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Solution:  Anonymity! 

“… breakthrough technology that 

uses social graph data to dramatically 

improve online marketing …  

"Social Engagement Data" consists of 

anonymous information regarding the 

relationships between people” 

“The critical distinction … between the use of 

personal information for advertisements in 

personally-identifiable form, and the use, 

dissemination, or sharing of information with 

advertisers in non-personally-identifiable form.” 
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Phew… 
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“Privacy-Preserving” Data Release 

xn 

xn-1 

 

x3 

x2 
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Data 

“anonymization” 

“de-identification” 

“sanitization” 

Privacy! 
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Whose Data Is It, Anyway? 

• Social networks 

– Information about relationships is shared 

• Genome 

– Shared with all blood relatives 

• Recommender systems 

– Complex algorithms make it impossible to trace 

origin of data 

“Everyone owns and should control  

their personal data” 
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Some Privacy Disasters 

What went wrong? 
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• Data are “anonymized” by removing personally 

identifying information (PII) 

– Name, Social Security number, phone number, email, 

address… what else? 

• Problem: PII has no technical meaning 

– Defined in disclosure notification laws (if certain 

information is lost, consumer must be notified) 

– In privacy breaches,  any information can be 

personally identifying 

The Myth of the PII 
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Reading Material 

Sweeney 

Weaving Technology and Policy Together to Maintain Confidentiality  

   JLME 1997 

Narayanan and Shmatikov 

Robust De-anonymization of Large Sparse Datasets 

     Oakland 2008 

Homer et al. 

Resolving Individuals Contributing Trace Amounts of DNA to Highly 

Complex Mixtures Using High-Density SNP Genotyping Microarrays 

     PLoS Genetics 2008 
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The Curse of Dimensionality 
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• Row = user record 

• Column = dimension 

• Thousands or millions 

of dimensions 

– Netflix movie ratings: 

35,000 

– Amazon purchases: 107 



Similarity 

Netflix Prize dataset: 

Considering just movie names, 

for 90% of records there isn’t a 

single other record which is 

more than 30% similar 

Average record has no “similar” records 

Sparsity and “Long Tail” 
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Global surveillance 

Phishing Employers, insurers, 

stalkers, nosy friends 

Spammers 

Abusive advertisers and marketers 

Privacy Threats 
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It’s All About the Aux 
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No explicit identifiers 

What can the adversary 

learn by combining this 

with auxiliary information? 

 
Information available to  

adversary outside of  

normal data release process 



De-anonymizing Sparse Datasets 

Auxiliary 

information 
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De-anonymization Objectives 

• Fix some target record r in the original dataset 

• Goal:  learn as much about r as possible 

• Subtler than “identify r in the released dataset” 

– Don’t fall for the k-anonymity fallacy! 

• Silly example: released dataset contains k copies of each 

original record – this is k-anonymous! 

– Can’t identify the “right” record, yet the released 

dataset completely leaks everything about r  
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De-anonymization Challenges 

• Auxiliary information is noisy 

– Can’t use standard information retrieval techniques 

• Released records may be perturbed 

• Only a sample of records has been released 

• False matches 

– No oracle to confirm success! 
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Aux as Noisy Projection 
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What De-anonymization Is Not 

• Not linkage (statistics, Census studies) 

• Not search (information retrieval) 

• Not classification (machine learning) 

• Not fingerprinting (forensics) 
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“Scoreboard” Algorithm 

• Scoring function 

– Assigns a score to each record in the released 

sample based on how well it matches Aux 

• isupp(aux) Similarity(auxi, ri) / log(|support(i)|) 

   gives higher weight to rarer attributes 

• Record selection 

– Use “eccentricity” of the match 

   to separate true and spurious matches 

Extremely versatile paradigm 

Intuition: weight is 
a measure of entropy 
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How Much Aux Is Needed? 

• How much does the adversary need to know 

about a record to find a very similar record in 

the released dataset? 

– Under very mild sparsity assumption, O(log N), 

where N is the number of records 

• What if not enough Aux is available? 

– Identifying a small number of candidate records 

similar to the target still reveals a lot of information 
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De-anonymizing the Netflix Dataset 

• 500K users, 18,000 movies 

• 213 dated ratings per user, on average 

• Two is enough to reduce to 8 candidate records 

• Four is enough to identify uniquely (on average) 

• Works even better with relatively rare ratings 
• “The Astro-Zombies” rather than “Star Wars”  

 Long Tail effect: 
most people watch obscure crap 
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Self-testing 

• No de-anonymization oracle or “ground truth” 

• Compute a score for each record:  how well 

does it match the auxiliary information? 

• Heuristic: (max-max2) /    

Methodological question: how does the attacker 

know the matches aren’t spurious? 

Best score Second-best  
score 

Eccentricity 
threshold 
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Eccentricity in the Netflix Dataset 

Algorithm is given Aux of 

a record in the dataset 

… Aux of a record 

not in the dataset 

aux 

score 

max – max2 

 

σ 

σ 
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Self-testing: Experimental Results 

• After algorithm finds a 

match, remove the found 

record and re-run 

• With very high probability, 

the algorithm now declares 

that there is no match 
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Robustness 

• Algorithm is robust to 

errors in attacker’s Aux 

– Dates and ratings may be 

known imprecisely, some 

may be completely wrong 

– Perturbation = noise in the 

data = doesn’t matter! 

– Nearest neighbor is so far, 

can tolerate huge amount 

of noise and perturbation 
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With 6 approximately correct & 
2 completely wrong ratings, 
recover all entropy 



Main Themes 

• Conceptual 

– Datasets are sparse 

• No “nearest neighbors” 

– Aux is logarithmic in number 

of records, linear in noise 

– “Personally identifiable” is 

meaningless 

– Distinction between aggregate 

and individual data unclear 

• Methodological 

– Scoring function to 

match records 

– Self-testing to avoid false 

matches  

– Self-correction leads to 

ever more accurate re-

identification 

– Simple heuristics 

improve accuracy 

Social networks 
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systems 



Exploiting Data Structure 
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Reading Material 

Backstrom, Dwork, Kleinberg 

Wherefore Art Thou R3579X? Anonymized Social Networks, Hidden 

Patterns, and Structural Steganography 

    WWW 2007 and CACM 2011 

Narayanan and Shmatikov 

De-anonymizing Social Networks 

     Oakland 2009 

Narayanan, Shi, Rubinstein 

Link Prediction by De-anonymization:  

How We Won the Kaggle Social Network Challenge 

      IJCNN 2011 
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“Jefferson High”:  

Romantic and Sexual Network 

Real data! 
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Phone Call Graphs 

2 trillion edges 

Examples of outsourced  

call graphs 

Hungary 2.5M nodes 

France 7M nodes 

India 3M nodes 

3,000 companies providing 

wireless services in the U.S 
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Structural De-anonymization 

Goal: structural mapping between two graphs 

For example, Facebook vs. anonymized phone call graph 
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Two-Stage Paradigm 

• Seed matching 

– Detailed knowledge about a small number of nodes 

– Used to create initial “seed” mapping between 

auxiliary information and anonymized graph 

• Propagation  

– Iteratively extend the mapping using already 

mapped nodes 

– Self-reinforcing (similar to “spread of epidemic”) 
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Highest in-degree 

nodes 

Where To Start? 
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Only a subset of nodes and edges in common 



Degrees?   

Too much variation 

Subgraph structure?   

Too sparse Number of common neighbors  

between each pair of nodes 

How To Match? 

Highest in-degree 

nodes 
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Seed Matching as  

Combinatorial Optimization 

• Complete graphs on 20 – 100 

“seed” nodes 

• Edge weights = common 

neighbor coefficients (cosines) 

• Reduced to known problem: 

weighted graph matching –  

   use simulated annealing 

• Now we have a mapping 

between seed nodes 
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Iterative Propagation 

“Seed” mapping 
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Propagation: Measuring Similarity 

Already mapped 

New mapping 

Target 
Auxiliary 

Problem: dealing with noise 

Non-overlapping nodes and 

edges due to graph evolution, 

data perturbation, etc. 
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Adaptations To Handle Noise 

Reverse map 

Edge directionality 

Edge weights 

Node weights 

Self-correction 

Eccentricity 

Non-bijective 

Deletion 
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Eccentricity 

If true positive: 

• smax – smax2 is large 

 

 

If false positive: 

• smax – smax2 is small 
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Winning the IJCNN/Kaggle  

Social Network Challenge 

• “Anonymized” graph of 

Flickr used as challenge for 

a link prediction contest 

• De-anonymization = 

“oracle” for true answers 

– 57% coverage 

– 98% accuracy 

 

[Narayanan, Shi, Rubinstein] 

? 
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• Social networks – again and again 

• Location data 

• Stylometry (writing style) 

… 

• Genetic data 

 

– Same general approach 

– Different data models, algorithms, scaling challenges 

Other De-anonymization Results 
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Lesson #1: 

De-anonymization Is Robust 

• 33 bits of entropy 

– 6-8 movies, 4-7 friends, etc. 

• Perturbing data to foil de-anonymization 

often destroys utility 

• We can estimate confidence even without 

ground truth 

• Accretive and iterative:  

 more de-anonymization   

 better de-anonymization 
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PII is info “with respect to which there is a reasonable basis to 

believe the information can be used to identify the individual.” 

Lesson #2: 

“PII” Is Technically Meaningless 

Any piece of data can be used  

for re-identification! 

Narayanan, Shmatikov 

CACM column, 2010 

“blurring of the distinction between personally 

identifiable information and supposedly 

anonymous or de-identified information” 
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