

Agenda	
 WSN basics Privacy in WSN Suitability of Existing Approaches Privacy of Location Node Anonymity Source-Location Privacy Local, Global and Internal adversaries Receiver-Location Privacy Local, Global adversaries Anonymous Topology Discovery Final Remarks 	
F NICS	2

Limitations	
 Communications: Mica2dot and Mica2 deliver up to 20 kbps on a single share channel, with a range of up to around a few hundred meters 	d
 MicaZ and Telos deliver up to 250 kbps. 	
 Software: <i>TinyOS</i> operating system Highly optimized (small, fast,) Support real-time tasks (multi-threaded, events-oriented) C variant called <i>nesC</i> for programming purposes featuring an event-driven concurrency model 	
F NICS	0

		Li	mitati	ons			
0.	Btnode 3	mica2	mica2dot	micaz	telos A	tmote sky	EYES
Manufacturer	Art of Crossbow Imote iv						Univ. of Twent
Microcontroller	roormology	Atmel Atmeg	ja 128L		Texa	as Instrume	nts MSP430
Clock frequency	7.37 M	hz	4 MHz	7.37 MHz	8 N	lHz	5 MHz
RAM (KB)	64 + 180	4	4	4	2	10	2
ROM (KB)	128	128	128	128	60	48	60
Storage (KB)	4	512	512	512	256	1024	4
Radio	Chipcon CC1000	315/433/868/ Kbauds	916 MHz 38.4	Chipco 250K	on CC2420 2 bps IEEE 802	4 GHz 2.15.4	RFM TR1001868 MHz 57 6 Kbr
Max Range (m)		150-300			75-100		
Power	2 AA batt	eries	Coin cell		2 A/	A Batteries	
PC connector	Through P	C-connected	programming bo	bard	US	SB	Serial Port
OS	Nut/OS			TinyOS			PEEROS
Transducers		On acquisitio	n board		On b	oard	On acquisition board
Extras	+ Bluetooth radio				24 AV		
	- 11						

WSN Applications

Specific applications:

- farmland monitoring
- animal identification and tracking
- cultivation conditions (temperature, humidity, etc.)
- inventory control
- goods tracking and delivery
- smart office
- supply of water and electricity
- freeway traffic monitoring and control
- detection of structural integrity
- problems in buildings
- wildlife habitat monitoring
- microclimate control
- detection of out-of-tolerance
- environmental conditions
- recording wild animal habits

NICS

- emergency medical care
- remote medical monitoring
- medicines tracking
- frontiers surveillance
- detection of illegal materials in
- custom controls
- monitoring factory instrumentation
- remote control of manufacturing
- systems
- collecting pollution levels
- detection of structures vibrations
- target tracking
- detection of biological or chemical
- weapons
- location of vehicles and arms
- wearable smart uniforms
- etc.

Privacy of contextual information However, even if the payload data is encrypted, the attacker can still attack in another way That is, by observing and analyzing the communications, an attacker could retrieve contextual information (what is also private data) • about the network itself • and about the type of data being collected by the WSN not only the occurrence of an event must be protected; also the • moment in time when the event takes place: temporal privacy • if an adversary is able to make an association between the time and position of the events being monitored, he will be able to predict future behaviours. **NICS** 25

Privacy of contextual inform	natio	n
 What information can be learnt by the attacker Simple observation of network traffic can revea 	in this v I a lot [F	vay? Pai08]
- Frequency range can be used to determine	Commonly used name	Frequency range (MHz)
 Type of sensor Exploit specific platform vulnerabilities 	Mica or Mica1	902 to 928 433.1 to 434.9
 Owner of the network Different organizations are designated different frequency bands 	Mica2	868 to 870 902 to 928 433.1 to 434.8 313.9 to 316.1
 Transmission rate can provide information about 	Mica2Dot	868 to 870 902 to 928 433.1 to 434.8 313.9 to 316.1
Amount and nature of events	Minor	2400 to 2482 5
 The presence of events triggers message transmission 	Micaz	2400 to 2483.5
Distance to the sender	Cricket	433.1 to 434.8
- Time of arrival of packets can be used to calculate	IRIS	2400 to 2483.5
the distance to the sender	TelosB	2400 to 2483.5
NICS		26

Anonymity combining – Symmetri – Layered e	y properties different tech ic/Public-key crypto encryption	have been niques:	n c	leve	lope	ed i	in A	ACS	b
 Packet de 	elay/replay/injection								
					То	chnio	1165		
	Main goal	Architecture	SK	PK	LE	PD	PR	FT	MI
Single-proxy Mix-nets Onion routing	Main goal Sender Anonymity Unlinkability	Architecture Centralized	SK √	PK √		PD √	PR	FT	MI
Single-proxy Mix-nets Onion routing Tor Crowds Hordos	Main goal Sender Anonymity Unlinkability Sender Anonymity	Architecture	SK \checkmark \checkmark \checkmark \checkmark	PK √ √ √	$\begin{array}{c c} \mathbf{LE} \\ \mathbf{} \\ \mathbf{} \\ \mathbf{} \\ \mathbf{} \end{array}$	PD √	PR	FT 🗸	MI

Example 1: Mix-nets	
 The implementation of mixnets over WSNs present seve limitations Every source node is required to 	ral
 Perform N + I public-key operations per transmitted packet Have global network knowledge to be able to determine the transmiss path 	ion
 Every intermediate node is required Perform I public-key operation per received packet Temporarily store a large number of packets 	
 Message padding is required for message indistinguishability Output a single re-ordered batch of messages Nodes in the vicinity of the base station have even higher traffic rates 	
 Many WSN applications require real-time monitoring 	
F NICS	39

Example 2: Crowds	
 Local eavesdroppers are static and observe inputs/outputs from a single node May recognize the initiator and destination only if observes the right member 	
 Probability decreases with the crowd size 	
 End servers cannot determine the initiator The initiator never submits the packet to the server in the first step All members are equally probable to be the initiator 	
 Colluding members might want to know the initiator Suspect from the member that immediately precedes the first collaborator in the path Static paths reduce the probability of this type of attacks 	
TRICS 42	

Example 2: Crowds	
 The potential application of the Crowds model to WSNs is restricted by: High memory requirements Path_id translation table N - I shared keys (I key per member) Limited number and complexity of the operations I Symmetric-key operation per packet I Path_id replacement per packet Weak adversarial model Static attackers have a very limited success probability Different requirements Source anonymity with respect to the sink is counterproductive in WSNs 	
TRNICS 43	3

 Solutions is a Sensor-node can not be ex 	resource constraints (some	se in WSNs cryptographic technique mited memory)
Additionally,	the usual properties	provided by thos
solutions are i	not always suitable in V	VSNs
Hence new ta	ilored solutions must be	e designed for WSNs
Hence new ta	ilored solutions must be	e designed for WSNs
Hence new ta Property	ilored solutions must be Traditional Solution	e designed for WSNs พรง
Hence new ta Property Unlinkability	Ilored solutions must be Traditional Solution Observers try to know with whom a user communicates	e designed for WSNs WSN All sensors are known to send data to the sink
Hence new ta Property Unlinkability Sender Anonymity	Ilored solutions must be Traditional Solution Observers try to know with whom a user communicates Servers might try to profile or track their users	All sensors are known to send data to the sink The data source needs to be known by the sink

Traffic analysis attacks	
 Different adversarial models can be found according to the attacker's ability to: Disturb network operation Passive: simply eavesdrops and performs traffic analysis attacks Active: can also create, modify or inject packets, destroy nodes, Compromise nodes External: has no knowledge about the internals of the node Internal: is able to compromise nodes, access cryptographic material and algorithms 	
 Observe communications 	
Local: has monitoring radius similar to a sensor node	
Global: has the ability to capture all the traffic generated by the network	
TNICS 51	

Classif	ication o	fpr	otecti	on me	chanism	5
 We classi asset to b 	ify the prot e protected a	ection and the	mechani e attacker	<mark>sms</mark> dep 's capabi	oending on lities [Rios I I	the a]
011000	Locatio	on Privacy				
Node And	onymity					
Pool of	Crypto-based pseudonyms			Traffic Patte Protection	m	
pseudonyms						
pseudonyms	So	urce			Receiver	
Local	So	urce	Internal		Receiver	Global
Local Undirected Directed random paths random pat	So Gl Network Bogus hs Loops traffic	urce lobal Energy- aware	Internal	Data Basic vement	Local Local Simulation Balancing disguise	Global Bogus traffic

100	P	pol of Ps	seudony	ms: SAS	5	
 Simple Pos - - 	e Anonyr st-deploy Every nod The sub-ra Each node neighbour	mity Scheme ment phase: e randomly assi anges to be use e builds a pseu s together with	e (SAS) gns one sub-ran d are securely e donyms table to the correspond	ge to each of it: xchanged o map pseudon ling shared key	s neighbours ym to and fro	m it
	Index TX	Sub-Range TX	Sub-range RX	Index RX	Shared key	
	Indy	IDxy ⁱⁿⁱ , IDxy ^{end}	IDyx ⁱⁿⁱ , IDyx ^{end}	Ind _x	Кху	
	Node X g – Sende – Recei Node Y us	enerates a send rID = Ind _y rand verID = Ind _x rar ses Ind _y to searc	er ID and receiv om(IDxy ⁱⁿⁱ , IDxy ^{en} ndom(IDyx ⁱⁿⁱ , IDyx ch for pseudonyr	ver ID for every ^{vd}) x ^{end}) m in its table	r message, as	
NIC	s	,				58

– Every – Every	pair of nei node build	ghbours sh ls a pseudo	$_{3S\nu}$ for communing the formula is a key $\mathcal{K}_{\nu\gamma}$ and $\mathcal{K}_{\nu\gamma}$ is a state of the second constraints of the formula is a state of the formu	nication with t and random se n an entry for e	he BS ed s _{×y} each neighbou	ır
	Index	Seed	# sequence	Shared key	Neigh Index	
	0 1	90				
	Ind	Sxv	seq _{xy}	K _{xy}	Ind _y	
	III O _X	~~,				

Phantom Routing	9
 The walking phase must be carefully designed in order to avoid Similar consecutive paths Phantom sources close to the real source node The directed random walk aims to prevent previous problems by grouping neighbours into closer and further 	 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
 Main limitations of Phantom Routing Increased latency and energy consumption 	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
I IVICS	75

44

References
 [Chau88] Chaum, D. "The Dining Cryptographers Problem: Unconditional Sender and Recipient Untraceability," <i>Journal of Cryptology</i> (1), 1988, pp. 6575.
 [Pai08] Pai et al."Transactional Confidentiality in Sensor Networks," IEEE Security & Privacy, Volume 6, Issue 4, 2008, pp. 28-35.
 [Mis06] Misra & Xue, "Efficient anonymity schemes for clustered wireless sensor networks," International Journal of Sensor Networks (1:1), 2006, pp. 5063.
 [Ouya07] Ouyang, et al. "Providing Anonymity in Wireless Sensor Networks" 'Pervasive Services, IEEE International Conference on', 2007, pp. 145-148.
 [Rios11a] Rios, R. and Lopez, J. "Analysis of Location Privacy Solutions in Wireless Sensor Networks," <i>IET Communications, IET Journals,</i> Vol 5. Issue 17, pp 2518-2532
 [Oztu04] Ozturk et al. "Source-location privacy in energy-constrained sensor network routing", ACM workshop on Security of ad hoc and sensor networks, 2004, pp. 8893.
 [Kama05] Kamat et al. "Enhancing Source-Location Privacy in Sensor Network Routing". IEEE International Conference on Distributed Computing Systems, 2005, pp. 599-608.
 [Xi06] Xi and Shi "Preserving source location privacy in monitoring-based wireless sensor networks", Parallel and Distributed Processing Symposium, 2006, pp. 8.

