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Health Care and Genetics
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Web Tracking
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Solution: Anonymity!

33 “... breakthrough technology that )
dCross uses social graph data to dramatically
improve online marketing ...

o " s
ﬂIlIEII ::‘* LOTAME "Social Engagement Data" consists of

anonymous information regarding the

opinmind' Qelationships between people” )

ﬂ‘The critical distinction ... between the use of
personal information for advertisements in
personally-identifiable form, and the use,
dissemination, or sharing of information with

\advertisers in non-personall*—identifiable form.”
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Phew...
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“Privacy-Preserving” Data Release
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Whose Data Is It, Anyway?

“Everyone owns and should control
their personal data”

 Social networks

— Information about relationships is shared

* Genome

— Shared with all blood relatives

* Recommender systems

— Complex algorithms make it impossible to trace
origin of data

slide 11



Some Privacy Disasters

Forbes =L=EE AOL Proudly Releases Massive

Amounts of Private Data

Netﬂlx Settles Privacy Lawsuit,
Cancels Prize Sequel

£ Tavlor Bulev. Forbes Staff

Ehe New Jork Eimes

WORLD U.5. N.Y. [ REGIOBUSINESS TECHNOLOGY SCIENCE HEALTH| SPORTS

otect Medical Data

What went wrong?

W

Back to the Future: NIH to Revisit Genomic Data-
Sharing Policy

THECHRONICLE — rarger

Harvard’s Privacy Meltdown, Revisited: Controversial Facebook Data
Yield New Paper
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The Myth of the PII

* Data are “anonymized” by removing personally
identifying information (PlII)

— Name, Social Security number, phone number, email,
address... what else!

* Problem: Pll has no technical meaning

— Defined in disclosure notification laws (if certain
information is lost, consumer must be notified)

— In privacy breaches, any information can be
personally identifying
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Reading Material

Sweeney
Weaving Technology and Policy Together to Maintain Confidentiality
JLME 1997

Narayanan and Shmatikov
Robust De-anonymization of Large Sparse Datasets

Oakland 2008

Homer et al.

Resolving Individuals Contributing Trace Amounts of DNA to Highly

Complex Mixtures Using High-Density SNP Genotyping Microarrays
PLoS Genetics 2008
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The Curse of Dimensionality
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N AL of dimensions
‘ — Netflix movie ratings:
35,000
use! — Amazon purchases: 107
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Fraction of subscribers
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Privacy Threats

Spammers

Global surveillance  Apysive advertisers and marketers

Phishing Employers, insurers,
stalkers, nosy friends
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It’s All About the Aux

o \ee > \xe“‘v\

\)se( \ % %’ %

e > o What can the adversary
o &) | &) & e | learn by combining this
&y & with auxiliary information?

& i

\_)se‘.ﬁ % é)

No explicit identifiers
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De-anonymizing Sparse Datasets

information
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De-anonymization Objectives

* Fix some target record r in the original dataset
* Goal: learn as much about r as possible

* Subtler than “identify r in the released dataset”
— Don’t fall for the k-anonymity fallacy!

* Silly example: released dataset contains k copies of each
original record — this is k-anonymous!

— Can’t identify the “right” record, yet the released
dataset completely leaks everything about r
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De-anonymization Challenges

Auxiliary information is noisy

— Can’t use standard information retrieval techniques

Released records may be perturbed
Only a sample of records has been released

False matches

— No oracle to confirm success!
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Aux as Noisy Projection
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What De-anonymization Is Not

Not linkage (statistics, Census studies)
Not search (information retrieval)
Not classification (machine learning)

Not fingerprinting (forensics)
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“Scoreboard” Algorithm

* Scoring function

— Assigns a score to each record in the released
sample based on how well it matches Aux

° >

iesupp(aux
gives higher weight to rarer attributes
R Intuition: weight is

a measure of entropy

y Similarity(aux; r;) / log(|support(i)|)

e Record selection

— Use “eccentricity”’ of the match
to separate true and spurious matches

Extremely versatile paradigm
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How Much Aux Is Needed?

* How much does the adversary need to know
about a record to find a very similar record in

the released dataset!?

— Under very mild sparsity assumption, O(log N),
where N is the number of records

* What if not enough Aux is available?

— Identifying a small number of candidate records
similar to the target still reveals a lot of information
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De-anonymizing the Netflix Dataset

500K users, 18,000 movies

2|3 dated ratings per user, on average

Two is enough to reduce to 8 candidate records

Four is enough to identify uniquely (on average)

Works even better with relatively rare ratings

e “The Astro-Zombies’’ rather than “Star Wars”

"—

Long Tail effect:
most people watch obscure crap
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Self-testing

Methodological question: how does the attacker
know the matches aren’t spurious!?

* No de-anonymization oracle or “ground truth”

* Compute a score for each record: how well
does it match the auxiliary information?

* Heuristic: (max-max,) / ¢ = 0

/A

Best score  Second-best K Eccentricity
score threshold
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Eccentricity in the Netflix Dataset
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Self-testing: Experimental Results

The red bars represent the probability of correctly detecting
that the record is not in the sample

* After algorithm finds a e
match, remove the found | P
record and re-run

* With very high probability,
the algorithm now declares
that there is no match

mizati
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Probability of deanon

0.0

5-of-6 6-0f-7 7-0f-8
Aux: number of movies
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Robustness

With & approximately correct &
. ’ recover all entropy
errors in attacker’s Aux \

T T
=1 Dates: 14 day error

— Dates and ratings may be || = s sdaerr |
____________ A-priori entropy/18.9 bits
known imprecisely, some
may be completely wrong

—_
Ul
T

— Perturbation = noise in the
data = doesn’t matter!

—_
o
T

Recovered information Hy— H ¢(r)
)]
|

— Nearest neighbor is so far,
can tolerate huge amount
of noise and perturbation * Aux number of movies
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Main Themes

* Conceptual * Methodological
— Datasets are sparse — Scoring function to
 No “nearest neighbors” match records
— Aux is logarithmic in number  — Self-testing to avoid false
of records, linear in noise matches

— “Personally identifiable” is — Self-correction leads to

meaningless ever more accurate re-
= Distinction between aggregate identification
and individual data unclear — Simple heuristics
C improve accuracy
Recommender :
Social networks

systems
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Exploiting Data Structure
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Reading Material

Backstrom, Dwork, Kleinberg
Wherefore Art Thou R3579X? Anonymized Social Networks, Hidden
Patterns, and Structural Steganography

WWW 2007 and CACM 201 1|

Narayanan and Shmatikov
De-anonymizing Social Networks

Oakland 2009

Narayanan, Shi, Rubinstein
Link Prediction by De-anonymization:
How We Won the Kaggle Social Network Challenge
IJCNN 201 |
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Phone Call Graphs

v 2 trillion edges

Examples of outsourced
call graphs 3,000 companies providing

wireless services in the U.S

Hungary 2.5M nodes
France /M nodes
India 3M nodes
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Structural De-anonymization

Goal: structural mapping between two graphs

For example, Facebook vs. anonymized phone call graph
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Two-Stage Paradigm

* Seed matching
— Detailed knowledge about a small number of nodes

— Used to create initial “seed” mapping between
auxiliary information and anonymized graph

* Propagation

— Iteratively extend the mapping using already
mapped nodes

— Self-reinforcing (similar to “spread of epidemic”)
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Where To Start!?

Highest in-degree
nodes

Only a subset of nodes and edges in common
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How To Match?

Highest in-degree
nodes

Degrees?
Too much variation

Subgraph structure?
Too sparse
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Seed Matching as
Combinatorial Optimization

Complete graphs on 20 — |00
“seed” nodes

Edge weights = common
neighbor coefficients (cosines)

Reduced to known problem:
weighted graph matching —
use simulated annealing

Now we have a mapping
between seed nodes
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Iterative Propagation

“Seed” mapping
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Propagation: Measuring Similarity
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Already mappec Non-overlapping nodes and
edges due to graph evolution,

&p/ertu rbation, etc. )

Problem: dealing with noise
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Adaptations To Handle Noise

Reverse map Self-correction

Edge directionality [ Eccentricity ]

Edge weights Non-bijective
Node weights Deletion
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Eccentricity

If true positive:

* S .« — Sma IS large

max

If false positive:

® S, . — Sma 1S Small

O O O O O O O
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Winning the |JCNN/Kaggle
Social Network Challenge

[Narayanan, Shi, Rubinstein]

* “Anonymized” graph of
Flickr used as challenge for
a link prediction contest

* De-anonymization =
“oracle” for true answers

— 577% coverage

— 98% accuracy
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Other De-anonymization Results

Social networks — again and again
Location data

Stylometry (writing style)
Genetic data

— Same general approach

— Different data models, algorithms, scaling challenges
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Lesson #1:
De-anonymization Is Robust
33 bits of entropy

— 6-8 movies, 4-7 friends, etc.

Perturbing data to foil de-anonymization
often destroys utility

We can estimate confidence even without
ground truth

Accretive and iterative:
more de-anonymization =2
better de-anonymization
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Lesson #2:
“PII”" Is Technically Meaningless

Pll is info “with respect to which there is a reasonable basis to
believe the information can be used to identify the individual.”

R

Any piece of data can be used
HIPAA for re-identification!

Health Insuraq;:e iczrttability .
v [ Narayanan, Shmatikov }

CACM column, 2010

“blurring of the distinction between personally\
identifiable information and supposedly
anonymous or de-identified information” )
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