
1

1

Hugo Krawczyk

IBM Research

hugo@ee.technion.ac.il

2

Outline

� What is a Key Exchange Protocol

� Formalization and Design Challenges

� Authenticated Diffie-Hellman

� Lessons learned, Identity Misbinding Attack

� Formalizing and Proving Key Exchange Protocols

� Design: Authenticators and Modularity

� ISO and SKEME Protocols

� SIGMA Protocol and identity privacy

� When Modularity Fails: Arazi Protocol

� HMQV: Authentication almost for free

2

3

Key Exchange

� Truly fundamental cryptographic protocol

� The most (almost only) cryptographic protocol used
in practice

� I mean: protocol vs. function (encryption, signatures)

� Two parties interact to agree on a common secret
session key (from long-term to ephemeral keys)

� Preamble to “secure channels”

� E.g. SSL, IPsec (IKE), SSH

� Too many broken proposals

� Few are secure, fewer have been proven

4

Key Exchange Protocols

� A protocol between two parties to establish a
shared key (“session key”) such that:

1. Authenticity: they both know who the other party is

2. Secrecy: only they know the resultant shared key

Also crucial (yet easy to overlook):

3. Consistency: if two honest parties establish a common
session key then both have a consistent view of who
the peers to the session are

A: (B,K) and B: (x,K) � x=A

3

5

Key Exchange Protocols

� More generally:

� n parties; any two may exchange a key

� Sessions: multiple simultaneous executions

� Adversary:

� Monitors/controls/modifies traffic (man-in-the-middle)

� May corrupt parties: learns long-term secrets

� May learn session-specific information: state/keys

� Security goal: preserve authenticity, secrecy
and consistency of uncorrupted sessions

6

Formalizing Key Exchange

� An intuitive notion but hard to formalize

� Wish list for formal definitions/model:

� Intuitive (beware!)

� Reject “bad” protocols (capture full capabilities of
realistic attackers)

� Accept “good”, natural protocols (avoid overkill reqts)

� Ensure security of KE applications: “secure channels”
as the quintessential application + composition

� Usability: easy to analyze (stand alone � composable)
+ a design tool

4

7

Designing and Analyzing KE Protocols…

� …is non-trivial

� Yet the end protocol need not be complex
(only the way to get there may be)

� And: to be practical the protocol MUST BE SIMPLE

� The best advice: learn from past experience
(good and bad)

� And remember: there is no ULTIMATE security
model nor there are absolute proofs of security
(but only relative to the model)

8

First Part:

� Motivate security considerations for KE proto-
cols through examples (and counter-examples)

� Diffie-Hellman as the main example

� Sketch formalization of KE security [CK01,CK02]

� Some design and analysis methodology [BCK98]
(“analysis as a design tool”)

� Some covered protocols: ISO, SKEME, Arazi

5

9

2nd Part

� Depending on time

� KE with ID Protection

� The STS Protocol [DVW’92]

� The SIGMA Protocol and IKE

� The MQV/HMQV Protocols:

� efficiency vs proof complexity

10

Diffie-Hellman Exchange [DH’76]

A B

• both parties compute the secret key K=gxy=(gx)y=(gy)x

• g = generator of a cyclic group G (e.g. Zp
*, EC group)

• observer cannot distinguish K from uniform random in G

•DDH assumption: (gx,gy,gxy) ≈c (gx,gy,grandom)

• From gxy to a k-bit key: KDF: gxy � {0,1}k (pseudorandom)

B, gy

A, gx

6

11

Diffie-Hellman and PFS

� Maximal security: Perfect Forward Secrecy (PFS)

� Once the session keys are destroyed there is no way to
recover them, not even by the owners

� Distinguishes D-H from other protocols

� compare SSL: What if your bank’s private encryption key ever
compromised? ALL past traffic exposed!

� With PFS long-term keys used only for authentication

(not even at gun point)

A B

B, gy

A, gx

12

Diffie-Hellman Exchange [DH’76]

A B

• beautiful, strong, but…

• secure only against eavesdroppers (“authenticated channels”)

• open to active attacker (man-in-the-middle)

B, gy

A, gx

7

13

(Wo)Man-in-the-Middle

B, gy’

A BE

B, gy

A, gx A, gx’

KAB=gxy’ KBA=gx’y

Eve knows both keys!

14

Attempt at Authenticated DH

A B

B, gy, SIGB(gy)

• what if attacker ever finds a triple (x,gx,SIGA(gx))?

•E.g., file of precomputed (x,gx) pairs

•Ephemeral leakage should not allow impersonation

A, gx, SIGA(gx)

8

15

Basic Authenticated DH (BADH)

Each party signs its own DH value to prevent m-i-t-m attack

and the peer’s DH value as a freshness guarantee against replay

A: “Shared K=gxy with B” (K�B) B: “Shared K=gxy with A” (K�A)

Looks fine, but…

B, gy

SIGA(gy,gx)

A, gxA B

, SIGB(gx,gy)

16

Identity-Misbinding Attack [DVW’92]
(a.k.a. Unknown Key-Share attack = UKS)

� Any damage? Wrong identity binding!

A: “Shared K=gxy with B” (K�B) B: “Shared K=gxy with E” (K�E)

E doesn’t know K=gxy but B considers anything sent
by A as coming from E

B, gy, SIGB(gx,gy)

A, gx E, gx

B, gy, SIGB(gx,gy)

SIGA(gy,gx) SIGE(gy,gx)

A BE

Ξ

9

17

A: “Shared K=gxy with B” (K����B)

B: “Shared K=gxy with E” (K����E)

� B = Bank A,E = customers

� A B: {“deposit $1000 in my account”}K

� B deposits the money in “K” ’s account, i.e. E’s!

� Should the bank protocol include explicit identities? Maybe,
but KE should not make assumptions on higher-layer mechanisms

� What is the expectation of higher layer protocols? That a key is
uniquely bound to its owners (“speaks for its owners”)

� SSL renegotiation’s bug: wrong binding of sessions (attack
succeeded without the attacker ever learning the key)

18

Yet another example:

A: “Shared K=gxy with B” (K����B)

B: “Shared K=gxy with E” (K����E)

� B=Central Command A=F-16 E= small unmanned plane

� B E: {“destroy yourself”}K

� E passes command {“destroy yourself”}K to A.

� Result: F-16 destroys itself!

10

19

Notes

� Attack discovered by Diffie-van Oorschot-
Wiener [DVW’92]

� the “differential cryptanalysis” of KE protocols

� a reminder of the crucial consistency property

� The terminology Identity Misbinding Attack is mine

The attack is more commonly referred to as the
Unknown Key-Share (UKS) attack.

20

A Possible Solution (ISO-9796)

A, gx

B, gy, SIGB(gx,gy,A)

SIGA(gy,gx,B)

B

Thwarts the identity-misbinding attack by including
the identity of the peer under the signature

A

11

21

The ISO defense

A: aha! B is talking to E not to me!

Note that E cannot produce SIGB(gx,gy,A)

� The ISO protocol thus avoids the above
misbinding attack; but is it secure??

B, gy, SIGB(gx,gy,E)

A, gx E , gxA BE

B, gy, SIGB(gx,gy,E)

22

The ISO Protocol is Secure

� We’ll sketch the proof in the Canetti-Krawczyk
(CK) model of key exchange [CK’01]

� Note: the actual ISO-9796 protocol is more complicated:
adds a MAC on the peers id -- which adds nothing to the
security of the protocol

� An important consequence of well-analyzed
protocols: avoiding “safety margins”

� PROOF-DRIVEN DESIGN®

Let’s then talk about the CK model.

12

23

On KE Analysis Work

� Two main methodologies

� Complexity based: security against computationally
bounded attackers, proofs of security, reduction to
underlying cryptography, probabilistic in nature

� Logic-based analysis: abstracts crypto as ideal
functions, protocols as state machines, good
protocol debuggers

� Great recent “bridging” work towards “the best
of two worlds” (e.g. Cortier, Fournet here)

� Here we focus on the first approach

24

CK Model Predecessors

� Bellare-Rogaway’93

� First complexity-theoretic treatment of KE

� Indistinguishability approach [GM84]: attacker can’t distinguish
the real key from a random one

� Extended in [BJM97] to the PK-authentication setting

� Bellare-Canetti-Krawczyk’98

� Simulation-based definition of KE security

� Ideally-authenticated (AM) vs. real-life (UM)

� Modular authentication methodology

� Authenticators: AM-to-UM compilers

� Both works required tunings (learning is a never-ending process)

13

25

Canetti-Krawczyk Model

� A combination of BCK’98 setting and BR’93
indistinguishability approach (“SK-security”)

� The goal: ensure good composition and modularity properties
(as in BCK) but keep the simplicity of indistinguishability-based
analysis (“usability”)

� Secure channels as the must “test application”

� Requires a formalization of secure channels (e.g., a transport
protocol such as IPSec, SSL, SSH)

� Definition of secure channels combines secure encryption and
authentication against active attackers

26

SK-Security: KE protocol

� A two-party protocol in a multi-party setting

� Many protocol executions may run concurrently at the
same or different parties

� Each run of the protocol at a party is called a session
(a local object)

� Sessions have a unique local name: e.g. (A,sA) and an
incoming name (B,sB) where B is the intended peer.
The session id is the concatenation: (A,sA,B,sB)

� Sessions with corresponding names, i.e., (A,sA,B,sB)
and (B,sB,A,sA) are called matching.

� Upon completion a session erases its state and outputs
a triple: (session-id, peer-id, session-key)

14

27

SK-Security: Attacker

� Adversary model: unauthenticated links (UM)

� Full control of communication links: monitors/controls/modifies
traffic (m-i-t-m)

� Schedules KE sessions at will (interleaving)

� May corrupt parties (total control): learns long-term secrets
(e.g. signature key), all its state and session keys

� May issue a “learning query” for short-term information:

� session state query (e.g., the exponent x of a gx value)

� session key query (of a complete, present or past, session)

� Exposed session: if session owner is corrupted, or attacker issued
a query against the session, or the matching session is exposed

� Clearly cannot protect a session if the matching is exposed

28

SK-Security: Attacker

� Adversary model: unauthenticated links (UM)

� Full control of communication links: monitors/controls/modifies
traffic (m-i-t-m)

� Schedules KE sessions at will (interleaving)

� May corrupt parties (total control): learns long-term secrets
(e.g. signature key), all its state and session keys

� May issue a “learning query” for short-term information:

� session state query (e.g., the exponent x of a gx value)

� session key query (of a complete, present or past, session)

� Exposed session: if session owner is corrupted, or attacker issued
a query against the session, or the matching session is exposed

� Clearly cannot protect a session if the matching is exposed

AM
X

X
X

X passive attacker

15

29

A KE Protocol is called SK secure if

1. Completed matching sessions output same
session key (functional, non-triviality clause)

2. Attacker learns nothing about unexposed
sessions

� Captured via “test session”; chosen by attacker
among completed unexposed sessions

� Attacker is given either the session key or a random
value; it needs to guess which one is the case

� We require that the probability that the attacker
guesses right is not significantly better than a
random guess (i.e. ½ + small ε)

30

A compact but strong definition

� Captures many attacks that were enumerated in the past as
separate requirements (or wish lists). For example:

� Impersonation: if E can impersonate Bob without corrupting him then
E knows a key of an unexposed session, contradicting the definition

� Secrecy: If E learns anything about the session key then it can
distinguish it from random.

� Known-key attacks: An important class of attacks studied separately:
can E break one session given the key of another session? Captured
via session key query

� Identity misbinding: if E forces two sessions w/outputs (A, B, K) and
(B, E, K) E can choose one as test and expose the other to learn K (it
is allowed to do so since sessions are not matching)

� The definition can be further extended to cover other threats
and security properties: e.g. PFS (via key expiration)

16

31

Note

� There is no guarantee for a session that is shared with
a corrupted party.

� But there is a guarantee that interacting with the
attacker does not compromise any session between
honest parties

� Guarantee can be summarized as:

� If A outputs session key (A, B, K) and B is honest then no one
except B may know anything about K (not even a single bit)

� Does the protocol guarantee that B outputs the key??

Note: “key confirmation” possible but “common knowledge” is not

� Another important property: unexposed session keys have
“computationally independent” keys

32

About public keys

� Parties have long-term secrets

� e.g., private signature/decryption keys, or shared keys with
other parties

� In the PK case: public keys of honest parties are
communicated to other parties correctly.

� Public keys of corrupted parties are chosen by the
attacker arbitrarily (e.g., may be equal to a public key
of another honest party).

� Think of a CA that checks identity but no other
properties of the keys being registered (such as Proof
of Possession, checking structure of a key, etc.)

17

33

SK-security results

� SK-security � Secure Channels

� Any key exchanged with an SK-secure KE protocol
and used to “encrypt-then-authenticate” data realizes
a secure channel [CK01]

� A variety of protocols have been proven SK-secure
(both DH and key-transport): e.g., ISO, IKE (SKEME,
SIGMA), HMQV, and more (also in the preshared-key model)

� Two SK-secure flavors: with and w/o PFS
(PFS modeled through session-expiration (models erasure);
expired sessions are NOT exposed even if attacker corrupts
the session’s owner)

34

SK-Security and Composition

� SK-Security preserved under authenticators

� It suffices to prove a protocol secure in the ideally
authenticated-links model (AM), and apply to it a simple
“compiler” called authenticator (a design and analysis tool!)

� We’ll see an application to the proof of the ISO protocol

� CK02: SK-Security is “universally composable” (UC)
(remains secure under composition with any
application – not just secure channels)

� Well, almost: true for protocols with the ACK property

� True always if UC security weakened via
“non-information oracles” (see CK02 eprint/2002/059)

18

35

Authenticators [BCK98]
� Recall:

� UM (Unauthenticated-links Model):
a realistic attack model as described before

� AM (ideally Authenticated-links Model): like UM but
attacker is passive; cannot change or inject msgs on
links (but it may prevent delivery)

� Authenticator: a “compiler” from AM-secure
protocols to UM-secure

� Reduces the problem of designing (and analyzing)
protocols from the complex UM to the simple AM

� For example: Proving DH in the AM is immediate
(our first slide)

36

Authenticators (sketch of idea)

� Message sending protocol (can be interactive)

� Parties send and receive messages and register their
actions (“sent msg m to B”, “received msg m from A”)

� An authenticator is a message sending protocol
such that:

� whenever A registers “received m from B”, it also
holds that B registered “sent m to B”

� Note: To capture replay attacks: messages are
assumed unique (e.g., concatenated with msg id or nonce)

19

37

A signature-based authenticator

A, msg

B, nonce

A, SIGA(nonce,msg,B)

Compiler from AM to UM: apply the above authenticator
. to each protocol’s message!!

A B

38

Proving ISO Using an Authenticator

� First prove basic DH is SK-secure in AM
(DDH assumption)

A B

B, gy

A, gx

� Next apply the sig-based authenticator to
this protocol� a proof of the ISO protocol!!

20

39

Applying the Sig-Authenticator to
AM-DH

A, SIGA(gy,gx,B)

A, gx

Authenticator applied to gy is a slightly different variant:
first A sends nonce (gx), then B sends message (gy) with signature

Conclusion: the ISO protocol is SK-secure
(QED: with a simple and intuitive proof)

B, gy, SIGB(gx,gy,A)B, gy

msg=gx

nonce=gy
msg=gy

nonce=gx

signature
authenticator

We have: ISO = AM-DH Plus Signature-based authenticator

40

Other Authenticators

(and the SKEME Protocol)

21

41

Encryption-based authenticator

Single message authenticator: A B:

A, msg

B, ENCA(k)

A, msg, MACk(msg,B)

Compiler from AM to UM: apply the above authenticator
. to each protocol’s message

A B

msg

42

Applying the Enc-Authenticator to
AM-DH

A, gx, MACk2(gx,B)

A, ENCB(k1)

� the SKEME protocol [K’96,IKEv1]

Variants: •Key transport (no pfs)
. • Pre-shared key (with a MAC-based authenticator)

B, gy, MACk1(gy,A), ENCA(k2)

msg=gx

msg=gy

22

44

Authenticators are not always…

� Possible
� Either the design is not decomposable into a basic

AM-secure protocol and an authenticator applied to it

� Or desirable
� The decomposition is artificial and adds more

technicalities than understanding

� Yet, when they “work” it usually results in a more
intuitive and easier-to-analyze protocol
� And designing KE with authenticators in mind reduces

the chances of hidden flaws

45

More on the Design of
Key Exchange Protocols

� The design of the IKE Protocols: SKEME, SIGMA

� “IPsec’s Key Exchange” (IKEv1, IKEv2)

� Privacy Issues: Identity Protection, deniability

23

46

On Identity-Protecting KE Protocols

� Identity protection

� hiding identities from passive and/or active attackers

� Logical identities (e.g. cert’s) vs. physical addresses

� A privacy concern in many scenarios

� Probing attacks in the Internet: who are you?

� Location anonymity of roaming users

� The “intelligent passport” application

� IPSec/IKE: design highly influenced by such
privacy concerns � SKEME, SIGMA

47

Identity Protection
� Passive vs. active attacker

� Best possible: both id’s protected against passive
attacks but only one against active attacks

� Whose identity should get active defense?

� Initiator: roaming user (e.g. hide location)

� Responder: avoid probing attacks: who are you? (e.g. passport)

� Presents some design challenges: conflict
between anonymity and authentication

24

48

Identity Protection in SKEME

A, gx, MACkB(gx,B)

A, ENCB(A, kA)

Issue: Id protection requires A to know B’s pk (before run)

Next: SIGMA (signature based, solves this issue, IKEv2)

B, gy, MACkA(gy,A), ENCA(B,kB)X

X

49

Why not ISO?

� B needs to know A’s identity
before he can authenticate to A;
same for A

� Protection against active attackers is not possible

� Another privacy concern: leaving a signed proof of
communication (signing the peer’s identity)

� Letting each party sign its own identity rather than the peer’s
solves the privacy issues but makes the protocol insecure (the
identity-misbinding attack again)

� An alias-based variant possible: see SIGMA paper

A, gx

B, gy, SIGB(gx,gy,A)

SIGA(gy,gx,B)

BA
A, gx

B, gy, SIGB(gx,gy,A)

SIGA(gy,gx,B)

BA

Unsuited for identity protection

25

50

The SIGMA Protocol

51

SIGMA: Basic Version

A, SIGA(gy,gx)

BA

gy, B, SIGB (gx,gy)

gx

*Km (and session key) derived from gxy via a prg/prf

SIG and MAC: complementary roles (mitm and binding, resp)

Does not require knowing the peer’s id for own
. authentication � Great for id protection (& deniable)

, MACKm(B)

, MACKm(A)

26

52

SIGMA-I:active protection of Initiator’s id

gx

gy, {B, SIGB (gx,gy), MACKm(B) }Ke

{A, SIGA(gy,gx), MACKm (A) }Ke

BA

*Ke and Km derived from gxy via pseudorandom function

Responder (B) identifies first

� Initiator’s (A) id protected

53

SIGMA-R:active protection of Responder’s id

BA

{ B, SIGB (gx,gy), MACKm’(B) }Ke’

gx

gy

{ A, SIGA (gy,gx), MACKm (A) }Ke

Note: Km, Km’ and Ke, Ke’ (against reflection attack)

27

54

IKEv1 Variant: MAC under SIG

Equivalent security (just save MAC space):

gy, B, SIGB (MACKm (B, gx,gy))

A, SIGA (MACKm (A, gy,gx))

gxA B

� this is IKE’s “aggressive mode” (no id protect’n)

Note: MAC(SIG(id,…)) is not secure!! (STS-MAC)

55

IKE Main Mode

BA gx

gy

{ A, SIGA (MACKm (A, gy,gx)) }Ke

{ B, SIGB (MACKm’ (B, gx,gy)) }Ke’

IKE v2: a slight variant – only MAC(id) under SIG

28

56

SIGMA Summary

� SIGMA suitable for most applications requiring
a Diffie-Hellman key exchange:

� Simple and efficient (minimizes msgs and comput’n)

� No over-design (nor under-design)

� With or without ID Protection

� Provides best possible protection (I or R protected against
active attacks depending on application)

� The “intelligent passport” application

� Standardized: core key-exchange protocol for both
IKEv1 and IKEv2

57

But is SIGMA Secure?!

� Secure! (rigorous analysis): Canetti-K Crypto’02

� Formal proof: each element is essential

� e.g., SIG(MAC(id,…)) vs. (SIG(id,…), MAC(SIG(id,…)))

� Guarantees secure channels

� Secure composition with arbitrary applications (UC)

� From theory to practice
� Specification, implementation, DETAILS

(see “full fledge” appendix in paper -- web version)

� DoS defenses: selective (IKEv2), integral (JFK-R)

� ID Prot’n: Encryption secure against active attackers (RCCA)

� Certificates, …

Care with
variants!!

29

58

A Revived (and Revised) Arazi
Protocol

59

Schnorr Signature

� Public parameters: Group G, generator g of
prime order q, hash function H:{0,1}*�Zq

� Private key s in Zq Public key t=gs

� Signature on message M is pair (v,w)

� v = gk , k random in Zq (per signature value)

� w = k + s·H(M,v) mod q

� Verification: check that gw = v·tH(M,v)

30

60

Recall ISO

A, gx

B, gy, SIGB(gx,gy,A)

SIGA(gy,gx,B)

BA

61

ISO w/Schnorr Signature

A, gx

B, gy, v’=gk’, w’=k+sH(gx,gy,A,v’)

v=gk, w=k+s’H(gx,gy,B,v)

BA

Natural question: Can we re-use the DH values
gx, gy as the v,v’ in the protocol? (i.e. k=x, k’=y)
-- exponentiations are expensive!

X

X

K=gxy K=gxy

31

62

Security of the protocol

� Authenticators do not work anymore, but is
there another proof?

� Nope. The protocol is insecure:

Set h=H(gx,gy,A,v), h’=H(gx,gy,B,v’) then

x=k=w-s·h and y=k’=w’-s·h’

K = gxy = gkk’ = g(w-s·h)(w’-s’·h’) = gww’ t-hw’ t’-h’w (gss’)hh’

gss’ = (K/P)1/hh’

If a single session key K between A and B is ever learned
then gss’ is learned and with it ALL A-B session keys!!

=P (known value)

63

Can Security be Saved?

� Yes. Set the session key to K=H(gxy) where H is
modeled as a “random oracle”

� Exercise 1: Prove it.
Exercise 2: show the protocol does not have PFS.

� The above protocol is a derivative of Arazi’s protocol’92
which used DSS instead of Schnorr (used only 2 msgs,
did not hash the session key and used an “empty signature”)

� The protocol then muted into other forms.

� Enter: “Implicitly authenticated DH”

32

64

Implicitly Authenticated DH

� Authentication via session key computation

� No transmitted signatures, MAC values, etc

� Session key must involve long-term and ephemeral keys:

K=F(PKA,PKB,SKA,SKB ,gx,gy,x,y)

� Ability to compute key � authentication

� Possible and simple but tricky: many insecure proposals

A B

B, gy

A, gx

65

The HMQV Protocol:

almost-free authentication!

33

66

The HMQV Protocol

� Basic DH + special key computation

� Notation: G=<g> of prime order q; g in supergroup G’ (eg. EC, Z*
p)

� Alice’s PK is A=ga and Bob’s is B=gb,

� Exchanged ephemeral DH values are X=gx, Y=gy

� Set d=H(X,”Bob”) e=H(Y,”Alice”) (here H outputs |q|/2 bits)

� Both compute σ=g(x+da)(y+eb) as σ = (YBe)x+da = (XAd)y+eb

� Session key K=H(σ) (here H outputs |K| bits, say 128)

� Authentication almost for free “½ exponentiation”, no comm’n

� Magic, isn’t it? Is it secure? Why? Can it be formally analyzed?

Yes! A provable secure version of MQV (better performance too)

67

HMQV Analysis

� HMQV: basic DH (X=gx, Y=gy), PKs: A=ga, B=gb

� Compute σ=g(x+da)(y+eb) as σ = (YBe)x+da = (XAd)y+eb

� d=H(X,”Bob”) e=H(Y,”Alice”) (H outputs ≥|q|/2 bits)

� Session key K=H(σ) (e.g., 128 bits)

� No signatures exchanged, authentication achieved via

computation of σ (must ensure: only Alice and Bob can compute it)

� Idea: (YBe)x+da is a sig of Alice on the pair (X, “Bob”) and,

at the same time, (XAd)y+eb is a sig of Bob on (Y, “Alice”)

� Two signatures by two different parties (different priv/publ

keys) on different msgs but with the same signature value!

34

68

Underlying Primitive:

Challenge-Response Signatures

� Bob is the signer (PK is B=gb), Alice is the verifier (no PK)

� Alice sends a “challenge” (X=gx) and a msg m to Bob, who responds with a

“challenge-specific” signature on m (sig depends on b, X, m)

� Alice uses her “challenge trapdoor” (x) to verify the signature

� Alice�Bob: m, X=gx

Bob�Alice: Y=gy, σ=Xy+eb where e=H(Y,m)

Alice accepts the signature as valid iff (YBe)x= σ

� Note: Alice could generate the signature by herself! (signature

convinces only the challenger – non-transferable -- bug or feature?)

� We call this scheme XCR (Xponential Challenge Response)

69

Security of XCR Signatures

� Theorem: XCR signatures are unforgeable

� Unforgeability under usual adaptive chosen message attack

� Only signer and challenger can compute it

� Assumptions: Computational DH and H modeled as random oracle

� Idea of proof: “exponential” Schnorr via Fiat-Shamir
(in a minute…)

35

70

Dual XCR (DCR) Signatures

� Alice and Bob act as signers and verifiers simultaneously

� Alice has PK A=ga, Bob has PK B=gb

� Alice and Bob exchange values X=gx, Y=gy and msgs mA,mB

� Bob generates an XCR sig on mA under challenge XAd

Alice generates an XCR sig on mB under challenge YBe

� The signature is the same! σ = (YBe)x+da = (XAd)y+eb

� This is exactly HMQV if one puts mA=“Alice”, mB=“Bob”
(since sig is the same value it needs not be transmitted!)

71

Proof of HMQV

� Reduction from breaking HMQV as KE (in the CK model)

to forging DCR

� Not a trivial step

� Great at showing the necessity of all elements in the protocol:

drop any element and the proof shows you an attack (e.g. MQV)

� Reduction from forging DCR to forging XCR

� Quite straightforward

� Reduction from forging XCR to solving CDH in RO model

� I expand on this next

36

72

XCR Proof via “Exponential Schnorr”

� Schnorr’s protocol (given B=gb, Bob proves knowledge of b)

� Bob�Alice: Y=gy

� Alice�Bob: e ∈∈∈∈R Zq

� Bob�Alice: s=eb+y (Alice checks YBe=gs)

� Exponential Schnorr: Bob proves ability to compute ()b

� Bob�Alice: Y=gy

� Alice�Bob: e ∈∈∈∈R Zq, X=gx

� Bob�Alice: σ=Xeb+y (Alice checks (YBe)x=σ)

Theorem: XCR is strongly CMA-unforgeable (CDH + RO)

[FS]: ZK for honest verifier (Alice) ����(Y,s=eb+y) w/ e=H(m,Y) is a RO sig on m

ZK for honest verifier (& any X) ����(Y, σ=Xeb+y) w/ e=H(m,Y) is a ROXCR sig on m

{0,1}|q|/2

X

73

Proof: A CDH solver C from XCR forger F

� Input: U, V in G=<g> (a CDH instance; goal: compute guv)

� Set B = V X0 = U (B is signer’s PK, X0 is challenge to forger)

� Run F; for each msg m and challenge X queried by F (*a CMA attack*)

simulate signature pair (Y,Xs) (random s, e; Y=gs/Be; H(Y,m)  e)

� When F outputs forgery (Y0, m0, σ): (* (Y0,m0) fresh and H(Y0,m0) queried *)

Re-run F with new independent oracle responses to H(Y0,m0)

� If 2nd run results in forgery (Y0, m0, σ’) (* same (Y0,m0) as before! *)

then C outputs W=(σ////σ’)1/c where c=(e-e’) mod q .
(e, e’ are the responses to H(Y0,m0) in 1st and 2nd run, respectively)

Lemma: with non-negligible probability W=DH(U,V)

Proof: [PS] + W= (σ////σ’)1/c = ((Y0Be)x0 / (Y0Be’)x0)1/c = ((Bc) x0)1/c = Bx0

37

74

Implications for HMQV (* X ���� XAd *)

� We used W = (σ////σ’)1/c = ((Y0Be)x0 / (Y0Be’)x0)1/c

But can we divide by Y0Be’? Yes if B and Y0 in G (have inverses)

� B in G always true (chosen by honest signer) but what about Y0

which is chosen by forger?

� Do we need to check that Y0 in G? (An extra exponentiation?)

� No. If G ⊂⊂⊂⊂ R, then enough to check Y0 has inverse in R

� E.g: G = Gq = <g> ⊂⊂⊂⊂ Zp*; R = Zp; simply check Y in Zp and Y≠0

� HMQV needs no prime order verification! (later: only if exponent leak)

� Forger can query arbitrary msgs with arbitrary challenges X (even

challenges not in group G) � No need for PoP or PK test in HMQV!

(X becomes XAd and we do not need to check X nor A!)

���� Robust security of HMQV without extra complexity

(no extra exponentiations, PoP s, PK validation, etc.)

75

Final Remark

� The KE area has matured to the point in which there is no reason
to use unproven protocols

� Addressing practicality does not require (or justify) giving up on
rigorous analysis

� Proofs not an absolute guarantee (relative to the security model), but
the best available assurance

� It is easy to design simple and secure key-exchange protocols, but it
is easier to get them wrong…

� Proof-driven design: Formal analysis as main design tool

� Guides us to choose secure mechanisms, compose them right, discern
between the essential, desirable and dispensable

� Result is efficiency, simplicity, rationale, even impl’n guidance!

38

76

Cryptography as a Science!

� Intuition, ideas, cryptanalysis, new attacks…
all necessary and important but:

� Formal analysis as main confidence tool

� Not a Panacea: never stronger than the model it is based on

� But well-defined mechanisms and properties: can be verified
(not just “trust me, I have not been able to break it”)

� Even a cryptanalysis tool (e.g. UKS, LimLee attacks, KCI w/o hash,…)

� Formal analysis as main design tool

� Guides us to choose secure mechanisms, compose them right,
discern between the essential, desirable and dispensable

� Result is efficiency, simplicity, rationale, even impl’n guidance!

� Provable security: a strong weapon! (use with care!)

