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Where is the focus...

Modern software systems: security (dependability) and performance
requirements

Trading security and performance: what does it mean?

Different perspectives:

Performability-like principle: do the costs of security cause a tolerable
degradation of performance?
Noninterference-like principle: do the performance optimizations cause
security leaks?
Trading the two aspects: is it possible to balance the costs of the
security mechanisms with the performance profile of the system?
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Performability-like principle

Determine security metrics, estimate security costs, and evaluate the
relation with performance measures

security metrics

Some analogy with dependability metrics: time between security incidents,
time to security incident detection/recovery, time between detection and
recovery, reward of leaked information (empirical data are important)

references

Littlewood 1993, 2004
Trivedi 2004
Verendel 2009



Performability-like principle

Determine security metrics, estimate security costs, and evaluate the
relation with performance measures

security costs

Example: encryption

encryption time (symmetric vs. asymmetric), key length, key
generation

impact on throughput and response time

empirical analysis of both costs and impact

references

Lamprecht 2006



Performability-like principle

Determine security metrics, estimate security costs, and evaluate the
relation with performance measures

security costs

Example: cryptographic protocols

key distribution mechanisms, additional message exchange

impact on throughput, response time, scalability, utilization

many (semi) formal models, no formulation of the impact

references

Zhao 2009 (Kerberos)



Performability-like principle

Determine security metrics, estimate security costs, and evaluate the
relation with performance measures

security costs

Example: access control

authentication mechanisms, intrusion detection systems

impact on response time, utilization, availability

many (semi) formal models, no analysis of tradeoff

references

Madan 2004 (IDS)
Wang 2010 (email system)



Performability-like principle

Determine security metrics, estimate security costs, and evaluate the
relation with performance measures

security costs

Example: lightweight security

trust/security infrastructures in WLANs and MANETs

impact on response time, utilization

many (semi) formal models, difficult analysis of tradeoff

references

Cho 2008 (MANETs)



Noninterference-like principle

Employ quantitative information to estimate security leaks

Quantitative Model
(MCs, MDPs, PAs, SPAs, . . . )

Quantitative requirements
(logics, sim./equiv., . . . )

�
�	
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Model Checking / Equivalence Checking
Shannon’s Information Theory

?
Prob. for good/bad behaviors
Expected costs (reward-based)

Tradeoff

Examples

PIN cracking schemes, contract signing, fair exchange, network virus
infection, anonymity, DoS, non-repudiation, crypto-protocols, . . .



Noninterference-like principle

Employ quantitative information to estimate security leaks

Pros and Cons

quantitative information typically considered: (conditional) probability
distributions of events, discrete time

security metric typically considered: amount of information leakage

tradeoff: sometimes it is clear the cost to pay for a reduction of the
information leakage

references

Baier et al.
Di Pierro et al.
Malacaria
Segala et al.



General Requirements

What we need

Need for performance/security models that can be mutually validated

Need for specification of performance/security measures

Need for trading guidelines/mechanisms
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A General Methodology

Problem

Analyzing both quantitative aspects (e.g. performance) and
dependability aspects (such as security, reliability, safety, and
availability)

in a component-oriented fashion.

Goal

Guiding the system design towards a balanced trade-off among all
these aspects.

Solution

Integrated view

Equivalence-based integrated analysis
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A General Methodology

Scenario

A single component may cope with a sole specific aspect in a
one-to-one fashion, or else crosscutting aspects may be handled by
several components.

In any case, the components may interfere each other when pursuing
the goal of satisfying the requirements of different aspects.

Examples

Mechanisms for controlling power-consumption / resource access /
resource usage may interfere with security aspects.

Viceversa, mechanisms dedicated to security aspects may interfere
with QoS parameters.
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A General Methodology

Goal

Evaluating the capability of a component of interfering with the
behaviors (of other components) aiming at satisfying the
requirements of specific aspects.

The ultimate goal is to reach a balanced trade-off among all the
functional and nonfunctional aspects.

Approach

Performing a noninterference check in order to assess the impact of
every component on the security requirements.

Applying quantitative analysis techniques in order to estimate the
revealed interference and the impact of the mitigating strategies on
the performability aspects.
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A General Methodology

Steps

Provide a (architectural) description of the system

Choose the security property of interest and single out the
components dedicated to this aspect

Determine the components of which the interference has to be
evaluated

Perform the noninterference check

Decide whether the revealed interference (or the related mitigating
strategy) is tolerable or not
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A General Methodology

Examples

Determine the influence of faults triggered by a component upon the
behavior of system components performing security-critical
applications.

Determine the influence of events triggered by non-trusted
components upon the behavior of system components performing
security-critical applications.

Determine the impact of mechanisms for controlling power
consumption / performance optimizations on security aspects.
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Noninterference Theory

Original Idea

A group of high-security level users, employing confidential operations
only, is not interfering with a group of low-security level users,
observing public operations only, if what the first group of users can
do with the confidential operations has no effect on what the second
group of users can see.

In the security setting, noninterference analysis can reveal direct and
indirect information flows, called covert channels, that violate the
access policies based on the different access clearances assigned to
different user groups.
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Noninterference Theory

Implementation

Action names (events) are divided into two disjoint sets:

High, representing system activities at high-security level
Low, representing system activities at low-security level

A system model Q has no covert channels if the system view where
all the high-level activities are hidden to low-level observers, is
indistinguishable with respect to the system view where these
activities are prevented from execution:

Q/High ≈B Q\High



Noninterference Theory

General Idea

A system execution can be viewed as an information flow.

A group of system components (high components), described by a
certain set of behaviors, is not interfering with another group of
system components (low components) if the behaviors of the first
group of components have no effect on what the second group of
components can see.

In this more general setting, noninterference analysis can reveal covert
channels indicating the existence of undesired information flows
among component behaviors that are responsible for compromising
several different (security) aspects.
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A Process-algebraic Approach to Model Design

The Approach in a Nutshell

The architectural description of a component-based system comprises
the description of the individual system component types and the
description of the overall system topology.
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The Approach in a Nutshell

The architectural description of a component-based system comprises
the description of the individual system component types and the
description of the overall system topology.

The description of a single component type (Architectural Element
Type, AET) includes its name, its parameters, its behavior, and its
interactions with other component types.

The component behavior expresses all the alternative sequences of
activities that the AET can carry out – which is formalized by means
of process algebra – while the component interactions are those
activities used by the component type to communicate with the rest
of the system.



A Process-algebraic Approach to Model Design

The Approach in a Nutshell

The architectural description of a component-based system comprises
the description of the individual system component types and the
description of the overall system topology.

The description of the system topology includes the instances of the
component types that form the system (Architectural Element
Instance, AEI), together with the specification of the way in which
their interactions are attached to each other in order to make the
components communicate.



A Process-algebraic Approach to Model Design

The Semantics in a Nutshell

Given an AET C and an AEI C of type C, from the semantics of C ,
[[C ]], which is defined to be the process algebraic behavior associated
with C , it is possible to extract a stochastic model in the form of an
action-labeled Continuous Time Markov Chain (CTMC).

The semantics of an architectural description A is derived by
composing in parallel the semantics of its AEIs according to the
declared attachments:

[[C1, . . . ,Cn]]A
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First Step: Noninterference Analysis

Let A be an architectural description with AEIs
K , C1, . . . ,Cn, B1, . . . ,Bm.

Suppose to be interested in evaluating the impact of K on the
behavior of C1, . . . ,Cn that is related to a specific security aspect.

The set Name of action names is divided into two disjoint sets:

High ⊆ Name, representing the system activities performed by K of
which we intend to evaluate the impact.
Low ⊆ Name, representing the system activities performed by
C1, . . . ,Cn and related to the behavior we intend to monitor.

All the remaining activities carried out by the system are simply
disregarded and can be hidden.

At the architectural level, the different system views can be defined as
behavioral modifications by employing static operators for hiding and
restriction.
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First Step: Noninterference Analysis

K does not interfere with C1, . . . ,Cn if the low behavior of C1, . . . ,Cn

with the high activities of K being made unobservable is equivalent to
the low behavior of C1, . . . ,Cn with the same activities being
prevented from taking place:

[[C1, . . . ,Cn, K , B1, . . . ,Bm]]A /(Name − Low)
≈

[[C1, . . . ,Cn, K , B1, . . . ,Bm]]A\High/(Name − Low)

where ≈ is the chosen notion of behavioral equivalence, which can be
nondeterministic, probabilistic, timed, or a combination of these.

The more information is added to the system model, the higher the
number of potential vulnerabilities revealed through fine-grain notions
of noninterference.



First Step: Noninterference Analysis

The interference of K on the behavior of C1, . . . ,Cn can be inferred
compositionally and in a more efficient way whenever:

1 K is the central AEI of a star topology that includes C1, . . . ,Cn.
2 K is an AEI of a cycle that includes C1, . . . ,Cn.



First Step: Result of the Analysis

No information flow is revealed: we have the guarantee that K is
transparent with respect to the monitored activities of C1, . . . ,Cn and
with respect to the chosen noninterference check.

An undesired, direct or indirect, information flow is revealed:
diagnostic information provided by the noninterference check
(typically in the form of a logic formula) can be employed to
determine the causes of the interference.

If the interference can be eliminated with a minor impact on the
functionalities of the system behavior, the diagnostic information can
be employed to suitably modify the model.

In contrast, for all information flows that are either unavoidable or
tolerated as they would require a significant revision of the model, it
is necessary to estimate the interference.

In any case, a performance-based validation is needed.



Trading the Noninterference Check with the Model:
An Example

Functional Model and Quantitative Model

�
�	
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Information flow detection:
Deterministic/Nondeterministic

Noninterference

Covert channel capacity:
Probabilistic/Markovian

Noninterference

exact analysis

0/1 result

approximate analysis
Probabilistic/Markovian noninterference
(Gray, Dipierro et al., Aldini et al., Smith,

Desharnais et al., . . . )

[0; 1] result
↑

best-case/average/worst-case



Trading the Noninterference Check with the Model:
An Example

Nonfunctional Noninterference

Model: generative/reactive probabilistic systems, CTMC, DTMC,
MDP, PA

Equivalence: weak probabilistic bisimulation, Markovian
bisimulation, Markovian testing bisimulation

Noninterference Check: if passed, see the nondeterministic case,
otherwise an interference is revealed. Can we measure the covert
channel capacity?

Approximation: the notion of equivalence is relaxed to tolerate
negligible fluctuations in the nonfunctional behaviors. The measure
that is estimated by the approximation represents the covert channel
capacity.



Second Step: Performance Analysis

Performance Model
�

�	
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Markovian Model:
validated by construction

non-Markovian Model:
validation is needed

Markovian Noninterference

How to measure the covert
channel capacity?

Approximations

Performance comparison
through reward-based
numerical analysis or
simulation



Second Step: Performance Analysis

Performance Comparison

Define the performance metrics that are directly related to the
bandwidth of the revealed covert channel (follow the guidelines
provided by the diagnostic information).

Alternatively, in the case no information flow has been revealed,
define the QoS-related metrics of interest.

In any case, the resulting performance figures reveal whether a
balanced tradeoff between security - in terms of bandwidth of each
covert channel - and QoS - in terms of performance measures like
system throughput and response time - is met or not.



Second Step: Performance Analysis

Performance Comparison

Depending on the obtained results, the performance figures are then
used as a feedback to decide whether the system is to be tuned by
changing the configuration parameters that affect the metrics of
interest, or else it is necessary to adjust the architectural model and
restart the integrated analysis.

The choice is mainly guided by the design requirements, e.g. strict vs.
relaxed security needs and loose vs. tight QoS.



The Methodology in Practice

Examples

Determine the bandwidth of covert channels revealing security
violations in order to estimate, e.g., the amount of sensitive
information leaked per unit of time, or the overhead due to strategies
minimizing these covert channels, or else the tradeoff between
security requirements and quality of service parameters.

Estimate the impact of mechanisms for minimizing the security risks
on the service availability by measuring the service response time.



Some Open Problems

Choice of the most adequate notion of equivalence (bisimulation may
distinguish too much).

Approximation of Markovian equivalences.

Automatization of the passage from first to second step.
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