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Cryptography, Complexity and Lattices

Cryptography: exploiting hard computational problems to build
computer systems that are hard to break.
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Cryptography, Complexity and Lattices

Cryptography: exploiting hard computational problems to build
computer systems that are hard to break.

Good news

There are plenty of hard
computational problems in
computer science.
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Cryptography: exploiting hard computational problems to build
computer systems that are hard to break.

Good news Bad news

There are plenty of hard Finding cryptographically
computational problems in useful hard problems
computer science. seems hard.

Cryptography requires problems that
@ are very hard to solve: solution should take enormous time

@ are hard to solve on average, even with small probability
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Cryptography, Complexity and Lattices

Cryptography: exploiting hard computational problems to build
computer systems that are hard to break.

Good news Bad news

There are plenty of hard Finding cryptographically
computational problems in useful hard problems
computer science. seems hard.

Cryptography requires problems that
@ are very hard to solve: solution should take enormous time
@ are hard to solve on average, even with small probability

@ have extra features, e.g., trapdoors, regularity, etc.
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Point Lattices and Cryptography

Lattice problems

@ appear to be very hard (solution takes exponential time),
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Point Lattices and Cryptography

Lattice problems
@ appear to be very hard (solution takes exponential time),

@ have been widely studied by mathematicians since 19th
century (Lagrange, Gauss, Dirichlet, ...),
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Point Lattices and Cryptography

Lattice problems

@ appear to be very hard (solution takes exponential time),

@ have been widely studied by mathematicians since 19th
century (Lagrange, Gauss, Dirichlet, ...),

@ provably yield hard on average problems, from worst-case
complexity assumptions.
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Point Lattices and Cryptography

Lattice problems
@ appear to be very hard (solution takes exponential time),

@ have been widely studied by mathematicians since 19th
century (Lagrange, Gauss, Dirichlet, ...),

@ provably yield hard on average problems, from worst-case
complexity assumptions.

Lattice related constructions and cryptographic functions

@ have many useful features (linearity, trapdoors, etc.),
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Point Lattices and Cryptography

Lattice problems

@ appear to be very hard (solution takes exponential time),

@ have been widely studied by mathematicians since 19th
century (Lagrange, Gauss, Dirichlet, ...),

@ provably yield hard on average problems, from worst-case
complexity assumptions.

Lattice related constructions and cryptographic functions
@ have many useful features (linearity, trapdoors, etc.),

o are efficient and easy to implement, typically involving only
simple arithmetic operations on small numbers.
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Ajtai’s function

Definition (Ajtai’s function)
fa(x) = Ax mod q where A € Z7*™ and x € {0,1}"
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Ajtai’s function

Definition (Ajtai’s function)
fa(x) = Ax mod q where A € Z7*™ and x € {0,1}"

xe{0,1}"| 0 1 10100 | (g=10)
m
1459302 ]2
e 4286 2 4 3 2| Ax ez
AcZq 7554780 |0 7Y%
2701469 [ 1
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Ajtai’s function

Definition (Ajtai’s function)
fa(x) = Ax mod q where A € Z7*™ and x € {0,1}"

xe{0,1}"| 0110100 | (g=10)
m
1459302 ]2
e 4286 2 4 3 2| Ax ez
AcZq 7554780 |0 7Y%
2701469 [ 1

Security (One-wayness)
Given A and y, it is hard to find x € {0,1}" s.t. fa(x) =y.




Outline

@ Point Lattices
@ Computational Problems
@ The dual lattice

@ Lattice Cryptography
@ Average Case Hardness
@ Random Lattices
@ Cryptographic functions

Daniele Micciancio The Geometry of Lattice Cryptography



Point Lattices Computational Problems
The dual lattice

Outline

@ Point Lattices

Daniele Micciancio The Geometry of Lattice Cryptograpl



Point Lattices Computational Problems
The dual lattice

Point Lattices

@ The simplest example of lattice is Z" = {(x1,...,Xn): X; € Z}
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Point Lattices Computational Problems
The dual lattice

Point Lattices

@ The simplest example of lattice is Z" = {(x1,...,Xn): X; € Z}
@ Other lattices are obtained by applying a linear transformation

B:x=(xq,...,x5) > Bx=x1:-b;+:--+x,-b,

- - - . y ) & —
e —
&
(0,1) . 5
(1,0) |
&
- —9
—— —
« — —o—
9 —
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Point Lattices Computational Problems
The dual lattice

Lattices and Bases

A lattice is the set of all integer linear combinations of (linearly
independent) basis vectors B = {by,...,b,} C R™

L= Zn: b;-Z o
i=1 -
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Point Lattices Computational Problems
The dual lattice

Lattices and Bases

A lattice is the set of all integer linear combinations of (linearly
independent) basis vectors B = {by,...,b,} C R™

L= bj-Z={Bx:xcZ"}
i=1
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Point Lattices Computational Problems
The dual lattice

Lattices and Bases

A lattice is the set of all integer linear combinations of (linearly
independent) basis vectors B = {by,...,b,} C R™

L= bj-Z={Bx:xcZ"}
i=1
The same lattice has many bases

L:zn:c,-.z
i=1
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Point Lattices Computational Problems
The dual lattice

Lattices and Bases

A lattice is the set of all integer linear combinations of (linearly
independent) basis vectors B = {by,...,b,} C R™

L= bj-Z={Bx:xcZ"}
i=1
The same lattice has many bases °

Definition (Lattice) .

A discrete additive subgroup of R”
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Point Lattices Computational Problems
The dual lattice

Minimum Distance and Successive Minima

@ Minimum distance

Moo= min [x—yl . )
x,yeL,x7y . .
= min_||x| . /'
xeL,x#0 °

° q
_ ,

[ ] ° ° ‘

[ ] e ¢

[ ] ° °
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Point Lattices Computational Problems
The dual lattice

Minimum Distance and Successive Minima

@ Minimum distance

AL o= i —
t i I °

= min _||x]|

XELx#0 // A ,
.
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Point Lattices Computational Problems
The dual lattice

Minimum Distance and Successive Minima

@ Minimum distance

)\ - i — ° .‘ ‘
LN .
= min x| ‘ .
XxEL xH£0 ./
A1 P
@ Successive minima (i =1,...,n) * J .
Ai = min{r : dim span(B(r) N L) > i} . °
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Point Lattices Computational Problems
The dual lattice

Minimum Distance and Successive Minima

@ Minimum distance

A1 = min - . o ’
1 cymin  lx =yl .
= min x| ’ .
x€L,x#0 |4
1 «
@ Successive minima (i =1,...,n) ° J .
Ai = min{r : dim span(B(r) N L) > i} . °
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Point Lattices Computational Problems
The dual lattice

Minimum Distance and Successive Minima

@ Minimum distance

A1 = min ||x — . o ’
1 cymin  lx =yl .
= min x| ’ .
x€L,x#0 |4

1 «
@ Successive minima (i =1,...,n) ° J .

Ai = min{r : dim span(B(r) N L) > i} . °

@ Examples ‘ ’

o 7™ >\1:>\2:--~:/\n:1
o Always: A\ < A <. <A\,
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Point Lattices Computational Problems
The dual lattice

Distance Function and Covering Radius

° °
@ Distance function . . . ¢
° o
t,£) = min ||t — -
p(t,£) = min [t — x| S @
° ® ¢ ‘
» ® * :
° ® ¢ ‘
° e ° ‘
o ° ¢ ‘
° ° ¢ :
- . ° ‘
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Point Lattices Computational Problems
The dual lattice

Distance Function and Covering Radius

@ Distance function . . . ¢
p(t, £) = min|e — x| T
e Covering radius ] ° ‘ .
AT N
L) = max t, L ' . %
M( ) thpan(ﬁ)lu( ) ® .
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Point Lattices Computational Problems
The dual lattice

Distance Function and Covering Radius

@ Distance function . . . ¢
t,£) =min|lt —x : ’ A
p(t, £) = min & x| ® e
e Covering radius o ¢ : .
o
W)= max p(t.0) S s
tEspan(L) ° .
@ Spheres or radius p(L) centered . . .
around all lattice points cover the ' . . .
whole space ¢ .
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Point Lattices Computational Problems
The dual lattice

Distance Function and Covering Radius

@ Distance function . . . ¢
t,£) =min|lt —x ‘ : -
p(t, £) = min & x| < N
e Covering radius J ° : |
o ¢
W)= max p(t.0) N &S
tEspan(L) ° .
@ Spheres or radius p(L) centered . . .
around all lattice points cover the ‘ . . .
whole space ¢ .
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Point Lattices Computational Problems
The dual lattice

Distance Function and Covering Radius

@ Distance function , . . N
t,£) = min|jt —x . : .
p(t. £) = min[t — x| n /Y
e Covering radius o S N |
(L) = max pu(t, L) y @
tEspan(L) ° -
@ Spheres or radius p(L) centered , . .
around all lattice points cover the . 4 ) .
whole space N :
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Point Lattices Computational Problems
The dual lattice

Bounding the covering radius

o Let V= |vy,...,v,] be linearly

independent, ||v;|| < A, , T e -
o ° ¢
o ° ¢ *
° ° ° ‘
Vo Y °
BV
° ° ¢ * |
° ° ¢
o hd °
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Point Lattices Computational Problems
The dual lattice

Bounding the covering radius

o Let V= |vy,...,v,] be linearly

independent, ||vi| < A, e _
o Tile R" with copies of L
P(V)=VI0,1)" ) J A
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Point Lattices Computational Problems

The dual lattice

Bounding the covering radius

o Let V= |vy,...,v,] be linearly

independent, ||vi| < A, L. -
o Tile R” with copies of I P Sy
P(V) - V[O, 1)” , ¢ . —

o Iftex+P(V), then

Je—xI < 37 Ivill < m.
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Point Lattices Computational Problems

The dual lattice

Bounding the covering radius

o Let V= |vy,...,v,] be linearly

independent, ||vi| < A, , T . r
e Tile R" with copies of I VAR

P(V) =VI[0,1)" 4 ° —
o If t € x+ P(V), then

Je—xI < 37 Ivill < m.

@ This proves p(L) < n\p(L£), and S
can be further improved: J
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Point Lattices Computational Problems

The dual lattice

Bounding the covering radius

o Let V= |vy,...,v,] be linearly

independent, ||vi| < A, RSP
o Tile R" with copies of )

P(V) =VI[0,1)"
o Ift € x+ P(V), then

Je—xI < 37 Ivill < m.

@ This proves (L) < nAp(L), and passs
can be further improved: S IPAEEE Cey

For any lattice L, u(L) < @)\n(ﬁ)
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Point Lattices Computational Problems
The dual lattice

Bounding the successive minima

I’ ° o -
o Let |by|| = Ai(£) Yy .
e S -
. . ° .
, \ .
/. LeF
by .
b s ) ~
L 2
T .
r . ™ g
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Point Lattices Computational Problems
The dual lattice

Bounding the successive minima

o Let ||b1]| = M\ (L) /v .
o Lett=1b; A S S
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Point Lattices Computational Problems
The dual lattice

Bounding the successive minima

o Let HblH = Al(ﬁ) VA ' *
o Lett=1b; e
@ Then u(t, L) > A\1/2 e
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Point Lattices Computational Problems
The dual lattice

Bounding the successive minima

o Let |by|| = Ai(£) s F

o Lett=1b; A o -

@ Then u(t, L) > A\1/2 A d ?

@ This proves A1(£) < 2u(L), and can A .ﬂh b: ‘
be further improved: —— \’\J
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Point Lattices Computational Problems
The dual lattice

Bounding the successive minima

o Let ||b1]| = M\ (L) L
o Lett=1b; SV S
@ Then u(t, L) > A\1/2 VARV s .
@ This proves \1(£) < 2u(L), and can ,.ﬂh b: ‘
be further improved: '.\’\J
For any lattice L, A\n(L) < 2pu(L) s ’..
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Point Lattices Computational Problems
The dual lattice

Relations among lattice parameters

For any lattice £, A\ < Xp < ... <\, <2u < +/n)\,
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Point Lattices Computational Problems
The dual lattice

Relations among lattice parameters

For any lattice £, A\ < Xp < ... <\, <2u < +/n)\,

Remarks:
Q@ =~ \, (up to v/n factors)
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Point Lattices Computational Problems
The dual lattice

Relations among lattice parameters

For any lattice £, A\ < Xp < ... <\, <2u < +/n)\,

Remarks:
Q@ =~ \, (up to v/n factors)
@ For some lattices A\{ K My <€ ... < Ay
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Point Lattices Computational Problems
The dual lattice

Relations among lattice parameters

For any lattice £, A\ < Xp < ... <\, <2u < +/n)\,

Remarks:
Q@ =~ \, (up to v/n factors)
@ For some lattices A\{ K My <€ ... < Ay
© For some lattices A\ = \p = ... = X\, and 2u = /n)\,
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Point Lattices Computational Problems
The dual lattice

Relations among lattice parameters

For any lattice £, A\ < Xp < ... <\, <2u < +/n)\,

Remarks:
Q@ =~ \, (up to v/n factors)
@ For some lattices A\{ K My <€ ... < Ay
© For some lattices A\ = \p = ... = X\, and 2u = /n)\,
© For some lattices \; = Ao = ... = Ay and p < 2),
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Point Lattices Computational Problems
The dual lattice

Relations among lattice parameters

For any lattice £, A\ < Xp < ... <\, <2u < +/n)\,

Remarks:
Q@ =~ \, (up to v/n factors)
@ For some lattices A\{ K My <€ ... < Ay
© For some lattices A\ = \p = ... = X\, and 2u = /n)\,
© For some lattices \; = Ao = ... = Ay and p < 2),

Problem
Give an explicit construction of a lattice satisfying 1 < 2)\;
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Point Lattices Computational Problems
The dual lattice

Determinant

Definition (Determinant)
det(L) = volume of the fundamental region P =) .b; - [0,1)

y ) & -
& 0
& — v
P
b/ g »
Pow 4 1
&
- ——
s —9
S S
- —9
— ——
e —
<
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Point Lattices Computational Problems
The dual lattice

Determinant

Definition (Determinant)
det(L) = volume of the fundamental region P =) .b; - [0,1)

, N—
e —
@ Different bases define different ya )
fundamental regions b/ A
P ’t,’,l, T a
1 e .
A
e — 9 -
e (%)
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Point Lattices Computational Problems
The dual lattice

Determinant

Definition (Determinant)
det(L) = volume of the fundamental region P =) .b; - [0,1)

, P —
e —
@ Different bases define different ya )
fundamental regions by
@ All fundamental regions have the same Po 4
volume L/ p,
e
e — 9 -
e (%)
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Point Lattices Computational Problems
The dual lattice

Determinant

Definition (Determinant)
det(L) = volume of the fundamental region P =) .b; - [0,1)

s "
@ Different bases define different ya )
fundamental regions b/
o All fundamental regions have the same [ Py &
volume L [ 7
o The determinant of a lattice can be | A
efficiently computed from any basis. 7N\ /
o %)
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Point Lattices Computational Problems
The dual lattice

Density estimates

Definition (Centered Fundamental Parallelepiped)
P=>.bi-[-1/2,1/2)

o vol(P(B)) = det(L) ,.,,f
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Point Lattices Computational Problems
The dual lattice

Density estimates

Definition (Centered Fundamental Parallelepiped)

P=>b;-[-1/2,1/2)

o vol(P(B)) = det(L)
o {x+P(B)|xe L} partitions R" Ty e ) )
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Point Lattices Computational Problems
The dual lattice

Density estimates

Definition (Centered Fundamental Parallelepiped)

P=>b;-[-1/2,1/2)

o vol(P(B)) = det(L)
e {x+P(B)|x e L} partitions R" “kf ) e/ Y
@ For all sufficiently large S C R" AvE bl' |

S N L] ~ vol(S)/ det(L) Sl
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Point Lattices Computational Problems
The dual lattice

Minkowski's convex body theorem

Theorem (Convex Body)

Let C C R" be a symmetric convex body. If vol(C) > 2", then C
contains a nonzero integer vector
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Point Lattices Computational Problems
The dual lattice

Minkowski's convex body theorem

Theorem (Convex Body)

Let C C R" be a symmetric convex body. If vol(C) > 2", then C
contains a nonzero integer vector

Let £ = BZ" and r = det(L£)'/". Then,
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Point Lattices Computational Problems
The dual lattice

Minkowski's convex body theorem

Theorem (Convex Body)

Let C C R" be a symmetric convex body. If vol(C) > 2", then C
contains a nonzero integer vector

Let £ = BZ" and r = det(L£)'/". Then,

o C=B7![—r,r]" has volume
det(B)~1(2r)" = 2"
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Point Lattices Computational Problems
The dual lattice

Minkowski's convex body theorem

Theorem (Convex Body)

Let C C R" be a symmetric convex body. If vol(C) > 2", then C
contains a nonzero integer vector

Let £ = BZ" and r = det(L£)'/". Then,

o C=B7![—r,r]" has volume
det(B)~1(2r)" = 2"
e C contains x € Z" \ {0}
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Point Lattices Computational Problems
The dual lattice

Minkowski's convex body theorem

Theorem (Convex Body)

Let C C R" be a symmetric convex body. If vol(C) > 2", then C
contains a nonzero integer vector

Let £ = BZ" and r = det(L£)'/". Then,

o C=B7![—r,r]" has volume
det(B)~1(2r)" = 2"
e C contains x € Z" \ {0}

e BC = [—r,r]" contains Bx
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Point Lattices Computational Problems
The dual lattice

Minkowski's convex body theorem

Theorem (Convex Body)

Let C C R" be a symmetric convex body. If vol(C) > 2", then C
contains a nonzero integer vector

Let £ = BZ" and r = det(L£)'/". Then,

o C=B7![—r,r]" has volume
det(B)~1(2r)" = 2"

e C contains x € Z" \ {0}

e BC = [—r,r]" contains Bx

o M\ (L) < /nr=/ndet(£)/"
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Point Lattices Computational Problems
The dual lattice

Minkowski's second theorem

Theorem (Minkowski)

1/n
AM(L) < (H )\,‘(E)) < ﬁdet(ﬁ)l/”
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Point Lattices Computational Problems
The dual lattice

Minkowski's second theorem

Theorem (Minkowski)

1/n
AM(L) < (H )\,‘(E)) < ﬁdet(ﬁ)l/”

e For Z", A1 = (I, )\,-)1/" =1 is smaller than Minkowski's
bound by /n
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Point Lattices Computational Problems
The dual lattice

Minkowski's second theorem

Theorem (Minkowski)

1/n
AM(L) < (H )\,‘(E)) < ﬁdet(ﬁ)l/”

e For Z", A1 = (I, A)Y" =1 is smaller than Minkowski's
bound by /n
@ )\1(£) can be arbitrarily smaller than Minkowski's bound
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Point Lattices Computational Problems
The dual lattice

Minkowski's second theorem

Theorem (Minkowski)

1/n
AM(L) < (H )\,‘(E)) < ﬁdet(ﬁ)l/”

e For Z", A1 = (I, A)Y" =1 is smaller than Minkowski's
bound by /n
@ )\1(£) can be arbitrarily smaller than Minkowski's bound

° (H,.)\,-(ﬁ))l/" is never smaller than Minkowski's bound by
more than /n
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Point Lattices Computational Problems
The dual lattice

Minkowski's second theorem

Theorem (Minkowski)

1/n
AM(L) < (H )\,‘(E)) < ﬁdet(ﬁ)l/”

For Z", M1 = (I ]; )\,-)1/” =1 is smaller than Minkowski's
bound by /n

A1(L) can be arbitrarily smaller than Minkowski's bound
(H,.)\,-(ﬁ))l/" is never smaller than Minkowski's bound by
more than /n

Can you find lattices with ([T; \i(£))Y" > Q(v/n) det(£)}/"
within a constant from Minkowski's bound?
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Point Lattices Computational Problems
The dual lattice

Outline

@ Point Lattices
@ Computational Problems
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Point Lattices Computational Problems
The dual lattice

Shortest Vector Problem

Definition (Shortest Vector Problem, SVP)

Given a lattice £(B), find a (nonzero) lattice vector Bx (with
x € ZK) of length (at most) ||Bx|| < A\

by
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Point Lattices Computational Problems
The dual lattice

Shortest Vector Problem

Definition (Shortest Vector Problem, SVP)

Given a lattice £(B), find a (nonzero) lattice vector Bx (with
x € ZK) of length (at most) ||Bx|| < A\
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Point Lattices Computational Problems

The dual lattice

Shortest Vector Problem

Definition (Shortest Vector Problem, SVP)

Given a lattice £(B), find a (nonzero) lattice vector Bx (with
x € ZK) of length (at most) ||Bx|| < A\

) N -
° o
[ ] ° [ ]
[ ]
° [ ]
[ ] ° ° [ ] °
Bx = 5b; — 2by o °
[ ] [ ]
° / oY) R ° °
[ ]
[ ] [ ]
» bl ° [ ]
[ ]
[ ] [ ]
° [ ]
° [ ]
[ ]
° o
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Point Lattices Computational Problems
The dual lattice

Shortest Vector Problem

Definition (Shortest Vector Problem, SVP,)

Given a lattice £(B), find a (nonzero) lattice vector Bx (with
x € Z¥) of length (at most) ||Bx|| < v\
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Point Lattices Computational Problems
The dual lattice

Shortest Independent Vectors Problem

Definition (Shortest Independent Vectors Problem, SIVP)

Given a lattice £(B), find n linearly independent lattice vectors
Bxi, ..., Bx, of length (at most) max; ||Bx;|| < A,

by
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Point Lattices Computational Problems
The dual lattice

Shortest Independent Vectors Problem

Definition (Shortest Independent Vectors Problem, SIVP)

Given a lattice £(B), find n linearly independent lattice vectors

Bxi, ..., Bx, of length (at most) max; ||Bx;|| < A,
» ® by ° ° °
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Point Lattices Computational Problems
The dual lattice

Shortest Independent Vectors Problem

Definition (Shortest Independent Vectors Problem, SIVP)

Given a lattice £(B), find n linearly independent lattice vectors
Bxi, ..., Bx, of length (at most) max; ||Bx;|| < A,
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Point Lattices Computational Problems
The dual lattice

Shortest Independent Vectors Problem

Definition (Shortest Independent Vectors Problem, SIVP.)

Given a lattice £(B), find n linearly independent lattice vectors
Bxi,...,Bx, of length (at most) max; ||Bx;|| < v\,
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Point Lattices Computational Problems
The dual lattice

Closest Vector Problem

Definition (Closest Vector Problem, CVP)

Given a lattice £(B) and a target point t, find a lattice vector Bx
within distance ||[Bx — t|| < u from the target

by
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Point Lattices Computational Problems
The dual lattice

Closest Vector Problem

Definition (Closest Vector Problem, CVP)

Given a lattice £(B) and a target point t, find a lattice vector Bx
within distance ||[Bx — t|| < u from the target

! L]
° o
[ ] ° [ ]
t e °
e o
[ ] ° ° [ ] e
[ ]
° °
[ ] ° ° [ ] °
° o
[ ] [ ]
» bl ° [ ]
[ ]
[ ] hd ° [ ]
°
° [ ]
[ ]
° o
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Point Lattices Computational Problems
The dual lattice

Closest Vector Problem

Definition (Closest Vector Problem, CVP)

Given a lattice £(B) and a target point t, find a lattice vector Bx
within distance ||[Bx — t|| < u from the target
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Point Lattices Computational Problems
The dual lattice

Closest Vector Problem

Definition (Closest Vector Problem, CVP,)

Given a lattice £(B) and a target point t, find a lattice vector Bx
within distance ||Bx — t|| < yu from the target
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Point Lattices Computational Problems
The dual lattice

NP-hardness of CVP

Definition (Subset Sum)
Given a1,...,an, b€ Zfind S C{l,...,n}st. > .cai=0>b
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Point Lattices Computational Problems
The dual lattice

NP-hardness of CVP

Definition (Subset Sum)
Given ay,...,ap,beZfind SC{1,...,n}st. Y ;.gai=0>b

by
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Point Lattices Computational Problems

NP-hardness of CVP

Definition (Subset Sum)
Given ay,...,an, b€ Z find S C{l,... ,n}st. ) .gai=0b

ay |- an b
21010 1
0 10 :
0| 0|2 1
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Point Lattices Computational Problems

The dual lattice

NP-hardness of CVP

Definition (Subset Sum)

Given ay,...,an, b€ Z find S C{l,... ,n}st. ) .gai=0b

ai |- | ap b Zia,-x,- —b
21010 2x1 — 1
0 10 : :
0| 0|2 1 2xp — 1

[Bx —t|| < \/n if and only if x € {0,1}" and >, _, a; = b.
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Point Lattices Computational Problems
The dual lattice

Complexity of CVP, SVP, SIVP

NPC coNP/coAM P/RP

\ \
1 po() /n 2"

@ Best algorithm for exact solution takes time 2" [MV10]
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Point Lattices Computational Problems
The dual lattice

Complexity of CVP, SVP, SIVP

NPC coNP/coAM P/RP

\ \
1 po() /n 2"

@ Best algorithm for exact solution takes time 2" [MV10]
o (Almost) NP-hard for factors up to v = n'/loglogn,

[Ajtai96,. .. HRO7]
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Point Lattices Computational Problems
The dual lattice

Complexity of CVP, SVP, SIVP

NPC coNP/coAM P/RP

\ \
1 po() /n 2"

@ Best algorithm for exact solution takes time 2" [MV10]

o (Almost) NP-hard for factors up to v = n'/loglogn,
[Ajtai9e,. .. ,HRO7]

@ Polynomial time for slightly subexponential
[Schnorr93+AKS01,GN08+MV10]
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Point Lattices Computational Problems
The dual lattice

Complexity of CVP, SVP, SIVP

NPC coNP/coAM P/RP

\ \
1 po() /n 2"

@ Best algorithm for exact solution takes time 2" [MV10]

o (Almost) NP-hard for factors up to v = n'/loglogn,
[Ajtai9e,. .. ,HRO7]

@ Polynomial time for slightly subexponential
[Schnorr93+AKS01,GN08+MV10]

@ Unlikely to be NP-hard for v > y/n/ log n [GG01,AR04]
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Point Lattices Computational Problems
The dual lattice

Complexity of CVP, SVP, SIVP

NPC coNP/coAM P/RP

\ \
1 pe() /n 2"
Cryptography

@ Best algorithm for exact solution takes time 2" [MV10]

o (Almost) NP-hard for factors up to v = n'/loglogn,
[Ajtai9e,. .. ,HRO7]

@ Polynomial time for slightly subexponential
[Schnorr93+AKS01,GN08+MV10]

@ Unlikely to be NP-hard for v > y/n/ log n [GG01,AR04]
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Point Lattices Computational Problems
The dual lattice

CVP and lattice cosets

o Lattice A, target t

S ° e
® °
) Oo )
° ° e
° ° °
o 9] (&)
o o q
o o] (&)
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Point Lattices Computational Problems
The dual lattice

CVP and lattice cosets

(6] (o] e
P (<] (o]
o Lattice A, target t
(6] (o] (o]
o CVP: Find v such that
(<] (o] e . .
e =t — v is shortest possible
® ° Vv /
° (o] °
0
(o] (o] e
o (o] 9]
(o] 9] (6]
9] o q
(<] o] ]
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Point Lattices Computational Problems
The dual lattice

CVP and lattice cosets

(6] (o] e
P (<] (o]
o Lattice A, target t
(6] (o] (o]
o CVP: Find v such that
(<] (o] e . .
e =t — v is shortest possible
® ° Vv /
[¢] o]
0
(o] (o] e
o (o] 9]
. Bx °
9] o q
(<] o] ]
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Point Lattices Computational Problems
The dual lattice

CVP and lattice cosets

(6] (o] e
P (<] (o]
o Lattice A, target t
(6] (o] (o]
o CVP: Find v such that
(<] (o] e . .
/ e =t — v is shortest possible
’ ° o o t'=t+ Bx
[¢] o]
0
(o] (o] e
tl
o (o] 9]
° Bx °
9] o q
(<] o] ]
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Point Lattices Computational Problems
The dual lattice

CVP and lattice cosets

) ; o Lattice A, target t
@ CVP: Find v such that
: : A e =t — v is shortest possible
I 4 e o t'=t+Bx
/ /
g e v=Vv —Bx
0
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Point Lattices

CVP and lattice cosets

Computational Problems
The dual lattice

@

2
.

@ o o

a

2

@

P

@
@
a

Daniele Micciancio

o Lattice A, target t

@ CVP: Find v such that
e =t — v is shortest possible

o t' =t+ Bx

o v=Vv — Bx

Definition (Coset CVP)

Given a lattice coset t + £, find
the (approximately) shortest
element of t + L.
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Point Lattices Computational Problems
The dual lattice

Working modulo a lattice

Definition (Fundamental Region)

D C R" is a fundamental region for Lif {D+x|x€ L} is a
partition of R”.

4

e (L,+) is a subgroup of (R",+) . . 7/
@ One can form the quotien group R"/L 77 7
o Elements of R"/L are cosets t + L ,P*bl,,,,,,,,. ‘
@ Any fundamental region D gives a set AN /7
of standard representatives N\

e P=>,b-[0,1)=R"/L N
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Point Lattices Computational Problems
The dual lattice

Working modulo a lattice

Definition (Fundamental Region)

D C R" is a fundamental region for Lif {D+x|x€ L} is a
partition of R”.
S e

e (L£,+) is a subgroup of (R",+) J * 4

@ One can form the quotien group R"/L o b/

o Elements of R"/L are cosets t + L P r 4 /

e Any fundamental region D gives a set RRA S '

of standard representatives FAS
o P =3 b;-[0,1) =R/L S
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Point Lattices Computational Problems
The dual lattice

Working modulo a lattice

Definition (Fundamental Region)

D C R" is a fundamental region for Lif {D+x|x€ L} is a
partition of R”.

e (L,+) is a subgroup of (R", +)
@ One can form the quotien group R"/L
o Elements of R"/L are cosets t + L

@ Any fundamental region D gives a set
of standard representatives

e P=>,b;-[0,1)=R"/L
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Point Lattices Computational Problems
The dual lattice

Working modulo a lattice

Definition (Fundamental Region)

D C R" is a fundamental region for Lif {D+x|x€ L} is a
partition of R”.

e (L,+) is a subgroup of (R", +)
@ One can form the quotien group R"/L
o Elements of R"/L are cosets t + L

@ Any fundamental region D gives a set
of standard representatives

e P=>,b;-[0,1)=R"/L
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Point Lattices Computational Problems
The dual lattice

Interlude: CVP One-way Function?

Candidate OWF

Key: a hard lattice £

Input: x, [|x|| < 3 A
Xe
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Point Lattices Computational Problems
The dual lattice

Interlude: CVP One-way Function?

Candidate OWF

Key: a hard lattice £ e
Input: x, ||x|| <3
Output: fz(x) = x mod £ X3 P
s o # 7
fr
b,
Xe
0 b1

Daniele Micciancio The Geometry of Lattice Cryptography



Point Lattices Computational Problems
The dual lattice

Interlude: CVP One-way Function?

Candidate OWF

Key: a hard lattice £ -/
Input: x, [|x|| <8 . ——
Output: fz(x) =x mod L a
-
e (< \1/2: fr is injective J p ¢ —.
o —
fr
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Point Lattices Computational Problems
The dual lattice

Interlude: CVP One-way Function?

Candidate OWF

Key: a hard lattice £ -
Input: x, [|x|| < 8 A S —
Output: fz(x) =x mod £ e
-
o B < \i/2: fr is injective J é e f*
@ 3> A\1/2: fr is not injective P e
fr
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Point Lattices Computational Problems
The dual lattice

Interlude: CVP One-way Function?

Candidate OWF

Key: a hard lattice £

Input: x, ||x|| <3 ¢ -
Output: fz(x) =x mod £ o
-
e [ < A\1/2: fr is injective J ¢ b
@ 3> A\1/2: fr is not injective ; P
e 3> u: gr is surjective
fr
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Point Lattices Computational Problems
The dual lattice

Interlude: CVP One-way Function?

Candidate OWF

Key: a hard lattice £
Input: x, ||x|| < S
Output: fz(x) =x mod £

e [ < A\1/2: fr is injective

@ 3> A\1/2: fr is not injective
e 3> u: gr is surjective

o 3> u: gr(x) is almost

uniform b,
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Point Lattices Computational Problems
The dual lattice

Interlude: CVP One-way Function?

Candidate OWF

Key: a hard lattice £
Input: x, ||x|| < S
Output: fz(x) =x mod £

e [ < A\1/2: fr is injective
@ 3> A\1/2: fr is not injective

o (3 > u: gr is surjective
o 3> u: gr(x) is almost

uniform b,
Is fz hard to invert?
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Point Lattices Computational Problems
The dual lattice

Outline

@ Point Lattices

@ The dual lattice

Daniele Micciancio The Geometry of Lattice Cryptography



Point Lattices Computational Problems

The dual lattice

@ A vector space over R is a set of vectors V with

e a vector addition operation x+y € V
e a scalar multiplication a-x € V
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Point Lattices Computational Problems
The dual lattice

@ A vector space over R is a set of vectors V with

e a vector addition operation x+y € V
e a scalar multiplication a-x € V

@ The dual of a vector space V is the set V* = Hom(V,R) of
linear functions ¢ : V — R, typically represented as vectors
x € V, where g,(y) = (x,y)
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Point Lattices Computational Problems
The dual lattice

@ A vector space over R is a set of vectors V with
e a vector addition operation x+y € V
e a scalar multiplication a-x € V
@ The dual of a vector space V is the set V* = Hom(V,R) of
linear functions ¢ : V — R, typically represented as vectors
x € V, where ¢x(y) = (x,y)
@ The dual of a lattice A is defined similarly as the set of linear
functions ¢x: A — Z represented as vectors x € span(A).
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Point Lattices Computational Problems
The dual lattice

@ A vector space over R is a set of vectors V with
e a vector addition operation x+y € V
e a scalar multiplication a-x € V
@ The dual of a vector space V is the set V* = Hom(V,R) of
linear functions ¢ : V — R, typically represented as vectors
x € V, where ¢x(y) = (x,y)
@ The dual of a lattice A is defined similarly as the set of linear
functions ¢x: A — Z represented as vectors x € span(A).

Definition (Dual lattice)

The dual of a lattice A is the set of all vectors x € span(A) such
that (x,v) € Z for all v e A
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Point Lattices Computational Problems
The dual lattice

Dual lattice: Examples

o Integer lattice (Z")*
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Point Lattices Computational Problems
The dual lattice

Dual lattice: Examples

o Integer lattice (Z")* = Z"
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Point Lattices Computational Problems
The dual lattice

Dual lattice: Examples

-‘ o Integer lattice (Z")* = Z"
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Point Lattices Computational Problems
The dual lattice

Dual lattice: Examples

““ o Integer lattice (Z")* = Z"
‘- @ Rotating (RA)* = R(A¥)
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Point Lattices Computational Problems
The dual lattice

Dual lattice: Examples

o Integer lattice (Z")* = Z"
@ Rotating (RA)* = R(A¥)
@ Scaling (% “N\)*
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Point Lattices Computational Problems
The dual lattice

Dual lattice: Examples

Integer lattice (Z")* = Z"
Rotating (RA)* = R(A*)
Scaling (% “N)*=q-N*
Properties of dual:

OAlg/\z — /\T;)/\;
o (N )*=A
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Point Lattices Computational Problems
The dual lattice

Dual lattice: Examples

Integer lattice (Z")* = Z"
Rotating (RA)* = R(A*)
Scaling (% “N)*=q-N*
Properties of dual:

OAlg/\z — /\T;)/\;
o (N )*=A
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o Integer lattice (Z")* = Z"
@ Rotating (RA)* = R(A¥)
@ Scaling (% “N)*=q-N*
@ Properties of dual:

o ALC Ay < N DA

o (N )*=A
@ Operations on x € A and
y € \*:

o (X,y)EZ




Point Lattices Computational Problems
The dual lattice

Dual lattice: Examples

L) L) L)
[ ] [ ] [ ]
L] L] L]
° * * * o Integer lattice (Z")* = Z"
L] L] [ ] L] [ ] L]
. . . e Rotating (RA)* = R(A¥)
My . . . @ Scaling (% N)*=q- N
e ° ° e o' @ Properties of dual:
o o (-] o o o/\1§/\2<:>/\{;>/\§
,° LI 0 . . . e (A*)* =A
R R R R @ Operations on x € A and
.. L] ¢ L] ‘ y E /\*:
o o . e o . ° <X’y> €z
b L] .. L] ° L]
L] L] L]
[ ] [ ] q
e [ ] [ ]
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Point Lattices Computational Problems
The dual lattice

Dual lattice: Examples

o Integer lattice (Z")* = Z"
@ Rotating (RA)* = R(A¥)
@ Scaling (% “N)*=q-N*
@ Properties of dual:
o A{ C Ay = N DA
o (N )*=A
@ Operations on x € A and
y € \*:
o (X,y)EZ
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Point Lattices Computational Problems

The dual lattice

Dual lattice: Examples

o Integer lattice (Z")* = Z"
@ Rotating (RA)* = R(A¥)
@ Scaling (% “N)*=q-N*
@ Properties of dual:
o A{ C Ay = N DA
o (N )*=A
@ Operations on x € A and
y € \*:
o (X,y)EZ

e but x+y has no
geometric meaning
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Point Lattices Computational Problems
The dual lattice

Lattice Layers

@ Each dual vector v € L*,
partitions the lattice £ into
layers orthogonal to v

Li={xeLl|x-v=i}

Daniele Micciancio The Geometry of Lattice Cryptography



Lattice Layers

Point Lattices

Computational Problems
The dual lattice

o

Daniele Micciancio

@ Each dual vector v € L*,
partitions the lattice £ into
layers orthogonal to v

Li={xeLl|x-v=i}

@ Layers are at distance 1/||v||
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Lattice Layers

Point Lattices

Computational Problems
The dual lattice

Daniele Micciancio

@ Each dual vector v € L*,
partitions the lattice £ into
layers orthogonal to v

Li={xeLl|x-v=i}

@ Layers are at distance 1/||v||
° ML) 2 5y
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Lattice Layers

Point Lattices

Computational Problems
The dual lattice

Daniele Micciancio

@ Each dual vector v € L*,
partitions the lattice £ into
layers orthogonal to v

Li={xeLl|x-v=i}

@ Layers are at distance 1/||v||

° (L) = 5]y
o If \1(L*) is small, then p(L)
is large.
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Point Lattices Computational Problems
The dual lattice

Transference Theorems

Theorem (Banaszczyk)

For any lattice L

1< 2X\(L) - p(L¥) < n.

Theorem (Banaszczyk)

For every i,

1 < )\,(,C) . )\,,,,'Jrl([,*) < n.

e Approximating A1(£) within a factor n is in NP N coNP

@ Same is true for A;,..., A, and p.
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Point Lattices Computational Problems
The dual lattice

CVP and dual lattice

o Lattice A\, targett =v+ e

o ° e
® °
o Oo 1)
o o] e
o [¢] e
(9] o [&]
o (&) 4
o e o
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Point Lattices Computational Problems
The dual lattice

CVP and dual lattice

o Lattice A\, targett =v+ e

o ° e
® °
o Oo 1)
o o] e
o [¢] e
(9] o [&]
o (&) 4
o e o
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Point Lattices Computational Problems
The dual lattice

CVP and dual lattice

o Lattice A\, targett =v+ e
¢ ° ° e Dual lattice A* = L(D).

S ° °
/ RN
) o \ @
|
/- t )
° ° Vv |/
o (o] 1)
° ° 4
° ° e
° ° )
° ° 4
° ° °
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Point Lattices Computational Problems
The dual lattice

CVP and dual lattice

° ° y o Lattice A\, targett =v +e
’ . . e Dual lattice A* = L(D).
o ° ° @ Syndrome of t:
° ° "ﬁ/.t\\: 9 s = (D,t)mod1
b ° v/ = (D,v)+ (D,e) mod 1
° Oo ° = (D,e) mod 1.
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Point Lattices Computational Problems
The dual lattice

CVP and dual lattice

e

2
.

Lattice A, targett=v +e
Dual lattice A* = £(D).
Syndrome of t:

L
Q
@

()

Pt

@
Q
[

: : n \‘ { s = (D,t)ymod1
g o el v VZ /’
o = = (D,v)+ (D,e) mod 1
# i 0/ = (D,e) mod 1.
' / @ All vectors in a coset t + L
£ . have the same syndrome.
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Point Lattices Computational Problems
The dual lattice

CVP and dual lattice

e

2
.

Lattice A, targett=v +e
Dual lattice A* = £(D).
Syndrome of t:

L
Q
@

()

Pt

@
Q
[

o T Jo T (ofor) s = (D,t)mod 1
S S — (D,v)+ (D¢ mod 1
g i O.’ﬁ/ = (D,e) mod 1.
: { @ All vectors in a coset t + L
s g have the same syndrome.
’ : Definition (Syndrome CVP)
4 *  Find shortest e such that
¢ ¢ (D,e) =smod 1
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Average Case Hardness
Random Lattices

Lattice Cryptography Cryptographic functions

Outline

@ Lattice Cryptography

Daniele Micciancio The Geometry of Lattice Cryptography



Av Case Hardness
Ra Lattices
Cr graphic functions

Back to CVP One-way function

Lattice Cryptography

Candidate OWF

Key: a hard lattice £(D)* 1
Input: x, ||x|| < S

Output: fp(x) = Dx mod 1 d

@ 3 < A\1/2: fr is injective
@ 3> u: gr is surjective M
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Case Hardness
lom Lattices
Cryptographic functions

Lattice Cryptography

Special Versions of CVP

Definition (Decisional CVP)

Given (L, t, d), with u(t, £) < d, find a lattice point within
distance d from t.
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Case Hardness

Lattice Cryptography

Special Versions of CVP

ic functions

Definition (Decisional CVP)

Given (L, t, d), with u(t, £) < d, find a lattice point within
distance d from t.

o If d is arbitrary, then one can find the closest lattice vector by
binary search on d.
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Case Hardness

Lattice Cryptography ; ic functions

Special Versions of CVP

Definition (Decisional CVP)
Given (L, t, d), with u(t, £) < d, find a lattice point within
distance d from t.

o If d is arbitrary, then one can find the closest lattice vector by
binary search on d.

e Bounded Distance Decoding, BDD: If d < A1(£)/2, then
there is at most one solution. Solution is the closest lattice

vector.
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Case Hardness

Lattice Cryptography

Special Versions of CVP

ic functions

Definition (Decisional CVP)

Given (L, t, d), with u(t, £) < d, find a lattice point within
distance d from t.

o If d is arbitrary, then one can find the closest lattice vector by
binary search on d.

e Bounded Distance Decoding, BDD: If d < A1(£)/2, then
there is at most one solution. Solution is the closest lattice
vector.

@ Absolute Distance Decoding, ADD: If d > p(L), then there is
always at least one solution. Solution may not be closest
lattice vector.
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Average Case Hardness
Random Lattices

Lattice Cryptography Cryptographic functions

ADD reduces to SIVP

ADD input: £ and arbitrary t

° °
. N ° ° ot
L] ° ° ‘ ’ ) [}
o ® : :
» ) . . o .
° . . . . o
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A g se Hardness
Random Lattices

Lattice Cryptography Cryptographic functions

ADD reduces to SIVP

ADD input: £ and arbitrary t
e Compute short vectors V = SIVP(L)

¢
o — .
— o
.” ° .
o ——
[ & Y1 * —
» —9 7 —/
Py : ¢ _— P
§ e
- —9—
- e
- e
—— —9-
—®— |
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Case Hardness
lom Lattices

Lattice Cryptography Cryptographic functions

ADD reduces to SIVP

ADD input: £ and arbitrary t
e Compute short vectors V = SIVP(L)

@ Use V to find a lattice vector within distance
5 2Ivill < (n/2)A < np from t

4 o ._Jt
1
. A
Vo —
& —8
o Vi & —
» — i ——
B S
- ——
- e
. .
s
& —9
o e
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erage Case Hardness
Random Lattices

Lattice Cryptography Cryptographic functions

BDD reduces to SIVP

BDD input: t close to £ * *
° [ ) °
N
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Rar’wdom La

Lattice Cryptography Cryptographic functions

BDD reduces to SIVP

BDD input: t close to £ * *
e Compute V = SIVP(L*) . \,,.. : ’ .
Tl
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A g se Hardness
Random Lattices

Lattice Cryptography Cryptographic functions

BDD reduces to SIVP

BDD input: t close to £ ¢ *
e Compute V = SIVP(L*) . \,,.. . ’ .
@ For each v; € L*, find the layer . R
Li={x|x-vj=c} closest to t . .
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Lattice Cryptography

Cryptographic functions

BDD reduces to SIVP

BDD input: t close to £
e Compute V = SIVP(L*)

@ For each v; € L*, find the layer
Li ={x|x-v;= ¢} closest to t

o Output LyNlon---NL,
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Case Hardness

Lattice Cryptography

ic functions

BDD reduces to SIVP

BDD input: t close to £
e Compute V = SIVP(L*)
@ For each v; € L*, find the layer
Li ={x|x-v;= ¢} closest to t
o Output LyNlon---NL,

@ Output is correct as long as

A1 1 1
t, L)< 2t < <
M8 = 50 = 2%, = 2]
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Average Case Hardness
Random Lattices

Lattice Cryptography Cryptographic functions

Special Versions of SVP and SIVP

@ GapSVP: compute (or approximate) the value A; without
necessarily finding a short vector
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Average Case Hardness
Random Lattices

Lattice Cryptography Cryptographic functions

Special Versions of SVP and SIVP

@ GapSVP: compute (or approximate) the value A; without
necessarily finding a short vector

@ GapSIVP: compute (or approximate) the value A, without
necessarily finding short linearly independent vectors

Daniele Micciancio The Geometry of Lattice Cryptography



Average Case Hardness
Random Lattices

Lattice Cryptography Cryptographic functions

Special Versions of SVP and SIVP

@ GapSVP: compute (or approximate) the value A; without
necessarily finding a short vector

@ GapSIVP: compute (or approximate) the value A, without
necessarily finding short linearly independent vectors

@ Transference Theorem A\; ~ 1/\%: GapSVP can be
(approximately) solved by solving GapSIVP in the dual lattice,
and vice versa
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Average Case Hardness
Random Lattices

Lattice Cryptography Cryptographic functions

Special Versions of SVP and SIVP

@ GapSVP: compute (or approximate) the value A; without
necessarily finding a short vector

@ GapSIVP: compute (or approximate) the value A, without
necessarily finding short linearly independent vectors

@ Transference Theorem A\; ~ 1/\%: GapSVP can be
(approximately) solved by solving GapSIVP in the dual lattice,
and vice versa

Problems

Exercise: Computing A; (or A\,) exactly is as hard as SVP (or
SIVP)

Open Problem: Reduce approximate SVP (or SIVP) to
approximate GapSVP (or GapSIVP)
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Aver. Case Hardness
Rand Lattices

Lattice Cryptography Cryptographic functions

Relations among lattice problems

SIVP ~ ADD [MG'01] [ GapSVP J~{ GapSIVP
SVP < CVP [GMSS'99)
SIVP < CVP [M'08]
BDD 5 SIVP SIVP ADD
CVP < SVP [L'87]
GapSVP ~ GapSIVP
[LLS'91,B'93]

o GapSVP < BDD [LM'09] SVP CvP

® 6 6 o o o
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Average Case Hardness
Random Lattices

Lattice Cryptography Cryptographic functions

Relations among lattice problems

SIVP ~ ADD [MG'01] (GapSVP }{ GapSIVP
SVP < CVP [GMSS'99]
SIVP < CVP [M'08]
BDD < SIVP (siv
CVP < SVP [L'87]
GapSVP ~ GapSIVP
[LLS'91,B'03]

e GapSVP < BDD [LM'09] SVP Cvp

ADD

® 6 6 o o o
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Average Case Hardness
Random Lattices

Lattice Cryptography Cryptographic functions

Outline

@ Lattice Cryptography
@ Average Case Hardness
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Average Case Hardness
Random Lattices
Cryptographic functions

Provable security (from average case hardness)

Lattice Cryptography

Example 1: (Rabin) modular squaring
o fy(x) =x?>mod N, where N =p-gq
@ Inverting fy is at least as hard as factoring N

All N's

=~

hard N's )
/
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Average Case Hardness
Random Lattices
Cryptographic functions

Provable security (from average case hardness)

Lattice Cryptography

Example 1: (Rabin) modular squaring
o fy(x) =x?>mod N, where N =p-gq
@ Inverting fy is at least as hard as factoring N

fn is cryptographically hard to invert, provided most N = p - q are
hard to factor

All N's

=~

hard N's )
/
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Average Case Hardness
Random Lattices
Cryptographic functions

Lattice Cryptography

Provable security (from average case hardness)

Example 2: CVP function
e fp(x) = Dx mod 1
e Inverting fp is as hard as ADD/BDD in £(D)*

All D’'s

=~

hard D's )
/
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Average Case Hardness

Random Lattices

Lattice Cryptography Cryptographic functions

Provable security (from average case hardness)

Example 2: CVP function
e fp(x) = Dx mod 1
e Inverting fp is as hard as ADD/BDD in £(D)*

fo is one-way provided ADD/BDD is hard for most £(D)*

All D's

=~

hard D's )
/
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Average Case Hardness
Random Lattices
Cryptographic functions

Lattice Cryptography

Average-case Complexity

Average-case complexity depends on input distribution

Example (Factoring problem)

Given a number N, output a, b > 1 such that N = ab
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Average Case Hardness
Random Lattices
Cryptographic functions

Lattice Cryptography

Average-case Complexity

Average-case complexity depends on input distribution

Example (Factoring problem)

Given a number N, output a, b > 1 such that N = ab

Factoring can be easy on average

if N is uniformly random, then N =2 - % with probability 50%!
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Average Case Hardness
Random Lattices
Cryptographic functions

Lattice Cryptography

Average-case Complexity

Average-case complexity depends on input distribution

Example (Factoring problem)

Given a number N, output a, b > 1 such that N = ab

Factoring can be easy on average

if N is uniformly random, then N =2 - % with probability 50%!

@ Factoring N = pq is believed to be hard when p, g are
randomly chosen primes

@ How do we know £(D)* is a hard distribution for ADD/BDD?
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Average Case Hardness
Random Lattices

Lattice Cryptography Cryptographic functions

Provable security (from worst case hardness)

There is a probability distribution on D such that

L §§<
All lattices ~hard fp's
Z/&
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Average Case Hardness
Random Lattices

Lattice Cryptography Cryptographic functions

Provable security (from worst case hardness)

There is a probability distribution on D such that

@ Any fixed lattice £ is mapped to a random D

C \}4
All lattices ~hard fp's
Z/&
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Average Case Hardness
Random Lattices

Lattice Cryptography Cryptographic functions

Provable security (from worst case hardness)

There is a probability distribution on D such that

@ Any fixed lattice £ is mapped to a random D
@ Breaking fp allows to solve ADD/BDD L.

C \}4
All lattices ~hard fp's
Z/&
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Average Case Hardness
Random Lattices

Lattice Cryptography Cryptographic functions

Provable security (from worst case hardness)

There is a probability distribution on D such that

@ Any fixed lattice £ is mapped to a random D
@ Breaking fp allows to solve ADD/BDD L.

L §§<
All lattices ><@rd fo's
T
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Average Case Hardness
Random Lattices

Lattice Cryptography Cryptographic functions

Provable security (from worst case hardness)

There is a probability distribution on D such that

@ Any fixed lattice £ is mapped to a random D
@ Breaking fp allows to solve ADD/BDD L.

@ D is also very easy to sample

L §§<
All lattices ><@rd fo's
T
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Lattice Cryptography Cryptographic functions

Outline

@ Lattice Cryptography

@ Random Lattices
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Case Hardness

Lattice Cryptography aphic functions

Random lattices in Cryptography

e Cryptography typically uses (random)
lattices A such that
o A C Z9 is an integer lattice
e qZ9 C A is periodic modulo a small
integer q.

Definition (g-ary lattice)
N is a g-ary lattice if gZ" C N C Z"
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Lattice Cryptography

Random lattices in Cryptography

e Cryptography typically uses (random)
lattices A such that
o A C Z9 is an integer lattice
e qZ9 C A is periodic modulo a small
integer q.

0 @ Cryptographic functions based on g-ary
lattices involve only arithmetic modulo q.

Definition (g-ary lattice)

N is a g-ary lattice if gZ" C N C Z"
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Aver. ase Hardness
Ran attices

Lattice Cryptography Cryptographic functions

Examples of g-ary lattices

Examples (for any A € Z]*9)
@ Ng(A) ={x|xmod g € ATZZ} czd
° /\qL(A):{x|Ax:0mod q} c 79
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Average Case Hardness
Ran Lattices

Lattice Cryptography Cryptographic functions

Examples of g-ary lattices

Examples (for any A € Z]*9)
@ Ng(A) ={x|xmod g € ATZZ} czd
° /\qL(A):{x|Ax:0mod q} c 79

For any lattice \ the following conditions are equivalent:
° qu cCACzZd
o A= NAg4(A) for some A
o A= /\é(A) for some A
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Average Case Hardness
Random Lattices

Lattice Cryptography Cryptographic functions

Examples of g-ary lattices

Examples (for any A € Z]*9)
@ Ng(A) ={x|xmod g € ATZZ} czd
° /\qL(A):{x|Ax:0mod q} c 79

For any lattice \ the following conditions are equivalent:
° qu cCACzZd
o A= NAg4(A) for some A
o A= /\é(A) for some A

For any fixed A, the lattices Aq(A) and A (A) are different
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Average Case Hardness
Random Lattices

Lattice Cryptography Cryptographic functions

Duality of g-ary lattices

@ The g-ary lattices associated to A are dual (up to scaling)

AS(A) = q-Ag(A)
Ag(A) = q-AL(A)"
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Aver. ase Hardness
Ran attices

Lattice Cryptography Cryptographic functions

Duality of g-ary lattices

@ The g-ary lattices associated to A are dual (up to scaling)
Ng(A) = q-Ng(A)
Ng(R) = q-Ng(A)*

o In particular, det(Ag(A)) - det(A;(A)) = q"
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Lattice Cryptography Cryptographic functions

Duality of g-ary lattices

@ The g-ary lattices associated to A are dual (up to scaling)

AS(A) = q-Ag(A)
Ag(A) = q-AL(A)"

e In particular, det(Aq(A)) - det(/\qL(A)) =q"
o det(AJ(A)) < g
o det(A4(A)) > g"k
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Average Case Hardness
Random Lattices

Lattice Cryptography Cryptographic functions

Non-degenerate Matrices

Definition

Min={A € 2" | AZ] = Z£}
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Average Case Hardness
Random Lattices

Lattice Cryptography Cryptographic functions

Non-degenerate Matrices

Definition

Min={A € 2" | AZ] = Z£}

o Pr{A e My,} > l—ﬁ
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Average Case Hardness
Random Lattices

Lattice Cryptography Cryptographic functions

Non-degenerate Matrices

Definition

Min={A € 2" | AZ] = Z£}

o Pr{Ae My ,}>1- ﬁ
° /\qL(./\/lkm) = Ng(Mp—k,n) are the same distribution
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Aver. ase Hardness
Ran attices

Lattice Cryptography Cryptographic functions

Non-degenerate Matrices

Definition

Min={A € 2" | AZ] = Z£}

o Pr{Ae My ,}>1- ﬁ
° /\qL(./\/lkm) = Ng(Mp—k,n) are the same distribution
o det(AF(My.n)) = det(Ag(Mn_.n)) = g
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Aver. ase Hardness
Ran attices

Lattice Cryptography Cryptographic functions

Non-degenerate Matrices

Definition

Min={A € 2" | AZ] = Z£}

o Pr{Ae My ,}>1- ﬁ

° /\qL(./\/lkm) = Ng(Mp—k,n) are the same distribution
o det(AF(My.n)) = det(Ag(Mn_.n)) = g

@ Minkowki's bound A1 < ﬁqk/”
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Aver. ase Hardness
Ran attices

Lattice Cryptography Cryptographic functions

Non-degenerate Matrices

Definition

Min={A € 2" | AZ] = Z£}

o Pr{Ae My ,}>1- ﬁ

° /\qL(./\/lkm) = Ng(Mp—k,n) are the same distribution
o det(AF(My.n)) = det(Ag(Mn_.n)) = g

@ Minkowki's bound A1 < ﬁqk/”

Almost every lattice in /\j(/\/lkv,,) = Ng(M—x,n) satisfies

)\17 R /\m P = @(\/Eqk,n)
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Ave Case Hardness
Random Lattices

Lattice Cryptography Cryptographic functions

Are g-ary lattices hard?

Are lattice problems on random g-ary lattices hard on average?
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Random Lattices

Lattice Cryptography Cryptographic functions

Are g-ary lattices hard?

Are lattice problems on random g-ary lattices hard on average?

@ GapSVP and GapSIVP are easy!
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Lattice Cryptography

Are g-ary lattices hard?

Are lattice problems on random g-ary lattices hard on average?

@ GapSVP and GapSIVP are easy!
e Why? Just output Minkowki's bound v/ng*/"!
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Lattice Cryptography

Are g-ary lattices hard?

Are lattice problems on random g-ary lattices hard on average?

@ GapSVP and GapSIVP are easy!
e Why? Just output Minkowki's bound v/ng*/"!
e What about BDD? (Remember BDD < GapSVP.)
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Lattice Cryptography

Ra
Cryptographic functions

Are g-ary lattices hard?

Are lattice problems on random g-ary lattices hard on average?

@ GapSVP and GapSIVP are easy!
e Why? Just output Minkowki's bound v/ng*/"!
e What about BDD? (Remember BDD < GapSVP.)

o BDD may still be hard! Reduction from BDD to GapSVP
requires a wost-case GapSVP oracle.
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Cryptographic functions

Lattice Cryptography

Are g-ary lattices hard?

Are lattice problems on random g-ary lattices hard on average?

@ GapSVP and GapSIVP are easy!
e Why? Just output Minkowki's bound v/ng*/"!
e What about BDD? (Remember BDD < GapSVP.)

o BDD may still be hard! Reduction from BDD to GapSVP
requires a wost-case GapSVP oracle.

e Are ADD, SIVP, SVP, CVP hard?
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Lattice Cryptography Cryptographic functions

Ajtai’s function

Definition (Ajtai's function)
Keyed function family

fa(x) = Ax mod g

where A € Zg*™ and x € {0,1}™.

xe{0,1}"| 0 1 10 100 |
m

A € Z<m Ax € L

N N
~N NN
o ;1o G
=~ o ©
AN W
oo
 —
= NN

©O© O W N
-—
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Lattice Cryptography phic functions

Ajtai’s function and g-ary lattices

fa(x) = Ax mod g, where x is short

The output of fa(x) is the syndrome of x

Inverting fa(x) is the same as CVP in its syndrome decoding
formulation with lattice /\qL(A) and target t € x + /\qL(A)

The g-ary lattice Aj-(A) is the kernel of fa

Finding collisions fa(x) = fa(y) is equivalent to finding short
vectors x — y € /\qL(A)
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Average Case Hardness
Random Lattices

Lattice Cryptography Cryptographic functions

Parameters

@ Parameters:

n: main security parameter
q = n? = n°1) small modulus
m = 2nlog, g = O(nlog n)

e.g., n=256, qg= 216 m =8192
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Lattice Cryptography Cryptographic functions

Parameters

@ Parameters:

e n: main security parameter

o g = n?=n°" small modulus

e m=2nlog, g = O(nlog n)

o e.g., n=256g=2% m=8192
@ fp is a compression function

e It maps m bits to nlog, g < m bits
(e.g., 8192 — 4096)

0/1 |
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Average Case Hardness
Random Lattices

Lattice Cryptography Cryptographic functions

Parameters

@ Parameters:

e n: main security parameter
o g = n?=n°" small modulus
e m=2nlog, g = O(nlog n)
o e.g., n=256g=2% m=8192
@ fp is a compression function
e It maps m bits to nlog, g < m bits
(e.g., 8192 — 4096)

o There exist collisions fo(x) = fa(y)

0/1 |
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Ran Lattices

Lattice Cryptography Cryptographic functions

Parameters

@ Parameters:

@ n: main security parameter
o g =n?=n°" small modulus
e m=2nlog, g = O(nlogn)
o eg., n=256g=2% m=28192
@ fp is a compression function
e It maps m bits to nlog, g < m bits
(e.g., 8192 — 4096)

o There exist collisions fa(x) = fa(y)

0/1 |

Is fa collision resistant when A € ng’" is chosen at random?
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Lattice Cryptography Cryptographic functions

Efficiency issues

o g=n%M m= 2nlog, q

0/1 |
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Lattice Cryptography Cryptographic functions

Efficiency issues

o g=n°D, m=2nlog,q
o Let's lower n =64, g =28 m = 1024

| 0/1 |
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Aver. ase Hardness
Ran attices

Lattice Cryptography Cryptographic functions

Efficiency issues

o g=n%M m= 2nlog, q

o Let's lower n =64, g = 28 m=1024

@ fan maps 1024 bits to 512. | Or{]l |
o Key size: nmlogq = O(n?log?n) =

219 = 64KB
e Runtime: nm = O(n?log n) = 21°
arithmetic operations
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Aver. ase Hardness
Ran attices

Lattice Cryptography Cryptographic functions

Efficiency issues

o g=n%M m= 2nlog, q

o Let's lower n =64, g = 28 m=1024

@ fan maps 1024 bits to 512. | Or{]l |
o Key size: nmlogq = O(n?log?n) =

219 = 64KB
e Runtime: nm = O(n?log n) = 21°
arithmetic operations

[

Still inefficient because of quadratic
dependency in n
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Average Case Hardness
Lattices

Lattice Cryptography raphic functions

Efficient lattice based hashing

Use structured matrix agi) af,i) agi)
Al — 500 ag') ag')
A=[AD) | | Almm) :
, ag,') Sl RO
where A() ¢ Zg*" is circulant -1 !
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Aver. ase Hardness
Ran attices

Lattice Cryptography Cryptographic functions

Efficient lattice based hashing

Use structured matrix agi) af,i) agi)
Al) — ag) agl) agl)
A=[AD) | | Almm) :
- ay) &l all)
where A() ¢ Zg*" is circulant n—1 !

v

@ Proposed by [MO02], where it is proved that fa is one-way
under plausible complexity assumptions
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Lattice Cryptography Cryptographic functions

Efficient lattice based hashing

Use structured matrix agi) af,i) agi)
Al) — ag) agl) agl)
A=[AD) | | Almm) :
- ay) &l all)
where A() ¢ Zg*" is circulant n—1 !

v

@ Proposed by [MO02], where it is proved that fa is one-way
under plausible complexity assumptions

@ Similar idea first used by NTRU public key cryptosystem
(1998), but with no proof of security
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Average Case Hardness
Random Lattices

Lattice Cryptography Cryptographic functions

Efficient lattice based hashing

Use structured matrix agi) af,i) agi)
Al) — ag) agl) agl)
A=[AD) | | Almm) :
- ay) &l all)
where A() ¢ Zg*" is circulant n—1 !

v

@ Proposed by [MO02], where it is proved that fa is one-way
under plausible complexity assumptions

@ Similar idea first used by NTRU public key cryptosystem
(1998), but with no proof of security

e Wishful thinking: finding short vectors in /\é(A) is hard, and
therefore fp is collision resistant
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Lattice Cryptography Cryptographic functions

Can you find a collision?

1 4 3 86 49 026 4 5|3 271
8 1 4 3/06 4 9(526 4|13 27
381 4/90¢6 4(45 267132
4 38 1/4 9 0¢6(6 4522713
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ase Hardness
dom Lattices

Lattice Cryptography Cryptographic functions

Can you find a collision?

100 -1/-1110/0011|10-10

1 43 8|6 49 0(26 453 2 71 5
8 1 4 3|0 6 4 9|52 6 4|1 3 2 7 4
381 4|9 06 4(45 26|71 3 2 8
4 38 1|4 9 06|6 45 2|27 1 3 6
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Lattice Cryptography Cryptographic functions

Can you find a collision?

F S Y o Y SR A G I S S S A I O A

1 4 3 8|6 49 026 453 271 0
8 1 4 3/06 4 9|5 26 4|13 27 0
3814906 445267132 0
4 3 8 1/4 906|645 22713 0
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Average Case Hardness
Random Lattices

Lattice Cryptography Cryptographic functions

Can you find a collision?

1111711114111 1|1 111
1 4 3 86 49 026 4 5|3 271
8 1 4 3/06 4 9(526 4|13 27
381 4/90¢6 4(45 267132
4 38 1/4 9 0¢6(6 4522713
6 9 7 3
6 9 7 3
6 9 7 3
6 9 7 3
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Average Case Hardness
Random Lattices

Lattice Cryptography Cryptographic functions

Can you find a collision?

1 11 14-1 -1 -1 -1/0 0 O O|1 1 1 1
1 4 3 8/6 4 9 026 45|32 71 0
81 4 3|0 6 4 9|5 2 6 4|1 3 27 0
381 4/9 0 6 4|45 26|71 3 2 0
4 3814 9 0 6|6 45 2|2 7 1 3 0

6 9 7 3

6 9 7 3

+1x 6 —1x 9 +0x 7 +1x 3

6 9 7 3
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Lattice Cryptography Cryptographic functions

Remarks about proofs of security

@ This function is essentially the compression function of hash
function LASH, modeled after NTRU
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Average Case Hardness
Lattices

Lattice Cryptography raphic functions

Remarks about proofs of security

@ This function is essentially the compression function of hash
function LASH, modeled after NTRU

@ You can still “prove” security based on average case
assumption: Breaking the above hash function is as hard as
finding short vectors in a random lattice A(JA()| .. |A(™/M])
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Average Case Hardness
Lattices

Lattice Cryptography raphic functions

Remarks about proofs of security

@ This function is essentially the compression function of hash
function LASH, modeled after NTRU

@ You can still “prove” security based on average case
assumption: Breaking the above hash function is as hard as
finding short vectors in a random lattice A(JA()| .. |A(™/M])

@ ...but we know the function is broken: The underlying
random lattice distribution is weak!
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Average Case Hardness
Lattices

Lattice Cryptography raphic functions

Remarks about proofs of security

@ This function is essentially the compression function of hash
function LASH, modeled after NTRU

@ You can still “prove” security based on average case
assumption: Breaking the above hash function is as hard as
finding short vectors in a random lattice A(JA()| .. |A(™/M])

@ ...but we know the function is broken: The underlying
random lattice distribution is weak!

@ Conclusion: Assuming that a problem is hard on average-case
is a really tricky business!
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Lattice Cryptography Cryptographic functions

Back to general lattices

e Finding short vectors in /\é(A) when A is a random “block
circulant” matrix is easy
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Average Case Hardness
Random Lattices

Lattice Cryptography Cryptographic functions

Back to general lattices

e Finding short vectors in /\é(A) when A is a random “block
circulant” matrix is easy

e What about unstructured random A € ZSX"?
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Lattice Cryptography Cryptographic functions

Back to general lattices

e Finding short vectors in /\é(A) when A is a random “block
circulant” matrix is easy

e What about unstructured random A € ZSX"?

Is fa collision resistant when A € ng” is random?
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Lattice Cryptography raphic functions

Back to general lattices

e Finding short vectors in /\é(A) when A is a random “block
circulant” matrix is easy

e What about unstructured random A € ZSX"?

Is fa collision resistant when A € ng” is random?

@ Yes, provided SIVP/ADD/BDD are hard in the worst-case!
[Ajtai%6,..., MRO4]

o We will give an oversimplified proof sketch, where A € Rk*"
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Average Case Hardness
Random Lattices

Lattice Cryptography Cryptographic functions

Blurring a lattice

Consider an arbitrary lattice, and . °

Daniele Micciancio The Geometry of Lattice Cryptography



JET se Hardness
Random Lattices

Lattice Cryptography Cryptographic functions

Blurring a lattice

Consider an arbitrary lattice, and add ° ‘
noise to each lattice point until the en- . C ¢
tire space is covered. . . . ¢
o O ¢ =
° ® ¢ .
L]
» C ° -
(] C ¢ e
° C ¢ -
o = ¢ ®
o O ¢ .
° C ¢
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Consider an arbitrary lattice, and add ° ‘
noise to each lattice point until the en- . c ¢
tire space is covered. . . . ¢
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° ® ¢ :
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(] C ¢ :
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Blurring a lattice

Consider an arbitrary lattice, and add ° ‘
noise to each lattice point until the en- . c ¢
tire space is covered. . . . ‘
o O ¢ ‘
° ® ¢ :
L]
» C ° ‘
(] C ¢ :
° C ° ‘
o O ¢ :
o C ¢ :
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Lattice Cryptography

Blurring a lattice

Consider an arbitrary lattice, and add ° ‘
noise to each lattice point until the en- . c ¢
tire space is covered. By . . N
o O °
o
How much noise is needed? h . . "
r «
Irl| < V- An/2 /%
(] C ¢ N
e Each point in a € R” can be , . . N
written @ = v+ r where v € £ and . . C
o
|rl] = /nAp. . \ . .
° C °
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Blurring a lattice

Consider an arbitrary lattice, and add 2 y
noise to each lattice point until the en- ", o Q ¢
tire space is covered. Increase the noise . . S A
until the space is uniformly covered. o 4
° [ ]
How much noise is needed? < . e :
r «
vl < V- An/2 v S
() S * :
e Each point in a € R” can be Y . 2 :
written @ = v +r where v € £ and . 3

¥l ~ ViAo, : y &
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Blurring a lattice

Consider an arbitrary lattice, and add | ° Y
noise to each lattice point until the en- |, . < y
tire space is covered. Increase the noise . . = ‘
until the space is uniformly covered. . .
° L
How much noise is needed? . . . :
r q
vl < V- An/2 N2V |
[ ] - * :
e Each point in a € R” can be . . . :
written @ = v +r where v € £ and . <

¥l ~ ViAo, ; e
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Blurring a lattice

Consider an arbitrary lattice, and add | e % y
noise to each lattice point until the en- |, . y A
tire space is covered. Increase the noise 4 . ° A
until the space is uniformly covered. . )
° L]
How much noise is needed? . . . A
r «
vl < V- An/2 Wean
(] b’ 1 ]
e Each point in a € R” can be . . . y
written @ = v +r where v € £ and . ’

¥l ~ ViAo, ] o Ve
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Lattice Cryptography

Blurring a lattice

Consider an arbitrary lattice, and add
noise to each lattice point until the en-
tire space is covered. Increase the noise |
until the space is uniformly covered. <«

b D& VS

% < <>

o T
o o
How much noise is needed?

Irl| < V- An/2

> <

<
e w5 R

’

o P < «
@ Each point in a € R" can be ~
written a=v +rwhereve L and |

Irll = /nAn. o

W e R
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Blurring a lattice

Consider an arbitrary lattice, and add
noise to each lattice point until the en-
tire space is covered. Increase the noise |
until the space is uniformly covered. <«

b D& VS

pre < <>
W w5 R
How much noise is needed? [MR]

Irl] < (log n) - v/ - An/2

> <

<
e w5 R

’
o e B v
@ Each point in a € R" can be ~

written a =v +r whereve L and |
I¥ll = VAo, - -

e a € R" is uniformly distributed.

W e R
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Security proof (sketch)

@ Generate random points a; = v; + r;, where

e v; is a random lattice point
e r; is a random error vector of length ||r;]| = /n\,
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Security proof (sketch)

@ Generate random points a; = v; + r;, where

e v; is a random lattice point
e r; is a random error vector of length ||r;]| = /n\,

e A =[aj,...,ap] is distributed almost uniformly at random in
Rnxm SO
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Security proof (sketch)

@ Generate random points a; = v; + r;, where

e v; is a random lattice point
e r; is a random error vector of length ||r;]| = /n\,

e A =[aj,...,ap] is distributed almost uniformly at random in
Rnxm SO

o if we can break Ajtai's function fa, then
e we can find a vector z € {—1,0,1}™ such that

Za,-z,- =0
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Security proof (sketch)

@ Generate random points a; = v; + r;, where

e v; is a random lattice point
e r; is a random error vector of length ||r;]| = /n\,

e A =[aj,...,ap] is distributed almost uniformly at random in
Rnxm SO
o if we can break Ajtai's function fa, then
e we can find a vector z € {—1,0,1}™ such that

Z(V,‘ + I’,')Z,' = Za,-z,- =0

@ Rearranging the terms yields a lattice vector

E VzZj = — E rizj

of length at most || > rix;|| = /n-max||ri]| = n- A,



Lattice Cryptography

What about efficiency

207 07?2 20?7 7?7 7?2 20?2 ?2 7?2 ?2(? 7?2 7 7
1 4 3 8|6 4 9 0|2 6 4 5|3 2 7 -1
8 1 4 3|0 6 4 9(5 2 6 4|1 3 2 7
38 1 4/9 0 6 4/45 2 6|7 1 3 =2
4 3 1/4 9 0 6/6 4 5 2(2 7 1 3
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Lattice Cryptography

What about efficiency

207 07?2 20?7 7?7 7?2 20?2 ?2 7?2 ?2(? 7?2 7 7
1 4 3 8|6 4 9 0|2 6 4 5|3 2 7 -1
8 1 4 3|0 6 4 9(5 2 6 4|1 3 2 7
38 1 4/9 0 6 4/45 2 6|7 1 3 =2
4 3 8 1|49 0 6|6 4 5 22 7 1 3

Theorem (trivial)

Finding collisions on the average is at least as hard as finding short
vectors in the corresponding random lattices
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Lattice Cryptography

What about efficiency

207 07?2 20?7 7?7 7?2 20?2 ?2 7?2 ?2(? 7?2 7 7
1 4 3 8|6 4 9 0|2 6 4 5|3 2 7 -1
8 1 4 3|0 6 4 9(5 2 6 4|1 3 2 7
38 1 4/9 0 6 4/45 2 6|7 1 3 =2
4 3 8 1|49 0 6|6 4 5 22 7 1 3

Theorem (trivial)

Finding collisions on the average is at least as hard as finding short
vectors in the corresponding random lattices

Theorem (LM'07)

Provably collision resistant, assuming the worst case hardness of
approximating SVP and SIVP over ideal lattices.
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Efficiency of anti-cyclic hashing

o Key size: (m/n) - nlogq = m-logq = O(n) bits

@ Anti-cyclic matrix—Nvector multiplication can be computed in
quasi-linear time O(n) using FFT

@ The resulting hash function can also be computed in O(n)
time

@ For approximate choice of parameters, this can be very
practical (SWIFFT [LMPR])

@ The hash function is linear: A(x+y) = Ax + Ay

@ We will see that this can be a feature rather than a weakness
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Outline

@ Lattice Cryptography

@ Cryptographic functions
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Hard Random Lattices

Theorem (Ajtai, MR04)

fa is collision resistant, under the assumption that SIVP is hard to
approximate in the worst-case withing a factor vy = n.

Daniele Micciancio The Geometry of Lattice Cryptography



Average Case Hardness
Random Lattices
Cryptographic functions

Lattice Cryptography

Hard Random Lattices

Theorem (Ajtai, MR04)

fa is collision resistant, under the assumption that SIVP is hard to
approximate in the worst-case withing a factor vy = n.

Equivalently, ...

If ADD is hard to approximate in the worst case within v ~ n, then
ADD is hard on average for input distribution /\qL (Zg*™).
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Lattice Cryptography

Hard Random Lattices

Theorem (Ajtai, MR04)

fa is collision resistant, under the assumption that SIVP is hard to
approximate in the worst-case withing a factor vy = n.

Equivalently, ...

Theorem

If ADD is hard to approximate in the worst case within v ~ n, then
ADD is hard on average for input distribution /\qL (Zg*™).

Theorem (RO05)

If ADD/SIVP is hard to approximate in the worst case within
v =~ n even by quantum algorithms, then BDD is hard on average
for input distribution /\ql(ngm).
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One-time signatures

e OTS: diginal signature scheme that allows to sign a single
message (faster than a full fledged signature scheme)
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One-time signatures

e OTS: diginal signature scheme that allows to sign a single
message (faster than a full fledged signature scheme)

@ Global parameters: g-ary lattice A
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One-time signatures

e OTS: diginal signature scheme that allows to sign a single
message (faster than a full fledged signature scheme)

@ Global parameters: g-ary lattice A

@ Secret key: short error vectors S

Daniele Micciancio The Geometry of Lattice Cryptography



Average Case Hardness
Random Lattices

Lattice Cryptography Cryptographic functions

One-time signatures

OTS: diginal signature scheme that allows to sign a single
message (faster than a full fledged signature scheme)

Global parameters: g-ary lattice A

Secret key: short error vectors S

Public key: syndromes P = AS (Hash of secret key under
homomorphic hash function)
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One-time signatures

OTS: diginal signature scheme that allows to sign a single
message (faster than a full fledged signature scheme)

Global parameters: g-ary lattice A

Secret key: short error vectors S

Public key: syndromes P = AS (Hash of secret key under
homomorphic hash function)

Message: short vector m
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One-time signatures

OTS: diginal signature scheme that allows to sign a single
message (faster than a full fledged signature scheme)

Global parameters: g-ary lattice A

Secret key: short error vectors S

Public key: syndromes P = AS (Hash of secret key under
homomorphic hash function)

Message: short vector m

Signature: 0 = Sm
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One-time signatures

e OTS: diginal signature scheme that allows to sign a single
message (faster than a full fledged signature scheme)

@ Global parameters: g-ary lattice A
@ Secret key: short error vectors S

@ Public key: syndromes P = AS (Hash of secret key under
homomorphic hash function)

@ Message: short vector m
@ Signature: 0 = Sm
@ Verify: Check if o is short and Pm = Ao

Daniele Micciancio The Geometry of Lattice Cryptography



JET se Hardness
Random Lattices

Lattice Cryptography Cryptographic functions

OTS security

Assume there is an attack to the one-time signature scheme. Then
we can find collisions to hash function fa as follows.

@ Generate A, S, P =AS
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OTS security

Assume there is an attack to the one-time signature scheme. Then
we can find collisions to hash function fa as follows.

@ Generate A, S, P =AS

@ Sign 0 = Sm as requested by attacker
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OTS security

Assume there is an attack to the one-time signature scheme. Then
we can find collisions to hash function fa as follows.

o Generate A, S, P =AS
@ Sign 0 = Sm as requested by attacker

@ Attacker produces a forgery (m’, o)
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OTS security

Assume there is an attack to the one-time signature scheme. Then
we can find collisions to hash function fa as follows.

o Generate A, S, P = AS
@ Sign 0 = Sm as requested by attacker
@ Attacker produces a forgery (m’, o)

e (Sm',c¢’) is a collision: ASm’ = Pm’ = Ao’
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OTS security

Assume there is an attack to the one-time signature scheme. Then
we can find collisions to hash function fa as follows.

o Generate A, S, P = AS

@ Sign 0 = Sm as requested by attacker

@ Attacker produces a forgery (m’, o)

e (Sm',c¢’) is a collision: ASm’ = Pm’ = Ao’
Note: Adversary cannot output ¢/ = Sm’ because A, P, o do not
reveal enough information about S.
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OTS security

Assume there is an attack to the one-time signature scheme. Then
we can find collisions to hash function fa as follows.

o Generate A, S, P = AS

@ Sign 0 = Sm as requested by attacker

@ Attacker produces a forgery (m’, o)

e (Sm',c¢’) is a collision: ASm’ = Pm’ = Ao’
Note: Adversary cannot output ¢/ = Sm’ because A, P, o do not
reveal enough information about S.

Note: This scheme [LMO08] can be very efficient when implemented
with ideal lattices.
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Regev (LWE) cryptosystem

— m— @ Parameters:
m,n,q € Z,A € Zg*"
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Regev (LWE) cryptosystem

— m— @ Parameters:

@ Secret key: s€Z, ec &M
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Regev (LWE) cryptosystem

— m— o Parameters:
X @ Secret key: s€Z, ec &M
M ] .
@ Public key:
p=As+ter.Zg
n A + | € |=p[P
N4 L
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Regev (LWE) cryptosystem

— m— @ Parameters:

m,n,q € Z,A € Zg*"

@ Secret key: s€ Zg, ec E™
M o Public key:
p=As+ter.Zg
nir|x A p| o Encryptp(mi(r)):
u = r'A
% c = r'p
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Regev (LWE) cryptosystem

— m— @ Parameters:
m,n,q € Z,A € Zg*"

@ Secret key: s€ Zg, ec E™
M o Public key:
p=As+ter.Zg
nir|x A p| o Encryptp(mi(r)):
u = r'A
N c = r'p+tm—r
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Regev (LWE) cryptosystem

— m— @ Parameters:
Secret key: s€ Z8, e E™

Public key:
p=As+ter.Zg

X
(]

n e Encrypty(m;(r)):
u = r'A
c = er +m-—n

D =
o )
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The geometry of LWE encryption

@ Public key:

% p=AstercZj

B

T .
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The geometry of LWE encryption

@ Public key:

% p=AstercZj
(B Y [ ] e [A]|p]: random g-ary lattice
with a planted short vector e

niri|x A -|-e=)p

) {
I T
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The geometry of LWE encryption

@ Public key:

p=AstercZj
(B Y [ ] e [A]|p]: random g-ary lattice
with a planted short vector e

@ Encryption:
T A +e =P (u,c) = [Alp] "r is the

syndrome of r -+ AZ([A|p])

) {
I T
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The geometry of LWE encryption

@ Public key:

p=AstercZj
(B Y [ ] e [A]|p]: random g-ary lattice
with a planted short vector e

@ Encryption:
T A +e =P (u,c) = [Alp] "r is the

syndrome of r -+ AZ([A|p])

\¥/ \_/ .| o Decryption: use short dual
JL vector e to solve BDD

e =g e
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GPV (dual LWE) cryptosystem

@ Parameters:
m,n,q € Z,A € Zg*"

Daniele Micciancio The Geometry of Lattice Cryptography



JET se Hardness
Random Lattices

Lattice Cryptography Cryptographic functions

GPV (dual LWE) cryptosystem

o Parameters:
m,n,q € Z,A € Zg*"
~ @ Secret key: re E™
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GPV (dual LWE) cryptosystem

@ Parameters:
m,n,q € Z,A € Zg*"
~ @ Secret key: re E™
o Public key: u=r"A ~; ZT

{
[ ]
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GPV (dual LWE) cryptosystem

o Parameters:
S m,n,q € Z,A € ZJ*"
~ — © Secret key: r € E™
o Public key: u=r"A ~; ZT

e Encrypty(m;e):

= As+te

C = u-s+e+m

NOZE

T © co—>[e]
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GPV (dual LWE) cryptosystem

o Parameters:
m,n,q € Z,A € Zg*"
~ — © Secret key: r € E™
o Public key: u=r"A ~; ZT

e Encrypty(m;e):

= As+te

C = u-s+e+m

e Decrypt,(p,c) =

c—rip~m.
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Comparing Regev and GPV encryption

Regev (LWE) GPV (dual LWE)

s’ s’

Tl

{ \
N -{e] N —{e]
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Comparing Regev and GPV encryption

Regev (LWE) GPV (dual LWE)

s’ s’

Tl

o] —fc] uT [
Regev and GPV cryptosystems use the same mathematical objects
A s, r,e p,u,c, but operate on them in different roles:

Public key generation <= Encryption
Secret key <= Encryption randomness
Public key — Ciphertext
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Naive interpretation

@ The schemes are syntactically similar: Regev and GPV
cryptosystems operate on the same mathematical objects

A,s,r,e p,u,c.
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Naive interpretation

@ The schemes are syntactically similar: Regev and GPV
cryptosystems operate on the same mathematical objects
A,s,r,e p,u,c.

@ The scheme are semantically different:

IE Common parameters

encryption randomness

Common parameters @

secret key

1rrue

encryption randomness [r| [r] secret key
public key @ @ ciphertext
ciphertext @ @ public key
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The true answer: Lattices and Duality

@ The schemes are syntactically different: The symbols
A,s,r,e p,u,c in Regev and GPV cryptosystems represent
different mathematical objects
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The true answer: Lattices and Duality

@ The schemes are syntactically different: The symbols
A,s,r,e p,u,c in Regev and GPV cryptosystems represent
different mathematical objects

@ The two schemes are semantically equivalent:

Common parameters @ <~ |A/’| Common parameters

secret key — |y secret key
encryption randomness m <~ s’,—e’ encryption randomness

public key p| = E public key

ciphertext (u] = E ciphertext
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Trapdoor functions

Theorem (A99,AP09,MP11)

There is an algorithm to efficiently generate a random A € ng’"
together with a short basis S € Z™*™ of A (A).
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Trapdoor functions

Theorem (A99,AP09,MP11)

There is an algorithm to efficiently generate a random A € ng’"
together with a short basis S € Z™*™ of A (A).

Trapdoor function:
@ Inverting fp is a BDD problem
@ BDD can be solved with a short dual basis
@ S can be used as an inversion trapdoor

Injective trapdoor functions can be used for the construction of a
wide range of other more complex cryptographic primitives.
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Conclusion

o Lattice cryptography allows to build a wide range of many
other cryptographic primitives (Hierarchical identity based
encryption, Fully homomorphic encryption, and much more)

@ It has great potential for fast implementation due to simple
operations and high parallelizability

@ Most primitives can be described and explained in terms of a
handful of basic geometric concepts

@ Everything that can be done with number theoretic scheme
can be done with lattice crypography as well

@ Currently the only method known to build fully homomorphic
encryption

@ Not quite ready for use in practice, but moving fast in that
direction

@ Open problems: concrete efficiency, security evaluation, etc.
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