## Extending Dolev-Yao with Assertions

### Vaishnavi Sundararajan Chennai Mathematical Institute

FOSAD 2015 August 31, 2015 (Joint work with R Ramanujam and S P Suresh)

- Introduction
- 2 Example
- 3 Assertions Syntax, Semantics
- Manipulating assertions
- Concluding remarks

- Introduction
- 2 Example
- 3 Assertions Syntax, Semantics
- Manipulating assertions
- Concluding remarks

## The Dolev-Yao Model

- Useful for modelling agents' abilities in cryptographic protocols
- ullet Message space viewed as term algebra  $t:=m\mid (t_1,t_2)\mid \{t\}_k$
- Intruder is the network has access to any communicated message, but cannot break encryption

$$\frac{X \vdash (t_0, t_1)}{X \vdash t_i} split_i \quad (i = 0, 1)$$

$$\frac{X \vdash (t_0, t_1)}{X \vdash t_i} split_i \quad (i = 0, 1)$$

$$\frac{X \vdash t_0 \quad X \vdash t_1}{X \vdash (t_0, t_1)} pair$$

$$\frac{X \vdash \{t\}_k \quad X \vdash inv(k)}{X \vdash t} dec$$

$$\frac{X \vdash t \quad X \vdash k}{X \vdash \{t\}_k} enc$$

Figure : Term derivation rules, where X is a set of terms

## More about Dolev-Yao

- Dolev-Yao treats terms as tokens
- Recepients 'own' terms, can pass them along in own name
- What if protocol uses certificates? (Should only be verified, but not owned)
- Common behaviour, especially in protocols involving authorization and delegation.
- Surely if it's that common, Dolev-Yao handles it?
- Yes, it does.

Dolev-Yao expresses certification in the following ways:

Dolev-Yao expresses certification in the following ways:

• Cryptographic devices – zero knowledge proofs, bit commitment etc.

Dolev-Yao expresses certification in the following ways:

Not concise or readable

• Cryptographic devices – zero knowledge proofs , bit commitment etc.

Dolev-Yao expresses certification in the following ways:

Not concise or readable

Cryptographic devices – zero knowledge proofs, bit commitment etc.

 Ad-hoc methods – by tagging a term with an agent's name to indicate origin etc.

Dolev-Yao expresses certification in the following ways:

Not concise or readable

Cryptographic devices – zero knowledge proofs, bit commitment etc.

 Ad-hoc methods – by tagging a term with an agent's name to indicate origin etc.

Not general enough

- Introduction
- 2 Example
- 3 Assertions Syntax, Semantics
- Manipulating assertions
- Concluding remarks

## Example

We wish to model the following scenario.

### Example 1

Agent A sends agent B a nonce m encrypted in its public key, with some partial information about the value of m. (Suppose the actual value of m is a)

One of the most common ways to communicate such a certificate is by 1-out-of-2 re-encryption.

## Modelling this in Dolev-Yao

Everyone knows g and h such that  $h = g^s$  (s is secret to A).

$$\begin{array}{l} \text{Choose } d_0, d_1, r_0, r_1 \text{ randomly.} \\ \text{Set } c \ = \ \operatorname{hash} \left( x_0^{d_0} g^{r_0}, x_1^{d_1} g^{r_1}, y_0^{d_0} h^{r_0}, y_1^{d_1} h^{r_1} \right). \\ \text{Set } d_{1-i} = d, r_{1-i} = r, e = c - d \text{ and } s = m d_i + r_i - m e. \end{array}$$

Set 
$$d_{1-i} = d, r_{1-i} = r, e = c - d$$
 and  $s = md_i + r_i - me$ .



## Check whether

 $c = d + e \stackrel{?}{=} \\ \mathsf{hash}(x_{1-i}^d g^r, x_i^e g^s, y_{1-i}^d h^r, y_i^e h^s, x_0, x_1, y_0, y_1).$ 



- Introduction
- 2 Example
- 3 Assertions Syntax, Semantics
- Manipulating assertions
- Concluding remarks

## What we want of assertions

#### An assertion should

- Be readable.
- Be non-ownable agent B should not be able to send A's assertion in its own name.
- Be able to provide partial information about terms it references.
- Be communicated in a form which reveals the origin agent.

## Assertion language

The set  $\mathscr{A}$  of assertions is given by the following syntax

$$\alpha := m \prec t \mid t = t' \mid \alpha_1 \vee \alpha_2 \mid \alpha_1 \wedge \alpha_2$$

where m is a nonce, and  $m \prec t$  is to be read as m occurs in t.

## Communicated messages

In Example 1, the communication from A to B in the earlier protocol looks as follows:

$$A \to B: \{m\}_{\mathit{pk}(A)}, \{a \prec \{m\}_{\mathit{pk}(A)} \lor b \prec \{m\}_{\mathit{pk}(A)}\}_{\mathit{sd}(A)}$$

The sd(A) signifies that the assertion is signed by A. The communicated assertion thus carries information about the originating agent.

## What about the intruder?

- The intruder *I* is still the network.
- But assertions, unlike terms, are signed. How does that affect I?
- I stores all signed assertions sent out, and may replay them later.
- Cannot modify assertions sent out earlier, cannot forge signatures.

## Why aren't there any proofs being sent in our version?

- Underlying system ensures only true assertions are sent out.
- Think of it as the underlying system being a verifying authority, and each agent sends a proof of its assertion to this authority. The authority checks the proof first, and allows the agent to send out the assertion only if the proof is correct.

## Checks and derivations

When A sends a term t and an assertion  $\alpha$ , the system checks that

- A can derive the term t from its set of terms  $X_A$  using Dolev-Yao rules.
- A can derive the assertion  $\alpha$  from its set of assertions  $\Phi_A$  using the system derivation rules (coming up on the next two slides).

## Checks and derivations

When A sends a term t and an assertion  $\alpha$ , the system checks that

- A can derive the term t from its set of terms  $X_A$  using Dolev-Yao rules.
- A can derive the assertion  $\alpha$  from its set of assertions  $\Phi_A$  using the system derivation rules (coming up on the next two slides).

When A receives assertion  $\alpha$  (claiming to be) from B, the system checks that

- $\alpha$  is signed by B.
- B sent  $\alpha$  out into the network earlier.

## Derivation rules

$$\frac{X \vdash_{\textit{dy}} m}{X, \Phi \vdash m \prec m} \text{ ax } \frac{X \vdash_{\textit{dy}} \textit{st}(t) \cap \mathscr{B}}{X, \Phi \vdash t = t} \text{ eq }$$
 
$$\frac{X \vdash_{\textit{dy}} \{t\}_k \quad X \vdash_{\textit{dy}} k \quad X, \Phi \vdash m \prec t}{X, \Phi \vdash m \prec \{t\}_k} \text{ enc } \frac{X \vdash_{\textit{dy}} \textit{inv}(k) \quad X, \Phi \vdash m \prec \{t\}_k}{X, \Phi \vdash m \prec t} \text{ dec }$$
 
$$\frac{X \vdash_{\textit{dy}} (t_0, t_1) \quad X, \Phi \vdash m \prec t_i \quad X \vdash_{\textit{dy}} \textit{st}(t_{1-i}) \cap \mathscr{B}}{X, \Phi \vdash m \prec (t_0, t_1)} \text{ pair }$$
 
$$\frac{X, \Phi \vdash m \prec (t_0, t_1)}{X, \Phi \vdash m \prec t_{1-i}} \text{ split }$$

Figure: The rules for atomic assertions

## More derivation rules

$$\frac{X, \Phi \vdash \alpha}{X, \Phi \vdash \alpha} \stackrel{\mathsf{ax}}{=} \frac{X, \Phi \vdash m \prec \{b\}_k \ X, \Phi \vdash n \prec \{b\}_k}{X, \Phi \vdash \alpha} \perp (m \neq n; \ b \in \mathscr{B})$$

$$\frac{X, \Phi \vdash \alpha_1 \ X, \Phi \vdash \alpha_2}{X, \Phi \vdash \alpha_1 \land \alpha_2} \land i$$

$$\frac{X, \Phi \vdash \alpha_1 \land \alpha_2}{X, \Phi \vdash \alpha_i} \land e$$

$$\frac{X, \Phi \vdash \alpha_i}{X, \Phi \vdash \alpha_i} \lor i$$

$$\frac{X, \Phi \vdash \alpha_1 \lor \alpha_2}{X, \Phi \vdash \alpha_1 \lor \alpha_2} \lor i$$

$$\frac{X, \Phi \vdash \alpha_1 \lor \alpha_2}{X, \Phi \vdash \beta} \lor e$$

Figure: Rules for propositional reasoning

- Introduction
- 2 Example
- 3 Assertions Syntax, Semantics
- Manipulating assertions
- Concluding remarks

## What about forwarding?

Suppose B wants to forward an assertion  $\alpha$  it received from A to agent C.

- Scenario is quite common in protocols employing delegation.
- We want to disallow B from just sending  $\alpha$  in its own name.
- How to achieve this, then?

B sends C an assertion of the form A says  $\alpha$ .

## What about forwarding?

Suppose B wants to forward an assertion  $\alpha$  it received from A to agent C.

- Scenario is quite common in protocols employing delegation.
- We want to disallow B from just sending  $\alpha$  in its own name.
- How to achieve this, then?

B sends C an assertion of the form A says  $\alpha$ .

Again, think of the underlying network as being a verifying authority. B basically tells the authority to approach A for a proof of  $\alpha$ .

The set  $\mathscr A$  of assertions is now given by the following syntax

$$\alpha := m \prec t \mid t = t' \mid \alpha_1 \lor \alpha_2 \mid \alpha_1 \land \alpha_2 \mid A$$
 says  $\alpha$ 

## Checks and derivations for says

On receiving  $\alpha$  from A, B adds A says  $\alpha$  to its assertion set  $\Phi_B$ . Other checks and updates remain the same.

$$\frac{X,\Phi \vdash A \text{ says } (m \prec \{b\}_k) \quad X,\Phi \vdash A \text{ says } (n \prec \{b\}_k)}{X,\Phi \vdash A \text{ says } \alpha} \perp (m \neq n;\ b \in \mathcal{B})$$
 
$$\frac{X,\Phi \vdash A \text{ says } \alpha_1 \quad X,\Phi \vdash A \text{ says } \alpha_2}{X,\Phi \vdash A \text{ says } (\alpha_1 \land \alpha_2)} \wedge i \qquad \frac{X,\Phi \vdash A \text{ says } (\alpha_1 \land \alpha_2)}{X,\Phi \vdash A \text{ says } \alpha_i} \wedge e \qquad \frac{X,\Phi \vdash A \text{ says } \alpha_i}{X,\Phi \vdash A \text{ says } (\alpha_1 \lor \alpha_2)} \wedge i \qquad \frac{X,\Phi \vdash A \text{ says } \alpha_i}{X,\Phi \vdash A \text{ says } \alpha_i} \wedge i \qquad \frac{X,\Phi \vdash A \text{ says } \alpha_i}{X,\Phi \vdash A \text{ says } \alpha_2} \vdash A \text{ says } \beta$$
 
$$\frac{X,\Phi \vdash A \text{ says } \alpha_1}{X,\Phi \vdash A \text{ says } \beta} \wedge i \qquad \frac{X,\Phi \vdash A \text{ says } \alpha_2}{X,\Phi \vdash A \text{ says } \beta} \wedge i \qquad \frac{X,\Phi \vdash A \text{ says } \alpha_2}{X,\Phi \vdash A \text{ says } \beta} \wedge i \qquad \frac{X,\Phi \vdash A \text{ says } \alpha_2}{X,\Phi \vdash A \text{ says } \beta} \wedge i \qquad \frac{X,\Phi \vdash A \text{ says } \alpha_2}{X,\Phi \vdash A \text{ says } \beta} \wedge i \qquad \frac{X,\Phi \vdash A \text{ says } \alpha_2}{X,\Phi \vdash A \text{ says } \beta} \wedge i \qquad \frac{X,\Phi \vdash A \text{ says } \alpha_2}{X,\Phi \vdash A \text{ says } \beta} \wedge i \qquad \frac{X,\Phi \vdash A \text{ says } \alpha_2}{X,\Phi \vdash A \text{ says } \beta} \wedge i \qquad \frac{X,\Phi \vdash A \text{ says } \alpha_2}{X,\Phi \vdash A \text{ says } \beta} \wedge i \qquad \frac{X,\Phi \vdash A \text{ says } \alpha_2}{X,\Phi \vdash A \text{ says } \beta} \wedge i \qquad \frac{X,\Phi \vdash A \text{ says } \alpha_2}{X,\Phi \vdash A \text{ says } \beta} \wedge i \qquad \frac{X,\Phi \vdash A \text{ says } \alpha_2}{X,\Phi \vdash A \text{ says } \beta} \wedge i \qquad \frac{X,\Phi \vdash A \text{ says } \alpha_2}{X,\Phi \vdash A \text{ says } \beta} \wedge i \qquad \frac{X,\Phi \vdash A \text{ says } \alpha_2}{X,\Phi \vdash A \text{ says } \beta} \wedge i \qquad \frac{X,\Phi \vdash A \text{ says } \alpha_2}{X,\Phi \vdash A \text{ says } \beta} \wedge i \qquad \frac{X,\Phi \vdash A \text{ says } \alpha_2}{X,\Phi \vdash A \text{ says } \beta} \wedge i \qquad \frac{X,\Phi \vdash A \text{ says } \alpha_2}{X,\Phi \vdash A \text{ says } \beta} \wedge i \qquad \frac{X,\Phi \vdash A \text{ says } \alpha_2}{X,\Phi \vdash A \text{ says } \beta} \wedge i \qquad \frac{X,\Phi \vdash A \text{ says } \alpha_2}{X,\Phi \vdash A \text{ says } \beta} \wedge i \qquad \frac{X,\Phi \vdash A \text{ says } \alpha_2}{X,\Phi \vdash A \text{ says } \beta} \wedge i \qquad \frac{X,\Phi \vdash A \text{ says } \alpha_2}{X,\Phi \vdash A \text{ says } \beta} \wedge i \qquad \frac{X,\Phi \vdash A \text{ says } \alpha_2}{X,\Phi \vdash A \text{ says } \beta} \wedge i \qquad \frac{X,\Phi \vdash A \text{ says } \alpha_2}{X,\Phi \vdash A \text{ says } \beta} \wedge i \qquad \frac{X,\Phi \vdash A \text{ says } \alpha_2}{X,\Phi \vdash A \text{ says } \beta} \wedge i \qquad \frac{X,\Phi \vdash A \text{ says } \alpha_2}{X,\Phi \vdash A \text{ says } \beta} \wedge i \qquad \frac{X,\Phi \vdash A \text{ says } \alpha_2}{X,\Phi \vdash A \text{ says } \beta} \wedge i \qquad \frac{X,\Phi \vdash A \text{ says } \alpha_2}{X,\Phi \vdash A \text{ says } \beta} \wedge i \qquad \frac{X,\Phi \vdash A \text{ says } \alpha_2}{X,\Phi \vdash A \text{ says } \beta} \wedge i \qquad \frac{X,\Phi \vdash A \text{ says } \alpha_2}{X,\Phi \vdash A \text{ says } \beta} \wedge i \qquad \frac{X,\Phi \vdash A \text{ says } \alpha_2}{X,\Phi \vdash A \text{ says } \beta} \wedge i \qquad \frac{X,\Phi \vdash A \text{ says } \alpha_2}{X,\Phi \vdash A \text{ says } \beta}$$

Figure: Rules for says

- Introduction
- 2 Example
- 3 Assertions Syntax, Semantics
- Manipulating assertions
- 6 Concluding remarks

## Conclusion and future work

- Described a framework to add a separate algebra for assertions to the Dolev-Yao term model.
- Makes for concise and more readable certification in protocols.
- Future work: better assertion structure, modeling real-life protocols.
- Link to paper: http://www.cmi.ac.in/~vaishnavi/pdfs/rss14.pdf

# Thank you!