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The Maude-NRL Protocol Analyzer

Purpose of These Lectures

Introduce you to a particular protocol tool for crypto protocol
analysis, Maude-NPA

Tool for automatic analysis of crypto protocols that takes into
account equational theories of crypto operators
Based on unification and rewrite rules

On the way, point out connections between research on the
tool and open problems in crypto protocol analysis, rewriting
logic, and unification
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The Maude-NRL Protocol Analyzer

Approach

Example: Diffie-Hellman Without Authentication

1 A→ B : gNA

2 B → A : gNB

3 A and B compute gNA∗NB = gNB∗NA

Well-known attack

1 A→ IB : gNA

2 IA → B : gNI

3 B → IA : gNB

4 IB → A : gNI

A thinks she shares gNI ∗NA with B, but she shares it with I

B thinks he shares gNI ∗NA with A, but he shares it with I

Commutative properties of ∗ and fact that (GX )Y = GX∗Y

crucial to understanding both the protocol and the attack
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The Maude-NRL Protocol Analyzer

Approach

”Dolev-Yao”Model for Automated Cryptographic
Protocol Analysis

Start with a signature, giving a set of function symbols and
variables

For each role, give a program describing how a principal
executing that role sends and receives messages

Give a set of inference rules the describing the deductions an
intruder can make

E.g. if intruder knows K and e(K ,M), can deduce M

Assume that all messages go through intruder who can

Stop or redirect messages
Alter messages
Create new messages from already sent messages using
inference rules

This problem well understood since about 2005
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The Maude-NRL Protocol Analyzer

Approach

Background

Crypto protocol analysis with the standard free algebra model
(Dolev-Yao) well understood.

But, not adequate to deal with protocols that rely upon
algebraic properties of cryptosystems

1 Cancellation properties, encryption-decryption
2 Abelian groups
3 Diffie-Hellman (exponentiation, Abelian group properties)
4 Homomorphic encryption (distributes over an operator with

also has algebraic properties, e.g. Abelian group)
5 Etc. ..,

In many cases, a protocol uses some combination of these
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The Maude-NRL Protocol Analyzer

Approach

Goal of Maude-NPA

Provide tool that

can be used to reason about protocols with different algebraic
properties in the unbounded session model

supports combinations of algebraic properties to the greatest
degree possible
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The Maude-NRL Protocol Analyzer

Approach

Our approach

Use rewriting logic as general theoretical framework

crypto protocols are specified using rewrite rules
algebraic identities as equational theories

Use narrowing modulo equational theories as a symbolic
reachability analysis method

Combine with state reduction techniques of Maude-NPA’s
ancestor, the NRL Protocol Analyzer (grammars,
optimizations, etc.)

Implement in Maude programming environment

Rewriting logic gives us theoretical framework and
understanding
Maude implementation gives us tool support
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The Maude-NRL Protocol Analyzer

Approach

Maude-NPA

A tool to find or prove the absence of attacks using backwards
search

Analyzes infinite state systems

Active intruder
No abstraction or approximation of nonces
Unbounded number of sessions

Intruder and honest protocol transitions represented using
strand space model.

So far supports a number of equational theories: cancellation
(e.g. encryption-decryption), AC, exclusive-or, Diffie-Hellman,
bounded associativity. homormorphic encryption over a free
theory, various combinations, working on including more
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The Maude-NRL Protocol Analyzer

Introduction to Rewriting Logic and Unification

A Little Background on Unification

Given a signature Σ and an equational theory E , and two terms s
and t built from Σ:

A unifier of s =E ?t is a substitution σ to the variables in s and t
s.t. σs can be transformed into σt by applying equations from E to
σs and its subterms

Example: Σ = {d/2, e/2,m/0, k/0},E = {d(K , e(K ,X )) = X}.
The substitution σ = {Z 7→ e(T ,Y )} is a unifier of d(K ,Z ) and Y .

The set of most general unifiers of s =?t is the set Γ s.t. any unifier
σ is of the form ρτ for some ρ, and some τ in Γ.

Example: {Z 7→ e(T ,Y ),Y 7→ d(T ,Z )} mgu’s of d(T ,Z ) and Y .

Given the theory, can have:

at most one mgu (empty theory)
a finite number (AC)
an infinite number (associativity)

Unification problem in general undecidable
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The Maude-NRL Protocol Analyzer

Introduction to Rewriting Logic and Unification

Rewriting Logic in a Nutshell

A rewrite theory R is a triple R = (Σ,E ,R), with:

(Σ,R) a set of rewrite rules of the form t → s
e.g. e(KA,NA; X )→ e(KB ,X )

(Σ,E ) a set of equations of the form t = s
e.g. d(K , e(K ,Y )) = Y

Intuitively, R specifies a concurrent system,
whose states are elements of the initial algebra TΣ/E specified by
(Σ,E ), and
whose concurrent transitions are specified by the rules R.
Narrowing gives us the rules for executing transitions concurrently.
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The Maude-NRL Protocol Analyzer

Introduction to Rewriting Logic and Unification

Narrowing and Backwards Narrowing

Narrowing: t  σ,R,E s if there is

a non-variable position p ∈ Pos(t);
a rule l → r ∈ R;
a unifier σ (modulo E ) of t|p =E ?l such that s = σ(t[r ]p).

Example:

R = { X → d(k ,X ) }, E = { d(K , e(K ,Y )) = Y }
e(k , t) ∅,R,E d(k , e(k , t)) =E t

Backwards Narrowing: narrowing with rewrite rules reversed
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The Maude-NRL Protocol Analyzer

Introduction to Rewriting Logic and Unification

A Warning About Narrowing

Full narrowing (narrowing in every possible non-variable
location) is often inefficient and even nonterminating

We need to construct our rewrite systems so that efficient
narrowing strategies can be chosen

Maude-NPA has led to some major advances in this area
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The Maude-NRL Protocol Analyzer

Introduction to Rewriting Logic and Unification

Narrowing Reachability Analysis

Narrowing can be used as a general deductive procedure for solving
reachability problems of the form

(∃~x) t1(~x)→ t ′1(~x) ∧ . . . ∧ tn(~x)→ t ′n(~x)

in a given rewrite theory.

The terms ti and t ′i denote sets of states.

For what subset of states denoted by ti are the states denoted
by t ′i reachable?

No finiteness assumptions about the state space.

Maude-NPA rewrite system supports topmost narrowing for
state reachability analysis

Narrowing steps only need to be applied to entire state
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The Maude-NRL Protocol Analyzer

Introduction to Rewriting Logic and Unification

E -Unification

In order to apply narrowing to search, need an E unification
algorithm
Two approaches:

1 Built-in unification algorithms for each theory and combination
of theories.

2 Hybrid approach with E = ∆ ] B
Hybrid Approach

B has built-in unification algorithm
∆ confluent and terminating rules modulo B

Confluent: Always reach same normal form modulo B, no
matter in which order you apply rewrite rules
Terminating: Sequence of rewrite rules is finite

This allows us to use narrowing as a general method for
E -unification

But still need to develop new narrowing methods for theories
of interest to crypto protocol verification
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The Maude-NRL Protocol Analyzer

How Maude-NPA Works

Specifying Protocols and States in Maude-NPA

Uses Strand Space Notation

Strand spaces: popular model introduced by Thayer, Herzog,
and Guttman

Each local execution, or session of an honest principal
represented by sequence of positive and negative terms called
a strand.

Terms made up of variables and function symbols
Negative term stand for received message, positive terms stand
for sent messages
Example:
[+(pke(B,NA; A)), − (pke(A,NA; NB)), + (pke(B,NB))]

Each intruder computation also represented by strand

Example: [−(X ),+(pke(A,X ))]
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The Maude-NRL Protocol Analyzer

How Maude-NPA Works

Specifying Protocols and States in Maude-NPA

Basic Structure of Maude-NPA

Uses modified strand space model

Each local execution and each intruder action represented by
a strand, plus a marker denoting the current state

Searches backwards through strands from final state
Set of rewrite rules governs how search is conducted
Sensitive to past and future

Grammars used to prevent infinite loops

Learn-only-once rule says intruder can learn term only once

When an intruder learns term in a backwards search, tool
keeps track of this and doesn’t allow intruder to learn it again

Other optimization techniques used to reduce other infinite
behavior and to cut down size of search space
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The Maude-NRL Protocol Analyzer

How Maude-NPA Works

Specifying Protocols and States in Maude-NPA

What We Need to Represent

Maude-NPA’s use of backwards search means we have
incomplete picture of what intruder learned in past. But we
need the concrete moment when the intruder learns
something:

Notion of the present

What the intruder knows in the present (i.e., t∈I)
Where the honest principals are in the present (strands)

Notion of the future

What terms the intruder will learn in the future (i.e., t /∈I)

←−−−−−−|−−−−−−
t /∈I t∈I
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The Maude-NRL Protocol Analyzer

How Maude-NPA Works

Specifying Protocols and States in Maude-NPA

How Protocols Are Specified in Maude-NPA

Represent protocols and intruder actions using strands

Terms in strands obey an equational theory specified by the
user

Terms in strands of different sorts, mostly defined by user

Special sort Fresh

Terms of sort Fresh are always constant (used by nonces)
Strand annotated with fresh terms generated by the strand

:: r :: [+(pke(B, n(A, r); A)),−(pke(A, n(A, r); NB)),+(pke(B,NB))]
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The Maude-NRL Protocol Analyzer

How Maude-NPA Works

Specifying Protocols and States in Maude-NPA

The Notion of State in NPA Strands

A state is a set of strands plus the intruder knowledge (i.e., a
set of terms)

1 Each strand is divided into past and future
[ m1

±, . . . , mi
± | mi+1

±, . . . , mk
± ]

2 Initial strand [ nil | m±1 , . . . , m±k ], final strand
[ m±1 , . . . , m±k | nil ]

3 The intruder knowledge contains terms m/∈I and m∈I
{ t1 /∈I, . . . , tn /∈I, s1∈I, . . . , sm∈I }

4 Initial intruder knowledge { t1 /∈I, . . . , tn /∈I },
final intruder knowledge { s1∈I, . . . , sm∈I }
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The Maude-NRL Protocol Analyzer

How Maude-NPA Works

Backwards Narrowing and Rewrite Semantics
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The Maude-NRL Protocol Analyzer

How Maude-NPA Works

Backwards Narrowing and Rewrite Semantics

Protocol Rules and Their Execution With Strands
Already in State

To execute a protocol P associate to it a rewrite theory on sets of
strands as follows. Let I informally denote the set of terms known
by the intruder, and K the facts known or unknown by the intruder

r1 [ L | M−, L′ ] & {M∈I,K} → [ L,M− | L′ ] & {M∈I,K}
Moves input messages into the past

r2 [ L | M+, L′ ] & {K} → [ L,M+ | L′ ] & {K}
Moves output message that are not read into the past

r3 [ L | M+, L′ ] & {M /∈I,K} → [ L,M+ | L′ ] & {M∈I,K}
Joins output message with term in intruder knowledge.

For backwards execution, just reverse
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The Maude-NRL Protocol Analyzer

How Maude-NPA Works

Backwards Narrowing and Rewrite Semantics

Introducing New Strands

If we want an unbounded number of strands, need some way
of introducing new strands in the backwards search

Specialize rule r3 using each strand [ l1, u+, l2 ] of the
protocol P:

[ l1 | u+] & {u /∈I,K} → {u∈I,K}

Gives us a natural way of switching between bounded and
unbounded sessions

Put a bound on the number of times r3 could be invoked with
non-intruder strands
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The Maude-NRL Protocol Analyzer

How Maude-NPA Works

Backwards Narrowing and Rewrite Semantics

Reachability Analysis

Backwards narrowing protocol execution defines a
backwards reachability relation St  

∗
P St ′

In initial step, prove lemmas that identify certain states
unreachable

Specify a state describing the attack state, including a set of
final strands plus terms m/∈I and m∈I
Execute the protocol backwards to an initial state, if possible

For each intermediate state found, check if it has been proved
unreachable and discard if it is
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The Maude-NRL Protocol Analyzer

How Maude-NPA Works
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The Maude-NRL Protocol Analyzer

How Maude-NPA Works

Sequential Composition in Maude-NPA

Introduction

Crypto protocols don’t exist in isolation, but often rely upon
one another

Protocols that work correctly in one environment may fail
when they are composed with new protocols in new
environments

The properties they guarantee are not quite appropriate for the
new environment
The composition itself is mishandled

Research has concentrated on parallel composition, but
sequential composition is where most of the problems lie

The problem is in providing a specification and verification
environment that supports sequential composition
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The Maude-NRL Protocol Analyzer

How Maude-NPA Works

Sequential Composition in Maude-NPA

Motivating examples

One-parent, one-child protocol composition

The parent protocol can have only one child instance

Example: NSL with Distance Bounding (DB)

NSL is used to agree on NA

DB reveals NA, so it cannot be used with the same NA more
than once

One-parent, many-children protocol composition

The parent protocol has an arbitrary number of child instances

Example: NSL with Key Distribution

The parent protocol generates a master key
The child protocol uses the master key and generates a session
key
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How Maude-NPA Works
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The Maude-NRL Protocol Analyzer

How Maude-NPA Works

Sequential Composition in Maude-NPA

Motivating examples: NSL-DB

One-parent, one-child: NSL with Distance Bounding (DB)(*)
Alice claims that she is a certain distance δAB from Bob, and Bob wants

to check this

Needham-Schroeder-Lowe Public Key Protocol (NSL)
1. A→ B : pke(B,NA; A)
2. B → A : pke(A,NA; NB ; B)

3. A→ B : pke(B,NB)

At the end, A and B know that they share two secrets, NA

and NB . They will use NA for distance bounding (DB)
4. B → A : N′

B

5. A→ B : NA ⊕ N′
B

Bob checks time it takes for round trip, and uses it to put
upper bound on distance δAB of Alice

(*) Guttman, Herzog, Swarup, and Thayer, “Strand spaces: From Key Exchange to Secure Location,” Workshop

on Event-Based Semantics, 2008
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The Maude-NRL Protocol Analyzer

How Maude-NPA Works

Sequential Composition in Maude-NPA

Attack on NSL-DB

A I B

◦ A→I :pk(I ,NA;A) // ◦

◦ I→B:pk(B,NA;I ) // ◦

◦ ◦
B→I :pk(I ,NA;NB ;B)
oo

◦ ◦I→A:pk(A,NA;NB ;I )oo

◦
A→I :pk(I ,NB)

// ◦

◦ I→B:pk(B,NB) // ◦

B A

◦
B→A:N′

B // ◦

◦ ◦
A→B:N′

B⊕NAoo

Bob concludes: NA,NB shared with I , and I is distance δAB from
him.
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The Maude-NRL Protocol Analyzer

How Maude-NPA Works

Sequential Composition in Maude-NPA

What happened?

NSL guarantees origin of responder nonce only when
responder is honest.

If responder dishonest, Bob could have got the nonce from
someone else.

What a distance bounding protocol needs is the following:

If sender of authenticated response is honest, then sender of
rapid response is the same individual.
If sender of rapid response is honest, then sender of
authenticated response is the same individual.

One solution: alter rapid response so that composition works.
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The Maude-NRL Protocol Analyzer

How Maude-NPA Works

Sequential Composition in Maude-NPA

Fixing the NSL-DB protocol

1 Needham-Schroeder-Lowe Public Key Protocol (NSL)
1. A→ B : pke(B,NA; A)
2. B → A : pke(A,NA; NB ; B)

3. A→ B : pke(B,NB)

2 Distance bounding using NA

4. B → A : N ′
B

5. A→ B : h(A,NA)⊕ N ′
B

Alice hashes her nonce with her identity before responding

If the sender of the rapid response is honest, he will hash with
his own identity.
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The Maude-NRL Protocol Analyzer

How Maude-NPA Works

Sequential Composition in Maude-NPA

Motivating examples: NSL-KD

One-parent, many-children: NSL with Key Distribution (KD)

Needham-Schroeder-Lowe Public Key Protocol (NSL)

1. A→ B : pke(B,NA; A)
2. B → A : pke(A,NA; NB ; B)
3. A→ B : pke(B,NB)

NA and NB will be used for key distribution

The initiator of the session key protocol can be the child of
either the initiator or responder of the NSL protocol

4. A→ B : {SkA}h(NA,NB )

5. B → A : {SkA; N ′B}h(NA,NB )

6. A→ B : {N ′B}h(NA,NB )

4. B → A : {SkB}h(NA,NB )

5. A→ B : {SkB ; N ′A}h(NA,NB )

6. B → A : {N ′A}h(NA,NB )
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The Maude-NRL Protocol Analyzer

How Maude-NPA Works

Sequential Composition in Maude-NPA

Strand Annotations

1. Separate strands for parent and child

2. Annotate strands with role and input and output parameters.

prot NSL is

strand [init]

:: r :: [{A,B} | +(pk(B,n(A,r);A)), -(pk(A,n(A,r);NB;B)), +(pk(B,NB)),

{A,B,n(A,r),NB}] .

strand [resp]

:: r :: [{A,B} | -(pk(B,NA;A)), +(pk(A,NA;n(B,r);B)), -(pk(B,n(B,r)),

{A,B,NA,n(B,r)}] .

endp

prot DB is

strand [init]

:: r :: [ {B,A,NA} | +(n(B,r)), -(NA * n(B,r)), {A,B,NA,n(B,r)}] .

strand [resp]

:: nil :: [ {B,A,NA} | -(NB’), +(NB’ * NA), {A,B,NA,NB’}] .

endp
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The Maude-NRL Protocol Analyzer

How Maude-NPA Works

Sequential Composition in Maude-NPA

Specifying Composition

3. Composition is performed by unifying appropriate output
parameters of parent strand with input parameters of child
strand

4. Composition section tells you what output terms unified with
what input terms, and whether composition is 1-1 or 1-many

One-to-one composition: NSL-DB

prot NSL-DB is NSL ; DB

NSL.init {A,B,NA,NB} ; {B,A,NA} DB.resp [1-1] .

NSL.resp {A,B,NA,NB} ; {B,A,NA} DB.init [1-1] .

endp

One-to-many composition: NSL-KD

prot NSL-KD is NSL ; KD

NSL.init {A,B,NA,NB} ; {B,A,h(NB,NA)} KD.resp [1-*] .

NSL.init {A,B,NA,NB} ; {A,B,h(NA,NB)} KD.init [1-*] .

NSL.resp {A,B,NA,NB} ; {B,A,h(NB,NA)} KD.init [1-*] .

NSL.resp {A,B,NA,NB} ; {A,B,h(NA,NB)} KD.resp [1-*] .

endp
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How Maude-NPA Works
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endp

One-to-many composition: NSL-KD

prot NSL-KD is NSL ; KD

NSL.init {A,B,NA,NB} ; {B,A,h(NB,NA)} KD.resp [1-*] .

NSL.init {A,B,NA,NB} ; {A,B,h(NA,NB)} KD.init [1-*] .
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endp
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The Maude-NRL Protocol Analyzer

How Maude-NPA Works

Sequential Composition in Maude-NPA

Model for One-to-One Composition

for each one-to-one composition {a{
−→
O }; {

−→
I }b} [1−1] with

strand definitions [{
−→
Ia },−→a , {

−→
Oa}]and[{

−→
Ib },
−→
b , {
−→
Ob}]

and unifiers σa, σab s.t.
−→
Oa =EP σa(

−→
O ) and σa(

−→
I ) =EP σab(

−→
Ib ), add :

SS & [−→a | {
−→
Oa}] & [nil | {σab(

−→
Ib )}, σab(

−→
b )] & IK

→ SS & [−→a , {
−→
Oa} | nil ] & [{σab(

−→
Ib )} | σab(

−→
b )] & IK (1)

Case in which parent already present in right-hand state

SS & [−→a | {
−→
Oa}] & [nil | {σab(

−→
Ib )}, σab(

−→
b )] & IK

→ SS & [{σab(
−→
Ib )} | σab(

−→
b )] & IK (2)

Case in which parent not already present in right-hand state
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The Maude-NRL Protocol Analyzer

How Maude-NPA Works

Sequential Composition in Maude-NPA

Model for One-to-Many Composition

For each one-to-many composition {a{
−→
O }; {

−→
I }b} [1−∗] with

strand definitions [{
−→
Ia },−→a , {

−→
Oa}] and[{

−→
Ib },
−→
b , {
−→
Ob}]

and unifiers σa, σab s.t.
−→
Oa =EP σa(

−→
O ) and σa(

−→
I ) =EP σab(

−→
Ib ),

add to the previous rules :

SS & [−→a | {
−→
Oa}] & [nil | {σab(

−→
Ib )}, σab(

−→
b )] & IK

→ SS & [−→a | {
−→
Oa}] & [{σab(

−→
Ib )} | σab(

−→
b )] & IK (3)

Composition leaving parent available to compose with more children

Rule 3 describe the interim transitions of one-to-many
composition

Rules 1 and 2 describe the final transition
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How Maude-NPA Works

Sequential Composition in Maude-NPA

Example of Backwards Search: NSL-KD

Example one-to-many composition: NSL-KD

NSL.init {A,B,NA,NB} ; {A,B,h(NA,NB)} KD.init [1-*] .

Suppose we have state with two child responder strands:

:: r’’ :: [ {A1,B1,h(NA1,NB1} | +(e(h(NA1,NB1),skey(A,r’’)), ... ] .

:: r’ :: [ {A2,B2,h(NA2,NB2} | +(e(h(NA2,NB2),skey(,r’)),... ] .

Apply Formula 2 to the first strand to obtain

:: r’’ :: [ nil | {A1,B1,h(n(A1,r),NB1} ,

+(e(h(n(A1,r),NB1),skey(A,r’’)),... ] .

:: r’ :: [ {A2,B2,h(NA2,NB2} | +(e(h(NA2,NB2),skey(A,r’)), ... ] .

:: r :: [ +pke(B1,A1; n(A1,r)) , ... | {A1, B1, n(A1,r) , NB1} ]

Apply Formula 3 to the second and third strands to obtain

:: r’’ :: [ nil | {A1,B1,h(n(A1,r),NB1} ,

+(e(h(n(A1,r),NB1),skey(A,r’’)),... ] .

:: r’ :: [ nil | {A1,B1,h(N(A,r_ ,NB1} |

+(e(h(n(A1,r),NB1),skey(A,r’)), ... ] .

:: r :: [ +pke(B1,A1; n(A1,r)) , ... | {A1, B1, n(A1,r) , NB1} ] 39 / 72
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How Maude-NPA Works

Sequential Composition in Maude-NPA

Protocol Composition by Protocol Transformation

Sound and complete protocol transformation to support the
Composition Execution Model without re-implementing the
Maude-NPA

1 For each composition
Transform input parameters {

−→
Ib } into input message −(

−→
Ib ),

Transform output parameters {
−→
Oa} into output message

+(σab(
−→
Ib )).

2 Identify each composition with a Fresh variable
Composition identifier exchanged between strands via
messages of the form rolej(r)
Make use of fact that Fresh variables parametrizing different
strands can’t be unified to implement both one-to-one and
one-to-many composition

Proof of soundness and completeness in Escobar, S., Meadows, C.,
Meseguer, J., Santiago, S.: Sequential Protocol Composition in
Maude-NPA. Tech. Report DSIC-II/06/10, U. Politecnica de Valencia
(June 2010) See http://maude.cs.uiuc.edu/tools/Maude-NPA/
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How Maude-NPA Works

Sequential Composition in Maude-NPA

What We Have

Sequential composition of protocols supported in Maude-NPA

Syntax and operational semantics extends in a natural way

Sequential composition implemented via a protocol
transformation, without having to re-implement Maude-NPA

To be done: user input via syntax, not protocol transformation

Have applied Maude-NPA to protocols described in this
lecture

Output available at
http://maude.cs.uiuc.edu/tools/Maude-NPA/
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The Maude-NRL Protocol Analyzer

How Maude-NPA Works

Unification techniques used in Maude-NPA

What Maude-NPA Needs In a Unification Algorithm

1 Reasonably efficient

2 Supports large number of theories and combinations of
theories

3 Results of unification support syntactic checks on state
information for state space reduction techniques

We find that so far, variant narrowing supports these
requirements the best
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How Maude-NPA Works

Unification techniques used in Maude-NPA

Narrowing for ∆ ] B

1 Start with a decomposition ∆ ] B

2 Find a rewrite rule `→ r ∈ ∆, a non-variable location p of
s =?t

3 Attempt to unify ` with s =?t|p
4 For each member θ of a set of mgus Θ, replace s =?t|pθ with

rθ to obtain s ′ =?t ′

5 Then either:
Attempt to solve s ′ =?t ′ modulo B or;
Apply steps 1-5 again on s ′ =?t ′

When B is the empty theory, and ∆ terminating and
confluent wrt B, the basic narrowing strategy is complete and
terminating

Avoid narrowing on subterms introduced by previous narrowing
step
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How Maude-NPA Works

Unification techniques used in Maude-NPA

Example

∆ = {d(K , e(K ,X ))→ X} , B = φ

Solve d(k ,V ) =?Z

Z 7→ d(k,V ) is first solution
For next, note that d(k ,V ) unifies with (d(K , e(K ,X )) via
σ = {V 7→ e(k ,X ),K 7→ k}.
Replace σd(k,V ) = d(k , e(k ,X )) with σX = X and we’re
done.
No more possible solutions.
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How Maude-NPA Works

Unification techniques used in Maude-NPA

Things Begin to Go Wrong when B = AC

Basic narrowing is not complete

Full narrowing (narrowing at every possible non-variable
location) doesn’t terminate

But B = AC is extremely important for crypto protocol
analysis

1 Diffie-Hellman
2 Exclusive-Or
3 Homomorphic Encryption Over Abelian Groups
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How Maude-NPA Works

Unification techniques used in Maude-NPA

Finite Variant Property to the Rescue

Introduced by Comon and Delaune
We say ∆ ] B has the finite variant property iff, for every
term t, there is a finite set of substitutions Σ such that, for
every substitution θ, there is a substitution ρ and a σ ∈ Σ
such that tθ ↓∆=B tσ ↓∆ ρ.

In other words, every term has a finite set of irreducible
variants
Definition given here is not Comon and Delaune’s original
definition, but they prove that it is equivalent

Finite variant property means that can compute a bound on
the number of narrowing steps necessary to get a complete
solution, this strategy, also due to Comon and Delaune,
known as variant narrowing
Folding variant narrowing of Escobar, Sasse, and Meseguer,
eliminates need to compute bounds, also terminates for terms
with finite complete sets of variants
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How Maude-NPA Works

Unification techniques used in Maude-NPA

The State of Unification in Maude-NPA

B can be either empty theory or AC
Built-in unification for both supplied by Maude

Limited variant narrowing for subset of finite variant theories
including Diffie-Hellman, encryption-decryption cancellation,
exclusive-or, Abelian groups, and combinations

Plan to introduce folding variant narrowing, possibly in Maude
Also have special-purpose algorithm for encryption
homomorphic over a free theory, currently stand-alone

Homomorphic operators do not have the finite variant
property, so can’t use narrowing

Variants of e(K ,X ∗ Y ) are
e(K ,X ) ∗ e(K ,Y ), e(K ,X ) ∗ e(K ,Y1) ∗ e(K ,Y2), . . .

Possible, however, that the homormorphic axioms
e(K ,X ∗ Y )→ e(K ,X ) ∗ e(K ,Y ) could go in B
Decidability problems if * is Abelian group, but may be able to
avoid this with use of sorted unification
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The Maude-NRL Protocol Analyzer

Controlling the Search Space

How Maude-NPA Controls the Search Space

Left to itself, Maude-NPA will search forever

Uses techniques for ruling out redundant or “obviously”
unreachable states which often result in finite search space

Performed via checks that are usually syntactic, but on terms
that obey an equational theory

Will first describe how we deal with this apparent
contradiction via asymmetric unification, then describe the
various state reduction techniques used by Maude-NPA

Once again, we use the finite variant property
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Controlling the Search Space

Enabling Syntactic Checks Via Asymmetric Unification

An Example

Start with exclusive-or ⊕
⊕ is AC, with additional equations x ⊕ 0 = x and x ⊕ x = 0.

Consider the following protocol
1 A→ B : pke(B,NA)
2 B → A : NB ⊕ NA

A checks that the message she receives is Z ⊕NA for some Z
How it works in Maude-NPA
Represent A’s role by strand ::r::[nil,
+(pke(B,n(A,r))),-(Z [+] n(A,r)), nil ]
Consider state ::r::[nil | +(pke(B,n(A,r))), -(Z [+]
n(A,r)), nil ], Z [+] n(A,r) inI
Maude-NPA rules this out because Intruder knows expression
containing nonce before nonce is generated.

So, what if after unifying Z with Y , Z = Y ⊕ NA? Then
Z ⊕ n(A, r) = Y ⊕ n(A, r)⊕ n(A, r) = Y and the syntax
check is no longer valid.
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Controlling the Search Space

Enabling Syntactic Checks Via Asymmetric Unification

How we handle this in Maude-NPA

Express equational theory as
∆ = {X ⊕ 0→ X ,X ⊕X → 0,X ⊕X ⊕Y → Y }] (B = AC)

nonce containment invariant under AC
∆ is a set of rewrite rules convergent and terminating wrt AC

Find all the possible reduced forms of Z [+] n(A,r) wrt ∆
modulo AC

There are two:
< Z [+] n(A,r), id >

< Y, Z |-> Y [+] n(A,r) >

One strand for each reduced form
::r::[nil, +(pke(B,n(A,r))),-(Z [+] n(A,r)), nil ]
::r::[nil, +(pke(B,n(A,r))),-(Y), nil ]

Include constraints that negative terms in strands are
irreducible wrt ∆

When unifying with positive terms, only accept unifiers that
preserve irreducibility
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Controlling the Search Space

Enabling Syntactic Checks Via Asymmetric Unification

What we need to make this work

Characterize theories with decompositions ∆ ] B in which
every term has a finite number of reduced forms

We understand this: this is equivalent to the finite variant
property

Unification algorithms giving a set of unifiers Σ of x =?y
most general with respect to the property that for all σ ∈ Σ,
σy is irreducible wrt ∆

We call this asymmetric unification
Variant narrowing has this property, we are looking for more
efficient algorithms

What are the properties that we want to remain invariant, and
how can we characterize the theories B that preserve them?

Presence of subterms such as nonces, depth of terms:
cancellation rules should be in ∆
Can vary with verification approach and syntactic checks used
B = empty theory or AC works well, so does homomorphic
property
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Controlling the Search Space

Enabling Syntactic Checks Via Asymmetric Unification

Asymmetric Unification as a Problem in its Own Right

As far as we can tell, no-one has studied this before

Narrowing only algorithm we know of that can achieve this
AU at least as hard as symmetric unification (SU)

Any SU problem s =?t can be turned into AU problem
s =?X , t =?X .

AU strictly harder than SU - XOR without any other symbols
is in P for SU but NP-complete for AU
Also problems for which SU decidable but AU undecidable
(Ertabur, Narendran)
SU can be unitary while AU is not (XOR)

We are working on a general approach for converting
equational unification algorithms to asymmetric unification
algorithms

Applying it to XOR with uninterpreted function symbols

Next steps: combining with other theories, Abelian groups
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Controlling the Search Space

Basic Tools : Learn-Only-Once and Grammars

Two basic restrictions of the search space

Powerful tools:

1 Learn-only-once: any terms the intruder will learn in the future
can’t already be known

2 Grammars describing unreachable states: the intruder learns a
term in the language described by the grammar only if he/she
knew another term in the language in a past state
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Controlling the Search Space

Basic Tools : Learn-Only-Once and Grammars

Motivating Example

Consider protocol with:
Two operators

e(K ,X ) stands for encryption of message X with key K
d(K ,X ) stands for decryption of message X with key K

Two regular strands: Two Intruder strands
(Dolev-Yao):

[−(X ),+(d(k,X ))] [−(K),−(X ),+(d(K ,X ))]
[+(e(k, r))] [−(K),−(X ),+(e(K ,X ))]

One equation

d(K , e(K ,X )) = X
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Basic Tools : Learn-Only-Once and Grammars

A Partial (Backwards) Search Tree

t
��

{e(k , t)}
vvmmmm **UUUUU

{k, t}
��

{e(k , e(k, t))}

xxqqqqqqqqqq

((PPPPPPPPPPPP

stop

{e(k, t), k}
��

{e(k, e(k , e(k, t))}
��

stop · · ·
Powerful tools:

(1) Learn-only-once: terms the intruder will learn in the future
and doesn’t know in he past.

(2) Unreachable states: the intruder learns a term only if he/she
knew another term in a past state
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Controlling the Search Space

Basic Tools : Learn-Only-Once and Grammars

(1) Learn-Only-Once Restriction

Suppose in looking for a term t, you find a state where the
intruder knows the same t, then cut the search space

t
��

{e(k, t)}
wwooo

{k, t}
��

stop

Can tell if intruder has not learned X by seeing if intruder will
learn X in the future
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Basic Tools : Learn-Only-Once and Grammars

(2) Languages characterizing unreachable states

Z�r
��

{e(K ,Z )}
**UUUU

{e(K , e(K ,Z ))}
++XXXXX

{e(K , e(K , e(K ,Z ))}
��
· · ·

Discover Grammars providing infinite set of terms intruder
can’t learn.

1 Z∈L 7→ t∈L
2 Z∈L 7→ e(Y ,Z )∈L
1 Z /∈I, e(A,Z )�e(k , r) 7→ e(A,Z )∈L
2 Z∈L 7→ e(Y ,Z )∈L

If the intruder learns a term in the grammar, then he/she
must have learned another term in a state in the past.
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Basic Tools : Learn-Only-Once and Grammars

Grammars - Procedure Is Automated

Maude-NPA uses function symbol definitions in protocol spec
as source for initial grammars

In cases Maude-NPA fails to generate a grammar, it provides
the reasons for its failure

User can define own initial grammars if desired, either in
addition to or in place of Maude-NPA grammars

Grammar generation heuristics little changed from original
NRL Protocol Analyzer

Works well on most theories we’ve tried, with exception of
exclusive-or
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Other Ways of Reducing the Search Space

Other Ways of Reducing Search Space

Grammars can reduce infinite to finite, but may still need to
cut search space size for efficiency purposes

In some cases, grammars alone not enough to reduce infinite
to finite, and we need other techniques as well

We have developed a number of different techniques, and we
describe them now

Execute Rule 1 First
Subsumption Partial Order Reduction
Use Power of Strands to See Into Past and Future
Super-Lazy Intruder
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Other Ways of Reducing the Search Space

Execute Rule 1 First

If there is a strand of the form [ l1, u
− | l2 ] present, execute

the rule replacing it by [ l1 | u−, l2 ] , u∈I first

If there are several fix an order and execute them all first, in
that order

Removes extra step introduced by converting negative terms
to intruder terms

Implementing this doubled the speed of the tool

Not surprising, because replaced two steps by one
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Other Ways of Reducing the Search Space

Subsumption Partial Order Reduction

Partial order reduction standard idea in model checking, used
in a lot of protocol analysis tools, too

Identify when reachability of state S1 implies reachability of S2

and remove S1

In Maude-NPA, this happens, roughly, when S2 ⊆ S =B σS1

for some substitution σ
Can then eliminate S1
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Other Ways of Reducing the Search Space

Using the Power of Strands

Strands allow you to see the past and the future of a local
execution

Helpful since Maude-NPA very sensitive to the past and future

Things we’ve done so far
If a term x /∈I and a strand [ l1,−(x), l2 | l3 ] both appear in a
state, then the state is unreachable

Reaching it would require violation of intruder-learns-once

Let f and g be two terms containing n(A, r). If

f ∈I appears in a state, and;
[ l1 | l2,+(g), l3, ] also appears, with strand identifier
containing r and no n(A, r) term in l1;

Then reaching the state requires the intruder to learn a nonce
before it is generated and thus is unreachable.
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Super-Lazy Intruder

Based on an idea of David Basin, plus a trick used by the old
NPA

If a term X∈I appears in a state, where X is a variable, we
assume that the intruder can easily find x , and so safe to drop
it

Super-lazy intruder: drop terms made out of variable terms,
e.g. X;Y and e(K,Y)

Need to revive variable terms if they later become instantiated

Solution: keep the term, and state it appears in, around as a
”ghost”

Revive the ghost, replacing current state by ghost term and
ghost state, but with current substitutions to variables if any
variable subterm becomes instantiated
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Experimental Results 1

Protocol none Grammars %
NSPK 5 19 136 642 4021 4 12 49 185 758 81
NSL 5 19 136 642 4019 4 12 50 190 804 79

SecReT06 1 6 22 119 346 1 2 6 15 36 89
SecReT07 6 20 140 635 4854 6 17 111 493 3823 21

DH 1 14 38 151 816 1 6 14 37 105 87

Protocol none Input First %
NSPK 5 19 136 642 4021 11 123 1669 26432 N/A 0
NSL 5 19 136 642 4019 11 123 1666 26291 N/A 0

SecReT06 1 6 22 119 346 11 133 1977 32098 N/A 0
SecReT07 6 20 140 635 4854 11 127 3402 N/A N/A 0

DH 1 14 38 151 816 14 135 1991 44157 N/A 0

Protocol none Inconsistency %
NSPK 5 19 136 642 4021 5 18 95 310 650 83
NSL 5 19 136 642 4019 5 18 95 310 650 83

SecReT06 1 6 22 119 346 1 6 22 114 326 5
SecReT07 6 20 140 635 4854 6 18 107 439 3335 31

DH 1 14 38 151 816 1 12 12 56 128 84
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Experimental Results 2

Protocol none Transition Subsumption %
NSPK 5 19 136 642 4021 5 15 61 107 237 94
NSL 5 19 136 642 4019 5 15 61 107 237 94

SecReT06 1 6 22 119 346 1 6 15 39 78 77
SecReT07 6 20 140 635 4854 6 15 61 165 506 89

DH 1 14 38 151 816 1 14 26 102 291 64

Protocol none Super-lazy Intruder %
NSPK 5 19 136 642 4021 5 19 136 641 3951 1
NSL 5 19 136 642 4019 5 19 136 641 3949 2

SecReT06 1 6 22 119 346 1 6 22 119 340 2
SecReT07 6 20 140 635 4854 6 16 44 134 424 91

DH 1 14 38 151 816 1 14 38 138 525 35

Protocol none All optimizations %
NSPK 5 19 136 642 4021 4 6 4 2 1 99
NSL 5 19 136 642 4019 4 7 6 2 0 99

SecReT06 1 6 22 119 346 2 3 2 - - 99
SecReT07 6 20 140 635 4854 5 1 1 1 - 99

DH 1 14 38 151 816 4 6 10 9 12 99
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Maude-NPA References

Maude-NPA 1.0 and relevant papers available at
http://maude.cs.uiuc.edu/tools/Maude-NPA/ . Next version should
be out soon.

S. Escobar, C. Meadows, J. Meseguer. Maude-NPA: Cryptographic
Protocol Analysis Modulo Equational Properties. FOSAD
2007/2008/2009 Tutorial Lectures, LNCS 5705, pages 1-50.
Springer-Verlag.

S. Escobar, C. Meadows, and J. Meseguer. State Space Reduction in the
Maude-NRL Protocol Analyzer. In Proc. of 13th European Symposium on
Research in Computer Security (ESORICS08), LNCS 5283, pages
548-562, Springer, 2008. (journal version under review)

S. Escobar, C. Meadows, J. Meseguer, S. Santiago. Sequential Protocol
Composition in Maude-NPA. In Proc. of European Symposium on
Research in Computer Security (ESORICS 2010), LNCS 6345, pages
303-318. 2010. Technical report DSIC-II/06/10, Departamento de
Sistemas Informaticos y Computacion, Universidad Polit cnica de
Valencia, 2010.
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Narrowing References

H. Comon-Lundh and S. Delaune. The finite variant property: How to get
rid of some algebraic properties. In RTA’05, LNCS 3467, pages 294-307.
Springer, 2005.

Santiago Escobar, José Meseguer, Ralf Sasse. Effectively Checking or
Disproving the Finite Variant Property In proceedings of 19th
International Conference on Rewriting Techniques and Applications (RTA
2008), LNCS 5117, pages 79-93. 2008.

Santiago Escobar, Ralf Sasse, José Meseguer. Folding variant narrowing
and optimal variant termination. The Journal of Logic and Algebraic
Programming, 2011, to appear. Earlier version appeared in RTA ’09.

Serdar Erbatur, Santiago Escobar, Deepak Kapur, Zhiqiang Liu,
Christopher Lynch, Catherine Meadows, Jose Meseguer, Paliath
Narendran and Ralf Sasse Asymmetric Unification: A New Unification
Paradigm for Cryptographic Protocol Analysis, UNIF 2011.
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