Automated verification of protocols using low-entropy secrets

Stéphanie DELAUNE¹, Steve KREMER², <u>Ludovic ROBIN</u>²

 1 École Normale Supérieure de Cachan 2 Laboratoire Lorrain en Informatique et Automatique

September 1, 2015

Properties

- Authentication
- Asynchronous emission
- Short messages

Out of bands protocol example

 n_w is a weak nonce.

A commitment before knowledge based protocol

```
A \longrightarrow B : \langle m, \mathsf{hash}(\langle m, n_w \rangle) \rangle
```

 n_w can be guessed before commitment!

Out of bands protocol example

 n_w is a weak nonce.

A commitment before knowledge based protocol

```
A \longrightarrow B : \langle m, \mathsf{hash}(\langle m, n_w \rangle) \rangle

B \longrightarrow_O A : \mathsf{ack}
```

 $A \longrightarrow_O B : n_w$

 n_w can be guessed before commitment!

 n_s is a strong nonce.

A more secure one!

```
A \longrightarrow B : \langle m, \mathsf{hash}(\langle m, n_s, n_w \rangle) \rangle
```

 $B \longrightarrow_O A : ack$ $A \longrightarrow B : n$

 $\begin{array}{cccc} A & \longrightarrow & B & : n_s \\ A & \longrightarrow_O & B & : n_w \end{array}$

Conclusion

Work in progress.

- Model the new capabilities of this attacker;
- Automatically verify security properties using this attacker.

Future work.

- Complete proofs :-);
- Case studies: ISO standard, 3D-Secure;
- Equivalence property;
- Collisions on weak hash functions.