
1

Theory and Design of Low-latency
Anonymity Systems (Lecture 2)

Paul Syverson
U.S. Naval Research Laboratory

 syverson@itd.nrl.navy.mil
http://www.syverson.org

2

Course Outline

Lecture 1:
•  Usage examples, basic notions of anonymity, types

of anonymous comms systems
•  Crowds: Probabilistic anonymity, predecessor attacks

Lecture 2:
•  Onion routing basics: simple demo of using Tor,

network discovery, circuit construction, crypto, node
types and exit policies

•  Economics, incentives, usability, network effects

3

Course Outline

Lecture 3:
•  Formalization and analysis, possibilistic and

probabilistic definitions of anonymity
•  Hidden services: responder anonymity, predecessor

attacks revisited, guard nodes
Lecture 4:

•  Link attacks
•  Trust

4

Tor Demo Background

Tor is an onion routing system for anonymous
communication

•  Initially a project at the U.S. Naval Research
Laboratory

•  The Tor Project Inc. is now a U.S. nonprofit
501 (c) (3)

•  Network comprised of thousands of volunteer
nodes from around the world

•  Free and open software maintained by the
Tor Project, used by hundreds of thousands

5

Getting Tor

6

Vidalia: Tor’s GUI

7

Vidalia: Tor’s GUI

8

9

The Web through Tor and TorButton

10

11

Low-latency systems are vulnerable to
end-to-end correlation attacks.

Low-latency: Alice1 sends:
 Bob2 gets: "

 Alice2 sends:
 Bob1 gets:

High-latency: Alice1 sends:
 Alice2 sends: "

 Bob1 gets:
 Bob2 gets:

Time

These attacks work in practice. The obvious defenses
are expensive (like high-latency), useless, or both.

match!

match!

12

Multiple relays so that
no single one can betray Alice.

Bob Alice

R1

R2

R3

R4 R5

13

For Onion Routing:
A corrupt first hop can tell that Alice is
talking, but not to whom.

Bob Alice

R1

R2

R3

R4 R5

14

Bob Alice

R1

R2

R3

R4 R5

For Onion Routing:
A corrupt last hop can tell someone is
talking to Bob, but not who.

15

How onion routing works:
Alice makes a session key with R1

Bob Alice

R1

R2

R3

R4 R5

16

Alice makes a session key with R1
...And then tunnels to R2

Bob Alice

R1

R2

R3

R4 R5

17

Alice makes a session key with R1
...And then tunnels to R2...and to R3

Bob Alice

R1

R2

R3

R4 R5

18

Alice makes a session key with R1
...And then tunnels to R2...and to R3
Then talks to Bob over circuit

Bob Alice

R1

R2

R3

R4 R5

19

Feasible because onion routing uses (expensive)
public-key crypto just to build circuits, then uses
(cheaper) symmetric-key crypto to pass data

Bob Alice

R1

R2

R3

R4 R5

20

Can multiplex many connections
through the encrypted circuit

Bob Alice

R1

R2

R3

R4 R5

Bob2

21

That's Tor* in a nutshell

* Tor's Onion Routing

22

What onion routing is not: Crowds

Public-key based circuit building means
•  Forward security
•  Better practical scalability
•  Less centralized trust

Multiply encrypted circuits means
•  less risk of route capture
•  smaller profiling threat (also from shorter circuit

duration)
•  security not dependent on hiding path position
•  able to support multiple applications/application

encryption options

23

What onion routing is NOT: Mixes

Entirely different threat model
•  mixes are based on an adversary not being able to

correlate inputs and outputs he sees
•  onion routing is based on an adversary not being able to

see both inputs and outputs to correlate
Entirely different communications paradigm:

Circuit based encryption vs. per message
•  onion routing supports bidirectional communication
•  onion routing supports low-latency communication

Can be combined to make mixing onion routers,
but not typically done or desired

24

What onion routing is

Uses expensive crypto (public-key) to lay a
cryptographic circuit over which data is
passed

Typically uses free-route circuit building to
make location of circuit endpoints
unpredictable

25

Why call it “onion routing”?
Answer: Because of the original key
distribution data structure

Bob Alice

R1

R2

R3

R4 R5

26

Why is it called onion routing?

Onion: Just layers of public-key crypto
•  Nothing in the center, just another layer

Bob Alice
R1

R2

R5

R4 R3

KA,R1 R2

KA,R2 R5

KA,R5 ⊥ "

27

Circuit setup

NRL v0 and v1 onion routing and also ZKS Freedom
network used onions to build circuits
•  Lacked Forward Secrecy
•  Required storing record of onions against replay

Tor (NRL v2) uses one layer “onion skins”
•  ephemeral Diffie-Hellman yields forward secrecy
•  No need to record processed onions against replay
•  From suggestion out of Zack Brown’s Cebolla

KA,R1 R2

KA,R2 R5

KA,R5 ⊥ "

28

Aside: Why is it called ‘Tor’ and what
does ‘Tor’ mean?
Frequent question to Roger c. 2001-2: Oh

you’re working on onion routing... which one?
Roger: THE onion routing. The original onion

routing project from NRL.
Rachel: That’s a good acronym.
Roger: And it’s a good recursive acronym.
Plus, as a word, it has a good meaning in

German (door/gate/portal) and Turkish (fine-
meshed net)

29

Aside: Why is it called ‘Tor’ and what
does ‘Tor’ mean?
We foolishly called the first Tor paper “Tor: the

second generation onion router”
But this was very confusing

•  ‘Tor’ stands for “The onion routing” or “Tor’s onion
routing”. It does not stand for “the onion router”

•  The paper is about the whole system, not just the
onion routers

•  Tor is not the second generation

30

Onion routing origins: Generation 0

Fixed-length five-node circuits
Integrated configuration
Static topology
Loose-source routing
 Partial active adversary
Rendezvous servers and reply onions

31

Onion routing, the next generation

  Running a client separated from running an OR
Variable length circuits (up to 11 hops per onion---

or tunnel for more)
Application independent proxies (SOCKS) plus

redirector
 Entry policies and exit policies
Dynamic network state, flat distribution of state info
Multiplexing of multiple application connections in

single onion routing circuit
Mixing of cells from different circuits
Padding and bandwidth limiting

32

Third-generation onion routing (Tor)

 Onion skins, not onions: Diffie-Hellman based
circuit building

Fixed-length three-hop circuits
Rendezvous circuits and hidden servers
Directory servers, caching (evolved w/in Tor)
Most application specific proxies no longer needed

(still need e.g. for DNS)
Congestion control
End-to-end integrity checking
No mixing and no padding

33

Circuit setup

NRL v0 and v1 onion routing and also ZKS Freedom
network used onions to build circuits
•  Lacked Forward Secrecy
•  Required storing record of onions against replay

Tor (NRL v2) uses one layer “onion skins”
•  ephemeral Diffie-Hellman yields forward secrecy
•  No need to record processed onions against replay
•  From suggestion out of Zack Brown’s Cebolla

KA,R1 R2

KA,R2 R5

KA,R5 ⊥ "

34

Client	

Initiator	

Tor Circuit Setup (Create)

, Hash()	

Onion Router	

Client chooses first node, establishes session key over TLS connection

TLS connection

35

Client chooses first node, establishes session key over TLS connection

Client	

Initiator	

Tor Circuit Setup (Create)

, Hash()	

Onion Router	

36

Client chooses first node, establishes session key over TLS connection

Tor Circuit Setup (Extend)

Client
Initiator

, Hash ()
OR2 OR1	

, Hash ()

OR2,

37

Slight simplification of actual protocol

Tor Circuit Setup (Begin) and Data
Flow

Client
Initiator

OR1

Web server

Reply

OR2

Connect

Reply

38

More on Tor circuit establishment

Designing your own authentication protocol is error prone.
Why not use an established protocol?

Answer: To fit whole messages inside Tor cells. A public
key and a signature don’t both fit in one 512-byte cell.

Protocol was verified using the NRL protocol analyzer in
the Dolev-Yao model.

In 2005 Ian Goldberg found flaw in the way Tor
implemented this protocol (checking that a public value
was not based on a weak key).

In 2006 Ian proved the (properly implemented) protocol
secure in the random oracle model.

39

Circuit establishment efficiency

I and others have proposed protocols to reduce
the public-key overhead of circuit
establishment.

Interesting refinements on forward secrecy, but
these need more study (and proofs!) before
adoption

Next question: How do we know where to build
a circuit?

40

How do we know where to build a
circuit? Network discovery.
Flat flooding of network state: complex, tricky,

scales in principal but ?
Tor has a directory system
Originally a single directory signing information

about network nodes. Then a multiple redundant
directory with mirrors. Then a majority vote
system. Then a consensus document system.
Then separate things that need to be signed and
updated frequently. Then...

Bridge distribution: see tomorrow’s lecture.

41

Network and Route Discovery

Alice has to know a set of nodes and pick a
route from them
Must know how to find R1
Must learn more network nodes to pick a route
Cannot trust R1 to tell about the rest of the

network

Bob Alice
R1

R2

R5

R4 R3

42

Network and Route Discovery

Alice has to know a set of nodes and pick a
route from them
Must know how to find R1
Must learn more network nodes to pick a route
Cannot trust R1 to tell about the rest of the

network

Bob Alice
R1

R1’

R1’’

R4 R3

43

Network and Route Discovery
Current simple solution: Trusted servers that tell every Alice

about all the nodes in the network
Problem: minimize and distribute that trust. (not current focus)
Problem: Tor currently has c. 2000 nodes. Getting info to its c.

200K-500K clients (some on dial up) is a concern
Scaling: What happens when there are 5000 nodes, 50000

nodes, 5000000 nodes?
It’s not just node names: keys, access policies, state info,

etc. to distribute

Bob Alice
R1

R2

R5

R4 R3

44

Scaling Network Discovery and Route
Discovery
Simple solution*: Give only partial network information

to clients
Possible problems:

Network information is not authentic or nodes are not unique
(sybils)

Attacks on how information is distributed (targeting who receives
what, oddly skewed distributions of bundles of node
information, etc.)

Assume: everyone is fairly given information about a
subset of a “clean” network

Is anything left to go wrong?

* to fix the problems just identified with our first simple solution

45

Fingerprinting Attack

Bob Alice
R1

R2

R5

R4 R3

46

Fingerprinting Attack

Bob Alice
R1

R2

R5

R4 R3

Alices who
know R5

47

Fingerprinting Attack

Bob Alice
R1

R2

R5

R4 R3

Alices who
know R5

Alices who
know R2

48

Fingerprinting Attack

Bob Alice
R1

R2

R5

R4 R3

Alices who
know R5

Alices who
know R2

Alices who know R5
and know R2

49

Fingerprinting Attack

Bob Alice
R1

R2

R5

R4 R3

Alices who
know R5

Alices who
know R2

Alices who know R5
and know R2

 Alice
(who knows R5,
R4 and R2)

50

Network Discovery in Early Tarzan
(P2P anonymous comms network)
Network nodes are listed in a DHT, e.g., hash

(node name, IP address, public key)
Join network, pick a small number of nonces
Pick the node in the DHT with a key closest to

each nonce and ask it about its neighbors
Assume: discovery is “clean and fair”

ignoring any issues initial Tarzan has with that
Given: lookup is visible

anyone can tell which part of the network is learned by
someone joining the network

51

Tarzan’s Fingerprints

• Danezis & Clayton
observed this vulnerability
in Tarzan
• Final published Tarzan
design reverts to clique
topology (w/ problems
noted above)
• Danezis, Syverson ‘08

– presents analytic proof of
results in prior paper
– implications for scaling
practical systems

 http://xkcd.com/license

Young Tarzan leaves telltale
fingerprints on the vine.

52

Analyzing the Fingerprinting Attack

Suppose there are N+1 nodes in a system
Suppose each peer knows n nodes
If an adversary knows k of the nodes in a route

(it owns them or is adjacent to them in the
route), then the number of possible initiators
(as k/N 0) tends to

nk / Nk-1

Proof: See the paper.

€

nk

Nk-1

53

Epistemic Attacks

To avoid problems based on what senders
know, designs have been cautious about
allowing only partial discovery.

“There are known knowns. These are
things we know that we know.

54

Epistemic Attacks

To avoid problems based on what senders
know, designs have been cautious about
allowing only partial discovery.

“There are known knowns. These are
things we know that we know.

There are known unknowns. That is to
say, there are things that we know we
don't know.” ---Donald Rumsfeld

Bridging Attack (Adversary making use of what
we don’t know.)

55

Anonymity loves company but hates a
crowd
As the network grows these attacks become

more effective (n/N shrinks)
Against fingerprinting, client-server

infrastructure design appears to beat P2P
A system like Tor has two orders of magnitude more

clients than servers, so way more clients share
knowledge of server sets than if all were peers

56

Better to have nothing to do with each
other than to stay together in ignorance

Suppose a setting roughly like current Tor
200K clients, 2000 nodes
assume we want anonymity set size of 50K

Against fingerprinting each client must know 1000
nodes (about half)

If client and node sets each partitioned, then the same
anonymity set size against fingerprinting if clients
know only 500 nodes

Not just more efficient. Much easier to design
discovery and show secure in simple partitioned
clique case than partial knowledge case.

57

Incentives, usability, network effects

Just saw one network effect: client-server currently
beats P2P for efficient, simple resistance to
epistemic attacks on discovery

Also, client-server more flexible to be usable by
larger variety of users
 more users more security

Client-server and exit/entry policies is more flexible
to be usable by larger variety of providers
 more nodes more security

If not everyone is provider, who are the providers?

58

Why a volunteer network?

A decade ago anonymity needs not obvious to
even those with strong needs, so they wouldn’t
pay for it.

Even if they would, anonymity has a special
network effect problem
•  High security needs users cannot use the network unless

it has lots and varied users
•  Low (perceived) security needs users will not use the

network if it is expensive or hard to use
  Need to allow “free-riders” (not really free-riders since

they contribute to the security of others)
  Need easy usability and acceptable perceived

performance

59

Incentive design decisions in early
onion routing
Carry traffic for others to make system usable for

Navy/government purposes.
Let others run part of the infrastructure so they can

trust it.
Make code open source so they can trust it. (only

later: so they can contribute to research and
development)

Client-server architecture for those who can’t/won’t
run nodes.

Entry and exit policies for variety of network
operator policy environments and comfort levels.

60

Operator options good, if easy to
configure

61

Operator options good, if easy to
configure

62

User options mostly a bad idea

Most users don’t know how to configure properly
 System should just start and work (if it can)

More options more ways to partition and ID
  System should not make it easy for end users

to choose other than starting defaults

63

The most secure system design (ignoring
incentives and usability issues) is not the
most secure system design

64

The most secure system design (ignoring
incentives and usability issues) is not the
most secure system design

Low-latency: Alice1 sends:
 Bob2 gets: "

 Alice2 sends:
 Bob1 gets:

High-latency: Alice1 sends:
 Alice2 sends: "

 Bob1 gets:
 Bob2 gets:

Time

match!

match!

65

Prevailing Wisdom: High latency systems more
secure but less practical
Much harder to do correlation attacks
Somewhat harder to do intersection and statistical

disclosure attacks
Cannot be used for interactive or low-latency

applications: web browsing, remote login

66

Prevailing Wisdom: High latency systems more
secure but less practical
Much harder to do correlation attacks
Somewhat harder to do intersection and statistical

disclosure attacks
Cannot be used for interactive or low-latency

applications: web browsing, remote login

What is a realistic adversary for practical
anonymous internet communication?

67

The Man

68

The Man
Owns big chunks of the

anonymity infrastructure
purchased, compromised,...

Can access many ISPs,
backbones, websites, ...

Can know ancillary things
employer, relatives, religion,

political activities,...
If targeting you, can tap your

phone, tail and photograph
you,...

Think intelligence orgs.,
secret police, state actors,
organized crime, ...

69

The Man
Big
Powerful

70

The Man
Big
Powerful

 NOT global
 NOT omnipotent

71

Don't mix with The Man

For internet communication: If you are not
worried about being suspected by The Man,
mix networks are overkill

If you are worried about being suspected by
The Man, mix networks are inadequate
because they don't scale in practice

Mixes can provide plausible deniability: The
Man won't know which of 50-100 suspects is
the sender
For most anonymous internet communication this is

irrelevant

72

The Man doesn't care about plausible
deniability

73

The Man doesn't care about plausible
deniability

I'll pick, hmmm,
All three!

74

Mix networks will not scale, so onion
routing is actually more secure

Technically they can scale, but they won't because of
usability and incentives

Most people are (correctly) not worried about The Man.
They want anonymity from
Employers (current or potential), Marketing or government

hoovers, Identity thieves, Abusive ex spouses, Business
competitors, Unscrupulous websites, Flaming lunatics...

Most will choose a low-latency, interactive system for protection
So, Mixmaster has at most 100-200 users per day protected by

a few dozen mixes
By contrast, Tor has 100K-600K users at once protected by

thousands of onion routers

75

Tor ain't gonna save you from The Man neither (not
statistically).
Need to add trust.

Bwa Ha Ha Ha!

76

Mix networks will not scale, so onion
routing is actually more secure

Technically they can scale, but they won't because of
usability and incentives

Most people are (correctly) not worried about The Man.
They want anonymity from
Employers (current or potential), Marketing or government

hoovers, Identity thieves, Abusive ex spouses, Business
competitors, Unscrupulous websites, Flaming lunatics...

Most will choose a low-latency, interactive system for protection
So, Mixmaster has at most 100-200 users per day protected by

a few dozen mixes
By contrast, Tor has 100K-600K users at once protected by

thousands of onion routers

77

Why volunteer to run a node?

Desire to contribute to something important.
Desire to be cool.
Provide more/better service Attract users to

the network Cover for your own traffic.
Running your own node other nodes cannot

distinguish your own traffic from traffic from
those you attracted to the network.
•  True but ...

78

Circuit clogging attacks (simple version)

From “Low-Cost Traffic Analysis of Tor”,
Murdoch & Danezis, Oakland ‘05

79

Limitations of simple circuit clogging

Required a hostile destination
Only identified the onion routers, NOT the client
Only worked on a small network

•  Public Tor network was c. 40 nodes at the time
•  Later verified not to work on Tor network in 2008

(1500 nodes, many high capacity)
•  Numerous false positives and negative

80

Long paths for clogging attack
bandwidth multiplier

From “A Practical Congestion Attack on Tor Using Long Paths”,
Evans, Dingledine, & Grothoff, USENIX Sec ‘09

81

Long-path congestions details

Requires client to use hostile exit node (to inject javascript or other
pinging mechanism)
•  Could also work with hostile destination

Also requires another hostile client and hostile destination to clog
circuits

Currently countered by preventing Tor from generating long circuits
•  Can still work but requires adversary to contribute more resources

Could also be countered by traffic prioritization
•  gold star routers
•  trust
•  payment

While we’re back on incentives for being a router, what about
incentives for clients?
•  Tang and Goldberg CCS’10 use exponentially weighted moving average to

select for latency over throughput, which has greatly improved Tor
performance

82

Morals: incentives and usability

Incentives and usability greatly influence
system performance and system adoption

Almost always overlooked: They also greatly
influence system security

A threat model that tells you which system is
more secure without accounting for these
issues is almost certainly wrong

83

What’s up next

Lecture 3:
•  Formalization and analysis, possibilistic and

probabilistic definitions of anonymity
•  Hidden services: responder anonymity, predecessor

attacks revisited, guard nodes
Lecture 4:

•  Link attacks
•  Trust

Questions?

