
©
 H

e
ik

o
 M

a
n

te
l

Concurrent Noninterference
Part 1: An Introduction to Noninterference

Heiko Mantel, Computer Science Department, TU Darmstadt

FOSAD Summer School 2015

Heiko Mantel @ FOSAD, August 31-September 2, 2015 1

collaborators on this topic

Aslan Askarov, Timo Bähr, Steve Chong, Steffen Lortz,

Alexander Lux, Matthias Perner, Andrei Sabelfeld, David

Sands, Jens Sauer, David Schneider, Artem Starostin,

Henning Sudbrock, Alexandra Weber, …

©
 H

e
ik

o
 M

a
n

te
l

at TU Darmstadt since 2007

the MAIS group

Where am I from?

Heiko Mantel @ FOSAD, August 31-September 2, 2015 2

securing distributed systems

side channels

secure software engineering

security analysis

©
 H

e
ik

o
 M

a
n

te
l

Current research interests

 reliable guarantees for software systems

 focus: information-flow security and secure usage

 analysis techniques and tools for deriving security guarantees

 engineering techniques and tools for establishing security by design

 languages for expressing security guarantees

 enable security-preserving abstraction, refinement, and composition

 improving the understanding interplay between security and a, r, and c

 side channel detection, analysis, and mitigation

What are my research interests?

Heiko Mantel @ FOSAD, August 31-September 2, 2015 3

SCF:

Side-Channel Finder

reliable security

guarantees

obtaining

them

explaining

them

©
 H

e
ik

o
 M

a
n

te
l

My Current Research Projects

Heiko Mantel @ FOSAD, August 31-September 2, 2015 4

open post-doc positions

 concurrent program security

 information-flow security by design

open PhD positions

 concurrent program security

 mobile security

we are

hiring

©
 H

e
ik

o
 M

a
n

te
l

Part 1: An Introduction to Noninterference

 property-centric security vs mechanism-centric security

 information-flow security and information leakage

 noninterference: an informal definition

 a simple introduction to operational semantics

 noninterference: a formal definition

 example system: Cassandra

 exercises

Part 2: Noninterference for Multi-threaded Programs

Part 3: Recent Results on Concurrent Noninterference

Bibliography

Roadmap

Heiko Mantel @ FOSAD, August 31-September 2, 2015 5

©
 H

e
ik

o
 M

a
n

te
l

Security is CIA

C : Confidentiality

 the nonoccurrence of unauthorized disclosure of information

I : Integrity

 the nonoccurrence of unauthorized modification of data or resources

A : Availability

 the degree to which a system or component is operational and

accessible when required for use

Other facets of security can be expressed using CIA

 e.g. anonymity, authenticity, non-reputability, privacy, …

Facets of Information Security

Heiko Mantel @ FOSAD, August 31-September 2, 2015 6

For instance, privacy can be expressed using CIA
 confidentiality of information you don’t want to share means:

 You choose what you let other people know.

©
 H

e
ik

o
 M

a
n

te
l

Ensuring security

Mechanism-centric Security (1)

Heiko Mantel @ FOSAD, August 31-September 2, 2015 7

system

system model
m

o
d
e
lin

g

some security

requirement

Is mechanism-centric security alone enough?

???

©
 H

e
ik

o
 M

a
n

te
l

Mechanism-centric Security (2)

Heiko Mantel @ FOSAD, August 31-September 2, 2015 8

How to decide whether
security has been

achieved?

mechanism-

centric view

alone is not

enough

©
 H

e
ik

o
 M

a
n

te
l

Modeling security as a property and then ensuring its satisfaction

Property-centric Security

Heiko Mantel @ FOSAD, August 31-September 2, 2015 9

system

system model
m

o
d
e
lin

g

some security

requirement
???

security property

m
o
d
e
lin

g

fulfills

!!!!

Property-centric view should complement mechanism-centric one!

©
 H

e
ik

o
 M

a
n

te
l

A property is an essential or distinctive attribute or quality of a thing.

Satisfaction of a property

 A system either has a given property or does not have it.

 If a system does not have a property, the system violates this property.

Example

A horse might satisfy the properties “… is fast.”, “… is brown.”, “… is big.”.

How to formulate a property?

 “… incorporates an access control mechanism” is a property, but the

property-centric view does not provide added value for such a property

 “… is secure” nicely abstracts from security mechanism, but it is not a

property, as a program might be “secure” for a user, but not for another

What is a property?

Heiko Mantel @ FOSAD, August 31-September 2, 2015 10

How to characterize conditions that are properties?

©
 H

e
ik

o
 M

a
n

te
l

Properties can often be characterized by predicates on system runs.

Convention: Such a property is satisfied if the predicate holds for each

run that this system could possibly perform.

How to characterize a property by a predicate on system runs?

 One defines a predicate 𝑃 on individual runs, i.e. 𝑃(𝜏) holds or does

not hold for a given system run 𝜏 .

 A system satisfies the property specified by 𝑃 if and only if 𝑃(𝜏)
holds for each run 𝜏 that is possible for this system.

Example

 A system is terminating if each possible system run is finite

Characterizing Properties (1)

Heiko Mantel @ FOSAD, August 31-September 2, 2015 11

Many properties of interest in Computer Science can be

characterized by predicates on system runs, but there are also

properties that cannot be characterized in this way.

©
 H

e
ik

o
 M

a
n

te
l

Properties can be classified according to their characterizations

Characterizing Properties (2)

Heiko Mantel @ FOSAD, August 31-September 2, 2015 12

enforceable properties

safety properties liveness properties

properties of individual system runs

system properties average

execution time

information-flow

security

Predicates on individual system runs are not expressive enough to

characterize all security properties! (more by Michael Clarkson)

©
 H

e
ik

o
 M

a
n

te
l

Property-centric security

Using security mechanisms to establish security properties

 access control ⇛ authorized accesses only

 usage control ⇛ secure usage

 information-flow control ⇛ information-flow security

From Mechanisms to Properties

Heiko Mantel @ FOSAD, August 31-September 2, 2015 13

system model

m
o

d
e

lin
g

security

requirement system

security

property

m
o

d
e

lin
g

fulfills

!!!

The focus of this tutorial will be on information-flow security.

©
 H

e
ik

o
 M

a
n

te
l

Example

 You install an app on your cell phone.

 How can you be sure that this app does not leak

 your calendar,

 your contacts,

 your call history, or

 your physical location?

Even if you feel OK with that an app leaks some of your private data,

are you still OK if it leaks all of your private information in all cases?

 The purpose of information-flow security is to limit what data is leaked.

Why Information-Flow Security?

Heiko Mantel @ FOSAD, August 31-September 2, 2015 14

Note that access control is insufficient if the app’s functionality

needs access to your private data and also to information sinks

where you don’t want your private data to go.

©
 H

e
ik

o
 M

a
n

te
l

Part 1: An Introduction to Noninterference

 property-centric security vs mechanism-centric security

 information-flow security and information leakage

 noninterference: an informal definition

 a simple introduction to operational semantics

 noninterference: a formal definition

 example system: Cassandra

 exercises

Part 2: Noninterference for Multi-threaded Programs

Part 3: Recent Results on Concurrent Noninterference

Bibliography

Roadmap

Heiko Mantel @ FOSAD, August 31-September 2, 2015 15

©
 H

e
ik

o
 M

a
n

te
l

Is there any danger that secrets are leaked to untrusted sinks?

Information leakage

An attacker makes observations during a program run that allow him to

deduce secret information.

Information-flow security [for confidentiality]

There is no danger of information leakage.

What is information-flow security? (1)

Heiko Mantel @ FOSAD, August 31-September 2, 2015 16

secret inputs

public inputs

protected channels

untrusted channels
program execution

Note: Information-flow security can also be understood as integrity.

©
 H

e
ik

o
 M

a
n

te
l

Is there any danger of corruption?

Corruption

An attacker provides untrusted input that affects the output on reliable

channels.

Information-flow security [for integrity]

Output on reliable channels is no less trustworthy than trusted input.

What is information-flow security? (2)

Heiko Mantel @ FOSAD, August 31-September 2, 2015 17

trusted inputs

untrusted inputs

reliable channels

unreliable channels
program execution

In this tutorial, I will focus on confidentiality (previous slide).

©
 H

e
ik

o
 M

a
n

te
l

Might running this program leak secret information?

Yes, if

 the value of the target x can be observed by the attacker

and

 the value of the expression exp depends on secrets

 or whether the assignment is executed or not depends on secrets

Information Leakage

Heiko Mantel @ FOSAD, August 31-September 2, 2015 18

…

x := exp

…

Hence, for establishing information-flow security, one needs
 access control ⇛ Knowing what the attacker can observe.

 data-flow analysis ⇛ … if values of expressions depend on secrets.

 control-flow analysis ⇛ … if reachability of statements depends on ..

©
 H

e
ik

o
 M

a
n

te
l

Explicit leakage (or: direct leakage)

A secret is leaked to an untrusted channel assuming

 variable secret contains secret information when the statement is run

 attacker can observe messages sent to untrusted-channel

How does the attacker deduce secret information?

 When this program is run, the attacker observes some message msg .

 From this message and the program code, he deduces that the initial

value of secret must have been the same as the value of msg .

How might information leak? (1)

Heiko Mantel @ FOSAD, August 31-September 2, 2015 19

output secret to untrusted-channel

attacker learns initial

value of secret

©
 H

e
ik

o
 M

a
n

te
l

Implicit leakage (or: indirect leakage)

A secret is leaked to an untrusted channel assuming

 variable secret contains secret information when the statement is run

 attacker can observe messages sent to untrusted-channel

How does the attacker deduce secret information?

 When this program is run, the attacker observes some message msg .

 If value of msg is 1 then, he deduces that the initial value of secret

must have been greater than zero. If value of msg is 0 then, the

initial value of secret must have been smaller or equal than zero.

How might information leak? (2)

Heiko Mantel @ FOSAD, August 31-September 2, 2015 20

if secret > 0 then output 1 to untrusted-channel

 else output 0 to untrusted-channel

Conservative assumption: The attacker knows the program code.

attacker learns

whether initial value

of secret was positive

©
 H

e
ik

o
 M

a
n

te
l

Information leakage via non-termination

Information leakage via non-progress

How might information leak? (3)

Heiko Mantel @ FOSAD, August 31-September 2, 2015 21

while secret ≥ 0 do skip od;

output 1 to untrusted-channel

public := 0;

while true do

 output public to untrusted-channel;

 if public < secret

 then public := public+1

 else while true do skip od

 fi; od

attacker learns initial

value of secret from

the last output that

he sees in a run

if attacker sees 1

then he learns that

the initial value of

secret was negative

©
 H

e
ik

o
 M

a
n

te
l

Information leakage via array look-up

Information leakage via array modification

How might information leak? (4)

Heiko Mantel @ FOSAD, August 31-September 2, 2015 22

output public-array[secret] to untrusted-channel ;

for i := 0 to length(public-array) do

 output public-array[i] to untrusted-channel ;

od

public-array[secret] := 42;

for i := 0 to length(public-array) do

 output public-array[i] to untrusted-channel ;

od

attacker can

narrow down the

initial value of

secret to those

positions where the

value output equals

the first output

attacker can narrow

down the initial

value of secret to

those positions

where the value 42

is output

Many further possibilities for leaking information exist, e.g., via

dynamic dispatch, via exceptions, due to concurrency, … .

©
 H

e
ik

o
 M

a
n

te
l

Is there any danger that secrets are leaked to untrusted sinks?

Information leakage

An attacker makes observations during a program run that allow him to

deduce secret information.

Information-flow security [for confidentiality]

There is no danger of information leakage.

What is information-flow security? (3)

Heiko Mantel @ FOSAD, August 31-September 2, 2015 23

secret inputs

public inputs

protected channels

untrusted channels
program execution

Definition of information-flow security depends on what is secret,

what the attacker can observe, and what the attacker can deduce.

.

. .

©
 H

e
ik

o
 M

a
n

te
l

Information that one might want to keep confidential

 initial values of dedicated program variables

 input on dedicated channels provided during a program run

 strategies used to determine the next input on dedicated channels

 …

Capabilities of attackers that an attacker model could cover:

 attacker knows the program code

and

 attacker observes final result of a program run

 attacker observes output occurring during a program run

 attacker observes intermediate values of variables during a run

Confidentiality and Attacker Models

Heiko Mantel @ FOSAD, August 31-September 2, 2015 24

More powerful attacker models are possible (e.g. timing, power).

©
 H

e
ik

o
 M

a
n

te
l

Part 1: An Introduction to Noninterference

 property-centric security vs mechanism-centric security

 information-flow security and information leakage

 noninterference: an informal definition

 a simple introduction to operational semantics

 noninterference: a formal definition

 example system: Cassandra

 exercises

Part 2: Noninterference for Multi-threaded Programs

Part 3: Recent Results on Concurrent Noninterference

Bibliography

Roadmap

Heiko Mantel @ FOSAD, August 31-September 2, 2015 25

©
 H

e
ik

o
 M

a
n

te
l

Noninterference informally

A program is noninterferent if the observations that an attacker makes

during runs of this program do not depend on secrets in any way.

Why does noninterference characterize information-flow security?

When a noninterferent program is run, the attacker makes observations.

Since his observations do not depend on secrets, the attacker does not

know more secrets after the run than before, i.e., no information is leaked.

What is noninterference? (1)

Heiko Mantel @ FOSAD, August 31-September 2, 2015 26

Definition of noninterference depends on what is secret, what the

attacker can observe, and how “dependence” is defined.

secret inputs

public inputs

protected channels

untrusted channels
program execution

.

.

.

©
 H

e
ik

o
 M

a
n

te
l

Noninterference informally (like before)

A program is noninterferent if the observations that an attacker makes

during runs of this program do not depend on secrets in any way.

Example

Is the following program noninterferent?

Better: Is the program noninterferent if the initial value of secret is a

secret and the attacker can observe messages on untrusted-channel .

Answer: Under these conditions, the program is not noninterferent.

Argument: Which value the attacker observes on untrusted-channel

during a program run depends on the initial value of secret .

That is, the attackers observations depend on a secret.

What is noninterference? (2)

Heiko Mantel @ FOSAD, August 31-September 2, 2015 27

if secret > 0 then output 1 to untrusted-channel

 else output 0 to untrusted-channel

Here, semantics of

programming

language is relevant

©
 H

e
ik

o
 M

a
n

te
l

Possibilities for verifying that a program is noninterferent

 direct verification using the unwinding technique

 dedicated program analysis techniques (different traditions exist: type

systems, program dependence graphs, abstract interpretation, …)

 dedicated program logics

 general-purpose program logics (using self composition)

Possibilities for enforcing noninterference

 program transformations

 dynamic program analysis techniques (attention: some pitfalls)

 hybrid analysis techniques (combine static and dynamic analysis)

Ensuring Noninterference

Heiko Mantel @ FOSAD, August 31-September 2, 2015 28

For verifying the soundness of such verification and enforcement

techniques our definition of noninterference is too imprecise.

©
 H

e
ik

o
 M

a
n

te
l

Part 1: An Introduction to Noninterference

 property-centric security vs mechanism-centric security

 information-flow security and information leakage

 noninterference: an informal definition

 a simple introduction to operational semantics

 noninterference: a formal definition

 example system: Cassandra

 exercises

Part 2: Noninterference for Multi-threaded Programs

Part 3: Recent Results on Concurrent Noninterference

Bibliography

Roadmap

Heiko Mantel @ FOSAD, August 31-September 2, 2015 29

©
 H

e
ik

o
 M

a
n

te
l

Syntax of a programming language

 A formally defined language.

Example

 𝑝𝑟𝑜𝑔 ≔ stop | skip | 𝑥 ≔ 𝑎𝑒𝑥𝑝

 | input 𝑥 from 𝑐ℎ | output 𝑎𝑒𝑥𝑝 to 𝑐ℎ

 𝑝𝑟𝑜𝑔; 𝑝𝑟𝑜𝑔 if 𝑏𝑒𝑥𝑝 then 𝑝𝑟𝑜𝑔 else 𝑝𝑟𝑜𝑔 fi

 | while 𝑏𝑒𝑥𝑝 do 𝑝𝑟𝑜𝑔 od

 𝑎𝑒𝑥𝑝 ∈ 𝐴𝐸𝑥𝑝 “arithmetic expressions”

 𝑏𝑒𝑥𝑝 ∈ 𝐵𝐸𝑥𝑝 “boolean expressions”

 𝑥 ∈ 𝑉𝑎𝑟 “program variables”

 𝑐ℎ ∈ 𝐶ℎ “communication channels”

You will have a good intuition about the meaning of such programs.

Syntax

Heiko Mantel @ FOSAD, August 31-September 2, 2015 30

Operational semantics gives a precise meaning to programs.

©
 H

e
ik

o
 M

a
n

te
l

Memory state

A memory state is a function 𝑚𝑒𝑚:𝑉𝑎𝑟 → 𝑉𝑎𝑙.

𝑚𝑒𝑚(𝑥) is the value of the variable 𝑥 ∈ 𝑉𝑎𝑟 in the memory state 𝑚𝑒𝑚 .

Evaluation of arithmetic expressions

𝑎𝑒𝑥𝑝,𝑚𝑒𝑚 ⇓ 𝑛 models that the arithmetic expression 𝑎𝑒𝑥𝑝 evaluates

to the number 𝑛 ∈ 𝑉𝑎𝑙 in the memory state 𝑚𝑒𝑚 .

Evaluation of boolean expressions

𝑏𝑒𝑥𝑝,𝑚𝑒𝑚 ⇓ 𝑏 models that the boolean expression 𝑏𝑒𝑥𝑝 evaluates to

the boolean value 𝑏 ∈ {𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒} in the memory state 𝑚𝑒𝑚 .

Operational Semantics (1)

Heiko Mantel @ FOSAD, August 31-September 2, 2015 31

We leave the syntax and semantics of arithmetic expressions and of

boolean expressions otherwise unspecified for now.

©
 H

e
ik

o
 M

a
n

te
l

Configuration

 where 𝑃𝑟𝑜𝑔 is the set of all programs and

 where 𝑀𝑒𝑚 = 𝑉𝑎𝑟 → 𝑉𝑎𝑙 is the set of all memory states

Intuition

A configuration 𝑝𝑟𝑜𝑔,𝑚𝑒𝑚 models a snapshot during a program run,

 where 𝑝𝑟𝑜𝑔 models the program that remains to be executed and

 where 𝑚𝑒𝑚 models the current values of all program variables.

Example

 Two assignments remain to be executed.

 Both variables currently have value 0.

Operational Semantics (2)

Heiko Mantel @ FOSAD, August 31-September 2, 2015 32

𝑝𝑟𝑜𝑔,𝑚𝑒𝑚 ∈ 𝑃𝑟𝑜𝑔 ×𝑀𝑒𝑚

𝑥 ≔ 42; 𝑦 ≔ 𝑥 ∗ 𝑦 , [𝑥 ↦ 0, 𝑦 ↦ 0]

©
 H

e
ik

o
 M

a
n

te
l

Labeled transitions capturing computation steps

 where 𝑝𝑟𝑜𝑔,𝑚𝑒𝑚 and 𝑝𝑟𝑜𝑔′,𝑚𝑒𝑚′ are configurations and

 where 𝛼 ∈ 𝐸𝑣 is an event (𝐸𝑣 remains unspecified for now)

Intuition

A transition 𝑝𝑟𝑜𝑔,𝑚𝑒𝑚
𝛼
→ 𝑝𝑟𝑜𝑔′,𝑚𝑒𝑚′ captures a computation step

 where 𝑝𝑟𝑜𝑔,𝑚𝑒𝑚 is the configuration before the step,

 where 𝑝𝑟𝑜𝑔′,𝑚𝑒𝑚′ is the configuration after the step, and

 where the event 𝛼 captures additional information, e.g. a value output

Example

Operational Semantics (3)

Heiko Mantel @ FOSAD, August 31-September 2, 2015 33

𝑝𝑟𝑜𝑔,𝑚𝑒𝑚
𝛼
→ 𝑝𝑟𝑜𝑔′,𝑚𝑒𝑚′

𝑥 ≔ 42; 𝑦 ≔ 𝑥 ∗ 𝑦 , [𝑥 ↦ 0, 𝑦 ↦ 0]
.
→ 𝑦 ≔ 𝑥 ∗ 𝑦, [𝑥 ↦ 42, 𝑦 ↦ 0]

©
 H

e
ik

o
 M

a
n

te
l

Form of derivation rules

Intuition

If each premise is true then the conclusion is also true.

A derivation rule for assignments

Operational Semantics (4)

Heiko Mantel @ FOSAD, August 31-September 2, 2015 34

the arithmetic

expression 𝑎𝑒𝑥𝑝

evaluates to some

number 𝑛

𝑥 ≔ 𝑎𝑒𝑥𝑝,𝑚𝑒𝑚
.
→〈stop,𝑚𝑒𝑚[𝑥 ↦ 𝑛]〉

𝑎𝑒𝑥𝑝,𝑚𝑒𝑚 ⇓ 𝑛

𝑐𝑜𝑛𝑐𝑙𝑢𝑠𝑖𝑜𝑛

𝑝𝑟𝑒𝑚𝑖𝑠𝑒1⋯𝑝𝑟𝑒𝑚𝑖𝑠𝑒 𝑛

nothing remains to

be executed

the new memory

state differs from

the old one only for

variable 𝑥

©
 H

e
ik

o
 M

a
n

te
l

Derivation rules for sequential composition

Operational Semantics (5)

Heiko Mantel @ FOSAD, August 31-September 2, 2015 35

program 𝑝𝑟𝑜𝑔1
terminates, results

in memory state

𝑚𝑒𝑚′, and causes

event 𝛼

𝑝𝑟𝑜𝑔1; 𝑝𝑟𝑜𝑔2,𝑚𝑒𝑚
𝛼
→〈𝑝𝑟𝑜𝑔2,𝑚𝑒𝑚′〉

𝑝𝑟𝑜𝑔1,𝑚𝑒𝑚
𝛼
→〈stop,𝑚𝑒𝑚′〉

𝑝𝑟𝑜𝑔2 remains to

be executed
the memory state 𝑚𝑒𝑚′ is

propagated from the premise

event 𝛼 is propagated

from the premise

program 𝑝𝑟𝑜𝑔1
performs a step

resulting in memory

state 𝑚𝑒𝑚′ and

causing event 𝛼

without terminating

𝑝𝑟𝑜𝑔1; 𝑝𝑟𝑜𝑔2,𝑚𝑒𝑚
𝛼
→〈𝑝𝑟𝑜𝑔1′; 𝑝𝑟𝑜𝑔2,𝑚𝑒𝑚′〉

𝑝𝑟𝑜𝑔1,𝑚𝑒𝑚
𝛼
→〈𝑝𝑟𝑜𝑔1′, 𝑚𝑒𝑚′〉

𝑝𝑟𝑜𝑔1′; 𝑝𝑟𝑜𝑔2
remains to be

executed

the memory state 𝑚𝑒𝑚′ is

propagated from the premise

event 𝛼 is propagated

from the premise

©
 H

e
ik

o
 M

a
n

te
l

A derivation

The rules applied in this derivation

Operational Semantics (6)

Heiko Mantel @ FOSAD, August 31-September 2, 2015 36

𝑥 ≔ 42; 𝑦 ≔ 𝑥 ∗ 𝑦 , [𝑥 ↦ 0, 𝑦 ↦ 0]
.
→ 𝑦 ≔ 𝑥 ∗ 𝑦, [𝑥 ↦ 42, 𝑦 ↦ 0]

𝑥 ≔ 42, [𝑥 ↦ 0, 𝑦 ↦ 0]
.
→ stop, [𝑥 ↦ 42, 𝑦 ↦ 0]

42, [𝑥 ↦ 0, 𝑦 ↦ 0] ⇓ 42

𝑝𝑟𝑜𝑔1; 𝑝𝑟𝑜𝑔2,𝑚𝑒𝑚
𝛼
→〈𝑝𝑟𝑜𝑔2,𝑚𝑒𝑚′〉

𝑝𝑟𝑜𝑔1,𝑚𝑒𝑚
𝛼
→〈stop,𝑚𝑒𝑚′〉

𝑥 ≔ 𝑎𝑒𝑥𝑝,𝑚𝑒𝑚
.
→〈stop,𝑚𝑒𝑚[𝑥 ↦ 𝑛]〉

𝑎𝑒𝑥𝑝,𝑚𝑒𝑚 ⇓ 𝑛
a rule for evaluating

arithmetic expressions that

are constants

𝑛,𝑚𝑒𝑚 ⇓ 𝑛

©
 H

e
ik

o
 M

a
n

te
l

Rules for conditionals and loops

Operational Semantics (7)

Heiko Mantel @ FOSAD, August 31-September 2, 2015 37

if 𝑏𝑒𝑥𝑝 then 𝑝𝑟𝑜𝑔1 else 𝑝𝑟𝑜𝑔2 fi, 𝑚𝑒𝑚
.
→〈𝑝𝑟𝑜𝑔2,𝑚𝑒𝑚〉

𝑏𝑒𝑥𝑝,𝑚𝑒𝑚 ⇓ 𝑓𝑎𝑙𝑠𝑒

if 𝑏𝑒𝑥𝑝 then 𝑝𝑟𝑜𝑔1 else 𝑝𝑟𝑜𝑔2 fi, 𝑚𝑒𝑚
.
→〈𝑝𝑟𝑜𝑔1,𝑚𝑒𝑚〉

𝑏𝑒𝑥𝑝,𝑚𝑒𝑚 ⇓ 𝑡𝑟𝑢𝑒

while 𝑏𝑒𝑥𝑝 do 𝑝𝑟𝑜𝑔 od,𝑚𝑒𝑚
.
→〈𝑠𝑡𝑜𝑝,𝑚𝑒𝑚〉

𝑏𝑒𝑥𝑝,𝑚𝑒𝑚 ⇓ 𝑓𝑎𝑙𝑠𝑒

while 𝑏𝑒𝑥𝑝 do 𝑝𝑟𝑜𝑔 od,𝑚𝑒𝑚
.
→〈𝑝𝑟𝑜𝑔;while 𝑏𝑒𝑥𝑝 do 𝑝𝑟𝑜𝑔 od,𝑚𝑒𝑚〉

𝑏𝑒𝑥𝑝,𝑚𝑒𝑚 ⇓ 𝑡𝑟𝑢𝑒

©
 H

e
ik

o
 M

a
n

te
l

Rule for skip

Rules for output

Operational Semantics (8)

Heiko Mantel @ FOSAD, August 31-September 2, 2015 38

output 𝑎𝑒𝑥𝑝 to 𝑐ℎ,𝑚𝑒𝑚
𝑜𝑢𝑡𝑝𝑢𝑡(𝑐ℎ,𝑛)

〈stop,𝑚𝑒𝑚〉

𝑎𝑒𝑥𝑝,𝑚𝑒𝑚 ⇓ 𝑛

input 𝑥 from 𝑐ℎ,𝑚𝑒𝑚
𝑖𝑛𝑝𝑢𝑡(𝑐ℎ,𝑛)

〈stop,𝑚𝑒𝑚[𝑥 ↦ 𝑛]〉

skip,𝑚𝑒𝑚
.
→〈stop,𝑚𝑒𝑚〉

©
 H

e
ik

o
 M

a
n

te
l

Labeled transitions capturing runs

 where 𝑝𝑟𝑜𝑔,𝑚𝑒𝑚 and 𝑝𝑟𝑜𝑔′,𝑚𝑒𝑚′ are configurations and

 where 𝜏 ∈ 𝐸𝑣∗ is a sequence of events

Rules

Operational Semantics (9)

Heiko Mantel @ FOSAD, August 31-September 2, 2015 39

𝑝𝑟𝑜𝑔,𝑚𝑒𝑚
𝜏
 𝑝𝑟𝑜𝑔′,𝑚𝑒𝑚′

𝑝𝑟𝑜𝑔,𝑚𝑒𝑚
[]
 𝑝𝑟𝑜𝑔,𝑚𝑒𝑚

𝑝𝑟𝑜𝑔,𝑚𝑒𝑚
[𝛼,𝛼1,…,𝛼𝑛]

𝑝𝑟𝑜𝑔′′,𝑚𝑒𝑚′′

𝑝𝑟𝑜𝑔,𝑚𝑒𝑚
𝛼
→〈𝑝𝑟𝑜𝑔′,𝑚𝑒𝑚′〉 𝑝𝑟𝑜𝑔′,𝑚𝑒𝑚′

[𝛼1,..,𝛼𝑛]
𝑝𝑟𝑜𝑔′′,𝑚𝑒𝑚′′

©
 H

e
ik

o
 M

a
n

te
l

1. Add the command repeat 𝑝𝑟𝑜𝑔 until 𝑏𝑒𝑥𝑝 to the syntax of our

programming language. Formalize the semantics of this

command by adding 2 rules.

2. Define sets of arithmetic and boolean expressions (i.e. 𝐴𝐸𝑥𝑝 and

𝐵𝐸𝑥𝑝) and rules for 𝑎𝑒𝑥𝑝,𝑚𝑒𝑚 ⇓ 𝑛 and 𝑏𝑒𝑥𝑝,𝑚𝑒𝑚 ⇓ 𝑏 .

 Remark 1: We declared the sets 𝐴𝐸𝑥𝑝 and 𝐵𝐸𝑥𝑝 (on Slide 30), but

we did not define these two sets so far.

 Remark 2: You are free to choose these languages as you like.

Some Exercises (Homework 1)

Heiko Mantel @ FOSAD, August 31-September 2, 2015 40

©
 H

e
ik

o
 M

a
n

te
l

break & time for homework

End of presentation on August 31

Heiko Mantel @ FOSAD, August 31-September 2, 2015 41

©
 H

e
ik

o
 M

a
n

te
l

Part 1: An Introduction to Noninterference

 property-centric security vs mechanism-centric security

 information-flow security and information leakage

 noninterference: an informal definition

 a simple introduction to operational semantics

 noninterference: a formal definition

 example system: Cassandra

 exercises

Part 2: Noninterference for Multi-threaded Programs

Part 3: Recent Results on Concurrent Noninterference

Bibliography

Roadmap

Heiko Mantel @ FOSAD, August 31-September 2, 2015 42

©
 H

e
ik

o
 M

a
n

te
l

Noninterference informally (like before)

A program is noninterferent if the observations that an attacker makes

during runs of this program do not depend on secrets in any way.

Choice: What is secret?

There is a dedicated set of variables high ⊆ Var . The initial values of

these variables must be kept confidential.

Choice: What can the attacker observe?

There is a dedicated set of variables low = Var\high . The initial and final

values of these variables are what the attacker observes.

Formalizing Noninterference (1)

Heiko Mantel @ FOSAD, August 31-September 2, 2015 43

How to formally define noninterference for these choices?

©
 H

e
ik

o
 M

a
n

te
l

Choice: What is secret? (like before)

There is a dedicated set of variables high ⊆ Var . The initial values of

these variables must be kept confidential.

Choice: What can the attacker observe? (like before)

There is a dedicated set of variables low = Var\high . The initial and final

values of these variables are what the attacker observes.

Indistinguishability of memories for the attacker

Two memories 𝑚𝑒𝑚,𝑚𝑒𝑚′: 𝑉𝑎𝑟 → 𝑉𝑎𝑙 are indistinguishable (denoted by

𝑚𝑒𝑚 =𝐥𝐨𝐰 𝑚𝑒𝑚’) if and only if

Formalizing Noninterference (2)

Heiko Mantel @ FOSAD, August 31-September 2, 2015 44

∀𝑥 ∈ 𝐥𝐨𝐰.𝑚𝑒𝑚 𝑥 = 𝑚𝑒𝑚′(𝑥)

©
 H

e
ik

o
 M

a
n

te
l

Choice: What is secret? (like before)

There is a dedicated set of variables high ⊆ Var . The initial values of

these variables must be kept confidential.

Choice: What can the attacker observe? (like before)

There is a dedicated set of variables low = Var\high . The initial and final

values of these variables are what the attacker observes.

A formal definition of noninterference for these choices

A program 𝑝𝑟𝑜𝑔 is noninterferent if and only if

Formalizing Noninterference (3)

Heiko Mantel @ FOSAD, August 31-September 2, 2015 45

∀𝑚𝑒𝑚1,𝑚𝑒𝑚2,𝑚𝑒𝑚1′, 𝑚𝑒𝑚2′: 𝑉𝑎𝑟 → 𝑉𝑎𝑙 . ∀𝜏, 𝜏′ ∈ 𝐸𝑣∗.

[𝑝𝑟𝑜𝑔,𝑚𝑒𝑚1
𝜏
 𝑠𝑡𝑜𝑝,𝑚𝑒𝑚2 ∧ 𝑚𝑒𝑚1′ =𝐥𝐨𝐰 𝑚𝑒𝑚1]

 [𝑝𝑟𝑜𝑔,𝑚𝑒𝑚1′
𝜏′

 𝑠𝑡𝑜𝑝,𝑚𝑒𝑚2′ 𝑚𝑒𝑚2′ =𝐥𝐨𝐰 𝑚𝑒𝑚2]

Definition of noninterference is based on counter-factual reasoning.

©
 H

e
ik

o
 M

a
n

te
l

Part 1: An Introduction to Noninterference

 property-centric security vs mechanism-centric security

 information-flow security and information leakage

 noninterference: an informal definition

 a simple introduction to operational semantics

 noninterference: a formal definition

 example system: Cassandra

 exercises

Part 2: Noninterference for Multi-threaded Programs

Part 3: Recent Results on Concurrent Noninterference

Bibliography

Roadmap

Heiko Mantel @ FOSAD, August 31-September 2, 2015 46

©
 H

e
ik

o
 M

a
n

te
l

Reference scenarios in the DFG priority program RS3:

Nice Theory – Can it be applied?

Heiko Mantel @ CISPA, January 29, 2015 47

software security

for mobile devices

the RS3

Certifying

Appstore

security in E-voting

security in web-based workflow

management systems
CoCon

see talk by David

Schneider today

www.spp-rs3.de

©
 H

e
ik

o
 M

a
n

te
l

3. Argue why the program from Slide 27 does not satisfy our formal

definition of noninterference.

4. Does the formal definition of noninterference on Slide 44 faithfully

capture our informal definition of noninterference if

a. the attacker can observe the number of steps,

b. the attacker can observe interactions on the channel 𝑜𝑝𝑒𝑛 ∈ 𝐶ℎ.

5. If your answer to 3a and/or 3b is NO, then modify the formal

definition of noninterference such that it faithfully captures our

informal definition of noninterference under the given conditions.

6. How to modify the operational semantics if the program

environment chooses inputs on a channel based on prior

interactions on this channel?

Some Exercises (Homework 2)

Heiko Mantel @ FOSAD, August 31-September 2, 2015 48

©
 H

e
ik

o
 M

a
n

te
l

 How to complement the mechanism-centric view on security by a

property-centric view in a useful way?

 What is information-flow security and what is it good for?

 How to capture information-flow security by noninterference?

 How to define noninterference formally?

 based on the operational semantics of a programming language

 Which definition of noninterference is suitable depends on

 which secrets need to be kept confidential,

 what the attacker can observe, and

 the model of execution.

Some Lessons Learned

Heiko Mantel @ FOSAD, August 31-September 2, 2015 49

©
 H

e
ik

o
 M

a
n

te
l

Early definitions of noninterference-like properties (selected)
[Feiertag et al 1977] R.J. Feiertag, K.N. Levitt, L. Robinson: Proving Multi-level Security of a System Design. In: Proceedings of ACM
Symposium on Operating Systems Principles. pp. 35-41 (1977)

[Cohen 1977] E. Cohen: Information Transmission in Computational Systems. In: Proceedings of ACM Symposium on Operating
Systems Principles. pp. 133-139 (1977)

[Goguen/Meseguer 1982] J.A. Goguen, J. Meseguer: Security Policies and Security Models. In: Proceedings of IEEE Security and
Privacy. pp. 11-20 (1982)

[Sutherland 1986] D. Sutherland: A Model of Information. In: Proceedings of National Computer Security Conference. (1986)

[McCullough 1987] D. McCullough: Specifications for Multi-level Security and a Hook-Up Property. In: Proceedings of IEEE Security and
Privacy. pp. 161-166 (1987)

[Mantel 2011] H. Mantel: Information Flow and Noninterference. In: Encyclopedia of Cryptography and Security, 2nd ed. (2011)

Early information-flow analysis with or w/o soundness results (selected)
[Denning/Denning 1977] D.E. Denning, P.J. Denning: Certification of Programs for Secure Inforamtion Flow. In: Communications of the
ACM 20(7). pp. 504-513 (1977)

[Goguen/Meseguer 1984] J.A. Goguen, J. Meseguer: Unwinding and Inference Control. . In: Proceedings of IEEE Security and Privacy,:
pp. 75-87 (1984)

[Rushby 1992] J. Rushby: Noninterference, Transitivity, and Channel-Control Security Policies. TR CSL-92-02, SRI International. (1992)

[Volpano/Smith/Irvine 1996] D. Volpano, G. Smith, C. Irvine: A Sound Type System for Secure Flow Analysis. In: Journal of Computer
Security 4(3). pp. 1-21 (1996)

[Myers/Liskov 1997] A.C. Myers, B. Liskov: A Decentralized Model for Information Flow Control. In: Proceedings of ACM Symposium on
Operating Systems Principles. pp. 129-142 (1997)

Bibliography

Heiko Mantel @ FOSAD, August 31-September 2, 2015 50

©
 H

e
ik

o
 M

a
n

te
l

Concurrent Noninterference
Day 2: Noninterference for multi-threaded programs

Heiko Mantel, Computer Science Department, TU Darmstadt

FOSAD Summer School 2015

Heiko Mantel @ FOSAD, August 31-September 2, 2015 51

collaborators on this topic

Aslan Askarov, Timo Bähr, Steve Chong, Steffen Lortz,

Alexander Lux, Matthias Perner, Andrei Sabelfeld, David

Sands, Jens Sauer, David Schneider, Artem Starostin,

Henning Sudbrock, Alexandra Weber, …

©
 H

e
ik

o
 M

a
n

te
l

Information-flow security for sequential programs

 formulation of noninterference-like properties

 very many analysis techniques and tools

 many with soundness proofs for some noninterference-like property

 tradeoff between precision and efficiency is understood some extent

 Theoretical foundations are sufficiently well developed for applications.

Is information-flow security for concurrent programs more complex?

 If yes, how much more?

 Are there any substantial additional difficulties?

 How can these additional difficulties be approached?

 How mature are the current solutions?

From Sequential to Concurrent Computation

Heiko Mantel @ FOSAD, August 31-September 2, 2015 52

You will be able to answer these questions after this part of the tutorial.

©
 H

e
ik

o
 M

a
n

te
l

Part 1: An Introduction to Noninterference

Part 2: Noninterference for Multi-threaded Programs

 multi-threaded computations

 information leakage by multi-threaded programs

 challenges for information-flow security for multi-threaded programs

 noninterference for multi-threaded programs

 formalizing noninterference: two traditions with pros and cons

 lifting local security guarantees to global security guarantees

Part 3: Recent Results on Concurrent Noninterference

Exercises

Bibliography

Roadmap

Heiko Mantel @ FOSAD, August 31-September 2, 2015 53

©
 H

e
ik

o
 M

a
n

te
l

Execution of a multi-threaded program

Multiple threads run concurrently:

 Each thread executes a separate program.

 Each thread has read and write access to a shared memory.

 Which thread performs the next step is determined by a scheduler.

 Synchronization between threads can be used for coordination.

What is a multi-threaded program?

Heiko Mantel @ FOSAD, August 31-September 2, 2015 54

thread-1

thread-2

thread-n

shared memory

and

communication

channels

s
c
h
e
d
u
lin

g
 a

n
d

s
y
n
c
h
ro

n
iz

a
tio

n

©
 H

e
ik

o
 M

a
n

te
l

We denote a parallel program with 𝑛 threads by .

Global configuration

 where 𝑝𝑟𝑜𝑔𝑖 ∈ 𝑃𝑟𝑜𝑔 is a program for each 𝑖 ∈ {1, … , 𝑛}

 where 𝑚𝑒𝑚: 𝑉𝑎𝑟 → 𝑉𝑎𝑙 is a memory states (like in Part 1)

Intuition: 〈𝑝𝑟𝑜𝑔1||⋯ ||𝑝𝑟𝑜𝑔𝑛 , 𝑚𝑒𝑚〉 models a snapshot,

 where 𝑝𝑟𝑜𝑔𝑖 models the program that remains to be executed by the

𝑖th thread for each 𝑖 ∈ {1, … , 𝑛} and

 where 𝑚𝑒𝑚 models the current values of all shared variables.

Example

 Two concurrent assignments remain to be executed.

 Both variables currently have value 0.

Global Configurations

Heiko Mantel @ FOSAD, August 31-September 2, 2015 55

〈𝑝𝑟𝑜𝑔1||⋯ ||𝑝𝑟𝑜𝑔𝑛 , 𝑚𝑒𝑚〉

〈𝑥 ≔ 42 || 𝑦 ≔ 𝑥 ∗ 𝑦 , 𝑥 ↦ 0, 𝑦 ↦ 0 〉

thread-1

thread-2

thread-n

shared

memory

and

communication

channels

s
c
h

e
d

u
lin

g
 a

n
d

s
y
n

c
h

ro
n

iz
a

tio
n

𝑝𝑟𝑜𝑔1||⋯ ||𝑝𝑟𝑜𝑔𝑛

©
 H

e
ik

o
 M

a
n

te
l

Local configuration

 where 𝑝𝑟𝑜𝑔 ∈ 𝑃𝑟𝑜𝑔 is a program

 where 𝑀𝑒𝑚 = 𝑉𝑎𝑟 → 𝑉𝑎𝑙 is the set of all memory states (like in Part 1)

Intuition: 𝑝𝑟𝑜𝑔,𝑚𝑒𝑚 models a snapshot of a thread’s view in a run,

 where 𝑝𝑟𝑜𝑔 models the program to be executed by the thread

 where 𝑚𝑒𝑚 models the current values of all shared variables.

Notation: Given a global configuration

we write

 #𝑔𝑐𝑛𝑓 for the number of threads, i.e. #𝑔𝑐𝑛𝑓 = 𝑛

 𝑔𝑐𝑛𝑓(𝑖) for the local configuration of the 𝑖th thread (𝑖 ∈ {1, … , #𝑔𝑐𝑛𝑓}).

That is, #𝑔𝑐𝑛𝑓 = 𝑛 and 𝑔𝑐𝑛𝑓 7 = 𝑝𝑟𝑜𝑔7, 𝑚𝑒𝑚 .

Local Configurations

Heiko Mantel @ FOSAD, August 31-September 2, 2015 56

thread-1

thread-2

thread-n

shared

memory

and

communication

channels

s
c
h

e
d

u
lin

g
 a

n
d

s
y
n

c
h

ro
n

iz
a

tio
n

𝑝𝑟𝑜𝑔,𝑚𝑒𝑚 ∈ 𝑃𝑟𝑜𝑔 ×𝑀𝑒𝑚

𝑔𝑐𝑛𝑓 = 〈𝑝𝑟𝑜𝑔1||⋯ ||𝑝𝑟𝑜𝑔𝑛 , 𝑚𝑒𝑚〉

©
 H

e
ik

o
 M

a
n

te
l

Part 1: An Introduction to Noninterference

Part 2: Noninterference for Multi-threaded Programs

 multi-threaded computations

 information leakage by multi-threaded programs

 challenges for information-flow security for multi-threaded programs

 noninterference for multi-threaded programs

 formalizing noninterference: two traditions with pros and cons

 lifting local security guarantees to global security guarantees

Part 3: Recent Results on Concurrent Noninterference

Exercises

Bibliography

Roadmap

Heiko Mantel @ FOSAD, August 31-September 2, 2015 57

©
 H

e
ik

o
 M

a
n

te
l

Labeled transitions capturing steps of a multi-threaded program

or

 where 𝑔𝑐𝑛𝑓= 〈𝑝𝑟𝑜𝑔1||⋯ ||𝑝𝑟𝑜𝑔𝑛 , 𝑚𝑒𝑚〉

 and 𝑔𝑐𝑛𝑓′= 〈𝑝𝑟𝑜𝑔1′||⋯ ||𝑝𝑟𝑜𝑔𝑛′ , 𝑚𝑒𝑚′〉 are global configurations.

How does a multi-threaded computation progress?

 The scheduler selects a thread that can perform a computation step

 and this thread performs a computation step.

OR

 The scheduler selects multiple threads that can synchronize.

 and these threads synchronize.

UNTIL all threads have terminated.

Formalizing Computation Steps

Heiko Mantel @ FOSAD, August 31-September 2, 2015 58

〈𝑝𝑟𝑜𝑔1||⋯ ||𝑝𝑟𝑜𝑔𝑛 , 𝑚𝑒𝑚〉
𝛼
→ 〈𝑝𝑟𝑜𝑔1′||⋯ ||𝑝𝑟𝑜𝑔𝑛′ , 𝑚𝑒𝑚′〉

𝑔𝑐𝑛𝑓
𝛼
→𝑔𝑐𝑛𝑓′

©
 H

e
ik

o
 M

a
n

te
l

More complex scenarios result from allowing computation steps by

multiple threads at a time, interrupts during a computation step, …

A derivation rule capturing nondeterministic scheduling

Scheduling

Heiko Mantel @ FOSAD, August 31-September 2, 2015 59

〈𝑝𝑟𝑜𝑔1||⋯ ||𝑝𝑟𝑜𝑔𝑛 , 𝑚𝑒𝑚〉
𝛼
→ 〈𝑝𝑟𝑜𝑔1′||⋯ ||𝑝𝑟𝑜𝑔𝑛′ , 𝑚𝑒𝑚′〉

𝑖 ∈ {1, … , 𝑛}

𝛼 ∈ 𝐸𝑣

𝑝𝑟𝑜𝑔𝑖 , 𝑚𝑒𝑚
𝛼
→〈𝑝𝑟𝑜𝑔𝑖

′, 𝑚𝑒𝑚′〉

∀𝑗 ∈ 1,… , 𝑛 \ 𝑖 . 𝑝𝑟𝑜𝑔𝑗′ = 𝑝𝑟𝑜𝑔𝑗

The scheduler chooses an

arbitrary thread that can

perform a computation step.

this thread performs a

computation step

no other thread

performs a step

Other scheduling strategies

are round-robin and uniform.

©
 H

e
ik

o
 M

a
n

te
l

Leakage via scheduling

A secret is leaked to an untrusted channel assuming

 variable secret contains secret information when the statement is run

 attacker can observe messages sent to untrusted-channel

 scheduler firstly selects the first thread for execution given that the

value of secret is positive and, otherwise, selects the second thread

How does the attacker deduce secret information?

 If the attacker observes the sequence [0,1] on untrusted-channel

then he knows that the initial value of secret must have been positive.

Leakage via Scheduling (1)

Heiko Mantel @ FOSAD, August 31-September 2, 2015 60

 output 0 to untrusted-channel || output 1 to untrusted-channel

attacker learns

whether initial value

of secret was positive

The scheduling choice should not depend on secrets!

©
 H

e
ik

o
 M

a
n

te
l

Leakage via scheduling

For a round-robin scheduler that re-schedules after each step:

 The sequence [1,0] would appear on untrusted-channel if the initial

value of secret is at most 1. Otherwise, [0,1] would appear.

For a uniform scheduler that chooses threads with equal probability:

 The sequence [0,1] would appear more likely on untrusted-channel

than the sequence [1,0] for high initial values of secret .

Leakage via Scheduling (2)

Heiko Mantel @ FOSAD, August 31-September 2, 2015 61

while secret > 0 do

 secret := secret – 1 od;

output 1 to untrusted-channel

skip;

skip;

output 0 to untrusted-channel

This is a so called internal timing channel – this is tricky!

©
 H

e
ik

o
 M

a
n

te
l

If the scheduler’s behavior is known then

one can take it into account when verifying information-flow security.

Problems

The scheduling algorithm is usually not even known to the programmer.

 Semantics of concurrency features in programming languages are

often underspecified to create freedom for compiler development.

Even if the scheduling algorithm is known, a scheduler-specific security

analysis is tedious. It needs to be redone for each scheduler.

Is this problem specific to software security?

No, it appears when analyzing concurrent programs wrt. any property.

How to take scheduling into account? (1)

Heiko Mantel @ FOSAD, August 31-September 2, 2015 62

This doesn’t look bad. Can we apply a standard solution?

©
 H

e
ik

o
 M

a
n

te
l

What if the scheduling algorithm is not known at analysis time?

The usual solution

Analyze the program under a possibilistic scheduler, i.e., the scheduler

that nondeterministically chooses an arbitrary thread (as on slide 9).

Underlying reasoning for why this is suitable (beware!)

The possibilistic scheduler over-approximates scheduling behavior:

 E.g., every scheduling choice that a round-robin scheduler might make

can also be made by the possibilistic scheduler.

 In contrast, the possibilistic scheduler can make scheduling choices

that the round-robin scheduler cannot make.

If one analyses a program’s behavior under a possibilistic scheduler then

one takes all behaviors possible under other schedulers into account.

How to take scheduling into account? (2)

Heiko Mantel @ FOSAD, August 31-September 2, 2015 63

Is more (i.e. over-approximation) always better?

©
 H

e
ik

o
 M

a
n

te
l

Over-approximating scheduling behavior by possibilistic scheduling

 When does it work and when not?

If the property can be characterized by a predicate of system runs

recall from Part 1 of this tutorial:

 There is a predicate 𝑃 on individual runs, i.e. 𝑃(𝜏) holds or does not

hold for a given system run 𝜏 .

 A system satisfies the property specified by 𝑃 if and only if 𝑃(𝜏)
holds for each run 𝜏 that is possible for this system.

If such a property is verified assuming possibilistic scheduling

Then the property also holds for more concrete scheduling behaviors.

How to take scheduling into account? (3)

Heiko Mantel @ FOSAD, August 31-September 2, 2015 64

It works for a large class of relevant properties!

©
 H

e
ik

o
 M

a
n

te
l

Over-approximating scheduling behavior by possibilistic scheduling

 When does it work and when not?

A more general characterization of when over-approximation is good

The property of interest quantifies over possible system runs using only

universal quantifiers.

 This holds if property is characterized by predicate on runs: ∀𝜏. 𝑃(𝜏) .

 This also holds for the definition of noninterference in Part 1 of tutorial.

When does over-approximation not work?

If the property of interest existentially quantifies over possible runs.

 ∀∃ is a quantifier structure that appears in definitions of noninterference

(will be explained later in this tutorial).

How to take scheduling into account? (4)

Heiko Mantel @ FOSAD, August 31-September 2, 2015 65

There are other solutions than possibilistic scheduling!

©
 H

e
ik

o
 M

a
n

te
l

Modifications of the shared memory (same rule as before)

Complete sharing

Every variable can, in principle, be read and written

 by every thread

 at all times.

It is the programmer’s obligation to reduce this freedom, if necessary.

Shared Memory

Heiko Mantel @ FOSAD, August 31-September 2, 2015 66

〈𝑝𝑟𝑜𝑔1||⋯ ||𝑝𝑟𝑜𝑔𝑛 , 𝑚𝑒𝑚〉
𝛼
→ 〈𝑝𝑟𝑜𝑔1′||⋯ ||𝑝𝑟𝑜𝑔𝑛′ , 𝑚𝑒𝑚′〉

𝑖 ∈ {1, … , 𝑛}

𝛼 ∈ 𝐸𝑣

𝑝𝑟𝑜𝑔𝑖 , 𝑚𝑒𝑚
𝛼
→〈𝑝𝑟𝑜𝑔𝑖

′, 𝑚𝑒𝑚′〉

∀𝑗 ∈ 1,… , 𝑛 \ 𝑖 . 𝑝𝑟𝑜𝑔𝑗′ = 𝑝𝑟𝑜𝑔𝑗

the modification of shared variables are

propagated from premise to conclusion

More complex scenarios possible, e.g., threads with local memory,

non-atomic memory updates, and relaxed consistency guarantees.

©
 H

e
ik

o
 M

a
n

te
l

None of the following programs, alone causes information leakage:

Leakage by fine-grained resource sharing (here: program variables)

How does the attacker deduce secret information?

 If the attacker observes any value other than 0 on untrusted-channel

then he knows that this was the initial value of secret .

Leakage via Shared Memory

Heiko Mantel @ FOSAD, August 31-September 2, 2015 67

x:=secret; x:=0

x:=0; output x to untrusted-channel

output x to untrusted-channel x:=secret; x:=0

attacker might learn

initial value of secret

This is tricky! I will get back to this.

©
 H

e
ik

o
 M

a
n

te
l

A barrier command: barrier

Intuition: Passing a barrier has no effect other than passing the barrier.

However, certain conditions must be fulfilled in order to pass (next slide).

Derivation rule for the barrier command

Programming language after adding the barrier command

 𝑝𝑟𝑜𝑔 ≔ stop skip 𝑥 ≔ 𝑎𝑒𝑥𝑝 | barrier

 | input 𝑥 from 𝑐ℎ | output 𝑎𝑒𝑥𝑝 to 𝑐ℎ

 𝑝𝑟𝑜𝑔; 𝑝𝑟𝑜𝑔 if 𝑏𝑒𝑥𝑝 then 𝑝𝑟𝑜𝑔 else 𝑝𝑟𝑜𝑔 fi

 | while 𝑏𝑒𝑥𝑝 do 𝑝𝑟𝑜𝑔 od

Synchronization (1)

Heiko Mantel @ FOSAD, August 31-September 2, 2015 68

𝑏𝑎𝑟𝑟𝑖𝑒𝑟,𝑚𝑒𝑚
𝑠𝑦𝑛𝑐

〈stop,𝑚𝑒𝑚〉 event 𝑠𝑦𝑛𝑐 is emitted

©
 H

e
ik

o
 M

a
n

te
l

There are variants of this barrier command, e.g., only a dedicated

subset of threads needs to participate or only a certain number

threads needs to participate in passing the barrier jointly.

Barrier synchronization

Synchronization (2)

Heiko Mantel @ FOSAD, August 31-September 2, 2015 69

at least one thread

has not yet terminated

each thread that has not

yet terminated performs a

step that emits 𝑠𝑦𝑛𝑐

〈𝑝𝑟𝑜𝑔1||⋯ ||𝑝𝑟𝑜𝑔𝑛 , 𝑚𝑒𝑚〉
.
→ 〈𝑝𝑟𝑜𝑔1′||⋯ ||𝑝𝑟𝑜𝑔𝑛′ , 𝑚𝑒𝑚〉

∀ 𝑖 ∈ 1, … , 𝑛 . 𝑝𝑟𝑜𝑔𝑖 = stop ∧ 𝑝𝑟𝑜𝑔𝑖′ = 𝑝𝑟𝑜𝑔𝑖

 ∨ 𝑝𝑟𝑜𝑔𝑖 , 𝑚𝑒𝑚
𝑠𝑦𝑛𝑐

〈𝑝𝑟𝑜𝑔𝑖
′, 𝑚𝑒𝑚〉

∃ 𝑖 ∈ 1, … , 𝑛 . 𝑝𝑟𝑜𝑔𝑖 ≠ stop

There are many further synchronization primitives, e.g., locks, …

©
 H

e
ik

o
 M

a
n

te
l

Example

What are the possible observations of an attacker during a run?

1. no output on untrusted-channel yet

2. [0] has been output on untrusted-channel so far

3. [1] has been output on untrusted-channel so far

4. [0,1] has been output on untrusted-channel so far

5. [1,0] has been output on untrusted-channel so far

What can the attacker deduce?

In the 3rd and 5th case above, the attacker learns that the initial value of

secret must have been positive because that 1 is output first, is only

possible if both threads jointly pass the barrier.

Leakage via Synchronization (1)

Heiko Mantel @ FOSAD, August 31-September 2, 2015 70

if secret > 0 then barrier

 else skip fi;

output 0 to untrusted-channel

barrier;

output 1 to untrusted-channel

©
 H

e
ik

o
 M

a
n

te
l

Example

What are the possible observations of an attacker during a run?

[], [0], [1], [0,1], and [1,0] could be observed on untrusted-channel

What can the attacker deduce?

From [1] and [1,0], the attacker learns that the initial value of secret must

have been positive. If [0] or [0,1] occurs secret > 0 was initially false.

Leakage via Synchronization (2)

Heiko Mantel @ FOSAD, August 31-September 2, 2015 71

if secret > 0 then barrier

 else skip fi;

output 0 to untrusted-channel

if secret > 0 then skip

 else barrier fi;

output 1 to untrusted-channel

Synchronization statements need similar care like public outputs!

Whether a barrier is reached should not depend on secrets!

©
 H

e
ik

o
 M

a
n

te
l

Labeled transitions capturing runs

Rules

Runs of Multi-threaded Programs

Heiko Mantel @ FOSAD, August 31-September 2, 2015 72

〈𝑝𝑟𝑜𝑔1||⋯ ||𝑝𝑟𝑜𝑔𝑛, 𝑚𝑒𝑚〉
𝜏
 〈𝑝𝑟𝑜𝑔1′||⋯ ||𝑝𝑟𝑜𝑔𝑛′, 𝑚𝑒𝑚′〉

〈𝑝𝑟𝑜𝑔1||⋯ ||𝑝𝑟𝑜𝑔𝑛, 𝑚𝑒𝑚〉
[]
 〈𝑝𝑟𝑜𝑔1||⋯ ||𝑝𝑟𝑜𝑔𝑛, 𝑚𝑒𝑚〉

〈𝑝𝑟𝑜𝑔1||⋯ ||𝑝𝑟𝑜𝑔𝑛, 𝑚𝑒𝑚〉
[𝛼,𝛼1,…,𝛼𝑛]

〈𝑝𝑟𝑜𝑔1′′||⋯ ||𝑝𝑟𝑜𝑔𝑛′′, 𝑚𝑒𝑚′′〉

〈𝑝𝑟𝑜𝑔1||⋯ ||𝑝𝑟𝑜𝑔𝑛, 𝑚𝑒𝑚〉
𝛼
→ 〈𝑝𝑟𝑜𝑔1′||⋯ ||𝑝𝑟𝑜𝑔𝑛′, 𝑚𝑒𝑚′〉

〈𝑝𝑟𝑜𝑔1′||⋯ ||𝑝𝑟𝑜𝑔𝑛′, 𝑚𝑒𝑚′〉
[𝛼1,…,𝛼𝑛]

 〈𝑝𝑟𝑜𝑔1′′||⋯ ||𝑝𝑟𝑜𝑔𝑛′′, 𝑚𝑒𝑚′′〉

This lifting of steps to runs is similar as for sequential programs.

©
 H

e
ik

o
 M

a
n

te
l

Part 1: An Introduction to Noninterference

Part 2: Noninterference for Multi-threaded Programs

 multi-threaded computations

 information leakage by multi-threaded programs

 challenges for information-flow security for multi-threaded programs

 noninterference for multi-threaded programs

 formalizing noninterference: two traditions with pros and cons

 lifting local security guarantees to global security guarantees

Part 3: Recent Results on Concurrent Noninterference

Exercises

Bibliography

Roadmap

Heiko Mantel @ FOSAD, August 31-September 2, 2015 73

©
 H

e
ik

o
 M

a
n

te
l

Information-flow security for multi-threaded programs is tricky

In comparison to sequential programs, further leaks are possible:

 leakage via scheduling,

 leakage via fine-grained resource sharing, and

 leakage via synchronization.

Solutions should fulfill further conditions than avoiding such leaks:

 Platform-independent semantics of languages should be supported.

 Precision should be high enough to not

 reject too many programs as potentially insecure (for analyses)

 interfere with too many benign program behaviors (for enforcement)

Summary of Observations so far

Heiko Mantel @ FOSAD, August 31-September 2, 2015 74

Obtaining such solutions is subject to current and future research!

©
 H

e
ik

o
 M

a
n

te
l

1. Create all possible derivations of

2. Which values can 𝜏 and 𝑚𝑒𝑚′ take?

3. Develop a formal definition of noninterference for multi-threaded

programs that faithfully captures our informal definition

 if the initial values of all variables in high ⊆ Var are the secrets

 for attackers that can only observe the initial and final values of

variables in the set low = Var\high .

4. Add the command spawn 𝑝𝑟𝑜𝑔 to the syntax of our programming

language. This command terminates while creating a new thread

that shall execute the program 𝑝𝑟𝑜𝑔. Formalize the semantics of

this command by adding rules.

5. Augment the language by further synchronization commands.

Some Exercises (Homework 3)

Heiko Mantel @ FOSAD, August 31-September 2, 2015 75

x ≔ secret; x:=0 || output x to untrusted-channel , [x ↦ 0]
𝝉
 〈〈 stop || stop,𝑚𝑒𝑚′〉〉

©
 H

e
ik

o
 M

a
n

te
l

break & time for homework

End of presentation on September 1

Heiko Mantel @ FOSAD, August 31-September 2, 2015 76

