
©
 H

e
ik

o
 M

a
n

te
l

Concurrent Noninterference
Day 2: Noninterference for multi-threaded programs

Heiko Mantel, Computer Science Department, TU Darmstadt

FOSAD Summer School 2015

Heiko Mantel @ FOSAD, August 31-September 2, 2015 1

collaborators on this topic

Aslan Askarov, Timo Bähr, Steve Chong, Steffen Lortz,

Alexander Lux, Matthias Perner, Andrei Sabelfeld, David

Sands, Jens Sauer, David Schneider, Artem Starostin,

Henning Sudbrock, Alexandra Weber, …

©
 H

e
ik

o
 M

a
n

te
l

Information-flow security for sequential programs

 formulation of noninterference-like properties

 very many analysis techniques and tools

 many with soundness proofs for some noninterference-like property

 tradeoff between precision and efficiency is understood some extent

⇒ Theoretical foundations are sufficiently well developed for applications.

Is information-flow security for concurrent programs more complex?

 If yes, how much more?

 Are there any substantial additional difficulties?

 How can these additional difficulties be approached?

 How mature are the current solutions?

From Sequential to Concurrent Computation

Heiko Mantel @ FOSAD, August 31-September 2, 2015 2

You will be able to answer these questions after this part of the tutorial.

©
 H

e
ik

o
 M

a
n

te
l

Part 1: An Introduction to Noninterference

Part 2: Noninterference for Multi-threaded Programs

 multi-threaded computations

 information leakage by multi-threaded programs

 challenges for information-flow security for multi-threaded programs

 noninterference for multi-threaded programs

 formalizing noninterference: two traditions with pros and cons

 lifting local security guarantees to global security guarantees

Part 3: Recent Results on Concurrent Noninterference

Exercises

Bibliography

Roadmap

Heiko Mantel @ FOSAD, August 31-September 2, 2015 3

©
 H

e
ik

o
 M

a
n

te
l

Execution of a multi-threaded program

Multiple threads run concurrently:

 Each thread executes a separate program.

 Each thread has read and write access to a shared memory.

 Which thread performs the next step is determined by a scheduler.

 Synchronization between threads can be used for coordination.

What is a multi-threaded program?

Heiko Mantel @ FOSAD, August 31-September 2, 2015 4

thread-1

thread-2

thread-n

shared memory

and

communication

channels

s
c
h
e
d
u
lin

g
 a

n
d

s
y
n
c
h
ro

n
iz

a
tio

n

©
 H

e
ik

o
 M

a
n

te
l

We denote a parallel program with 𝑛 threads by .

Global configuration

 where 𝑝𝑟𝑜𝑔𝑖 ∈ 𝑃𝑟𝑜𝑔 is a program for each 𝑖 ∈ {1, … , 𝑛}

 where 𝑚𝑒𝑚: 𝑉𝑎𝑟 → 𝑉𝑎𝑙 is a memory states (like in Part 1)

Intuition: 〈𝑝𝑟𝑜𝑔1|| ⋯ ||𝑝𝑟𝑜𝑔𝑛 , 𝑚𝑒𝑚〉 models a snapshot,

 where 𝑝𝑟𝑜𝑔𝑖 models the program that remains to be executed by the

𝑖th thread for each 𝑖 ∈ {1, … , 𝑛} and

 where 𝑚𝑒𝑚 models the current values of all shared variables.

Example

 Two concurrent assignments remain to be executed.

 Both variables currently have value 0.

Global Configurations

Heiko Mantel @ FOSAD, August 31-September 2, 2015 5

〈𝑝𝑟𝑜𝑔1|| ⋯ ||𝑝𝑟𝑜𝑔𝑛 , 𝑚𝑒𝑚〉

〈𝑥 ≔ 42 || 𝑦 ≔ 𝑥 ∗ 𝑦 , 𝑥 ↦ 0, 𝑦 ↦ 0 〉

thread-1

thread-2

thread-n

shared

memory

and

communication

channels

s
c
h

e
d

u
lin

g
 a

n
d

s
y
n

c
h

ro
n

iz
a

tio
n

𝑝𝑟𝑜𝑔1|| ⋯ ||𝑝𝑟𝑜𝑔𝑛

©
 H

e
ik

o
 M

a
n

te
l

Local configuration

 where 𝑝𝑟𝑜𝑔 ∈ 𝑃𝑟𝑜𝑔 is a program

 where 𝑀𝑒𝑚 = 𝑉𝑎𝑟 → 𝑉𝑎𝑙 is the set of all memory states (like in Part 1)

Intuition: 𝑝𝑟𝑜𝑔, 𝑚𝑒𝑚 models a snapshot of a thread’s view in a run,

 where 𝑝𝑟𝑜𝑔 models the program to be executed by the thread

 where 𝑚𝑒𝑚 models the current values of all shared variables.

Notation: Given a global configuration

we write

 #𝑔𝑐𝑛𝑓 for the number of threads, i.e. #𝑔𝑐𝑛𝑓 = 𝑛

 𝑔𝑐𝑛𝑓(𝑖) for the local configuration of the 𝑖th thread (𝑖 ∈ {1, … , #𝑔𝑐𝑛𝑓}).

That is, #𝑔𝑐𝑛𝑓 = 𝑛 and 𝑔𝑐𝑛𝑓 7 = 𝑝𝑟𝑜𝑔7, 𝑚𝑒𝑚 .

Local Configurations

Heiko Mantel @ FOSAD, August 31-September 2, 2015 6

thread-1

thread-2

thread-n

shared

memory

and

communication

channels

s
c
h

e
d

u
lin

g
 a

n
d

s
y
n

c
h

ro
n

iz
a

tio
n

𝑝𝑟𝑜𝑔, 𝑚𝑒𝑚 ∈ 𝑃𝑟𝑜𝑔 × 𝑀𝑒𝑚

𝑔𝑐𝑛𝑓 = 〈𝑝𝑟𝑜𝑔1|| ⋯ ||𝑝𝑟𝑜𝑔𝑛 , 𝑚𝑒𝑚〉

©
 H

e
ik

o
 M

a
n

te
l

Part 1: An Introduction to Noninterference

Part 2: Noninterference for Multi-threaded Programs

 multi-threaded computations

 information leakage by multi-threaded programs

 challenges for information-flow security for multi-threaded programs

 noninterference for multi-threaded programs

 formalizing noninterference: two traditions with pros and cons

 lifting local security guarantees to global security guarantees

Part 3: Recent Results on Concurrent Noninterference

Exercises

Bibliography

Roadmap

Heiko Mantel @ FOSAD, August 31-September 2, 2015 7

©
 H

e
ik

o
 M

a
n

te
l

Labeled transitions capturing steps of a multi-threaded program

or

 where 𝑔𝑐𝑛𝑓= 〈𝑝𝑟𝑜𝑔1|| ⋯ ||𝑝𝑟𝑜𝑔𝑛 , 𝑚𝑒𝑚〉

 and 𝑔𝑐𝑛𝑓′= 〈𝑝𝑟𝑜𝑔1′|| ⋯ ||𝑝𝑟𝑜𝑔𝑛′ , 𝑚𝑒𝑚′〉 are global configurations.

How does a multi-threaded computation progress?

 The scheduler selects a thread that can perform a computation step

 and this thread performs a computation step.

OR

 The scheduler selects multiple threads that can synchronize.

 and these threads synchronize.

UNTIL all threads have terminated.

Formalizing Computation Steps

Heiko Mantel @ FOSAD, August 31-September 2, 2015 8

〈𝑝𝑟𝑜𝑔1|| ⋯ ||𝑝𝑟𝑜𝑔𝑛 , 𝑚𝑒𝑚〉
𝛼
→ 〈𝑝𝑟𝑜𝑔1′|| ⋯ ||𝑝𝑟𝑜𝑔𝑛′ , 𝑚𝑒𝑚′〉

𝑔𝑐𝑛𝑓
𝛼
→ 𝑔𝑐𝑛𝑓′

©
 H

e
ik

o
 M

a
n

te
l

More complex scenarios result from allowing computation steps by

multiple threads at a time, interrupts during a computation step, …

A derivation rule capturing nondeterministic scheduling

Scheduling

Heiko Mantel @ FOSAD, August 31-September 2, 2015 9

〈𝑝𝑟𝑜𝑔1|| ⋯ ||𝑝𝑟𝑜𝑔𝑛 , 𝑚𝑒𝑚〉
𝛼
→ 〈𝑝𝑟𝑜𝑔1′|| ⋯ ||𝑝𝑟𝑜𝑔𝑛′ , 𝑚𝑒𝑚′〉

𝑖 ∈ {1, … , 𝑛}

𝛼 ∈ 𝐸𝑣

𝑝𝑟𝑜𝑔𝑖 , 𝑚𝑒𝑚
𝛼
→ 〈𝑝𝑟𝑜𝑔𝑖

′, 𝑚𝑒𝑚′〉

∀𝑗 ∈ 1, … , 𝑛 \ 𝑖 . 𝑝𝑟𝑜𝑔𝑗′ = 𝑝𝑟𝑜𝑔𝑗

The scheduler chooses an

arbitrary thread that can

perform a computation step.

this thread performs a

computation step

no other thread

performs a step

Other scheduling strategies

are round-robin and uniform.

©
 H

e
ik

o
 M

a
n

te
l

Leakage via scheduling

A secret is leaked to an untrusted channel assuming

 variable secret contains secret information when the statement is run

 attacker can observe messages sent to untrusted-channel

 scheduler firstly selects the first thread for execution given that the

value of secret is positive and, otherwise, selects the second thread

How does the attacker deduce secret information?

 If the attacker observes the sequence [0,1] on untrusted-channel

then he knows that the initial value of secret must have been positive.

Leakage via Scheduling (1)

Heiko Mantel @ FOSAD, August 31-September 2, 2015 10

 output 0 to untrusted-channel || output 1 to untrusted-channel

attacker learns

whether initial value

of secret was positive

The scheduling choice should not depend on secrets!

©
 H

e
ik

o
 M

a
n

te
l

Leakage via scheduling

For a round-robin scheduler that re-schedules after each step:

 The sequence [1,0] would appear on untrusted-channel if the initial

value of secret is at most 1. Otherwise, [0,1] would appear.

For a uniform scheduler that chooses threads with equal probability:

 The sequence [0,1] would appear more likely on untrusted-channel

than the sequence [1,0] for high initial values of secret .

Leakage via Scheduling (2)

Heiko Mantel @ FOSAD, August 31-September 2, 2015 11

while secret > 0 do

 secret := secret – 1 od;

output 1 to untrusted-channel

skip;

skip;

output 0 to untrusted-channel

This is a so called internal timing channel – this is tricky!

©
 H

e
ik

o
 M

a
n

te
l

If the scheduler’s behavior is known then

one can take it into account when verifying information-flow security.

Problems

The scheduling algorithm is usually not even known to the programmer.

 Semantics of concurrency features in programming languages are

often underspecified to create freedom for compiler development.

Even if the scheduling algorithm is known, a scheduler-specific security

analysis is tedious. It needs to be redone for each scheduler.

Is this problem specific to software security?

No, it appears when analyzing concurrent programs wrt. any property.

How to take scheduling into account? (1)

Heiko Mantel @ FOSAD, August 31-September 2, 2015 12

This doesn’t look bad. Can we apply a standard solution?

©
 H

e
ik

o
 M

a
n

te
l

What if the scheduling algorithm is not known at analysis time?

The usual solution

Analyze the program under a possibilistic scheduler, i.e., the scheduler

that nondeterministically chooses an arbitrary thread (as on slide 9).

Underlying reasoning for why this is suitable (beware!)

The possibilistic scheduler over-approximates scheduling behavior:

 E.g., every scheduling choice that a round-robin scheduler might make

can also be made by the possibilistic scheduler.

 In contrast, the possibilistic scheduler can make scheduling choices

that the round-robin scheduler cannot make.

If one analyses a program’s behavior under a possibilistic scheduler then

one takes all behaviors possible under other schedulers into account.

How to take scheduling into account? (2)

Heiko Mantel @ FOSAD, August 31-September 2, 2015 13

Is more (i.e. over-approximation) always better?

©
 H

e
ik

o
 M

a
n

te
l

Over-approximating scheduling behavior by possibilistic scheduling

 When does it work and when not?

If the property can be characterized by a predicate of system runs

recall from Part 1 of this tutorial:

 There is a predicate 𝑃 on individual runs, i.e. 𝑃(𝜏) holds or does not

hold for a given system run 𝜏 .

 A system satisfies the property specified by 𝑃 if and only if 𝑃(𝜏)

holds for each run 𝜏 that is possible for this system.

If such a property is verified assuming possibilistic scheduling

Then the property also holds for more concrete scheduling behaviors.

How to take scheduling into account? (3)

Heiko Mantel @ FOSAD, August 31-September 2, 2015 14

It works for a large class of relevant properties!

©
 H

e
ik

o
 M

a
n

te
l

Over-approximating scheduling behavior by possibilistic scheduling

 When does it work and when not?

A more general characterization of when over-approximation is good

The property of interest quantifies over possible system runs using only

universal quantifiers.

 This holds if property is characterized by predicate on runs: ∀𝜏. 𝑃(𝜏) .

 This also holds for the definition of noninterference in Part 1 of tutorial.

When does over-approximation not work?

If the property of interest existentially quantifies over possible runs.

 ∀∃ is a quantifier structure that appears in definitions of noninterference

(will be explained later in this tutorial).

How to take scheduling into account? (4)

Heiko Mantel @ FOSAD, August 31-September 2, 2015 15

There are other solutions than possibilistic scheduling!

©
 H

e
ik

o
 M

a
n

te
l

Modifications of the shared memory (same rule as before)

Complete sharing

Every variable can, in principle, be read and written

 by every thread

 at all times.

It is the programmer’s obligation to reduce this freedom, if necessary.

Shared Memory

Heiko Mantel @ FOSAD, August 31-September 2, 2015 16

〈𝑝𝑟𝑜𝑔1|| ⋯ ||𝑝𝑟𝑜𝑔𝑛 , 𝑚𝑒𝑚〉
𝛼
→ 〈𝑝𝑟𝑜𝑔1′|| ⋯ ||𝑝𝑟𝑜𝑔𝑛′ , 𝑚𝑒𝑚′〉

𝑖 ∈ {1, … , 𝑛}

𝛼 ∈ 𝐸𝑣

𝑝𝑟𝑜𝑔𝑖 , 𝑚𝑒𝑚
𝛼
→ 〈𝑝𝑟𝑜𝑔𝑖

′, 𝑚𝑒𝑚′〉

∀𝑗 ∈ 1, … , 𝑛 \ 𝑖 . 𝑝𝑟𝑜𝑔𝑗′ = 𝑝𝑟𝑜𝑔𝑗

the modification of shared variables are

propagated from premise to conclusion

More complex scenarios possible, e.g., threads with local memory,

non-atomic memory updates, and relaxed consistency guarantees.

©
 H

e
ik

o
 M

a
n

te
l

None of the following programs, alone causes information leakage:

Leakage by fine-grained resource sharing (here: program variables)

How does the attacker deduce secret information?

 If the attacker observes any value other than 0 on untrusted-channel

then he knows that this was the initial value of secret .

Leakage via Shared Memory

Heiko Mantel @ FOSAD, August 31-September 2, 2015 17

x:=secret; x:=0

x:=0; output x to untrusted-channel

output x to untrusted-channel x:=secret; x:=0

attacker might learn

initial value of secret

This is tricky! I will get back to this.

©
 H

e
ik

o
 M

a
n

te
l

A barrier command: barrier

Intuition: Passing a barrier has no effect other than passing the barrier.

However, certain conditions must be fulfilled in order to pass (next slide).

Derivation rule for the barrier command

Programming language after adding the barrier command

 𝑝𝑟𝑜𝑔 ≔ stop skip 𝑥 ≔ 𝑎𝑒𝑥𝑝 | barrier

 | input 𝑥 from 𝑐ℎ | output 𝑎𝑒𝑥𝑝 to 𝑐ℎ

 𝑝𝑟𝑜𝑔; 𝑝𝑟𝑜𝑔 if 𝑏𝑒𝑥𝑝 then 𝑝𝑟𝑜𝑔 else 𝑝𝑟𝑜𝑔 fi

 | while 𝑏𝑒𝑥𝑝 do 𝑝𝑟𝑜𝑔 od

Synchronization (1)

Heiko Mantel @ FOSAD, August 31-September 2, 2015 18

𝑏𝑎𝑟𝑟𝑖𝑒𝑟, 𝑚𝑒𝑚
𝑠𝑦𝑛𝑐

〈stop, 𝑚𝑒𝑚〉 event 𝑠𝑦𝑛𝑐 is emitted

©
 H

e
ik

o
 M

a
n

te
l

There are variants of this barrier command, e.g., only a dedicated

subset of threads needs to participate or only a certain number

threads needs to participate in passing the barrier jointly.

Barrier synchronization

Synchronization (2)

Heiko Mantel @ FOSAD, August 31-September 2, 2015 19

at least one thread

has not yet terminated

each thread that has not

yet terminated performs a

step that emits 𝑠𝑦𝑛𝑐

〈𝑝𝑟𝑜𝑔1|| ⋯ ||𝑝𝑟𝑜𝑔𝑛 , 𝑚𝑒𝑚〉
.

→ 〈𝑝𝑟𝑜𝑔1′|| ⋯ ||𝑝𝑟𝑜𝑔𝑛′ , 𝑚𝑒𝑚〉

∀ 𝑖 ∈ 1, … , 𝑛 . 𝑝𝑟𝑜𝑔𝑖 = stop ∧ 𝑝𝑟𝑜𝑔𝑖′ = 𝑝𝑟𝑜𝑔𝑖

 ∨ 𝑝𝑟𝑜𝑔𝑖 , 𝑚𝑒𝑚
𝑠𝑦𝑛𝑐

〈𝑝𝑟𝑜𝑔𝑖
′, 𝑚𝑒𝑚〉

∃ 𝑖 ∈ 1, … , 𝑛 . 𝑝𝑟𝑜𝑔𝑖 ≠ stop

There are many further synchronization primitives, e.g., locks, …

©
 H

e
ik

o
 M

a
n

te
l

Example

What are the possible observations of an attacker during a run?

1. no output on untrusted-channel yet

2. [0] has been output on untrusted-channel so far

3. [1] has been output on untrusted-channel so far

4. [0,1] has been output on untrusted-channel so far

5. [1,0] has been output on untrusted-channel so far

What can the attacker deduce?

In the 3rd and 5th case above, the attacker learns that the initial value of

secret must have been positive because that 1 is output first, is only

possible if both threads jointly pass the barrier.

Leakage via Synchronization (1)

Heiko Mantel @ FOSAD, August 31-September 2, 2015 20

if secret > 0 then barrier

 else skip fi;

output 0 to untrusted-channel

barrier;

output 1 to untrusted-channel

©
 H

e
ik

o
 M

a
n

te
l

Example

What are the possible observations of an attacker during a run?

[], [0], [1], [0,1], and [1,0] could be observed on untrusted-channel

What can the attacker deduce?

From [1] and [1,0], the attacker learns that the initial value of secret must

have been positive. If [0] or [0,1] occurs secret > 0 was initially false.

Leakage via Synchronization (2)

Heiko Mantel @ FOSAD, August 31-September 2, 2015 21

if secret > 0 then barrier

 else skip fi;

output 0 to untrusted-channel

if secret > 0 then skip

 else barrier fi;

output 1 to untrusted-channel

Synchronization statements need similar care like public outputs!

Whether a barrier is reached should not depend on secrets!

©
 H

e
ik

o
 M

a
n

te
l

Labeled transitions capturing runs

Rules

Runs of Multi-threaded Programs

Heiko Mantel @ FOSAD, August 31-September 2, 2015 22

〈𝑝𝑟𝑜𝑔1|| ⋯ ||𝑝𝑟𝑜𝑔𝑛, 𝑚𝑒𝑚〉
𝜏

⇒ 〈𝑝𝑟𝑜𝑔1′|| ⋯ ||𝑝𝑟𝑜𝑔𝑛′, 𝑚𝑒𝑚′〉

〈𝑝𝑟𝑜𝑔1|| ⋯ ||𝑝𝑟𝑜𝑔𝑛, 𝑚𝑒𝑚〉
[]
⇒ 〈𝑝𝑟𝑜𝑔1|| ⋯ ||𝑝𝑟𝑜𝑔𝑛, 𝑚𝑒𝑚〉

〈𝑝𝑟𝑜𝑔1|| ⋯ ||𝑝𝑟𝑜𝑔𝑛, 𝑚𝑒𝑚〉
[𝛼,𝛼1,…,𝛼𝑛]

〈𝑝𝑟𝑜𝑔1′′|| ⋯ ||𝑝𝑟𝑜𝑔𝑛′′, 𝑚𝑒𝑚′′〉

〈𝑝𝑟𝑜𝑔1|| ⋯ ||𝑝𝑟𝑜𝑔𝑛, 𝑚𝑒𝑚〉
𝛼
→ 〈𝑝𝑟𝑜𝑔1′|| ⋯ ||𝑝𝑟𝑜𝑔𝑛′, 𝑚𝑒𝑚′〉

〈𝑝𝑟𝑜𝑔1′|| ⋯ ||𝑝𝑟𝑜𝑔𝑛′, 𝑚𝑒𝑚′〉
[𝛼1,…,𝛼𝑛]

 〈𝑝𝑟𝑜𝑔1′′|| ⋯ ||𝑝𝑟𝑜𝑔𝑛′′, 𝑚𝑒𝑚′′〉

This lifting of steps to runs is similar as for sequential programs.

©
 H

e
ik

o
 M

a
n

te
l

Part 1: An Introduction to Noninterference

Part 2: Noninterference for Multi-threaded Programs

 multi-threaded computations

 information leakage by multi-threaded programs

 challenges for information-flow security for multi-threaded programs

 noninterference for multi-threaded programs

 formalizing noninterference: two traditions with pros and cons

 lifting local security guarantees to global security guarantees

Part 3: Recent Results on Concurrent Noninterference

Exercises

Bibliography

Roadmap

Heiko Mantel @ FOSAD, August 31-September 2, 2015 23

©
 H

e
ik

o
 M

a
n

te
l

Information-flow security for multi-threaded programs is tricky

In comparison to sequential programs, further leaks are possible:

 leakage via scheduling,

 leakage via fine-grained resource sharing, and

 leakage via synchronization.

Solutions should fulfill further conditions than avoiding such leaks:

 Platform-independent semantics of languages should be supported.

 Precision should be high enough to not

 reject too many programs as potentially insecure (for analyses)

 interfere with too many benign program behaviors (for enforcement)

Summary of Observations so far

Heiko Mantel @ FOSAD, August 31-September 2, 2015 24

Obtaining such solutions is subject to current and future research!

©
 H

e
ik

o
 M

a
n

te
l

1. Create all possible derivations of

 For which values of 𝜏 and 𝑚𝑒𝑚′ exists a derivation?

2. Develop a formal definition of noninterference for multi-threaded

programs that faithfully captures our informal definition

 if the initial values of all variables in high ⊆ Var are the secrets

 for attackers that can only observe the initial and final values of

variables in the set low = Var\high .

3. Add the command spawn 𝑝𝑟𝑜𝑔 to the syntax of our programming

language. This command terminates while creating a new thread

that shall execute the program 𝑝𝑟𝑜𝑔. Formalize the semantics of

this command by adding rules.

4. Augment the language by further synchronization commands.

Some Exercises (Homework 3)

Heiko Mantel @ FOSAD, August 31-September 2, 2015 25

x ≔ secret; x:=0 || output x to untrusted−channel , [x ↦ 0]
𝝉

⇒ 〈〈 stop || stop, 𝑚𝑒𝑚′〉〉

©
 H

e
ik

o
 M

a
n

te
l

break & time for homework

End of presentation on September 1

Heiko Mantel @ FOSAD, August 31-September 2, 2015 26

©
 H

e
ik

o
 M

a
n

te
l

Part 1: An Introduction to Noninterference

Part 2: Noninterference for Multi-threaded Programs

 multi-threaded computations

 information leakage by multi-threaded programs

 challenges for information-flow security for multi-threaded programs

 noninterference for multi-threaded programs

 formalizing noninterference: two traditions with pros and cons

 lifting local security guarantees to global security guarantees

Part 3: Recent Results on Concurrent Noninterference

Exercises

Bibliography

Roadmap

Heiko Mantel @ FOSAD, August 31-September 2, 2015 27

©
 H

e
ik

o
 M

a
n

te
l

Noninterference informally (like in Part 1 of the tutorial)

A program is noninterferent if the observations that an attacker makes

during runs of this program do not depend on secrets in any way.

A formal definition of noninterference (like in Part 1)

A program 𝑝𝑟𝑜𝑔 is noninterferent if and only if

Formalizing Noninterference (1)

Heiko Mantel @ FOSAD, August 31-September 2, 2015 28

∀𝑚𝑒𝑚1, 𝑚𝑒𝑚2, 𝑚𝑒𝑚1′, 𝑚𝑒𝑚2′: 𝑉𝑎𝑟 → 𝑉𝑎𝑙 . ∀𝜏, 𝜏′ ∈ 𝐸𝑣∗.

[𝑝𝑟𝑜𝑔, 𝑚𝑒𝑚1
𝜏

⇒ 𝑠𝑡𝑜𝑝, 𝑚𝑒𝑚2 ∧ 𝑚𝑒𝑚1′ =𝐥𝐨𝐰 𝑚𝑒𝑚1]

 ⇒ [𝑝𝑟𝑜𝑔, 𝑚𝑒𝑚1′
𝜏′

⇒ 𝑠𝑡𝑜𝑝, 𝑚𝑒𝑚2′ ⇒ 𝑚𝑒𝑚2′ =𝐥𝐨𝐰 𝑚𝑒𝑚2]

Let us now modify this definition of noninterference such that we

obtain a definition of noninterference for an attacker who can

messages output on some channels.

©
 H

e
ik

o
 M

a
n

te
l

Choice: What is secret? (like in Part 1)

There is a dedicated set of variables high ⊆ Var . The initial values of

these variables must be kept confidential.

Choice: What can the attacker observe? (difference to Part 1)

There is a dedicated set of variables low = Var\high . The initial and

final values of these variables are what the attacker observes.

In addition, there is a dedicated set of channels L ⊆ Ch. The attacker can

observe all messages output on these channels.

Formalizing Noninterference (2)

Heiko Mantel @ FOSAD, August 31-September 2, 2015 29

To proceed, we need a definitions of indistinguishability

for events and for event sequences.

©
 H

e
ik

o
 M

a
n

te
l

Indistinguishability of memories for the attacker (like in Part 1)

Two memories 𝑚𝑒𝑚, 𝑚𝑒𝑚′: 𝑉𝑎𝑟 → 𝑉𝑎𝑙 are indistinguishable (denoted by

𝑚𝑒𝑚 =𝐥𝐨𝐰 𝑚𝑒𝑚’) if and only if

Indistinguishability of events for the attacker (new)

Two events 𝛼, 𝛼′ ∈ 𝐸𝑣 are indistinguishable (denoted by 𝛼 =𝐋 𝛼′) iff

Formalizing Noninterference (3)

Heiko Mantel @ FOSAD, August 31-September 2, 2015 30

∀𝑥 ∈ 𝐥𝐨𝐰. 𝑚𝑒𝑚 𝑥 = 𝑚𝑒𝑚′(𝑥)

𝛼, 𝛼′ ∈ { ⋅, 𝑖𝑛𝑝𝑢𝑡 𝑐ℎ, 𝑛 , 𝑜𝑢𝑡𝑝𝑢𝑡 𝑐ℎ′, 𝑛 ∣ 𝑛 ∈ 𝑉𝑎𝑙, 𝑐ℎ ∈ 𝐶ℎ, 𝑐ℎ′ ∈ 𝐶ℎ ∖ 𝐋}
∨ ∃𝑐ℎ𝑙 ∈ 𝐋. ∃𝑛 ∈ 𝑉𝑎𝑙. (𝛼 = 𝑜𝑢𝑡𝑝𝑢𝑡 𝑐ℎ𝑙 , 𝑛 ∧ 𝛼′ = 𝑜𝑢𝑡𝑝𝑢𝑡 𝑐ℎ𝑙 , 𝑛)

Two output events on an observable channel are

indistinguishable only if they agree on both, the

channel and the value.

We next lift this to indistinguishability on sequence of events.

©
 H

e
ik

o
 M

a
n

te
l

Traces

A trace 𝜏 is a list of events, i.e. 𝜏 ∈ 𝐸𝑣∗.

Projecting a trace 𝜏 ∈ 𝐸𝑣∗ to the set L (denoted 𝜏 ↓ L)

 [] ↓ L = []

 [𝛼 . 𝜏) ↓ L = 𝜏 ↓ L

 if 𝛼 ∈ { ⋅, 𝑖𝑛𝑝𝑢𝑡 𝑐ℎ, 𝑛 , 𝑜𝑢𝑡𝑝𝑢𝑡 𝑐ℎ′, 𝑛 ∣ 𝑛 ∈ 𝑉𝑎𝑙, 𝑐ℎ ∈ 𝐶ℎ, 𝑐ℎ′ ∈ 𝐶ℎ ∖ 𝐋 }

 [𝑜𝑢𝑡𝑝𝑢𝑡(𝑐ℎ, 𝑛)]. 𝜏 ↓ L = 𝑜𝑢𝑡𝑝𝑢𝑡 𝑐ℎ, 𝑛 . (𝜏 ↓ L) if 𝑐ℎ ∈ L

Indistinguishability of traces

Two traces 𝜏, 𝜏′ ∈ 𝐸𝑣 are indistinguishable (denoted by 𝜏 =𝐋 𝜏′) iff

Formalizing Noninterference (4)

Heiko Mantel @ FOSAD, August 31-September 2, 2015 31

𝜏 ↓ L = (𝜏′ ↓ L)

©
 H

e
ik

o
 M

a
n

te
l

A formal definition of noninterference (like in Part 1)

A program 𝑝𝑟𝑜𝑔 is noninterferent if and only if

A definition of noninterference if outputs on L are observable

A program 𝑝𝑟𝑜𝑔 is noninterferent if and only if

Formalizing Noninterference (5)

Heiko Mantel @ FOSAD, August 31-September 2, 2015 32

∀𝑚𝑒𝑚1, 𝑚𝑒𝑚2, 𝑚𝑒𝑚1′, 𝑚𝑒𝑚2′: 𝑉𝑎𝑟 → 𝑉𝑎𝑙 . ∀𝜏, 𝜏′ ∈ 𝐸𝑣∗.

[𝑝𝑟𝑜𝑔, 𝑚𝑒𝑚1
𝜏

⇒ 𝑠𝑡𝑜𝑝, 𝑚𝑒𝑚2 ∧ 𝑚𝑒𝑚1′ =𝐥𝐨𝐰 𝑚𝑒𝑚1]

 ⇒ [𝑝𝑟𝑜𝑔, 𝑚𝑒𝑚1′
𝜏′

⇒ 𝑠𝑡𝑜𝑝, 𝑚𝑒𝑚2′ ⇒ 𝑚𝑒𝑚2′ =𝐥𝐨𝐰 𝑚𝑒𝑚2]

∀𝑚𝑒𝑚1, 𝑚𝑒𝑚2, 𝑚𝑒𝑚1′, 𝑚𝑒𝑚2′: 𝑉𝑎𝑟 → 𝑉𝑎𝑙 . ∀𝜏, 𝜏′ ∈ 𝐸𝑣∗.

[𝑝𝑟𝑜𝑔, 𝑚𝑒𝑚1
𝜏

⇒ 𝑠𝑡𝑜𝑝, 𝑚𝑒𝑚2 ∧ 𝑚𝑒𝑚1′ =𝐥𝐨𝐰 𝑚𝑒𝑚1]

 ⇒ [𝑝𝑟𝑜𝑔, 𝑚𝑒𝑚1′
𝜏′

⇒ 𝑠𝑡𝑜𝑝, 𝑚𝑒𝑚2′
 ⇒ [𝑚𝑒𝑚2′ =𝐥𝐨𝐰 𝑚𝑒𝑚2 ∧ 𝜏′ =𝐋 𝜏]

Note: You just learnt how to adapt a definition of noninterference!

©
 H

e
ik

o
 M

a
n

te
l

A definition of noninterference if outputs on L are observable

A program 𝑝𝑟𝑜𝑔 is noninterferent if and only if

Lifting this definition of noninterference to multi-threaded programs:

A multi-threaded program 𝑝𝑟𝑜𝑔1|| ⋯ ||𝑝𝑟𝑜𝑔𝑛 is noninterferent iff

Formalizing Noninterference (6)

Heiko Mantel @ FOSAD, August 31-September 2, 2015 33

∀𝑚𝑒𝑚1, 𝑚𝑒𝑚2, 𝑚𝑒𝑚1′, 𝑚𝑒𝑚2′: 𝑉𝑎𝑟 → 𝑉𝑎𝑙 . ∀𝜏, 𝜏′ ∈ 𝐸𝑣∗.

[〈𝑝𝑟𝑜𝑔1|| ⋯ ||𝑝𝑟𝑜𝑔𝑛, 𝑚𝑒𝑚1〉
𝜏

⇒ 〈stop|| ⋯ ||stop, 𝑚𝑒𝑚2〉 ∧ 𝑚𝑒𝑚1′ =𝐥𝐨𝐰 𝑚𝑒𝑚1]

 ⇒ [〈𝑝𝑟𝑜𝑔1|| ⋯ ||𝑝𝑟𝑜𝑔𝑛, 𝑚𝑒𝑚1′〉
𝜏′

⇒ 〈stop|| ⋯ ||stop, 𝑚𝑒𝑚2′〉
 ⇒ [𝑚𝑒𝑚2′ =𝐥𝐨𝐰 𝑚𝑒𝑚2 ∧ 𝜏′ =𝐋 𝜏]

Oops!... I did It again! [Britney Spears 2000]

∀𝑚𝑒𝑚1, 𝑚𝑒𝑚2, 𝑚𝑒𝑚1′, 𝑚𝑒𝑚2′: 𝑉𝑎𝑟 → 𝑉𝑎𝑙 . ∀𝜏, 𝜏′ ∈ 𝐸𝑣∗.

[𝑝𝑟𝑜𝑔, 𝑚𝑒𝑚1
𝜏

⇒ 𝑠𝑡𝑜𝑝, 𝑚𝑒𝑚2 ∧ 𝑚𝑒𝑚1′ =𝐥𝐨𝐰 𝑚𝑒𝑚1]

 ⇒ [𝑝𝑟𝑜𝑔, 𝑚𝑒𝑚1′
𝜏′

⇒ 𝑠𝑡𝑜𝑝, 𝑚𝑒𝑚2′ ⇒ [𝑚𝑒𝑚2′ =𝐥𝐨𝐰 𝑚𝑒𝑚2 ∧ 𝜏′ =𝐋 𝜏]

©
 H

e
ik

o
 M

a
n

te
l

Part 1: An Introduction to Noninterference

Part 2: Noninterference for Multi-threaded Programs

 multi-threaded computations

 information leakage by multi-threaded programs

 challenges for information-flow security for multi-threaded programs

 noninterference for multi-threaded programs

 formalizing noninterference: two traditions with pros and cons

 lifting local security guarantees to global security guarantees

Part 3: Recent Results on Concurrent Noninterference

Exercises

Bibliography

Roadmap

Heiko Mantel @ FOSAD, August 31-September 2, 2015 34

©
 H

e
ik

o
 M

a
n

te
l

Lifted definition of noninterference for multi-threaded programs:

A multi-threaded program 𝑝𝑟𝑜𝑔1|| ⋯ ||𝑝𝑟𝑜𝑔𝑛 is noninterferent iff

Consider the following program

Intuitively, this program does not leak secrets for a round-robin scheduler.

Another Observation

Heiko Mantel @ FOSAD, August 31-September 2, 2015 35

∀𝑚𝑒𝑚1, 𝑚𝑒𝑚2, 𝑚𝑒𝑚1′, 𝑚𝑒𝑚2′: 𝑉𝑎𝑟 → 𝑉𝑎𝑙 . ∀𝜏, 𝜏′ ∈ 𝐸𝑣∗.

[〈𝑝𝑟𝑜𝑔1|| ⋯ ||𝑝𝑟𝑜𝑔𝑛, 𝑚𝑒𝑚1〉
𝜏

⇒ 〈stop|| ⋯ ||stop, 𝑚𝑒𝑚2〉 ∧ 𝑚𝑒𝑚1′ =𝐥𝐨𝐰 𝑚𝑒𝑚1]

 ⇒ [〈𝑝𝑟𝑜𝑔1|| ⋯ ||𝑝𝑟𝑜𝑔𝑛, 𝑚𝑒𝑚1′〉
𝜏′

⇒ 〈stop|| ⋯ ||stop, 𝑚𝑒𝑚2′〉
 ⇒ [𝑚𝑒𝑚2′ =𝐥𝐨𝐰 𝑚𝑒𝑚2 ∧ 𝜏′ =𝐋 𝜏]

output 1 to untrusted-channel output 0 to untrusted-channel

But this example program violates our definition of noninterference!

Maybe, we did an easy-to-correct mistake in the previous steps???

©
 H

e
ik

o
 M

a
n

te
l

There are two traditions in formalizing noninterference

 The ∀∀-tradition (example instance)

 The ∀∃-tradition (example instance)

Formalizing Noninterference - Again

Heiko Mantel @ FOSAD, August 31-September 2, 2015 36

∀𝑚𝑒𝑚1, 𝑚𝑒𝑚2, 𝑚𝑒𝑚1′, 𝑚𝑒𝑚2′: 𝑉𝑎𝑟 → 𝑉𝑎𝑙 . ∀𝜏, 𝜏′ ∈ 𝐸𝑣∗.

[𝑝𝑟𝑜𝑔, 𝑚𝑒𝑚1
𝜏

⇒ 𝑠𝑡𝑜𝑝, 𝑚𝑒𝑚2 ∧ 𝑚𝑒𝑚1′ =𝐥𝐨𝐰 𝑚𝑒𝑚1]

 ⇒ [𝑝𝑟𝑜𝑔, 𝑚𝑒𝑚1′
𝜏′

⇒ 𝑠𝑡𝑜𝑝, 𝑚𝑒𝑚2′ ⇒ 𝑚𝑒𝑚2′ =𝐥𝐨𝐰 𝑚𝑒𝑚2]

∀𝑚𝑒𝑚1, 𝑚𝑒𝑚2, 𝑚𝑒𝑚1′: 𝑉𝑎𝑟 → 𝑉𝑎𝑙 . ∀𝜏 ∈ 𝐸𝑣∗.

[𝑝𝑟𝑜𝑔, 𝑚𝑒𝑚1
𝜏

⇒ 𝑠𝑡𝑜𝑝, 𝑚𝑒𝑚2 ∧ 𝑚𝑒𝑚1′ =𝐥𝐨𝐰 𝑚𝑒𝑚1]

 ⇒ ∃𝑚𝑒𝑚2′: 𝑉𝑎𝑟 → 𝑉𝑎𝑙. ∃𝜏′ ∈ 𝐸𝑣∗.

 [𝑝𝑟𝑜𝑔, 𝑚𝑒𝑚1′
𝜏′

⇒ 𝑠𝑡𝑜𝑝, 𝑚𝑒𝑚2′ ⇒ 𝑚𝑒𝑚2′ =𝐥𝐨𝐰 𝑚𝑒𝑚2]

There is no silver bullet: Both traditions have their disadvantages.

©
 H

e
ik

o
 M

a
n

te
l

Such definitions of noninterference are restrictive wrt.

 programs in which nondeterminisms is intentionally used

 e.g., nondeterministic choice of a random number

 programs in which nondeterminism appears as a side effect

 e.g., distributed computations without a strict, global scheduler

 e.g., the order in which output by concurrent threads appears

There are also effects on compositional reasoning about programs.

 Black-box reasoning about the security of programs in terms of security

certificates for their program components is difficult because by

composing programs, one might introduce nondeterminism.

 Compositional reasoning will be covered later in this tutorial.

Disadvantages of the ∀∀-Tradition

Heiko Mantel @ FOSAD, August 31-September 2, 2015 37

©
 H

e
ik

o
 M

a
n

te
l

The ∀∀-tradition (example instance, like before)

Observation

 If the above property is true, then the attacker’s observations are

deterministically determined by the initial values of the non-secret

variables if the program is executed under a possbilistic scheduler.

 Since the possibilistic scheduler overapproaximates the possibile

behaviors of more concrete schedulers, the attacker’s observations are

also deterministic under more concrete schedulers.

The above properties remain true if the scheduler is refined.

 In the ∀∀-tradition, one gets scheduler independence for free.

Scheduler-independence in the ∀∀-Tradition

Heiko Mantel @ FOSAD, August 31-September 2, 2015 38

∀𝑚𝑒𝑚1, 𝑚𝑒𝑚2, 𝑚𝑒𝑚1′, 𝑚𝑒𝑚2′: 𝑉𝑎𝑟 → 𝑉𝑎𝑙 . ∀𝜏, 𝜏′ ∈ 𝐸𝑣∗.

[𝑝𝑟𝑜𝑔, 𝑚𝑒𝑚1
𝜏

⇒ 𝑠𝑡𝑜𝑝, 𝑚𝑒𝑚2 ∧ 𝑚𝑒𝑚1′ =𝐥𝐨𝐰 𝑚𝑒𝑚1]

 ⇒ [𝑝𝑟𝑜𝑔, 𝑚𝑒𝑚1′
𝜏′

⇒ 𝑠𝑡𝑜𝑝, 𝑚𝑒𝑚2′ ⇒ 𝑚𝑒𝑚2′ =𝐥𝐨𝐰 𝑚𝑒𝑚2]

©
 H

e
ik

o
 M

a
n

te
l

Closure property

A predicate ϕ : P(A)→Bool is a closure property if

for each A ⊆A, there exists an A’ ⊆A such that ϕ(A’) holds.

An obvious fact

If ϕ(A) holds then ϕ(B) need not hold for B ⊆ A.

Noninterference-definitions in ∀∃-tradition are closure properties.

Consequently, if a program that satisfies such a noninterference-definition

is constrained by a mechanism making some program runs impossible

then the resulting system might not satisfy the noninterference-definition.

 e.g., by refining a possibilistic scheduler by a round-robin scheduler

Disadvantages of the ∀∃-Tradition

Heiko Mantel @ FOSAD, August 31-September 2, 2015 39

This problem is known under the name “refinement paradox”.

It was first pointed out in [Jacob’89].

©
 H

e
ik

o
 M

a
n

te
l

Strong Security [Sabelfeld/Sands’00]

A definition of a noninterference-like security condition that is based on a

partial equivalence relation that requires lock-step execution.

FSI Security [Mantel/Sudbrock’10]

A definition of a noninterference-like security condition that is based on a

partial equivalence relation that does not require lock-step execution.

 allows one to use triangle- in addition to quadrangle-diagrams

Scheduler-independence in the ∀∃-Tradition

Heiko Mantel @ FOSAD, August 31-September 2, 2015 40

Message: A scheduler-independent security analysis is possible,

even when following the ∀∃-tradition, but it requires some care.

〈𝑝𝑟𝑜𝑔1, 𝑚𝑒𝑚1〉 〈𝑝𝑟𝑜𝑔2, 𝑚𝑒𝑚2〉

〈𝑝𝑟𝑜𝑔1′, 𝑚𝑒𝑚1′〉 〈𝑝𝑟𝑜𝑔2′, 𝑚𝑒𝑚2′〉

=𝐥𝐨𝐰 =𝐥𝐨𝐰 ~ ~

©
 H

e
ik

o
 M

a
n

te
l

Part 1: An Introduction to Noninterference

Part 2: Noninterference for Multi-threaded Programs

 multi-threaded computations

 information leakage by multi-threaded programs

 challenges for information-flow security for multi-threaded programs

 noninterference for multi-threaded programs

 formalizing noninterference: two traditions with pros and cons

 lifting local security guarantees to global security guarantees

Part 3: Recent Results on Concurrent Noninterference

Exercises

Bibliography

Roadmap

Heiko Mantel @ FOSAD, August 31-September 2, 2015 41

©
 H

e
ik

o
 M

a
n

te
l

Security of a program together with its environment (global security)

 A security guarantee for the system in form that it is run

End-to-end security is also called global security.

End-to-End Security Guarantees

Heiko Mantel @ FOSAD, August 31-September 2, 2015 42

thread-1

thread-2

thread-n

shared memory

and

communication

channels

s
c
h
e
d

u
lin

g
 a

n
d

s
y
n
c
h
ro

n
iz

a
tio

n

satisfies
global security

property

Analyzing global security is difficult for complex systems.

©
 H

e
ik

o
 M

a
n

te
l

Security of an individual thread

 A security guarantee for the program run by an indvidual thread.

Observations

 Verifying local security for one thread is similar to a verifying security

for a sequential program.

 Verifying local security for one thread is conceptually less complex than

verifying global security.

Thread-Local Security Guarantees

Heiko Mantel @ FOSAD, August 31-September 2, 2015 43

thread-i satisfies
local security

property

How to derive global security from local security?

©
 H

e
ik

o
 M

a
n

te
l

Lifting local security guarantees to global ones

From Local to Global Security (1)

Heiko Mantel @ FOSAD, August 31-September 2, 2015 44

thread-i satisfies
local security

property

thread-1

thread-2

thread-n

shared memory

and

communication

channels

s
c
h
e
d
u
lin

g
 a

n
d

s
y
n
c
h
ro

n
iz

a
tio

n

satisfies
global security

property

What is the contribution

to global security?

©
 H

e
ik

o
 M

a
n

te
l

Full compositionality

From Local to Global Security (2)

Heiko Mantel @ FOSAD, August 31-September 2, 2015 45

thread-1 satisfies
security

property

thread-n satisfies
security

property

thread-1

thread-2

thread-n

shared memory

and

communication

channels

s
c
h

e
d

u
lin

g
 a

n
d

s
y
n

c
h

ro
n

iz
a

tio
n

satisfies
security

property

im
p

lie
s

A full compositionality result can

be applied to reduce the

conceptual complexity of verifying

global security to the one of

verifying thread-local security.

©
 H

e
ik

o
 M

a
n

te
l

Strong security [Sabelfeld/Sands 2000]

 The first proposal of a noninterference-like security property with a

scheduler-independence result and a full compositionality result.

 This security property was shown to be optimal in [Sabelfeld 2003]

Strong security for distributed programs [Mantel/Sabelfeld2003]

 Strong security is adapted for a programming language that supports

message-passing communication between distributed programs.

WHAT1 [Mantel/Reinhard 2007, Lux/Mantel/Perner 2012]

 Strong security relaxed to support controlled declassification.

FSI security [Mantel/Sudbrock 2010]

 Scheduler-independence result for the class of robust schedulers.

 FSI security is less restrictive than strong security.

Compositionality Results of this Flavor

Heiko Mantel @ FOSAD, August 31-September 2, 2015 46

Full compositionality results allow one to reduce conceptual

complexity of verifying security substantially, but limits precision

©
 H

e
ik

o
 M

a
n

te
l

1. Create a formal definition of noninterference for sequential programs.
Assume:

 Initial values of variables do not need to be kept confidential.

 There is a dedicated set of channels H ⊆ Ch. All values input on these channels
need to be kept confidential.

 The attackers can only observe initial and final values of variables in low ⊆ Var .

Argue why your definition is faithful under these conditions.

2. Generalize your definition from Exercise 4.1 to multi-threaded programs.

3. Create a formal definition of noninterference for sequential programs.
Assume:

 Initial values of variables do not need to be kept confidential.

 There is a dedicated set of channels H ⊆ Ch. All values input on these channels
need to be kept confidential. Moreover, it must be kept confidential whether
and how often such inputs have occurred,

 The attackers can only observe initial and final values of variables in low ⊆ Var .

Argue why your definition is faithful under these conditions.

4. Formulate a full compositionality results formally. Use the intuition provided
by the pictures on Slide 45 and the noninterference definition from Slide 33.

Some Exercises (Homework 4)

Heiko Mantel @ FOSAD, August 31-September 2, 2015 47

difference to

Exercise 4.1

©
 H

e
ik

o
 M

a
n

te
l

Choose a scenario from you research background

 in which confidentiality requirements are relevant

 which is as simple/small as possible while still making sense for you

Describe the scenario using text, pictures, and/or formalism

 try to limit your description to ½ a page

Develop a suitable noninterference definition in a stepwise fashion

1. choose one secret and one attacker and describe them in informal terms
(at most ½ a page)

2. choose a suitable notion of system configuration and formalize it

3. choose a suitable notion of computation step and formalize it

4. characterize your secret in terms of the concepts under Steps 3 and 4

5. characterize the attackers observations in these terms

6. define noninterference formally (at most ½ a page)

Argue why your definition is faithful for this scenario (at most ½ a page)

Bonus Challenge

Heiko Mantel @ FOSAD, August 31-September 2, 2015 48

submission deadline: September 3, 2015 15:00

page limit: 2 pages; submit to mantel@cs.tu-darmstadt.de

