe

Rich data
w/attack

Attack: Cross-site scripting exploit through blog commentA Web browser client and a Web application server

Limitations of server-side defenses

FOSAD'07: Low-level Software Security25

 High-level language semantics
may not apply at the client
 Data sanitation is tricky, fragile

 Server must
 Allow “rich enough” data

 Correctly model code and data

 Account for browser features,
bugs, incorrect HTML fixup, etc.

 Empirically incorrect
 Yamanner Yahoo! Mail worm

rapidly infected 200,000 users

 MySpace Samy worm > 1 million

Love Connection

<SCRIPT/chaff>code</S\0CRIPT>

<DIV STYLE="background-image:\0075...">

<IMG SRC=„java
Script:code‟>

The type-safe (managed) alternative

 Managed code helps, but (so far) we cannot reason about
security only at the source level.

 We may ignore the security of translations:

 when (truly) trusted parties sign the low-level code, or

 if we can analyze properties of the low-level code ourselves

These alternatives are not always viable.

 In other cases, translations should preserve at least some
security properties; for example:

 the secrecy of pieces of data labeled secret,

 fundamental guarantees about control flow.

26 FOSAD'07: Low-level Software Security

Generalizations at the low-level

FOSAD'07: Low-level Software Security27

 Remainder of lectures describes attacks and defenses

 Technical details for x86 and Windows

 But, the concepts apply in general

 Some attacks and defenses even translate directly

 E.g., randomization for XSS (web scripting) defenses

Why not just fix all software?

 Wouldn’t need any defenses if software was “correct”…?

 Fixing software is difficult, costly, and error-prone

 It is hard even to specify what “correct” should mean !

 Needs source, build environments, etc., and may interact
badly with testing, debugging, deployment, and servicing

 Even so, a lot of software is being “fixed”

 For example, secure versions of APIs, e.g., strcpy_s

 In best practice, applied with automatic analysis support

 Best practice also uses automatic (unobtrusive) defenses

 Assume that bugs remain and mitigate their existence

28 FOSAD'07: Low-level Software Security

Why not just fix this function?

 Obviously, function unsafe may allow a buffer overflow

 Depends on its context; it may also be safe…

 Alas, function safe may also allow for errors

 What if a or b are too long? Or what if we forget to initialize t ?

 And usually code is not nearly this simple to “fix” !

29 FOSAD'07: Low-level Software Security

Attack 1: Return address clobbering

FOSAD'07: Low-level Software Security30

 Attack overflows a (fixed-size) array on the stack

 The function return address points to the attacker’s code

 The best known low-level attack

 Used by the Internet Worm in 1988 and commonplace since

 Can apply to the above variant of unsafe and safe

Any stack array may pose a risk

FOSAD'07: Low-level Software Security31

 Not just arrays passed as arguments to strcpy etc.

 Also, dynamic-sized arrays (alloca or gcc generated)

 Buffer overflow may happen through hand-coded loops

 E.g., the 2003 Blaster worm exploit applied to such code

A concrete stack overflow example

FOSAD'07: Low-level Software Security32

 Let’s look at the stack for is_file_foobar

 The above stack shows the empty case: no overflow here

 (Note that x86 stacks grown downwards in memory and
that by tradition stack snapshots are also listed that way)

A concrete stack overflow example

FOSAD'07: Low-level Software Security33

 The above stack snapshot is also normal w/o overflow

 The arguments here are “file://” and “foobar”

A concrete stack overflow example

FOSAD'07: Low-level Software Security34

 Finally, a stack snapshot with an overflow!

 In the above, the stack has been corrupted

 The second (attacker-chosen) arg is “asdfasdfasdfasdf”

 Of course, an attacker might not corrupt in this way…

A concrete stack overflow example

FOSAD'07: Low-level Software Security35

 Now, a stack snapshot with a malicious overflow:

 In the above, the stack has been corrupted maliciously

 The args are “file://” and particular attacker-chosen data

 XX can be any non-zero byte value

Our attack payload

FOSAD'07: Low-level Software Security36

 Same attack payload used throughout tutorial

 (Note: x86 is little-endian, so byte order in integers is reversed)

 The four bytes 0xfeeb2ecd perform a system call and
then go into an infinite loop (to avoid detection)

 An attacker would of course do something more complex

 E.g., might write real shellcode, and launch a shell

Attack 1 constraints and variants

FOSAD'07: Low-level Software Security37

 Attack 1 is based on a contiguous buffer overflow

 Major constraint: changes only/all data higher on stack

 Buffer underflow is also possible, but less common

 Can, e.g., happen due to integer-offset arithmetic errors

 The contiguous overflow may be delimiter-terminated

 If so, attack data may not contain zeros, or newlines, etc.

 Maybe hard to craft pointers; but code is still easy (Metasploit)

 One notable variant corrupts the base-pointer value

 Adds an indirection: attack code runs later, on second return

 Another variant targets exception handlers

mov eax, 0x00000100mov eax, 0x00000100

is also

mov eax, 0xfffffeff
xor eax, 0xffffffff

Attack 1 variant: Exception handlers

FOSAD'07: Low-level Software Security38

 Windows controls EH dispatch

 EH frames have function pointers
that are invoked upon any trouble

 Attack: (1) Overflow those stack
pointers and (2) cause some trouble

Previous function’sPrevious function’s
stack framestack frame

Return addressReturn address

EH frameEH frame

Locally declaredLocally declared
buffersbuffers

Local variablesLocal variables

Frame pointerFrame pointer

Function argumentsFunction arguments

CookieCookie FS:[0]

Next EH Frame

State IndexState Index

&C++ EH &C++ EH ThunkThunk

&Next EH Link&Next EH Link

Saved ESPSaved ESP

C++ EH FrameC++ EH Frame

Callee saveCallee save
registersregisters

GarbageGarbage

Defense 1:
Checking stack canaries or cookies

FOSAD'07: Low-level Software Security39

 High-level return addresses are opaque (in C and C++)

 Any representation is allowed

 Can change it to better respect language semantics

 Returns should always go to the (properly-nested) call site

 In particular, could use crypto for return addresses

 Encrypt on function entry to add a MAC

 Check MAC integrity before using the return value

 (Of course, this would be terribly slow)

 Then, attacks need key to direct control flow on returns

 Whether a buffer overflow is used or not

Stack canaries

FOSAD'07: Low-level Software Security40

 Instead of crypto+MAC can use a simple “stack canary”

 Assume a contiguous buffer overflow is used by attackers

 And that the overflow is based on zero-terminated strings etc.

 Put a canary with “terminator” values below the return address

 Check canary integrity before using the return value!

xxxxxxxxxxxxxx

xxxxxxxxxxxxxx

 Can use values other than all-zero canaries

 For example, newline, “, as well as zeros (e.g. 0x000aff0d)

 Can also use random, secret values, or cookies

 Will help against non-terminated overflows (e.g. via memcpy)

 Check cookie integrity before using the return value!

0xF00DFEED ; a secret, random cookie value

Stack cookies

FOSAD'07: Low-level Software Security41

xxxxxxxxxxxxxx

xxxxxxxxxxxxxx

Windows /GS stack cookies example

FOSAD'07: Low-level Software Security42

 Add in function base pointer for additional diversity

Windows /GS example: Other details

FOSAD'07: Low-level Software Security43

 Actual check is factored out into a small function

 Separate cookies per loaded code module (DLL or EXE)

 Generated at load time, using good randomness

 The __report_gsfailure handler kills process quickly

 Takes care not to use any potentially-corrupted data

Defense 1: Cost, variants, attacks

FOSAD'07: Low-level Software Security44

 Stack canaries and stack cookies have very little cost

 Only needed on functions with local arrays

 Even so, not always applied: heuristics determine when

 (Not a good idea, as shown by recent ANI attack on Vista)

 Widely implemented: /GS, StackGuard, ProPolice, etc.

 Implementations typically combine with other defenses

 Main limitations:

 Only protects against contiguous stack-based overflows

 No protection if attack happens before function returns

 For example, must protect function-pointer arguments

Attack 2:
Corrupting heap-based function pointers

FOSAD'07: Low-level Software Security45

 A function pointer is redirected to the attacker’s code
 Attack overflows a (fixed-size) array in a heap structure
 Actually, attack works just as well if the structure is on the stack

Attack 2 example (for a C structure)

FOSAD'07: Low-level Software Security46

 Structure contains

 The string data to compare against

 A pointer to the comparison function to use

 For example, localized, or case-insensitive

Attack example (for a C structure)

FOSAD'07: Low-level Software Security47

 The structure buffer is subject to overflow

 (No different from an function-local stack array)

 Below, the overflow is not malicious

 (Most likely the software will crash at the invocation of
the comparison function pointer)

Attack 2 example (for a C structure)

FOSAD'07: Low-level Software Security48

 Below, the overflow *is* malicious

 Note that the attacker must know address on the heap!

 Heaps are quite dynamic, so this may be tricky for the attacker

 Upon the invocation of the comparison function pointer,
the attacker gains control—unless defenses are in place

Attack 2 example (for a C++ object)

FOSAD'07: Low-level Software Security49

 Especially common to combine pointers and data in C++

 For example, VTable pointers exist in most object instances

Attack 2 example (for a C++ object)

FOSAD'07: Low-level Software Security50

 Attack needs one extra
level of indirection

 Also, attack requires
writing more pointers

 Zeros may be difficult

…

Attack 2 constraints and variants

FOSAD'07: Low-level Software Security51

 Based on contiguous buffer overflow, like Attack 1

 Cannot change fields before the buffer in the structure

 Overflow may be delimiter-terminated, like in Attack 1

 Restrictions on zeros, or newlines, etc.

 One notable variant corrupts another heap structure

 Can overflow an allocation succeeding the buffer structure

 Heap allocation order may be (almost fully) deterministic

 Another variant targets heap metadata

 As per the start of the lectures

Defense 3:
Preventing data execution

FOSAD'07: Low-level Software Security52

 High-level languages often treat code and data differently

 May support neither code reading/writing nor data execution

 Undefined in standard C and C++

 (However, in practice, some code does do this… alas)

 Can simply prevent the execution of data as code

 Gives a baseline of protection

 Could have done this a long time ago:

 On the x86, code, data, and stack segments always separate

 … but most systems prefer a “flat” memory model

 Would prevent both attacks shown so far!

What bytes will the CPU interpret?

 Hardware places few constrains on control flow

 A call to a function-pointer can lead many places:

Possible control

flow destination

Safe code/data

Possible control

flow destination

Safe code/data

x86x86 RISC/NXRISC/NXx86/NXx86/NX x86/CFIx86/CFI

Possible Execution of Memory

Data memory

Code memory

for function A

Code memory

for function B

FOSAD'07: Low-level Software Security53

X86 Address Translation details (PAE)

OffsetTableDirectory

Directory Entry

Page-Table Entry

Physical Address

Dir. Pointer Entry

CR3 (PDPTR)

12

9

9
2

31 30 29 21 20 12 11 0

24

32

Page Directory

Page Table

4-KByte Page

Page-Directory-

Pointer Table

Directory Pointer

AVLNX PWUPage frame #Reserved

AVLReserved PWUPage frame #

PAE Page table entry on X86-64

PAE Page table entry on P6

Page tables and the NX bit

FOSAD'07: Low-level Software Security54

 NX bit added to
x86 hardware in
2003 or so

 Gives protection
for the flat
memory model

 Only exists in
PAE page tables

 Double in size

 Previously of
niche use only

Digging deeper into the page tables

FOSAD'07: Low-level Software Security55

 TLBs cache
page-table
lookups

 Actually two
TLBs on most
x86 cores

 Can use this
to emulate NX
on old CPUs
 Doesn’t always

work

 Not worth the
bother anymore

Directory Entry

Page Directory

Page Tables

Page-table entry

Code

R/W Data

Stack

I-TLB

Virt 100  Phys 123 : RO

Virt 101  Phys 124 : RO

Virt 200  Phys 456 : RW

CR3

Base Register

Virt 300  Phys 789 : RW

D-TLB

Virt 101  Phys 124 : RO

Virt 180  Phys 194 : RO

Instruction

Fetch

Data

Reference

Virt 301  Phys 790 : RW

Code: Readable

R/W Data: INVALID

Stack: INVALID

R/O Data: Readable

Code

R/O Data

Stack

Memory

Page Table Entries

Defense 3: Cost, variants, attacks

FOSAD'07: Low-level Software Security56

 Pretty much zero cost:

 Some cost from larger page table entries (affects TLB/caches)

 Implementation concerns (for legacy code):

 Breaks existing code: e.g., ATL and some JITs

 JITs, RTCG, custom trampolines, old libraries (ATL & WTL)

 Partly countered by ATL_THUNK_EMULATION

 Can strictly enforce with /NXCOMPAT (o.w. may back off)

 Main limitations:

 Attacker doesn’t have to execute data as code

 They can also corrupt data, or simply execute existing code!

FOSAD'07: Low-level Software Security57

 Any existing code can be executed by attackers

 May be an existing function, such as system()

 E.g., a function that is never invoked (dead code)

 Or code in the middle of a function

 Can even be “opportunistic” code

 Found within executable pages (e.g. switch tables)

 Or found within existing instructions (long x86 instructions)

 Typically a step towards running attackers own shellcode

 These are jump-to-libc or return-to-libc attacks

 Allow attackers to overcome NX defenses

Attack 3:
Executing existing code via bad pointers

A new function to be attacked

FOSAD'07: Low-level Software Security58

 Computes the median integer in an input array

 Sorts a copy of the array and return the middle integer

 If len is larger than MAX_INTS we have a stack overflow

An example bad function pointer

FOSAD'07: Low-level Software Security59

 Many ways to attack the median function

 The cmp pointer is used before the function returns

 It can be overwritten by a stack-based overflow

 And stack canaries or cookies are not a defense

 Using jump-to-libc, an attack can also foil NX

 Use existing code to install and jump to attack payload

 Including marking the shellcode bytes as executable

 Example of indirect code injection

 (As opposed to direct code injection in previous attacks)

Concrete jump-to-libc attack example

FOSAD'07: Low-level Software Security60

 A normal stack for
the median
function

 Stack snapshot at
the point of the call
to memcpy

 MAX_INTS is 8

 The tmp array is
empty, or all zero

Concrete jump-to-libc attack example

FOSAD'07: Low-level Software Security61

 A benign stack
overflow in the
median function

 Not the values that
an attacker will
choose …

Concrete jump-to-libc attack example

FOSAD'07: Low-level Software Security62

 A malicious stack
overflow in the
median function

 The attack doesn’t
corrupt the return
address (e.g., to
avoid stack canary
or cookie defenses)

 Control-flow is
redirected in qsort

 Uses jump-to-libc
to foil NX defenses

Concrete jump-to-libc attack example

FOSAD'07: Low-level Software Security63

 Below shows the context of cmp invocation in qsort

 Goes to a 4-byte trampoline sequence found in a library

The intent of the jump-to-libc attack

FOSAD'07: Low-level Software Security64

 Perform a series of calls to existing library functions

 With carefully selected arguments

 The effect is to install and execute the attack payload

How the attack unwindes the stack

FOSAD'07: Low-level Software Security65

 First invalid control-
flow edge goes to
trampoline

 Trampoline returns
to the start of
VirtualAlloc

 Which returns to
the start of the
InterlockedExch.
function

 Which returns to
the copy of the
attack payload

VirtualAlloc

Interlocked
Exchange

New
executable

copy of
attack

payload

esp

esp

A more indirect, complete attack

FOSAD'07: Low-level Software Security66

Initial
small

attack
payload
used to

copy
and

launch
the full

shellcode

ntdll!_except1+0xC3:

...

8B E3 mov esp,ebx

5B pop ebx

C3 ret

kernel32!VirtualAlloc:

...

C3 ret

kernel32!InterlockedExchange:

...

C3 ret

kernel32!InterlockedExchange:

...

C3 ret

89 64

46 C2 mov [esp+Ch],esp

C3 ret

ntdll!memcpy:

...

C3 ret

Initial CFG violation trampolines from

use of invalid function pointer and

uses a set of executable bytes, from

middle of a library function

Allocate a page of executable

virtual memory at fixed address

Write some code to that start

of that page w/two interlock ops

Finish writing the code and

return to it (at the fixed location)

Copy the shellcode stack location to

stack as the source arg for memcpy

Copy shellcode from stack to the

executable page, then return to it

ShellcodeShellcode

Where to find useful trampolines?

FOSAD'07: Low-level Software Security67

 In Linux libc, one in 178 bytes is a 0xc3 ret opcode

 One in 475 bytes is an opportunistic, or unintended, ret

 All of these may be useful somehow

f7 c7 07 00 00 00 test edi, 0x00000007
0f 95 45 c3 setnz byte ptr [ebp-61]

Starting one byte later, the attacker instead obtains

c7 07 00 00 00 0f movl edi, 0x0f000000
95 xchg eax, ebp
45 inc ebp
c3 ret

Generalized jump-to-libc attacks

FOSAD'07: Low-level Software Security68

 Recent demonstration by Shacham [upcoming CCS’07]

 Possible to achieve anything by only executing trampolines

 Can compose trampolines into “gadget” primitives

 Such “return-oriented-computing” is Turing complete

 Practical, even if only opportunistic ret sequences are used

 Confirms a long-standing assumption:

if arbitrary jumping around within existing,
executable code is permitted

then

an attacker can cause any desired, bad behavior

Part of a read-from-address gadget

FOSAD'07: Low-level Software Security69

Loading a word of memory (containing 0xdeadbeef) into register eax

esp

mov eax, [eax+64]
ret

pop eax
ret

Part of a conditional jump gadget

FOSAD'07: Low-level Software Security70

Storing the value of the carry flag into a well-known location

esp

mov [edx], ecx
ret

pop ecx
pop edx
ret

adc cl, cl
ret

Attack 3 constraints and variants

FOSAD'07: Low-level Software Security71

 Jump-to-libc attacks are of great practical concern

 For instance, recent ANI attack on Vista is similar to median

 Traditionally, return-to-libc with the target system()

 Removing system() is neither a good nor sufficient defense

 Generality of trampolines makes this a unarguable point

 Anyway difficult to eliminate code from shared libraries

 Based on knowledge of existing code, and its addresses

 Attackers must deal with natural software variability

 Increasing the variability can be a good defense

 Best defense is to lock down the possible control flow

 Other, simpler measures will also help

Defense 2:
Moving variables below local arrays

FOSAD'07: Low-level Software Security72

 High-level variables aren’t mutable via buffer overflows

 Even in C and C++

 Only at the low level where this is possible

 Can try to move some variables “out of the way”

 Any stack frame representation allowed (in C and C++)

 For example, order of variables on the stack

 And arguments can be copies, not original values

 So, we can move variables below function-local arrays

 And copy any pointer arguments below as well

A new function to be attacked

FOSAD'07: Low-level Software Security73

 Computes the median integer in an input array

 Sorts a copy of the array and return the middle integer

 If len is larger than MAX_INTS we have a stack overflow

The median stack, with our defense

FOSAD'07: Low-level Software Security74

 We copy
the cmp
function
pointer
argument

Only
change

So, upon a buffer overflow

FOSAD'07: Low-level Software Security75

 The cmp
function
pointer
argument
won’t be
changed

Look !

And, upon a malicious overflow

FOSAD'07: Low-level Software Security76

But we
better have
some
protection
for the
return
address
(e.g., /GS)

Still OK !

Defense 2: Cost, variants, attacks

FOSAD'07: Low-level Software Security77

 Pretty much zero cost:

 Copying cost is tiny; no reordering cost (mod workload/caches)

 (Especially since only pointer arguments are copied)

 Implemented alongside cookies: /GS, ProPolice, etc.

 In part because only cookies/canaries can detect corruption

 Main limitations:

 Not always applicable (e.g., on the heap)

 Only protects against contiguous overflows

 No protection against buffer underruns…

 Attackers can corrupt content (e.g. a string higher on stack)

Defense 4:
Enforcing control-flow integrity

FOSAD'07: Low-level Software Security78

 Only certain control-flow is possible in software

 Even in C and C++ and function and expression boundaries

 Should also consider who-can-go-where, and dead code

 Control-flow integrity means that execution proceeds
according to a specified control-flow graph (CFG).

Reduces gap between machine code and high-level languages

 Can enforce with CFI mechanism, which is simple,
efficient, and applicable to existing software.

• CFI enforces a basic property that thwarts a large class of
attacks— without giving “end-to-end” security.

 CFI is a foundation for enforcing other properties

What bytes will the CPU interpret?

 Hardware places few constrains on control flow

 A call to a function-pointer can lead many places:

Possible control

flow destination

Safe code/data

Possible control

flow destination

Safe code/data

x86x86 RISC/NXRISC/NXx86/NXx86/NX x86/CFIx86/CFI

Possible Execution of Memory

Data memory

Code memory

for function A

Code memory

for function B

FOSAD'07: Low-level Software Security79

Source control-flow integrity checks

FOSAD'07: Low-level Software Security80

 Programmers might possibly add explicit checks

 For example can prevent Attack 2 on the heap

 Seems awkward, error-prone, and hard to maintain

Source-level checks in C++

FOSAD'07: Low-level Software Security81

 Also preventing the effects of heap corruption

 Ensure “labels” are correct at load- and run-time

 Bit patterns identify different points in the code

 Indirect control flow must go to the right pattern

 Can be enforced using software instrumentation

 Even for existing, legacy software

CFI: Control-Flow Integrity [CCS’05]

82

bool lt(int x, int y) {
return x < y;

}
bool gt(int x, int y) {

return x > y;
}

sort2(int a[], int b[], int len)
{

sort(a, len, lt);
sort(b, len, gt);

}

lt():

ret 23

label 17

sort2():

call sort

call sort

label 55

sort():

call 17,R

ret 55

label 23

ret …

gt():

ret 23

label 17

label 55

FOSAD'07: Low-level Software Security

 Code makes use of data and
function pointers

 Susceptible to effects of
memory corruption

Example code without CFI protection

83

ECX := Mem[ESP + 4]
EDX := Mem[ESP + 8]
ESP := ESP - 0x14

// ...

push Mem[EDX + 4]
push Mem[EDX]
push ESP
call ECX

// ...

EAX := Mem[ESP + 0x10]
if EAX != 0 goto L

EAX := Mem[ESP]

L: ... and return

?

Machine-code basic blocks

int foo(fptr pf, int* pm) {
int err;
int A[4];

// ...

pf(A, pm[0], pm[1]);

// ...

if(err) return err;
return A[0];

}

C

s
o
u
r
c
e

c
o
d
e

FOSAD'07: Low-level Software Security

 Add inline CFI guards

 Forms a statically
verifiable graph of
machine-code basic blocks

Example code with CFI protection

84

ECX := Mem[ESP + 4]
EDX := Mem[ESP + 8]
ESP := ESP - 0x14

// ...

push Mem[EDX + 4]
push Mem[EDX]
push ESP
cfiguard(ECX, pf_ID)
call ECX

// ...

EAX := Mem[ESP + 0x10]
if EAX != 0 goto L

EAX := Mem[ESP]

L: ... and return

Machine-code basic blocks

int foo(fptr pf, int* pm) {
int err;
int A[4];

// ...

pf(A, pm[0], pm[1]);

// ...

if(err) return err;
return A[0];

}

C

s
o
u
r
c
e

c
o
d
e

FOSAD'07: Low-level Software Security

pf

// ...

...
cfiguard(ECX, pf_ID)
call ECX …

ret

pf

Machine code

// ...

...
EAX := 0x12345677
EAX := EAX + 1
if Mem[ECX-4] != EAX goto ERR
call ECX

ret

Machine code with 0x12345678 as CFI guard ID

0x12345678

Guards for control-flow integrity

85

pf(A, pm[0], pm[1]);

// ...

C source code

 CFI guards restrict computed jumps and calls

 CFI guard matches ID bytes at source and target

 IDs are constants embedded in machine-code

 IDs are not secret, but must be unique

FOSAD'07: Low-level Software Security

 Our prototype uses a generic instrumentation tool, and
applies to legacy Windows x86 executables

 Code rewriting need not be trusted, because of the verifier

 The verifier is simple (2 KLoC, mostly parsing x86 opcodes)

Overview of a system with CFI

86

Compiler
Code
rewriting
and
installation
mechanism

Program
execution

Program
executable

Verify
CFI

Load
into
memory

Program
control-flow

graph

Vendor or
trusted
party

FOSAD'07: Low-level Software Security

CFI formal study [ICFEM’05]

Formally validated the benefits of CFI:

 Defined a machine code semantics

 Modeled an attacker that can arbitrarily control all of
data memory

 Defined an instrumentation algorithm and the
conditions for CFI verification

 Proved that, with CFI, execution always follows the
CFG, even when under attack

87 FOSAD'07: Low-level Software Security

Machine model

 State is memory, registers, and the current instruction
position (i.e. program counter)

 Split memory into code Mc and data Md

 Split off three distinguished registers
 Provides local storage for dynamic checks

88 FOSAD'07: Low-level Software Security

Instruction set

Instructions and their semantics based on [Hamid et al.]

 Dc : Word Instr decodes words into instructions

89 FOSAD'07: Low-level Software Security

Operational semantics

“Normal” steps:

Attack step:

General steps:

90 FOSAD'07: Low-level Software Security

The instruction semantics encode assumptions
 NXD: Data cannot be executed

 Can be guaranteed in software, or by using new hardware

 NWC: Code cannot be modified
 This is already enforced in hardware on modern systems

 Data memory can change arbitrarily, at any time
 Models a powerful attacker, abstracts away from attack details

 We can rely on values in distinguished registers
 Approximates register behavior in face of multi-threading

 Jumps cannot go into the middle of instructions
 A small, convenient simplification of modern hardware

Assumptions

91 FOSAD'07: Low-level Software Security

Instrumentation and verification

 Code with verifiable CFI, denoted I(Mc), has

 The code ends with an illegal instruction, HALT

 Computed jumps only occur in context of a specific
dynamic check sequence:

 Control never flows into the
middle of the check sequence

 The IMM constants encode
the CFG to enforce, also
given by succ(Mc , pc)

 (Note CFI enforcement may truncate execution.)

92 FOSAD'07: Low-level Software Security

A theorem about CFI

Can prove the following theorem

 Proof by induction, with invariant on steps of execution

 Establishes that program counter always follows the static
control-flow graph, whatever attack steps happen during
execution (i.e., however the attacker can change memory)

 Implies, e.g., that unreachable code is never executed and that
calls always go to start of functions

93 FOSAD'07: Low-level Software Security

Defense 4: Cost, variants, attacks

FOSAD'07: Low-level Software Security94

 CFI overhead averages 15% on CPU-bound benchmarks
 Often much less: depends on workload, CPU and I/O, etc.

 Several variants: E.g., SafeSEH exception dispatch in Windows

 Effectively stops jump-to-libc attacks
 No trampolining about, even if CFI enforces a very coarse CFG

 E.g., may have two labels—for call sites and start of functions

 Main limitation: Data-only attacks & API attacks

SPECINT 2K reference runs, XP SP2, Safe Mode w/CMD, Pentium 4, no HT, 1.8GHz

0%

20%

40%

60%

80%

100%

120%

140%

bzip2 crafty eon gap gcc gzip mcf parser twolf vortex vpr AVG

C
F

I
en

fo
rc

em
en

t
ov

er
he

ad

Attack 4:
Corrupting data that controls behavior

FOSAD'07: Low-level Software Security95

 Programmers make many assumptions about data

 For example, once initialized, a global variable is immutable—
as long as the software never writes to it again

 Data may be authentication status, or software to launch

 Not necessarily true in face of vulnerabilities

 Attackers may be able to change this data

 These are non-control-data or data-only attacks

 Stay within the legal machine-code control-flow graph

 Especially dangerous if software embeds an interpreter

 Such as system() or a JavaScript engine

Example data-only attack

FOSAD'07: Low-level Software Security96

 If the attacker knows data, and controls offset and
value, then they can launch an arbitrary shell command

If attacker controls offset & value

FOSAD'07: Low-level Software Security97

 Attacker changes the first pointer 0x353730 in the
environment table stored at the fixed address 0x353610

 Instead of pointing to

 The code for data[offset].argument = value; is

 If data is 0x4033e0 then the attacker can write to the
address 0x353610 by choosing offset as 0x1ffea046

… it now points to

Example data-only attack (recap)

FOSAD'07: Low-level Software Security98

 Attacker that knows and control inputs can run
cmd.exe /c “format c:” > value

Attack 4 constraints and variants

FOSAD'07: Low-level Software Security99

 Data-only attacks are constrained by software intent

 Making a calculator format the disk may not be possible

 Based on knowledge of existing data, and its addresses

 Attackers must deal with natural software variability

 Increasing the variability can be a good defense

 Can also consider changing data encoding…

Defense 5:
Encrypting addresses in pointers

FOSAD'07: Low-level Software Security100

 Cannot change data encoding, typically

 Software may rely on encoding and semantics of bits

 But, encoding of addresses is undefined in C and C++

 Attacks tend to depend on addresses (all of ours do)

 Can change the content of pointers, e.g., by encrypting them!

 Unfortunately, not easy to do automatically & pervasively

 Frequent encryption/decryption may have high cost

 In practice, much code relies on address encodings

 E.g., through address arithmetic or from stealing the low or high bits

 So, we can just encrypt certain, important pointers

 Either via manual annotation, or automatic discovery

Manual pointer encryption in C++

FOSAD'07: Low-level Software Security101

 Comparison function pointer is stored encrypted

 Process-specific secret used, via standard Windows APIs

An encrypted pointer in a structure

FOSAD'07: Low-level Software Security102

 Our standard structure: a buffer and comparison pointer

 Encryption is typically an xor with a secret

 In Windows, the secret created using good randomness

 Windows also rotates the bits to foil low-order-byte corruption

 Would, e.g., prevent the data-only Attack 4

 Is used in Windows, e.g., to protect heap metadata

an encrypted

Defense 6: Cost, variants, attacks

FOSAD'07: Low-level Software Security103

 Overhead determined by pervasiveness

 Also depends on the type and cost of the “encryption”

 Several variants possible

 For instance, using a system-wide or per-process secret

 (Windows has both, and may keep the secret in the kernel)

 Could use multiple “colors”: dynamic types for pointers

 Can be applied manually and explicitly, or automatically

 Must apply conservatively to legacy code (cf. PointGuard)

 Main limitations:

 Attacker may learn or guess the encryption key, somehow

 Attacks can still corrupt data (e.g., authentication status)

Defense 6:
Address space layout randomization

FOSAD'07: Low-level Software Security104

 Encoding of addresses is undefined in C and C++

 Systems make few guarantees about address locations
 Attacks tend to depend on addresses (all of ours do)

 Let’s shift all addresses by a random amount! [PaX]

 Easy to do automatically and pervasively
 Most systems (e.g., Windows) already support relocations

 Only need to fill in a handful of corner cases (e.g., EXE files)

 Code that relies on address encodings still works
 ASLR changes only the concrete address values, not the encoding

 NX and ASLR synergy: Attackers can execute
neither injected exploit code, nor existing library code
 ASLR for data can also prevent data-only attacks

A CMD.EXE process with Vista ASLR

105

Another, concurrent CMD process

106

A new CMD process, after a reboot

107

Example of ASLR on Windows Vista

FOSAD'07: Low-level Software Security108

 Lets revisit the
median
function from
the jump-to-libc
Attack 3

 Stack snapshot
shows a normal
stack with no
overflow, at the
point of the call
to memcpy

Example of ASLR on Windows Vista

FOSAD'07: Low-level Software Security109

 In a separate
execution on
Windows Vista
 Code is located at

one of 256 other
possibilities

 The stack is at one
of 16384 possible
locations

 Heap at one of 32

 The attacker must
guess or learn
these bits, to
succeed

Example of ASLR on Windows Vista

FOSAD'07: Low-level Software Security110

 Here, the attacker
cannot perform
the jump-to-libc
 The address of the

trampoline is not
the same as before

 Stack addresses
are even harder to
determine

 On 64-bit systems,
the number of bits
can offer strong
defense against
retry-or-guess

Defense 6: Cost, variants, attacks

FOSAD'07: Low-level Software Security111

 Cost is mostly in compatibility issues

 May apply in an opt-in fashion, as in Windows Vista

 Several variants possible

 Can randomize code at build, install, at boot, or at load time

 Windows randomizes code at load time, seeded at boot

 Many ways of fine-grained data randomization (mod compat.)

 Software diversity provides security [Forrest’97], much recent…

 Main limitations:

 Attacker may learn or guess the randomization key, somehow

 If the attacker can retry, they will eventually succeed

 Attacks can still corrupt data (e.g., authentication status)

Overview of our attacks and defenses

FOSAD'07: Low-level Software Security112

Unobtrusive, low-level defenses

FOSAD'07: Low-level Software Security113

 Each helps preserve some high-level language aspect
during the execution of the low-level software

 Apply in many contexts; are well suited to formal analysis

 Provide benefits by preventing certain types of exploits

 For many vulnerabilities, these may be the only possible
exploits—eliminating the security risk

 For remaining vulnerabilities, the defenses will force attackers
to use more difficult and less-likely-to-succeed methods

 Of course, best applied as part of a comprehensive
software security engineering methodology

 Encompassing threat modeling, design, automatic analysis,
code reviews, testing, and safer languages and APIs, etc.

