FOSAD’ @7

Low-level Software Security:
Attacks and Defenses

Ulfar Erlingsson

Microsoft Research, Silicon Valley

and
Reykjavik University, Iceland

An example of a real-world attack

» Exploits a

& ms-execs

vulnerability in B e B e Foores Tkt
Pt QBack ~ O - (F Psearch [Folders [~
the GDI+ [s st sy e | B

'I v| SearchDesktop ~ [# FomFl ~ #

rendering of
JPEG images g | BB B

{8) Order prints online r Yl\

Ity Print this picture
®\ Set as desktop background

» Seeninthe
i aroer s (5)

wild in = 2002 :

Details

» (Seen beforein | Rchad sashid
I : Dinel;;;ﬂﬂﬂx?ﬂb
..the .late 1990 > e “““-
in Linux and =

Mouseover has triggered
a buffer overflow exploit.

Netscape)

2 FOSAD'07: Low-level Software Security 'VH 0soft I

What exactly happened here? (part 1)

1. A *comment field” in the JPEG appeared to be too long
The attacker chose the comment data, and its field encoding

>. Heap overflow
When copied, the comment overflowed the heap
The heap metadata was corrupted in the overflow
The overflow also caused an exception to be thrown

5. Overwriting of arbitrary memory
The exception was caught to invoke a cleanup handler
A heap operation was performed using corrupt metadata
— Attacker-chosen data written to an arbitrary address
Attacker overwrote the vtable-pointer of a global C++ object

3 FOSAD'07: Low-level Software Security 'VH 0s0ft I

What exactly happened here? (part 2)

» Heap metadata is based on doubly-linked lists
To unlink, must do: node->prev->next = node->next

Can allow arbitrary writes in exploits: * (addr+4) = val

«. Attack payload is executed
Later in the cleanup, the global C++ object instance is deleted
The object’s vtable points to attacker-chosen code pointers
Calling the virtual destructor actually calls the attacker’s code

4 FOSAD'07: Low-level Software Security 'VH 0soft I

Machine code attacks & defenses

» Until recently, the majority of CERT/CC advisories dealt with
subversion of expected behavior at the level of machine code

» E.g., overflow buffer
to overwrite return
address on the stack

Hijacked PC pointer j

» Other vulnerabilities
can also be exploited
to hijack execution

Garbage

5 FOSAD'07: Low-level Software Security

NX prevents
data memory
execution

IGS checks
return pointer
hasn’t been
overwritten

|U‘ﬁ| osoft rm

Particular defenses for heap metadata

» Check invariants for doubly-linked lists

To unlink, must do: node->prev->next =

(Check deployed in Windows since XP SP2)

node->next
Only do if node->prev->next =node =node->next->prev

prev

.
o] N e e\
L e

» Other, more generic defenses possible (and in use)
E.g., can encrypt the pointers somehow, or add a checksum

» What are the principles behind such defenses?

6

FOSAD'07: Low-level Software Security

|U‘ﬁ| osoft M

Assumptions are vulnerabilities

» How to successfully attack a system
1) Discover what assumptions were made
2) Craft an exploit outside those assumptions

» Two assumptions often exploited:
A target buffer is large enough for source data
Computer integers behave like math integers
(i.e., buffer overflows & integer overflows)

7 FOSAD'07: Low-level Software Security 'VH 0soft I

Assumptions about control flow

» We write our code in high-level languages

» Naturally, our execution model assumes:
Functions start at the beginning
They (typically) execute from beginning to end
And, when done, they return to their call site
Only the code in the program can be executed

The set of executable instructions is limited to
those output during compilation of the program

3 FOSAD'07: Low-level Software Security 'VH 0soft I

Assumptions about control flow

» We write our code in high-level languages

» But, actually, at the level of machine code
Can start in the middle of functions
A fragment of a function may be executed
Returns can go to any program instruction
All the data has usually been executable

On the x86, can start executing not only in the
middle of functions, but middle of instructions!

9 FOSAD'07: Low-level Software Security 'VH 0s0ft I

Protection alternatives

» Safer, higher-level languages: ML, Java, CCured, etc.
Need porting, source access, and runtime support
In particular, need garbage collection, fat pointers, etc.
Mostly based on static checking with little or no redundancy

» Hardware protection or software binary interpretation
Applies to legacy code, but typically with coarse protection
Finer-grained protection requires complex, slow interpreters

» Unobtrusive, language-based defenses for legacy code
Low-level (runtime) guarantee for certain high-level properties
Specific to vulnerabilities/attacks; offer limited defenses

10 FOSAD'07: Low-level Software Security 'VH 0soft I

Unobtrusive defenses for legacy code

» In practice, we focus on defenses that
Operate at the lowest level (machine-code)
Involve no source-code changes; at most re-compilation
Have zero false positives (and close to zero overhead)

» All defenses discussed here fall into this class
Typically, runtime checks to guarantee high-level properties
Vulnerabilities may still exist in the high-level source code
Hence, these defenses are often called mitigations

» Active topic of research, including at Microsoft Research
CFl & XFl'in project Gleipnir, also DFI, Vigilante, Shield, etc.

11 FOSAD'07: Low-level Software Security 'VH 0soft I

Characterizing unobtrusive defenses

» All defenses are limited (correct software is better)
Only prevent some exploits: e.g., DoS still possible
Often unclear what vulnerabilities are covered & what remain

» Defenses are in tension with other system aspects

Defenses can require pervasive code modification or
refactorization, reduce overall performance, cause
incompatibilities, conflict with system mechanisms, and
impede debugging, servicing, etc.

Hence focus on unobtrusive, near-zero-cost defenses

» The balance changes over time
And so do the defenses that are deployed in practice

12 FOSAD'07: Low-level Software Security 'VH 0soft I

Assumptions of low-level attacks

» Low-level attacks are, by definition, dependent on the
particulars of the low-level execution environment

For example, the 1988 Internet Worm depended on the
precise particulars of VAX hardware, the 4BSD OS, and a then-
commonly-deployed version of the fingerd service

» Indeed, low-level attacks are typically incredibly fragile:
a single implementation bit flip will foil the attack
(although a Denial-of-Service attack may remain)

» This helps when designing unobtrusive defenses!

13 FOSAD'07: Low-level Software Security 'VH 0s0ft I

Overview of tutorial lecture & paper

» Context of low-level software attacks
Possible whenever high-level languages are translated down

» Detailed exposition of low-level attacks and defenses
Using the particulars of x86 (IA-32) and Windows

» Four examples of attacks
Representative of the most important low-level attack classes
(Notably, we skip format-string attacks and integer overflow)

» Six examples of defenses
Some of the most important, practical low-level defenses
Five out of six already deployed (in Windows Vista)

14 FOSAD'07: Low-level Software Security 'VH 0soft I

Security in programming languages

» Languages have long been related to security

» Modern languages should enhance security:

15

Constructs for protection (e.g., objects)
Techniques for static analysis

In particular, type systems and run-time systems that ensure
the absence of buffer overruns and other vulnerabilities

A useful, sophisticated theory

FOSAD'07: Low-level Software Security 'VH 0soft I

Secure programming

platforms

Java source

Java compiler

JVML (bytecodes)

Executed on

JVM

(Java Virtual
Machine)

C# compiler

C++
compiler

Executed on

.NET CLR

compiler

Visual Basic

(Common Language Runtime)

Caveats about high-level languages

» Mismatch in characteristics:
Security requires simplicity and minimality
Common programming languages and their
implementations are complex

» Mismatch in scope:
Language descriptions rarely specify security
Implementations may or may not be secure
Security is a property of systems

Systems typically include much security machinery beyond
language definitions

17 FOSAD'07: Low-level Software Security 'VH 0soft I

An ideal: full abstraction

» Ensure that all abstractions of the programming
language are enforced by the runtime

programmers don’t have to know what’s underneath

if they understand the programming language, they
understand the low-level platform programming model

» Ensure that translation from C# to IL is fully abstract

Properties that hold here... C# program

...also hold here
IL program

FOSAD'07: Low-level Software Securit$ 'VH 0soft I

Full abstraction

» Two programs are equivalent if they have the same
behaviour in all contexts of the language e.g.

c13i_?vi1e:gr1§ﬁt{f. class Secret {
_ ;- ubTic Secret(int fv
public Secret(int fv) { f = fv; } =~ Sub'lic Set('ing fv) {)}{ :
public set(int fv) { f = fv; } }

}

» Atranslation is “fully abstract” if it respects equivalence

» For example:
the “translation” is from source language (C# etc) to MSIL

if there exist contexts (e.g. other code) in MSIL that can
distinguish equivalent source programs, then the translation
fails to be fully abstract

FOSAD'07: Low-level Software Security 'VH 0soft I

Full abstraction for Java

» Translation from Java to JVML is not quite fully abstract
(Abadi, 1998)

» At least one failure: access modifiers in inner classes
a late addition to the language
not directly supported by the JVM

compiled by translation => impractical to make fully-abstract
without changing the JVM

FOSAD'07: Low-level Software Securitg 'VH 0soft I

An example in C#

class widget {
// No checking of argument
virtual void Operation(string s);

class Securewidget : widget {
// validate argument and pass on
// Could also authenticate the caller
override void Operation(string s) {
validate(s);
) base.Operation(s);

}

§ecurewidget sw = new Securewidget();

» Methods can completely mediate access to object internals

In particular, there are no buffer overruns that could somehow
circumvent this mediation

References cannot be forged

21 FOSAD'07: Low-level Software Security 'VH 0soft I

An example in C# (cont.)

» In C#, overridden methods cannot be invoked directly
except by the overriding method

» But this property may not be true in IL:

class widget {

// No checking of argument
virtual void Operation(string s);

}
class Securewidget : widget {
// validate argument and pass on
// Could also authenticate the caller
override void Operation(string s) {
validate(s);

. base.operation(s); // In IL (pre-2.0), make a direct

1 // call on the superclass:

- Tdloc sw

Securewidget sw = new Secy ldstr “Invalid string”

// We can avoid validation call void widget::Operation(string)

22 FOSAD'07: Low-level Software Security 'VH 0soft I

Further examples for C# and more

» Many reasonable programmer expectations have
sometimes been false in the CLR (and in JVMs).

Methods are always invoked on valid objects.

Instances of types whose APl ensures immutability are
always immutable.
Exceptions are always instances of System.Exception.

The only booleans are “true” and “false”.

» (.NET CLR 2.0 fixes some of these discrepancies)

23 FOSAD'07: Low-level Software Security 'VH 0s0ft I

Current Web app attacks & defenses

Attacker client

Rich data
l Attacker session l w/attack

Rich da*a
nats se™ -

i Rich data i

= wjfattack =

Client Server Storage

A Web browser client and a Web application server

» Web applications display rich data of untrusted origin
» Set of client scripts may be fixed in server-side language

» Attack: Malicious data may embed scripts to control client
Web browsers run all scripts, by default

» Defense: Servers try to sanitize data and remove scripts

24 FOSAD'07: Low-level Software Security 'VH 0soft I

Limitations of server-side defenses

» High-level language semantics

may not apply at the client

Data sanitation is tricky, fragile

» Server must

Allow “rich enough” data

Correctly model code and data

Account for browser features,

bugs, incorrect HTML fixup, etc.

» Empirically incorrect

YamannerYahoo! Mail worm
rapidly infected 200,000 users

3 (D unrea ahoo! Mail Beta, ulfar - Microsol erne |EI|1|
| Ble Edt View Favorites Tools Help |Jndd |@httpﬁ Fent.mailyshe v | B Go | !'|

YaHoO! MAIL ulfsmoct | i vahoo! | News | Search the veb.

3 check Mail @ Compose {2} Home | Spam [x Mabile | Options ~ | Help ~
i Delete gﬁ Reply = E» Farwar d [Mot Spam
[0% Movew [Print More Actions v View ¥

Q. Find Messages. ..

g Inbox

[, Drafts © From Subject

L ent ICPenney urfer CONFIR? Well Done! Your Complimen nt—

[Spam (524) Empty Pepsi Special Ticket #21 GET 12 CASES OF PEPSI FREE!

Ly Trash Empty

[Contacts

I__Sf‘ Calendar y. 4BE0°" 200G, Yiew Sing... Compact Header | Full Message View

] Motepad Hot Sexy Christian Singles <s... (% add 7o ufar@yahoo.com
» £ all RS Feed fdd -
v My Folders IR True |CHRISTIANS

® Make a Love

Connection!
EEI ToDAY: 575 Mo even

ts, Click the plus sign to add an

|@ Done ’_ ’_ l_ ’_ ’_ |° Internet A

Love Connection

<SCRIPT/chaff>code</S\OCRIPT>

<DIV STYLE="background-image:\0075...">

<IMG SRC=‘java
Script:code’>

MySpace Samy worm > 1 million

25

FOSAD'07: Low-level Software Security

|U‘ﬁ| osoft rm

The type-safe (managed) alternative

» Managed code helps, but (so far) we cannot reason about
security only at the source level.

» We may ignore the security of translations:
when (truly) trusted parties sign the low-level code, or
if we can analyze properties of the low-level code ourselves

These alternatives are not always viable.

» In other cases, translations should preserve at least some
security properties; for example:

the secrecy of pieces of data labeled secret,
fundamental guarantees about control flow.

26 FOSAD'07: Low-level Software Security 'VH 0soft I

Generalizations at the low-level

» Remainder of lectures describes attacks and defenses
» Technical details for x86 and Windows

» But, the concepts apply in general

» Some attacks and defenses even translate directly
» E.g., randomization for XSS (web scripting) defenses

27 FOSAD'07: Low-level Software Security 'VH 0soft I

Why not just fix all software?

» Wouldn't need any defenses if software was “correct”...?

» Fixing software is difficult, costly, and error-prone
It is hard even to specify what “correct” should mean'!

Needs source, build environments, etc., and may interact
badly with testing, debugging, deployment, and servicing

» Even so, a lot of software is being "“fixed”
For example, secure versions of APIs, e.qg., strcpy_s
In best practice, applied with automatic analysis support

» Best practice also uses automatic (unobtrusive) defenses
Assume that bugs remain and mitigate their existence

28 FOSAD'07: Low-level Software Security 'VH 0soft I

Why not just fix this function?

int unsafe(char* a, charx b) int safe(char* a, charx b)
{ {
char t[MAX_LEN]; char t[MAX_LEN] = { ’\0’ };
strcpy(t, a); strcpy_s(t, _countof(t), a);
strcat(t, b); strcat_s(t, _countof(t), b);
return strcmp(t, "abc"); return strcmp(t, "abc");
} }
(a) An unchecked C function. (b) A safer version of the function.

» Obviously, function unsafe may allow a buffer overflow
Depends on its context; it may also be safe...

» Alas, function sate may also allow for errors
What if a or b are too long? Or what if we forget to initialize t ?

» And usually code is not nearly this simple to “fix" !

29 FOSAD'07: Low-level Software Security 'VH 0soft I

Attack 1: Return address clobbering

int is_file_foobar(char* one, char* two)

{
// must have strlen(one) + strlen(two) < MAX_LEN
char tmp[MAX_LEN];
strcpy(tmp, one);
strcat(tmp, two);
return strcmp(tmp, "file://foobar");
}

» Attack overflows a (fixed-size) array on the stack
» The function return address points to the attacker’s code

» The best known low-level attack
Used by the Internet Worm in 1988 and commonplace since

» Can apply to the above variant of unsafe and safe

30 FOSAD'07: Low-level Software Security 'VH 0s0ft I

Any stack array may pose a risk

int is_file_foobar_using_loops(char* one, char* two)

{
// must have strlen(one) + strlen(two) < MAX_LEN
char tmp[MAX_LEN];
char*x b = tmp;
for(; *one !'= ’\0’; ++one, ++b) *b = *one;
for(; *two != ’\0’; ++two, ++b) *b = *two;
xb = }‘-\OJ;
return strcmp(tmp, "file://foobar");
h

» Not just arrays passed as arguments to strcpy etc.
» Also, dynamic-sized arrays (alloca or gcc generated)

» Buffer overflow may happen through hand-coded loops
E.g., the 2003 Blaster worm exploit applied to such code

31 FOSAD'07: Low-level Software Security 'VH 0s0ft I

A concrete stack overflow example

» Let'slook at the stackforis file foobar

address

content

0x0012ffb5c
0x0012f£58
0x0012f£f54
0x0012f£50
0x0012ff4c
0x0012££48
0x0012ff44
0x0012££40

0x00353037
0x0035302f
0x00401263
0x0012ff7c
0x00000000
0x00000000
0x00000000
0x00000000

; argument two pointer
; argument one pointer
; return address

; saved base pointer

; tmp 1s zero

; tmp Is zero

; tmp 1s zero

; tmp is zero

The above stack shows the empty case: no overflow here

(Note that x86 stacks grown downwards in memory and
that by tradition stack snapshots are also listed that way)

32

FOSAD'07: Low-level Software Security

|U‘ﬁ| osoft M

A concrete stack overflow example

address content

0x0012f£f5c 0x00353037 ; argument two pointer

0x0012f£58 0x0035302f ; argument one pointer

0x0012ff54 0x00401263 ; return address

0x0012f£f50 0x0012ff7c ; saved base pointer

0x0012ff4c 0x00000072 ; tmp continues ’r’ 10’ ’\0’ ’\0’
0x0012f£48 0x61626f6f ; tmp continues ’o’ ’o’ ’b’ ’a’
0x0012ff44 0x662f2f3a ; tmp continues ’:’ ?/? /> 7§’
0x0012ff40 0x656c6966 ; tmp array: £ 217’1 e’

» The above stack snapshot is also normal w/o overflow
» The arguments here are “file://” and “foobar”

33 FOSAD'07: Low-level Software Security

|U‘ﬁ| osoft M

A concrete stack overflow example

» Finally, a stack snapshot with an overflow!

address content

0x0012ff5¢c 0x00353037
0x0012f£f58 0x0035302f
0x0012f1f54
0x0012££50
0x0012ff4dc
0x0012££48
0x0012ff44 2f2f3a
0x0012ff40 0x656c6966

» Inthe above, the stack has been corrupted

¥

argument two pointer
argument one pointer

return address ’s’?
saved base pointer ’s’
tmp continues ’s’?
tmp continues ’s’?
tmp continues >
tmp array: o

JdJ
}dJ
}d}
}d}
}/}

}iJ

JfJ
J]':‘J
J]':‘J
J]':‘J
J/J
JlJ

» The second (attacker-chosen) arg is “asdfasdfasdfasdf”

» Of course, an attacker might not corrupt in this way...

34

FOSAD'07: Low-level Software Security

|U‘ﬁ| osoft M

A concrete stack overflow example

» Now, a stack snapshot with a malicious overflow:

address content

0x0012ff5c 0x00353037 ; argument two pointer

0x0012f£58 0x0035302f ; argument one pointer

; return address: address of attack payload
: Irrelevant

0x0012f£50

0x0012ff4c : Irrelevant

0x0012£f48 ; attack payload

0x0012ff44 2f2f3a ; tmp continues SN R AR
0x0012ff40 0x656c6966 ; tmp array: £ 212 10 e’

» Inthe above, the stack has been corrupted maliciously
» The args are “file://” and particular attacker-chosen data
» XX can be any non-zero byte value

35 FOSAD'07: Low-level Software Security 'VH 0s0ft I

Our attack payload

machine code

opcode bytes assembly-language version of the machine code
Oxcd 0x2e int 0x2e ; system call to the operating system
Oxeb Oxfe L: jmp L ; a very short, direct infinite loop

» Same attack payload used throughout tutorial
(Note: x86 is little-endian, so byte order in integers is reversed)

» The four bytes @xfeeb2ecd perform a system call and
then go into an infinite loop (to avoid detection)

» An attacker would of course do something more complex
E.g., might write real shellcode, and launch a shell

36 FOSAD'07: Low-level Software Security 'VH osoft '

Attack 1 constraints and variants

» Attack 1 is based on a contiguous buffer overflow
Major constraint: changes only/all data higher on stack

Buffer underflow is also possible, but less common
Can, e.g., happen due to integer-offset arithmetic errors

» The contiguous overflow may be del SR EVEREICELL LR
If so, attack data may not contain zero is also
Maybe hard to craft pointers; but code

mov eax, Oxfffffeff
xXor eax, Oxffffffff

» One notable variant corrupts the base-pointer value
Adds an indirection: attack code runs later, on second return

» Another variant targets exception handlers

37 FOSAD'07: Low-level Software Security 'VH 0s0ft I

Attack 1 variant: Exception handlers

Next EH Frame

Previous function’s

ack frame State Index
&C++ EH Thunk
&Next EH Link
Saved ESP
FS:[0]
EHframe AN
» Windows controls EH dispatch
» EH frames have function pointers
that are invoked upon any trouble
agiste » Attack: (1) Overflow those stack
pointers and (2) cause some trouble

38 FOSAD'07: Low-level Software Security '”H osoft '

Defense 1:
Checking stack canaries or cookies

» High-level return addresses are opaque (in C and C++)

» Any representation is allowed
Can change it to better respect language semantics
Returns should always go to the (properly-nested) call site

» In particular, could use crypto for return addresses
Encrypt on function entry to add a MAC
Check MAC integrity before using the return value

» (Of course, this would be terribly slow)

» Then, attacks need key to direct control flow on returns
Whether a buffer overflow is used or not

39 FOSAD'07: Low-level Software Security 'VH 0s0ft I

Stack canaries

» Instead of crypto+MAC can use a simple “stack canary”
Assume a contiguous buffer overflow is used by attackers

And that the overflow is based on zero-terminated strings etc.

Put a canary with “terminator” values below the return address

address content

0x0012ff5c 0x00353037 ;
0x0012f£f58 0x0035302f ;
0x0012f£f54
0x0012££f50
0x0012ff4c
0x0012££48
0x0012ff44
0x0012££40
0x0012ff3c 0x656c6966 ;

argument two pointer
argument one pointer

return address

saved base pointer

all-zero canary

tmp continues ’r’
tmp continues ’o’
tmp continues ’:’
tmp array: £

J\OJ J\OJ J\\OJ
’g? 'h? '3y’
J/J 1/‘:«)

JiJ JlJ Jel

» Check canary integrity before using the return value!
FOSAD'07: Low-level Software Security 'VH 0soft I

40

Stack cookies

» Can use values other than all-zero canaries

For example, newline, %, as well as zeros (e.qg. 9x000af{0od)

» Can also use random, secret values, or cookies
Will help against non-terminated overflows (e.g. via memcpy)

address content
0x0012ff5¢c 0x00353037 ;
0x0012f£58 0x0035302f ;

argument two pointer
argument one pointer

0x0012ff54 ; return address

0x0012££50 ; saved base pointer

0x0012ff4dc ; asecret, random cookie value
0x0012f£48 ; tmp continues ’r’ ’\0’ ’\0’ ’\0’
0x0012ff44 ; tmp continues ’o? ’o0’ ’b? ’a’
0x0012££40 ; tmp continues ’:? /2 /2 Of?
0x0012ff3c 0x656c6966 ; tmp array: £ 217 17 e’

» Check cookie integrity before using the return value!
41 FOSAD'07: Low-level Software Security 'VH osoft I

Windows /GS stack cookies example

» Add in function base pointer for additional diversity

function_with_gs_check:
: function preamble machine code

push ebp : save old base pointer on the stack
mov ebp, esp : establish the new base pointer
sub esp, 0x14 . grow the stack for buffer and cookie

: function body machine code

- function postamble machine code

mov esp, ebp : shrink the stack back
pop ebp : restore old, saved base pointer
ret ; return

» 42 FOSAD'o7: Low-level Software Security NH osoft l

Windows /GS example: Other details

» Actual check is factored out into a small function

__security_check_cookie:

cmp ecx, [__security_cookie] ;compare ecx and cookie value
jnz ERR . if not equal, goto an error handler
ret ; else return

ERR: jmp __report_gsfailure . report failure and halt execution

» Separate cookies per loaded code module (DLL or EXE)
Generated at load time, using good randomness

» The __report_gsftailure handler kills process quickly
Takes care not to use any potentially-corrupted data

43 FOSAD'07: Low-level Software Security 'VH 0soft I

Defense 1: Cost, variants, attacks

» Stack canaries and stack cookies have very little cost
Only needed on functions with local arrays
Even so, not always applied: heuristics determine when
(Not a good idea, as shown by recent ANI attack on Vista)

» Widely implemented: /GS, StackGuard, ProPolice, etc.
Implementations typically combine with other defenses

» Main limitations:
Only protects against contiguous stack-based overflows
No protection if attack happens before function returns
For example, must protect function-pointer arguments

IAA FOSAD'07: Low-level Software Security 'VH 0s0ft I

Attack 2:
Corrupting heap-based function pointers

typedef struct _vulnerable_struct

{

char buff [MAX_LEN] ;
int (*cmp) (char*,char*);
} vulnerable;

int is_file_foobar_using_heap(vulnerable* s, char* one, char* two)

{
// must have strlen(one) + strlen(two) < MAX_LEN
strcpy(s->buff, one);
strcat(s->buff, two);
return s->cmp(s->buff, "file://foobar");
}

» A function pointer is redirected to the attacker’s code

» Attack overflows a (fixed-size) array in a heap structure
Actually, attack works just as well if the structure is on the stack

45 FOSAD'07: Low-level Software Security 'VH 0s0ft I

Attack 2 example (for a C structure)

» Structure contains
The string data to compare against
A pointer to the comparison function to use

For example, localized, or case-insensitive

buff (char array at start of the struct) cmp
address: 0x00353068 0x0035306c 0x00353070 0x00353074 0x00353078
content: 0x656c6966 0x662f2f3a 0x61626f6f 0x00000072 0x004013ce

(a) A structure holding “file:/ /foobar” and a pointer to the strcmp function.

46 FOSAD'07: Low-level Software Security 'VH 0soft I

Attack example (for a C structure)

» The structure buffer is subject to overflow
(No different from an function-local stack array)

» Below, the overflow is not malicious

buff (char array at start of the struct) cmp
address: 0x00353068 0x0035306c 0x00353070 0x00353074 0x00353078
content :

(b) After a buffer overlow caused by the inputs “file:/ /7 and “asdfasdfasdf”.

» (Most likely the software will crash at the invocation of
the comparison function pointer)

47 FOSAD'07: Low-level Software Security 'VH 0s0ft I

Attack 2 example (for a C structure)

» Below, the overflow *is* malicious

» Note that the attacker must know address on the heap!
Heaps are quite dynamic, so this may be tricky for the attacker

buff (char array at start of the struct) cmp
address: 0x00353068 0x0035306c 0x00353070 0x00353074 0x00353078

content: |

(c) After a malicious buffer overflow caused by attacker-chosen inputs.

» Upon the invocation of the comparison function pointer,
the attacker gains control—unless defenses are in place

48 FOSAD'07: Low-level Software Security 'VH 0soft I

Attack 2 example (for a C++ object)

» Especially common to combine pointers and data in C++
For example, VTable pointers exist in most object instances

class Comparer

{
public:

virtual int compare(char* a, char*x b) { return stricmp(a,b); }
}s
int is_file_foobar_using_cpp(Vulnerable* s, char* one, char* two)
{

// must have strlen(one) + strlen(two) < MAX_LEN

s->init(one);

s->append(two);

return s->cmp("file://foobar");
}

49 FOSAD'07: Low-level Software Security 'VH 0soft I

Attack 2 example (for a C++ object)

class Vulnerable

» Attack needs one extra |
.]] char m_buff [MAX_LEN] ;
level of indirection Comparer m_cmp;

. public:
» Also, attack requires
.] int cmp(char* str) {
ertlng more pOInterS return m_cmp.compare(m_buff, str);

Zeros may be difficult . }

m_buff (char array at start of the object) m_cmp (vtable)
address: 0x05101010 0x05101014 0x05101018 0x0510101c 0x05101020
content:

50 FOSAD'07: Low-level Software Security 'VH 0s0ft I

Attack 2 constraints and variants

» Based on contiguous buffer overflow, like Attack 1
Cannot change fields before the buffer in the structure

» Overflow may be delimiter-terminated, like in Attack 1
Restrictions on zeros, or newlines, etc.

» One notable variant corrupts another heap structure
Can overflow an allocation succeeding the buffer structure

Heap allocation order may be (almost fully) deterministic

» Another variant targets heap metadata
As per the start of the lectures

51 FOSAD'07: Low-level Software Security 'VH 0s0ft I

Defense 3:
Preventing data execution

» High-level languages often treat code and data differently
May support neither code reading/writing nor data execution

» Undefined in standard C and C++
(However, in practice, some code does do this... alas)

» Can simply prevent the execution of data as code
Gives a baseline of protection

» Could have done this a long time ago:
On the x86, code, data, and stack segments always separate
... but most systems prefer a “flat” memory model

» Would prevent both attacks shown so far!

52 FOSAD'07: Low-level Software Security 'VH 0s0ft I

What bytes will the CPU interpret?

» Hardware places few constrains on control flow
» A call to a function-pointer can lead many places:

Possible control

flow destination Possible Execution of Memory
D Safe code/data

Data memory

| | |
Code memory j
for function A

Code memory
for function B

| | | |

x86 x86/NX RISC/NX x86/CFI

53 FOSAD'o7: Low-level Software Security 'VH 0s0ft I

Page tables and the NX bit

» NX bit added to
%86 hardware in X86 Address Translation details (PAE)

31 3029 2120 12 11 0
20 03 Oorso Directory F’ointer—|— | Directory | Table | Offset |
Gives protection
fO I t h e fl at * 4-KByte Page
memory model N e T o P
9
» Only exists in , [0 ‘
P»| Page-Table Entry o »
PAE page tables | Directory Entry »
Dou b l e nsize Psgiigrir?;ﬁ;y- PAE Page table entry on X86-64
P reViOUS |y Of NX | Reserved Page frame # AVL |ulw]P
. | Dir. Pointer Entry
n|Che USE Only PAE Page table entry on P6

Reserved Page frame # AVL |U| W[P

32
L—— CR3(PDPTR) |

54 FOSAD'07: Low-level Software Security 'VH 0s0ft I

Digging deeper into the page tables

» TLBs cache
page-table Page Directory (| Code: Readable |

Base Regi =
| OO kU pS ase egISter/' | R/O Data: Readable |
| CR3 Page-table entry <

Directory Entry | R/W Data: INVALID |

Page Tables Page Table Entries

4 ACtua”y two | [Stack__InvALID |
TLBs on most I-TLB Memory
x86 cores _ | [Code

. Instruction Virt 100 > Phys 123 : RO
) Can yuse th|S Fetch - Vit 101 > Phys 124 . RO |—— % Code
to emulate NX / =0 Daa
D-TLB
on Old CPUS Vit 101 > Phys 124 : RO / R/W Data
Doesn’t a|Ways Data Virt 180 - Phys 194 : RO /
work Reference - Virt 200 > Phys 456 : RW /v Stack
Not worth the Vit 01> Prye 790 R | [Stack
bother anymore

55 FOSAD'o7: Low-level Software Security 'VH 0s0ft I

Defense 3: Cost, variants, attacks

» Pretty much zero cost:
Some cost from larger page table entries (affects TLB/caches)

» Implementation concerns (for legacy code):
Breaks existing code: e.qg., ATL and some JITs
JITs, RTCG, custom trampolines, old libraries (ATL & WTL)
Partly countered by ATL_THUNK_EMULATION
Can strictly enforce with INXCOMPAT (o.w. may back off)

» Main limitations:
Attacker doesn’t have to execute data as code
They can also corrupt data, or simply execute existing code!

56 FOSAD'07: Low-level Software Security 'VH osoft '

Attack 3:
Executing existing code via bad pointers

» Any existing code can be executed by attackers
May be an existing function, such as system()
E.g., a function that is never invoked (dead code)
Or code in the middle of a function

» Can even be “opportunistic” code
Found within executable pages (e.g. switch tables)
Or found within existing instructions (long x86 instructions)

» Typically a step towards running attackers own shellcode

» These are jump-to-Libc or return-to-Libc attacks
» Allow attackers to overcome NX defenses

57 FOSAD'07: Low-level Software Security 'VH 0s0ft I

A new function to be attacked

» Computes the median integerin an input array
» Sorts a copy of the array and return the middle integer

int median(int* data, int len, void* cmp)

{
// must have 0 < len <= MAX_INTS
int tmp[MAX_INTS];
memcpy (tmp, data, len*sizeof (int)); // copy the input integers
gsort(tmp, len, sizeof(int), cmp); // sort the local copy
return tmp[len/2]; // median is in the middle
}

» If lenis larger than MAX_INTS we have a stack overflow

58 FOSAD'07: Low-level Software Security 'VH osoft '

An example bad function pointer

» Many ways to attack the median function

» The cmp pointer is used before the function returns
It can be overwritten by a stack-based overflow
And stack canaries or cookies are not a defense

» Using jump-to-1ibc, an attack can also foil NX

» Use existing code to install and jump to attack payload
Including marking the shellcode bytes as executable

» Example of indirect code injection
» (As opposed to direct code injection in previous attacks)

59 FOSAD'07: Low-level Software Security 'VH 0s0ft I

Concrete jump-to-libc attack example

» A normal stack for
the median
function

» Stack snapshot at
the point of the call
to memcpy

» MAX_INTS is 8

» The tmp array is
empty, or all zero

60

stack
address

normal
stack
contents

0x0012f£38
0x0012ff34
0x0012££30
0x0012ff2c
0x0012f£28
0x0012ff24
0x0012££20
0x0012ffic
0x0012ff18
0x0012ff14
0x0012f£f10
0x0012ff0c
0x0012f£08
0x0012ff04
0x0012f£00
0x0012fefc

0x004013e0 ;
; len argument

; data argument

; return address

; saved base pointer

; tmp final 4 bytes

; tmp continues

; tmp continues

; tmp continues

; tmp continues

; tmp continues

; tmp continues

; tmp buffer starts

; memcpy length argument
; Memcpy source arguient
; memcpy destination arg.

0x00000001
0x00353050
0x00401528
0x0012ff4c
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000004
0x00353050
0x0012££f08

FOSAD'07: Low-level Software Security

cmp arguiment

|U‘ﬁ| osoft M

Concrete jump-to-libc attack example

» A benign stack
overflow in the
median function

» Not the values that
an attacker will
choose ...

61

stack
address

benign
overflow
contents

0x0012f£38
0x0012ff34
0x0012££30
0x0012ff2c
0x0012f£28
0x0012ff24
0x0012££20
0x0012ffic
0x0012ff18
0x0012ff14
0x0012f£f10
0x0012ff0c
0x0012f£08
0x0012ff04
0x0012f£00
0x0012fefc

0x00000040

0x00353050 ;
0x0012f£08 ;

FOSAD'07: Low-level Software Security

3

3

3

cmp arguiment

len argument

data argument

return address

saved base pointer

tmp final 4 bytes

tmp continues

tmp continues

tmp continues

tmp continues

tmp continues

tmp continues

tmp buffer starts
memcpy length argument
memcpy source arguinent
memcpy destination arg.

|U‘ﬁ| osoft M

Concrete jump-to-libc attack example

» A malicious stack malicious
i stack overflow
overflow in the address contents
: : 0x0012££32 ||
median function or0010t s
» The attack doesn’t 0x0012££30
0x0012ff2c
corrupt the return 0%00195 8
address (e.g., to 0x0012f£24
0x0012££20

avoid stack canary oxo012¢£1c
or cookie defenses) 0x0012££18

| 0x0012ff14
» Control-flow is 0x0012££10
: : 0x0012f£0C
redirectedingsort * "~ °

» Uses jump-to-libc 0x0012££04 0x00000040
0x0012f£00 0x00353050

to foil NX defenses 0x0012fefc 0x0012ff08

62 FOSAD'07: Low-level Software Security

3

3

3

cmp arguiment

len argument
data argument
return address
saved base pointer
tmp final 4 bytes
tmp continues

tmp continues

tmp continues

tmp continues

tmp continues

tmp continues

tmp buffer starts
memcpy length argument

; memcpy source arguiment
; memcpy destination arg.

|U‘ﬁ| osoft M

Concrete jump-to-libc attack example

» Below shows the context of cmp invocation in gsort
» Goes to a 4-byte trampoline sequence found in a library

push edi ; push second argument to be compared onto the stack

push ebx ; push the first argument onto the stack

call [esp+comp_£fpl omparison function, indirectly through a pointer
add esp, 8 ; removg the two arguments from the stack

test eax, eax ; check fhe comparison result

jle label_lessthan ; brax on that result

machine code
code bytes assembly-language version of the machine code

0x7c971649 0x8b 0xe3 mov esp, ebx ; change the stack location to ebx
0x7c97164b 0x5b pop ebx ; pop ebx from the new stack
0x7c97164c 0xc3 ret - return based on the new stack

63 FOSAD'07: Low-level Software Security 'VH 0soft I

The intent of the jump-to-1libc attack

» Perform a series of calls to existing library functions
» With carefully selected arguments

// call a function to allocate writable, executable memory at 0x70000000
VirtualAlloc (0x70000000, 0x1000, 0x3000, 0x40); // function at 0x7c¢809a51

// call a function to write the four-byte attack payload to 0x70000000
InterlockedExchange (0x70000000, Oxfeeb2ecd); // function at 0x7c80978e

// invoke the four bytes of attack payload machine code
((void (*)())0x70000000) (); // payload at 0x70000000

» The effectis to install and execute the attack payload

64 FOSAD'07: Low-level Software Security 'VH 0soft I

How the attack unwindes the stack

» Firstinvalid control- malicious
ﬂ d stack overflow
ow e ge gOES tO address contents
trampoline 0x0012££35 |NE——
. 0x0012f£34 -
to the start of 0x0012ff2¢ . p copy of
VirtualAlloc 0x0012££28 oo oEd
_ esp —>
» Which returns to 0x0012f£20
the start of the 0x0012ff1c ‘ Interlocked
0x0012f£18 -

‘ Exchange
InterlockedExch. 0x0012££14 L pehang

function esp —>
. 0x0012f£0c
» Which returns to 0200195 £08 ,
the copy of the 0x0012f£04 0x00000040 ; - Ument

attack pay|oad 0x0012ff00 0x00353050 ; memcpy source argument
0x0012fefc 0x0012ff08 ; memcpy destination arg.

65 FOSAD'07: Low-level Software Security 'VH osoft '

A more

Initia
smal
attac

indirect, complete attack

ntdll! exceptl+0xC3:

payload
used to

copy

and

launch
the full
shellcode

66

> 8B E3 mov esp,ebx
5B pop ebx
= C3 ret
(< kernel32!VirtualAlloc:

Cc3 ret

Cc3 ret

kernel32!InterlockedExchange:

Cc3 ret

kernel32!InterlockedExchange:

ARAWA

89 64
46 C2 mov [esp+Ch],h esp

s C3 ret

A

ntdll 'memcpy:

= C3 ret

FOSAD'o7: Low-level Software Security

Initial CFG violation trampolines from
use of invalid function pointer and
uses a set of executable bytes, from
middle of a library function

Allocate a page of executable
virtual memory at fixed address

Write some code to that start
of that page w/two interlock ops

Finish writing the code and
return to it (at the fixed location)

Copy the shellcode stack location to
stack as the source arg for memcpy

Copy shellcode from stack to the
executable page, then return to it

|'u"ﬁ| osoft rd-l

Where to find useful trampolines?

» InLinux 1ibc, onein 178 bytesis a Oxc3 ret opcode
» Onein 475 bytes is an opportunistic, or unintended, ret

7 c7 07 00 00 00 test edi, Ox00000007
of 95 45 c3 setnz byte ptr [ebp-61]

Starting one byte later, the attacker instead obtains

c7 07 00 00 00 of movl edi, Ox0f000000

95 xchg eax, ebp
45 inc ebp
c3 ret

» All of these may be useful somehow

67 FOSAD'o7: Low-level Software Security 'VH 0soft I

Generalized jump-to-libc attacks

» Recent demonstration by Shacham [upcoming CCS’07]
Possible to achieve anything by only executing trampolines
Can compose trampolines into “"gadget” primitives
Such “return-oriented-computing” is Turing complete
Practical, even if only opportunistic ret sequences are used

» Confirms a long-standing assumption:
if arbitrary jumping around within existing,
executable code is permitted
then

an attacker can cause any desired, bad behavior

68 FOSAD'07: Low-level Software Security 'VH 0soft I

Part of a read-from-address gadget

. = MOV eax, [eax+64]
ret
» | pop eaX
esp - ret
Y Oxdeadbeef

464 | -

Loading a word of memory (containing @xdeadbeef) into register eax

69 FOSAD'07: Low-level Software Security 'VH 0soft I

Part of a conditional jump gadget

. » mov [edx], ecx
ret
. » adc cl, cl
ret
0x00000000

. | » pOp ecx

esp - pop edx
ret
(CF goes here)
-

Storing the value of the carry flag into a well-known location

70 FOSAD'07: Low-level Software Security 'VH 0soft I

Attack 3 constraints and variants

» Jump-to-libc attacks are of great practical concern
For instance, recent ANI attack on Vista is similar to median

» Traditionally, return-to-1ibc with the target system()

Removing system() is neither a good nor sufficient defense
Generality of trampolines makes this a unarguable point

Anyway difficult to eliminate code from shared libraries

» Based on knowledge of existing code, and its addresses
Attackers must deal with natural software variability
Increasing the variability can be a good defense

» Best defense is to lock down the possible control flow
Other, simpler measures will also help

71 FOSAD'07: Low-level Software Security 'VH 0soft I

Defense 2:
Moving variables below local arrays

» High-level variables aren’t mutable via buffer overflows
Evenin Cand C++
Only at the low level where this is possible

» Can try to move some variables “out of the way”

» Any stack frame representation allowed (in C and C++)
For example, order of variables on the stack
And arguments can be copies, not original values

» So, we can move variables below function-local arrays
And copy any pointer arguments below as well

72 FOSAD'07: Low-level Software Security 'VH 0soft I

A new function to be attacked

» Computes the median integerin an input array
» Sorts a copy of the array and return the middle integer

int median(int* data, int len, void* cmp)

{
// must have 0 < len <= MAX_INTS
int tmp[MAX_INTS];
memcpy (tmp, data, len*sizeof (int)); // copy the input integers
gsort(tmp, len, sizeof(int), cmp); // sort the local copy
return tmp[len/2]; // median is in the middle
}

» If lenis larger than MAX_INTS we have a stack overflow

73 FOSAD'07: Low-level Software Security 'VH 0s0ft I

The median stack, with our defense

» We copy

74

the cmp
function
pointer

argument

Only

change =——>

stack
address

stack
contents

0x0012f£38
0x0012f£f34
0x0012f£30
0x0012ff2c
0x0012f£28
0x0012ff24
0x0012££20
0x0012ffic
0x0012ff18
0x0012ff14
0x0012f£10
0x0012ff0c
0x0012f£f08
0x0012ff04
0x0012f£00
0x0012fefc
0x0012fef8

FOSAD'07: Low-level Software Security

0x004013e0
0x00000001
0x00353050
0x00401528
0x0012ffdc
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x004013e0
0x00000004
0x00353050
0x0012ff08

; cmp arguinent

; len argument

; data argument

; return address

; saved base pointer
; tmp final 4 bytes
; tmp continues

; tmp continues

; tmp continues

; tmp continues

; tmp continues

; tmp continues

; tmp buffer starts

local copy of cmp argument

; memcpy length argument
; memcpy source argument
; memcpy destination argument

|U‘ﬁ| osoft M

So, upon a buffer overflow

The cmp
function
pointer
argument
won't be
changed

Look! —->

stack
address

overflow
contents

0x0012f£38
0x0012f£f34
0x0012f£30
0x0012ff2c
0x0012f£28
0x0012ff24
0x0012££20
0x0012ffic
0x0012ff18
0x0012ff14
0x0012f£10
0x0012ff0c
0x0012f£f08
0x0012ff04
0x0012f£00
0x0012fefc
0x0012fef8

FOSAD'07: Low-level Software Security

0x004013e0
0x00000040
0x00353050
0x0012f£08

; cmp arguinent

; len argument

; data argument

; return address

; saved base pointer
; tmp final 4 bytes
; tmp continues

; tmp continues

; tmp continues

; tmp continues

; tmp continues

; tmp continues

; tmp buffer starts

local copy of cmp argument

; memcpy length argument
; memcpy source argument
; memcpy destination argument

|U‘ﬁ| osoft M

And, upon a malicious overftlow

BUt we stack stack
address contents
better have 0x0012ff38 ; cmp arguiment
0x0012f£34 ; len argument
some 0x0012££30 ; data argument
protection =2 oxoo12tt2c |
0x0012f£28 ; saved base pointer
for the 0x0012f£24 ; tmp final 4 bytes
return 0x0012f£f20 ; tmp continues
add ress 0x0012fflc ; tmp c-.uutpums
0x0012f£f18 ; tmp continues
(E.g., /G S) 0x0012ff14 ; tmp continues
0x0012££f10 ; tmp continues
0x0012ff0c ; tmp continues
0x0012ff08 ; tmp buffer starts

Still OK'! 'ﬁ 0x0012££04 0x004013e0 ; local copy of cmp arqument
0x0012££00 0x00000004 ; memcpy length argument

0x0012fefc 0x00353050 ; memcpy source argument
0x0012fef8 0x0012f£f08 ; memcpy destination argument

76 FOSAD'07: Low-level Software Security 'VH 0soft I

Defense 2: Cost, variants, attacks

» Pretty much zero cost:
Copying cost is tiny; no reordering cost (mod workload/caches)
(Especially since only pointer arguments are copied)

» Implemented alongside cookies: /GS, ProPolice, etc.
In part because only cookies/canaries can detect corruption

» Main limitations:
Not always applicable (e.g., on the heap)
Only protects against contiguous overflows
No protection against buffer underruns...
Attackers can corrupt content (e.g. a string higher on stack)

77 FOSAD'07: Low-level Software Security 'VH 0s0ft I

Defense 4:
Enforcing control-flow integrity

» Only certain control-flow is possible in software
Evenin Cand C++ and function and expression boundaries
Should also consider who-can-go-where, and dead code

» Control-flow integrity means that execution proceeds
according to a specified control-flow graph (CFG).
Reduces gap between machine code and high-level languages
» Can enforce with CFl mechanism, which is simple,
efficient, and applicable to existing software.

CFl enforces a basic property that thwarts a large class of
attacks— without giving “"end-to-end” security.

» CFlis a foundation for enforcing other properties

78 FOSAD'07: Low-level Software Security 'VH 0soft I

What bytes will the CPU interpret?

» Hardware places few constrains on control flow
» A call to a function-pointer can lead many places:

Possible control

flow destination Possible Execution of Memory
D Safe code/data

Data memory

| | |
Code memory j
for function A

Code memory
for function B

| | | |

x86 x86/NX RISC/NX x86/CFI

79 FOSAD'o7: Low-level Software Security 'VH 0s0ft I

Source control-flow integrity checks

» Programmers might possibly add explicit checks

» For example can prevent Attack 2 on the heap

int is_file_foobar_using_heap(vulnerable* s, char* one, char* two)

{

// ... elided code ...

if ((s->cmp == strcmp) || (s->cmp == stricmp)) {
return s->cmp(s->buff, "file://foobar");

} else {

return report_memory_corruption_error();

}

» Seems awkward, error-prone, and hard to maintain

FOSAD'07: Low-level Software Security 'VH 0soft I

Source-level checks in C++

» Also preventing the effects of heap corruption

class Vulnerable
{
char m_buff [MAX_LEN] ;
Comparer m_cmp;
public:
Vulnerable(Comparer c)
// ... elided code ...
int cmp(char* str) {
if((m_cmp.compare
(m_cmp.compare
{

: m_cmp(c) {}

&Comparer: :compare) ||
&CaseSensitiveComparer: :compare))

return m_cmp.compare(m_buff, str);

}

else throw report_memory_corruption_error();

81 FOSAD'07: Low-level Software Security 'VH 0soft I

CFI: Control-Flow Integrity [CCS’05]

bool 1t(int x, int y) { sort2 (}: sort(): 112;’61 -
return X < y; § § o
} . . call sort call 17,R// §
bool gt(int x, int y) { Lot 23
return X > y; label 55 W label 23 X]
} § \\\\ § ‘\\ gt():
~ label 17
sort2(int a[], int b[], int len) |[call sort et 55 N
{ */// N §
label 55
sort(a, len, 1t): ane N ret 23
sort(b, len, gt); §
} ret ..

» Ensure “labels” are correct at load- and run-time
Bit patterns identify different points in the code
Indirect control flow must go to the right pattern

» Can be enforced using software instrumentation
Even for existing, legacy software

82 FOSAD'07: Low-level Software Security

|U‘ﬁ| osoft M

Example code without CFI protection

Machine-code basic blocks

» Code makes use of data and FOX = MemlESP 1+ 41
- - EDX := Mem[ESP + 8]
function pointers L A
» Susceptible to effects of ~ v
memory corruptlon I
push Mem[EDX + 4]
. push Mem[EDX]
int foo(fptr pf, int* pm) { push ESP
o int err; call ECX —>I?
S int A[4];)
o)
9] 1o // ...
) v
< pf(A, pm[0], pm[1]); EAX := Mem[ESP + 0x10]
> if EAX != 0 goto L
o //
o .. o
@) if(err) return err; EAX := Mem[ESP]
return A[O]; v
3 L: ... and return <
83 FOSAD'07: Low-level Software Security %rd‘

Example code with CFI protection

Machine-code basic blocks

» Add inline CFl guards ECX := Mem[ESP + 4]
. EDX := Mem[ESP + 8]
» Forms a statically ESP := ESP - 0x14
verifiable graph of T
machine-code basic blocks v

push Mem[EDX + 4]
push Mem[EDX]
push ESP

int foo(fptr pf, int* pm) { cfiguard(ECX, pf_ID) pf
int err; call ECX
S int A[4]; i
S /... <
/) ...
w v
< pf(A, pm[0], pm[1]); EAX := Mem[ESP + 0x10]
8 if EAX != 0 goto L
o /) ... v
@) if(err) return err; EAX := Mem[ESP]
return A[O]; 2

3 L: ... and return <

84 FOSAD'o7: Low-level Software Security 'VH 0soft I

Guards for control-flow integrity

» CFl guards restrict computed jumps and calls

» CFl guard matches ID bytes at source and target
IDs are constants embedded in machine-code
IDs are not secret, but must be unique

EAX := Ox12345677
EAX := EAX + 1
if Mem[ECX-4] != EAX goto ERR 0x12345678
pf(Ai pm[o:ls pm[l]); call ECX >
/] ...]
/] ... <— ret
C source code Machine code with 0x12345678 as CFl guard ID

85 FOSAD'07: Low-level Software Security 'VH osoft '

Overview of a system with CFI

: Program
Compiler —>
P executable Code

rewriting '
and

Verify Program

execution

Vendo(; or Program installation Load

truste control-flow —> mechanism Into

party memor
graph emory

» Our prototype uses a generic instrumentation tool, and
applies to legacy Windows x86 executables

» Code rewriting need not be trusted, because of the verifier
» The verifieris simple (2 KLoC, mostly parsing x86 opcodes)

86 FOSAD'07: Low-level Software Security 'VH 0soft I

CFI formal study [ICFEM’05]

Formally validated the benefits of CFl:
Defined a machine code semantics

Modeled an attacker that can arbitrarily control all of
data memory

Defined an instrumentation algorithm and the
conditions for CFl verification

Proved that, with CFl, execution always follows the
CFG, even when under attack

87 FOSAD'07: Low-level Software Security 'VH 0soft I

Machine model

» State is memory, registers, and the current instruction

position (i.e. program counter)

Word = {0,1,...}
Mem = Word — Word
Regnum = {0,1,...,31}
Regfile = Regnum — Word
State = Mem x Regfile x Word

» Split memory into code Mc and data Md

» Split off three distinguished registers
Provides local storage for dynamic checks

88 FOSAD'07: Low-level Software Security

|U‘ﬁ| osoft M

Instruction set

Dc : Word — Instr decodes words into instructions

Instr = instructions
label w label (with embedded constant)
add rg,re, T4 add registers
addi rg, s, w add register and word
movi g, w move word into register
bgt rg, e, w branch-greater-than
jd w jump
jmp 1 computed jump
ld rq,rs(w) load
st rg(w),r, store
illegal illegal

Instructions and their semantics based on [Hamid et al.]

89 FOSAD'07: Low-level Software Security 'VH 0soft I

Operational semantics

| If De(M.(pe))= | then (M. |Mg. R pe) —,

“Normal” steps: label w (M. My, R, pc+ 1), when pe + 1 € dom(M,)
add vy, ro.my (M. My, Biryg— R(ri)+ Riry)}ope + 1),
when pe+ 1 £ dom(M,)
addi rg, v, w (M. My, B{rg— R{rs)+w}, pe+1),
when pe 4+ 1 = dom(M,.)
movi Tg., W (M. My, B{rg — w}, pe+1),
when pe + 1 = dom(M,)
bat re re, w (M Mg, B, w), when Rir.) = R(r;) A w = dom(M)
(M. My, B, pe+1).

De(M.(pc)) = jmp rs R(rs) € dom(M,)
(ﬂafﬂ‘ﬂ/fd: R: pfj) —n (ﬂ/ff‘ ‘ﬂ/fda R: R(T‘:‘))

storglu). r, (M. Mg{R(rg) 4w Rirg} B ope+1).
when R(rg) + w € dom{ M;) ~ pr+1 e dom(M,)

Attack step:

(ﬂ‘ifc ﬂ-—fd, RQ_Q|R3_91 ,])(J) —a (ﬂfc ﬁ-{d’, R()_Q‘Rg_gif,])(i)
S —. J.S’! .lg — X S!
General steps: 27" o
P S — 8/ S — 85

90 FOSAD'07: Low-level Software Security 'VH 0s0ft I

Assumptions

The instruction semantics encode assumptions
NXD: Data cannot be executed

Can be guaranteed in software, or by using new hardware
NWC: Code cannot be modified

This is already enforced in hardware on modern systems

Data memory can change arbitrarily, at any time
Models a powerful attacker, abstracts away from attack details

We can rely on values in distinguished registers
Approximates register behavior in face of multi-threading

Jumps cannot go into the middle of instructions
A small, convenient simplification of modern hardware

91 FOSAD'07: Low-level Software Security 'VH 0s0ft I

Instrumentation and verification

» Code with verifiable CFl, denoted (M), has
The code ends with an illegal instruction, HALT

Computed jumps only occur in context of a specific
dynamic check sequence:

Control never flows into the add?’ T?O? rs,
middle of the check sequence ld 1y, '?"0(0)

The IMM constants encode mouvi ro, IMM
the CFG to enforce, also bgt ri,ro, HALT

given by succ(M,, pc) bgt ro,r1, HALT
mp ro

» (Note CFl enforcement may truncate execution.)

92 FOSAD'07: Low-level Software Security 'VH 0s0ft I

A theorem about CFI

Can prove the following theorem

Theorem 1
Let Sy be a state (M.|Mg, R, pc) such that I(M,) and pc = 0, and let St,...,S, be states such
that Sop — S1 — ... — Sp. Then, forall i € 0..(n — 1), either

S; —aq Siyq and S;,1.pc = S;.pc or S;y1.pc € suce(Sy.M,, S;.pe).

» Proof by induction, with invariant on steps of execution

» Establishes that program counter always follows the static
control-flow graph, whatever attack steps happen during
execution (i.e., however the attacker can change memory)

» Implies, e.qg., that unreachable code is never executed and that
calls always go to start of functions

93 FOSAD'07: Low-level Software Security 'VH 0s0ft I

Defense 4: Cost, variants, attacks

140% -~ —
120% -~ —

100%
80% -~
60% -
40% -
20% -

0%

CFI enforcement overhead

bzip2 crafty eon gap gcc gzip mcf parser twolf wvortex wr AVG
SPECINT 2K reference runs, XP SP2, Safe Mode w/CMD, Pentium 4, no HT, 1.8GHz

» CFl overhead averages 15% on CPU-bound benchmarks
Often much less: depends on workload, CPU and I/O, etc.

» Several variants: E.q., SafeSEH exception dispatch in Windows

» Effectively stops jump-to-1ibc attacks
No trampolining about, even if CFl enforces a very coarse CFG
E.g., may have two labels—for call sites and start of functions

» Main limitation: Data-only attacks & API attacks
94 FOSAD'07: Low-level Software Security 'VH 0soft I'ch

Attack 4:
Corrupting data that controls behavior

» Programmers make many assumptions about data

For example, once initialized, a global variable is immutable—
as long as the software never writes to it again

Data may be authentication status, or software to launch

» Not necessarily true in face of vulnerabilities
Attackers may be able to change this data

» These are non-control-data or data-only attacks
Stay within the legal machine-code control-flow graph

» Especially dangerous if software embeds an interpreter
Such as system() oraJavaScript engine

95 FOSAD'07: Low-level Software Security 'VH 0s0ft I

Example data-only attack

» If the attacker knows data, and controls offset and
value, then they can launch an arbitrary shell command

void run_command_with_argument(pairs* data, int offset, int value)

{

// must have offset be a valid index into data
char cmd[MAX_LEN] ;
dataloffset].argument = value;

{
char valuestring [MAX_LEN];
itoa(value, valuestring, 10);
strcpy(cmd, getenv("SAFECOMMAND"));
strcat(cmd, " ");
strcat(cmd, valuestring);

}

dataloffset] .result = system(cmd);

FOSAD'07: Low-level Software Security

|U‘ﬁ| osoft M

I+ attacker controls offset & value

» Attacker changes the first pointer @x353730 in the
environment table stored at the fixed address 9x353610

» Instead of pointing to ... it now points to

address attack command string data as integers as characters
0x00354b20 0x45464153 0x4d4d4f43 0x3d444edl 0x2e646d63 SAFECOMMAND=cmd.
0x00354b30 0x20657865 0x2220632f 0x6d726f66 0x632e7461 exe /c "format.c
0x00354b40 0x63206d6f 0x3e20223a 0x00000020 om c:" >

» The code for data[offset].argument = value; is

address opcode bytes machine code as assembly language
0x004011a1 0x89 0x14 0xc8 mov [eax+ecx*8], edx ; write edx to eax+ecx*8

» If datais ©x4033e0 then the attacker can write to the
address 9x353610 by choosing offset as Ox1ffea46

97 FOSAD'07: Low-level Software Security 'VH 0s0ft I

Example data-only attack (recap)

» Attackerthat knows and control inputs can run

cmd.exe /c “format c:” > value

void run_command_with_argument(pairs* data, int offset, int value)

{

// must have offset be a valid index into data
char cmd[MAX_LEN] ;
dataloffset].argument = value;

{
char valuestring [MAX_LEN];
itoa(value, valuestring, 10);
strcpy(cmd, getenv("SAFECOMMAND"));
strcat(cmd, " ");
strcat(cmd, valuestring);

}

dataloffset] .result = system(cmd);

FOSAD'07: Low-level Software Security

|U‘ﬁ| osoft M

Attack 4 constraints and variants

» Data-only attacks are constrained by software intent
Making a calculator format the disk may not be possible

» Based on knowledge of existing data, and its addresses
Attackers must deal with natural software variability
Increasing the variability can be a good defense

» Can also consider changing data encoding...

99 FOSAD'07: Low-level Software Security 'VH 0s0ft I

Defense 5:
Encrypting addresses in pointers

» Cannot change data encoding, typically
Software may rely on encoding and semantics of bits

» But, encoding of addresses is undefined in Cand C++
Attacks tend to depend on addresses (all of ours do)
Can change the content of pointers, e.g., by encrypting them!

» Unfortunately, not easy to do automatically & pervasively
Frequent encryption/decryption may have high cost
In practice, much code relies on address encodings

E.g., through address arithmetic or from stealing the low or high bits

» SO, we can just encrypt certain, important pointers
Either via manual annotation, or automatic discovery

100 FOSAD'07: Low-level Software Security 'VH 0soft I

Manual pointer encryption in C++
class LessVulnerable

{

char m_buff [MAX_LEN] ;
void* m_cmpptr,

public:
LessVulnerable(Comparer* c) {
m_cmpptr = EncodePointer(c);

}
// ... elided code ...
int cmp(char* str) {

Comparer* mcmp;
mcmp = (Comparer*) DecodePointer(m_cmpptr);

return mcmp->compare(m_buff, str);

}
}s
» Comparison function pointer is stored encrypted

» Process-specific secret used, via standard Windows APIs
101 FOSAD'07: Low-level Software Security '”H osoft I

An encrypted pointer 1n a structure

» Our standard structure: a buffer and comparison pointer

buff (char array at start of the struct) cmp

address: 0x00353068 0x0035306c 0x00353070 0x00353074 0x00353078
content: 0x656c6966 O0x662Ff2f3a Ox61626F6F Ox00000072

A structure holding “file: / /foobar” and A pointer to the stremp function.
an encrypted

» Encryption is typically an xor with a secret
In Windows, the secret created using good randomness
Windows also rotates the bits to foil low-order-byte corruption

» Would, e.qg., prevent the data-only Attack 4
» Isused in Windows, e.q., to protect heap metadata

102 FOSAD'07: Low-level Software Security 'VH 0soft I

Defense 6: Cost, variants, attacks

» Overhead determined by pervasiveness
Also depends on the type and cost of the “encryption”

» Several variants possible
For instance, using a system-wide or per-process secret
(Windows has both, and may keep the secret in the kernel)
Could use multiple “colors”: dynamic types for pointers

» Can be applied manually and explicitly, or automatically
Must apply conservatively to legacy code (cf. PointGuard)

» Main limitations:
Attacker may learn or guess the encryption key, somehow
Attacks can still corrupt data (e.g., authentication status)

103 FOSAD'07: Low-level Software Security 'VH 0soft I

Defense 6:
Address space layout randomization

» Encoding of addresses is undefined in Cand C++

» Systems make few guarantees about address locations
Attacks tend to depend on addresses (all of ours do)

» Let's shift all addresses by a random amount! [PaX]

» Easy to do automatically and pervasively
Most systems (e.g., Windows) already support relocations
Only need to fill in a handful of corner cases (e.g., EXE files)
Code thatrelies on address encodings still works
ASLR changes only the concrete address values, not the encoding
» NXand ASLR synergy: Attackers can execute
neither injected exploit code, nor existing library code

ASLR for data can also prevent data-only attacks

104 FOSAD'07: Low-level Software Security 'VH 0soft I

A CMD.EXE process with Vista ASLR

glpid 1860 - WinDbg:6,7.0003.0 —|= ﬂ
=2 EINELRE SEPR G T L S o 5 - s e = R
Calls r | Processes and T, %| Registers = x|
RBaw args Funcinfo |Source Jaddrs |Headings onwvalatile regs |Frame nums | Source args are |Less - 4 ustarmize.., -
gs Funcinfo |5 gs Monvolatile regs |F 5 qs | More [L 5"003024;92 C
ChildEEF Retdddr &rgs to Child " . DDl:-eml Reg |‘Ialue -
0030fa?8 77420190 77427fdf 00000014 0030fadc ntdll!KiFastSystemCallRet 002 -dec = 0
0030fa?c 77427idf 00000014 0030fado 0030fado ntdll!FHtRequestTaitReplvPort+i=c) g
0030fa%: 7646705z 0030fads 00010588 0002021d ntdll!CsrClientCallServer+0=c2 f= 3b
0030£fb98 76d66efe 00000003 4alactd40 00002000 kernelli?!ReadConsolelnternal+lxzlcd == 23
0030fz24 43184538 00000003 d4alachd4l 00002000 kerneld?!ReadConsoleW+0x47 d= 273
0030fc8c 4al8de45 00000003 4alact40 00002000 cmd!ReadBufFronConsole+0xbs)
0030fch8 4a182247 4a182165 00000002 4a1h8640 cmd!FillBuf+0=175 edi 10588
0030fcbc 42182165 00000002 4albded0 00000000 cmd!GetByte+0xll e=i I0fadc
0030fczd8 42182048 4a1b8640 00002000 00000008 cmd!Lex+0=75 ahx 110000
0030£fcf0 4218207f 00000008 OOOOOQOO0 0030fd14 cmd!GeToken+0=x27
0030£fd00 4a18200a 00000000 764544568 00000000 cmd!ParseStatement+0x36 edx 2
0030fd14 42186038 00000002 0OOOOQOO0Q 00000000 cmd!Parser+0zd6 BCE 0
0030fd5c 4a182703 00000001 00190ef8 00191510 cmd!main+lxlde P 3282524
0030fdal 76463833 7££d4f000 0030fdec 773fa%d cmd!__ mainCRTStartup+0xzl102 b 1029
T 73fa9bd PEfdf000 00304994 00000000 kernel3?!BaseThreadIinitThunk+Dxe &hp a-c
DDEDfdec 000000 4al8ce3f 7L£d4£000 00000000 ntdll!_RtlUserThreadStart+0z23 21D 77420£34 —
C= 1b
q 5 efl 246
_I_I J e=D I0fatc
== 23
ST 1 Calculator = ﬂ dri 0
TEB at 7ffde000 : :
T —— Edit View Help drl 0
StackBaze: no3ioo0o .QI’ dr?]
StackLimit no213000 dra 0
FeData: * Hex Dec © Oct Bin & Qword © Dword © wod 7 Byte dré i}
ArbitrarvUszerPointer: 00000000 ’_ I_ dr7? 0
Self: 7ifdel00 [I [Hyp Back CE | C | di cag
EnvironmentPointer: aoooooan Aerepate l
ClientId: 00000744 . 00C si fads
RpcHandle: gooooooon Sta F-E | [‘] | MC | 7 ‘ a ‘ g | / ‘ tod And‘ b=]
Tls Storage: 7ifdelic dx= 2
PEE Address: 7ffdfoon
TostErrorVolue 0 Bye dmz Exp ‘ In 1] | 4 ‘] ‘ 5 | * ‘ Or | ol CxE 0
LastStatusValue: 1} ax c=52a
Count Owned Loclks: 0 Sum‘ =i %"y ‘ log | M5 | 1 ‘ 2 ‘ 3 | - ‘ Lzh | Mot ‘ bp falc
HardErrorHode: 1} .
ip fi4
3 ‘ coz | ®°3 ‘ rl | b+ |] ‘ +/- ‘ . | + ‘ = | Int ‘ £l 246
= | | INDEEREE R
Ciat t 2 14 i A B C 0] E F - -
105 [o:000> | el Il | ll I e y >

Flee = AAN.744

Tl wd AOALI A

ackd lewem L mamne Tanina

Another, concurrent CMD process

glpid 2704 - WinDbg:6,7.0003.0 —|= ﬂ
= dfADH BEe 0 DREEDEEO0E = E
Calls r x| Processa., X| Registers - |
Raw args Funcinfo |Source I,ﬂ.ddrs Headings Maonwvalatile regs |Frar'ne nurns |Source args | Mare |Less | Custarmize.. -
™ 7T RBetiddr Args to Child Reqg |¥alue -
b77420190 F7427£d4f nnnnnnia4 : ntdll |KiFastSy=tenCal lRet = 0
» F7427L£dE nnnnanni 4 wrereoes ntdll I HtRequestTaitReplyPort+0=c g
: 7R4GT0EC UUULUSHEE 0002021d ntdll!CsrClientCallServer+0=c? f= ib
b 7edbbefe 00000003 4alaced0 00002000 kernelil|ReadConsolelnternal+lxzlcd == 23
| 43184538 00000003 d4alachd40 00002000 kerneld?!ReadConsoleW+0x47 d= 273
: 4al8de45 00000003 4alaced0 00002000 cmd!ReadBufFromConsole+0xzbs
) 42182247 42182165 00000002 4a1b8640 cnd!FillBuf+0=175 edi 10588
: 43182165 00000002 421b86d40 00000000 cmd!GetByte+0xll e=i Zbibac
} 43182048 4alb8640 00002000 nnnonnne -=pdlLex+0=75 ahx d3a0000
| 4318207f 00000008 00000000 cnd | GeTolen+0x27 d 10000
] 4a318200a 00000000 76454468 00000000 cmd!ParseStatement+0=x36 sa®
L 43186038 00000002 nnnannan Aannnnnnn cpd | Parser+0=zd6 =T 4 10000
: 4a18c703 noannnnt cnd I mnain+0xlde sax 14500
I 76463833 comd ! mainCRETStartup+0x10:2 b Shibb
73f=9hd 00000000 kernel3?!BaseThreadinitThunk+lxe &hp =
oooooo 4al8ck3f 00000000 ntdll!_RtlUserThreadStart+0z23 21D 77420£34 —
C= 1b
q 5 efl 246
_JJ _J e=D 2hthdc
== 23
BT 1 Calculator = ﬂ dri 0
HardErroriode a . .
) Edit View Help drl 0
0 00 Qguizr T
TEB @t 7f£d£000 C— % D a2 o
dr3 0
StackB : oo2=0000
Stzgkl‘iai?t: 00123000 * Hex Dec © Oct Bin & Qword © Dword © wod 7 Byte dré 0
Hini gl dr? 0
FiberData: ooo001e0n [I [Hyp Backzpace CE | C | di cag
ArbitrarvUszerPointer: 00000000 P } ih
Self: 7ffdionon =1 a5
EnvironmentPointer: nooooonn Sta F-E | [‘] | MC | 7 ‘ a ‘] | ! ‘ ki And‘ b=]
ClientId: oo0nooa90 ooc dx= 0
EpcHandle: gooooooo
Tis Storage: 7ffdENZe Bye dmz Exp‘ In 1] | 4 ‘] ‘ 5 | * ‘ Or | ol CxE 0
PEE Address: 7ffda00n A 4500
LastErrorValue: 203 Sum‘ =i %"y ‘ bg| M5 | 1 ‘ 2 ‘ 3 | - ‘ Lsh| Nnt‘ bp fhEc
LastStatusValue: coaoo1loo io £34
Count Owned Locks: a ~
HardErrortods 0 z ‘ oz w3 ‘ n!| b+ | 0 ‘ +/- ‘ . | + ‘ = | Int‘ £1 246
| | | 2o efof el T - -
Ciat t 2 14 i A B C 0] E F - -
106 [a 000> | , il ¢ o i | LH

Flee = AAM.. O

Tl wd AOAL AN

AThA

ewem L eame Tanina

A new CMD process, after a reboot

gl Pid 3068 - WinDbg:6,7.0003.0 —|= ﬂ
= Sl HAm MR G ML B bl B Bl gl [I E =
Calls r X| Processes and The.. X| Registers = X
R Funcinfo |Source |odd Headi MNanwalatile regs |Frame nums |Source args | More |Less B l:!l]l] :bic TN Custamize...
awy args I r3 |Headings q | | q | | | - D00:a84
mr o mTn BPatiddAsw Args to Child 00l:e20 Reg |¥alue -
i 1 AANAnnt 4 : ntdll | KiFastSy=tenCal lRet = 0
: nonnnng 4 wrevwewen ntdll I HtRequestTaitReplyPort+0=c g
: : UUULUSHEY 0002021d ntdll!CsrClientCallServer+0=c? f= ib
i : goooooos o © 00002000 kerneli?|ReadConsolelnternal+lxzlcd == 23
L {goooooo3 Qoo02000 kernell? ! ReadConsolelW+0x47 de 23
! v 0oooooo3 nnnnannn opd | ReadBuf FromConsole+0xbs
! ' IININNE cnd | FillBuf+0=175 edi 10588
: v ooooooo2 o ______ 00000000 cmd! GetByte+0xll esl 20f81c
} ! pooozoon nnonnnne =pd | Lex+0=75 h f=0000
l uuuuUUE 00000000 cnd | GeToken+0x27 de 13000
] v oooooooo 00000000 cmd!ParseStatemnent+0x36 sa®
L oooopooz nnnnnnnn nannnnnn cnd | Parser+0x46 BCE 10000
: nnnnnnni cnd I mnain+0xlde eax 14500
! H comd ! mainCRETStartup+0x10:2 b 20£74
[00000000 kernel3?!BaseThreadinitThunk+lxe &hp =
ooooon 00000000 ntdll!_RtlUserThreadStart+0z23 21D 779a0£34 —
C= 1b
q _:J efl 246
e=D 20f7bo
Comrand o Calculatar —I—I' ﬂ :SD 33
0:000> lteh Edit View Help .
TEE at 7ff£df000 .‘ drl 0
e SOCEREE » dr2]
StackBasg: aozioo0o dr3 0
StackLimit: 00113000 @ Hex ¢ Dec Oct ¢ Bin * Qword © Dword © word 0 Bple dré 0
FiberData: noooleno dr7? a
ArbitrarvlserPointer: 00000000 [Iy [Hpp Backszpace CE ‘ C ‘ di cag
Self: 7ffdionon i flc
EnvironmentPointer: aoooooan
ClientId: 00000bfc . ooo| Sta| FE ‘ | |) ‘ MC ‘ 7 | 8 | 3 ‘ d | Mod‘ And bx 0
EpcHandle: gooooooo d= 0
Tls Storage: 7ifdflzc buve dms E3p| In ‘ MR ‘ 4 | 5 | [‘ * | ar ‘ war 0
PEE Address: 7ffdaoon c®
LastErrorvValue: 203) N aX 4500
LastStatusValue: cooonion Sum| Bl | &5 | bg‘ Lk ‘ 1 | 2 | 3 ‘ - | Lsh ‘ Mat bp £7de
Count Owned Locks: a) £34
HardErroriode 0 5 | cos | w03 | il ‘ M+ ‘ i | - | . ‘ + | = ‘ It ﬁ' 21t
d Dat | tan HA2| 14 pi‘ ' | C ‘ D | E ‘ F | sP £7be -
107 fo: 000> | <] | »

Example of ASLR on Windows

» Lets revisit the
median
function from
the jump-to-libc
Attack 3

» Stack snapshot
shows a normal
stack with no
overflow, at the
point of the call
to memcpy

108

stack one

address

contents

0x0022feac
0x0022fea8
0x0022fead
0x0022feal
0x0022fe9c
0x0022fe98
0x0022fe94
0x0022fe90
0x0022fe8c
0x0022fe88
0x0022fe84
0x0022fe80
0x0022fe7c
0x0022fe78
0x0022fe74
0x0022fe70

FOSAD'07: Low-level Software Security

0x008a13e0
0x00000001
0x00a91147
0x008a1528
0x0022fec8
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000004
0x00a91147
0x0022fe8c

Vista

, cmp argument

; len argument

; data argument

; return address

; saved base pointer

; tmp final 4 bytes

; tmp continues

; tmp continues

; tmp continues

; tmp continues

; tmp continues

; tmp continues

; tmp buffer starts

; memcpy length argument
; mMemcpy source argument
; memcpy destination arg.

|U‘ﬁ| osoft M

Example of ASLR on Windows Vista

» In a separate stack two
execution on address contents
. . 0x00 0x00 13e0 ; cmp argument
Windows Vista 0x00 0x00000001 ; 1;1 ﬂ,riuumnt
Code is located at 0x00 - 0x00 91147 ; data argument
one of 256 other 0x00 - 0x00 1528 ; return address
possibilities 0x00 0x00 : H%‘Iﬂ-"ﬂ(l. base pointer
_ 0x00 0x00000000 ; tmp final 4 bytes
The stackis at one ;g ~ 0x00000000 ; tmp continues
of 16384 POSSib|e 0x00 - 0x00000000 ; tmp continues
locations 0x00 0x00000000 ; tmp continues
Heap at one of 32 0x00 0x00000000 ; tmp continues
0x00 - 0x00000000 ; tmp continues
» The attacker must oxo0 ~ 0x00000000 ; tmp continues
guess or learn 0x00 0x00000000 ; tmp buffer starts
these bitS, to 0x00 0x00000004 ; memcpy length argument
0x00 - 0x00 1147 ; memcpy source arguimnent
succeed 0x00 - 0x00 ; memcpy destination arg.

109 FOSAD'07: Low-level Software Security 'VH 0soft I

Example of ASLR on Windows Vista

» Here, the attacker stack two

cannot perform address contents
0x00

the jump-to-1ibc .,
The address of the 0x00
trampolineis not 0x00

the same as before 9x00
0%00

» Stack addresses oxo00
are even harderto 0x00

determine 0x00
0x00

» On 64-bit systems, oxo0
the number of bits ©0x00

; cmp argument

; len argument

; data argument
: return address

; saved base pointer
; tmp final 4 bytes
; tmp continues

; tmp continues

; tmp continues

; tmp continues

; tmp continues

; tmp continues

0x00 ; tmp buffer starts
can Oﬁ:er strpng 0x00 0x00000004 ; memcpy length argument
defense against 0x00 ~ 0x00 1147 ; memcpy source argument

retry-or-guess 0x00 . 0x00 ; memcpy destination arg.
110 FOSAD'07: Low-level Software Security 'VH 0soft I

Defense 6: Cost, variants, attacks

» Costis mostly in compatibility issues
May apply in an opt-in fashion, as in Windows Vista

» Several variants possible
Can randomize code at build, install, at boot, or at load time
Windows randomizes code at load time, seeded at boot
Many ways of fine-grained data randomization (mod compat.)
Software diversity provides security [Forrest’'g7], much recent...

» Main limitations:
Attacker may learn or guess the randomization key, somehow
If the attacker can retry, they will eventually succeed
Attacks can still corrupt data (e.g., authentication status)

111 FOSAD'07: Low-level Software Security 'VH 0soft I

Overview of our attacks and defenses
Attack 1 | Attack 2 | Attack 3 | Attack 4
Defense 1 Pel}‘tiﬂl Pn.‘rt.iu.l Pa.‘rtia.l
defense defense defense
Defense 2 Pﬂ}‘tlﬂl Purtml P::L}‘tl::tl
defense defense defense
Defense 3 le}‘tiﬂl le}‘tiﬂl le{tiﬂl
defense defense defense
Defonse 4 Pil}‘f-l%ll Pil}‘f-l%‘tl le.rt.lzl.l
defense defense defense
Defense 5 le}‘tiﬂl Pa.‘rtia.l Pa.‘rtia.l
defense defense defense
Defense 6 Pel}‘tlﬂl Pel}‘tlﬂl Pn.‘rt.m.l Pa.‘rtm.l
defense defense defense defense

112

FOSAD'07: Low-level Software Security

|U‘ﬁ| osoft M

Unobtrusive, low-level defenses

» Each helps preserve some high-level language aspect
during the execution of the low-level software

» Apply in many contexts; are well suited to formal analysis

» Provide benefits by preventing certain types of exploits

For many vulnerabilities, these may be the only possible
exploits—eliminating the security risk

For remaining vulnerabilities, the defenses will force attackers
to use more difficult and less-likely-to-succeed methods

» Of course, best applied as part of a comprehensive
software security engineering methodology

Encompassing threat modeling, design, automatic analysis,
code reviews, testing, and safer languages and APlIs, etc.

113 FOSAD'07: Low-level Software Security 'VH 0soft I

